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FOREWORD

Despite a relatively short existence, bioinformatics has always seemed an unusually mul-
tidisciplinary field. Fifteen years ago, when sequence data were still scarce and only a
small fraction of the power of today’s pizza-box supercomputers was available, bioin-
formatics was already entrenched in a diverse array of topics. Database development,
sequence alignment, protein structure prediction, coding and promoter site identifica-
tion, RNA folding, and evolutionary tree construction were all within the remit of the
early bioinformaticist.1,2. To address these problems, the field drew from the foundations
of statistics, mathematics, physics, computer science, and of course, molecular biology.
Today, predictably, bioinformatics still reflects the broad base on which it started, com-
prising an eclectic collection of scientific specialists.

As a result of its inherent diversity, it is difficult to define the scope of bioinformatics as a
discipline. It may be even fruitless to try to draw hard boundaries around the field. It is ironic,
therefore, that even now, if one were to compile an intentionally broad list of research areas
within the bioinformatics purview, it would often exclude one biological discipline with
which it shares a fundamental basis: Genetics. On one hand, this seems difficult to believe,
since the fields share a strong common grounding in statistical methodology, dependence on
efficient computational algorithms, rapidly growing biological data, and shared principles
of molecular biology. On the other hand, this is completely understandable, since a large
part of bioinformatics has spent the last few years helping to sequence a number of genomes,
including that of man. In many cases, these sequencing projects have focused on constructing
a single representative sequence — the consensus — a concept that is completely foreign
to the core genetics principles of variability and individual differences. Despite a growing
awareness of each other, and with a few clear exceptions, genetics and bioinformatics have
managed to maintain separate identities.

Geneticists needs bioinformatics. This is particularly true of those trying to identify
and understand genes that influence complex phenotypes. In the realm of human genetics,
this need has become particularly clear, so that most large laboratories now have one or
two bioinformatics ‘specialists’ to whom other lab members turn for computing matters.
These specialists are required to support a dauntingly wide assortment of applications:
typical queries for such people might range from how to find instructions for accessing the
internet, to how to disentangle a complex database schema, to how to optimize numerically
intensive algorithms on parallel computing farms. These people, though somewhat scarce,
are essential to the success of the laboratory.

With the ever-increasing volume of sequence data, expression information and well-
characterized structures, as well as the imminent genotype and haplotype data on large
and diverse human populations, genetics laboratories now must move beyond singular
dependence on the bioinformatics handyman. Some level of understanding and ability to
use bioinformatics applications is becoming necessary by everyone in the lab. Fortunately,
bioinformaticians have been particularly successful in developing user-friendly software
that renders complex statistical methods accessible to the bench scientists who generated
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and should know most about the data being analysed. To further these analyses, ingenious
software applications have been constructed to display the outcomes and integrate them
with a host of useful annotation features such as chromosome characteristics, sequence
signatures, disease correlates and species comparisons3. With these tools freely available
and undergoing continued development, mapping projects that make effective use of
genetic and genomic information will naturally enjoy greater success than those less
equipped to do so. Simply put, genetics groups that cannot capitalize on bioinformatics
applications will be increasingly scooped by those who can.

The emerging requirement of broader understanding of bioinformatics within genetics
is the focus of this text, as easily appreciated by a quick glance at the title. Equally
obvious is that geneticists are the editors’ target audience. Still, one might ask ‘toward
what specific group of geneticists is this text aimed?’ The software and computational
backbone of bioinformatics is shared most noticeably with the areas of statistical and pop-
ulation genetics, so the statistical specialists would seem a plausible audience. By design,
however, this text is not aimed at these specialists so much as at those with broader back-
grounds in molecular and medical genetics, including both human and model organism
research. The content should be accessible by skilled bench scientists, clinical researchers
and even laboratory heads. Computationally, one needs only basic computing skills to
work through most of the material. Biologically, appreciation of the problems described
requires general familiarity with genetics research and recognition of the inherent value
in careful use of in silico genetic and genomic information.

By necessity, the bioinformatics topics covered in this text reflect the diversity of
the field. In order to obtain some order in this broad area, the editors have focused
on computer applications and effective use of available databases. This concentration
on applications means that descriptions of the statistical theory, numerical algorithms and
database organization are left to other texts. The editors have intentionally bypassed much
of this material to emphasize applications in widespread use — the focus is on efficient
use, rather than development, of bioinformatics methods and tools.

The data behind many of the bioinformatics tools described here are rapidly chang-
ing and expanding. In response, the software tools and databases themselves tend to be
(infuriatingly) dynamic. A consequence of this fluid state is that learning to use existing
programs by no means guarantees a knack for using those in the future. Thus, one cannot
expect long-term consistency in the tools and data-types described here (or in most any
other contemporary bioinformatics text). By learning to use current tools more effectively,
however, geneticists can not only capitalize on technology available, but perhaps engage
more bioinformaticians in the excitement of genetics research. Bringing bioinformatics to
geneticists is a crucial first step towards integrating the kindred fields and characterizing
the frustratingly elusive genes that influence complex phenotypes.

Lon R. Cardon
Professor of Bioinformatics

Wellcome Trust Centre for Human Genetics
University of Oxford

1. Doolittle, R. F. Of URFs and ORFs: A primer on how to analyze derived amino
acid sequences (University Science Books, Mill Valley, California, 1987).

2. von Heijne, G. Sequence analysis in molecular biology: Treasure trove or trivial
pursuit (Academic Press, London, 1987).

3. Wolfsberg, T. G., Wetterstrand, K. A., Guyer, M. S., Collins, F. S. & Baxevanis,
A. D. A user’s guide to the human genome. Nature Genetics 32 (suppl) (2002).



SECTION 1

AN INTRODUCTION TO
BIOINFORMATICS FOR THE
GENETICIST





CHAPTER 1

Introduction: The Role of Genetic
Bioinformatics

MICHAEL R. BARNES1 and IAN C. GRAY2

1Genetic Bioinformatics and 2Discovery Genetics
Genetics Research Division
GlaxoSmithKline Pharmaceuticals, Harlow, Essex, UK

1.1 Introduction
1.2 Genetics in the post-genome era — the role of bioinformatics
1.3 Knowledge management and expansion
1.4 Data management and mining
1.5 Genetic study designs

1.5.1 The linkage approach
1.5.2 The association approach
1.5.3 Markers for association studies

1.6 Physical locus analysis
1.7 Selecting candidate genes for analysis
1.8 Progressing from candidate gene to disease-susceptibility gene
1.9 Comparative genetics and genomics
1.10 Conclusions

References

1.1 INTRODUCTION

In February 2000, scientists announced the draft completion of the human genome. If
media reports were accepted at face value, then it might be reasonable to predict that
most geneticists would be unemployed within a decade of this announcement and human
disease would become a distant memory. As we all know this is very far from the truth,
the human genome is many things but it is not in itself a panacea for all human ailments,
nor is it a revelation akin to the elucidation of the DNA double helix or the theory
of evolution. The human genome is simply a resource borne out of technical prowess,
perhaps with a little human inspiration. One thing that is certain is that we do not yet
understand the functional significance of the majority of our genome, but what we do
know is finally put into context. Over the past 200 years mankind has developed an

Bioinformatics for Geneticists. Edited by M.R. Barnes and I.C. Gray
 2003 John Wiley & Sons, Ltd ISBNs: 0 470 84393 4; 0 470 84394 2 (PB)



4 INTRODUCTION: THE ROLE OF GENETIC BIOINFORMATICS

ever increasing understanding of genetics; Darwin and Mendel provided the 19th century
theories of evolution and inheritance, while Bateson, Morgan and others established a
framework for the mechanisms of genetics at the beginning of the 20th century. The
tentative identification of DNA as the genetic material by Avery and colleagues in the
1940s preceded the elucidation of the structure of the DNA molecule in 1953 by Watson
and Crick, which in turn provided a mechanism for DNA replication and ushered in
the era of modern molecular genetics. In 2003, precisely 50 years after this landmark
discovery it is anticipated that the entire human genome sequence will be completed in
a final, polished form; a fully indexed but currently only semi-intelligible ‘book of life’.
Here lies the most overlooked property of the genome — its value as a framework for
data integration, a central index for biology and genetics. Almost any form of biological
data can be mapped to a genomic region based on the genes or regulatory elements that
mediate it. So the sequencing of the human genome means new order for biology. This
order is perhaps comparable to the order the periodic table brought to chemistry in the
19th century. Where elements were placed in an ordered chemical landscape, biological
elements will be grouped and ordered on the new landscape of the human genome. This
presents excellent opportunities to draw together very diverse biological data; only then
will the ‘book of life’ begin to make sense.

The human genome and peripheral data associated with and generated as a result of it
require increasingly sophisticated data storage, retrieval and handling systems. With the
promises and challenges that lie ahead, bioinformatics can no longer be the exclusive realm
of the Unix guru or the Perl hacker and in recent years web browsers have made tools
accessible and user friendly to the average biologist or geneticist. Bioinformatics is now
both custodian and gatekeeper of the new genome data and with it most other biological
data. This makes bioinformatics expertise a prerequisite for the effective geneticist. This
expertise is no mystery; modern bioinformatics tools coupled with an inquiring mind
and a willingness to experiment (key requirements for any scientist, bioinformatician
or not) can yield confidence and competence in bioinformatic data handling in a very
short space of time. The objective of this book is not to act as an exhaustive guide
to bioinformatics, other texts are available to fulfil this role, but instead is intended as a
specialist guide to help the typical geneticist navigate the internet jungle to some of the best
tools and databases for the job, that is, associating genes, polymorphisms and mutations
with diseases and genetic traits. In this chapter we give a flavour of the many processes
in modern genetics where bioinformatics has a major impact and refer to subsequent
chapters for greater detail.

At the risk of over simplifying a very complex issue, the process of understanding
genetic disease typically proceeds through three stages. First, recognition of the disease
state or syndrome including an assessment of its hereditary character; second, discovery
and mapping of the related polymorphism(s) or mutation(s) and third, elucidation of the
biochemical/biophysical mechanism leading to the disease phenotype. Each of these stages
proceeds with a variable degree of laboratory investigation and bioinformatics. Both activ-
ities are complementary, bioinformatics without laboratory work is a sterile activity as
much as laboratory work without bioinformatics can be a futile and inefficient one. In fact
these two sciences are really one, genetics and genomics generate data and computational
systems allow efficient storage, access and analysis of the data — together, they constitute
bioinformatics. Almost every laboratory process has a complementary bioinformatics pro-
cess, Table 1.1 lists a few of these — building on these basic applications will maximize
the effect of bioinformatics on workflow efficiency.
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1.2 GENETICS IN THE POST-GENOME ERA — THE ROLE
OF BIOINFORMATICS

In the role of genome data custodian and gatekeeper, bioinformatics is an integral part
of almost every field of biology, including of course, genetics. In the broadest sense it
covers the following main aspects of biological research:

• Knowledge management and expansion
• Data management and mining
• Study design and support
• Data analysis
• Determination of function

These categories are quite generic and could apply to any field of biology, but are clearly
applicable to genetics. Both genetics and bioinformatics are essentially concerned with
asking the right questions, generating and testing hypotheses and organizing and inter-
preting large amounts of data to detect biological patterns.

1.3 KNOWLEDGE MANAGEMENT AND EXPANSION

Few areas of biological research call for a broader background in biology than the modern
approach to genetics. This background is tested to the extreme in the selection of candidate
genes to test for involvement with a disease process, where genes need to be chosen and
prioritized based on many criteria. Often biological links may be very subtle, for example
a candidate gene may regulate a gene which regulates a gene that in turn may act upon
the target disease pathway. Faced with the complexity of relationships between genes,
geneticists need to be able to expand pathways and identify complex cross talk between
pathways. As this process can extend almost interminably to a point where virtually
every gene is a candidate for every disease, knowledge management is important to help
to weigh up evidence to prioritize genes. The geneticist may not be an authority in the
disease area under study, and in today’s climate of reductionist biology an expert with a
global picture of the disease process at the molecular level may be hard to find. Therefore
effective tools are needed to quickly evaluate the role of each candidate and its related
pathways with respect to the target phenotype.

Literature is the most powerful resource to support this process, but it is also the most
complex and confounding data source to search. To expedite this process, some databases
have been constructed which attempt to encapsulate the available literature, e.g. On-line
Mendelian Inheritance in Man (OMIM). These centralized data resources can often be
very helpful for gaining a quick overview of an unfamiliar pathway or gene, but inevitably
one needs to re-enter the literature to build up a fuller picture and to answer the questions
that are most relevant to the target phenotype or gene. The internet is also an excellent
resource to help in this process. In Chapter 2, we offer some pointers to help the reader
with effective literature searching strategies and give suggestions as to some of the best
disease databases and related resources on the internet.

1.4 DATA MANAGEMENT AND MINING

Efficient application of knowledge relies on well organized data and genetics is highly
dependent upon good data, often in very large volumes. Accessing available data, par-
ticularly in large volumes is often the biggest informatic frustration for geneticists. Here
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we focus on aspects of accessing data from public databases; solutions for in-house data
collection, either in the form of ‘off the shelf’ or custom-built laboratory information
management systems (LIMS) belong to a specialist area that lies beyond the scope of
this book.

Genetic data have grown exponentially over the last few years, fuelled by the expressed
sequence tag (EST) cDNA sequence resources generated largely during the 1990s and
more recently the increasing genomic sequence data from the human genome and other
genome sequencing projects. Genetic database evolution has matched this growth in some
areas, with some resources leading the efforts towards whole genome integration of genetic
data, particularly the combined human genome sequence, genetic map, EST and SNP
databases exemplified by the Golden Path. Curiously, development in many of the older
more established genetic resources (for example, GDB and HGMD) has been somewhat
stagnant. This may be partly due to the difficulties involved in data integration with the
draft genome sequence, which is effectively a moving target as the data are updated on a
regular basis. Many of the traditional genetic databases have not seized the opportunity
to integrate genetic data with the human genome sequence. The future survival of these
databases will certainly depend on this taking place and there is no question that the role
of these databases will change. One might question the value of some of the older genetic
datasets, for example, why would we need radiation hybrid maps of the human genome,
when we have the ultimate physical map — the human genome sequence? These painstak-
ingly collected datasets have already played a critical role in the process of generating
the maps that allowed the sequencing of the human genome and they may still have some
value as an aid for QC of new data and perhaps more importantly as a point of reference
for all the studies that have previously taken place.

A key problem that frequently hinders effective genetic data mining is the localiza-
tion of data in many independent databases rather than a few centralized repositories.
A clear exception to this is SNP data which has now coalesced around a single central
database — dbSNP at NCBI (Sherry et al., 2001). By contrast human mutation data, which
has been collected over many years, is still stored in disparate sources, although moves
are afoot to move to a similar central database — Hobbies (Fredman et al., 2002). These
developments are timely; human mutation and polymorphism data both hold complemen-
tary keys to a better understanding of how genes function and malfunction in disease.
The availability of a complete human genome presents us with an ideal framework to
integrate both sets of data, as our understanding of the mechanisms of complex disease
increase, the full genomic context of variation will become increasingly significant.

With the exception of dbSNP most recent database development has not been implicitly
designed for geneticists, instead genomic databases and genome viewers have developed
to aid the annotation of the human genome. Of course this data is vital for genetics,
but this explains why the available tools often appear to lack important functionality.
One has to make use of what functionality is available, although sometimes this means
using tools in ways that were not originally intended (for example many geneticists use
BLAST to identify sequence primer homology in the human genome, but few realize that
the default parameters of this tool are entirely unsuited for this task). We will attempt
to address these issues throughout this book and offer practical solutions for obtaining
the most value from existing tools wherever possible. In Chapter 5 we examine the use
of human genome browsers for genetic research. Tools such as Ensembl and the UCSC
human genome browser annotate important genetic information on the human genome,
including SNPs, some microsatellites and of course, genes and regulatory regions. User-
defined queries place genes and genetic variants in their full genomic context, giving very
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detailed information on nearby genes, promoters or regions conserved between species,
including mouse and fish. It is difficult to overstate the value of this information for
genetics. For example, cross-species genome comparison is invaluable for the analysis of
function, as inter-species sequence conservation is generally thought to be restricted to a
functionally important gene or regulatory regions and so this is one of the most powerful
tools for identifying potential regulatory elements or undetected genes (Aparicio et al.,
1995). Several chapters in this book cover tools and databases to support these approaches
(see Chapters 12 and 13).

As technology developments have scaled up the throughput of genotyping to enable
studies of tens (and possibly hundreds) of thousands of polymorphisms and provided the
capability to generate equally impressive amounts of microarray transcript data to name
just two examples, the need for more effective data management has intensified. This
reveals the major drawback of the ultra user-friendly ‘point and click’ interfaces to most
genetics and genomics tools — they often do not allow retrieval of bulk datasets; instead
data often has to be retrieved on a point by point basis. For many applications this is highly
inefficient at best or simply non-viable at worst. One solution to this problem is to query
the database directly at a UNIX or SQL level, but this may not be a trivial process for the
occasional user with no or limited knowledge of command lines and in many cases it will
not be possible to access the data directly in this manner. If the raw data are available,
it may be possible to build custom databases, using database tools such as Microsoft
ACCESS. However, the authors accept that this is not a straightforward option nor the
method of choice of most users and instead this book will focus on web-based methods for
data access. Where there is no web-based method to achieve a data mining goal, geneticists
should consider contacting the developers of databases to request new functionality, such
requests are generally welcomed by database developers, many of whom would be very
pleased to know that their tools are being used! Several developers have already improved
their methods for bulk data retrieval (probably as a result of requests from users), but
interfaces are still lacking in some critical areas for genetics. For example, several tools
allow the user to generate a list of SNPs across a locus (e.g. dbSNP, Ensembl and UCSC),
but only one allows the user to retrieve the flanking sequence of each SNP in one batch
to allow primer design (SNPper — see Chapter 3). We will try to tackle these problems
as they arise throughout the book.

1.5 GENETIC STUDY DESIGNS

There are a number of approaches to disease gene hunting and many arguments to support
the merits of one approach over another. Whatever the method, comprehensive informatics
input at the study design stage can contribute greatly to the quality, efficiency and speed
of the study. It can help to define a locus clearly in terms of the genes and markers that it
contains and supports a logical and systematic approach to marker and gene selection and
subsequent genetic analysis, simultaneously reducing the cost of a project and improving
the chances of successfully discovering a phenotype–genotype correlation.

Despite the recent improvements in the throughput of genetic and genomic techniques
and the increased availability of gene and marker data, genes which contribute to the
most common human diseases are still very elusive. By contrast, the identification of
genes mutated in relatively rare single gene disorders (so-called Mendelian or monogenic
disorders) is now straightforward if suitable kindreds are available. The identification
of the genes responsible for a plethora of monogenic disorders is one of the genetics
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success stories of the late 1980s and the 1990s; genes identified include, to name but
a few — CFTR (cystic fibrosis; Riordan et al., 1989), Huntingtin (Huntington’s disease;
Huntington’s Disease Collaborative Research Group, 1993), Frataxin (Friedreich’s ataxia;
Campuzano et al., 1996) and BRCA1 in breast and ovarian cancer (Miki et al., 1994).

Unfortunately, success in the identification of genes with a role in complex (i.e. multi-
genic) disease has been far less successful. Notable examples are the involvement of
APOE in late-onset Alzheimer’s disease and cardiovascular disease and the role of NOD2
in Crohn’s disease (Hugot et al., 2001; Saunders et al., 1993). However, genes for most
of the common complex diseases remain elusive. Our ability to detect disease genes is
often dependent on the analysis method applied. Methods for the identification of disease
genes can be divided neatly into two broad categories, linkage and association. Although
many common principles apply to both of these study types, each approach has distinct
informatics demands.

1.5.1 The Linkage Approach

The vast majority of Mendelian disease genes have been identified by linkage analysis.
This involves identifying a correlation between the inheritance pattern of the phenotypic
trait (usually a disease state) with that of a genetic marker, or a series of adjacent markers.
Because of the relatively low number of recombination events observed in the 2–5 genera-
tion families typically used for linkage analyses (around one per Morgan, which is roughly
equivalent to 100 megabases, per meiosis), these marker/disease correlations extend over
many megabases (Mb), allowing adequate coverage of the entire human genome with a
linkage scan of only 300–600 simple tandem repeat (STR) markers giving an average
spacing of 10 or 5 cM respectively. STRs are the markers of choice for linkage analysis,
due to the fact that they show a high degree of heterozygosity. Markers with a heterozy-
gosity level of >70% are typically selected for linkage panels (i.e. from 100 individuals
selected at random, at least 70 would have two different alleles for a given marker; clearly
the higher the heterozygosity the greater the chance of following the inheritance pattern
from parent to offspring). Such marker panels are well characterized and can be accessed
from several public sources at various densities (see Chapter 7). Just over 16,000 STR
markers have been characterized in humans, which represents a small fraction of the
estimated total numbers of polymorphic STRs. Analysis of the December 2001 human
genome draft sequence suggests that there may be somewhere in the order of 200,000
potentially polymorphic STRs in the human genome (Viknaraja et al., unpublished data).
Software tools are now available to assist in the sequence-based identification of these
potentially polymorphic STR markers across a given locus, should additional markers be
required to narrow a linkage region (see Chapter 9 for details).

Clearly the limited degree of recombination that facilitates linkage analysis with
sparse marker panels is a double-edged sword; the investigator may be left with several
megabases of DNA containing a large number of potential candidate genes. However,
combining data from several different families often results in reduction of the genetic
interval under study, and the high-throughput sequencing capabilities available in many
modern genetics laboratories coupled with complete genome sequence render the system-
atic screening of a large number of candidate genes a far less daunting task than it was
10 years ago.

Unlike single gene Mendelian diseases, complex genetic diseases are caused by the
combined effect of multiple polymorphisms in a number of genes, often coupled with
environmental factors. The successes of linkage analysis in the rapid identification of
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Mendelian disease genes has spawned large-scale efforts to track down genes involved in
the more common complex disease phenotypes. This approach is not restricted to academic
research groups; many pharmaceutical and biotechnology companies have joined what
many would perceive to be a ‘genetic gold-rush’, in an attempt to identify new drug
targets for common diseases such as asthma, diabetes and schizophrenia, in a manner
reminiscent of the rush to mine drug targets from expressed sequence tags (ESTs) in
the late 1990s (Debouck and Metcalf, 2000). The application of a linkage approach to
complex disease typically involves combining data from a large number of affected sib-
pairs. Publicly available software for linkage analysis of sib-pairs is described in detail
in Chapter 11.

Unfortunately the identification of genes involved in common diseases using a linkage
strategy has been largely unsuccessful to date, mainly because each gene with phenotypic
relevance is thought to make a relatively small contribution to disease susceptibility.
These small effects are likely to be below the threshold of detection by linkage analysis
in the absence of unfeasibly large sample sizes (Risch, 2000). In an attempt to circumvent
this problem researchers using linkage approaches to identify genes involved in complex
disease typically relax the threshold of acceptable ‘log of the odds’ (LOD) score (see
Chapter 11) from 3, the traditionally accepted threshold of evidence for linkage in mono-
genic disease to 2, or sometimes even lower (Pericak-Vance et al., 1998). However we
would expect to see a number of hits due to chance alone with a comprehensive genome
scan at this threshold. The rationale for lowering the threshold for detection of linkage,
i.e. the effect of each contributing gene in a complex disease is smaller than would be
expected for a monogenic disease, can result in a situation where a true signal is indistin-
guishable from background noise. In order to distinguish true linkage from false positives,
many investigators are now using a combination of both linkage and association, rely-
ing on linkage analysis to reveal tentative, broad map positions which are subsequently
confirmed and narrowed with an association study (see Chapter 8).

1.5.2 The Association Approach

In its simplest form, the aim of a genetic association study is to compare an allele fre-
quency in a disease population with that in a matched control population. A significant
difference may be indicative that the locus under test is in some way related to the disease
phenotype. This association could be direct, i.e. the polymorphism being tested may have
functional consequences that have a direct bearing on the disease state. Alternatively, the
relationship between a genetic marker and phenotype may be indirect, reflecting proximity
of the marker under test to a polymorphism predisposing to disease. The phenomenon of
co-occurrence of alleles (in this case a disease-conferring allele and a surrogate marker
allele) more often than would be expected by chance is termed linkage disequilibrium
(LD). Suitable population structures for genetic association studies and statistical methods
and software tools for the analysis of data resulting from such studies are discussed in
detail in Chapters 8 and 11. Our aim here is to give the reader the briefest of introductions.

Association studies have three main advantages over linkage studies for the analysis
of complex disease: (i) case–control cohorts are generally easier to collect than extended
pedigrees; (ii) association studies have greater power to detect small genetic effects than
linkage studies; a clear example is the insulin gene, which shows extremely strong associa-
tion with type 2 diabetes, but very weak linkage (Speilman et al., 1993); (iii) LD typically
stretches over tens of kilobases rather than several megabases (Reich et al., 2001), allow-
ing focus on much smaller and more manageable loci. Among other reasons (discussed in
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Chapter 8), this is because an association-based approach exploits recombination in the
context of the entire population, rather than within the local confines of a family structure.

Of course, this last point is the other side of the double-edged sword of marker den-
sity and resolution mentioned in the context of linkage analysis above. The trade-off
is reduced range over which each marker can detect an effect, resulting in a need for
increased marker density. The required marker density for an association-based genome
scan is unknown at present as we do not have enough information regarding human
genome diversity in terms of polymorphic variability and genome-wide patterns of LD.
However, typical guesses are in the range of 30,000–300,000 markers (Collins et al.,
1999; Kruglyak, 1999); orders of magnitude higher than the numbers required for linkage
analysis. The high cost of generating the several million genotypes for such an experi-
ment has prevented any such undertaking at the time of writing, although several proof
of concept studies have demonstrated that high-density SNP maps can be efficiently gen-
erated using existing technologies and should be achievable in a reasonable time-frame
(Antonellis et al., 2002; Lai et al., 1998). In the meantime, it is likely that research groups
will continue to test individual genes for association with disease (the ‘candidate gene’
approach — see Section 1.7 below).

Once the genomic landscape, in terms of polymorphism and LD, is known with some
degree of accuracy, it is highly likely that the number of markers required for a whole
genome association study can be reduced by an intelligent study design with heavy reliance
on bioinformatics input. Testing all available markers in a given region for association
with a disease is expensive, laborious and frequently unnecessary; a simple example to
illustrate this would be two adjacent markers which always demonstrate co-segregation;
in other words, the genotypic status of one can always be predicted by genotyping the
other — there is no point in genotyping both. Although this example is simple in the
extreme, as adjacent markers typically show varying degrees of (rather than absolute) co-
segregation, there is a trade-off between minimizing the amount of required genotyping
whilst minimizing loss of information. Selection of optimal non-redundant marker sets,
coupled with an initial focus on gene-rich regions, is the key to providing lower overall
genotyping costs whilst retaining high power to detect association. This will require exten-
sive knowledge of the blocks of preserved marker patterns (haplotypes) in the population
under study; bioinformatics tools for constructing and analysing haplotypes and selecting
optimal marker sets based on haplotypic information are discussed in detail in Chapters 8
and 11.

1.5.3 Markers for Association Studies

STRs were (and still are) the vanguard of linkage analysis, mainly because of their high
levels of heterozygosity and hence increased informativeness when compared to an earlier
marker system, the restriction fragment length polymorphism (RFLP); the majority of
RFLPs are the result of a single nucleotide polymorphism (SNP) which creates or destroys
a restriction site. SNPs have made a comeback worthy of Lazarus in recent years and
are now the marker of choice for genetic association studies. The main reasons for the
return to favour of SNPs are their abundance (an estimated 7 million with a minor allele
frequency of greater than 5% in the human genome; Kruglyak and Nickerson, 2001) and
binary nature which renders them well suited to automated, high-throughput genotyping.
As mentioned above, tens or hundreds of thousands of SNPs will be required for whole
genome association scans (even with optimized marker sets). Until very recently, studies
on this scale were unfeasible, not only as a result of unacceptably high genotyping costs,
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but also due to the lack of available markers. Large-scale SNP discovery projects such as
the SNP consortium (TSC; Altshuler et al., 2000a) have increased the number of known
SNPs dramatically. We now have a great deal of SNP data (3.4 million non-redundant
SNPs deposited in dbSNP at the time of going to press), however it is becoming apparent
that even this number of markers will be insufficient for comprehensive association studies
(note that the figure of 3.4 million includes a considerable number of SNPs with a minor
allele frequency of less than 5%, which may be of limited use in association studies; this
is discussed in Chapter 8).

We have already touched on the importance and potential impact of defining haplotypes
as the basis for identifying optimal marker sets. This method has already been applied in
small-scale studies with striking results. For example, in a study of nine genes spanning a
total of 135 kb, Johnson et al. (2001) found that just 34 SNPs from a total of 122 could be
used to define all common haplotypes (those with a frequency of greater than 5%) across
the nine genes, an impressive validation of the approach of defining maximally informative
minimal marker sets based on haplotypic data. However this study also highlighted the
inadequacy of the current public SNP resource; only 10% of the SNPs identified by
Johnson et al. were found to be present in dbSNP. Using dbSNP data alone, it was
impossible to capture comprehensive haplotype data; in fact for four of the nine genes,
no SNPs whatsoever were registered in dbSNP. Unfortunately it appears that our current
public SNP resource represents the tip of the iceberg in terms of requisite information for
the proper implementation of modest candidate gene association studies, let alone whole
genome scans. However, given the burgeoning nature of dbSNP, we are optimistic that
this situation is transient.

As a footnote to this section, it should be noted that although STRs have been largely
swept aside by the wave of SNP euphoria, STRs may still be useful for association studies;
indeed, it is possible that LD can be detected over far greater distances with STRs than
SNPs under some circumstances, as discussed in Chapter 8.

1.6 PHYSICAL LOCUS ANALYSIS

In recent years, as the human genome sequence has neared completion, practical approa-
ches to physical characterization of a genetic locus have changed quite dramatically.
The laborious laboratory-based process of contig construction using yeast and bacterial
artificial chromosome (YAC and BAC) clones or cosmids, involving consecutive rounds
of library screening, clone characterization and identifying overlaps between clones, has
become largely redundant, as has clone screening for the identification of novel poly-
morphic markers and genes. Today this process, which took many months or even years,
can be completed in an afternoon using web-based human genome browsers. This shifts
the initial focus of a study from contig construction and characterization to very detailed
locus characterization using a range of bioinformatics tools; it is now possible to char-
acterize a locus in silico to a very high level of detail before any further laboratory
work commences. When the wet work does start, good prior use of bioinformatics will
have rendered many procedures superfluous and the study is far more efficient and
focused as a result. Figure 1.1 illustrates some of the key stages in the genetic analy-
sis of candidate genes and loci — the role of informatics at each stage of this process
is explored in detail in this book and the relevant chapters addressing each issue are
indicated.
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1.7 SELECTING CANDIDATE GENES FOR ANALYSIS

Candidate genes are typically selected for testing for association with a disease state on the
basis of either (i) biological rationale; the gene encodes a product which the investigator
has good reason to believe is involved in the disease process, (ii) the fact that the gene in
question is located under a linkage peak, or (iii) both. The biggest problem with candidate
gene analysis is that apparently excellent candidates are usually highly abundant and this
surfeit of ‘good’ candidates is often difficult to rationalize.

Bioinformatics can be one of the most effective ways to help shorten, or more correctly
prioritize, a candidate list without immediate and intensive laboratory follow-up. Firstly
candidate criteria need to be determined based upon the phenotype in question. Detailed
searches of the literature may help to flesh out knowledge of the disease and related
pathways. Once a set of criteria is defined (for example which tissues are likely to be
affected, which pathways are likely to be involved, and what types of genes are likely
to mediate the observed phenotype), further literature review will help to ‘round up the
usual suspects’, genes in known pathways with an established role in the phenotype under
study. This is probably the most time-consuming step, but some tools can help to expedite
this process, for example tools like OMIM can provide concise summaries of a disease
area or gene family. Other databases encapsulate knowledge of pathways and regulatory
networks, e.g. the Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa et al.,
2002). An alternative or parallel approach at this stage is to use a broader net to identify
all genes which could be involved in the disease based on relaxed criteria such as tissue
expression. Many in silico gene expression resources are available, including data derived
from EST libraries, serial analysis of gene expression (SAGE; Velculescu et al., 1995)
data, microarray and RT-PCR data (see Chapter 15). For example, if the disease manifests
in the lung, it is possible to distinguish genes that show lung expression from those that
do not. This gives an opportunity to reduce emphasis on genes that show expression
patterns which conflict with the disease hypothesis. However, it should be noted that
electronic expression data is typically not comprehensive and care must be taken in using
it to exclude the expression of a gene in a specific tissue. Low-level expression may not
be detected by the method used; furthermore, gene expression may show temporal and
spatial regulation — a gene may only be expressed during a specific phase of development
or under particular conditions, e.g. cellular stress or differentiation.

1.8 PROGRESSING FROM CANDIDATE GENE
TO DISEASE-SUSCEPTIBILITY GENE

In recent years, countless associations between genes and disease have been published,
however many of these are likely to be spurious. Many reported associations show
marginal p-values and subsequent studies often fail to replicate initial findings. Clearly
p-values of around 0.05, generally accepted as the cut-off for a significant finding, will
occur by chance for every 20 tests performed; this largely explains the general failure to
reproduce promising primary results. However, real but very small effects giving marginal
p-values are also difficult to replicate, leaving the investigator unsure as to the meaning
of a failure to replicate. One approach for resolving the issue is to perform a rigorous
meta-analysis using all available data, including both positive and negative associations.
This type of analysis was recently used to demonstrate an association between the nuclear
hormone receptor PPARγ and diabetes, using data (previously regarded as equivocal)
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drawn from a range of publications (Altshuler et al., 2000b). Nonetheless, this approach
relies on a lack of publication bias, i.e. the improbable assumption of an equal chance of
publication for both positive and negative results.

Ultimately the biologist requires functional data to support an hypothetical genetic asso-
ciation; bioinformatics has a role to play here too. For example, DNA variants that alter
subsequent amino-acid sequences can be checked for potential functional consequences
using software tools (Chapters 12 and 14). Similarly, a thorough bioinformatic character-
ization of putative regulatory elements can give an indication of the possible impact of
polymorphisms on cis-acting transcriptional motifs and the consequence on expression lev-
els (Chapter 13). Bioinformatics can also assist in laboratory-based functional assessment
of genes and polymorphisms; simple sequence manipulation tools coupled with genome
sequence data can be used to design constructs for the in vitro and in vivo analysis of genes
and polymorphisms using expression assays, transgenic mice and a host of other systems.
However, perhaps the largest impact from bioinformatics on the field of functional char-
acterization of genes will come from the development of powerful pattern recognition
software for the identification of relationships between multitudes of transcripts analysed
using microarrays. This approach has already proved useful in tumour classification by
relating patterns of gene expression to response to chemotherapeutic agents (Butte et al.,
2000). An extension of this method should allow the elucidation of gene–gene interac-
tions and the identification of common or converging biochemical pathways. Coupled
with a knowledge of putative disease-related polymorphisms and comparable expression
profiles in disease tissue, microarrays (together with the nascent field of proteomics; see
Chapter 16) promise to be an extremely powerful future tool for the dissection of complex
disease processes. Figure 1.2 illustrates approaches for gene characterization which are
useful for both prioritizing candidate genes for analysis and establishing causality in a
disease process. The chapter detailing each aspect is indicated.

1.9 COMPARATIVE GENETICS AND GENOMICS

We have already touched on the role of bioinformatics in relation to the identification
of functionally important DNA motifs by cross-species comparison. This area is covered
more fully in Chapters 9 and 12. Recently the sequencing of a number of genomes has
been completed, including the yeasts Saccharomyces cerevisiae and Schizosaccharomyces
pombe, the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis
elegans; soon these will be joined by the puffer fish species Fugu rubripes and Tetraodon
nigroviridis, the zebra fish Danio rerio and of course the mouse and rat. This has provided
an unprecedented opportunity for large-scale genome comparisons, allowing researchers
to make inferences not only with regard to the identification of conserved regulatory
elements, but also about genome evolutionary dynamics. Whole genome availability also
provides a complete platform for the design of in vivo paradigms of human disease, for
example transgenic and gene knock-out animal models and more sophisticated spatially
and temporally regulated conditional mutants.

Large-scale approaches to biochemical pathway dissection using expression microar-
rays in relatively simple organisms, particularly yeast, are also proving extremely promis-
ing. Whole genome expression profiles can be generated and correlated transcription
profiles identified for related groups of genes. Coincident expression patterns are fre-
quently indicative of subsequent protein–protein interactions and co-localization in protein
complexes (Jansen et al., 2002). Similar tissue-specific experiments can be performed for
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Figure 1.2 Approaches for gene characterization, indicating chapters detailing
each aspect.

higher organisms, both for the purposes of identifying coincident transcription profiles
for unravelling biochemical pathways and for comparison of diseased and normal tissues
(see, for example Mody et al., 2001; Saban et al., 2001). Tissue derived from animal
models such as mice can have advantages over using diseased human tissue: the disease
model can be generated under a controlled environment, typically on an identical genetic
background to the control tissue, and procurement of a significant number of high-quality
tissue samples (essential for the extraction of good quality RNA) is more straightforward
(see Chapter 15).

Thus far we have given a few examples of the impact of combining model organ-
isms with high-throughput genomics technologies for improving our understanding of
gene function and interaction, biochemical pathways and human disease (comparative
genomics). Similar strides are being made in the field of comparative genetics (here
we define genetics as phenotype-driven gene identification using genetic mapping pro-
cedures), particularly in the areas of mouse and rat genetics. The ability to perform
controlled crosses such as inter-crosses and backcrosses (see Silver, 1995; Chapter 11)
coupled with the development of fairly high density genetic maps over the last few
years has rendered the mapping of monogenic traits in both mouse and rat a reasonably
straightforward exercise. The impact of the completion of the mouse and rat genome
sequences in the near future will be similar to the impact of the availability of the human
genome on human genetics; indeed, the partially completed mouse and rat genomes
are already giving significant improvements in speed of mapping and candidate gene
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identification. These developments together with recently implemented large-scale muta-
genesis programmes for the generation of monogenic mutants (see Chapter 6) promise
to provide a significant increase in the mutant mouse resource in terms of simple dis-
ease models.

Significant progress has also been made in mapping complex traits in both the mouse
and rat in recent years, including the development of software packages for the identifi-
cation of quantitative trait loci (QTL; see Chapter 11). However, although experimental
crosses can be designed to maximize the chances of success (unlike human studies), com-
plex trait analysis in model organisms is still plagued by the difficulties in identifying
and precisely localizing genes of relatively small effect. QTL linkage peaks are typically
broad due to lack of absolute correspondence between genotype and phenotype and a con-
sequent inability to identify unequivocal recombinant animals. In an attempt to overcome
this limitation, mapping methods using ‘heterogenous stocks’ have recently been devel-
oped (Mott et al., 2000). The heterogenous stock comprises a mouse line resulting from
inter-crossing several different inbred strains and maintaining the resulting mixed stock
through several generations (typically 30–60). Each chromosome from a mouse derived
from a heterogenous stock consists of a mosaic of DNA from the different founding
strains, allowing a fine mapping approach based on a knowledge of the ancestral alleles
in the original inbred lines. Mott et al. have developed publicly available software for the
analysis of heterogenous stocks (see Chapter 11).

Perhaps one of the most exciting developments in model organism genetics is the fusion
of classical genetics with high-throughput genomics techniques. Microarrays provide a
means of checking all genes within a QTL linkage peak for subtle differences in expression
levels, potentially pinpointing the culprit gene. This tactic was used successfully to reveal
the role of Cd36 in metabolic defects, following linkage analysis in the rat (Aitman
et al., 1999). As an extension of this method, a gene expression profile may be treated as a
quantitative trait and used as a phenotypic measure in linkage analysis for the identification
of genes influencing the expression level, as a route to biochemical pathway expansion.
Jansen and Nap (2001) recently coined the phrase ‘genetical genomics’ for this type
of approach.

1.10 CONCLUSIONS

We hope this book will help the geneticist to design and complete more effective genetic
analyses. Bioinformatics can have far-reaching effects on the way that a laboratory scien-
tist works but obviously it will never entirely replace the laboratory process and is simply
another set of tools to expedite the research of the practising biologist. Misconceptions
regarding the power of bioinformatics as a stand-alone science are perhaps among the
biggest mistakes that computer-based bioinformatics specialists can make and may even
explain a degree of prejudice against bioinformatics — perceived by some as an ‘in sil-
ico science’ with little basis in reality. Taken to an extreme and without a balanced
understanding of both the application of software tools and a good appreciation of basic
biological principles, this is exactly what bioinformatics can be, but where bioinformatics
proceeds as part of ‘wet’ and ‘dry’ cycles of investigation, both processes are stronger as
a result. In this introduction we have briefly examined some of the experimental genet-
ics processes which can be assisted by informatics; we now invite the reader to read
on for more detailed coverage of each of these processes in the remaining chapters of
this book.
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2.12 Conclusions
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2.1 INTRODUCTION

The World Wide Web (‘the web’) and our knowledge of human genetics and genomics
are both expanding rapidly. By allowing swift, universal and largely free access to data,
particularly the human genome sequence, the web has already played an important role
in the study of human genetics and genomics. Increased data accessibility is dramatically
changing the way the scientific community is communicating and carrying out research.
The internet biology community is expanding daily with an organic development of web-
sites, tools and databases, which could eventually replace the conventional scientific paper
as the predominant form of communication. Already we are starting to see successful web-
site/journal hybrids such as Genome Biology (http://genomebiology.com/) and biomednet
(biomednet.com) which offer high quality peer-reviewed scientific articles and reviews
alongside bioinformatics databases and tools. Many more established journals like Nature
and Science are rapidly following suit with user-friendly websites, which offer much more
than the full text of the journal.

The web is offering more than just information. Virtual research communities have
been organized around databases and specialist research groups. These communities are
even influencing the way bioinformatics tools are being developed, a good example being
Ensembl the human genome browser developed at the EBI and Sanger Institute in Hinxton,
Cambridgeshire (Hubbard et al., 2002). In the spirit of open source community projects
such as the free UNIX operating system Linux, the Ensembl development team has devel-
oped Ensembl on an ‘open source’ basis. This means all code is freely available to anyone
who wishes to download it. But further still, Ensembl is developed by a ‘virtual commu-
nity’ of developers from institutes, industry and academia around the world who are free
to modify and add to the central software code (subject to a peer review). So the tools
and interfaces, though primarily developed in Hinxton, may include contributions from
developers in Singapore, North Carolina and New York or elsewhere.

2.1.1 Hypothesis Construction and Data Mining — essentials
for Genetics

Genetics is a science which calls for analysis and interpretation across a wide range of
biological research. Many chapters in this book deal with focused tools. Beyond these
specialist applications however, geneticists need access to a wide range of databases
and literature, both to update particular research areas and formulate new hypotheses.
This requires expertise across the gamut of biological data on the internet. This ranges
from the review literature to highly specific databases. This can illuminate biology from
gene function to biological pathways. Effective data mining needs an understanding of
the general principles by which it is organized, particularly the sequence-based data
resources. This needs to be backed up by good scientific judgment concerning quality
and significance.

An exhaustive description of biological data and databases on the internet would be
beyond the scope of this book. Confucius might not have been thinking of internet search-
ing when he said ‘give a man a fish and he will live for a day, teach a man to fish and
he will live forever’, but the principle still applies. So, instead of reviewing the data
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resources themselves the most useful thing we can do here is to review search methods
to help identify both current and future resources.

2.2 SUB-DIVISION OF BIOLOGICAL DATA ON THE INTERNET

Biological information on the internet can be roughly subdivided into two broad cate-
gories, which we will term ‘the biological internet’ and ‘biological information on the
internet’. This distinction may not be immediately apparent — we define ‘the biologi-
cal internet’ as purpose-built biological tools and databases which index and contain
detailed biological information, such as the human genome sequence, nucleotide and pro-
tein sequences, genetic markers, polymorphisms and the full range of biological literature.
The majority of these tools and databases are maintained in a highly integrated form by
major biological organizations such as NCBI and EMBL. We define ‘biological infor-
mation on the internet’ as biological data which is less formally maintained on the web,
this could include information on research laboratory homepages, conference abstracts,
tools, boutique databases and any other data that scientists have seen fit to present on
the web.

These distinctions are more clearly defined by the tools that are available to search
the data. Firstly there are general purpose web search engines, such as Google, Lycos
and Excite (see Table 2.1 for a full list), these tools index and search the full range
of the internet and have the capability to identify webpages, tools and databases by
simple keyword searching. A second category of tools are the specialist biological search
tools, such as Entrez-PubMed and BLAST (see Chapter 4). The former uses keyword
searching or accession number queries, the latter uses similarity searching to find related
sequences.

The choice of search tool depends on the kind of information that needs to be retrieved.
The scope of biological and genetic information on the internet is so broad that no single
tool is available to index all data. The key point to understand is which tool is most suitable
to identify a specific form of data. For example literature is most comprehensively indexed
by PubMed or Scirus (see below), whereas nucleotide records can only be identified with
any specificity by Entrez or BLAST. This is in contrast to a laboratory homepage or a
boutique web resource. Unless a description is published in PubMed these resources may
only be identified by a web search tool. If it is not clear what information needs to be
retrieved then clearly both specific and general search tools should be used.

TABLE 2.1 Key Internet Search Engines with Reported Index Size (Equivalent to
the Number of Documents Indexed)

Search Engine URL Reported Index Size

Google http://www.google.com/ 560 M
AltaVista http://www.altavista.com/ 350 M
FAST http://www.alltheweb.com/ 340 M
Northern Light http://www.northernlight.com/ 265 M
Excite http://www.excite.com/ 250 M
HotBot http://www.hotbot.com/ 110 M
Lycos http://www.lycos.com/ 110 M
MetaCrawler http://www.metacrawler.com/ ND
Scirus http://www.scirus.com/ 69 M (science only)
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2.3 SEARCHING THE INTERNET FOR GENETIC INFORMATION

The World Wide Web began as an information-sharing and retrieval project at the Euro-
pean particle physics laboratory CERN (Berners-Lee et al., 1999). It has only recently
evolved into the mass media beast that we all know. But just as the internet began,
so it continues as an information-sharing resource for scientists in all fields. One can-
not deny that commercial proliferation has not been an unmitigated success for the
growth of the web but this has led many scientists to perceive the internet as a ris-
ing tide of irrelevant noise that has largely washed away any intrinsic value. This is
a misconception. We will demonstrate that some web resources for biological sciences
are both outstanding and indispensable. Internet biology suffers as much as any other
field of scholarship from: data of dubious provenance, broken links, outdated sites and
newsgroup spam. But it also contains valuable and novel data which can be crucial for
scientific discovery. The skill is to recognize chaff and know how to sift the wheat from
it. To do this we need tools that are capable of highlighting relevant information in an
organized manner.

In the process of linking genotypes to phenotypes it is important to know about the
function of a gene or gene family, for example to prioritize candidate disease-association
genes. In such cases biological search tools and internet search tools may provide com-
plementary results. To give an hypothetical example let us assume that a genetic locus
associated with a familial form of basal cell carcinoma includes a novel gene with
homology to WNT genes. With no knowledge of WNT genes it would be difficult
to include or exclude this gene as a candidate. A search of PubMed would reveal a
daunting range of over 1000 publications mentioning members of the WNT gene fam-
ily. Some might contain specific information to link WNT genes to carcinoma but it
would take a long time to read and digest all the available information. Using Google
to search for ‘WNT gene’ would identify a range of conference abstracts and laboratory
homepages. Towards the top of the hit-list this would include the ‘World Wide WNT
Window’ (www.stanford.edu/∼rnusse/wntwindow.html). This is an excellent summary of
the whole WNT signalling pathway maintained by prominent researchers in the WNT
signalling field. The page includes a detailed and regularly maintained summary of all
genes in this highly complex pathway, which is currently unpublished. Examination of
this pathway would identify the Patched receptor upstream, which has been shown to
cause 80% of sporadic basal cell carcinomas. This is just one of many examples of how
a thriving unpublished and unpublicized on-line research community can be identified by
opportunistic internet searching.

2.4 WHICH WEB SEARCH ENGINE?

In a nutshell the availability of full-text search engines allows the web to be used as
a searchable 15-billion-word encyclopedia. However, because the web is a distributed,
dynamic, and rapidly growing information resource, it presents many difficulties for tra-
ditional information retrieval technologies. This why the choice of the search methodology
used for searching can lead to very different results.

An important point to make is that all search engines are not the same. A common
misconception is that most internet search engines index the same documents for a large
proportion of the web. In fact the coverage of search engines may vary by an order of mag-
nitude. An estimated lower boundary on the size of the indexable web is 0.8 billion pages
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(http://www.neci.nec.com/∼lawrence/websize.html). Many engines index only a fraction
of the total number of documents on the web and so the coverage of any one engine may
be significantly limited. Combining the results of multiple engines has been shown to
significantly increase coverage. This is done automatically with metasearch engines such
as MetaCrawler (www.metacrawler.com), which search and combine the results of several
search engines. Table 2.1 presents a selection of web search engines with direct applica-
bility to biological searching. We also recommend the website, SearchEngineWatch.com,
for reviews and reports on new search engines.

2.4.1 Google

It is apparent from Table 2.1 that Google offers the widest indexing capacity. This is
an innovative search engine based on scientific literature citation indexes (Butler, 2000).
Conventional search engines use algorithms and simple rules to rank pages based on
the frequency of the keywords specified in a query. Google exploits the links between
webpages to rank hits. Thus the highly cited pages of the web world with many links
pointing to them are ranked highest in the results. This is an efficient searching mechanism
which effectively captures the internet community ‘word of mouth’ on the best and most
frequently used webpages.

2.4.2 Scirus

The greatest limitation for web search engines is unindexed databases. These include many
of the databases that make up the biological internet, such as sequence databases and
some subscription-based resources such as full-text journals, and commercial databases.
Although limited material from these sites, such as front pages, documentation and
abstracts are indexed by search engines, the underlying data is not available because
of database firewalls and/or blocks on external indexing.

In an attempt to solve this problem, the publisher Elsevier has developed Scirus
(http://www.scirus.com/). This is a joint venture with FAST, a Norwegian search engine
company who have produced an excellent specialist scientific search engine. Scirus
enhances its specificity and scope by only indexing resources with scientific content.
These include webpages, full-text journals and Medline abstracts. This makes Scirus an
effective tool for both web and literature searching tool. Both full text and PDF format
journal content is indexed by performing a MetaSearch of the other major providers of
full text — Elsevier’s ScienceDirect and Academic Press’s IDEAL collection. Scirus also
searches the web for the same key words, including Medline, patents from the databases
of the US Patent Office, science-related conferences and abstracts. The Medline database
is provided on the BioMedNet platform, which requires a free BioMedNet login and
password for access. Scirus offers the user several options to customize their searches to
search only free sites, only membership sites or only specific sites. The advanced interface
also allows boolean queries (see below). By March 2002 Scirus had indexed 69 million
science-related pages, including PDF files and peer-reviewed articles, thereby covering
the majority of the biologically relevant internet.

Although Scirus expands the scope of biological data searching beyond other search
engines it falls short in some areas. For example the full-text journals are restricted to
Elsevier and Academic Press. Coverage is also restricted by index pre-filtering that might
miss some websites. Another disadvantage is that search results tend to be redundant.
Although for literature searching there are alternative full text searching tools such as
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HighWire (see below) Scirus is tantalizingly close to what a universal biological search
engine should be.

2.5 SEARCH SYNTAX: THE MATHEMATICS OF SEARCH ENGINE USE

The best search engine in the world will not retrieve relevant results unless the query
is correctly defined. This is easy to master and a few basic commands can turn a poor
specificity keyword search into a highly targeted query. The key to successful sifting of
the web is to select for the minimum number of irrelevant hits (maximize specificity) but
avoiding the exclusion of relevant hits (minimize false negatives).

2.5.1 Using the ‘+ and −’ Symbols to Filter Results

Sometimes it is necessary to ensure that a search engine finds pages that have all the
words you enter, not just some of them. This can be achieved by using the ‘+’ symbol.
Similarly you may wish to exclude a specific word from your search by using the ‘−’
symbol. These commands work with nearly all the major web search engines and are
similar in function to the boolean operators ‘AND’ and ‘NOT’ respectively.

As an example let’s say you wish to find information about human promoter pre-
diction tools. You could search using [+ promoter + prediction + tool]. This will only
retrieve pages that contain all three words. If the search returns excessive information by
including tools for plant and bacterial promoter prediction, one could further refine the
search by using the following search query [+ promoter + prediction + tool − plant −
prokaryote]. This will subtract pages which mention plants and prokaryotes. Be aware
though that this might filter out valid hits to tools which analyse both prokaryote and
eukaryote sequences.

2.5.2 Using Quotation Marks to Find Specific Phrases

The most complex filtering syntax on our promoter prediction query still manages to
retrieve over 1000 results, so we need to consider other methods of reducing the number
of hits. One approach is to use a phrase search that will find only those pages where the
terms appear in exactly the order specified. This is achieved by putting quotation marks
around the phrase, so we might search with [‘promoter prediction tool’]. This retrieves
six relevant hits but clearly many sources have been filtered out, so it is important to
beware of over-specifying search terms.

2.5.3 Restricting the Searching Domain of a Query

A final measure that can be taken to fine tune your query is to restrict the internet domain.
For example you can restrict your search to only identify hits in the .edu (educational)
domain or to ignore hits from the .com (company) domain. This is achieved in Google and
most other sites by using the [+ site:.edu] to include a domain or [− site:.com] to exclude
a domain. This command can be extended further to search only a specific site, e.g. to
search the NCBI website for SNP information try [+ SNP + site:ncbi.nlm.nih.gov].

Table 2.2 includes the search results obtained from the different variations on the search
for promoter prediction tools, using both Google and Scirus. This shows the improvements
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TABLE 2.2 Different Results Obtained from Different Query Targeting Methods.
Results Compare the Number of Hits Returned by the General Search Engine Google
and Specialist Science Search Engine Scirus

Query
Google

Hits
Scirus
Hits∗

+ promoter + prediction + tool 4050 2379
‘promoter prediction tool’ 6 2
‘promoter prediction tools’ 14 8
+ promoter + prediction + tool − plant 2630 1312
+ promoter + prediction + tool − plant − bacterial 2080 936
+ promoter + prediction + tool − plant − bacterial − site:.com 1750 NA
∗Queries to Scirus were designed using the equivalent boolean syntax in the advanced search form.

from filtering on the query. The final word on fine tuning web search queries is to be as
flexible as possible. Try to use keywords which are likely to be specific to the kind of
website or tool you are looking for. Sometimes it is useful to go to a page or tool similar
to the one you are looking at to check for very specific words that might be shared by
similar sites. For example, in the case of promoter prediction tools, a commonly occurring
word was ‘server’; exchanging this for ‘tool’ significantly improves the relevance of
the hits.

2.6 BOOLEAN SEARCHING

Although the familiar boolean search commands (AND, OR, NOT) are widely used for
many forms of database searching, including PubMed, they are not universally supported
by all web search engines. Table 2.3 lists those supported by the most popular search
engines. The functionality offered by AND and NOT mirrors the functionality of [+
and −]. Other commands have a distinct function, for example [SNP OR Analysis] will
retrieve all webpages that contain the words SNP or analysis. The NEAR command is not

TABLE 2.3 Boolean Commands Supported by Popular Web Search Engines

Command How Supported by

Or OR AltaVista, Excite, Google, Lycos, Northern Light
None FAST, LookSmart,

And AND AltaVista, Excite, Lycos, Northern Light
None FAST, Google, LookSmart
NOT Excite, Lycos, Northern Light

Not AND NOT AltaVista
None FAST, Google, LookSmart,

Near NEAR AltaVista (10 words), Lycos (25 words)
None FAST, Google, LookSmart
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widely supported but can be useful to help to identify two keywords in close proximity
to each other.

2.7 SEARCHING SCIENTIFIC LITERATURE — GETTING TO ‘STATE
OF THE ART’

Effective mining of the literature is important at the stages of conception, design and
construction of genetic studies. At the most basic level it is important to be aware of the
‘state of the art’ in a research area before embarking on new efforts. At the very least this
avoids duplication of effort, but it can also provide previously unrecognized clues which
need to be followed up. Unfortunately this important informatic process is still lacking
truly innovative tools and databases. We are still struggling with tools that cover the
fundamentals of literature searching, such as making the full text of all journals available
for searching. Even with unlimited access to full text, the problems with effective literature
mining are profound. Some of these problems stem from the limitation of language as
a precise query tool — there is simply too much vocabulary to describe or specify the
same target information. Some databases attempt to minimize the impact of this problem
by the use of controlled vocabulary and gene nomenclature. But in the absence of such
measures, flexible composition of queries becomes quite critical to obtain comprehensive
coverage of a research area.

There are many commercial and publicly available tools and databases for mining
scientific literature which vary in their data content. Some offer access to proprietary
curated databases but they all employ essentially similar keyword-based interfaces with a
facility for boolean operators to combine and subtract keywords.

2.7.1 PubMed

PubMed is the most widely used free literature searching tool for biologists. It forms part
of the Entrez-integrated database retrieval system at the NCBI and is essentially a web
interface to the Medline database which indexes >11 million journal abstracts. It also
provides links to the full text of more than 1100 journals available on the web, although
search queries are restricted to the text in abstracts. The interface allows the user to specify
a search term (any alpha numeric string) and a search field (e.g. title, text word, journal
or author). Queries retrieve abstracts from most of the major journals, although not all
journals are indexed, particularly newer journals or journals with lower impact factors.
There is a surprisingly stringent threshold applied before a journal will be considered for
Medline indexing.

Many of the same guiding principles applied to searching the web also apply to
PubMed, but there are some differences between this tool and other more general web
search engines. Firstly the boolean operators are limited to the three main operators AND,
OR and NOT. One major improvement over most web search engines is the availabil-
ity of a wildcard function (∗) to designate any character or combination of characters.
The creative use of wildcards and boolean terms is important to widen the search without
retrieving excessive and irrelevant results. For example, to find publications which present
evidence of schizophrenia association on chromosome 8q21, an appropriate PubMed query
might be [schizo∗ AND 8q∗] searching the text word field. Using a wildcard search
with ‘schizo∗’ instead of ‘schizophrenia’ retrieves articles which mention schizoaffective,
schizophrenia or schizophrenic, all of which may be relevant. By using a wildcard with
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‘8q’ the search will retrieve nearby loci or larger loci which may encompass 8q21, e.g.
8q13–8q22. These are simple points but they are integral to a successful search strategy.
Those using these facilities extensively will find additional searching guidelines on the
NBCI website.

2.8 SEARCHING FULL-TEXT JOURNALS

Prospects for literature searching have improved recently with the greater availability of
full-text articles. We have already described the advances offered by Scirus in searching
full-text journals and the web simultaneously. Other highly recommended websites are
HighWire which is approaching comprehensive coverage of available full-text journals
and Medline (see below). However, searching scientific publications is still somewhat
decentralized and there is still no completely comprehensive central tool to search all full-
text journals, although it is possible to search the full text of most of the major genetics
journals by visiting the top three or four major publishers. Table 2.4 lists the major sites
which index the full text of a large range of science journals. As a benchmarking test
we queried each tool, with a standard full-text query for the keyword [WNT], where
searching Medline was also an option we identified the combined number of full text
and Medline hits in parentheses. The highest number of results was retrieved with Scirus,
however these results were very redundant. The HighWire tool seemed most effective in
the benchmarking test, identifying a high number of hits with no redundancy.

2.8.1 HighWire

HighWire was set up as a non-profit making organization in 1995 by Stanford University
to help universities and societies to publish on the web at low cost (Butler, 2000). Since
its launch HighWire has expanded to become the world’s second-largest scientific repos-
itory, after the US space agency NASA’s Astrophysics Data System (which contains no
biological information). Many journals available on the HighWire site make their content
free immediately, or 1 or 2 years after print publication often coupled with an early view
service for papers in press. In March 2002, HighWire had indexed 410,821 free full-text
articles, derived from a list of 324 full-text journals. These are listed on the website along
with Medline records from January 1948 through to April 2002. In our benchmark test

TABLE 2.4 Major Websites Providing Full-text Journal Access and Searching

Site/Publisher
Test Query Hits
(with Medline) URL

PubMed (1615) http://www.ncbi.nlm.nih.gov/entrez
Scirus 5061 (7015)∗ http://www.scirus.com/
HighWire 2651 (3738) http://highwire.stanford.edu/
Biomednet 1192 (2749) http://www.bmn.com
ScienceDirect (Elsevier) 1264 http://www.sciencedirect.com
IDEAL 565 http://www.idealibrary.com/
Nature Publishing Group 255 http://www.nature.com/nature/
Wiley InterScience 196 http://www.interscience.wiley.com/
∗Results from Scirus were redundant.
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against other full-text search tools a comparative search of PubMed and HighWire with
the keywords [Wnt16 OR Wnt-16] identified two papers with PubMed and eight papers
with HighWire.

2.8.2 Literature Digests and Locus-specific Databases

The literature searching process can be simplified by searching locus-specific databases.
The most widely used is On-line Mendelian Inheritance in Man (OMIM). As the name
suggests, this focuses on Mendelian monogenic disorders, although it also offers some
coverage of complex diseases. As a manually curated digest of the literature extracted from
the full text of publications it can contain more information than PubMed. Although this
has the disadvantage that not all entries are fully comprehensive or current, the database
usually captures the most salient information and is therefore a good place to start. In
addition OMIM is fully integrated with the NCBI database family. This facilitates rapid
and direct linking between disease, gene sequence and chromosomal locus.

Other databases are available which provide curated information about genes and
diseases which can also help to speed up the literature searching process. One of these is
GeneReviews (www.geneclinics.org). This complements the molecular genetics emphasis
of OMIM by offering a distinctly different focus. GeneReviews is a medical genetics
information resource aimed at physicians and other healthcare providers. The site provides
current, expert-authored, peer-reviewed, full-text articles describing the application of
genetic testing to the diagnosis, management and genetic counselling of patients with
specific inherited conditions. It also contains an international genetic testing Laboratory
Directory and an international genetic and prenatal diagnosis Clinic Directory.

2.9 SEARCHING THE HEART OF THE BIOLOGICAL
INTERNET — SEQUENCES AND GENOMIC DATA

So far we have reviewed a range of tools and approaches for searching the wider internet
and the specialist scientific literature for biological information which may be useful for
genetics. All of the tools reviewed so far may provide links, but will stop short of direct
retrieval of actual biological database records, such as DNA or protein sequence records.
This biological information is the heart of the biological internet. However, the flood
of sequence data from genome sequencing has rapidly pushed biological sequence data
beyond the reach of general internet searching tools. Instead sequence data can be searched
and retrieved by using specialist bioinformatics tools based on sequence homology, map
location, keyword, accession number and other features in the records. At a basic level
this can be done by keyword searching using search tools such as, Entrez at the NCBI
(Schuler et al., 1996) or SRS at the EBI (Zdobnov et al., 2002). Moving beyond simple
searching methods the biological databases are constantly being updated and re-engineered
to allow more powerful data query methods. These methods are covered in many other
chapters throughout this book.

2.10 NUCLEOTIDE AND PROTEIN SEQUENCE DATABASES

There are three major organizations that collaborate to collect publicly available nucleotide
and protein sequences. These organizations share data on a daily basis but they are distin-
guished by different international catchment areas for submissions, different formats and



BIOLOGICAL SEQUENCE DATABASES — PRIMARY AND SECONDARY 31

sometimes differences in the nature of their submitter annotations. Genbank is maintained
by the NCBI in the United States (http://www.ncbi.nlm.nih.gov/Genbank/index.html).
EMBL is maintained by the European Bioinformatics Institute in the United Kingdom
(http://www.ebi.ac.uk/). The third member is the DNA Database of Japan (DDBJ) in
Mishima, Japan (http://www.ddbj.nig.ac.jp/). All three organizations offer a wide range
of tools for sequence searching and analysis but two integrated database query tools have
become pre-eminent. These are Entrez from the NCBI and SRS from the EBI.

2.10.1 Entrez

Entrez (http://www.ncbi.nlm.nih.gov/Entrez/) is the backbone of the NCBI database infra-
structure. It is an integrated database retrieval system that allows the user to search
and browse all the NCBI databases through a single gateway. Entrez provides access
to DNA and protein sequences derived from many sources, including genome maps,
population sets and, as already described, the biomedical literature via PubMed and On-
line Mendelian Inheritance in Man (OMIM). New search features are being added to
Entrez on a regular basis. Most recently facilities have been added to allow searches for
DNA by ‘ProbeSet’ data from gene-expression experiments and for proteins by molecular
weight range, by protein domain or by structure in the Molecular Modelling Database of
3D structures (MMDB).

2.10.2 Sequence Retrieval Server (SRS)

The sequence retrieval server (SRS) serves a similar role to Entrez, for the major European
sequence databases. SRS is a flexible sequence query tool which allows the user to search
a defined set of sequence databases and knowledge-bases by accession number, keyword
or sequence similarity. SRS encompasses a very wide range of data, including all the
major EMBL sequence divisions (Table 2.5). SRS goes one step further than Entrez by
enabling the user to create analysis pipelines by selecting retrieved data for processing by
a range of analysis tools, including ClustalW, BLAST and InterProScan.

2.11 BIOLOGICAL SEQUENCE DATABASES — PRIMARY
AND SECONDARY

Anyone entering the heart of the biological internet encounters a bewildering number of
accession numbers, identifiers and gene names. To get to grips with this flood of terminol-
ogy it is important to understand the difference between primary and secondary databases
and their associated accession numbers. This is not proposed as a rigorous definition but
it does have a utility for understanding the information flow between sequence databases.

2.11.1 Primary Databases

Primary accession numbers have a number of key attributes; they refer to nucleic acid
sequences derived directly from a sequencing experiment, the results are submitted by
authors in a standardized format to GenBank, EMBL or DDBJ, the accession numbers
are both unique and stable (if they are updated or amended by the submitting authors the
accession number will signify a version change as .1, .2 etc.), the data records from every
accession number can be retrieved, a contactable submitter is included in every record,
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TABLE 2.5 Databases Indexed by the Sequence Retrieval Server at the EBI

Data Type Database

Scientific literature Medline, GO, GOA
Protein sequence libraries European, Japanese and US protein patents,

SWISS-PROT, SpTrEMBL
DNA sequence libraries EMBL, Ensembl HUMAN, global DNA patents
Protein motifs INTERPRO, PROSITE, PRINTS, PFAM, PRODOM,

NICEDOM
DNA sequence related UTR, UTRSITE, BLOCKS, TAXONOMY,

GENETICCODE, REBASE, EPD, CPGISLAND,
ENSEMBLCPG, UNIGENE

Transfac (Transcription
factor analysis)

TFSITE, TFFACTOR, TFCELL, TFCLASS,
TFMATRIX, TFGENE

Protein3DStruct PDB, DSSP, HSSP, FSSP, RESID
Mutations SWISSCHANGE, EMBLCHANGE, OMIM, HUMUT,

HUMAN−MITBASE, P53LINK, Locus Specific
Mutations (see Chapter 3)

SNPs HGBASE, HGBASE−SUBMITTER
RH mapping RHDB, RHEXP, RHMAP, RHPANEL
Metabolic pathways LENZYME, LCOMPOUND, PATHWAY, ENZYME,

EMP, MPW, UPATHWAY, UREACTION,
UENZYME, UCOMPOUND

SRS pipelineapplications FASTA, FASTX, FASTY, NFASTA, BLASTP,
BLASTN, CLUSTALW, NCLUSTALW, PPSEARCH,
RESTRICTIONMAP, HMMPfam, InterProScan,
FingerPRINTScan, PfScan, BlastPRODOM,
ScanRegExp

they are explicitly redundant in that all submissions are accepted regardless of partial or
complete overlap with existing entries and lastly the growth rate remains close to exponen-
tial and now exceeds 16 million sequence records. The concept of authors’ needs stretches
to encompass consortia that run high-throughput sequencing projects. One of the most
valuable and perhaps overlooked principals of these unique public repositories is that there
is always (with the exception of patent data, see below) an identified individual or labora-
tory representative listed with the sequence record who can be contacted for any queries
regarding experimental details, data quality and availability of source material. There is
a large amount of information associated with primary sequence records. These include
primary accession numbers, version numbers, protein ID numbers, gene identifier (GI)
numbers, header records and feature identifiers. These cannot be covered in detail here
but full descriptions are given in database guides (http://www.ebi.ac.uk/embl/index.html)
and release notes (ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt).

Geneticists should be encouraged to contact submitting authors in cases where anything
seems non-obvious about primary data records for an mRNA or a finished genomic clone.
They may have extra information that has a crucial bearing on the interpretation of genetic
experiments. Authors may be difficult to track down if they have moved institutions but
they are usually pleased to assist in the utilization of their data, because as with scien-
tific publishing, this is the principle behind public sequence databases. Technical errors,
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anomalies, miss-annotation in submissions or artefacts are entirely the responsibility of
submitting authors not the database administrators. Although we should be sanguine con-
cerning anomalies in the high-throughput data divisions (EST, GSS, STS, HTG, HTC and
SNP) if problems are pointed out authors can certainly amend or update their entries or
in some cases may withdraw them. The primary data is deposited in good faith so authors
should certainly not be harshly judged if an error has occurred in the rough and tumble
of cloning, sequencing and submitter annotation. The exception to author responsibility
for GenBank records is the patent division (gbPAT) where inventors are not equivalent
to academic authors. These sequence records are processed by the US, European and
Japanese patent offices and forwarded on to the databases. Although author contact may
not be practical database users should be aware that patent applications are public docu-
ments and for an increasing number of gbPAT records the documentation can be accessed
via the patent number on-line and free of charge (http://ec.espacenet.com/espacenet/ and
http://www.uspto.gov/patft/). It is also possible to get to these patent full-text links directly
from sequence entries via SRS.

2.11.2 Secondary Databases — Nucleic Acids and Proteins

By definition secondary databases are derived from the primary data. The word secondary
should not be taken to imply lower value; indeed they include sources of the highest utility
for genetic research. However they are defined, it is important to understand how they are
linked back to the experimental data. The good news for geneticists is that there is now
a comprehensive selection of high quality secondary databases that extract and collate
subsets of mRNA, genomic or protein sequences from primary GenBank entries. The
bad news is that the proliferation of features that make secondary databases so powerful
also presents a bewildering range of options to the user. Testimony to both the good
and bad news is given by the 2002 update of the Molecular Biology Database Collec-
tion (http://nar.oupjournals.org/cgi/content/full/30/1/1/DC1). This covers no less than 355
databases, up from 281 in 2001, of which the primary databases, GenBank, EMBL and
DDJB, constitute only three entries. Although this compendium includes many non-human
data sources almost all of these secondary databases contain information that could be
pertinent to mammalian genetics. These review issues appear every January in Nucleic
Acids Research and are definitely worth browsing. Are the genome portals secondary
databases? This is where the definitions become blurred. Because NCBI generate their
own genomic contig accessions (NT numbers) and Ensembl generate their own exon
and gene identifiers they could be considered secondary databases. In so far as the UCSC
genome portal marks up only external sequence record identifiers (primary and secondary)
they are not strictly a secondary database. However, because they usefully give every type
of gene prediction in the display a retrievable identity number, they could be considered
as a secondary database.

The value of secondary databases includes the following:

• Distilling down a massive number of overlapping and/or redundant primary GenBank
entries to a manageable range of genomic sections, unique transcripts and translated
protein sequences

• Maintaining a running total of gene products, they partition human gene products
and other vertebrates with extensive genomic data such as mouse, rat and zebra fish

• The inclusion of informative graphic displays for sequence features

• Providing access to a vast amount of pre-processed bioinformatic data
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• Extensive interconnectivity through web hot-links

• Many of them are backed up by extensive institutional resources and expertise

However, users of these secondary databases also need to be aware of their short-
comings:

• They all suffer from the snapshot problem i.e. the time to re-build or update mas-
sive data sets means they are always out of date with respect to the new data
cascading into the primary databases (given the complexity of the processes this is
entirely expected but they often do not display the dates when the primary records
were extracted)

• They all have different look-and-feel interfaces thereby necessitating regular practice
to get the best out of them

• The web-based interoperativity can leave a lot to be desired; e.g. broken links, link-
outs to databases that are not maintained to the same standards and overkill by
linking out to too many similar sources

• Their automated annotation schema can be confounded by sequence artefacts
(Southan et al., 2002)

• The overlap between utility and content between major databases is extensive but is
never enough for any of them to be the mythical ‘one-stop-shop’

• Non-redundant transcript and protein collections may seem conceptually similar but
because they diverge in schema details and update frequency they all give differ-
ent statistics

• Some secondary databases such as SwissProt keep sequence identifiers both unique
and stable but for technical reasons others, such as UniGene EST clusters or Ensembl
genes, may change identifiers between builds

• Many specialized ‘boutique’ databases are never updated when their originators move
on or run out of resources

• Last but not least some secondary databases that initially had free access can become
commercial and require a subscription fee

2.11.3 Nucleic Acid Secondary Databases

For the analysis of their results the geneticist must become acquainted with these feature-
rich sources of gene product information. A key example, based around nucleic acid
sequence but including protein of secondary databases is LocusLink/RefSeq (LLRS) for
mRNAs. The LLRS system is built round a reference sequence (RefSeq) which is usually
the longest available mRNA of those coding for the same protein. RefSeq includes splice
variants and if only genomic sequence is available, such as for many of the 7TM receptors,
the system defaults to the predicted coding sequence annotated as a ‘CDS’ in the database
entry. For example there is no experimentally determined human rhodopsin mRNA in
GenBank, only a model mRNA predicted from the genomic sequence U49742. This
presents an immediate problem for the geneticist, as the untranslated region (UTR) of the
rhodopsin locus, which defines the boundaries and functional regions of the gene may be
extensive. Chapter 4 takes a detailed look at approaches to help define the true extent of
gene loci.

The end-product of the RefSeq pipeline is a unique mRNA, coding sequence (CDS),
or set of splice variants for those gene products where data or predictions are available.
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The LocusLink side of things, as suggested by the title, is directed towards mapping the
RefSeq gene products onto the genomic sequence and checking the consistency between
the two. LocusLink has linked sections of key importance to the geneticist. These are:
variation which assigns SNP data, OMIM which includes verified monogenic disease
links, homologene which indicates close homologues in other species, UniGene which
specifies ESTs clusters associated with the gene product, and PubMed that links to all
publications that can be specifically linked to the primary GenBank accession numbers.
There are also links to all three genome portals, NCBI, UCSC and Ensembl. There has
been some confusion in the past where the portals could not synchronize their builds and
track displays with GP version updates but this problem has been addressed and they
should all be on version 28 (from December 2001) at the time of writing.

The RefSeq identifier is secondary in the sense that it is a supplementary identi-
fier assigned to one particular mRNA chosen as the reference sequence. These acces-
sion numbers have the prefix NM for mRNA entries and NP for protein entries. The
LocusLink/RefSeq system goes one step further in assigning a third identifier, XM for
nucleic acid and XP for proteins, which are the genomic counterparts of the NM and
NP numbers. A BLAST search against the NCBI protein database will show all three
entries, the primary accession number, the NM and the XM entries. There is the added
complication that the XP sequences have a variable evidence support level and include
ab-initio genomic predictions both with and without EST support. Secondary accession
numbers are also important for ESTs. ESTs can be considered as mRNA fragments that,
with sufficient sampling (now just exceeding 4 million human entries in dbEST) can be
clustered or assembled to form a contiguous extended transcription product and in some
cases, the splice variants from the tissue types sampled for EST preparation. The main
post-genomic utility of EST collections is as exon detectors. In addition to splice vari-
ants these can reveal possible gene transcription activity where no extended mRNA has
been experimentally verified. The primary data source for ESTs is the dbEST division
of GenBank.

The geneticist should be aware of two major secondary EST databases, UniGene
(Wheeler et al., 2002) and the TIGR human gene index (Liang et al., 2000). The princi-
ples by which these different databases are constructed, are explained in the appropriate
source references but in fact they both converge to a similar set of ‘virtual’ surrogate tran-
scripts. In the TIGR case, the virtual transcripts assembled from overlapping ESTs can be
retrieved; in the Unigene case, the individual EST reads can be batch downloaded. As with
most secondary databases, built from the same source data, the two databases have both
overlap and complementarity. The TIGR assemblies are particularly useful for extending
the 3′ UTR of known mRNAs but the assemblies are re-compiled at long time intervals.
UniGene is updated more frequently and is fully interlinked to the LocusLink/RefSeq
system but the clusters are built on mRNAs from the preceding version of GeneBank.

2.11.4 STSs and SNPs

These are two of the most important data sources for the geneticist involved in disease
mapping. The dbSTS database contains sequence and mapping data on short genomic land-
mark sequences. Although they have a primary sequence record and GB accession number
they also have a number of alternative marker names. These have been cross-referenced
into a secondary database called UniSTS that integrates all available marker and mapping
data (http://www.ncbi.nlm.nih.gov/genome/sts/). The dbSNP database is an interesting
exception in that it is not a division of GenBank so it is not strictly a primary database. The
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submissions (SS numbers) are equivalent to a primary record but overlapping sequences
with the same polymorphism are collapsed into the Reference SNP Cluster Report with
an RS number. This can be considered a secondary database where the RS numbers
are non-redundant and stable. These RS numbers, currently at 2,640,509 for human, are
integrated with other NCBI genomic data and primary GenBank records containing over-
lapping sequences deduced or stated to be from the same location. The HGVbase has
a smaller set of 984,093 highly curated records (http://hgvbase.cgb.ki.se/). They have
their own secondary accession/ID number and these can be queried and retrieved from
the Ensembl genome annotation. Chapter 3 presents detailed examination of the major
databases of genetic variation.

2.11.5 Protein Databases and Websites

A website of central importance in protein analysis is the Expert Protein Analysis System
(ExPAS; http://www.expasy.ch/). In addition to protein analysis tools, such as PROSITE
(http://www.expasy.ch/prosite/) and Swiss-3Image (http://www.expasy.ch/sw3d/) Swiss-
Prot protein database contains high-quality annotation and web-linked cross-references
to 60 other databases. It is accompanied by TrEMBL, a computer-annotated supple-
ment that contains the translations of all coding sequences present in primary nucleotide
sequence databases not yet in SwissProt. Sequence records are merged where possi-
ble to minimize the redundancy. Sequence conflicts and splice variants are indicated
in the feature table of the corresponding entry. The combined database is referred to
as SwissProt/TrEMBL (SPTR). Amongst the links in SPTR it is worth mentioning the
InterPro system which is of very high utility for finding protein family-specific domain
matches (Apweilwer et al., 2000). Acquiring this information is one of the main goals
of the bioinformatic analysis of proteins so it is useful to find that this piece of the
work is already done and updated with new releases of InterPro. Other major sites
provide PFAM, PROSITE, and other tools for protein sequence analysis. The Sanger Insti-
tute (http://www.sanger.ac.uk/) provides access and maintains PFAM and multiple other
useful links and genomic tools, including three-dimensional protein structure prediction
(http://genomic.sanger.ac.uk/123D/123D.shtml).

Any division between the universe of DNA and protein sequences is clearly artificial.
Protein information can be accessed from within the LLRS system, just as it is also
possible to link out to primary nucleic acid sequence record accession numbers from
SPTR. However, the complementarity between LocusLink/RefSeq and SPTR is clear.
The focus is on nucleic acid sequences in the former and protein sequences in the latter.
The message for the user is that both sources will be essential for interpreting the results
of genetic experiments.

2.12 CONCLUSIONS

In this chapter we have introduced the major data sources available on the internet that
geneticists increasingly need to access for their research. The choice was based on our
direct working experience of their utility. Rather than restrict ourselves to just cataloguing
these, we have also included some discussion of the principles behind the organization
of biological data, such as the concept of primary and secondary sequence databases.
We have also demonstrated the power of web search engines, both of the specialist and
common variety. Mastering these is essential for interrogating biological resources on the
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internet. They also allow the user to search for new developments, tools and databases.
This is something we strongly recommend to future-proof your own research, even if we
cannot future-proof this book!
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3.1 INTRODUCTION

Genetic variation is a key commodity for geneticists; not only as the much sought after
basis of heritable phenotype, but also as a marker to aid in this search. For the wider
biological research community, information on genetic variation can tell us many things
about the functional parameters and critical regions of a gene, protein, regulatory element
or genomic region. Study variation and a picture of the driving force of evolution begins
to emerge. This knowledge can not only help us elucidate the function of genes and
pathways by studying their function and dysfunction in normal and diseased states, it can
also help us to understand the origins and diversity of mankind and other organisms. The
availability of a complete human genome sequence finally puts this variation into context
with all other biological data. In this chapter we will present an overview of the many
forms of genetic variation, we will review current and past trends in the use of this data
and highlight the key databases from which this data can be accessed and manipulated.

3.1.1 Human Genetic Variation

Human genetic variation and our environment are the two key factors that make each and
every one of us different. Genetic variation takes many forms, although these variants arise
from just two types of genetic mutation events. The simplest type of variant results from
a single base mutation which substitutes one nucleotide for another. This mutation event
accounts for the commonest form of variation, single nucleotide polymorphisms (SNPs).
Many other types of variation result from the insertion or deletion of a section of DNA. At
the simplest level this can result in the insertion or deletion of one or more nucleotides, so-
called insertion/deletion (INDEL) polymorphisms. The most common insertion/deletion
events occur in repetitive sequence elements, where repeated nucleotide patterns, so-called
‘variable number tandem repeat polymorphisms’ (VNTRs), expand or contract as a result
of insertion or deletion events. VNTRs are further subdivided on the basis of the size of
the repeating unit; minisatellites are composed of repeat units ranging from 10 to several
hundred base pairs. Simple tandem repeats (STRs or microsatellites) are composed of
2–6-bp repeat units. The rarest insertion/deletion events involve deletions or duplications
of regions ranging from a few kilobases to several megabases. These forms of variation
were once thought to be restricted to rare genomic syndromes, however, sequencing of
the human genome has presented a great deal of evidence to suggest that these events
may be more common than previously expected.
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The quantity of genetic variation in the human genome is something that until recently
we have only been able to estimate by an educated guess. Empirical studies quite quickly
identified that on average, comparison of chromosomes between any two individuals will
generally reveal common SNPs (>20% minor allele frequency) at 0.3–1-kb average inter-
vals, which scales up to 5–10 million SNPs across the genome (Altshuler et al., 2000).
The availability of a complete human genome has helped us considerably to estimate
the number of potentially polymorphic STRs and minisatellites, as VNTRs over a certain
number of repeats can be reliably predicted to be polymorphic. Viknaraja et al. (unpub-
lished data) completed an in silico survey of potentially polymorphic VNTRs in the human
genome and identified over 100,000 potentially polymorphic microsatellites. Other forms
of variation such as small insertion/deletions are more difficult to quantify, although they
are likely to fall somewhere between SNPs and VNTRs in numbers. Large deletions or
duplications are the most unquantifiable form of variation in the genome. Quantification
of these forms of variation is only possible by intensive cytogenetic methods (Gratacos
et al., 2001). They cannot be reliably identified from the genome sequence; in fact they
are implicitly an obstacle to genome assembly, as large duplications are often incorrectly
collapsed into a single assembly.

This huge quantity of genetic variation in the human genome led many to question the
origin and maintenance of such a ‘genetic load’ in the human population. The traditional
belief that most mutation was deleterious and subject to selection was quickly challenged
by this data. In response to this observation Kimura (1983) and others formulated a ‘neutral
theory of evolution’. This theory proposed that most sequence variation does not directly
impact phenotypic variation and so is not directly subjected to the forces of selection. Thus,
the overwhelming majority of genetic variants are likely to be phenotypically neutral,
while many will define the diverse phenotypes that define individual humans. However
a certain undefined number of these alleles will have deleterious effects, either directly
causing or increasing susceptibility to disease. Some of this variation, so-called mutations,
will be rare in populations whilst others will be common, so-called polymorphisms that
increase susceptibility to common diseases. It will not usually be possible to identify these
deleterious alleles directly, instead genetics has developed around the concept of using
markers to detect nearby deleterious alleles. Fortunately for geneticists, the huge quantity
of common polymorphism across the human genome makes it very likely that one or
more of these polymorphisms will be in close enough vicinity to a rarer disease allele to
detect it by common co-inheritance (linkage disequilibrium) between the two alleles.

Thus, one of the primary objectives of genetics is to utilize polymorphisms across the
genome as markers which show co-inheritance with the phenotype under study. SNPs
are the most obvious choice for these studies as they are the commonest form of human
variation. However this choice has not always been so clear. Despite the abundance of
SNPs in the genome, without knowledge of the genome sequence, SNP identification is a
laborious process. This has made SNP availability very limited until very recently. Instead
geneticists have used microsatellites as markers. These highly polymorphic markers can be
isolated by relatively simple molecular methods and can detect disease-causing mutations
in family-based studies over a larger distance than SNPs, often over 20 MB. The extent of
this linkage enables whole genome linkage studies with as few as 200–500 microsatellite
markers. Such linkage studies have been very successful in mapping mutations causing
single gene disorders or Mendelian traits, but have been largely unsuccessful in detecting
the multiple genes responsible for the commoner complex diseases (Risch, 2000).

The primary approach proposed for mapping complex disease genes is to use markers
to detect population-based allelic association or linkage disequilibrium (LD) between
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markers and disease alleles (see Chapter 8 for a detailed exploration of this area). These
associations can be very strong even where the corresponding family linkage signal is
weak or absent. This approach can localize disease alleles to very small regions, based
on localized LD, which on average extends between 5–100 kilobases (kb) depending on
a range of factors (Reich et al., 2001). Detection of this association demands a massive
increase in marker density with 200,000–500,000 markers estimated to be needed to
cover the genome for an association scan compared to the 200–500 markers needed for
a family-based linkage scan.

These population-based association studies call for ultra high-throughput genotyping
methods. Technology developments to date suggest that SNPs are likely to be the most
viable option for these studies for a number of reasons, but primarily because SNPs are
more tractable to automated high-throughput analysis than microsatellite markers. Until
very recently demand for SNPs completely outstripped SNP availability and so whole
genome SNP association studies simply could not be attempted. This situation is now
changing — completion of the genome has enabled several large-scale SNP discovery
projects. Genetics is now entering a promising new era where marker resources and
locus information are no longer the main factors limiting the success of complex disease
gene hunting. The emphasis is now on good study design and carefully ascertained study
populations. Effective informatics is critical to effectively exploit this data. More than
ever, geneticists will need to be competent users of bioinformatics tools to construct
sophisticated marker maps that can detect the full complexity of human genetic variation.

To find disease associations and ultimately disease alleles, it is necessary to study
genetic variation at increasing levels of detail. At first, markers need to be identified at
a sufficient density to build marker frameworks to detect linkage or association across
the genome. Once this linkage or association is detected a denser framework of markers
is needed to refine the signal. In the case of linkage analysis, marker density may not
need to be increased beyond a few hundred kilobases as linkage is likely to remain
intact over considerable distances in families. However in the case of association, marker
density needs to be increased to a level at which all haplotype diversity in a population is
captured (see Chapter 8). This may call for the construction of very dense marker maps
down to a resolution of 5–10 kb. Ultimately, once LD is established between a marker
and a phenotype it is necessary to identify all genetic variation across the narrowed locus,
hopefully allowing the identification of the disease allele. This increasing resolution of
analysis may involve a progression of bioinformatics tools and increasing ingenuity in
the use of these tools as the requirements for detail increase. Variation can take many
forms, any of which may have a bearing on the genetic mechanisms of disease. The
very act of characterizing variation across a locus may help to cast light upon its genetic
nature and the possible nature of the phenotype. For example, some genomic regions
show hypermutability, while others show very low levels of mutation or polymorphism.
The reasons for these differences are poorly understood, they may be based upon the
physical properties of chromosomes, evolutionary selection or other unknown influences,
all of which may have a bearing on disease.

3.1.2 The Genome as a Framework for Integration of Genetic
Variation Data

Bioinformatics offers some powerful tools for detecting, organizing and analysing human
genetic variation data. The value of these tools is totally dependent on the underlying
quality and organization of the data. Ideally, variation data needs be available in an orga-
nized and centralized form that will allow complex queries and integration with other
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data sources. Without the benefit of a complete genome, such integration was little more
than a pipe dream, but now we are presented with an opportunity to integrate data on the
sequence framework. Generally it takes only two 20–30 base pairs of flanking sequence
to unambiguously locate a sequence feature such as an SNP in the genome. This bioin-
formatics process is called electronic PCR (ePCR) and it is completely analogous to
laboratory-based PCR. Two primers are used to map a sequence feature (e.g. a SNP).
To validate the position both primers must map in the same vicinity spanning a defined
distance, effectively producing an electronic PCR product. The possibilities for data inte-
gration are immense. For genetics, exact base pair localization of each variant allows
the construction of absolutely precise physical maps, which can be accurately integrated
with genetic maps. It is now possible to take a given region and place SNPs, mutations,
microsatellites and insertion/deletions in exact order. Without a sequence map this simply
would not have been possible as each marker may have been mapped by different labora-
tory methods — producing few directly comparable results (see Chapter 7 for a discussion
of map integration issues).

3.2 FORMS AND MECHANISMS OF GENETIC VARIATION

In silico (bioinformatic) analysis of human sequence presents an opportunity to iden-
tify genetic variants by comparison of differences between two sequences. Most obvi-
ously potential SNPs can be identified by comparison of two sequences; these could be
expressed sequence tags, cDNAs or genomic sequences. The same method can also be
used to identify potential INDEL polymorphisms. Potential is a key word to apply to this
in silico polymorphism discovery process which can be prone to false positives introduced
by sequencing error and other issues (see Chapter 10).

Human genome sequence also gives us an opportunity to assess some of the less
commonly studied forms of variation. Although under-represented in databases some
potential forms of variation can be identified from a single DNA sequence, by sequence
alone. Short tandem repeat sequences are the most obvious example of such variants,
however, sequence analysis can also be used to identify minisatellites and segmental
duplications which may also mediate large deletions or duplications. Our knowledge of
these forms of variation is limited; this reflects studies to date which have focused on
more technically tractable variants, such as SNPs, mutations and short tandem repeats.
Databases have also as a matter of practicality tended to focus on these classes of variation,
and in this chapter we will review these databases in detail. We will also attempt to draw
the less studied forms of variation into context, reviewing the best tools to access this
data. Where no database exists we will review the mechanisms which govern variation
and which can assist detection by bioinformatics methods.

3.2.1 Single Nucleotide Variation: SNPs and Mutations

Terminology for variation at a single nucleotide position is defined by allele frequency. In
the strictest sense, a single base change, occurring in a population at a frequency of >1%
is termed a single nucleotide polymorphism (SNP). When a single base change occurs
at <1% it is considered to be a mutation. However, this definition is often disregarded,
instead ‘mutations’ occurring at <1% in general populations might more appropriately be
termed low frequency variants. The term ‘mutation’ is often used to describe a variant
identified in diseased individuals or tissues, with a proven role in the disease phenotype.
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Mutation databases and polymorphism databases have generally been divided by this def-
inition. Polymorphisms are generally considered widespread in populations and mutations
are usually rare and are not generally thought to be spread widely in populations, but
instead occur sporadically or are inherited in families in a Mendelian manner. A grey
area exists, which argues against the rigidity of this division of data. Some autosomal
recessive Mendelian mutations have been linked to complex disease susceptibility in a
heterozygote form and indeed are relatively widely spread in populations. For example,
homozygote mutations in the cystathione beta synthase gene cause homocystinuria, a rare
disorder inducing multiple strokes at an early age. The heterozygotes do not share this
severe disorder, but do have an increased lifetime risk of stroke (Kluijtmans et al., 1996).
In Caucasians the population frequency of homozygote homocystinuria mutations is only
1/126,000, but in the same population, heterozygote frequency is relatively high at 1/177.
There are many other examples of ‘Mendelian mutations’ which actually exist at appre-
ciable heterozygote levels in general populations, particularly isolated populations, e.g.
mutations in the breast cancer susceptibility gene, BRCA1, have been found in 1–2%
of Jewish populations (Bahar et al., 2001) and mutations in the CFTR gene cause cystic
fibrosis, the most common autosomal recessive disease in the Caucasian population, with
a carrier frequency of around 2% (Roque et al., 2001).

3.2.1.1 The Natural History of SNPs and Mutations

The presence of heterozygous ‘Mendelian mutations’ in general populations illustrates the
point that it may not always be helpful to rigidly separate polymorphism and mutation data.
Another factor which argues against division of these data is that both SNPs and mutations
arise by the same mechanism, although selection may influence their spread in popula-
tions. Miller and Kwok (2001) presented a detailed review of the ‘life cycle’ of a single
nucleotide variation, they defined SNP and mutation evolution in four phases (Figure 3.1):

(1) Appearance of a new variant allele by mutation
(2) Survival of the allele through early generations against the odds
(3) Increase of the allele to a substantial population frequency
(4) Fixation of the allele in populations

Each of these stages goes to the heart of the differences and similarities between SNPs and
mutations. Both arise by the same mechanism; nucleotide substitution is DNA sequence
context dependent — substitution rates are influenced by 5′ and 3′ nucleotides. This effect
is most dramatic for CT and GA transitions; these CpG dinucleotides are methylated
and tend to deaminate to either a TpG or CpA dinucleotide (Cooper and Youssoufian,
1988). This makes these dinucleotides the most likely locations for point mutation in
the human genome, with G > A or C > T transitions accounting for 25% of all SNPs
and mutations in the human genome (Miller and Kwok, 2001). In itself this molecular
mechanism accounts for the deficiency of CG dinucleotides in the human genome. The
creation of new CG dinucleotides is not an adequate counter balance against this effect,
due to the lower frequency of tranversions back to CpG. While SNPs and mutations both
arise in the same way, their survival in populations is likely to be quite different. Most
newly arisen SNPs and mutations are likely to be lost in early generations by random
sampling of the gene pool alone. For example if a heterozygous individual for a selectively
neutral mutation has two offspring, there is a 0.75 probability that the mutation will be
found in at least one child. If each generation has two children, the probability of loss of
the new mutation is 1–(0.75)g , where g = generations. To give a worked example, this
relates to a 94% probability of loss of a mutation or SNP in 10 generations (approximately
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Figure 3.1 The life cycle of SNPs and mutations. SNP and mutation evolution occurs in
four main phases: (1) appearance of a new variant allele by mutation; (2) survival of the
allele through early generations against the odds; (3) increase of the allele to a substantial
population frequency; (4) fixation of the allele in populations.

200 years). Where a heterozygous mutation has an early onset deleterious effect, natural
selection is likely to further increase the rate of loss of the allele from populations. The
same pressures do not apply to late onset diseases, perhaps explaining the proliferation
of such diseases in humans.

If an SNP or mutation survives early generations and increases in frequency sufficiently
to become homozygous in some individuals the risk of loss of the allele is reduced. At this
stage the frequency of the allele in a population is likely to vary, with higher frequency
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alleles being consistently favoured, especially when populations are subject to severe
bottlenecks in size. Reich et al. (2001) presented convincing evidence for such a bottleneck
in recent Northern European population history. In the face of these fluctuations of allele
frequency, an SNP or mutation will cease to exist in populations, either by disappearing
or by reaching a 100% allele frequency, in which case the variant becomes an allele
that helps to define a species. Interestingly there is no evidence of shared SNPs between
species, a study of variation between the human and orang-utan X chromosome found
that 2.9% of nucleotide sites differ, but no SNPs were shared (Miller et al., 2001). This
suggests that the lifetime of an SNP is considerably shorter than the divergence of these
two species. Based on this data, Miller et al. (2001) estimated that the average period
from original mutation to species fixation of an allele was 284,000 years.

3.2.1.2 SNP and Mutation Databases United?

The high level of interest in SNP data has led to the development of an excellent cen-
tral SNP database — dbSNP at the NCBI (Sherry et al., 2001). Mutation databases are
still lagging behind SNPs in terms of data integration and visualization on the human
genome. However the many commonalities between these two forms of data may have
inspired the SNP database HGBase to re-align and rename itself HGVBASE — a central
database of human genetic variation including SNP and mutation data (Fredman et al.,
2002). This is a valuable step which will make mutation data much more accessible to
geneticists in a well-integrated form. Other highly specialized mutation databases exist,
including HGMD, GDB and a large range of locus-specific databases. It is not yet clear to
what extent mutation and SNP data will be integrated, but the availability of a complete
human genome presents an unbeatable opportunity to bring these two sources of data
together in a genomic context, without compromising the necessary integrity of either
form of data.

3.2.2 Tandem Repeat Polymorphisms

Tandem repeats or variable number repeat polymorphisms (VNTRs) are a very common
class of polymorphism, consisting of variable length sequence motifs that are repeated in
tandem in a variable copy number (Figure 3.2). VNTRs are only surpassed in quantity by
SNPs in the human genome. They have been found in all organisms studied, although they

Repeat type Example

Mononucleotide AAAAAAAAAAAAAAAAAA
Dinucleotide CACACACACACACACACA
Triplet/trinucleotide CAGCAGCAGCAGCAGCAGCAGCAGCAG
Tetranucleotide TAAGTAAGTAAGTAAGTAAGTAAGTAAG
Pentanucleotide etc. GAATTGAATTGAATTGAATTGAATTGAATT

Repeat terminology Example

Perfect STR CACACACACACACACACACACACACACA
Imperfect STR CACATACACACACACACACGCACACACA
Interrupted STR CACACACACACGGGCACACACACACACA
Compound STR CACACACACACACATGTGTGTGTGTGTG

Figure 3.2 Tandem repeat types and terminology.
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tend to occur at higher frequencies in organisms with large genomes. Viknaraja et al.
(unpublished data) analysed the draft human genome sequence (December 2001 freeze)
and identified several hundred thousand potentially polymorphic VNTRs. However there
is little or no information on the heterozygosity and polymorphic nature of the vast major-
ity of these polymorphisms. VNTRs have traditionally been subdivided into subgroups
based on the size of the tandem repeat unit. Repeated sequences of one to six bases
are termed microsatellites or short tandem repeats (STR), larger tandem repeats in units
of 14–100 bp are termed minisatellites. Microsatellites and minisatellites are generally
thought to show different mutational mechanisms which are influenced by sequence prop-
erties and lengths. In microsatellites the predominant mutational mechanism is thought to
be DNA slippage during replication. In minisatellites the predominant mechanism appears
to be gene conversion and unequal crossing over (Goldstein and Schlotterer, 1999). The
distinction between microsatellites and minisatellites is somewhat arbitrary for repeat
units between 7 and 13 bp and it has been suggested that highly repeated sequences or
sequences which are more likely to form loops in these size categories should be called
minisatellites. This somewhat vague definition may be academic, in effect microsatellites
and minisatellites have quite different properties, dictated by their repeat size, copy num-
ber and the perfection of the repeat. For the specific needs of a genetic study it may be
necessary to pick the tandem repeat which conforms most closely to the heterozygos-
ity requirements for the marker (see Chapter 8). The polymorphic nature of a VNTR is
thought to depend upon a range of factors: the number of repeats, their sequence content,
their chromosomal location, the mismatch repair capability of the cell, the developmental
stage of the cell (mitotic or meiotic) and/or the sex of the transmitting parent. (Debrauwere
et al., 1997).

Aside from their utility as highly polymorphic genetic markers, much evidence exists
to demonstrate that tandem repeats exert a functional effect when located in or near gene
coding or regulatory regions. Thus VNTRs in themselves can be candidates for disease-
causing genetic variants. The best characterized of these are the triplet repeat expansion
diseases. Triplet repeat expansion is an insertion process that occurs during meiosis.
Insertion of new repeats is strongly favoured over loss of repeats — pathological triplet
repeat expansions manifest through successive generations with worsening symptoms
known as ‘anticipation’, as the repeat expands with increasingly pathological results.
Most triplet repeat expansions have been identified in monogenic diseases and may occur
in almost any genic region. Over five triplet repeat classes have been described so far,
causing a range of diseases including, Fragile X, myotonic dystrophy, Friedreich’s ataxia,
several spinocerebellar ataxias and Huntington’s disease (Usdin and Grabczyk, 2000).
Spinocerebellar ataxia 10 (SCA10) is notably caused by the largest tandem repeat seen in
the human genome (Matsuura et al., 2000). In general populations the SCA10 locus is a
10–22mer ATTCT repeat in intron 9 of the SCA10 gene; in SCA10 patients, the repeat
expands to >4500 repeat units, which makes the disease allele up to 22.5 kb larger than
the normal allele.

Tandem repeats have also been associated with complex diseases, for example different
alleles of a 14mer VNTR in the insulin gene promoter region, have been associated with
different levels of insulin secretion. Different alleles of this VNTR have been robustly
linked with type I diabetes (Lucassen et al., 1993) and in obese individuals they have also
been associated with the development of type II diabetes (Le Stunff et al., 2000). Kubota
(2001) took the concept of triplet repeat anticipation to an extreme by suggesting that
every human chromosome suffers from a burden of accumulating trinucleotide repeats.
Thus, he predicted the ‘mortality’ of human chromosomes with the passage of generations,
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eventually leading to a deficiency of replication and to the mortality of Homo sapiens as
a species! This is certainly a controversial theory, but the basic concept is interesting and
illustrates that the burden of VNTR-mediated genetic disease is only likely to increase.

The value of tandem repeats as markers and functional elements is clear, although for
practical reasons the focus of genetics is shifting to SNPs. However, VNTR markers will
probably continue to be a fundamental tool and to overlook them could be unwise, as often
a highly polymorphic VNTR may be more informative than several SNPs. In comparison
to the relatively low heterozygosity of SNPs, much less dense VNTR maps are needed
to match the equivalent detection power of a high density SNP map (see Chapter 7). A
single polymorphic VNTR may even be as informative as a complex SNP haplotype. The
drawback of tandem repeats are mainly technological — detection methods cannot cur-
rently match the highly automated microtitre plate-based or DNA chip-based assays that
have characterized modern SNP assay development, although technology developments
may eventually alter this situation (Krebs et al., 2001).

In comparison to the hundreds of thousands of VNTR polymorphisms in the genome,
only 18,000 VNTRs have been genetically characterized. Several highly characterized
subsets of these markers have been arranged into well-defined linkage marker panels by the
Marshfield Institute and Genethon (see Chapter 7 for details). These panels vary in marker
spacing to allow different density genome scans. Almost all genetically characterized
VNTRs are stored centrally in several sources, including GDB, CEPH and dbSTS (see
below). Potentially polymorphic novel VNTRs can be identified from genomic sequence
using the tandem repeat finder tool (Benson, 1999; http://c3.biomath.mssm.edu/trf.html). A
complete analysis of the human genome sequence using tandem repeat finder is presented
in the UCSC human genome browser in the ‘simple repeats’ track (see Chapter 9).

3.2.3 Insertion/Deletion Polymorphisms and Chromosomal
Abnormalities

While tandem repeat polymorphisms are in themselves a major form of variation in
genomes, they may also mediate other forms of variation by predisposing DNA to
localized rearrangements between homologous repeats. Such rearrangements give rise
to Insertion/Deletion (INDEL) polymorphisms. Indels appear to be quite common in most
genomes studied so far, this probably reflects their association with common VNTRs.
Indels have been associated with an increasing range of genetic diseases, for example,
Cambien et al. (1992) found association between coronary heart disease and a 287-bp
Indel polymorphism situated in intron 16 of the angiotensin converting enzyme (ACE).
This Indel, known as the ACE/ID polymorphism, accounts for 50% of the inter-individual
variability of plasma ACE concentration. The molecular mechanism of insertion/deletion
polymorphism is still poorly understood, many different molecular mechanisms may
account for an Indel event, although most are likely to be DNA sequence dependent. As
discussed earlier, localized sequence repetitiveness in the form of direct tandem repeats or
inverted repeats or ‘symmetric elements’, have been shown to predispose DNA to inser-
tion/deletion events (Schmucker and Krawczak, 1997). Darvasi and Kerem (1995) found
evidence to suggest that slipped-strand mispairing (SSM) was a common mechanism for
insertion/deletion events. Analysis of sequences surrounding 134 disease-causing Indel
mutations in the coding regions of three genes, the cystic fibrosis transmembrane conduc-
tance regulator, beta globin and factor IX, found that 47% of Indel mutations occurred
within a unit repeated tandemly two- to seven-fold. The proportion of SSM mutations
was significantly higher than expected by chance. The estimated net proportion of dele-
tion and insertion mutations attributed to SSM was 27%. Further mechanisms have been
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proposed; Deininger and Batzer (1999) suggested that many INDELs may be caused by
the insertion of Alu elements, which number in excess of 500,000 copies in the human
genome providing abundant opportunities for unequal homologous recombination events.

Although Indel polymorphisms are likely to be very widely distributed throughout the
genome, relatively few have been characterized and there is no central database collating
this form of polymorphism. The Marshfield website maintains the most comprehensive
single source of short insertion/deletion polymorphisms (SIDPs), over 2000 are maintained
in a form which can be searched by chromosome location. Other databases such as dbSNP
and HGVBASE also capture SIDPs to some extent. Larger Indels are generally overlooked
in databases unless associated with a specific gene or study, in which case they appear in
GDB, OMIM and other similar sources.

3.2.4 Gross Chromosomal Aberrations

While minor Indel polymorphisms are thought to be relatively common in human popu-
lations, gross chromosomal abnormalities such as deletions, inversions or translocations
were thought to be rare. Nevertheless as our knowledge of the genome develops an increas-
ing number of clinically characterized genomic syndromes are being identified. Some of
these affect multiple genes and cause pronounced phenotypes including velocardiofacial
syndrome (VCFS) a deletion syndrome on 22q11.2 (Gong et al., 1996) and Charcot-
Marie-Tooth disease type 1A (CMT1A) a duplication syndrome on 17p11.2 (Thomas,
1999). Other much more subtle genomic syndromes are emerging which suggest that
these syndromes may in fact be more common than previously believed. DUP25 is an
interstitial duplication of 17 Mb at 15q24–26, which is associated with joint laxity and
panic disorder (Gratacos et al., 2001). Changes in dosage of one or more of the 59+ genes
in the DUP25 region are likely to contribute to the subtle clinical phenotype. Detection
of DUP25 was not easy as it shows non-Mendelian transmission precluding straightfor-
ward linkage analysis. Instead researchers used laborious cytogenetic methods to detect
the duplication. This analysis identified DUP25 in 90% of patients with one or more anx-
iety disorders, and in 80% of subjects with joint laxity and remarkably in 7% of French
population-based controls.

These genomic disorders are generally thought to be caused by aberrant recombina-
tion at region- or chromosome-specific low-copy repeats, known as segmental duplications
(Emanuel and Shaikh, 2001). This new class of repetitive DNA element has only been
identified very recently, largely as a result of human genome sequencing. Segmental
duplications result from the duplication of large segments of genomic DNA that range in
size from 1 to 400 kb. These duplications can mediate interchromosomal or intrachromo-
somal recombination events. Knowledge that relatively common diseases can be caused
by recurrent chromosomal duplications and deletions has demonstrated that potential for
genomic instability could be directly related to the structure of the regions involved. The
sequence of the human genome offers to add insight and understanding to the molecular
basis of such recombination ‘hot spots’. This insight is already being gained, in the case
of VCFS on 22q11.2 complete genomic sequence across the region has revealed four
segmental duplications flanking the VCFS deletion region (Shaikh et al., 2001).

Availability of information on known deleted or duplicated regions varies greatly; some
have been narrowed to fairly well-defined critical regions, others are very poorly defined.
Details of some of the more extensively characterized deletion/rearrangement syndromes
are captured in GDB and OMIM, although in most cases information is spread throughout
the literature and basically needs to be hunted down on a case by case basis. The UCSC
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human genome browser is a particularly useful ally in this hunt (see Chapter 5), as it
annotates large duplicated regions in the human genome. The objective of this annotation
is primarily to identify duplication errors in human genome contig assembly, but this also
effectively identifies segmental duplications, such as the duplications flanking the VCFS
region on 22q11.2.

3.2.5 Somatic Mutations

A completely distinct category of human mutations arises somatically during the process
of tumourgenesis. These mutations may take many forms, the most commonly charac-
terized are somatic point mutations identified during the screening of candidate genes in
tumour tissues. Cytogenetic studies of human neoplasias have also identified a number
of chromosomal aberrations involving large deletions and duplications (Shapira, 1998).
As somatic mutations are not inherited it is obviously important to avoid mixing somatic
point mutation data with human polymorphism and mutation data.

3.2.5.1 Somatic Point Mutations

Screening of candidate genes for point mutations in tumour material has identified a
number of key genes with a role in cancer. There is no central database containing point
mutation data identified during these screens, although some locus-specific databases do
exist, it is not possible to list all these specialist resources. In some cases is may be
possible to identify locus-specific databases by a gene-specific websearch (e.g. using
SCIRUS, see Chapter 2). In most cases mutation data needs to be identified directly from
the literature.

3.2.5.2 Genomic Aberrations in Cancer

Almost 100,000 neoplasia-associated chromosomal abnormalities have been characterized
at the molecular level, revealing previously unknown genes that are closely associated
with tumourigenesis. It is not clear if somatic chromosomal aberrations and genomic
syndromes share any common mechanisms, such as mediation by segmental duplications,
although this is a possibility. Prospects for informatic and laboratory study of chromosomal
aberrations in cancer are assisted by the availability of a centralized database to capture
this data, the Mitelman map of chromosome aberrations in cancer. This resource has
been integrated into the NCBI MapViewer tool and the Cancer Genome Anatomy Project
(CGAP) (see Table 3.1).

3.3 DATABASES OF HUMAN GENETIC VARIATION

The vast range of human genetic variation is still largely uncharted and what information
exists cannot be derived from a single database. At best the data needs to be gathered from
several databases or worse still the data may not be readily available in a database at all, in
which case detailed literature and internet searching or bioinformatic analysis approaches
may be necessary. Having described the main forms of human variation, we will now
introduce the key databases for mining this information. We will also examine how these
genetic databases integrate with other databases and the human genome sequence to add
a full genomic context to variation, to help in the characterization of a potential genetic
lesion. Table 3.1 presents a selection of the best tools and databases for this purpose.
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TABLE 3.1 Genetic Variation-Focused Databases and Tools on the Web

Mutation databases
OMIM http://www.ncbi.nlm.nih.gov/Omim/
HGMD http://www.hgmd.org
GDB Mutation Waystation http://www.centralmutations.org/.
HUGO mutation database initiative http://www.genomic.unimelb.edu.au/mdi/

Central databases (SNPs and mutations)
HGVbase http://hgvbase.cgb.ki.se/
Sequence variation database (SRS) http://srs.ebi.ac.uk/
dbSNP http://www.ncbi.nlm.nih.gov/SNP/
The SNP consortium (TSC) http://snp.cshl.org/

Genetic marker maps (microsatellites, STSs other markers)
Marshfield maps http://research.marshfieldclinic.org/

genetics/
Genome Database (GDB) http://www.gdb.org
dbSTS http://www.ncbi.nlm.nih.gov/STS/
UniSTS http://www.ncbi.nlm.nih.gov/genome/sts/

Somatic and non-nuclear mutation databases
MitoMap http://www.gen.emory.edu/mitomap.html
Mitelman Map http://cgap.nci.nih.gov/Chromosomes/

Mitelman

Gene-orientated SNP and mutation visualization
LocusLink http://www.ncbi.nlm.nih.gov/LocusLink/
PicSNP http://picsnp.org
Protein Mutation Database http://www.genome.ad.jp/htbin/

www−bfind?pmd
Go!Poly http://61.139.84.5/gopoly/
GeneLynx http://www.genelynx.org
SNPper http://bio.chip.org:8080/bio/snpper-enter
GeneSNPs http://www.genome.utah.edu/genesnps/
CGAP SNP database htpp://lpgws.nci.nih.gov/

Genome-orientated for SNP and mutation visualization
Ensembl http://www.ensembl.org
Human Genome Browser (UCSC-HGB) http://genome.ucsc.edu/index.html
Map Viewer http://www.ncbi.nlm.nih.gov/cgi-bin

/Entrez/hum−srch

3.4 SNP DATABASES

The deluge of SNP data generated over the past 2 years can primarily be traced to two
major overlapping sources: The SNP Consortium (TSC) (Altshuler et al., 2000) and mem-
bers of the Human Genome Sequencing Consortium, particularly the Sanger Institute and
Washington University. The predominance of SNP data from this small number of closely
related sources has facilitated the development of a central SNP database — dbSNP at the
NCBI (Sherry et al., 2001). Other valuable databases have developed using dbSNP data
as a reference, these tools and databases bring focus to specific subsets of SNP data, e.g.
gene-orientated SNPs, while enabling further data integration around dbSNP.
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3.4.1 The dbSNP Database

The National Center for Biotechnology Information (NCBI) established the dbSNP data-
base in September 1998 as a central repository for both SNPs and short INDEL poly-
morphisms. In May 2002 (Build 104) dbSNP contained 4.2 million SNPs. These SNPs
collapse into a non-redundant set of 2.7 million SNPs, known as Reference SNPs (Ref-
SNPs). Approximately 10% of these RefSNPs do not currently map to the draft human
genome, which leaves 2.43 million SNPs with potential utility for genetic mapping. These
quantities of SNPs give a high level of coverage across the genome. One study estimated
that 85% of all known exons are within 5 kb of an SNP in the dbSNP database (Interna-
tional SNP Map Working Group, 2001). These figures will have undoubtedly improved
considerably by the time this book comes to press.

3.4.1.1 The Reference SNP Dataset (RefSNPs)

The non-redundant RefSNP dataset is produced by clustering SNPs at identical genomic
positions and creating a single representative SNP (designated by an ‘rs’ ID). The sequence
used in the RefSNP record is derived from the SNP cluster member with the longest
flanking sequence; this sequence is derived from one individual and is not a composite
sequence assembled from the cluster. The RefSNP record collates all information from
each member of the cluster, e.g. frequency information. The availability of the RefSNP
dataset considerably streamlines the process of integrating SNPs with other data sources.
External resources generally use the RefSNP dataset which makes the RefSNP ID the
universal SNP ID in the SNP research community. RefSNPs have also become an integral
part of the NCBI data infrastructure, so that the user can effortlessly browse to dbSNP
from diverse NCBI resources, including LocusLink, Map View and Genbank.

3.4.1.2 Searching dbSNP

There are a bewildering range of approaches for searching dbSNP. The database can
be searched directly by SNP accession number, submitter, detection method, population
studied, publication or a sequence-based BLAST search. The database also has a complex
search form which allows more flexible freeform queries (http://www.ncbi.nlm.nih.gov/
SNP/easyform.html). This allows the user to select SNPs which meet several criteria,
for example it is possible to search for all validated non-synonymous SNPs in gene
coding regions on chromosome 1 (Figures 3.3 and 3.4). The advanced form also includes
a separate interface for retrieving all SNPs between two STS markers or two golden
path locations.

There are many other tools which use the dbSNP dataset, e.g. LocusLink, SNPper
and the human genome browsers (Table 3.1). These tools can offer powerful alternative
interfaces for searching dbSNP, but be aware that third party tools and software may use
filtering or repeat masking protocols, which can lead to the exclusion of SNPs with poor
quality or short flanking sequence, or SNPs in repeat regions. If it is important to identify
all SNPs in a given gene or locus then it is worth consulting several different tools and
comparing the results. Some of the best SNP visualization tools are discussed later in
this chapter.

3.4.1.3 Submitting Data to dbSNP

The dbSNP database accepts direct data submissions from researchers by e-mail or FTP.
The submission process is generally intended for large batch submissions involving hun-
dreds or thousands of SNPs, using a text flatfile submission format. Each SNP submission
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Figure 3.3 The dbSNP freeform search interface.

contains many elements to describe the SNP, but primarily it should contain a report
describing how to assay the SNP, the SNP sequence information and if available the SNP
allele frequency. While the submission format is suitable for bulk submissions it may
present the occasional submitter some problems. Preparation of any more than a handful
of SNPs in this format really requires some grasp of a text manipulation language such as
perl (Stein, 2001). In this case it may be a good idea to find a friendly perl programmer or
contact dbSNP directly for guidance and assistance in the preparation of the submission.
A web interface for form-based submission is currently in development, which should
alleviate this problem.
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Figure 3.4 Search results from a dbSNP freeform search.

3.4.1.4 Key SNP Data Issues

The sequencing of the human genome has provided a massive boost to human polymor-
phism discovery efforts. Table 3.2 presents a breakdown of dbSNP submission sources.
From this table it is clear that 94% of SNPs in dbSNP originate from three main sources:
the TSC, the Sanger Institute and the Kwok Laboratory (informatic analysis of data from
the Whitehead Institute and Washington University). SNPs sourced from the TSC were
identified by the major genome sequencing centres by detection of high-confidence base
differences in aligned sequences primarily from reduced representation shotgun (RRS)
sequencing (Altshuler et al., 2000) and also by alignment of genomic clones (Mullikin
et al., 2000). RRS sequencing involves sequencing of random clones from the genomes
of many individuals. This method has several advantages over other SNP identification
methods, in that it does not require previous knowledge of genomic sequence or PCR,
and it provides haploid genotypes, the alleles of which are easier to call (see Chapter 10
for on overview of these methods). The later two sources, SANGER and KWOK account
for 64% of dbSNP SNPs. These represent SNPs generated by the major human genome
sequencing centres. These SNPs were identified by overlapping genomic sequence reads.
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TABLE 3.2 Main SNP Submission Sources in the dbSNP Database (BUILD 104)

Source Total submissions RefSNP clusters Primary SNP ID method

TSC 1,279,099 1,275,272 Shotgun and Genomic
Kwok (WASHU) 1,182,884 493,536 Genomic overlap
Sanger 1,529,560 1,348,534 Genomic overlap
Lee 99,505 46,942 EST trace mining
Yusuke 73,720 73,720 SNP disc (Japanese)
Perlegen 25,326 25,315 Microarray (Chr21 only)
HGBASE 13,100 13,081 Various
CGAP 12,881 12,733 EST trace mining
Other 13,367 ND Various
Total 4,229,442 2,673,925

In the wake of the TSC and the genomic overlap SNP discovery projects, further
SNP submissions to dbSNP will continue from the genome centres in the final stages
of genome finishing, but further growth of dbSNP will depend on the next steps after
completion of the human genome. The human genome is likely to be repeatedly re-
sequenced in the next few years, either entirely or across defined regions. This will in
turn generate further SNPs by comparison of genomic overlaps. The Sanger Institute has
already announced a 5-year plan to re-sequence all known human exons in 96 individuals.
This should detect 95% of SNPs with a frequency of >1%. Inevitably novel SNPs will
become increasingly rare, based on a law of diminishing returns. Based on the observed
SNP density in the genome, estimates suggest that the dbSNP dataset may currently
represent 20–30% of common SNPs in the human genome. Different SNP discovery
projects have sampled variation at very different levels. The TSC SNPs were discovered
using a publicly available panel of 24 ethnically diverse individuals (Collins et al., 1998).
This panel would have a 95% chance of detecting SNPs down to a frequency of 5%. SNPs
identified by genomic sequence overlap (which comprise 64% of dbSNP data), offer the
shallowest sampling of human variation. Genomic overlap SNPs are candidate SNPs
identified by comparison of two individuals, this approach has some major drawbacks,
the SNP discovery method is more error prone (heterozygotic SNPs are often missed) and
many SNPs discovered by this method are likely to be ‘private’ SNPs which are restricted
to the individual and not generally represented in populations (see below for more details
on candidate SNP issues).

Aside from the major SNP data submissions from the genome centres, dbSNP also
accepts direct SNP submissions from researchers and most journals now require SNP
submission to dbSNP before publication (a practice which needs to be encouraged). These
have been estimated to add to dbSNP at a rate of about 100 primarily gene-orientated
SNPs per month.

3.4.1.5 Candidate SNPs — SNP to Assay

As we have already demonstrated, the dbSNP dataset has one overwhelming caveat — most
of the SNPs are ‘candidate’ SNPs of unknown frequency and are unconfirmed in a labo-
ratory assay. This translates to the simple fact that many SNPs do not exist at a detectable
frequency in any population. Over 60% of the SNPs in dbSNP were detected by statistical
methods for identification of ‘candidate’ SNPs by comparison of DNA sequence traces
from overlapping clones. Marth et al. (2001) investigated the reliability of these candidate
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SNPs in some depth completing two pilot studies to determine how well candidate SNPs
would progress to working assays in three common populations. In both studies, they
found that between 52–54% of the characterized SNPs turn out to be common SNPs
(above >10%) for each population. Significantly, between 30 and 34% of the character-
ized SNPs were not detected in each population. These results suggest that if a candidate
SNP is selected for study in a common population, there is a 66–70% chance that the
SNPs will have detectable minor allele frequency (1–5%) and a 50% chance that the SNPs
are common in that population (>10%). Put another way, ∼17% of candidate SNPs will
have no detectable variation in common populations, these ‘monomorphic’ SNP candi-
dates, are likely to represent ‘private SNPs’, which exist in the individual screened but
not appreciably in populations. This probably reflects the massive increase in population
size and admixture over the past 500 years (Miller and Kwok, 2001). Beyond validation
of the SNP, the last hurdle is assay design — many SNPs are located in repetitive or AT
rich regions, which makes assay design difficult, this can account for a further 10–30%
fallout, depending on the assay technology.

Any genetic study needs to take these levels of attrition between SNP and working
assay into account (Table 3.3). There is only one solution to this problem — to determine
the frequency of the 2 million or so public SNPs in common ethnic groups. This is now
widely recognized in the SNP research community and several public groups includ-
ing the TSC are already undertaking or seeking to undertake large-scale SNP frequency
determination projects.

3.4.2 Human Genome Variation Database (HGVbase)

The Human Genome Variation database, HGVbase, previously known as HGbase (Brookes
et al. 2000; http://hgvbase.cgb.ki.se/), was initially created in 1998 with a remit to capture
all intra-genic (promoter to end of transcription) sequence polymorphism. One year later,
the remit of the database expanded to a whole genome polymorphism (and nominally
mutation) database, this ambitious expansion in remit was supported by the establish-
ment of a European consortium comprising teams at the Karolinska Institute, Sweden, the
European Bioinformatics Institute, UK and at the European Molecular Biology Labora-
tory, Germany. At this point, HGbase encompassed the same classes of variants as dbSNP.
Both HGVbase and dbSNP make regular data exchanges to allow data synchronization. In
November 2001, the HGbase project adopted the new name HGVbase (Human Genome
Variation database; Fredman et al., 2002). This change reflected another change in the
scope of the database as it took on a HUGO endorsed role as a central repository for
mutation collection efforts undertaken in collaboration with the Human Genome Variation
Society (HGVS).

TABLE 3.3 Pitfalls from Candidate SNP to Assay (From Marth et al., 2001)

SNP to assay convertion steps
Remaining RefSNPs

(% attrition)

Reference SNP identified 2.4 M
Not mapped to human genome 2.16 M (10%)
Assay design not possible or assay fails 1.84 M (15%)
Not polymorphic in study population 1.52 M (17%)
Frequency <20% in chosen population 1.26 M (50%)
SNPs (>20% frequency) with assay available 0.63 M
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There is no doubt that dbSNP has assumed the de facto position of the primary central
SNP database. To accommodate this, HGVbase has assumed a complementary position,
with a broader remit covering all single nucleotide variation — both SNPs and mutations.
HGVBASE is also taking a distinct approach to dbSNP by seeking to summarize all
known SNPs as a semi-validated, non-redundant set of records. HGVbase is seeking
to address some of the problems associated with candidate SNPs and so in contrast to
the automated approach of dbSNP, HGVbase is highly curated. The curators are aiming
to provide a more-extensively validated SNP data set, by filtering out SNPs in repeat
and low complexity regions and by identifying SNPs for which a genotyping assay can
successfully be designed. The HGVbase curators have also identified SNPs and mutation
data from the literature, particularly older publications before database submission was
the norm. HGVbase currently contains 1.45 M non-redundant human polymorphisms and
mutations (release 13–March 2002).

HGVbase is a highly applied database, which also provides some useful tools for
experimental design, including a tool for defining haplotype tags — ‘Tag ’n Tell’. This tool
will find a minimum set of markers that uniquely characterize (or ‘tag’) chosen haplotypes.
According to user preferences, not all entered haplotypes have to be considered in the
tag-selection process, this is useful for determining optimal haplotype tag sets to capture
common haplotypes (see Chapter 9 for an example of haplotype tagging using this tool).

The HGVbase search interface is relatively simple, tools are available to facilitate
BLAST searching and keyword queries of the database. As these options are relatively
limited, other tools which access HGVbase data, are a better option — most are from the
EMBL and EBI organizations, including Ensembl and SRS (Table 3.3; described below).
The in silico quality control approach adopted by HGVbase is valuable, particularly for
the broader biological community of SNP data consumers. For the geneticist, HGVbase
serves to identify SNPs with a higher chance of converting from ‘candidate SNPs’ to
informative SNP assays. If you take the cost of failed assays into account, this is a
valuable objective, although if all available SNPs need to be identified it may still be
important to search dbSNP and other resources.

3.5 MUTATION DATABASES

The polymorphism data stored in dbSNP is valuable biological information that helps
to define the natural range of variation in genes and the genome, however most of the
polymorphisms can be assumed to be functionally neutral. By contrast human mutation
data is functionally defined and has obvious implications for the nature and prevalence of
disease and the pathways underlying disease. This makes the study of naturally-occurring
mutations important for the understanding of human disease pathology, particularly the
relationships between genotype and phenotype and between DNA and protein structure
and function. A large number of Mendelian disease mutations have been identified over
the past 20 years. These have helped to define many key biological mechanisms, including
gene regulatory motifs and protein–protein interactions (see Chapter 13). Many highly
specialized locus-specific databases (LSDBs) have been established to collate this data.
This chapter could not hope to cover all these databases, but there are now several central-
ized resources which index and provide links to some of the larger resources. Other ‘bou-
tique’ databases can sometimes be identified by general web searching (see Chapter 2).

3.5.1 The Human Gene Mutation Database (HGMD)
The HGMD was established in April 1996 to collate published germline mutations respon-
sible for human inherited disease. In October 2001, HGMD contained 26,637 mutations
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in 1153 genes. The scope of HGMD is limited to mutations leading to a defined inherited
phenotype, including a broad range of mechanisms, such as point mutations, inser-
tion/deletions, duplications and repeat expansions within the coding regions of genes.
Somatic mutations and mutations in the mitochondrial genome are not included. HGMD
invites submissions from researchers but most records are curated directly from mutation
reports in more than 250 journals and directly from the LSDBs which are comprehensively
linked. To be included, there must be a convincing association between the mutation and
the phenotype. All mutations in HGMD are represented in a non-redundant form which
unfortunately does not conserve all the redundant mutations constituting the cluster, so it
is not possible to determine if mutations are identical by descent, also data is lost on the
frequency of mutations. The HGMD search interface is primarily text based and targeted
searching tends to rely on knowledge of the correct HUGO nomenclature for a gene.

3.5.2 Sequence Variation Database (SRS)

The sequence variation database forms part of the Sequence Retrieval Server (SRS) at
the EBI, Hinxton UK. SRS is a flexible sequence query tool which allows the user to
search a defined set of sequence databases by accession number, keyword or sequence
similarity. Several categories of sequence variation are encompassed by SRS, including
HGVbase and a large number of locus specific databases which are listed in Table 3.4.

3.5.3 The Protein Mutation Database (PMD)

The Protein Mutation Database (PMD) is unique among genetic variation databases as it
contains both natural and artificial mutation data derived from human proteins (Kawabata
et al., 1999). The artificial mutation data is derived from the literature and mainly consists
of site-directed and random mutagenesis data. It is important to clearly delineate artificial
data and so each record is clearly defined as either natural or artificial. The database gives
detailed description of the functional or structural effects of the mutations if known and
provides links to the original publications. Relative differences in activity and/or stability,
in comparison with the wild-type protein, are also indicated. PMD contains 119,190 natural
and artificial mutations (January 2002) and these can be searched by keyword or sequence
similarity (BLAST), a complete report on the mutated protein sequence is displayed which
allows the user to see the position of altered amino acids. Where 3D structures have been
experimentally determined, PMD displays mutated residues in a different colour on the
3D structure.

The Protein Mutation Database is very valuable for the functional analysis of proteins.
The detailed functional characterization of mutations gives the user an opportunity to
compare known mutations with variations in orthologous residues in related proteins. The
data is also useful to aid in the delineation of the functional domains of proteins in the
database and other homologous proteins (see Chapter 14 for further examination of such
approaches for mutation analysis).

3.5.4 On-line Mendelian Inheritance in Man (OMIM)

OMIM is an on-line catalogue of human genes and their associated mutations, based
on the long running catalogue Mendelian Inheritance in Man (MIM), started in 1967 by
Victor McKusick at Johns Hopkins (Hamosh et al., 2000). OMIM is an excellent resource
for providing a brief background-biology on genes and diseases, it includes information
on the most common and clinically significant mutations and polymorphisms in genes.
Despite the name, OMIM also covers complex diseases in varying degrees of detail.
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TABLE 3.4 Locus-Specific Databases Indexed by the Sequence Variation Database

Name Description Entries

General mutation databases 74,117
EMBLCHANGE Sequence change features from

EMBL
32,863

SWISSCHANGE Sequence change features from
SWISS-PROT

17,294

OMIMALLELE Alleles from OMIM 9344
HUMUT Protein Mutation Databank 14,616

Mitochondrial genome 9401
HUMAN−MITBASE Human mitochondrial DNA

variants
9401

Locus-specific mutation databases 240,73
P53LINK p53 mutations database 14,834
APC APC mutation database 825
BTKBASE Bruton’s tyrosine kinase

mutations
454

VWF von Willebrand factor gene
variations

144

CFTR Cystic fibrosis mutation
database

809

PAH Phenylalanine hydroxylase
mutations

289

HAEMA Haemophilia A, Factor VIII
mutations

604

HAEMB Haemophilia B 1722
LDLR Low-density lipoprotein

receptor
283

PAX6 PAX6 mutation database 118
EMD Emery–Dreifuss muscular

dystrophy
87

L1CAM Neuronal cell adhesion
molecule gene mutations

91

CD40LBASE CD40 ligand defects 60
G6PD Glucose-6-phosphate

dehydrogenase variants
122

ANDROGENR Androgen receptor mutations 514
RDS Retinal degeneration slow gene

mutations
33

RHODOPSIN Rhodopsin gene mutations 133
FANCONI Fanconi anaemia mutation

database
32

HEXA Hexosaminidase A mutations 89
XCGDBASE X-linked chronic

granulomatous disease
303

DMD Duchenne/Becker muscular
dystrophy

184

(continued overleaf )
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TABLE 3.4 (continued )

Name Description Entries

FVII Factor VII mutation database 176
ATM Ataxia–telangiectasia mutation

database
200

P16 CDKN2A/P16NK4A mutation
database

146

GAA Acid alpha-glucosidase
mutation database

83

OTC Ornithine transcarbamylase
(OTCase) mutations

105

IL2RGBASE Interleukin-2 receptor gamma
mutations

161

BIOMDB Database of tetrahydrobiopterin
deficiency mutations

78

Central databases 984,093
HGVbase Human Genome Variation

database (SNPs and
mutations)

984,093

In January 2002, the database contained over 13,285 entries (including entries on 9837
gene loci and 982 phenotypes). OMIM is curated by a dedicated but small group of
curators, but the limits of a manual curation process mean that entries may not be current
or comprehensive. With this caveat aside OMIM is a very valuable database, which
usually presents a very accurate digest of the literature (it would be difficult to do this
automatically). A major added bonus of OMIM is that it is very well integrated with the
NCBI database family, this makes movement from a disease to a gene to a locus and vice
versa fairly effortless.

3.6 GENETIC MARKER AND MICROSATELLITE DATABASES

3.6.1 dbSTS and UniSTS

dbSTS is an NCBI database containing sequence and mapping data for Sequence Tagged
Sites (STSs) (Olson et al., 1989). These STSs can include polymorphic sequences such as
short tandem repeats (STRs), or non-polymorphic sequences. In fact any unique genomic
landmark which can be amplified by PCR can be used as an STS marker. Both poly-
morphic and non-polymorphic STS markers have been used to construct extensive high
resolution radiation hybrid maps of the human gene, while polymorphic markers have
been used to construct genetic maps (see Chapter 7). The dbSTS database maintains
complete records for over 133,202 STS markers, including ∼18,000 STR markers and
gives key information for each record such as primer sequences, map location and marker
aliases. Searching dbSTS can be achieved in many ways. The UniSTS interface allows
direct searches by keyword, the NCBI Map View application allows searching by genomic
location or locus, while dbSTS is also available for BLAST searching by NCBI BLAST.
This array of search options makes the dbSTS database a very reliable source for retrieval
of both genetic and physical STS map markers.
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3.6.2 The Genome Database (GDB)

The genome database (GDB) was established ahead of most other genetics databases in
1990 as a central repository for mapping information from the human genome project.
Throughout the early 1990s GDB was the dominant genome database and served as the
primary repository for genetic map-related information. In January 1998, after several
years of uncertain US government funding, GDB funding was officially terminated. By
December 1998 funding from another source was found, but at a significantly lower level.
By this time other databases had inevitably overtaken GDB as ‘central genome databases’
(Cuticchia, 2000). Today GDB is still one of the most comprehensive sources for some
forms of genetic data, including tandem repeat polymorphisms (it contains over 18,000), it
also contains an eclectic range of information on fragile sites, deletions, disease genes and
mutations, collected by a mixture of curation and direct submission. GDB development is
ongoing and the historical focus of the database on genetic maps is broadening to a more
integrated view of the genome ultimately down to the sequence level (which unfortunately
is currently lacking). Plans to finally integrate a sequence map might well make GDB
a prominent genetic resource again, although political issues still threaten to halt these
aspirations (Bonetta, 2001).

The GDB graphical search interface was a truly pioneering tool of the field and was
the first to introduce the kind of graphical map viewing applications that Ensembl and
UCSC now excel at. Unfortunately the originals are not always the best and the graphical
GDB interface is now starting to look very tired indeed. However, GDB also has a more
productive text/table based search interface. This allows complex queries, for example
it is possible to retrieve all known polymorphic or non-polymorphic markers between
two markers. Advanced filters can also be used, for example markers above a defined
level of heterozygosity can be retrieved. Results are retrieved and ordered based on the
genetic distances of the markers, along with a very roughly estimated Mb location. As
the markers are ordered by genetic distance, many markers cannot be resolved beyond
a certain level, therefore markers with identical genetic distances are presented in an
arbitrary order. However, high level order is quite reliable and supported by LOD scores.
Clarification of genetic marker order and distance is a complex process, which involves
integrating multiple maps ultimately down to the level of the human genome to build
up a consensus order and distance. These issues of map and marker integration will be
examined in detail in Chapter 7.

3.7 NON-NUCLEAR AND SOMATIC MUTATION DATABASES

3.7.1 MITOMAP

The sequencing of the human mitochondrial genome (mtDNA) was a landmark in geno-
mics, being the first component of the human genome to be completely sequenced
(Anderson et al., 1981). The mitochondrial genome consists of a 16,569-bp closed circular
molecule in the mitochondrion — each of the several thousand mtDNAs per cell encodes
a control region encompassing a replication origin and the promoters, a large (16 S) and
small (12 S) rRNA, 22 tRNAs, and 13 polypeptides. All of the mtDNA polypeptides
are components of the mitochondrial energy generating pathway, oxidative phosphoryla-
tion, which is functionally essential and evolutionarily constrained (Wallace et al., 1995).
Despite this selection pressure, maternally inherited mtDNA has a very high mutation
rate — mtDNA mutates 10–20 times faster than nuclear DNA as a result of inadequate
proofreading by mitochondrial DNA polymerases and limited mtDNA repair capability. As
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a result mtDNA mutations might be expected to be relatively common — this is supported
by the relative abundance of mitochondrial disorders described to so far — although it
is also important to note that such mutations, being comparatively easy to identify by
sequencing, are likely to have been among the first to be characterized.

More than 100 mitochondrial diseases have now been described, including a broad
spectrum of degenerative diseases involving the central nervous system, heart, mus-
cle, endocrine system, kidney and liver. Information on the phenotypes and causative
mutations of these diseases are covered briefly in OMIM and in detail in the mitochon-
drial mutation database, MITOMAP (Kogelnik et al., 1998). The MITOMAP database
(Table 3.1) integrates information on all known mtDNA mutations and polymorphisms
with the broad spectrum of available molecular, genetic, functional and clinical data, into
an integrated resource which can be queried from a variety of different perspectives.

MITOMAP places the clinical mutation dataset of over 150 disease-associated muta-
tions into their genomic context. It also encompasses information on over 100 mtDNA
rearrangements, including nucleotide positions of breakpoint junctions and sequences of
associated repeat elements. Clinical characteristics are associated with the mutations and
are accessible both through associated datasets in MITOMAP as well as through linkage
to OMIM. MITOMAP also provides information on nuclear genes which impinge on
mtDNA structure and function. Finally, a population variation dataset provides access to
known mtDNA haplotypes and their continental distributions and population frequencies.

3.7.1.1 Searching MITOMAP

MITOMAP is searchable by gene, disease and enzyme — users can refine their search by
function, polymorphism, or references (author, title, journal, year or keyword). MITO-
MAP data has been collated from published literature on the mitochondrial genome and
regular searches are made to capture new publications. The database also accepts direct
submissions, including over 199 unpublished polymorphisms and mutations.

3.7.2 The Mitelman Chromosome Abberations Map

Cytogenetic studies over the past few decades have revealed clonal chromosomal aber-
rations in over 100,000 human neoplasms. Many of these have been characterized at the
molecular level, revealing previously unknown genes that may be closely associated with
tumourigenesis. Information on chromosome changes in neoplasia has grown rapidly,
making it difficult to identify all recurrent chromosomal aberrations. The Mitelman Map
of Chromosome Aberrations in Cancer (Mitelman et al., 1997) was first published over
15 years ago to compile this information; the database now contains over 7100 references
encompassing some 100,000 aberrations in 97 different histological types of cancers. The
catalogue has evolved from a book to a CD-ROM published by John Wiley and now it is
also available as a web-based database (http://cgap.nci.nih.gov/Chromosomes/ Mitelman;
Mitelman et al., 2002).

The Mitelman database actually consists of three databases. A generalized search form,
allows one to search by abnormality, breakpoint, number of clones, number of chromo-
somes, sex, age, race, country, series, hereditary disorder, topography, immuno-phenotype,
morphology, tissue, previous tumour, treatment, reference and/or cytogenetic character-
istics to determine frequencies of balanced and unbalanced translocations. The results of
a search provide a variety of information. For example, if you select a breakpoint and
a gene, the search retrieves relevant PubMed references, diagnoses, the specific chromo-
some aberration and all genes involved. The Mitelman map is an extremely complex
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and detailed database so it is well worth consulting the ‘Help’ section for specific
instructions before commencing a search. A more immediately accessible breakdown
of the recurrent neoplasia-associated aberrations described by Mitelman are presented
by the NCBI MapView tool. This data is an updated version of the survey appearing
in the April 1997 Special Issue of Nature Genetics (Mitelman et al., 1997). To view
the Mitelman abberations across chromosome 22, for example, try the following URL:
http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/maps.cgi?ORG=hum&MAPS=ideogr,mit
&CHR=22

For cancer geneticists, the Mitelman database benefits greatly from inclusion in the
Cancer Genome Anatomy Project (CGAP). CGAP and NCBI are also collaborating closely
which has allowed information on chromosomal aberrations to be closely linked with
the other CGAP and NCBI resources including mapped SNPs, FISH mapped BACs,
and GeneMAP99. The CGAP catalogue is of particular value, serving as a comprehen-
sive index to breakpoints, clones (BACs, cDNA), genes (expression, sequence, tissue),
libraries and SNPs (primer pairs, linkage and physical maps). The Mitelman database is
undoubtedly the most comprehensive listing of clinical cytogenetic studies in existence,
integration of this data with MapViewer and soon hopefully with other viewers such as
Ensembl, creates a great opportunity to study the genetics and the biological process of
chromosomal aberration right down to the sequence level; this should in turn help to
provide insight into the molecular mechanisms of tumourigenesis.

3.8 TOOLS FOR SNP AND MUTATION VISUALIZATION — THE
GENOMIC CONTEXT

The human genome is the ultimate framework for organization of SNP and mutation data
and so genome viewers are also one of the best tools for searching and visualizing poly-
morphisms. The three main human genome viewers, Ensembl, the UCSC Human Genome
Browser (UCSC-HGB) and the NCBI Map Viewer (Table 3.1), all maintain variable levels
of SNP annotation on the human genome, although none maintain annotation of mutation
data. Most of the information in these viewers overlap, but each contains some different
information and interpretation and so it usually pays to consult at least two viewers, if
only for a second opinion. Consultation between viewers is easy as all three now use the
same whole genome contig, known as ‘the golden path’ and so they link directly between
viewers to the same golden path coordinates.

User defined queries with these tools can be based on many variables, STS, mark-
ers, DNA accessions, gene symbol, cytoband or golden path coordinate. This places
SNPs and mutations into their full genomic context, giving very detailed information on
nearby genes, transcripts and promoters. Ensembl and UCSC-HGB both show conserva-
tion between human and mouse genomes, UCSC-HGB also includes tetradon and fugu
(fish) genome conservation. This may be particularly useful for identification of SNPs
in potential functional regions, as genome conservation is generally restricted to genes
(including undetected genes) and regulatory regions (Aparicio et al., 1995). We examine
the use of these tools in detail in Chapters 5, 9 and 12.

3.9 TOOLS FOR SNP AND MUTATION VISUALIZATION — THE GENE
CONTEXT

For the biologist or candidate gene hunting geneticist, SNP information may be of most
interest when located in genes or gene regions, where implicitly each SNP can be evaluated
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for potential impact on gene function or regulation. Many tools are available to identify
and analyse such SNPs and almost all are based on the dbSNP dataset, but most have
somewhat different approaches to the presentation of data (see Table 3.1 for a list of
these tools). Choice of tool may be a matter of personal preference so it is probably
worth taking a look at a few. The drawback of using some of these tools is that some
are maintained by very small groups so sometimes tools may not be comprehensive or
current. New tools are constantly appearing in this area so it is often worth running a
web search to look for new and novel contributions to this research area — for example
‘SNP AND gene AND database’ is all you need to enter as a search term in a general
web search engine.

3.9.1 LocusLink

The NCBI LocusLink database is a reliable tool for gene-orientated searching of dbSNP.
It can be queried by gene name or symbol, query results will show a purple ‘V’ link if
SNP records have been mapped to a gene. Clicking on this link will take you to a report
detailing all RefSNP records mapped across the gene. Almost all NCBI tools integrate
directly with dbSNP; LocusLink is the central NCBI ‘gene view’ which links out to a wide
range of resources, it also includes a RefSNP gene summary (a purple V or VAR link).
This summary details all SNPs across the entire gene locus including upstream regions,
exons, introns and downstream regions. Non-synonymous SNPs are identified and the
amino acid change is recorded, analysis even accommodates splice variants. LocusLink
has the advantage of the NCBI support so it is probably one of the most comprehensive
and reliable data sources for gene-orientated SNP information.

Although LocusLink benefits from the reliability bestowed by the infrastructure and
resources available at the NCBI, several other tools present gene-focused data with a
subtly different approach. Some of these are worth trying, again the tool for you may
be a matter of personal preference so try a few. There are many tools which fit into this
category, some of these are listed in Table 3.1, but for the purposes of this chapter we
will only review two of the more outstanding tools: SNPper and CGAP-GAI.

3.9.2 SNPper

SNPper is a web-based tool developed by the Children’s Hospital Informatics Program
(CHIP), Boston (Riva and Kohane, 2001). The SNPper tool maps dbSNP RefSNPs to
known genes, allowing SNP searching by name (e.g. using the dbSNP ‘rs’ name), or
by the golden path position on the chromosome. Alternatively, you can first find one
or more genes you are interested in and find all the SNPs that map across the gene
locus, including flanking regions, exons and introns. SNPper produces a very effective
gene report (Figure 3.5) which displays SNP positions, alleles and the genomic sequence
surrounding the SNP. It also presents very useful text reports which mark up SNPs across
the entire genomic sequence of the gene and another report which marks up all the amino
acid-altering SNPs on the protein.

The great strength of SNPper lies in its data export and manipulation features. At the
SNP report level, SNPs can be sent directly to automatic primer design through a Primer3
interface. At a whole gene level or even at a locus level, SNP sets can be defined and
refined and e-mailed to the user in an excel spreadsheet with SNP names in the first
column and flanking sequences in the second, ready for primer design.

SNPper currently contains information on around 1,900,000 SNPs and 12,479 genes
(January 2002). These correspond to all the unambiguously mapped known SNPs and
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Figure 3.5 The SNPper gene report. The report displays SNP positions, alleles and
the genomic sequence surrounding the SNP. It also presents text reports which mark up
SNPs across the entire genomic sequence of the gene and amino acid-altering SNPs on
the protein.

genes in the human genome. By restricting the database to known genes, they have
considerably simplified their task as all the gene annotation is well defined. SNPper uses
this advantage to maximum effect by presenting the data very clearly and informatively.
SNPper is a highly recommended tool for the laboratory-based geneticist.

3.9.3 CGAP-GAI (htpp://lpgws.nci.nih.gov/)

The Cancer Genome Annotation Project (CGAP)/Genetic Annotation Initiative (GAI)
database is a valuable resource which identifies SNPs by in silico prediction from align-
ments of expressed sequence tags (ESTs) (Riggins and Strausberg, 2001). The database
was established specifically to mine SNPs from ESTs generated by CGAP’s Tumour Gene
Index project (Strausberg et al., 2000), which is generating more than 10,000 ESTs per
week from over 200 tumour cDNA libraries. The analysis also encompasses other public
EST sources.
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Figure 3.6 The CGAP-GAI web interface for identification of candidate SNPs in ESTs.
The JAVA view of trace data helps to support the base call of a potential SNP in an EST,
although laboratory investigation is the only reliable SNP confirmation.

Candidate SNPs in ESTs can easily be viewed with the CGAP-GAI web interface in a
graphical JAVA assembly (Figure 3.6). SNPs in ESTs are identified by an automated SNP-
calling algorithm, mining EST data with greater than 10 reads from the same transcribed
region yielded predicted SNPs with an 82% confirmation rate (Riggins and Strausberg,
2001). All SNPs which meet the stringent calling criteria are submitted to dbSNP. It is also
worthwhile searching CGAP directly if you are interested in a specific gene. The threshold
for automated SNP detection is set very high, so many potential SNPs evade automatic
detection, but these candidate SNPs can be identified quite easily by eye, simply by looking
for single base conflicts where sequence is otherwise high quality. The JAVA view of trace
data helps to support the base call of a potential SNP in an EST (Figure 3.6), although
laboratory investigation is the only completely reliable SNP confirmation. Intriguingly
this resource could potentially contain some somatic mutations from tumour ESTs which
would probably be discarded by the automatic detection algorithm which requires some
degree of redundancy to call the SNP.
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3.10 CONCLUSIONS

The last few years have revolutionized our knowledge of polymorphism and mutation
in the human genome. SNP discovery efforts and processing of genome sequencing data
have yielded several million base positions and several hundred thousand VNTRs that
might be polymorphic in the genome. This information is complemented by a more select
collection of mutation data painstakingly accumulated over many years of disease-gene
hunting and mutation analysis. The sheer scale of this data offers tremendous opportunities
for genetics and biology. We are now entering a new phase in genetics where we can begin
to design experiments to capture the full genetic diversity of populations. This may herald
a revolution in genetics allowing rapid association of genes with diseases, alternatively it
may simply identify further downstream bottlenecks in the progression to validated disease
genes. The literature is already replete with reports of genetic associations and still more
failures to replicate associations, but progressions from associated marker to validated
disease gene are rare indeed. This may be the real challenge for genetics — to cast new
insight into the structure and function of genes, proteins and regulatory regions. To achieve
this we will need to integrate diverse sources of data to build up complete pictures of
biological systems and their interactions with disease. Again an understanding of mutation
and polymorphism may be an important aid in this process — with mutations representing
the extreme boundaries beyond which genes begin to dysfunction and polymorphisms
perhaps representing the functional range within which genes can operate. Our knowledge
of the breadth and variety of human genetic variation can only increase our understanding
of the mechanisms of disease and more importantly it may help us to define targets for
intervention.
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4.1 INTRODUCTION

This chapter will describe ways to interrogate human genome (HG) data with the results
of genetic experiments in order to locate known genes on the current Golden Path (GP)
chromosomal assemblies. It will also describe the assessment of evidence for genes that
do not yet have experimental support and some analytical choices that may reveal more
about them. In addition to some general aspects of gene detection some specific examples
will be worked through in some detail. This illustrates technical subtleties that are not easy
to capture at the overview level. As an introduction to the HG, GP and gene annotation
the following chapter by Semple is recommended. Chapter 2 also provides some useful
background on the organization of sequence databases. A caveat needs to be added here
that many roads lead to Rome. Some particular ways of hacking through the genome jungle
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are implicitly recommended by being used as the examples in this chapter. They will also
be restricted to public databases and web tools. These are the personal choices of the
author based on an assessment of their availability and utility. Other experts may propose
alternative routes to the same information, either using different public resources, locally
downloaded datasets, Unix-based tools, commercial software or subscription databases.

Genetic investigations are concerned with discerning the complex relationships between
genotype and phenotype. The statement that phenotype is determined by the biochemical
consequences of gene expression is equally obvious. However, the reason for making
this explicit is to recommend that those performing and interpreting genetic experiments
may find it more useful to conceptualize the gene as a cascade of evidence that connects
DNA to a protein product rather than abstract ideas about what might constitute a gene
locus. The idea of focusing on gene products also makes it easier to design experiments
to verify predicted transcripts and proteins. It must also be remembered that many gene
products are non-message RNA molecules but they will not be covered in this chapter.
Before describing the evidence used to classify gene products it is necessary to define
some of the terminology encountered in the literature and database descriptions. These are
variously classified as known, unknown, hypothetical, model, predicted, virtual or novel.
There are no widely accepted definitions of these terms but their usage in this chapter will
be as follows. A known gene product is experimentally supported and would be expected
to give close to a 100% identity match to a unique GP location. The term ‘unknown’
is typically applied to gene products that are supported experimentally but that lack any
detectable homology or experimentally determined function. The term ‘predicted’, also
referred to as ‘model’ or ‘hypothetical’ by the NCBI, will be reserved for an mRNA
or protein ORF predicted from genomic DNA. Virtual mRNAs will refer to constructs
assembled from overlapping ESTs that exceed the length of any single component. The
term ‘novel’ has diminishing utility and will simply refer to a protein with no extended
identity hits in the major protein databases.

4.2 THE EVIDENCE CASCADE FOR GENE PRODUCTS

So what kinds of evidence need to be considered before we assess the likelihood of
a stretch of genomic DNA giving rise to a gene product and what kind of numbers
can be assigned to these evidence levels? The most solid evidence of a gene is the
experimental verification of the protein product by mass spectrometry and/or Edman
sequencing. Although these techniques are commonly used to analyse proteins produced
by heterologous expression in-vitro surprisingly few genes from in-vivo or cell line sources
have been verified at this level. From the entire SP/TR collection of human proteins
only 311 are cross-referenced as having at least a fragment of their primary structure
identified directly from a 2D-PAGE experiment (http://ca.expasy.org/ch2d/) (Hoogland
et al., 2000). Numerous mass spectrometry-based identifications and peptide sequences
from human proteins are reported in the literature but little of this data has been formally
submitted to the public databases and therefore has not been captured by SwissProt or other
secondary databases. However, even this most direct of gene product verifications is rarely
sufficient to confirm the entire open reading frame (ORF). For example secreted proteins
are characterized by the removal of signal peptides and frequent C-terminal processing.
This precludes defining the N and C translation termini by protein chemical means.

The next level down in the evidence cascade is of course an extended mRNA. There are
currently 48,681 human mRNAs in GenBank. However transcript coverage is by no means
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complete as they collapse down by shared identity to a set of 13,429 human transcripts
(excluding splice variants) in the NCBI RefSeq collection (http://www.ncbi.nlm.nih.gov/
LocusLink/RSstatistics.html) (Pruitt and Maglott, 2001). Although this collection attempts
to provide a non-redundant snapshot of gene transcription it must be remembered that they
are not all full-length transcripts. If the databases do not contain an extended mRNA the
assembly of overlapping and/or clone-end clustered ESTs can be considered as a virtual
mRNA (Schuler, 1997). The ESTs have the additional utility that many of them can be
ordered as clones. Alternatively, the virtual consensus sequence, backed up by compari-
sons to the genomic DNA, can be used for PCR cloning. The fact that 94% of known
mRNAs are covered by at least one EST makes them strong supporting evidence for a
transcript, especially if they include a plausible splice junction and are derived from mul-
tiple clones from different tissue cDNA libraries (http://www.ncbi.nlm.nih.gov/UniGene/).
The TIGR gene indexes are a useful source of pre-assembled virtual sequences that
they term tentative human consensus sequences or THCs (Quackenbush et al., 2001).
These can also be selected in the UCSC genome display. The use of unspliced ESTs as
evidence for a transcribed gene is unreliable as they can arise from genomic contamination.
However human EST-to-genome matches for exon detection can be further supported
where orthologous ESTs from other vertebrates, such as mouse or rat, match uniquely in
the same section of GP. If an assembly of mouse ESTs is consistent with a human gene
model then the existence of an orthologous human transcript is strongly implicated.

The protein databases occupy the centre of the evidence cascade for gene products.
Those mRNAs that translate to an open reading frame (ORF) are experimentally supported
even if they are not full-length and/or there can be ambiguity about the choice of potential
initiating methionines. However, the fact that the protein databases have now expanded
to include human ORFs derived solely from genomic predictions (described in the next
section) means that the evidence supporting them as gene products becomes circular. The
highest curation level is provided by SwissProt sequences from the Human Proteomics
Initiative set (HPI) (http://ca.expasy.org/sprot/hpi/hpi stat.html). The March 2002 number
comprised 7895 unique gene products and 2039 splice variants (O’Donovan et al., 2001).
The SwissProt/TrEMBL (SP/TR) total for human proteins in February 2002 was 24,147,
including splice variants (http://www.ebi.ac.uk/proteome/HUMAN/interpro/stat.html). The
current Ensembl release, 4.28.1, contains 21,619 proteins classified as ‘knowns’ by an
identity above 95% to a human SP/TR entry (Hubbard et al., 2002). The International Pro-
tein Index (IPI) maintains a database of cross references between the data sources Swiss-
Prot, TrEMBL, RefSeq and Ensembl. This provides a minimally redundant yet maximally
complete set of human proteins with one sequence per transcript (http://www.ebi.ac.uk/
IPI/IPIhelp.html). The March 2002 release contains 65,082 protein sequences but this
includes 28,350 XP RefSeq ORFs predicted by the NCBI which are not supported
by mRNAs.

The next level of evidence can be classified as genomic prediction i.e. where a
cDNA, a translated ORF and a plausible gene splice pattern can be predicted from
a stretch of genomic DNA (Burge and Karlin, 1997). This proceeds more effectively
on finished sequence or at least where unfinished sequence contains the exons in the
correct order. This is done after filtration of repeats which can be considered as another
link in the evidence chain. A very high local repeat density certainly suggests where
exons are unlikely but the converse is not true i.e. the absence of repeats does not
prove the presence of genes. The shortcomings of ab initio gene prediction have been
pointed out but the geneticist should at least be aware of possible false positives
and false negatives (Guigo et al., 2000). The Ensembl statistics of the ratio of genes
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predicted by Genscan over genes with a high evidence-supported threshold is currently
7.5 : 1 (http://www.ensembl.org/Homo sapiens/stats/). Although this clearly represents
over-prediction some may be ‘genes-in-waiting’ which more accumulated evidence may
verify, for example by the cloning of an extended mRNA. Looking for a consensus or at
least common exons from a number of gene prediction programs with different underlying
gene model assumptions can strengthen this type of evidence but this can become a circular
argument where the programs are both trained and benchmarked with known genes. For
unfinished genomic sequence the presence of gaps and local miss-ordering of contigs
within the clone degrades the performance of ab initio methods. The most effective way
of filtering down genomic predictions without experimental evidence is homology support
i.e. the predicted protein shows extended similarity with other proteins. This is described
in detail in the Ensembl documentation but in essence all possible protein similarity
sections from translated DNA are identified and used to build homology-supported gene
predictions using GeneWise (Birney and Durbin, 2000). The advantage of gene detection
by homology is that the entirety of protein sequence space can be used. The caveat is
that predicted gene products with low similarity to extant proteins would be discarded in
this filter, although the entire set of Genscan predictions are preserved for searching in
Ensembl and can also be displayed at UCSC.

The next link in the evidence chain is a special case of the similarity principle but in
this case utilizing comparisons between the genomes of other vertebrates such as mouse
and fish for which extended data are now available (Wiehe et al., 2001). Mouse genome
assemblies have recently appeared on the Ensembl and UCSC sites. Although the ini-
tial assembly is only ∼20% the total depth in the trace archives and HTGS divisions is
approaching complete coverage. Cross-species data can be assessed at three levels. The
first is a simple DNA similarity on pieces of mouse DNA known to be syntenic from the
location of known mouse genes and/or the extended similarity score which, with appropri-
ate masking, locates it uniquely to a human locus. This approach is termed phylogenetic
footprinting (Susens and Borgmeyer, 2001). The problem for gene product detection is
that this is too sensitive i.e. mouse/human syntenic regions have many conserved simi-
larity ‘patches’ outside the boundaries of known exons. They are likely to be important
for functions not yet understood but are difficult to discriminate from potential coding
regions. The second level is mouse BLAT as used on the UCSC site. This goes a step
back by doing a translation similarity comparison rather than direct DNA-to-DNA. This
makes it more likely to pick up reading frame similarities across exons. The third level is
the so-called exofish. By the detection of translation similarities at the amino acid level
this is capable of detecting those exons that are conserved between human and fish. This
will be more useful when exofish updates to a complete fish genome rather than a partially
assembled one.

The last link in the evidence chain, the in silico recognition of transcriptional control
regions, is circumstantial but is likely to increase in utility (Kel-Margoulis et al., 2002).
These could include potential start sites in proximity to CpG islands, promoter elements,
transcription factor binding sites, and potential polyadenylation acceptor sites in 3′ UTR.
When considered in isolation these signals have poor specificity but taken in combina-
tion with a consensus gene prediction and conservation of these putative control regions
between human and mouse, they can become a useful part of the evidence chain.

In summary there is currently direct experimental evidence for ∼15,000 genes and
strong evidence to support a lower gene limit of around 25,000. The confirmation rates
for the types of evidence listed above has not been calibrated experimentally so we
cannot come up with any kind of scoring function to rank gene likelihood. Going to the
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extremities of the evidence cascade, for example with the 65,082 ORFs from the IPI or
the 62,271 UniGene clusters containing at least two ESTs, would result in a higher upper
limit. This uncertainty becomes a key issue for genetic experiments. Let us suppose, for
example, that a linkage study has defined a trait within the genomic region bounded by
two microsatellite markers. If the lower limit gene number is true then the investigator
merely needs to check the annotations from any of the three gene portals to produce a
list of gene products between the positioned markers from which to choose candidates
for further work. If the upper limit is true this approach has a major limitation because
many of the genes between the markers will not be annotated. However, the different
levels of gene evidence described above can be visualized in the display tracks of the
genome viewers. Consideration of the evidence will enable the geneticist to decide what
experiments need to be designed to confirm potential novel gene products. An example
of working through this evidence is given in the examples below.

4.3 SHORTCOMINGS OF THE STANDARD GENE MODEL

One of the conclusions that could be drawn from the draft human genome sequence
was that the standard gene model of a defined gene locus → a single mRNA species →
a single protein, is no longer adequate to describe the increasingly complex relationship
between the genome and its products. Attempts to fit transcript data into the standard gene
model highlight a number of ‘grey’ areas. The first of these is delineating the extreme 5′
and 3′ ends of the mRNA transcripts (Pesole et al., 2002; Suzuki et al., 2002). The fact
that many mRNAs are labelled as partial is testimony to the difficulty of finding library
inserts that are complete at the 5′ end. In many cases the mRNAs are considered finished
when a plausible ORF has been delineated. However, very few cDNAs are full-length in
that they have been ‘walked out’ to determine the true 5′-most initiation of transcription in
the 5′ UTR. The same problem applies to the UTR at the 3′ end. There may be substantial
stretches of 3′ UTR extending downstream of the first polyadenylation position at which
further cloning attempts have ceased. The problem is compounded by the poor perfor-
mance of gene prediction programs for 5′ and 3′ ends. The first step towards resolving
uncertainties about transcript extremities, is to survey the coverage of all available cDNA
sequences, whether nominally full-length or partial, ESTs and patent sequences. These
can often extend the UTR sections. The second grey area concerns pseudogenes. In some
cases genomic sequence is so severely degraded that transcription is unlikely. However,
from the current pseudogene listing in RefSeq of 1598 loci, at least 30 are recorded
as having detectable transcripts (http://www.ncbi.nlm.nih.gov/LocusLink/statistics.html).
The third grey area is gene product heterogeneity. In some cases there may be alternative
upstream initiation methionines or alternatively spliced exons in the 5′ UTR. The causes
for 3′ heterogeneity include variations in the pattern of intron splicing from a pre-mRNA,
as well as alternative poladenylation positions inside the 3 UTR. The fourth grey area
concerns overlapping genes. As genomic annotation proceeds we can find more examples
of this both from gene products reading from opposite strands and same-strand genes in
close proximity.

Considering these grey areas as a whole, they can all be seen as deviations from the
simple gene model. Many individual examples of such complexities had been documented
before the genome draft of May 2001. However, it is only since then that assessments of
their overall incidence could be made, most recently for completed chromosomes such
as 20 (Deloukas et al., 2001). It is therefore essential for the geneticist to keep an open
mind about the extremities and plurality of gene products.
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4.4 LOCATING KNOWN GENES ON THE GOLDEN PATH

Genes can be located by one of the following: a section of raw sequence data, a primary
accession number, a secondary accession number, a similarity search, a gene product name,
or a set of Golden Path (GP) coordinates. Each of these has advantages and disadvantages
and, although the three gene portals are generally consistent, they may not give the same
answers in every case. Bearing in mind that only the first two of these are stable and
(almost) free of potential ambiguity it is better to use at least two ways to define and
store the results, for example a section of raw sequence and a gene name, or a primary
accession number and a set of GP coordinates. The BACE gene will be used as an
example of a known gene to locate. The potential complexity of this task is illustrated by
the example of the Ensembl gene report for BACE that includes no less than 46 separate
terms (Figure 4.1).

4.4.1 Raw Sequence Data

The availability of GP means that most features can now be unambiguously located in
the genome with as little as 100 bp. This means that storing a sequence string, prefer-
ably with a longer sequence context of 200–1000 bp, is a useful method of locking-on
to a genomic location. It is also immune to the vagaries of shifting secondary accession
numbers, naming ambiguities or GP sequence finishing that can change the genomic coor-
dinates. Performing nucleotide searches against GP using tools such as BLAT (UCSC)
or SAHA (Ensembl) or BLAST (NCBI), means that sequence matches can be quickly
located. The disadvantage for raw sequence is that it has to be stored in its entirety,
it may contain errors, it needs the operation of a similarity search to be located and
similarity matches across repeat containing sections or duplicated regions of the genome
need close inspection to sort out. This can be a particular problem for STSs and SNPs

Figure 4.1 The Ensembl gene report page for BACE (release 4.28.1).
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if the GP match is in the region of 98 to 95% identity. Within this range it is difficult
to discriminate technical sequencing errors from multiple genomic locations or assembly
duplication errors. It can also be useful to search the primary genomic data, especially if
GP is not complete in that section. For example although BACE is linked by Ensembl
to AP001822 as the finished GP sequence, a database search reveals another four match-
ing primary genomic accession numbers from chromosome 11, AP000892 (finished at
version 4) with AC020997, AP000685 and AP000761 still unfinished. One less obvious
advantage of these five overlapping genomic contigs is that if they proceed to finishing
more SNP positions may be revealed. As described below the genome portals capture
mRNA entries for most gene products unless they are very recent. However, because of
the thin annotation they do not capture sequences from the patent divisions. A BLAST
search of gbPAT with any BACE mRNA gives 18 high-identity DNA matches. These
are clearly mRNAs that could be usefully compared with all other mRNA sequences for
polymorphisms, splice variants or UTR differences. However users should be aware that
not only are some of these 18 entries identical versions of the same sequence derived
from multiple claims in the patent documents but they may also be identical to a public
accession number if the authors and inventors are from the same institution. Another
reason for using raw sequence data for gene product checking is because all secondary
databases suffer from the snapshot effect where updates lag behind the content of the
primary databases. For example the SNP or EST assignments made for BACE in the sec-
ondary databases (see below) could be checked by BLAST searches against the updates
of dbSNP or dbEST (remember the latest EST data needs to be searched in ‘month’ as
well as dbEST).

4.4.2 Primary Accession Numbers

Because these uniquely define stretches of sequence they are stable except where genomic
and occasionally mRNAs, undergo version changes. They can be used in any of the
major genome query portals to go directly to a genomic location. The disadvantage is
redundancy for mRNAs, short sequence context for some STSs, both redundancy and
large multi-gene sequence tracts for genomic mRNA, and very recent accessions may
not be indexed in genome builds. If the query fails to connect to a genome feature
the sequences can be searched as raw sequence. Taking the BACE example there are
eight mRNA accession numbers listed in Figure 4.1 that can be used as a genome portal
query. Interrogating UCSC with BACE retrieves nine mRNA entries, LocusLink con-
nects directly to only three but the UniGene cluster Hs.49349 connects to 12. Users
need to be aware that although an mRNA accession number can provide a specific
route into GP the variable number of links to the genome portals is related to their
update frequency.

4.4.3 Secondary Accession Numbers

From Figure 4.1 we can read eight secondary accession numbers that designate protein
translations for each of the BACE mRNAs. It also has three RefSeq numbers NM 012104
for the mRNA, NP 036236 for the protein and NT 009151 for the genomic contig. There
is one SwissProt accession BACE HUMAN (P56817) and one TREMBL splice variant
Q9BYB9. The LocusID, 23621, in turn links out to many other accession numbers which
point to the BACE genome sequence. These include the Hs.49349 UniGene cluster that
includes 336 ESTs with primary accession numbers. Via the LocusLink Variation link
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the RefSNP numbers can be located. In this case they consist of 43 intronic SNPs, three
within the mRNA, including one (rs539765) which causes an Arg > Cys exchange, and
seven SNPs in the 3′ UTR. It is possible to use a RefSNP (rs) number to go directly
to the SNP location in Ensembl or UCSC. However because of multiple GP matches in
Ensembl it is necessary to know the genomic location beforehand.

4.4.4 Gene Names

Including abbreviations Figure 4.1 there are nine synonyms or aliases for this enzyme.
This illustrates the problem where gene products are given different names by different
authors. The best way to cross-check names, spelling variations and frequency of use,
is to search PubMed. Checking title lines only is more specific but does not capture all
occurrences. In this case a title search found a new name extension, BACE1, with five
citations compared with 22 for BACE. This seems logical since the discovery of the
BACE2 paralogue on chromosome 21. However, the Human Gene Nomenclature Com-
mittee have not been consistent because they have only listed BACE and BACE2 as
official symbols even though they have listed ACE1 as an alias for ACE since the recent
discovery of ACE2 (http://www.gene.ucl.ac.uk/nomenclature/). The most frequent specific
term was ‘beta-secretase precursor’ at 30 citations. The alternative ‘membrane-associated
aspartic protease 2′ gave eight citations and ‘beta-site app cleaving enzyme’ was the least
frequent with only two. Paradoxically this has been chosen for the LocusLink name. The
least specific name was aspartylprotease 2 with two false positives and ASP 2 with 143
title matches, also mostly false positives. The imprecision of name searching was rein-
forced by checking ASP-2 with three matches and ASP2 with five. Only one was a true
positive and two of the citations referred to ASP2 as an odorant-binding protein from
the honeybee. The complexity of the aliases for just one gene product makes it clear that
any gene name lists, for example as candidate genes to be screened for mutations, must
be backed-up by accession numbers and/or raw sequence. It also illustrates the need to
cross-check aliases and their spellings when attempting a comprehensive literature search
on a particular gene product. The formal sequence-literature links that can be followed
in Entrez, LocusLink or SwissProt are not comprehensive because they are dependent
on the journal–author–database system that usually only makes these links explicit for
a new accession number. Much important literature remains outside this system. Review
articles, for example, do not typically include primary accession numbers when describ-
ing genes so the specificity of literature searches remains dependent on the name links.
Information trawling with gene names can also be done with the standard internet search
portal. Putting the term ‘beta-site app cleaving enzyme’ into the Google search engine
gave 249 hits (http://www.google.com/). The listing included duplicates but very few
false positives.

4.4.5 Genome Coordinates

Since the adoption of a unified GP assembly this method of genomic location has
become more reliable but users are advised to check the synchronization of new GP
versions between the three portals. Users should refer to the individual portals for
the details of using these coordinates but for the BACE example the NCBI showed a
region described as 120,533K–120,594K, the Ensembl viewer specified the coordinates
as 120549397–120575715 bp (with a zoom setting 120.5 Mb) on chromosome 11 and the
UCSC viewer designated the position in the form chr11 : 120545299–120599798.
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4.5 GENE PORTAL INSPECTION

From the descriptions above it should be possible to locate any known gene or genetic
marker such as an STS or a SNP. Descriptions of the genome viewer features for Ensembl,
UCSC and NCBI are included in the chapter by Semple. However two examples are
included below (Figures 4.2 and 4.3) because they illustrate technical differences and high-
light the deviations from the standard gene model. The UCSC display (Figure 4.2) includes
12 mRNA sequences for BACE where Ensembl (Figure 4.1) has included accession
number links for only eight. The display in Figure 4.2 also shows there are significant dif-
ferences in the lengths of the 5′ and 3′ ends. Clearly AF201468 (5878 bp) and AB032975
(5814 bp) are the longest reads but in fact AB032975 is labelled as a partial CDS because
of what may be a sequencing error at the 5′ end. The matches to the spliced ESTs together
with the rat and mouse mRNAs suggest the 5′ UTR may be full-length for these entries
i.e. they extend to the start of transcription. This is in contrast to the shorter 5′ ends for
the majority of mRNAs. A detailed analysis of the 3′ ends by EST distribution profiles
indicates that the different UTR lengths in this case arise not from incomplete cloning but
from three alternative polyadenylation positions (Southan, 2001). Further heterogeneity
is illustrated by three splice variants affecting exons 3 and 4. The representative mRNAs
are AB050436, AB050437 and AB050438. There is also an alternative protein reading
frame from AF161367, a partial mRNA cloned from CD34+ stem cells. Opening up the
spliced EST tracks in the viewer shows individual ESTs corresponding to these splice
forms. Approximately midway between exons 1 and 2 (from the 5′ end) is a spliced EST,
AL544727, derived from spleen. This suggests the possibility of another splice form but
this would need analysis for canonical splice sites and experimental verification. Similarly
an EST from spinal cord AL589586 suggests an alternative exon just on the 5′ side of
exon 3. Although the rat and mouse mRNAs displayed in Figure 4.2 show the same exon
positions as most human sequences there are suggestions of splice variants in non-human
ESTs but these tracks were not expandable in the version tested.

The NCBI display for BACE mRNAs and ESTs (Figure 4.3) shows concordance and
discrepancies with the UCSC display (Figure 4.2). The exon positions are identical. They
include the same RefSeq mRNA and genomic secondary accession numbers. The EST
matches are in broad agreement towards the 3′ end but two additional potential exon
matches are indicated at the 5′ end. Although these may be unspliced matches that would
need further investigation, one of these coincides with the XM 084660 reference sequence

Figure 4.2 The UCSC display for BACE mRNAs and ESTs.
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Figure 4.3 The NCBI display for BACE mRNAs and ESTs.

predicted by NCBI from the contig NT 009151. There is no mRNA verification for this
prediction so it will be of interest to see if additional EST data will appear and, if not, how
long this prediction will be maintained as genome annotation. The mismatches and INDEL
tracks are a useful feature unique to NCBI. The mismatches within the set of 12 mRNA
sequences could represent SNPs or technical sequence errors. The INDELs also show
major length discrepancies. In Figure 4.2 these highlight the three splice positions in agree-
ment with UCSC but the INDEL in exon 8 could not be interpreted from the link provided.

4.6 LOCATING GENES WHICH ARE NOT PRESENT IN THE GOLDEN
PATH

Estimates suggest the GP is still missing ∼2.5% of the genome, there are still small gaps
in the unfinished sections and the latest Ensembl release locates only 92% of known
proteins (http://www.ensembl.org/Dev/Lists/announce/msg00070.html). This means that
some genetic markers in close proximity to genes are either not covered by GP or are
not fully annotated in unfinished sequence. Two human proteins that have no matches
on the current GP version 28 from December 2001 illustrate this problem. The first of
these, spP83110 serine protease HTRA3, has an mRNA entry AY040094. The second
protein spP83105 serine protease HTRA4 has an mRNA accession but the entire ORF is
covered by two long EST reads AL545759 and AL576444. Because it has a full length
mRNA HTRA3 has a LocusLink ID of 94031 but no mapping links. Searching HTRA3
by BLASTN against the NCBI nr nucleotide database, containing 1,184,532 sequences,
hits only the probable mouse orthologous mRNA, AY037300, at 86% identity within
the reading frame. However checking monthly updates at 811,100 sequences reveals a
99% identity to a new genomic entry AC113611 of 190,038 bp from chromosome 4.
This sequence was also in the unfinished High Throughput Genomic Sequences (HTGS)
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division, with 47,855 sequences, along with the probable rat orthologous genomic section,
AC110369, at 87% identity. There were no mouse genome matches from this search. A
check on the nucleotide patent databases, with 582,838 sequences, showed a new mRNA
match, AX338509 from patent WO0183775. The HTRA3 mRNA has EST matches to
UniGene cluster Hs.60440 with four STSs from chromosome 4. Presumably these STSs
will be located on GP when the AC113611 genomic sequence is assembled into chromo-
some 4. Checking the chromosome 4 SNPs at 105,568 sequences by BLAST search,
recorded no hits within the 2552 bp mRNA of AY040094 but found over 100 matches
within the repeat-masked sections of AC113611. Using the same sequence to BLAST
against the 115,608 sequences in the STS division gives eight hits above 95% iden-
tity, although only three looked like unique matches. Interestingly the HTRA3 mRNA
AY040094 has no STS matches although four chromosome 4 STSs were picked up in the
UniGene entry. A possible explanation is that the cluster included clone links to ESTs
that extend past the 3′ end of the mRNA.

Performing the same database checks for the HTRA4 ESTs, AL545759 and AL576444,
produces a different pattern of findings. There were no hits in nr or gbPAT. However, the
HTGS search located extended identity hits to no less than four genomic entries. These
comprised of three recently sequenced sections of chromosome 8 AC108863, AC105089,
AC105088, and a short match to an entry without a chromosomal assignment, AC107926.
Checking for HTRA4 in LocusLink could find no IDs because of the absence of a full-
length mRNA. It was picked up as the UniGene cluster Hs.322452 with nine ESTs but
no mapping information was included even though our search update had located it to
chromosome 8. No reading frame SNPs could be detected from the 92,110 chromosome 8
entries. By using the genomic contig, AC108863, (198,743 bp) as a BLAST query only
three SNP identity matches were detected, rs1467190, rs2010445 and rs2056170, but three
STS markers G60989, G23343, and G04735, were located.

In summary; although these two gene products cannot be located on the latest GP a
series of manual database checks have established a mixture of patent mRNAs, unfinished
genomic matches, ESTs, STSs and SNPs. It will be interesting to track how soon these
features find their way into the GP annotation pipelines. If genetic studies should need
this location data in the interim, the searches have established that HTRA3 probably has
enough SNPs in the genomic vicinity for association studies, but that there is a very low
SNP density in proximity to HTRA4. If the overlapping genomic coverage for HTRA4
could detect all the exons it might be possible to assemble a ‘mini golden path’ across
this particular section. However if it became necessary to re-order and re-assemble the
contigs within the unfinished entries this would be a challenging task to perform with
web-based tools.

4.7 ANALYSING A NOVEL GENE

Sooner or later experimental results will locate a piece of GP where there are no fully
annotated known genes. Figures 4.4, 4.5 and 4.6 show selected tracks from the Ensembl,
UCSC and NCBI displays between the 3′ side of the BACE gene and the 5′ end of the
next known gene PCSK7. The known genes are marked in brown in Ensembl and blue
in UCSC. The latter are mRNA mappings and therefore include the UTR sections. Let us
assume a genetic linkage study had found significant associations in this area, either from
the two STS markers or the 50 or so SNPs that lie in this interval but are outside the
boundaries of the two neighbouring genes. The question immediately arises as to what
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Figure 4.4 The Ensembl display for the unknown gene between BACE (left) and
PCSK7 (right).

Figure 4.5 The UCSC display for the unknown gene between BACE (left) and
PCSK7 (right).

other gene product(s) might be located between the two knowns. The first step is to check
the continuity of this section of GP. This can be done in any of the viewers and in this
case there is complete clone overlap across this section.

Inspection of all three displays indicates a possible novel gene product with a variety
of supporting evidence. They include gene predictions which include both common and
different exon positions. The UCSC Genscan prediction number 464 overlaps with the 3′
UTR of BACE making this a less plausible (but still possible) exon. Reading vertically
down the Ensembl tracks first we see evidence for three protein homologies (yellow) as
judged by the matches in register with the Genscan exon predictions. These are Q96RS9,
a novel DZIP3, Q02455 a myosin-like peptide from yeast and P53804 a tetratricopeptide
repeat protein. There is the same pattern of exon matches to three UniGene cluster entries
(red) Mm.3679 Mus musculus for the tetratricopeptide repeat domain protein, Hs.165662
for Homo sapiens KIAA0675 unknown protein and Hs.118174 for Homo sapiens TTC3
tetratricopeptide repeat domain 3. There is a denser pattern of matches to mouse DNA
(pink) that includes many sections outside the Genscan predicted exons.

Moving down the UCSC tracks in Figure 4.5 we see the spliced ESTs (black) in
register with Genscan exons. However these identity EST matches are not equivalent to the
homology-based UniGene matches in Ensembl. Interestingly the internal exon predicted
only by Fgenes has no spliced EST support. Exploring the EST coverage further we see
that the (brown) THC tracks include an assembly that matches the predicted exons at the
BACE end of the Fgenesh++ prediction. The NCBI tracks go into more detail by not
only mapping UniGene cluster components directly back to putative genomic exons by
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Figure 4.6 The NCBI display for the unknown gene between BACE (top) and PCSK7
(bottom). The leftmost track shows the EST distribution. The next track to the right marks
the UniGene clusters. The central track is the gene prediction for LOC160162 and the
gene structure for the N-terminal section of PCSK7 (bottom).

identity matches but also, on the left hand edge, showing an identity block proportional
to the number of EST matches. Surprisingly there are five EST clusters which raises the
possibility of more than one gene. The mouse BLAT track (brown) is equivalent to the
Ensembl (pink) mouse track but the translation mode filters down to fewer features. The
exofish track in UCSC (blue) supports just one single exon at the 5′ end of the putative
novel gene compared with many conserved exons in both gene neighbours. In isolation
this would be considered as weak evidence for the gene product. However it could simply
mean that this predicted protein is not conserved between fish and human or the puffer
fish ORFs are not complete across this section.

Up to this point our analysis of the genomic region between the 3′ end of BACE
and the 5′ end of PKSC7 points strongly to the presence of a gene product on the basis
of gene prediction and EST coverage. So where do we go from here? One option is to
do some searches with the available mRNA and protein sequence from the Fgenesh++
prediction (numbered C11002075 in Figure 4.5) that can be downloaded from the UCSC
site. The result brings us a long way forward in the evidence cascade because we record
an 81% protein identity to what is likely to be the recently deposited mouse orthologue
mRNA, BC023073. Interestingly this level of similarity should result in this gene passing
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the Genwise threshold for marking a novel gene position (black) in the next release of
Ensembl. At these similarity levels we can back-check this mouse sequence against human
GP by the very fast BLAT search (http://genome.ucsc.edu/cgi-bin/hgBlat?command=
start). The result (Figure 4.7) clearly supports both the orientation (3′-to-3′ relative to
BACE) and seven of the exons from C11002075. However the mouse sequence is clearly
missing the 5′ end.

The next step involved searching the entire genomic DNA section of 54 kb from which
C11002075 was predicted against human ESTs. This was performed using MEGABLAST
with a 90% match stringency and masking of the repeat sections in the genomic query
section. The result (Figure 4.8) is equivalent in principal to the UniGene clusters in the
NCBI viewer but it is easier to pick out the ESTs that bridge several exons. Another reason
for doing this analysis is that over 1 million human ESTs have been added to dbEST since
the UniGene clusters were built. We can identify three ESTs that cover 35 kb of genomic
sequence across three exons and performing the analogous search against mouse ESTs,
with an 80% identity cut-off, finds a long EST spanning the four central exons. This
gives us more confidence of a single rather than multiple gene products. The next step
was to search ESTs against the TIGR THCS to establish if any virtual mRNAs could be
found. In fact two of these, THC856832 and THC796698, represented the 5′ and 3′ ends
respectively and to join these assemblies a bridging EST was found, BM055167. By using
a web version of the CAP3 assembler (http://bio.ifom-firc.it/ASSEMBLY/assemble.html)
it was possible to construct an extended virtual mRNA of 2720 bp. This was translated into
a protein of 474 amino acids using the translation tool (http://ca.expasy.org/tools/dna.html)
(Figure 4.9).

So far so good, but what else can we do to verify this putative novel protein in silico?
The first step is a cross-check for reading frame consistency and species orthologues
by performing TBLASTN against all ESTs (Figure 4.10). The results show the complete
coverage of the entire ORF by human ESTs but also suggests potential splice variants

Figure 4.7 The alignment of the mouse protein from BC023073 after a BLAT search
against the UCSC GP. The BACE gene is on the left hand side.

Figure 4.8 Result of a MEGABLAST search of the genomic sequence between BACE
and PCSK7 against human ESTs. The solid lines indicate gaps in the same ESTs. The
solid sections are putative exon matches.
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gcgggtcctgtccctcccccactttcctcccgggggcgcggcgcgggagagcataatggc
agcgtctgaggttgctggtgttgtggccaatgcccccagtcctccggaatcttctagttt
atgtgcttccaaatcagacgaaggtctcccagatggtctaagcaccaaagactctgcaca
gaagcagaagaactcgcctctgttgagtgtaagtagccaaacaataaccaaggagaataa
cagaaatgtccatttggagcactcagagcagaatcctggttcatcagcaggtgacacctc
agcagcgcaccaggtggttttaggagaaaacttgatagccacagcccttgtctttctggc
agtgggtctcagtctgatttgaaggatgtggccagcacagcaggagaggagggggacaca
agccttcgggagagcctccatccagtcactcggtctcttaaggcagggtgccatactaag
cagcttgcctccaggaattgctctgaagagaaatccccacaaacctccatcctaaaggaa
ggtaacagggacacaagcttggatttccgacctgtagtgtctccagcaaatggggttgaa
ggagtccgagtggatcaggatgatgatcaagatagctcttccctgaagctttctcagaac
attgctgtacagactgactttaagacagctgattcagaggtaaacacagatcaagatatt
gaaaagaatttggataaaataatgacagagagaaccctgttgaaagagcgttaccaggag
                     M  T  E  R  T  L  L  K  E  R  Y  Q  E
gtcctggacaaacagaggcaagtggagaatcagctccaagtgcaattaaagcagcttcag
V  L  D  K  Q  R  Q  V  E  N  Q  L  Q  V  Q  L  K  Q  L  Q
caaaggagagaagaggaaatgaagaatcaccaggagatattaaaggctattcaggatgtg
Q  R  R  E  E  E  M  K  N  H  Q  E  I  L  K  A  I  Q  D  V
acaataaagcgggaagaaacaaagaagaagatagagaaagagaagaaggagtttttgcag
T  I  K  R  E  E  T  K  K  K  I  E  K  E  K  K  E  F  L  Q
aaggagcaggatctgaaagctgaaattgagaagctttgtgagaagggcagaagagaggtg
K  E  Q  D  L  K  A  E  I  E  K  L  C  E  K  G  R  R  E  V
tgggaaatggaactggatagactcaagaatcaggatggcgaaataaataggaacattatg
W  E  M  E  L  D  R  L  K  N  Q  D  G  E  I  N  R  N  I  M
gaagagactgaacgggcctggaaggcagagatcttatcactagagagccggaaagagtta
E  E  T  E  R  A  W  K  A  E  I  L  S  L  E  S  R  K  E  L
ctggtactgaaactagaagaagcagaaaaagaggcagaattgcaccttacttacctcaag
L  V  L  K  L  E  E  A  E  K  E  A  E  L  H  L  T  Y  L  K
tcaactcccccaacactggagacagttcgttccaaacaggagtgggagacgagactgaat
S  T  P  P  T  L  E  T  V  R  S  K  Q  E  W  E  T  R  L  N
ggagttcggataatgaaaaagaatgttcgtgaccaatttaatagtcatatccagttagtg
G  V  R  I  M  K  K  N  V  R  D  Q  F  N  S  H  I  Q  L  V
aggaacggagccaagctgagcagccttcctcaaatccctactcccactttacctccaccc
R  N  G  A  K  L  S  S  L  P  Q  I  P  T  P  T  L  P  P  P
ccatcagagacagacttcatgcttcaggtgtttcaacccagtccctctctggctcctcgg
P  S  E  T  D  F  M  L  Q  V  F  Q  P  S  P  S  L  A  P  R
atgcccttctccattgggcaggtcacaatgcccatggttatgcccagtgcagatccccgc
M  P  F  S  I  G  Q  V  T  M  P  M  V  M  P  S  A  D  P  R
tccttgtctttcccaatcctgaaccctgccctttcccagcccagccagccttcctcaccc
S  L  S  F  P  I  L  N  P  A  L  S  Q  P  S  Q  P  S  S  P
cttcctggctcccatggcagaaatagccctggcttgggttcccttgtcagcccccacggt
L  P  G  S  H  G  R  N  S  P  G  L  G  S  L  V  S  P  H  G
ccacacatgccccctgccgcctccatcccacctcccccaggcttgggcggtgttaaggct
P  H  M  P  P  A  A  S  I  P  P  P  P  G  L  G  G  V  K  A
tctgctgaaactccccggccccaaccagtagacaaactggagaagatcctggagaagctg
S  A  E  T  P  R  P  Q  P  V  D  K  L  E  K  I  L  E  K  L
ctgacccggttcccacagtgcaataaggcccagatgaccaacattcttcagcagatcaag
L  T  R  F  P  Q  C  N  K  A  Q  M  T  N  I  L  Q  Q  I  K
acagcacgtaccaccatggcaggcctgaccatggaggaacttatccagttggttgctgca
T  A  R  T  T  M  A  G  L  T  M  E  E  L  I  Q  L  V  A  A
cgactggcagaacatgagcgggtggcagcaagtactcagccacttggtcgcatccgggcc
R  L  A  E  H  E  R  V  A  A  S  T  Q  P  L  G  R  I  R  A
ttgttccctgctccactggcccaaatcagtaccccaatgttcttgccttctgcccaagtt
L  F  P  A  P  L  A  Q  I  S  T  P  M  F  L  P  S  A  Q  V
tcatatcctggaaggtcttcacatgctccagccacctgtaagctatgtctaatgtgccag
S  Y  P  G  R  S  S  H  A  P  A  T  C  K  L  C  L  M  C  Q
aaactcgtccagcccagtgagctgcatccaatggcgtgtacccatgtattgcacaaggag
K  L  V  Q  P  S  E  L  H  P  M  A  C  T  H  V  L  H  K  E
tgtatcaaattctgggcccagaccaacacaaatgacacttgtcccttttgtccaactctt
C  I  K  F  W  A  Q  T  N  T  N  D  T  C  P  F  C  P  T  L
aaatgacggacctgactggggaggaagaagaagagaaactgatgtgaacaggaagcgcgg
K
gttcaagatttctaaaactctatatttatacagtgacatatactcatgccatgtacattt
ttattatataggtaatgtgtgtatagaaagtctgtattccaatgttcgtaaatgaaacta
tgtatattatgcagaaacagtctgttccccctcatcttgcaattcctttgggggatgcag
attgtagggaagatgatgtttagtttggccttgaaattatgatatccctgcccagggctg
ttttcaaatacaatataaaaaccacctaggaacctgctgttgctctaaggccattctgct
ttggtttggctcagcctctagtccatttccttaaggctcatgtatgcagatttaaagcct
ggtgctcacccactgtccaaccagatgccttgcttaccgaaagcctccagaagcctcagt
attgttttagccactctactccaaatggataaaatgagactctgattgaggaaaaaaaag
taaccctagtagtttgaaa

Figure 4.9 Predicted ORF for a novel protein. This was produced by assembling the
appropriate assemblies and ESTs into a virtual mRNA. This was then translated to give
the putative full-length protein sequence.
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Figure 4.10 Checking for continuity of reading frame by translation searching
(TBLASN) of the unknown ORF against all ESTs. The hatched lines represent deletions
in ESTs that could represent splice variants.

in these matches, for example AI351632, represented as hatched lines in Figure 4.10.
In addition to a bovine sequence BE75593 we also see a likely orthologous match to
AL640079 from a toad. The support for the ORF now seems unassailable. The next step
using BLAT again, is to map it back to GP (Figure 4.11). This reveals the matching
of 15 exons from putative 5′ UTR to 3′ UTR. This is consistent with the Fgenes++
prediction at the 5′ end but this included two extra exons at the 3′ end. The fact that the
virtual mRNA butts up very close to both neighbouring genes suggests that this could be
a full-length transcript.

Clearly the analysis of what, for example, might be a candidate disease-associated gene,
has to move on from the identification of an ORF to the assignment of function that is both
mechanistically plausible and experimentally testable. The subject of assigning functions
to new proteins is outside the scope of this chapter. However the two basic steps are a
protein database search and motif analysis. The protein search (Figure 4.12) only shows
significant similarity scores over the C-terminal section of the protein but the hits include
the same proteins assigned as UniGene homologies by Ensembl. A comprehensive domain
analysis using InterPro recognizes two domains (Kriventseva et al., 2001; Southan, 2000).
One of the domains identified, IPR000694, is a proline-rich domain that may be involved
in protein–protein interactions (Figure 4.13). However, the motif recognition specificity
is low and therefore this could be a spurious match arising from a general high proline
composition. An SRS query shows 1152 of these domains have been recorded in Ensembl
(Zdobnov et al., 2002). The second domain, IPR001841, is more specific because it only
occurs 187 times in the Ensembl gene set. The RING-finger is a specialized type of Zn-
finger of 40 to 60 residues that binds two atoms of zinc, and is probably also involved

Figure 4.11 Matching the virtual mRNA back against GP using the BLAT search at
UCSC. This delineates 15 exons with the gene reading in the opposite orientation to its
neighbouring genes, i.e. 3′ end to the left, on the same strand.
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Figure 4.12 The sequence similarity scores of the novel ORF against the NCBI
non-redundant protein database.

Figure 4.13 The InterPro domain/protein family analysis result for the novel ORF. The
praline-rich domain is defined from a Prosite profile. The zinc finger is defined by both a
Prosite profile and a SMART domain.

in mediating protein–protein interactions. They can also bind DNA however, since they
contain many Lys, Ser and Thr residues. In fact combining the two domain searches finds
intersecting hits (i.e. containing both domains) for only 17 Ensembl proteins. Inspecting
the graphical displays shows one of these gene products, ESP0000020915, to be similar
in domain orientation and spacing to the novel protein. Unfortunately the trail went cold
here because this identifier has been changed in the latest Ensembl release and the SRS
link to the protein sequence was dead.

So how did the three major gene portals do? Quite well considering they all included
the potential novel gene product as a gene prediction although they disagreed on exon
number. They also displayed key supporting evidence in different forms of track annota-
tion. Only a small subset of the display options has been presented here. Was the use of
all three portals essential? Strictly speaking we could have accessed sufficient support-
ing evidence from each one. However to collect all the available data it was necessary
to use all three. The other aspect is that each portal has particular facilities that even
if not unique at the technical level is easier to use at one portal compared to the other
three. Consequently this kind of detailed analysis becomes a de facto three-stop-shop. For
example the UniGene homology assignments, available from Ensembl, were all correct as
judged by the agreement with the protein similarities (red tracks in Figure 4.4). Having
said that, one of the direct protein homology assignments (yellow tracks in Figure 4.4),
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the myosin-like peptide from yeast, was probably erroneous because of the low com-
plexity of the query protein amino acid composition. In terms of markers, SNPs and
genes Ensembl does particularly well for combined export options. The UniGene iden-
tity matches on the NCBI display together with the graphical stacks proportional to the
number of EST matches are useful but in this case what is likely to be a single tran-
script was split into four clusters. One of these was illegible on the graphic and two
others are dubious because of being unspliced. The UCSC displays were useful to see the
two alternative gene models as well as being the only source of the TIGR EST assem-
blies. Another useful facility on this site is the ability of BLAT to display the hits of
any externally constructed model or new database sequence. This can then be compared
directly with the other display options (e.g. in Figures 4.6 and 4.11). The NCBI have
recently introduced a gene model builder that can reproduce some of the steps above
(http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/ModelMakerHelp.html).

4.8 COMPREHENSIVE DATABASE SEARCHING

The protein matches and the InterPro analysis have already given functional clues about
our novel protein. However if this particular gene product was located in close proximity
to an SNP with a disease association we would need to find out as much as possible,
not only to provide more supporting evidence for the gene product but also testable
predictions about function that can be followed up. Performing a comprehensive search
is not a trivial exercise since it involves 17 divisions of GenBank and sources of trace
data that have not yet been submitted to GenBank. So where do we start? The two large
repositories labelled nr protein or nucleotide on the NCBI BLAST server are a useful first
choice (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi). We have already checked nr protein
at 891,607 sequences but we need to compliment this with month, which in this case
yields another 61,254 protein sequences but no additional high-scoring hits. The search
against nr nucleotide with 1,192,858 sequences records three extended matches. This
includes the mouse sequence already described, BC023073, and the primary accession
number of the finished genomic section AP000892. The third match, XM 100696, is
a secondary accession number for a reference mRNA sequence predicted by the NCBI
Annotation Project from a genomic contig NT 009151. This is the same prediction labelled
LOC160162 in Figure 4.5. There is an accompanying 56-residue predicted ORF that is
in the NCBI protein database but has no supporting evidence. Inspection of the genomic
location suggests it may be a spurious prediction.

Checking public patented proteins at 88,019 sequences gave no hits. However the
patent nucleotide division, gbPAT, at 581,001 sequences, gives three solid hits, AX321627,
AX192589 and AX072029. The first of these is a 2114-bp DNA from patent WO0172295.
The document indicates this protein was isolated from a lung cancer sample (http://ep.
espacenet.com/). These hits constitute a partial mRNA level of confirmation for the novel
protein but a reciprocal check (i.e. a BLASTN of AX321627 against the nr nucleotide
database) indicates this clone may be a chimera from two separate gene products. A search
against a commercial patent database, containing 673,453 protein sequences, reveals iden-
tity matches for the N-terminal section from patent WO200060077 and a C-terminal
identity match from WO200055350, both of which are reported as cancer-associated
transcripts (http://www.derwent.com/geneseq/index.html). Checking the GSS division by
TBLASTN gives four genomic hits; AZ847251 from mouse, AG114530 from chim-
panzee, BH306228 from rat and BH406519 from chicken. Using BLAST against the
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TABLE 4.1 Useful Resources for Gene Finding and Analysis

Site description URL

Ensembl at EBI/Sanger
Centre

http://www.ensembl.org/

Human Genome Browser
at UCSC

http://genome.ucsc.edu/

Map Viewer at NCBI http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/map− search
Protein Atlas of the

genome
http://www.confirmant.com/

SWISS-2DPAGE
database

http://ca.expasy.org/ch2d/

Ensembl 4.28.1
announcement

http://www.ensembl.org/Dev/Lists/announce/msg00070.html

NCBI gene model
builder

http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/
ModelMakerHelp.html

UniGene EST clusters http://www.ncbi.nlm.nih.gov/UniGene/
InterPro at EBI http://www.ebi.ac.uk/interpro/
Proteome analysis at EBI http://www.ebi.ac.uk/proteome/
Google general search

portal
http://www.google.com/

RefSeq at NCBI http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html
International Protein

Index
http://www.ebi.ac.uk/IPI/IPIhelp.html

Derwent sequence patent
databases

http://www.derwent.com/geneseq/index.html

BLAST at NCBI http://www.ncbi.nlm.nih.gov/BLAST/
BLAT at UCSC http://genome.ucsc.edu/cgi-bin/hgBlat?command = start)
DAS — distributed

annotation
http://biodas.org/

Exofish at Genoscope http://www.genoscope.cns.fr/externe/tetraodon/
Fgenesh at Sanger

Institute
http://genomic.sanger.ac.uk/gf/Help/fgenesh.html

Expasy translation tool http://ca.expasy.org/tools/dna.html
CAP3 nucleotide

assembly tool
http://bio.ifom-firc.it/ASSEMBLY/assemble.html

GeneWise at Sanger
Institute

http://www.sanger.ac.uk/Software/Wise2/

Genscan at MIT http://genes.mit.edu/GENSCAN.html
SSAHA at Sanger

Institute
http://www.sanger.ac.uk/Software/analysis/SSAHA/

Ensembl mouse peptides detected a C-terminal similarity that is a zinc finger domain
match. However both the human and mouse mRNA have unique and solid hits against
mouse chromosome 9.40 Mb. This suggests the gene product is derived from this locus
although it has not been annotated yet by Ensembl. Interestingly the gene lies between
two odour receptors, unlike the human positioning between BACE and PCSK7, showing
the position is non-syntenic.
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Drawing detailed conclusions from these results is outside the scope of this chapter
but the example makes clear how much extra information a comprehensive database
search can yield. Was the protein unknown and/or novel? The difficulty of answering this
question illustrates the diminishing utility of these terms. The protein has at least one
function-related motif that can be recognized at high specificity so it can no longer be
classified as an unknown. It remains novel only in the strict sense of not being represented
in the current protein databases. It is not novel in the wider sense because both the mRNA
and ORF were substantially covered as predicted by sequence data entries in the public
and patent databases respectively.

4.9 CONCLUSIONS AND PROSPECTS

The geneticist is in the fortunate position of having access to secondary databases and GP
genomic viewers of increasing quality, content and utility. This is making the process of
finding and analysing gene products easier. However the examples used in this chapter
also show that there are many subtle details in genomic annotation and the implications
of these will take some time to unravel. This requires comprehensive inspection and may
ultimately need experimental verification. The expansion of web-linked interoperativity
and interrogation tools means that new options will already be available by the time this
is in print. One consequence of these advances could be the perception of a diminished
necessity to perform bioinformatic analysis. Although this is true in the sense that sec-
ondary databases include an increasing amount of ‘pre cooked’ bioinformatic data, there
is a paradox in that the more sophisticated the public annotation becomes the more impor-
tant it is to understand the underlying principles. For example, it is important to be able to
discriminate between gene products defined by in-vitro data or only by in-silico prediction.

So what of the future? There are four developments worth highlighting. The first is
that the combination of increasing transcript coverage, finished golden path and extensive
mouse synteny data will diminish the uncertainty limits of gene numbers. The ability
to pick out SNP haplotype blocks in relationship to gene products, already available
as tracks on the UCSC display options for chromosome 21 will be a big step forward
for association studies (Patil et al., 2001). The proliferation of DAS servers will enable
more groups to share their own specialized annotation tracks with the wider community
(http://biodas.org/). Last but not least defining gene products at the protein level is likely
to have a major impact on annotation quality, and efforts are already underway to do this
on a genome-wide scale (http://www.confirmant.com/).
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5.1 INTRODUCTION

The miraculous birth of the draft human genome sequence took place against the odds. It
was only made possible by parallel revolutions in the technologies used to produce, store
and analyse the sequence data and by the development of new large-scale consortia to
organize and obtain funding for the work (Watson, 1990). The initial flood of sequence
has subsided as the sequencing centres begin the task of converting the fragmented draft
sequences into a finished, complete sequence for each chromosome. The steady progress of
the cloned fragments of the human genome towards a finished state can be observed in the
Genome Monitoring Table (Beck and Sterk, 1998; http://www.ebi.ac.uk/genomes/mot/),
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but although we can examine the sequences in public databases we have yet to com-
prehensively interpret them. There is a need to relate the raw sequence data to what we
already know about human genetics and biology in general, this is the process of genome
annotation. Preliminary annotation of a genome is a semi-automated process, with human
curators interpreting the results of various computer programs. In practical terms, prelim-
inary annotation currently consists of determining the position of known markers, known
genes and repetitive sequence in combination with efforts to delineate the structure of
novel genes. Eventually we would like to know much more, including the multifarious
interactions of the genome’s contents with one another and the environment, their expres-
sion in the biology of the cell and role in human physiology. These additional layers of
annotation will come from the patient laboratory work of the next several decades but
a prerequisite for this work is a complete (or nearly complete) genome sequence and an
accurate preliminary annotation which is available to the total scientific community. This
chapter will aim to describe the sources of freely available annotation, their strengths,
their shortcomings and some likely future developments. All websites referred to in the
text are listed in Table 5.1.

TABLE 5.1 The Websites Referred to in the Text

Site Description URL

Genomic sequence assemblies
CG Human Genome

Assembly
http://public.celera.com

NCBI Human Genome
Assembly

http://www.ncbi.nlm.nih.gov/genome/guide/human/

UCSC Human Genome
Assembly

http://genome.ucsc.edu/

Annotation browsers
Ensembl at EBI/Sanger

Institute
http://www.ensembl.org/

Genome Channel at ORNL http://compbio.ornl.gov/channel/
Human Genome Browser at

UCSC
http://genome.ucsc.edu/

Map Viewer at NCBI http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/
map−search

Data sources
ArrayExpress at EBI http://www.ebi.ac.uk/arrayexpress/
COGs database at NCBI http://www.ncbi.nlm.nih.gov/COG/
dbSNP at NCBI http://www.ncbi.nlm.nih.gov/SNP/index.html
DOTS at University of

Pennsylvania
http://www.allgenes.org/

FlyBase at EBI http://fly.ebi.ac.uk:7081/
Genome Monitoring Table at

EBI
http://www.ebi.ac.uk/genomes/mot/

GEO at NCBI http://www.ncbi.nlm.nih.gov/geo/
IHGMC FPC map at
Washington University in

St Louis

http://genome.wustl.edu/cgi-bin/ace/GSCMAPS.cgi?

TE
AM
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TABLE 5.1 (continued )

Site Description URL

InterPro at EBI http://www.ebi.ac.uk/interpro/
Mouse Genome Database at

Jackson Laboratory
http://www.informatics.jax.org/

Mouse Atlas Database at
MRC Human Genetics Unit

http://genex.hgu.mrc.ac.uk/

OMIM at NCBI http://www.ncbi.nlm.nih.gov/Omim/
Pfam at Sanger Institute http://www.sanger.ac.uk/Software/Pfam/
Proteome Analysis at EBI http://www.ebi.ac.uk/proteome/
RefSeq at NCBI http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html
Saccharomyces Genome

Database at Stanford
University

http://genome-www.stanford.edu/Saccharomyces/

UniGene at NCBI http://www.ncbi.nlm.nih.gov/UniGene/

Software
ACEDB (Sanger Institute) http://www.acedb.org/
Acembly (NCBI) http://www.ncbi.nih.gov/IEB/Research/Acembly/

help/AceViewHelp.html
Apollo (EBI) http://www.ensembl.org/apollo/
BLAST (NCBI) http://www.ncbi.nlm.nih.gov/BLAST/
BLAT (UCSC) http://genome.ucsc.edu/cgi-bin/hgBlat?command=start)
DAS (Cold Spring Harbor

Laboratory)
http://biodas.org/

EMBOSS (EMBnet) http://www.uk.embnet.org/Software/EMBOSS/
Exofish (Genoscope) http://www.genoscope.cns.fr/externe/tetraodon/
ePCR (NCBI) http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi
Fgenesh (Sanger Institute) http://genomic.sanger.ac.uk/gf/Help/fgenesh.html
Gene Ontology Consortium http://www.geneontology.org/
GENEWISE (Sanger

Institute)
http://www.sanger.ac.uk/Software/Wise2/

GENSCAN (MIT) http://genes.mit.edu/GENSCAN.html
GrailEXP (ORNL) http://compbio.ornl.gov/grailexp/
HMMER (WUSTL) http://hmmer.wustl.edu/
NIX at (HGMPRC) http://www.hgmp.mrc.ac.uk/Registered/Webapp/

nix/
Phrap (University of

Washington)
http://bozeman.genome.washington.edu/index.html

RepeatMasker (Uni. of
Washington)

http://ftp.genome.washington.edu/RM/RepeatMasker.
html

SIM4 (Penn State
University)

http://bio.cse.psu.edu/

Spidey (NCBI) http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/
Spidey/

SSAHA (Sanger Institute) http://www.sanger.ac.uk/Software/analysis/SSAHA/
Twinscan (WUSTL) http://genes.cs.wustl.edu/
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5.2 GENOMIC SEQUENCE ASSEMBLY

Any discussion of computational sequence annotation should begin with a consideration
of the sequence data itself. Genomic sequence data has traditionally come from many
sources: studies of transcribed sequences, individual genes and genetic/physical markers
from mapping studies. Over the past decade we have entered the era of large-scale efforts
to sequence entire genomes and the most abundant sources of sequence have become the
sequencing vectors from these efforts. In practical terms this has meant that we acquire
many fragments, from a few hundred bases to a few hundred kilobases in length, of a
genome which must then be assembled computationally to produce a continuous sequence.
In the case of the human genome, two unfinished ‘draft’ sequences have been produced
using different methods, one by the International Human Genome Sequencing Consortium
(IHGSC) and one by Celera Genomics (CG).

The IHGSC began with a BAC (bacterial artificial chromosome) clone-based phys-
ical map of the genome (IHGSC, 2001). This map was constructed by digesting each
clone with restriction enzymes and deriving a characteristic pattern or fingerprint. All
of the fingerprints are then processed by a program called FPC (Soderlund et al., 2000)
which produces BAC clone contigs on the basis of the shared fragments in their fin-
gerprints (International Human Genome Mapping Consortium (IHGMC), 2001; http://
genome.wustl.edu/cgi-bin/ace/GSCMAPS.cgi?). A selection of clones from this map cov-
ering the vast majority of the genome, were then ‘shotgun sequenced’ (Sanger et al,
1982). The fragments of each clone were then assembled into initial sequence contigs
based upon overlaps between shotgun sequencing reads. The collection of initial sequence
contigs from a single clone, make up the sequence data for a BAC clone in GenBank.
As more shotgun sequencing of the clone is carried out, the initial sequence contigs are
re-assembled with the new sequences and the database sequence entry for the clone is
updated accordingly. Gradually the initial sequence contigs increase in length and decrease
in number, until the sequence of the clone is finished and is represented by a single contig
100–200 kb in length. The program used to assemble the initial sequence contigs is called
Phrap (Green, unpublished data; http://bozeman.genome.washington.edu/index.html) and
takes sequencing quality estimates for each base into account. CG used the whole-genome
shotgun method where the entire genome is randomly fragmented and each of the cloned
fragments is sequenced (Venter et al., 2001). Sequences from these cloned fragments
are produced as mate-pairs: 150–800 bp sequencing reads from either end of the clone
with known relative orientation and approximate spacing. A mixture of clones of dif-
ferent sizes was used: 2, 10, 50 and 100 kb. CG assembled their sequence data with
that produced by the IHGSC and published an analysis of this early CG draft genome
assembly (Venter et al., 2001). Sequences from this assembly are available, under a vari-
ety of restrictions, from the CG draft genome publication site (http://public.celera.com),
however the CG raw sequencing data and subsequent versions of the CG draft genome
assembly are not publicly available. In spite of the differences between the two efforts
to sequence the human genome, both groups had to address the fundamental problem of
assembling incomplete data. In both cases the strategy was broadly to merge overlapping
sequences into contigs and then to order contigs relative to one another using various
types of mapping data.

The published IHGSC assembly was produced using a program called ‘GigAssem-
bler’ devised at the University of California at Santa Cruz (UCSC) (Kent and Haussler,
2001). GigAssembler began with initial sequence contigs from GenBank at a given point
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(a ‘freeze’ dataset). All sequences were repeat masked using the RepeatMasker program
(Smit and Green, unpublished data; http://ftp.genome.washington.edu/RM/RepeatMasker.
html) to highlight known repetitive sequence. Within each IHGMC physical map contig
(IHGMC, 2001) the initial sequence contigs from BAC clones belonging to it were assem-
bled into consensus ‘raft’ sequences using sequence overlaps between fragments. The first
joins were made between the best matching fragments. These rafts were ordered and ori-
entated relative to one another using bridging sequences from other sources (mRNA, EST,
plasmid and BAC end pairs) and FPC contig data. For instance the 5′ end of a single
mRNA may be found within one raft while the 3′ end matches another raft. Repeated
tracts of the letter ‘N’ were inserted between rafts to give a sequence for each IHGMC
map contig. The published version of the UCSC assembly and all subsequent versions
are freely available online (http://genome.ucsc.edu/).

The CG draft genome assembly was carried out by a program described as a ‘compart-
mentalized shotgun assembler’ (CSA) (Huson et al, 2001) using both CG sequence data
and IHGSC initial sequence contigs from GenBank (as of 1 September 2000 for the pub-
lished CG assembly) fragmented into smaller sequences a few hundred base pairs long.
The CSA began by comparing all CG mate-pair fragments with all the initial sequence con-
tig fragments and avoiding matches based upon repetitive sequence. Repetitive sequence
was identified using comparisons to a library of known repeats (analogously to Repeat-
Masker) but also by additional procedures to detect sequence likely to represent unknown
repeat sequences. The mate-pair fragment pairs matching more than one initial sequence
contigs were then used as bridging sequences to order and orientate the initial sequence
contig fragments within and between BAC clones. Essentially the paired CG fragments
are used as high resolution mapping data to re-assemble both IHGSC BAC sequences
and the broader genomic regions they originate from. The result was a set of ‘scaffolds’
consisting of ordered, oriented sequence contigs separated by gaps of estimated sizes. CG
fragments not matching IHGSC initial sequence contigs were also assembled using a dif-
ferent algorithm (Myers et al., 2000) to give additional scaffolds containing sequence not
represented in IHGSC data. Scaffolds were then positioned relative to one another based
upon sequence overlaps and bridging mate-pair fragments. The derived order of scaffolds
was then manually curated to identify mistakes by examining sequence alignments by eye
and confirming or rejecting orders based on external physical mapping data such as those
from the IHGMC.

A third assembly method, using repeat masked data from the IHGSC, was produced by
the National Centre for Biotechnology Information (NCBI) using a computational protocol
(NCBI, unpublished data; http://www.ncbi.nlm.nih.gov/genome/guide/build.html) based
upon the BLAST algorithm (Altschul et al., 1997). The NCBI approach also began by
finding an order for adjacent BACs but in this case it was derived from BAC sequence
overlaps (detected using a variant of BLAST), fluorescence in situ hybridization (FISH)
chromosome assignment and STS content. The sequence fragments from these overlapping
BACs were then merged into consensus ‘meld’ sequences. As with the UCSC method,
these melds were then ordered and orientated based on ESTs, mRNAs and paired plasmid
reads before being combined into a single NCBI genomic sequence contig with melds
separated by runs of the letter ‘N’. NCBI contigs were ordered and oriented relative to one
another according to matches to mapped STS markers and paired BAC end sequences.

The assembly protocols used by UCSC, CG and NCBI differ in terms of the amount
and variety of input data and the algorithms used; it would therefore be surprising if
they gave identical assemblies as output. Of particular interest are the relative rates of
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misassembly (sequences assembled in the wrong order and/or orientation) and the relative
coverage achieved by the three protocols. Unfortunately the UCSC group are alone in
having published assessments of the rate of misassembly in the contigs they produce.
Using artificial datasets they found that on average ∼10% of assembled fragments were
assigned the wrong orientation and ∼15% of fragments were placed in the wrong order by
their protocol (Kent and Haussler, 2001). Two independent assessments of UCSC assem-
blies have come to similar conclusions. Katsanis et al. (2001) examined various UCSC
consecutive draft genome assembly releases and reported that 10–15% of EST sequences
identified within them appeared to be on wrongly assembled genomic sequences. In agree-
ment with this, Semple et al. (2002) observed 19 and 11% of erroneously ordered marker
sequences in two consecutive UCSC assemblies for a ∼5.8 Mb region of chromosome 4.
The latter study also found wide variation in coverage (23–59% of the available IHGSC
sequence data included) and rates of misassembly (2.08–4.74 misassemblies per Mb)
between consecutive UCSC and NCBI assemblies and the published CG assembly for the
same region. These analyses indicate that the lowest rate of misassembly is produced by
the CG protocol, followed by the UCSC and lastly the NCBI protocols. However, the
CG protocol also produced the lowest coverage, including only around half the sequence
data recruited into the UCSC and NCBI assemblies. Olivier et al. (2001) compared orders
of TNG radiation hybrid map STSs produced by UCSC and CG protocols. They found
widespread differences, such that 36% of TNG STS pairs were present in orders that
differed between UCSC and CG assemblies. The TNG order was consistent with the
CG assembly order slightly more often than with the UCSC assembly order. The UCSC
website provides a variety of comparisons of its assemblies to genetic, physical and cyto-
genetic mapping data and these comparisons represent a useful resource for users to assess
the likely degree of misassembly in a region of interest.

Unsurprisingly, it has been shown that differences between assemblies do indeed result
in differences in annotation. Semple et al. (2002) found variable amounts of tandemly
duplicated and interspersed repeat sequence between UCSC, NCBI and CG derived assem-
blies and more striking differences in annotation were also identified by Hogenesch et al.
(2001) between CG and UCSC assemblies. Hogenesch et al. (2001) found large dif-
ferences between the genes found in CG and UCSC assemblies, such that more than
one-third of the genes identified in one assembly were not found in the other. Thus,
genomic sequence annotation can only be as good as the underlying genomic sequence
assembly and, as we have seen, accurate assembly of draft sequence fragments is far from
error free.

The human genome is widely reported to be due for completion in 2003 but at the
moment around one-quarter of publicly available human genome sequence is still cat-
egorized as ‘draft’ or unfinished. Relatively small, problematic regions of gapped draft
sequence may well persist beyond 2003, since certain regions of the genome are simply
not present within existing clone libraries and are also recalcitrant to subcloning (Hattori
et al., 2000). Specialized technologies are required to close such gaps in the clone map. It
therefore seems likely that draft assemblies of some small regions of the human genome
will be with us for some time to come. Also a fraction of the genome (perhaps 5%) consists
of large (>10 kb) duplicated segments which share 90–98% sequence identity. Regions
containing such duplicated segments are notoriously difficult to assemble accurately and
are not only found in pericentromeric and subtelomeric regions but also across the rest
of the genome, including the gene-rich regions that sequence annotators are primarily
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interested in (Eichler, 2001). A comparison of the completed sequence of chromosome
20 with the preceding public CG and UCSC draft assemblies of the same chromosome
identified ‘major discrepancies’ (Hattori and Taylor, 2001). These authors concluded that
the draft assemblies were probably confounded by large duplicated regions.

5.3 ANNOTATION FROM A DISTANCE: THE GENERALITIES

If some troublesome regions of the genome are set to continue as problems for cloning,
sequencing and assembling, this is a minor concern in comparison to the comprehen-
sive annotation of genomic sequence. At almost every level, computational annotation of
genomic sequence is error prone and incomplete. Of course, the aim of computational
annotation in common with much of bioinformatics, is to provide a preliminary set of pre-
dictions that must then be tested by ‘wet’ laboratory work. The aim is a rapid first pass or
‘base line’ annotation as the most comprehensive genomic annotation resource Ensembl
(Hubbard et al., 2002) puts it. From the computational point of view this enterprise is
hugely successful: merely by considering the statistical qualities of the raw sequence data
we can detect the presence of most protein-coding human genes. We can then identify
the presence of known, structural domains within the conceptually translated products of
these predicted genes and make informed guesses about functional roles and subcellular
localization. When one looks at a raw BAC sequence entry from GenBank it is easy to
appreciate the scale of these achievements but the view from the wet laboratory bench
can be different. The broad success of computational gene prediction is little consolation
to the bench geneticist who has to sift through numerous artifactual exon predictions only
to find later that his gene of interest was not detected by any of the algorithms used. What
is broadly impressive to the bioinformaticist can be just plain wrong to those dealing with
specifics. In a recent excellent introduction to genomic sequence annotation Lincoln Stein
has defined three, hierarchical levels of annotation: the most fundamental nucleotide level,
followed by protein level and then process level (Stein, 2001).

5.3.1 Nucleotide Level

Nucleotide level is the point at which the raw genomic sequence is analysed and
forms the basis for subsequent levels of interpretation. The first step is to identify as
many known genomic landmarks as possible; these are generally markers from previous
mapping studies, repeats and known genes already in public databases. This can be
done quickly and accurately by a variety of programs. Markers from previous genetic,
physical and cytogenetic maps are placed upon the genomic sequence by algorithms
designed to find short, almost exact sequence matches such as the ePCR program (Schuler,
1997; http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi), BLASTN (Altschul et al., 1990),
SSAHA (Ning et al., 2001; http://www.sanger.ac.uk/Software/analysis/SSAHA/) and
BLAT (Kent, unpublished data; http://genome.ucsc.edu/cgi-bin/hgBlat?command=start).
Identifying these markers is essential to allow the genomic sequence to be seen in
relation to the previous, pre-genome sequence literature, for example on human disease
genetics. The newest type of markers, single nucleotide polymorphisms or SNPs, are also
identified in the sequence to facilitate the next generation of disease gene mapping studies.
Similar algorithms, extended to incorporate information on gene structure, are used to
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identify the positions of known mRNAs within the genomic sequence, examples include
Spidey (Wheelan et al., 2001; http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/),
SIM4 (Florea et al., 1998; http://bio.cse.psu.edu/) and est2genome which is available from
the EMBOSS package (Rice et al., 2000; http://www.uk.embnet.org/Software/EMBOSS/).
Just as the efforts to assemble genomic sequence take measures to identify and exclude
repetitive sequence, an important part of annotation is to identify interspersed and simple
repeats. The most widely used program for this task is RepeatMasker.

The central problem of nucleotide-level annotation is the prediction of gene structure.
Ideally we would like to correctly delineate every exon of every gene but in large, repeat-
rich eukaryotic genomes, liberally scattered with long genes with many exons, this task
has turned out to be more difficult than expected. Ab initio gene prediction algorithms
(that rely only on the statistical qualities of genomic sequence data) identify most protein
coding genes reliably in prokaryotic genomes but the task is more complex in eukaryotic
genomes (Burge and Karlin, 1998). Fundamentally the problem is gene density, whereas
in prokaryotic genomes and yeast more than two-thirds of the genome is protein cod-
ing sequence only a few percent of the human genome fits this description. Additional
problems are added by overlapping genes, alternatively spliced exons and the paucity of
differences between intergenic sequence and introns. The gene prediction literature is full
of metaphors involving needles and haystacks, and with good cause. The 13-Mb S. cere-
visiae yeast genome provides a sobering example, completed in 1996 and initially thought
to contain 6274 genes, the sequence has provided a steady trickle of additional genes that
had been overlooked. Since publication of the yeast genome a further 202 genes have been
discovered, most appear to have been missed because they are relatively short or overlap
a previously annotated gene on the opposite strand (Kumar et al., 2002). At the same
time, new analyses of these yeast sequences using a variety of statistical analyses and
comparative genomics approaches have suggested that several hundred of the originally
annotated genes may be spurious (Malpertuy et al., 2000; Zhang and Wang, 2000).

This brings us to the use of sequence similarity in gene prediction. In practice genome
annotators use a combination of information to make predictions of gene structures: ab
initio exon predictions (predictions of coding sequence made by a program on the basis of
statistical measures of features such as codon usage, initiation signals, polyA signals and
splice sites), repetitive sequence content and similarity to expressed sequences and pro-
teins. These different strands of evidence are usually combined and evaluated by human
annotators who use graphical interfaces, such as those provided by NIX (unpublished data;
http://www.hgmp.mrc.ac.uk/Registered/Webapp/nix/) and ACEDB (Eeckman and Durbin,
1995; http://www.acedb.org/), to view all the evidence simultaneously. A recent trend in
gene prediction is the design of programs that automatically incorporate evidence based
on sequence similarity into their predictions. Among the best and most widely used ab ini-
tio algorithm is Genscan (Burge and Karlin, 1997; http://genes.mit.edu/GENSCAN.html).
Guigo et al. (2000) tested its success in artificially produced sequence data designed
to mimic human BAC sequences. At the same time they tested algorithms that use
sequence similarity to make their predictions, such as GeneWise (Birney and Durbin,
2000; http://www.sanger.ac.uk/Software/Wise2/). The results showed a clear advantage
to including evidence from sequence similarity where the similarity was strong. In such
cases GENEWISE could correctly identify 98% of coding bases present while generating
a comparatively low level of artifactual exons (2%) and missing 6% of real exons. Where
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levels of similarity were more modest however the performance of algorithms such as
GENEWISE declined to below that of GENSCAN. GENSCAN was found to identify
89% of coding bases at the cost of a rather high level of artifactual exons (41%) and 14%
of real exons missed. Guigo et al. (2000) suggest that the success of all the programs
tested is expected to be lower in real genomic sequence. Another comparison of gene
prediction programs using D. melanogaster genomic sequence identified similar levels
of performance for the programs tested and also indicated an advantage to algorithms
including similarity-based evidence in predictions (Reese et al., 2000). Shortcuts to the
structures of many genes may come from a large collection of full-length mouse cDNAs
(Kawai e al., 2001) and large human cDNA collections (Kikuno et al., 2002), which are
expected to grow rapidly over the next few years.

As we amass genomic sequence data from many organisms the reach of computational
annotation based upon sequence similarity is increasing. New methods aimed at the pre-
diction of non-coding features in the genome, such as regulatory regions and non-coding
RNAs (ncRNAs) are evolving rapidly. Whereas protein coding exons have a distinctive
statistical fingerprint ncRNAs do not, or at least they do not appear to from our present,
limited knowledge of them (Eddy, 2001). For better understood classes of ncRNAs, such
as tRNAs, prediction methods involving secondary structure prediction have been suc-
cessful (Lowe and Eddy, 1997) but for novel ncRNAs the only effective methods are
based on comparative genomics (Rivas et al., 2001). The same is true for novel regu-
latory sequences, where only a fraction of transcription factor binding sites have been
identified to date (Wingender et al., 2001). Even incomplete, fragmentary sequence data
from other organisms has been used with some success to predict putative regulatory
regions (Chen et al., 2001). This approach is examined in some detail in Chapter 7.

5.3.2 Protein Level

Once we have a gene prediction that we believe, the next step is to assign a possible
function to the encoded protein; this is the central task of protein-level annotation. Most
computationally assigned functions are derived from sequence similarity. A pair of pro-
teins that align along 60% or more of their lengths with significant similarity (e.g. E <0.01
in a BLASTP search of a large public database) are very likely to be homologous — that
is derived from a common ancestor. Such a pair of sister proteins may be paralogues,
derived from a duplication event, or orthologues, that exist as a result of a speciation event.
For every homologous pair identified in this way additional searches may verify that each
member of the pair identifies the other member as the best match within the organism of
interest. This makes it likely that the pairs identified are likely to be orthologues (Huynen
and Bork, 1998), which is desirable since orthologues are likely to share the same func-
tion (Jordan et al., 2001) whereas functional diversification between paralogues is thought
to be common (Li, 1997). In most cases this strategy of reciprocal sequence similarity
searches to identify orthologues is successful (Chervitz et al., 1998) and is the rationale
that underlies the construction of the Clusters of Orthologous Groups of proteins (COGs)
database (Tatusov et al., 2000; http://www.ncbi.nlm.nih.gov/COG/). However, caution is
necessary when dealing with the results of such analyses. For example, a novel human
gene may be directly descended from a common ancestor of a yeast gene (in which case
the two genes are orthologues and are likely to share the same function), or it may be
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descended from a duplicated sister yeast gene (and the two genes are really paralogues)
with a different function. Without a complete picture of the related family of proteins we
are dealing with, it can be difficult to decide. Definitive evidence for orthology versus
paralogy can come from comprehensive phylogenetic analysis but even then, when deal-
ing with larger families and/or incomplete data, it can be difficult. As a result, it is not
uncommon to find mistaken computational predictions of function that are not supported
by further experiment (Iyer et al., 2001).

In the absence of any detailed knowledge about the evolutionary pedigree of the pro-
tein under study, similarity may sometimes still imply functional similarity. For example
two proteins only 30% identical may share much of their biochemistry but have dif-
ferent substrates (Todd et al., 2001). In spite of their divergence they may share a
common functional domain. There are a variety of protein domain databases and they
are widely used in genome annotation. For example, version 7 of the Pfam database
contains 3360 domains that match 69% of proteins in public sequence databases, with
domains represented by alignments between regions of proteins containing them (Bate-
man et al., 2002; http://www.sanger.ac.uk/Software/Pfam/). Statistical models of these
alignments are constructed and searched using the elegant HMMER software package
(Eddy, 1998; http://hmmer.wustl.edu/). The Interpro database (Apweiler et al., 2000;
http://www.ebi.ac.uk/interpro/), which amalgamates several databases (including Pfam)
covering protein domains, families and functional sites, was used by the IHGSC to
provide the publicly available annotation for the draft human genome. Interpro entries
provide links to additional information including functional descriptions, references to
the literature and structural data. Since the IHGSC draft genome publication, the EBI
(European Bioinformatics Institute; http://www.ebi.ac.uk/proteome/) has maintained and
updated annotation for the set of known and predicted human proteins using Interpro but
their most recent analyses match only around 60% of the set. Thus even our most stren-
uous efforts to gain clues to protein function, often based upon rather distant homology,
tell us nothing about 40% of human proteins.

5.3.3 Process Level

Ultimately the goal of genetics is to understand the relationship between genotype and
phenotype. There is a large gap between annotation at the nucleotide or protein level
and an understanding of how a given protein influences phenotype. Even in the best
case, with a known gene coding for a protein containing well-studied domains, there
are always questions that remain to be asked. How does the protein interact or complex
with other proteins? Where does it localize within the cell? Which cellular processes
and organelles is it involved with? In which tissues and at which developmental stages
does it act? The answers to these questions provide process-level annotation. The most
important applications of our knowledge about the human genome are in medicine, to
discover the variations and aberrations that underlie disease. Process level annotation
provides a rational way to select the best candidate genes for involvement in disease.
For example, when it was first submitted to GenBank in 1997 a certain gene (accession
number U80741) was annotated as ‘Homo sapiens CAGH44 mRNA’ and ‘polyglutamine
rich’. Due to the painstaking work of Lai et al. (2001) on a region associated with speech
disorders we now know this gene as FOXP2, the first gene found to be involved in
human language acquisition disorders. Before their work FOXP2 appeared to be one of
many transcription factors, expressed in many tissues and best studied in D. melanogaster.
With better process level annotation FOXP2 may have been identified earlier as a good
candidate for involvement in disease.
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The main source of process-level annotation is the scientific literature but, even with
modern access through the web, the literature is a 20th century resource unsuited to
21st century needs. What we have is a dizzying array of terms for a single gene,
function or process and no accepted way of organizing this information, added to this
are all the vagaries and idiosyncrasies of human language. What is needed is a struc-
tured resource with a limited number of terms for genes and descriptions of their func-
tions, organized so that it is easily processed automatically by computer programs. A
recent initiative, called the Gene Ontology (GO) project has provided a framework to
achieve this (Gene Ontology Consortium, 2001; http://www.geneontology.org/). GO con-
sists of an hierarchical set of structured vocabularies to describe the molecular functions,
biological processes, and cellular components associated with gene products. With the
known and predicted genes in a genome annotated using GO it is possible to quickly
retrieve, for example, all genes encoding transmembrane receptors, all genes involved
in apoptosis, or all genes encoding products localized to the cytoskeleton. The hier-
archical nature of GO means that subsets of these categories can also be retrieved,
for example all G-protein coupled receptors within the transmembrane receptor cate-
gory. GO annotation has already been adopted by databases for several model organ-
ism genomes, including the Saccharomyces Genome Database (Dwight et al., 2002;
http://genome-www.stanford.edu/Saccharomyces/), FlyBase (FlyBase Consortium, 2002;
http://fly.ebi.ac.uk:7081/) and the Mouse Genome Database (Blake et al., 2002; http://
www.informatics.jax.org/). At the moment GO annotations are added to genes in these
databases manually by trained biologist curators browsing the scientific literature. In the
longer term, with the rapidly increasing number of completed genomes, this process will
become increasingly automated. Efforts are already underway to develop software that
will automatically extract information from the literature to be incorporated into the GO
annotation of a gene (Raychaudhuri et al., 2002).

The scale of the problem of providing process-level annotation for every human gene
is prompting the development of large-scale technologies to generate data on many genes
at once. Large-scale parallel measurement of gene expression for entire genomes is now
possible and should give good data on the developmental timing and tissue specificity of
many human genes, from which it is possible to infer process-level annotation (Noordewier
and Warren, 2001). An important step on the way to designating the processes a protein
is involved in, is to define the proteins with which it interacts, and work is well underway
to elaborate the web of interacting proteins and complexes that define the S. cerevisiae
proteome (Gavin et al., 2002; Ho et al., 2002). However these high-throughput methods
are known to generate false positives and negatives; that is they identify some artifactual
interactions and miss some genuine interactions. Thus, high-throughput technologies may
eventually provide useful process-level annotation for many, if not most, human genes but
there will always be an indispensable role for conventional, detailed laboratory studies of
smaller scale. New databases and analyses will be necessary to make sense of the network
of genetic interactions that underlie the phenotype. A good example is the Mouse Atlas
and Gene Expression Database Project (Baldock et al., 2001; http://genex.hgu.mrc.ac.uk/)
which aims to describe the patterns of gene expression responsible for the emergence of
anatomical structure during mouse development. It will enable gene expression data to be
viewed in the context of three-dimensional embryo sections.

5.4 ANNOTATION UP CLOSE AND PERSONAL: THE SPECIFICS

Even given the difficulties and shortcomings in computational annotation discussed above,
several well-resourced groups have undertaken the task of compiling, maintaining and
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updating freely accessible annotation for the entire human genome. There are now four
well-designed websites offering users the chance to browse annotation of the draft human
genome. All four sites offer a graphical interface to display the results of various analyses,
such as gene predictions and similarity searches, for draft and finished genomic sequence.
These interfaces are indispensable for allowing rapid, intuitive comparisons between the
features predicted by different programs. For instance, one can see at once where an
exon prediction overlaps with interspersed repeats or an SNP. But the four sites are not
equivalent and there are important distinctions between them in terms of the data analysed,
the analyses carried out and the way the results are displayed.

5.4.1 Ensembl

Ensembl is a joint project between the EBI and the Sanger Institute (http://www.sanger.ac.
uk/). The Ensembl database (Hubbard et al., 2002; http://www.ensembl.org/), launched in
1999, was the first to provide a window on the draft genome, curating the results of a series
of computational analyses. Until January 2002 (release 3.26.1) Ensembl used the UCSC
draft sequence assemblies as its starting point but it is now based upon NCBI assemblies.
The Ensembl analysis pipeline consists of a rule-based system designed to mimic decisions
made by a human annotator. The idea is to identify ‘confirmed’ genes that are computa-
tionally predicted (by the GENSCAN gene prediction program) and also supported by a
significant BLAST match to one or more expressed sequences or proteins. Ensembl also
identifies the positions of known human genes from public sequence database entries,
using GENEWISE to predict their exon structures. The total set of Ensembl genes should
therefore be a much more accurate reflection of reality than ab initio predictions alone
but it is clear that many novel genes are missed (Hogenesch et al., 2001). Of the novel
genes that are detected many, if not most are expected to be incomplete for two main
reasons. Firstly, as we have seen, while GENSCAN can detect the presence of most genes
in a genomic sequence it is substantially less successful in predicting their correct exonic
structures (as with other ab initio gene predictions). Secondly, any prediction is entirely
dependent upon the quality of the genomic sequence and where the sequence is gapped
or wrongly assembled the missing exons may not be present for the software to find.

Many other genomic features have been included as Ensembl has developed: dif-
ferent repeat classes, cytological bands, CpG island predictions, tRNA gene predic-
tions, expressed sequence clusters from the UniGene database (Wheeler et al, 2002;
http://www.ncbi.nlm.nih.gov/UniGene/), SNPs from the dbSNP database (Sherry et al.,
2001; http://www.ncbi.nlm.nih.gov/SNP/index.html), disease genes found in the draft
genome from the OMIM database (On-line Mendelian Inheritance in Man database;
Wheeler et al., 2002; http://www.ncbi.nlm.nih.gov/Omim/) and regions of homology to
mouse draft genomic sequences. GENSCAN-predicted exons that have not been incorpo-
rated into Ensembl-confirmed genes may also be viewed. This means that the display can
be used as a workbench for the user to develop personalized annotation. For example, one
may discover novel exons by finding GENSCAN exon predictions which coincide with
good matches to a fragment of the draft mouse genome, or novel promoters by finding
matches to the draft mouse genome that occur upstream of the 5′ end of a gene. Once
you have identified a gene of interest you can link to a wealth of information at external
sites such as the Interpro protein domains it encodes and its expression profile according
to the SAGEmap repository (Lash et al., 2000). Eventually Ensembl aims to become a
platform for studies in comparative genomics and already it is possible while browsing
the human genome to jump to an homologous region of the mouse genome via a match
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to a mouse genomic sequence fragment. Substantial thought and effort has evidently gone
into the Ensembl site design. The result is certainly a user-friendly experience, and not
just by the standards of computational biology. The web interface to the database achieves
the laudable aim of providing seamless access to the human genome. The user can sink
down through cytogenetic ideograms of whole chromosomes, to large unfinished sequence
contigs several Mb long and then to smaller fragments of individual BAC clones only
kb long. Along the way a graphical display shows the relative positions of genes and the
other features.

Figure 5.1 shows the Ensembl display for the genomic region around the FOXP2 gene
mentioned earlier. The region is shown at three levels of resolution. The upper panel shows
the position of the region as a small red box on a cytogenetic ideogram of chromosome 7.
The middle panel shows an exploded view of this box, including the structure of the draft
genome assembly, the relative positions of various markers and a simple overview of the
gene content. The bottom panel gives a detailed view of a subsection (indicated again
by a red box) of the middle panel. This detailed view is the business end of the browser

Figure 5.1 The genomic region around the FOXP2 gene according to Ensembl (See
Colour Plates).
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and is easily customized, via pull-down menus, to display any desired combination of the
available features. In Figure 5.1 the combination chosen shows the positions of matches
to the mouse genome in relation to GENSCAN-predicted exons and similarities to protein
sequences, which allows a user to define non-coding conserved regions that may be of
regulatory importance. Using this display one could also select SNPs that lie outside
repetitive sequences; an important consideration for PCR-based SNP assays.

Data retrieval is extremely well catered for in Ensembl, with text searches of all
database entries, BLAST searches of all sequences archived and the availability of bulk
downloads of all Ensembl data and even software source code. Ensembl annotation can
also be viewed and added to interactively on your local machine using the Apollo viewer
(http://www.ensembl.org/apollo/).

5.4.2 UCSC Human Genome Browser (HGB)

The UCSC Human Genome Browser (HGB) bears many similarities to Ensembl, it too
provides annotation of the NCBI assemblies (as well as UCSC assemblies) and it displays
a similar array of features, including confirmed genes from Ensembl. The range of features
displayed in HGB (and Ensembl) often change between releases but generally there are
additional features of HGB that are not found in Ensembl. For example, at the time of writ-
ing HGB includes predictions from two ab initio gene prediction programs: GENSCAN
and Fgenesh (Salamov and Solovyev, 2000; http://genomic.sanger.ac.uk/gf/Help/fgenesh.
html). This should help the user to identify false positives (i.e. artifactual exons) from
either program and concentrate on exons predicted by both programs that are most likely
to be real. HGB also currently indicates regions with significant homology to the mouse
genome as in Ensembl but also to the incomplete genome of the pufferfish Tetraodon
nigroviridis. These HGB-specific features can provide useful information when one is deal-
ing with gene predictions that are not well supported by similarity to expressed sequence.
Another useful feature of HGB is the detailed description of the genomic sequence assem-
blies. Graphical representations of the fragments making up a region of draft genome can
be displayed, showing the relative size and overlaps of each fragment and also whether
any gaps between fragments are bridged by mRNAs or paired BAC end sequences. This
means that one can get an idea of the likely degree of misassembly in a draft region.
There is an increasing amount of data becoming available from large-scale gene expres-
sion studies and public repositories have emerged for their curation, such as the NCBI
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress at the
EBI (http://www.ebi.ac.uk/arrayexpress/). At the moment, the HGB is the only browser
which incorporates such data, in the form of data from a microarray study exploring the
variation in expression of several thousand genes in a screen for anti-cancer drugs (Ross
et al., 2000). Undoubtedly the other browsers will develop to include similar data.

In Figure 5.2 the genomic neighbourhood of the FOXP2 gene (represented by sequence
U80741) according to HGB (as of 6 August 2001) is displayed. This provides the kinds of
information available from the analogous Ensembl display and some interesting additional
data. At the top of the display there are indications of the size, cytogenetic band and
the genomic sequences corresponding to the region. Further down one can compare an
Ensembl predicted transcript (ENST00000265436) and similar NCBI Acembly predictions
with the original FOXP2 sequence entry (U80741). Notice that neither the Ensembl nor the
Acembly predictions find all the FOXP2 exons that we know are present from U80741, at
the same time both ab initio prediction algorithms (GENSCAN and Fgenesh) have split the
gene into more than one prediction. These are all familiar problems in genomic sequence
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Figure 5.2 The genomic region around the FOXP2 gene according to the UCSC Human
Genome Browser.

annotation. Notice also that the Ensembl prediction has a number of additional exons
3′ of the last U80741 exon. This is because U80741 does not contain the full coding
sequence of FOXP2 and the Ensembl prediction is based upon a later sequence entry
(AF337817) which does. This illustrates another common problem: different annotation
sources may be based upon different sequence data, depending on what is available at the
time. As with Ensembl, the HGB display of the region shows regions of homology to the
mouse genome but also to the pufferfish genome (identified by a program called Exofish,
see http://www.genoscope.cns.fr/externe/tetraodon/). It is apparent that the evolutionary
distance between humans and fish means that the Exofish results are more helpful in
defining exons rather than regulatory regions. However there are still regions upstream
of the first U80741 exon that appear to be well conserved across the human, mouse and
pufferfish genomes. Such regions may define the promoter of the FOXP2 gene.

Data retrieval is facilitated by text, BLAT (a faster, less sensitive algorithm than
BLAST) searches and bulk downloads of annotation or sequence data. As with Ensembl,
the HGB website has been well designed and is sympathetic to the naive user, but the
HGB graphical interface is more Spartan. If Ensembl is Disney then HGB is Southpark.
The positive side of this is that HGB will usually display a region on your local web
browser more quickly than Ensembl can. Both the Ensembl and HGB interfaces offer
users the ability to jump between their respective views of a region and so, when they are
both annotating the same version of the same NCBI assembly, they can easily be used as
complementary resources.

5.4.3 NCBI Map Viewer (NMV)
As the human genome nears completion the problems of dealing with draft sequence data
will recede and the main task will be to curate the finished sequences representing each
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chromosome. This task will be undertaken at the NCBI. Whereas Ensembl and HGB both
previously provided annotation of the UCSC draft genome assemblies the NCBI Map
Viewer (NMV; http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/map search) has always dis-
played features present in the NCBI assemblies. As the name suggests, the NMV shows
useful comparisons between a wide range of cytogenetic, genetic and radiation hybrid maps
in parallel with NCBI draft and finished sequence contigs. The locations of genes, markers,
and SNPs are indicated on the contig sequences. As with Ensembl, there is an analysis
protocol which aims to predict gene structures based upon EST and mRNA alignments
with the draft genome. This is carried out by a program called Acembly (unpublished data;
http://www.ncbi.nih.gov/IEB/Research/Acembly/help/AceViewHelp.html) which aims to
derive gene structure from these alignments alone. The program also attempts to give alter-
native splice variants of genes where its alignments suggest them. These gene structures
and transcripts end up as records in the NCBI RefSeq database, which is slowly compiling
a non-redundant curated dataset representing current knowledge of known genes (Wheeler
et al., 2002; http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html). Like the Ensembl pro-
tocol many Acembly-predicted structures (the NCBI estimate 42%) are incomplete. These
structures can be displayed alongside ab initio gene models predicted by GenomeScan (a
variant of GENSCAN) and matching UniGene clusters to allow users to make their own
assessments about the likeliest gene structure.

Figure 5.3 shows the FOXP2 gene as it appears in the NMV which shows features on
a vertical rather than horizontal display. The genomic sequence contig the gene occurs on
(NT 023632) is shown in the leftmost column, followed by BLAST matches to three Uni-
Gene expressed sequence clusters. This gene is typical in having more than one UniGene
cluster representing it, particularly at the 3′ end as ESTs are more commonly sequenced
from the 3′ ends of mRNAs. In the next columns are a GenomeScan prediction which
misses some exons and a depiction of XM 059813: the model of FOXP2 that Acembly
has constructed by aligning expressed sequences with this region of the genome. SNPs
from the NCBI dbSNP database are also displayed with those occurring within the gene
highlighted, however there is no indication of repetitive sequence. In the rightmost column
the FOXP2 gene structure is displayed according to the XM 059813 model.

The NMV offers tabulated downloads of data and it is possible to BLAST search
the NCBI assembly (via the NCBI BLAST site: http://www.ncbi.nlm.nih.gov/BLAST/)
and view the matching regions using the NMV. All annotated genes are connected to
NCBI LocusLink which provides links to associated information such as related sequence
accession numbers, expression data, known phenotypes and SNPs.

5.4.4 ORNL Genome Channel (GC)

The ORNL (Oak Ridge National Laboratory) Genome Channel (GC; http://compbio.ornl.
gov/channel/) consists of a series of tools for visualizing and querying the NCBI human
genome sequences and those of other organisms assembled and annotated by ORNL and
collaborators. The GC browser provides the usual categories of nucleotide-level anno-
tation: repetitive sequences, CpG islands, polyA sites and marker positions. The GC
gene prediction protocol is pitched somewhere between Ensembl and HGB: GrailEXP
(Uberbacher et al., 1996; http://compbio.ornl.gov/grailexp/) and GENSCAN predictions
are given where they are supported by BLAST matches to expressed sequence along with
known genes from RefSeq or GenBank entries. Sequence similarity results are not view-
able as independent features (as in the other browsers), only as evidence associated with
predicted exons. This is rash considering the number of coding sequences missed by ab ini-
tio algorithms and unhelpful where one is interested in non-coding regions such as UTRs.
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Figure 5.3 The genomic region around the FOXP2 gene according to the NCBI Map
Viewer (See Colour Plates).

The only kind of sequence similarity results displayed independently are gene predictions
derived from transcripts from the Database of Transcribed Sequences (DoTS; unpub-
lished data; http://www.allgenes.org/) which clusters and assembles expressed sequences.
On the platforms I tested (Netscape running in UNIX and Microsoft Internet Explorer
in Windows NT), the graphical display itself also has a problem: several features (dif-
ferent classes of repeats, CpG islands and polya sites) appear on top of one another,
which makes it difficult to see what is going on. On the positive side GC does allow
users to submit their own sequences to the suite of BLAST searches and gene predic-
tion programs underlying the GC analysis pipeline. None of the other sites allow this.
Downloads of genomic DNA and the mRNA and peptide sequences for the predicted
genes in GC are available. The GC browser’s view of the FOXP2 gene and flanking
regions is provided in Figure 5.4. The central horizontal band displays the clones making
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up this NCBI genomic sequence contig, the vertical line intersecting one of the clones
represents a CpG island. Repeats and polya sites also appear as lines within this band and
gene predictions on either strand are displayed in the panels above and below it. At the
time of writing it is not possible to view homologies to other genome sequences or the
positions of SNPs. More information on the features that are displayed is available from
other windows.

5.5 ANNOTATION: THE NEXT GENERATION

In spite of difficulties with the quality of genomic sequence assemblies and the errors and
omissions of computational annotation the browsers discussed above remain extremely
useful tools for the cautious biologist. They undoubtedly indicate the presence of most
coding sequence in a given fragment of genomic sequence and indicate their location in
the genome based on the best genomic sequence available. In addition they have a stab at
predicting gene structures for novel genes that should be accurate if the gene in question
is known or has a close homologue which is known. Most aspects of the analysis carried
out are the subjects of active research, and improvements in performance due to the
inclusion of new sequence data and annotation software will be ongoing. The downside
of these developments is that all annotation of genomic sequence is potentially in flux and
one should not assume that the representation of a region will remain the same between
different software or data releases.

At some time in 2003 discussions of draft sequence assembly should be academic
for more than 90% of the human genome and large finished contigs, tens of megabases
long will be curated at NCBI. The main tasks with regard to the primary sequence data
will then relate to data curation rather than assembly. Annotation of these sequences, on
the other hand, should still be at a relatively early stage. Even at nucleotide level there
is much to be done, particularly in exploiting the data available from model organism
genome sequencing projects. There have already been notable successes in using compar-
ative genomics to predict gene structures using the Twinscan program (Korf et al., 2001;
http://genes.cs.wustl.edu/). The cutting edge of nucleotide-level annotation is in defining
regulatory regions: transcription start sites (TSSs), transcription factor binding sites and
promoter modules (Werner, 2001). Here again, comparative genomics is already a rich
source of information simply using existing sequence search algorithms such as BLAST
(Levy et al., 2001). At a higher level, gene expression is also regulated by the large-
scale topology of chromosomes, and annotation may eventually indicate features such as
chromosome domains (genomic regions that bind histone-modifying proteins) and matrix
attachment sites (regions that facilitate the organization of DNA within a chromosome into
loops). However, defining the genes whose transcription is regulated from such features
may be an insoluble problem computationally, since they may regulate transcription from
a given TSS, from several different TSSs of the same gene or multiple genes in a region.

At the protein and process levels of annotation there is also progress, for instance
in our ability to detect more remote homologies and gain clues about function. Homol-
ogous proteins, sharing a common three-dimensional structure and function, need not
share detectable sequence similarity. There is therefore increasing interest in annotation
by similarity at the level of protein structure (Gough and Chothia, 2002). The genome
sequence is already changing the way we study biology as we start to fill in the gaps
between genetics, cellular function and development. Rather than studying a particular
gene or protein we are increasingly able to study all elements in a system of interest,
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a group of proteins that participate in a complex for example. We might start with a
single protein and identify others in the proteome that potentially interact with it, on
the basis of the presence of domains known to interact. In the process we may discover
previously unknown connections with other complexes or biochemical pathways that can
be included in the annotation of the relevant sequences. Studies on this scale are prompting
the development of multidisciplinary groups that study the behaviour and perturbation of
entire biological systems (Ideker et al., 2001). In the end this should provide a genome
sequence with contents which can be browsed at the level of their genomic neighbourhood
but also at the level of the interactions, complexes and processes that they participate in
and the phenotypes they influence.

This review has only provided a brief introduction to the fields of computational draft
genome assembly and annotation but it should be evident that what has already been
achieved has involved innovations as great as those in the biotechnology that led to the
production of the sequence data itself. At the same time, problems remain at every level
and are the subjects of active research. As a result many different groups around the
world are working on interpreting the data avalanche that is modern genetics and commu-
nication and comparison of results becomes difficult. The Distributed Annotation System
(DAS; Dowell et al., 2001; http://biodas.org/) aims to provide a framework for people to
exchange data easily using the web. It promises a future without the current confusion of
incompatible interfaces and data formats, and an increase in the open exchange of data
and ideas.
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6.1 INTRODUCTION

Mouse and rat genome informatics is grounded in work on mouse and rat genetics and
physiology that has been on-going since the early 20th century. The mouse, with its
short generation time, small size, and plethora of phenotypic variants excelled as a tool
for genetic investigations, especially after the conceptualization and creation of inbred
strains, work begun by C. C. Little (Little and Tyzzer, 1916). Genetic crosses between
inbred strains led to detailed mapping of genes and phenotypes, the construction of linkage
groups, the development of chromosomal mapping techniques and the investigation of
genetic components of phenotypes including diseases. Of particular significance was the
development of specialized strains for genetic testing and technologies for manipulating
the mouse genome. Standard inbred strains, their various derivatives, and ‘boutique’ mice
developed through mutagenesis and genetic engineering have become essential tools.
Coupled with advances in micro-technologies that are enabling detailed physiological
studies in mice, the rich understanding of mouse genetics is accelerating the studies of
genotype–phenotype relationships.

The rat, in contrast, was valued especially for its larger size relative to the mouse, and
thus better suitability for physiological studies and experimental interventions. For rat,
much is known about diseases, component factors in resistance/susceptibility, and specific
networks of disease processes. Areas of research have been broad, including immunology,
cancer, diseases of specific organ systems (cardiovascular, urogenital, skeletal, behaviour,
growth and metabolism), neurological diseases, haematologic disorders, toxicology, his-
tology, endocrinology, pathophysiology, and pharmacology (Gill et al., 1989; James and
Lindpaintner, 1997). The genetics of the rat lagged behind until recently, when genomic
tools (expressed sequence tags or ESTs, radiation hybrid and physical maps) for rat have
rapidly been created and developed.

Today, rat and mouse are both strong animal models for the investigation of biology
particularly with regard to human biology and disease. The availability of two rodent
animal models is also fortuitous because it permits the examination of genetic and pheno-
typic variation between two closely related organisms and the ability, then, to contrast
that information with knowledge about the biology of humans.

6.1.1 Bioinformatics for Mouse and Rat Geneticists

The term ‘bioinformatics’ is used to refer to many aspects of the intersection of computer
science, biology, and information science. The term is often equated with the informatics
challenges of the genome projects. There are several reasons for this. First, the genome
sequencing efforts generate enormous volumes of electronic data that must be organized,
stored, and analysed using powerful computers and sophisticated algorithms from the
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inception of the project. Second, substantial fiscal resources are being devoted to these
projects, so the advancement of the informatics component is both absolutely necessary
and well funded. Finally, there is the high visibility of the genome projects, with frequent
newsflashes about the discovery of new and interesting genes. As a result of these forces,
many scientists think of bioinformatics as an endeavour focused solely on the management
and analysis of sequence data.

However, all aspects of biological investigation benefit from the ordered assembly of
the information and from the use of computer technologies to store, query, sort and man-
age biological data. Prior to a database implementation, many structured datasets about
mouse genetics and heritable mutants were maintained manually. The first gene descrip-
tion catalogue for mouse was published in 1941 by Dr George Snell (Snell, 1941). As
early as the 1950s Dr Margaret Green began compiling mouse linkage and mapping data
on index cards. Linkage maps were drawn by hand and published annually in the Mouse
Newsletter from 1965–1994. Compilations of mutant genes and polymorphic loci, chro-
mosome atlases, and lists of synteny homologies between mouse and man were irregularly
published in journals (cf. Eppig, 1992; Nadeau et al., 1991; Staats, 1985) in addition to
books such as Genetic Variants and Strains of the Laboratory Mouse (Green, 1981; Lyon
and Searles, 1989; Lyon et al., 1996). During the 1980s many of these resources began to
be maintained electronically and resulted in an early publicly accessible mouse database
GBASE (Doolittle et al., 1991) and the Encyclopedia of the Mouse Genome software
tools (Eppig et al., 1994). During the 1990s, this sweep of information about the genetics
and biology of the laboratory mouse was integrated and brought fully into electronic form
with the construction of the Mouse Genome Database (http://www.informatics.jax.org/;
Richardson et al., 1995) and the development of computer programs to manipulate and
query the data such as MapManager (Manly, 1993). In addition, large-scale mapping
projects redefined the management of genetic data (Dietrich et al., 1992) and led to the
construction of additional bioinformatics resources for mouse geneticists.

Compilations for rat information developed in a different way. Billingham and Sil-
vers published the first compilation of rat strain information in 1959 (Billingham and
Silvers, 1959). A standard nomenclature for rat strains emerged in 1973 (Festing and
Staats, 1973). Rat strain descriptions were catalogued (Greenhouse et al., 1990), and later
maintained electronically by M. F. W. Festing and made publicly available in the model
organism databases. Gene data was published sporadically and accumulated slowly due
to the emphasis of rat researchers on physiology rather than genetics. The pressure for
databases and computational tools for rat has been a recent occurrence. Although RatMap,
which exclusively curates mapped genes was started in 1993, the need for resources to
manage genomic data (simple sequence length polymorphisms or SSLPs, ESTs, com-
prehensive gene data, genomic sequence, etc.) was not recognized as critical until the
joint US–German Rat Genome Project began generating large volumes of data in the
mid/late 1990s. This recognition led to the development of the Rat Genome Database
(http://rgd.mcw.edu) described more fully below.

6.1.2 Data Integration: The Challenge and the Conundrum

The advent of the Internet and the development of the www permitted the development
of multiple sites committed to the presentation of biological data relative to the mouse
and rat. Some, such as the sequence repositories GenBank (http://www.ncbi.nlm.nih.gov/;
Wheeler et al., 2001) and EMBL (http://www.ebi.ac.uk/embl/; Stroesser et al., 2001),
include mouse and rat sequences along with sequences from all other species. Others, such
as the Whitehead Institute for Biomedical Research/MIT Center for Genome Research site
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(http://www-genome.wi.mit.edu/cgi-bin/mouse/index) provide specialized mouse datasets
such as the pages for the ‘Genetic and Physical Maps of the Mouse Genome’. For inves-
tigators, the reality is that information about the genetics and genomics of the laboratory
mouse and the rat are found throughout cyberspace. Standards for nomenclature or descrip-
tions of experimental data are not uniformly implemented, and it is often difficult to equate
information at one site with information at another. Consequently, the investigator spends
much time looking for data, collecting the data, and then manipulating the data before
being able to explore and mine the data for knowledge. This has not gone unnoticed by
data providers, but efforts to standardize and integrate information are often stymied by
the variety of data types, the variability in data annotation, and the diversity of needs of
the users. This presents a conundrum for bioinformatics professionals. Scientists do not
want to be forced to use standard nomenclature or terminologies in the publication of
their own work, but they do want to find a suite of information about a set of genes or
sequences without having to do the data integration themselves.

The solution is easy to define, but hard to implement. It is dependent more on the
sociology of doing science rather than the need for a technological solution. Data integra-
tion requires the implementation of standards and structures across multiple information
resources (Bult et al., 2000). Key strategies for data integration are the use of accessioned
data entities, the application of nomenclature standards for key objects such as genes and
strains, and the use of controlled, structured vocabularies and ontologies for functional
annotation of biological information. Most of the larger data providers of interest to mouse
and rat geneticists are now working to implement shared standards and to provide curated
links between the different resources. Much harder is the integration of the scientific
literature. As yet, most authors are unaware of and/or are not required to use standard
nomenclature for genes, proteins, anatomy or biochemical reactions in the publication of
laboratory research results. The result is that it is more difficult than it needs to be to
bring experimental data into electronic form and to integrate it with other information.
Hopefully, the use of data and nomenclature standards will become more common as
scientists of all types recognize the value of bioinformatics resources and consequently
appreciate the necessity and the power of data integration.

6.2 THE MODEL ORGANISM DATABASES FOR MOUSE AND RAT

One approach to integration of information about mouse and rat has been the construc-
tion of model organism databases. Several issues swirl around informatics sites devoted
to model organisms. On the one hand, better interoperability among large data providers
might obviate the need for an organisms-specific site. On the other hand, for model organ-
isms such as Saccharomyces, Caenorhabditis elegans, Drosophila and others, including
mouse and rat, there is a need for a central site that integrates all kinds of information about
these well-studied species. Various approaches to shared data structures and standards are
continually under discussion and have resulted in the increased similarities and links
between the model organisms databases. Will there ultimately be one information system
for all biology? Or will there continue to be specialized model organism sites loosely con-
nected with other bioinformatics servers? The interconnectivity and transparency between
bioinformatics resources continues to evolve, and it is imprudent to envisage bioinfor-
matics systems just a few years hence. Today there exist model organism databases for
the mouse and the rat, the Mouse Genome Database and the Rat Genome Database. Both
work to provide comprehensive access to experimental and consensus data about these
model organisms.
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6.2.1 The Mouse Genome Database

The Mouse Genome Database (MGD) (http://www.informatics.jax.org) is the original
model organism database for the laboratory mouse (Blake et al. 2001). Derived from
the merger of several small specialized databases in 1994, MGD now focuses on the
integrated representation of genotype (sequence) to phenotype data for the mouse with a
particular emphasis on information about genes and gene products. MGD provides offi-
cial gene nomenclature for the research community and works closely with human and
rat genome curators to implement common standards for annotation of genes and other
genome features. As part of the Mouse Genome Informatics (MGI)) system (see below),
MGD focuses on data integration are through representations of relationships between
genes, sequences and phenotypes, the representation of mouse mapping data, the associa-
tion of genes to the Gene Ontology (GO), the description of targeted mutations and other
alleles, and the curation of mammalian orthologies.

6.2.2 Mouse Genome Informatics

MGD is one component of the Mouse Genome Informatics (MGI) consortium based at
The Jackson Laboratory. Other components of the MGI consortium include the Gene
Expression Database (GXD; Ringwald et al., 2001), the Mouse Tumor Biology Database
(MTB; Bult et al., 2001) and the Mouse Genome Sequencing Project (MGS). GXD
focuses on the presentation of detailed experimental data about time and place of gene
expression during development. MTB provides web-based access to mouse models of
human cancers including experimental data and genotype-specific information. MGS
works with the public mouse genome sequencing coalition to link the emerging genome
with the mouse biological information. Overall, then, the MGI project provides the
research community with a canonical set of mouse genes, their official names and genome
locations, sequences, mammalian homologies, expression and functional information,
phenotypic alleles and variants, associated literature and extensive links to other bioinfor-
matics resources. This highly-integrated system is complemented with many cross-links
to genetic and genomic resources for other organisms.

6.2.3 RatMap

RatMap (http://ratpmap.gen.gu.se) focuses on presenting the subset of rat genes, DNA
markers, and quantitative trait loci (QTL) that are localized to chromosomes. RatMap
maintains a highly-curated set of data, including nomenclature, chromosomal assignment
and localization, mapping method statements, human and mouse homologues, references,
and links to nucleotide sequences, UniGene and Rat Genome Database (RGD). In addi-
tion, RatMap maintains the rat idiograms and current cytogenetic maps. RatMap also
provides a ‘gene and position predictor’ (GAPP) report that presents predicted positions
for over 6000 rat genes based on conserved syntenic chromosomal segments between
mouse and rat (Helou et al., 2001).

6.2.4 The Rat Genome Database (RGD)

The Rat Genome Database (RGD, http://rgd.mcw.edu; Twigger et al., 2002) is a col-
laborative effort between the Bioinformatics Research Center at the Medical College of
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Wisconsin, The Jackson Laboratory and the National Center for Biotechnology Infor-
mation (NCBI) to gather, integrate and make available data generated from ongoing rat
genetic and genomic research efforts. Initially released in 2000, RGD includes curated data
on rat genes, QTL, ESTs, sequence tagged sites (STSs) and microsatellite markers as well
as details of inbred rat strains. RGD also contains detailed information on nomenclature,
genetic and RH maps, mouse and human homologies, Gene Ontology data, and includes
key literature citations. Research tools that are provided include ‘VCMap’, a sequence-
based homology tool and gene prediction and RH mapping tools. RGD is introducing
disease-based curation for disease processes frequently studied in the rat. Integration of
the emerging rat genomic sequence is also planned.

6.3 MOUSE GENETIC AND PHYSICAL MAPS

The genetic map of the mouse has been built over time through the contributions of many
research groups, using a variety of methods, including, but not limited to, backcross, inter-
cross and complex cross analyses, congenic strain analysis and recombinant inbred and
recombinant congenic strain analyses. Chromosomal rearrangements, somatic cell hybrids
and in situ hybridization are used to supplement these methods. These diverse methods,
utilizing a wide variety of laboratory and wild-derived mouse strains, have been used
to develop the consensus linkage map for mouse (MGD, http://www.informatics.jax.org/
searches/linkmap form.shtml). For many purposes, this map is a standard for understand-
ing the overall genomic organization of the mouse and for identifying potential candidate
genes for diseases in particular regions.

6.3.1 Mouse DNA Mapping Panels

The development of large interspecific and intersubspecific crosses, for which progeny
DNA are stored for cumulative genotyping, provides single-source high-resolution linkage
maps containing thousands of markers and with well-defined crossover points (cf. Avner
et al., 1988; Copeland and Jenkins, 1991; Dietrich et al., 1992; European Backcross Col-
laborative Group, 1994; Rowe et al., 1994). Any newly discovered gene for which DNA
polymorphism is detectable between the original parental strains can be mapped immedi-
ately without setting up a de novo cross and the cumulative data can be used to explore
questions of recombination distribution across the genome and crossover interference.
These DNA backcross panels are, however, not suitable for mapping new genes that are
only defined by phenotype.

Genotyping data for individual progeny from many of these DNA mapping panels are
available through the Mouse Genome Database (http://www.informatics.jax.org/searches/
crossdata form.shtml). In addition, maps can be generated using these data via the MGD
Map Building tool at http://www.informatics.jax.org/searches/linkmap form.shtml. Two of
these DNA mapping panels are also maintained at specific websites: The Jackson Labora-
tory DNA Mapping Panels (http://www.jax.org/resources/documents/cmdata/bkmap) and
the Whitehead Institute for Biomedical Research/MIT DNA Mapping Panels (http://www-
genome.wi.mit.edu/cgi-bin/mouse/index#genetic).

6.3.2 Mouse Radiation Hybrid Maps

Recombination maps from DNA mapping panels provide unambiguous placement of gene
order. However, for very closely linked genes, these maps may not be able to resolve
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locus order. For mouse, a radiation hybrid (RH) panel (T31) of 100 cell lines developed
from a 3000-rad irradiated primary cell line from mouse embryo fused with hamster
fibroblast has been developed (McCarthy et al., 1997). Radiation hybrids can be used for
high throughput mapping and high resolution of locus order because each hybrid cell line
contains a highly fragmented subset of the mouse genome. The co-retention of mouse
genes across the 100-cell panel is indicative of their relative distance apart, assuming
random chromosomal breakage and leads to the construction of RH maps (cf. Van Etten
et al., 1999). Two complementary databases serve as community resources for gathering,
distributing and analysing the T31 RH data.

6.3.3 The Jackson Lab Radiation Hybrid Map

The JAX RHmap provides web-based access to a comprehensive, integrated database
that includes all typing data, retention frequency and log of the odds (LOD) scores
for markers typed on the T31 panel, as well as RH framework maps for many of
the chromosomes (http://www.jax.org/resources/documents/cmdata/rhmap/). All publicly
available T31 data from large genome centres at the Whitehead Mouse RH Database
(http://www-genome.wi.mit.edu/mouse rh/index.html), the UK Mouse Genome Cen-
tre (http://www.mgc.har.mrc.ac.uk/physical/est mapping/est.html) and Genoscope–CNS
(http://www.genoscope.cns.fr/externe/English/Projets/Projet ZZZ/rhmap.html), as well as
from many individual laboratories are included.

The website includes an electronic submission interface for depositing RH typing data
from users, data error checking and quality control, technical support, data analysis and
the development of RH maps. All data, with references and experimental notes can be
viewed or downloaded. Data are shared with the Mouse Genome Database (MGD) and
the EBI data repository (RHdb, below).

6.3.4 The EBI Radiation Hybrid Database

The European Bioinformatics Institute (EBI) Radiation Hybrid Database (RHdb) is a
repository for the raw data for constructing radiation hybrid maps, STS data, scores
and experimental conditions (Rodriguez-Tomé and Lijnzaad, 2001; http://www.ebi.ac.uk/
RHdb/index.html). The EBI RHdb is designed to be a species-neutral database, and cur-
rently contains human, mouse, and rat RH data. Data content relies entirely on submissions
from data providers and research groups. Maps are not assembled from the accumulating
data, but maps may be submitted by data developers.

6.3.5 Mouse Physical Maps

Two genome centres have produced physical maps for mouse that are accessible via
the Internet: the Whitehead Institute/MIT (http://www-genome.wi.mit.edu/cgi-bin/mouse/
index#phys) and the UK Mouse Genome Centre at Harwell (http://www.mgc.har.mrc.ac.
uk/physical/phys.html). Whitehead Institute/MIT data include contigs and STS content
mapping across the entire mouse genome and utilizes existing SSLP markers that char-
acterize the MIT genetic map of the mouse to tie the physical and recombination maps
together. The UK Mouse Genome Centre data consists of physical maps of selected
regions of the genome that are being developed in association with individual research
interests, notably regions of chromosomes 13 and X. Data from these sites are integrated
into MGD, as well as being available from the originator’s site.
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A physical map of the genome of the C57BL/6J strain of laboratory mouse has
been constructed using Bacterial Artificial Chromosome (BAC) clones (Gregory et al.,
2002). This map serves as the framework for the Mouse Genome Sequencing initiative
(described below). The current BAC map for the mouse was derived from 305,768
BAC clones from two libraries: RPCI23 (female) and RPCI24 (male) (Osoegawa
et al., 2000). These libraries are available for distribution to the scientific community
through the BACPAC Resource at the Children’s Hospital Oakland Research Institute
(http://www.chori.org/bacpac). The RPCI23 library is also available through Research
Genetics (http://www.resgen.com/products/RPCI23MBAC.php3).

The clones from the RPCI BAC libraries were fingerprint mapped at the Genome
Sequencing Centre in Vancouver, British Columbia (Marra et al., 1997; http://www.bcgsc.
bc.ca/projects/mouse mapping/). The fingerprint data were combined with BAC end
sequence data (Zhao et al., 2001; http://www.tigr.org/tdb/bac ends/mouse/bac end intro.
html) to produce a mouse physical map that contains 296 contigs and covers an estimated
2,739 Mb (Gregory et al., 2002). The average length of the contigs is 9.3 Mb. Of the 296
contigs, 228 can be localized to a chromosome. Approximately 97% of the total clone
coverage for the mouse genome (2,658 Mb in 211 contigs) can be aligned to the human
genome sequence.

Mouse Ensembl

(a)

(b)

Figure 6.1 Mouse Ensembl. A graphical representation of the clone-based physical map
for the proximal end of mouse chromosome 14 from Ensembl. This browser allows users
to search for regions of a chromosome between two STS markers and to view the current
clone coverage in the selected area. Because the browser is web-based, users do not have
to download and install special software to view the BAC map (See Colour Plates).
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There are three ways to view the current status of the mouse BAC physical
map. Researchers can download and install a software product called FPC from the
Sanger Institute (http://www.sanger.ac.uk/Software/fpc/) (Soderlund et al., 2000) and
use this software to graphically display the BAC clone fingerprint data generated by
the Genome Sequence Centre in Vancouver. A similar display tool called the internet
Contig Explorer (iCE) is available from the Genome Sequence Centre in Vancouver
(http://ice.bcgsc.bc.ca/). An option for viewing the map that does not require the
installation of software is to view the physical map using the Ensembl mouse browser
at the Sanger Institute (http://mouse.ensembl.org/; or the mouse MapViewer of NCBI
(http://www.ncbi.nlm.nih.gov).

The ultimate physical map, of course, is the genome sequence itself. Despite the
expectation that the mouse genome will be available soon, the need for genetic maps and
other physical maps will not disappear. The mouse sequence will continue to be built,
reassembled and re-annotated for many years to come, making the physical contig map
an important resource for anchoring this new information as it develops. Genetic maps
will be needed indefinitely, for the mapping of QTLs, spontaneous mutations and other
phenotypes with undetermined molecular defects. In addition, genetic maps are essential
for studying chromosome structure and function, and recombination itself.

6.4 RAT GENETIC AND PHYSICAL MAPS

6.4.1 Rat Genetic Maps

The early development of rat genetics paralleled that of the mouse, with the establish-
ment of genetic linkage between albino and pink-eyed dilution in both mouse and rat
(Castle and Wachter, 1924; Dunn, 1920). Haldane (Haldane, 1927) recognized that, if
these genes were homologues, they represented conserved synteny over evolutionary time.
Subsequently, research geneticists focused on mouse and the rat became the major tool
for physiologists. Thus, the development of the rat genetic map began to lag behind that
of the mouse. As of 1991 there were 214 genes mapped in rat (Levan et al., 1991) in
contrast to nearly 3000 genes mapped in mouse (Hillyard et al., 1991). This disparity
in the number of genes mapped has continued to this day, with 1576 genes currently
mapped in rat (RatMap, 2002) versus 18,983 in mouse (MGD, 2002). Maps of rat genes
are largely cytogenetic rather than recombination maps and are maintained by RatMap
(http://ratmap.gen.gu.se). After a century of concentrated use of rat by physiologists, rat
genetics is now undergoing a revival as genomic tools are developed and its genome is
finally being sequenced.

The resurgence of interest in the rat map has paralleled the development of genomic
resources for rat. In the 1990s the first rat genome projects were begun to generate
ESTs, YAC and BAC libraries, and SSLP maps. There were a number of backcrosses
and intercrosses made among rat strains that were used to develop SSLP maps with sev-
eral hundred to a few thousands markers (cf. Bihoreau et al., 1997; Brown et al., 1998;
Dracheva et al., 2000; Watanabe et al., 2000; Wei et al., 1998). Most of these SSLP maps
are not yet integrated, although SSLP data and maps for some of the crosses are avail-
able through RGD. Data from two F2 intercrosses have been integrated and the resulting
map containing 4786 SSLP markers can be found at the Whitehead Institute (http://www-
genome.wi.mit.edu/rat/public/). In parallel, a large collaborative Allele Characterization
Project was begun to establish allele sizes of 8000 SSLPs among 48 genetically and phys-
iologically important inbred rat strains (http://www.brc.mcw.edu/LGR/research/lgr acp.
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html). Data generated from this project will provide investigators with a means of quickly
selecting informative markers for new and existing mapping crosses.

6.4.2 Rat Radiation Hybrid Maps

A rat whole genome radiation hybrid panel (T55) generated by Linda McCarthy in Peter
Goodfellow’s laboratory has been used to construct high-resolution maps of the rat genome
(http://www.well.ox.ac.uk/rat mapping resources/rat radiation hybrid maps.html). The
first radiation hybrid map was based on 5255 markers and included both microsatel-
lites and known genes (Watanabe et al., 1999). Another map using the same
panel was constructed as a framework map using 2000 evenly spaced markers
(http://rgd.mcw.edu/RHMAPSERVER/; Steen et al., 1999). Both sites provide RH map
web servers for users to map their markers — users submit data to the Rat RH Map Server
and a map placement with a summary report is returned.

6.4.3 Rat Physical Maps

In contrast to the mouse, the rat has no genome-wide clone-based physical maps, only a
few for specific regions such as the MHC locus (Gunther and Walter, 2001; Ioannidu et al.,
2001). Most of the ‘physical map’ for the rat genome consists of the cytogenetic maps that
are maintained in RatMap and include a fair amount of FISH data. A physical BAC map of
the rat is in preparation, as part of the NHGRI-sponsored rat genome sequencing initiative.
A BAC library (CHORI-230) from the BN/SsNHsd/MCW (Brown Norway) strain of
laboratory rat has been prepared using the same methods as were used for the mouse BAC
libraries (http://www.chori.org/bacpac/) (Osoegawa et al., 2000). The BAC clones from
this library are being fingerprint mapped by the Genome Sequencing Centre in Vancouver,
Canada (http://www.bcgsc.bc.ca/projects/rat mapping/). There are currently (late 2001)
136,195 clones in their database. The BAC ends for this library are being sequenced at The
Institute for Genomic Research (TIGR; http://www.tigr.org/tdb/bac ends/rat/bac end intro.
html).

6.5 GENOME SEQUENCE RESOURCES

6.5.1 Mouse Genome Sequencing Initiative

The initiative to sequence the genome of the laboratory mouse was announced by the
National Human Genome Research Institute (NHGRI) of NIH in September 1999 as part
of an overall ‘action plan’ for mouse genomics (Battey et al., 1999). The goals of the
initiative were to have a working draft of the genome of the C57BL/6J strain of mouse
completed by 2003 and the finished genome sequence by 2005. The initial strategy for
obtaining the mouse genome sequence was to build a physical BAC map of the genome as
the BAC clones were sequenced (http://www.nhgri.nih.gov/NEWS/MouseRelease.htm).

In October of 2001 the strategy for obtaining the mouse sequence changed to include
a whole genome shotgun approach. Part of the rationale for this change in sequencing
strategy was that the shotgun sequences for the mouse genome could be used to assist
in the identification of genes in the working draft of the human genome. The sequencing
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centres of the Sanger Institute, Washington University Medical Centre and the Whitehead
Institute for Biomedical Research were funded to generate whole genome shotgun data
for the mouse (http://www.nih.gov/science/models/mouse/).

Simultaneously with this shift in sequencing strategy, NIH launched a program to
sequence mouse BAC clones that covered genomic regions of high biological interest.
Individual investigators were invited to submit applications requesting specific BACs to
be sequenced. Several sequencing centres, including the Cold Spring Harbor Labora-
tory, Harvard University Medical School and the University of Oklahoma were funded
to sequence these BACs (http://www.nih.gov/science/models/bacsequencing/). The NIH
BAC sequencing program was initially restricted to clones from specific BAC libraries for
the mouse. However the program now accepts applications for the sequencing of clones
from any BAC library and also from organisms other than mouse.

Several other sequencing centres around the world are using their sequencing capacity
for regional and/or comparative sequencing of the mouse genome. For example, the DOE-
funded Joint Genome Institute focused on sequencing segments of the mouse genome that
are homologous to human chromosome 19 (http://bahama.jgi-psf.org/pub/ch19/; Dehal
et al., 2001). The Medical Research Council (MRC) is focusing on sequencing of mouse
chromosomes 2, 4, 13 and mouse–human comparative sequencing for chromosome X
(http://mrcseq.har.mrc.ac.uk/). Although the primary focus of the Baylor College of
Medicine genome centre is now on sequencing the rat genome, it originally focused
on sequencing BACs across mouse chromosome 11.

The NCBI maintains a status report of the progress of the mouse genome sequence
project (http://www.ncbi.nlm.nih.gov/genome/seq/MmHome.html) as well as a registry
of BAC clones that are being sequenced under the auspices of the Trans-NIH BAC
Sequencing Program (http://www.ncbi.nlm.nih.gov/genome/clone/cstatus.html).

6.5.2 Mouse Genome Sequence Resources

There are several ways to access mouse genome sequence (here we focus on freely-
accessible public resources). The whole genome shotgun data for the mouse can be
found in a ‘Trace Archive’ maintained by the NCBI and can be searched via BLAST
(http://www.ncbi.nlm.nih.gov/blast/mmtrace.html). A similar resource is maintained at the
European Bioinformatics Institute (EBI; http://www.ebi.ac.uk/blast2). As of December
2001, there were over 31 million sequencing reads available in these archives; greater
than six times the coverage of the mouse genome.

The Mouse Genome Sequencing Consortium has released an annotated draft assembly
of the mouse genome to the research community (Mouse Genome Sequencing Consor-
tium, 2002). The current draft assembly covers over 96% of the genome; a complete
genome sequence for the laboratory mouse is anticipated by 2005. The draft genome
and the associated annotations can be accessed using the Ensembl genome browser
(http://www.ensembl.org), NCBI’s Map Viewer (http://www.ncbi.nlm.nih.gov), and the
University of Santa Cruz’s genome browser (http://genome.ucsc.edu).

Other genome resources include MouseBLAST (Figure 6.2), a server maintained by the
MGS group at The Jackson Laboratory that allows researchers to connect mouse sequence
data with the wealth of biological knowledge about the mouse available in the MGI.
Finally, the Mouse Genome Resources pages at NCBI (http://www.ncbi.nlm.nih.gov/
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Figure 6.2 MouseBLAST. The MouseBLAST resource available from the Mouse
Genome Informatics database website. MouseBLAST returns links to MGI Gene Detail
pages as part of a standard BLAST report. The Gene Detail pages in MGI provide a wealth
of information about homology, map location, phenotype associations, gene expression
data, references and gene function annotation for each gene.

genome/guide/M musculus.html) provide a compendium of links to various mouse genome
resources.

6.5.3 Mouse cDNA Clone Resources

Several groups have undertaken initiatives to obtain full-length cDNA clones and
sequences for every mouse gene. The RIKEN Institute from Japan has collected and
sequenced over 60,000 cDNA clones for the mouse (http://genome.gsc.riken.go.jp/; The
RIKEN Exploration Research Group Phase II Team and the FANTOM Consortium,
2001). The sequences for these clones are publicly available. The Mammalian Gene
Collection, an NIH initiative, has a goal to provide a complete set of full-length (open
reading frame) sequences and cDNA clones of expressed genes for human and mouse
(http://mgc.nci.nih.gov/; Strausberg et al., 2000).
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6.5.4 Rat Genome Sequencing Initiative

In February 2001, the National Heart, Lung, and Blood Institute (NHLBI) announced
funding support for the sequencing of the rat genome (http://www.nhgri.nih.gov/NEWS/
nih expands programs.html). Three sequencing centres have been funded to produce
enough genome sequence data to have a working draft of the rat genome by 2004:
Celera Genomics, Baylor College of Medicine Genome Sequencing Centre and Genome
Therapeutics, Inc.

6.6 COMPARATIVE GENOMICS

The sequencing of both the mouse and rat genomes promises to stimulate research based
on comparative genome organization and comparative analysis between the human, mouse

VCMap
(Virtual Comparative Map)

Figure 6.3 Virtual Comparative Map. The Virtual Comparative Map is generated using
sequence-based algorithms that predict syntenic regions inferred from homology among
mapped sequences. Sequence comparisons between ESTs and cDNAs from human, mouse
and rat are combined with Radiation Hybrid map locations to define regions of synteny.
Locations for unmapped markers in a species are then predicted based on the map loca-
tion of the orthologous marker in a syntenic region of another species. The forepanel
shows a virtual comparative map using human as the backbone map (centre) and syntenic
regions of rat (left) and mouse (right). Mapped genes, UniGenes and STSs are shown,
with lines connecting predicted homologues among the species. Data sources for the vir-
tual maps are RGD, NCBI and MGD. The virtual comparative maps are available at
http://rgd.mcw.edu/VCMAP/ (See Colour Plates).
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and rat. Research papers based on comparison of large conserved segments between
mouse and human are being published (Dehal et al., 2001; Glusman et al., 2001). Another
approach is to use genome comparisons for elucidation of a suite of comparable genome
features such as transcription factors (Wasserman et al., 2000). Computational approaches
to uncovering conserved regions such as exons or regulatory sites facilitate the discovery
of new important genome features (Oeltjen et al., 1997).

The direct comparison of genomic sequence from conserved linkage groups between
mouse and human (and other organisms) has proven to be an effective strategy for identi-
fying biologically relevant regions (coding and non-coding) in genomes. Two of the most
commonly used tools for this effort are VISTA (http://www-gsd.lbl.gov/vista/; Mayor
et al., 2001) and PIPMAKER (http://bio.cse.psu.edu/pipmaker/; Schwartz et al., 2000).
These resources allow researchers to submit large genomic sequence regions to be aligned
and analysed for the presence of conserved sequence elements. The VISTA group provides
a set of pre-aligned sequences of mouse and human from finished genomic data in Gen-
Bank (http://pipeline.lbl.gov/). Applications include determining all of the protein-coding
segments in both species, locating regulatory signals, understanding the mechanisms and
history of genome evolution and deducing the similarities and differences in gene orga-
nization between the species of interest.

Other comparative map viewers incorporate information about the rat. One resource is
the Gene and Position Predictor (GAPP) produced by RatMap which provides predicted
comparative maps using known gene orthologues and zoo-FISH data (http://gapp.gen.gu.
se/Description.html; Nilsson et al., 2001). A different type of predictive map is the Vir-
tual Comparative Map (VCMap) (http://rgd.mcw.edu/VCMAP/; Figure 6.3). These maps
are generated using sequence-based algorithms that predict syntenic regions inferred
from homology among mapped sequences. The Otsuka GEN Research Institute posts
a genome-wide comparative map of the rat based primarily on extensive RH map-
ping data (http://ratmap.ims.u-tokyo.ac.jp/cgi-bin/comparative home.pl). Finally, maps of
curated orthologues for mouse/rat/human are available from MGD (http://www.informat-
ics.jax.org/menus/homology menu.shtml).

6.7 FROM GENOTYPE TO PHENOTYPE

Beyond a generalized representation of the mouse and rat are the intricacies of differ-
ences due to differing genetic backgrounds that can be revealed by comparisons between
strains, among the rodent species, between rodents and other mammals and even between
more distantly related organisms. The publication of the mouse genome sequence and the
promise of the rat genome sequence in the near future will facilitate systematic genome-
wide approaches to investigate normal and disordered cellular and physiological states.
Genome-wide surveys of gene expression or genotype variation will enhance the gene-
by-gene approach to the assessment of gene function. Scientists have long known of the
importance of genetic background in the analysis of gene function or dysfunction due to
the phenotypic variability resulting from epistatic interactions. Now, it may be possible to
precisely assess the effect of genotype variability on the expression, function and interac-
tion of gene products. As ever, the challenge for bioinformaticians will be to integrate the
data from various experimental approaches into a coherent representation of the model
organism. Ideally, one would like to query for a set of gene products expressed at the same
time/state, evaluate the effect of genotype on the function and phenotypic presentation of
variant gene products or compare ‘snapshots’ of cellular component sets between tissues
or strains of rodents.
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6.7.1 Genetic Variants

Genetically-engineered strains of mice including mice altered by gene transfer (trans-
genics), homologous recombination (gene targeting) and chemical mutagenesis provide
powerful new tools for biomedical research. The use of these strains has become criti-
cal for basic research and for investigating causes of and potential treatments for human
disease. The number of genes in mice that have enough characterization to be given
descriptive names now exceeds 12,000, perhaps one-third or one-quarter of the estimated
total number of genes. Genome manipulation techniques that target specific genes (e.g.
knock-outs, knock-ins, and conditional mutations) or that identify sequence variants (e.g.
microsatellites and single nucleotide polymorphisms or SNPs), are providing new alleles
for biological analysis. Although many factors can contribute to a phenotype, a widely
used research approach focuses on the isolated effects of single genes and their mutant
alleles on biological systems. An alternative approach is to study quantitative traits where
multiple genes contribute to the observed phenotypes. Here a one-to-one relationship
between gene and phenotype does not exist and, as in humans, the discovery of the genes
underlying complex traits such as obesity and hypertension continues to be challenging,
but should become more tractable as new mapping resources are developed.

6.7.2 Mouse Single Nucleotide Polymorphism (SNP) Databases

SNP technologies are being exploited for the investigation of human syndromes and dis-
eases (Schork et al., 2000). Human SNP resources such as dbSNP (see Chapter 3) provide
access to high-density SNP maps for humans. Large-scale discovery and genotyping of
SNPs in mice is underway (Lindblad-Toh et al., 2000) and a limited quantity of mouse
SNP data is already available in the Roche mouse SNP database (http://mousesnp.roche.
com/) and the Whitehead/MIT SNP database (http://www-genome.wi.mit.edu/snp/mouse/).
With the sequencing of large genomic regions of multiple mouse inbred strains, further
SNP sets for mouse will be defined and could facilitate computer-based identification of
QTL loci between inbred strains; one group has already reported some success using this
method, but the approach is controversial at present (Chesler et al., 2001; Darvasi, 2001;
Grupe et al., 2001).

6.7.3 Induced Mutant Resources

The rapid generation of many induced mutants of the mouse through the use of technolo-
gies such as homologous recombination and targeted knock-outs has created the need for
a central facility to collect and distribute them to the scientific community. The Induced
Mutant Resource (IMR) (http://www.jax.org/resources/documents/imr/) at The Jackson
Laboratory is an example of a national clearing-house for the collection and distribution
of a subset of genetically-engineered mice. The IMR maintains an on-line database to pro-
vide information about these strains. This information includes a description of the mutant
phenotype, husbandry requirements and links to related resources. Another resource pro-
viding mouse mutants to the community is the Mutant Mouse Regional Resource Centres
(http://www.mmrrc.org/). The MMRRC strive to enhance the availability of genetically-
engineered mice for the study of human biology and disease. The European Mouse Mutant
Resource (EMMA) (http://emma.rm.cnr.it/) is another repository for mouse mutant stocks.

6.7.4 Resources for Mouse Strain Characterization

Inbred strains in mouse have been specifically generated to facilitate the study of the
genetic component of phenotypes including disease phenotypes by being able to isolate
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the impact of the mutant gene on a standard genetic background. With the advent of many
new technologies, molecular information about the whole genome is becoming available
for different inbred strains, and the need for standard evaluation of differences between
inbred strains is apparent. New initiatives to study strain characteristics in mice and rats
are underway with the attendant development of bioinformatics resources.

The Mouse Phenome Database (MPD; http://www.jax.org/phenome/) was established
to provide a collection of baseline phenotypic data on commonly used and genetically
diverse inbred mouse strains. Many institutions and investigators are involved in this effort
to provide standard sets of strain characteristics for the most commonly used strains of
mice. The MPD will enable investigators to identify appropriate strains for physiological
testing and disease onset and susceptibility.

6.7.5 Phenotypic Variants

In contrast with the reliance on the gene-by-gene approach to discovery of functions and
roles for genes and for the investigation of diseases and disorders, a recent development
has been the use of systematic large-scale phenotype-driven mutagenesis studies in the
mouse. This approach uses chemical or physical disruption of the genome followed by
identification of putative mutants using a series of phenotypic screens for particular traits.
This phenotype-driven approach to genome characterization has an important role to play
in linking gene identification with gene function. This approach will allow researchers
to better understand the molecular basis of diseases through the identification of mutants
that develop the same or similar phenotypes but that have mutations in different genes.
Furthermore, a full appreciation of the genetic basis of a disease requires that the pheno-
types associated with multiple alleles of the same gene be studied to identify hypomorphs,
alleles that confer gain of function, etc. Although it is unclear how much of the genome
can be saturated with this approach, these projects will provide the community with a
vast array of new phenotypes for biological analysis.

6.7.6 ENU Mutagenesis Centres

Several public large-scale ENU mutagenesis projects are already underway and are
providing new models for the study of disease and gene function to the com-
munity (Brown and Nolan, 1998; De Angelis et al., 2000; Justice et al., 1999;
Nolan et al., 2000) (Table 6.1). Some of the mutagenesis centres are working
in several disease areas to identify new mutants including the ENU Mutagen-
esis Programme at Harwell (http://www.mgu.har.mrc.ac.uk/mutabase/), the RIKEN
Mouse Functional Genomics Group (http://www.gsc.riken.go.jp/Mouse/), and the
GSF ENU Mouse Mutagenesis Screen Project (http://www.gsf.de/isg/groups/enu-
mouse.html). Several of these mutagenesis centres are focusing on the identification of new
mutant mice to serve as models for neurological disorders (Moldin et al., 2001) includ-
ing the Neuroscience Mutagenesis Facility at The Jackson Laboratory (http://www.jax.org/
nmf/), the Neurogenomics Centre at Northwestern University (http://genome.northwestern.
edu/), the Tennessee Mouse Genome Consortium (http://www.tnmouse.org/) and
the McLaughlin Research Institute (http://www.montana.edu/wwwmri/enump.html).
The mutagenesis facility at the Baylor College of Medicine (http://www.mouse-
genome.bcm.tmc.edu/ENU/MutagenesisProj.asp) is focusing on developmental defects.
The Medical Genome Centre in Australia focuses on cancer-related phenotypes
(http://jcsmr.anu.edu.au/group pages/mgc/CancerGenLab.html). The Mouse Heart, Lung,
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TABLE 6.1 Mouse Mutagenesis Centres and Databases

Mutagenesis Centre Disease Focus URL

ENU Mutagenesis
Programme (Harwell)

General http://www.mgu.har.mrc.ac.uk/
mutabase/

RIKEN Mouse Functional
Genomics Group

General http://www.gsc.riken.go.jp/Mouse/

GSF ENU Mouse
Mutagenesis Screen
Project

General http://www.gsf.de/isg/groups/
enu-mouse.html

Neuroscience Mutagenesis
Facility at The Jackson
Laboratory

Neurological http://www.jax.org/nmf/

Neurogenomics Centre at
Northwestern University

Neurological http://genome.northwestern.edu/

Tennessee Mouse Genome
Consortium

Neurological http://www.tnmouse.org/

McLaughlin Research
Institute

Neurological http://www.montana.edu/wwwmri/
enump.html

Baylor College of Medicine Developmental
disorders

http://www.mouse-genome.bcm.
tmc.edu/ENU/MutagenesisProj.
asp

Medical Genome Centre
(Australia)

Cancer http://jcsmr.anu.edu.au/group−
pages/mgc/CancerGenLab.html

The Mouse Heart, Lung,
Blood, and Sleep
Disorders Centre (JAX)

Cardiovascular http://www.jax.org/hlbs/index.html

Blood, and Sleep Disorders Centre at The Jackson Laboratory is focusing on the identi-
fication of new mutants for cardiovascular diseases (http://www.jax.org/hlbs/index.html).

6.8 FUNCTIONAL GENOMICS

In the post-genome world, mouse and rat models will be heavily used for investigation
of gene function and disease pathogenesis (Schimenti and Bucan, 1998; Temple et al.,
2001; Zheng et al., 1999). With the completion of the mouse genome, attention can move
to genome-wide screens for gene expression and systematic investigation of gene func-
tion. The inclusion of functional information with gene annotations first appeared in the
sequence data repositories. From the start, issues of quality control for data associations
were evident. Evaluation of sequence similarities often led to the transfer of function infor-
mation from one gene annotation report to another without experimental verification or any
statement about the basis for the function assertion. The first detailed functional classifica-
tion was developed to catalogue the genes of Escherichia coli (Riley, 1993). Since then,
functional annotation schemes have been developed for single organisms, multi-organism
databases, and for pathway-related systems (see Rison et al., 2000 for review).
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6.8.1 Gene Ontology

A recent effort initiated by several of the model organism databases has been the develop-
ment of ontologies describing aspects of biology common to all organisms (GO Consor-
tium, 2000, 2001). These ‘controlled structured vocabularies’ include defined terms and
relationships for the domains of ‘molecular function’, ‘biological process’ and ‘cellular
component’. The Gene Ontology (GO) project (http://www.geneontology.org) is now a
consortium of model organism databases, sequence information centres and other genome
data providers. In addition to the development of the ontologies, the genome annotation
groups contribute gene–GO association files to a central GO repository. MGI and RGD
provide detailed GO annotations for mouse and rat genes respectively. A GO database
(http://www.godatabase.org/) holds the ontologies, their definitions and relationships, and
the contributed sets of gene–GO association files. The AMIGO browser (Figure 6.4)
provides access to the data.

GO term used for
search in AMIGO

Definition of GO term

Hierarchal Lineage

xLinks to other
databases

Filter by annotation
source/database

Filter by Evidence

Gene product
associations....listed
under ‘children’ of the
search term, if any.

GO Database

Figure 6.4 GO Database/AMIGO browser. The GO database (http://www.godatabase.
org/) and AMIGO browser are recent additions to the tools and resources of the Gene
Ontology project (http://www.geneontology.org/). Here a detail page from a query on the
controlled GO term ‘Polysaccharide metabolism’ is displayed. The definition of the term
and its relationship to other terms is shown. There are cross-links to other external keyword
sets. The detail page has been expanded to show all mouse gene products annotated to
this term. The gene product associations detail can be filtered by source of annotation
(MGI, RGD, other contributing model organism or genome annotation groups, etc.) and
by type of evidence (cf. sequence similarity, mutant phenotype, direct assay, etc).
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6.9 RODENT DISEASE MODELS

The experimental manipulation of mice and rats for the purpose of creating animal mod-
els for human disease is implicit in the scientific endeavours detailed here. Mouse and
rat models will continue to be the best models for experimental manipulation of the
mammalian genome for the foreseeable future (Bedell, et al., 1997). The fact that inbred
strains exist, providing consistent homogenous genetic backgrounds for experimentation,
allows the genesis of diseases characteristic of particular inbred strains to be studied,
as well as the development and testing of therapeutic interventions. The occurrence of
spontaneous or induced single gene mutations in these strains allows precise detailed
studies of the multiple effects of that particular mutation. Targeted mutations that produce
knock-out or conditional mutations permit researchers to mimic the molecular defect of
human diseases. Comparative studies have uncovered many rodent mutations that reflect
their counterpart human disease. Multigenic diseases and quantitative trait loci can be
dissected in mice and rats using controlled crosses and through creation of specialized
strains, such as congenics and consomics, which place particular parts of the genome
from one strain onto the background of another strain (cf. Kwitek-Black and Jacob, 2001;
Sugiyama et al., 2001).

In addition to the discovery or creation of models that reflect the underlying genetics
of particular disease states, researchers may also find it useful to study animal models that
reflect phenotypic similarity alone. That is to say, there is a phenotypic similarity in the
animal model to a human disease condition, and the animal model is useful for studying
that phenotype, even though we do not know that the underlying genetic dysfunction
is exactly the same. For example, many cancers have unknown genetic aetiology, but
particular strains or mutants prone to the development of particular cancers can serve as
effective animal models (Hann and Balmain, 2001).

The strength of using rat and mouse models clearly lies in the physiological research
that has gone before and that is accelerating with micro-technology developments. A fuller
understanding of the genetics of these organisms, coupled with the imminent availability
of their genome sequences, will enhance our ability to analyse the functions of gene
products and to dissect the molecular basis of phenotypes.

6.10 SUMMARY

With new technologies and methods, the pace of data acquisition only quickens. Simulta-
neously, there are now intense efforts underway to improve data integration and to support
rapid access to and interactive use of molecular and related biological information. Bio-
logical databases and information resources existed long before the advent of computers
and the internet. We are, however, yet developing and realizing the capacity that comput-
ers give us to use the databases not just as archives, but also as research tools. The future
of computerized scientific databases and information resources will be in their ability to
rapidly retrieve and manipulate data in response to complex queries. The full value of the
information they contain can then be exploited to address outstanding scientific inquiries.
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7.1 INTRODUCTION

Not so many years ago, maps of the human genome were restricted to a handful of very
low resolution diallelic RFLP marker maps of specific loci. Physical mapping follow-
ing linkage analysis required a laborious laboratory-based process of contig construction
using yeast and bacterial artificial chromosome (YAC and BAC) clones or cosmids. This
involved consecutive rounds of library screening and clone characterization to iden-
tify overlaps between clones and build contigs. In recent years, as the human genome
sequence nears completion, practical approaches to the characterization of genomic loci
have changed quite dramatically. Today the process which took many months or even
years can be completed in an afternoon using web-based resources. These tools might
lead us to believe that the human genome sequence is the only map we need to know,
but it actually represents just one dimension of a multifaceted map. Other maps including
genetic, cytogenetic and radiation hybrid maps, represent different aspects of the struc-
ture, content and behaviour of chromosomes. These properties really need to be integrated
with sequence-based maps to fully understand the properties and genomic landmarks that
influence genes, mutation and human evolution.

As this book goes to press, the human genome is still unfinished and in the strictest
sense it is likely to remain so for several years to come. For example, in April 2002 the
human genome draft sequence reached 97.8% coverage, however only 63% of sequence
was flagged as finished with 34.8% flagged as draft. The target date for final human
sequence completion is 2003. However this may be a moving target, as a combination
of contig errors and molecularly intractable regions are likely to continue to keep the
genome in at least a partial draft state for many years to come. With this in mind, it is
probably pragmatic to assume that the genome will remain unfinished in parts until at
least 2005. Mouse genome sequencing is rapidly catching up with human sequencing,
with the mouse also projected to finish in 2003. Other mammalian species such as the
rat, dog and chimpanzee are further behind, although further genome sequencing will be
assisted by existing genomes. The ‘pioneer’ genome sequences (human and mouse) will
be used to span gaps and build contigs by comparison with existing contigs. This approach
is already being used to accelerate the mouse and human genome sequencing projects,
as both assemblies are being used to span gaps in each respective genome assembly
(J. Mullikin, personal communication).

As we are becoming more aware of the difficulties of completing whole genome
sequences, the role of physical and genetic maps is changing. Generation of new maps
continues to be the first line of study for organisms with poorly characterized genomes. But
where the genome sequencing of an organism is advanced, emphasis on maps is shifting
to a role in the finishing and QC of existing sequencing maps. With this proviso in mind
and with a specific focus on human maps, this chapter will review genetic and physical
maps as they are being directly applied and integrated with the human genome and other
sequenced mammalian genomes. We will not attempt to cover the full complexity of
all forms of maps, or attempt to describe the use of these maps to enable the study of
unsequenced organisms. Instead we will review the principles and informatics issues that
apply to this area, with a focus on the data which is most likely to be useful to the human
geneticist. For example we will examine the use of genetic and physical maps to check
the order and orientation of marker maps and genomic contigs. For researchers who wish
to construct new genetic and physical maps without sequence data we direct the reader
to specialist texts in this research area.
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7.1.1 What is a Genome Map?

At the most basic level, a genome map is a collective set of markers with known relative
positions. A marker could be any genomic element with a uniquely identifiable sequence
or property. Markers can exist in many different forms, such as non-polymorphic sequence
tagged sites (STS) which act as a unique anchor or SNPs and short tandem repeats (STR),
which act as both unique anchors and markers for differentiation between individuals.
Genomic maps are divided into two broad categories. Polymorphic markers are used to
construct genetic maps and either polymorphic or non-polymorphic markers are used to
construct physical maps.

7.2 GENETIC MAPS

The genetic linkage map is a key concept which gives a fundamental insight into the
genetic nature of the genome. Genetic linkage maps inform on more than just order of
markers, they also give a measure of the underlying genetic recombination that occurs
in a particular chromosomal region. Linkage maps show the relative locations of spe-
cific DNA markers along the chromosomes of related individuals. Any inherited physical
or molecular characteristic that differs among individuals and is easily detectable is a
potential genetic marker, for this reason polymorphic markers, such as SNPs and STRs
are particularly suited to genetic map construction as they are plentiful, easy to charac-
terize precisely and amenable to laboratory automation (see Chapter 3 for a review of
SNPs and STR markers).

Genetic maps are constructed by evaluating the genotypes of a set of markers in
groups of related individuals. This raw mapping data is analysed by software packages,
such as MapMaker (Lander et al., 1987; reviewed in Chapter 12) which construct genetic
maps by observing how frequently the alleles at any two markers are inherited together.
The closer the markers are, the less likely it is that a recombination event will separate
the alleles, and the more likely it is that they will be inherited together. Thus, unlike
physical maps, the distance between markers on a genetic map is not measured in any
kind of physical unit; it is a measure of the recombination frequency between those two
markers. This genetic map unit is measured in centimorgans (cM). The distance between
two markers would be measured as 1 cM if both markers are separated by recombination
on 1% of occasions. Genetic distance has an average correlation with the actual physical
distance between markers, on average in humans 1 cM is equivalent to 1 Mb (this ratio
varies widely between other species). The 1 cM : 1 Mb ratio is often used as a rule of
thumb, but it is important to recognize that this is a genome-wide average and can often
diverge significantly from this ratio between different regions of the human genome.
The genetic/physical ratio also differs considerably between genders, as recombination
frequencies vary between males and females. To overcome these differences, genetic
maps typically report distances for each sex and a ‘sex-averaged’ distance that integrates
male and female recombination frequencies.

7.2.1 Human Genetic Maps

A range of genome-wide human genetic maps has now been published at various res-
olutions. Most genetic maps are based on STR markers, although a genome-wide SNP
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linkage map has also been published recently (T. C. Matise et al., unpublished data).
Most genome-wide linkage maps are constructed with a marker framework spaced at
2.5–10-cM intervals. Denser marker maps have not been widely used for linkage analy-
sis, as the focus of analysis is on a small number of meiotic events observable within a
family. These meiotic events do not require a very dense map of markers to find evidence
for possible co-segregation of a disease-influencing gene with marker locus alleles. Higher
resolution genetic maps have been described, but they are generally restricted to specific
chromosomal regions, such as the long arm of chromosome 21 (Lynn et al., 2000), where
they have been used to refine initial linkage analysis. Ideally, to be maximally informa-
tive, genetic markers need a relatively high level of heterozygosity (>0.6). This provides
a high likelihood that a marker (or cluster of SNPs) will be different between any two
copies of a chromosome. Markers with lower heterozygosity, for example, SNPs which
range in heterozygosity from ∼0.1–0.3, need to be used in higher density to give a similar
level of information.

The three main genetic maps were developed by Genethon, the Marshfield Institute
and the SNP consortium (TSC) (see Table 7.1 for a comparison). The Genethon and
Marshfield maps are widely indexed by mapping tools, such as MapViewer and GDB
(see below). The newer TSC map is also likely to be available in these tools in the
near future.

7.2.2 The Genethon Genetic Linkage Map

The Genethon human linkage map was the first whole genome genetic map to exclusively
use STR markers; previous maps were based on less informative RFLPs (which are
actually uncharacterized SNPs). The 5264 markers in the Genethon map have a mean
heterozygosity of 0.7, which makes it more informative than previous maps. The map
was constructed with data from eight CEPH families (comprising 186 meioses) so the
fine order of markers is not well resolved, other than by localization within a particular
chromosomal region. The map spans a sex-averaged genetic distance of 3699 cM. The
average interval size is 1.6 cM, 59% of the map is covered by intervals of 2 cM at
most and 1% remains in intervals above 10 cM. The map comprises 2335 positions, of
which 2032 could be ordered with an odds ratio of at least 1000 : 1 against alternative
orders. This high level of statistical confidence in marker order was subsequently used by
DeWan et al. (2002), to highlight a number of discrepancies in the order and orientation
of clones in the human genome draft assembly. Genethon map data can be accessed at the
Genethon website (www.genethon.fr) and the Washington University, St Louis website
(www.genlink.wustl.edu/genethon frame/).

TABLE 7.1 Human Genetic Maps

Map Genethon Marshfield TSC

Marker type STRs STRs SNPs
Marker no. 5264 8325 2679
Av. heterozygosity 0.7 0.68 0.76
Resolution (kb) 1.6 cM 1.3 cM 2.5 cM
Reference Dib et al. (1996) Broman et al. (1998) Matise et al.

(unpublished data)
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7.2.3 The Marshfield Genetic Linkage Map

The Marshfield genetic linkage map improved on the Genethon map, by offering a
larger marker number and a slightly higher resolution. Like the Genethon map, the
Marshfield map was constructed with data from eight CEPH families and therefore fine
order is still poorly resolved. In particular, markers which are separated by little or
no genetic distance generally have no recombination events separating them, and so
they are presented in arbitrary order. Accurate ordering information for these mark-
ers can be obtained by cross referencing STS marker location with human physical
maps, such as RH maps or the human genome sequence itself. The Marshfield database
(http://research.marshfieldclinic.org/genetics/), provides a well-documented range of five
genome scan marker panels (genome-wide screening sets 6–10), selected from the Marsh-
field map. These marker panels were initially developed from the first human linkage
mapping screening set from the Cooperative Human Linkage Centre (CHLC) (Murray
et al., 1994). Each Marshfield marker panel provides a progressively higher density of
markers, culminating in set 10 which consists of 405 di, tri and tetra-nucleotide repeat
markers with an average spacing of 9 cM. Each marker set is also grouped by allele size
so that each panel can be loaded into the same lane or capillary. Primers for marker
set 10 are commercially available from Research Genetics, in unlabelled and fluorescent
dye-conjugated forms (http://www.resgen.com/).

7.2.4 TSC SNP Linkage Map

Technology developments have brought the cost of SNP genotyping far below the cost of
STR genotyping. This has led to calls for the development of a SNP-based linkage map.
The only argument against the implementation of such a map is the lower heterozygosity
of a single SNP compared to a polymorphic STR (Kruglyak, 1997; see Chapter 8 for a
discussion of this issue). Use of single SNPs at similar densities to STRs would essentially
be equivalent to the original and less informative RFLP maps. Two related solutions have
been proposed to overcome this problem. The first solution is to use a 3–8-fold increase
in SNP marker densities to produce an evenly spaced map (Kruglyak, 1997). The second
is to use multiple clusters of two to three SNPs in linkage analysis at a similar density to
STRs. These SNP clusters provide approximately the same amount of information as an
STR in terms of heterozygosity (Goddard and Wijsman, 2002).

Matise et al. (unpublished data) used the SNP cluster approach to construct a whole
genome SNP linkage map. To do this they selected 666 physically and genetically mapped
polymorphic STS anchor loci at 5-cM intervals across the human genome. Ten or more
SNPs were then characterized across each STS locus. SNPs were assessed for genotyp-
ing success rates, assay quality, allele frequencies (ideally >20%), multi-SNP haplotype
heterozygosities (ideally >0.6) and levels of linkage disequilibrium (SNPs in LD with
each other were avoided). The three most informative markers per STS locus were then
selected to maximize multi-SNP haplotype heterozygosities, to create an informative SNP
cluster at each map position. Two thousand SNPs were selected and genotyped in 661 indi-
viduals from 48 CEPH reference pedigrees (http://www.cephb.fr/). Linkage maps were
constructed without reference to any other mapping or sequence position information.
This generated a map with an average resolution of 5 cM; to improve this, a further
set of SNPs were identified at half-way points between the SNP clusters loci and were
similarly evaluated. The single most informative SNPs at each of these positions were
identified (N = 679) and genotyped in the CEPH pedigrees. These ‘single’ SNPs were
added to the cluster linkage map to produce a final SNP map with a 2.5-cM resolution.
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The construction of this map was supported by the SNP Consortium (TSC), all the data
and results are available at the TSC website (http://snp.cshl.org).

7.2.5 SNP-based Haplotype and Linkage Disequilibrium (LD) Maps

As new SNPs arise at different loci and at different points in time, groups of neigh-
bouring SNPs may show distinctive patterns of co-inheritance or LD, which are arranged
into distinct haplotypes between individuals. The great abundance of SNPs across the
genome creates an opportunity to exploit this haplotypic diversity in association studies
by identifying SNPs which capture or ‘tag’ the majority of common human haplotypes.
This enables the construction of very efficient maps, which capture maximal diversity
with a minimal number of SNPs. Such haplotype tags have already been used to screen
candidate genes. For example, Johnson et al. (2001) re-sequenced nine genes to identify
common SNP haplotypes among 122 SNPs. Once these haplotypes were defined they
were able to define just 34 SNPs or ‘haplotype tags’ which identified all the haplotypes
across the genes. Extension of this principle across the genome would enable the con-
struction of powerful haplotype-based maps which could capture most common haplotype
diversity with a minimal number of SNP markers. At the time of going to press, such a
map does not exist in the public domain, although at least one company has this data.
A public domain genome-wide haplotype/LD map is likely to become available early in
2004 if not sooner.

Some data is already available publicly. Public domain LD or haplotype maps are
available for three chromosomes, these have been generated by two distinct methods and
consequently the exact nature of the data presented differs between the maps. Orchid
Biosciences Inc. in collaboration with the TSC have published a SNP-based map of
chromosome 19 which will be available from the TSC website before this book goes to
press (Michael Phillips, personal communication); Dawson et al. (2002) published a SNP-
based LD map of chromosome 22 and Perlegen Inc. published a SNP-based haplotype
map of chromosome 21 (Patil et al., 2001). We take a closer look at the Perlegen map
data in Chapter 9.

7.3 PHYSICAL MAPS

While genetic maps display the linear order of genes or markers and the recombination
between them, they do not give reliable information on the physical distance between
markers and genes. By contrast a physical map has an absolute and invariant base-pair
scale, which defines the physical distance between markers. Two markers may be very
close genetically, i.e. very little recombination occurs between them, but very far apart
physically. The difference between genetic and physical maps may seem academic, how-
ever if a trait or disease is localized on a physical map between two molecular markers it
is important to identify the amount of recombination across the region, to select an appro-
priately dense panel of markers to detect a genetic association. Conversely if a genetic
map places a trait or disease between two molecular markers, it is useful to know if that
distance represents 1 kb, 1 Mb or further still, to define the likely number of genes or
regulatory regions in the locus.

7.3.1 Cytogenetic Maps

There are many different types of physical maps; the first identified and lowest resolution
physical map of the human genome is the cytogenetic map. This type of map is based on
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the distinctive banding patterns of stained chromosomes. Detailed measurements of these
patterns were originally used to define the gross physical size of human chromosomes,
and led to the size-based sorting of the autosomal chromosomes from chromosome 1, the
largest chromosome, to chromosome 22, the smallest. Unsurprisingly these early efforts
at physical mapping were quite inaccurate and prone to distortion by differential con-
traction, which led to the incorrect ordering of chromosome 19 which is actually slightly
smaller than chromosome 20 (Morton, 1991). Use of cytogenetic map locations is still
remarkably prevalent, perhaps due to the ease of use of the vocabulary of cytobands,
e.g. 1q32, 22q11, etc., to describe and cluster groups of genes and loci. Interestingly the
cytobanding recognized by early biologists is not just decorative, but in fact the dark
cytobands represent regions of higher average GC content, while light cytobands have a
lower average GC content (Nimura and Gojobori, 2002). The region where a transition
occurs between a dark and light cytoband is known as an isochore, these regions often
show a remarkably increased rate of recombination (Eisenbarth et al., 2000). This may
make it important to pay special attention to genes and possible regulatory elements in
these regions; we specifically address this issue in Chapter 10.

7.3.2 Fluorescence In Situ Hybridization (FISH) Mapping

At best a cytogenetic map could be used to locate a DNA fragment to a region of about
10 Mb — the size of a typical chromosome band. Fluorescence in situ hybridization (FISH)
mapping, is a form of cytogenetic mapping that allows orientation and mapping of DNA
sequences to a much higher resolution. Initially FISH resolved markers within 2 Mb, but
further development of the FISH method, using chromosomes in interphase when they
are less compact, increased map resolution further to around 100 kb. As FISH does not
rely on a recombinant map but instead maps a chromosome directly, this has made FISH
an important method for the QC of recombinant maps and clone contigs. The level of
resolution achieved with interphase FISH, also makes this method directly applicable to
the analysis of observable physical traits associated with chromosomal abnormalities, such
as prenatal defects or cancer breakpoints. All of these applications are likely to keep the
method in regular use well beyond the availability of a complete human genome.

7.3.3 Radiation Hybrid (RH) Mapping

Early physical mapping advanced considerably with the publication of the radiation hybrid
(RH) mapping method. Goss and Harris (1975) irradiated human fibroblast chromosomes
and fused the resulting fragments with recipient rodent cells. The observed patterns of
co-transference of markers in a collection of hybrid cells allowed estimates to be made
of linear order and distance between markers by assuming that distant markers are more
likely to be separated in different hybrid cell lines than closer markers. The RH mapping
technique was refined by Cox et al. (1990) who irradiated donor somatic cell hybrids,
which contained just a single copy of one human chromosome, and fused the fragments
with rodent cells. Several whole genome RH panels were developed in the 1990s which
allowed the construction of genome maps containing thousands of STS markers (Gyapay
et al., 1996; Stewart et al., 1997). The human RH map finally reached a high-resolution
apex, with the development of the TNG panel (Lunetta et al., 1996), which was used
to generate an RH map of the human genome consisting of 40,322 STSs (Olivier et al.,
2001). From the 40,322 STSs mapped to the TNG radiation hybrid panel, only 3604
(9.8%) were absent from the unassembled draft sequence of the human genome.
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7.3.4 Human RH-mapping Panels

Three main radiation hybrid panels have been used for mapping STSs and constructing RH
maps, each offers a different level of resolution based on the dose of irradiation. The GB4
RH panel (constructed by using 3000 rad of X-rays) and the G3 RH panel (10,000 rad of
X-rays) will resolve markers at 1-Mb and 260-kb intervals respectively, both providing a
good long-range continuity for mapping (Deloukas et al., 1998). In contrast, the Stanford
TNG panel (50,000 rad of X-rays) allows STS resolution down to 60–100 kb with high
confidence (Lunetta et al., 1996). The price of this increased resolution is that a large
number of STSs need to be scored to produce good long-range continuity. Olivier et al.
(2001) found a solution to this by using the TNG panel in conjunction with the Stanford
G3 panel to produce an RH map with high-resolution and contiguity. Publication of this
map saw a shift in the role of human RH-mapping, from a direct role in mapping new
genes to a primarily curatorial role to enable the QC and assembly of the human genome.

RH maps provide a marker order confidence supported by LOD (logarithm of the odds
ratio of linkage versus no linkage) scores between adjacent markers, coupled with distance
measures between markers. Calculation of distance is based on the frequency of breakage
between two markers in the radiation hybrid clones which is measured in centiRays (cR).
There is a direct linear correlation between cR units and physical distance in kb, which
is fairly constant across any given RH panel. The kilobase equivalent of the centiRay
unit differs between RH maps. 1 cR on the TNG map corresponds to an average of 2 kb
of physical distance, whereas 1 cR on the G3 map corresponds to a physical distance of
24 kb and a distance of 260 kb on the GB4 map. Table 7.2 illustrates the main features of
all three panels and Table 7.3 illustrates the main RH maps generated from these panels.
RH panels are available from Research Genetics (http://www.resgen.com/).

TABLE 7.2 Human Radiation Hybrid Panels

Panel GeneBridge4 (GB4) Stanford G3 Stanford TNG

X-ray dosage 3000 rad 10,000 rad 50,000 rad
Cell lines 93 83 90
Average retention 30% 18% 16%
Av. Frag. Size 10 Mb 4 Mb 800 kb
Resolution Low Medium High
Resolution (kb) 1000 267 60
Reference Gyapay et al. (1996) Stewart et al. (1997) Lunetta et al. (1996)

TABLE 7.3 Human Radiation Hybrid Maps

Map
GeneMap
99-GB4

GeneMap
99-G3 Stanford TNG

NCBI
Integrated

Marker panel GB4 G3 TNG & G3 G3 & GB4
Marker type STS STS STS STS
Marker no. 45758 7061 40322 23723
Reference Schuler et al. Deloukas et al. Olivier et al. Agarwala et al.

(1996) (1998) (2001) (2000)
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Comprehensive RH maps generated from these panels can be viewed and integrated
with other maps in GDB, MapViewer and other applications (see below). Novel STS mark-
ers can be placed on these existing frameworks by PCR, screening STSs against the three
RH panels and submitting the results to a web server, several of which are available. For
G3 and TNG RH maps Stanford run a server at http://www-shgc.stanford.edu/RH/index.
html. The EBI also runs an RH map server which includes all three human panels
and also mouse, rat, pig and zebrafish panels (http://corba.ebi.ac.uk/RHdb/RHdb.html).
The Whitehead Institute also maintains a GB4 server (http://www-genome.wi.mit.edu/cgi-
bin/contig/rhmapper). Data submissions to all three servers are in a binary format to indi-
cate presence or absence of a PCR product in each hybrid bin, e.g. G3.STS1 11000010000
01000000110011001000001100100010000011101000110000000110.

7.4 PHYSICAL CONTIG MAPS

Genetic maps and cytogenetic maps fulfilled many of the short-term goals of the human
genome project — to develop low to medium resolution genetic and physical maps of the
genome. They have also facilitated longer term goals by assisting in the construction of
the more-precise high resolution maps at increasingly finer resolutions needed to organize
systematic sequencing efforts (Korenberg et al., 1999). FISH and RH mapping in partic-
ular have enabled the development of a complex hierarchy of physical YAC and BAC
clone contigs at a range of resolutions (Figure 7.1). These physical maps also became an
important framework for positional cloning efforts in the years preceding the availability
of a draft human genome. Accurate ordering of YAC and BAC clones (and subsequent

CYTOGENETIC
MAP

YAC contigs

BAC contigs

Genomic
sequence
map

ACGTTTGAGCGTTGAAGTTCGGGTTGACNNNN…..NNNNAGTACAGTTGTTTGGGACCATGATTG

RH map

Genetic map

Supercontigs/

scaffolds

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

Figure 7.1 Physical and genetic maps used during the sequencing of the human genome.
Many different maps were integrated to enable the construction of the framework for
human genome sequencing (see Waterston et al. (2002) for a review).
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shotgun reads) would not have been possible without existing genetic and physical maps
which served as a scaffold for orientating, ordering and troubleshooting the human genome
sequence assembly.

7.4.1 Yeast Artificial Chromosome (YAC) Maps

Yeast artificial chromosomes (YACs) are the lowest resolution physical clone contig maps,
composed of overlapping YAC clones ranging in size from 300 kb–2 Mb. Before YACs
were developed, the largest cloning vectors (cosmids) carried inserts of only 20 to 40 kb.
YAC methodology drastically reduces the number of clones to be ordered; many YACs
span entire human genes, making them a useful resource for further genomic study. The
size of YAC inserts can often cause clone instability, which can lead to local rearrange-
ments in the clone, this is the major drawback in the use of YACs for construction of
physical contigs and underlines the need to QC YAC contigs with other available genetic
and physical maps.

Several whole genome YAC maps are available, including a library of 33,000 YAC
clones published by Chumakov et al. (1995). This library and other YAC clones can
be obtained from a range of centres which are listed in the CEPH YAC library pages
(http://www.cephb.fr/bio/ceph yac.html).

7.4.2 Bacterial Artificial Chromosome (BAC) Maps

Bacterial artificial chromosomes (BACs), offer a further increase in map resolution, typi-
cally ranging in size from 100–300 kb. BAC clones are the primary vehicle of the public
human genome sequencing project. Collections of human BACs estimated to represent
more than a 10-fold redundancy of the human genome have been used to generate compre-
hensive BAC maps of the human genome. A minimally redundant set of these BACs have
been assembled into physically separate contigs, representing the majority of the human
genome. The sequence of these BACs is being determined by shotgun sequencing, where
each BAC is digested with restriction enzymes and sub-cloned to generate a library of
clones ranging from 0.5–5 kb. These clones are sequenced and assembled to form a
complete BAC sequence, which are in turn assembled to form a complete chromosome.

BAC clone data can be accessed in many different ways, either directly from sequen-
cing centres, or alternatively the NCBI have established a Human BAC resource page
(http://www.ncbi.nlm.nih.gov/genome/cyto/hbrc.shtml). This page is a useful resource
which centralizes information concerning currently available BAC maps and suppliers of
BAC clones. Another useful database is GenMapDB (Morley et al., 2001; http://genomics.
med.upenn.edu/genmapdb/), which contains over 3000 mapped BAC clones spanning
the genome. The database can be searched by map location or accession
number. It is also possible to search for BAC clones by using BLAST
(http://www.ncbi.nlm.nih.gov/BLAST/) to search the ‘HTGS’ and ‘Genome’ divisions
of GenBank. BAC sequences can also be accessed indirectly by using tools which show
contig information for the draft human genome sequence, e.g. Ensembl, Map Viewer or
UCSC human genome browser (see Chapter 5).

7.5 THE ROLE OF PHYSICAL AND GENETIC MAPS
IN DRAFT SEQUENCE CURATION

Sequence tagged sites (STSs) are PCR-based anchors used to define a unique genomic
sequence in an RH panel, YAC or BAC contig. All that is required to generate a new STS
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marker is 200–500 bp of unique sequence, this could be a sequence from the 3′ UTR
of a transcript or any unique genomic region. Hence STS markers have been extensively
identified from characterized genes, expressed sequence tags (ESTs) and random genomic
fragments (Schuler et al., 1996). STS markers that include polymorphic sequences, such
as microsatellites, are the central integrating force between genetic and physical maps.
Common sets of such sequence-based markers can be easily screened and therefore can
be used to integrate maps constructed by different mapping methods. RH panels and
STS markers will play a critical role in the finishing of the human genome by providing
a method to obtain markers from regions of the human genome that may be difficult to
clone in conventional vector libraries. Hattori et al. (2000) found that up to 10% of certain
gene-rich regions of human chromosome 21 were composed of such ‘hard-to-clone’ DNA.
STSs that fail to hit available sequence can be used to screen different DNA libraries to
close existing clone gaps in draft genome contigs. High resolution physical maps, such
as the TNG map can also be valuable for curating draft genome contigs. Localization of
RH markers to working draft sequences provides an independent measure of order and
orientation for the clones underlying the draft sequence. Distances between markers can
also be used to estimate the physical length of gaps between non-overlapping clones.

7.5.1 Electronic PCR (e-PCR)

Electronic PCR (e-PCR) is an in silico equivalent of the laboratory-based STS mapping
process (Schuler, 1997; http://www.ncbi.nlm.nih.gov/cgi-bin/STS/nph-sts). The e-PCR
tool at the NCBI maps known STSs from the dbSTS, GDB and RHdb databases to a
user-submitted sequence. In a directly analogous process to PCR, e-PCR searches for
sub-sequences within a query sequence that match known STS PCR primers and are
in the correct order, orientation and spacing to be consistent with the PCR product size.
These criteria eliminate the possibility of false positives (e.g. hits to psuedogenes or repeat
sequences) that occur with other similarity searching methods such as BLAST. Electronic
PCR is a valuable tool to assist in the integration of genomic sequence data with exist-
ing maps; this can be useful to assist genomic QC and to correlate genetic distances
with physical distances. We offer detailed coverage of the use of this and other tools for
genomic contig analysis in Chapter 9.

RH maps are playing a critical role in the QC and finishing of the human genome (see
below), but once we have a finished genome, these maps may be of limited further use in
humans. However, RH maps will continue to be the physical mapping method of choice
for other organisms without extensive genome sequence. Human RH maps may also be of
some limited use in the construction of comparative maps with other mammalian genomes
(Kwitek et al., 2001). But, for the purposes of this chapter, we will focus on the direct
integration of genetic and physical maps, with genome sequence as the ultimate integration
framework. For consideration of non-human maps we refer the reader to Chapter 6 and
other specialist texts.

7.6 THE HUMAN GENOME SEQUENCE — THE ULTIMATE
PHYSICAL MAP?

The complete DNA sequence of the human genome will be an accurate physical map
resolved down to a single base pair resolution, but we do not have this map as yet.
Geneticists will need to work with a draft assembly of the human genome for a somewhat
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indeterminate number of years, until this task is truly finished. However, the draft genome
assembly is still a very valuable asset for genetics, particularly if data are treated with
care. With this in mind it is very important to be aware of some of the issues relating to
the curation of draft sequences. Genetic and physical maps are one aid in this process.

For example, Olivier et al. (2001) used a 40,000-marker RH map to provide an estimate
of the size and location of missing sequence in the human genome draft in relation to
the existing sequence, and to provide order information for the 15,000 + clones that
constitute the human genome working draft. They found that 9.8% of STS markers were
absent from the October 2000 draft of the human genome. They suggest that these are
likely to represent the ‘hard-to-clone’ regions of the human genome. Other studies have
made similar observations (Hattori et al., 2000) which suggests that a small intractable
percentage of the human genome may remain in an unfinished state for longer than we
may have anticipated.

Genetic maps are also playing an important role in the QC of human genomic sequence.
DeWan et al. (2002) compared the genetic order of the Marshfield genome-scan markers
(set 9 and 10) with their physical order in the April 2001 public golden path contig and the
February 2001 Celera genome assembly. They found inconsistencies in 5 and 2% of the
markers in the Celera assembly and the golden path assembly, respectively. The genetic
order of these markers was supported with high confidence by a LOD of >3 and most
discrepancies were not observed in both contigs, which suggests errors in the physical
map order of both genome assemblies. Chromosome-by-chromosome breakdown of this
data are available on a website: http://linkage.rockefeller.edu/maps/.

7.7 QC OF GENOMIC DNA — RESOLUTION OF MARKER ORDER
AND GAP SIZES

The studies by DeWan et al. (2002) and Olivier et al. (2001) demonstrate the value of
genetic and physical maps in the curation and QC of human genomic sequence contigs. As
discussed previously the relationship between genetic distance (cM) and physical distance
(Mb) is not uniform, however both genetic and physical mapping methods can resolve
marker order to varying degrees of confidence, depending on the map characteristics.
Marker or contig order across a locus can be validated by integrating information from
different maps. The value and accuracy of different maps is not necessarily hierarchical or
directly related to the density of the map. For example, one might assume that a dense RH
map, or even a finished sequence map might be more accurate than a less dense genetic
map, however as the studies above have shown, this does not always hold true. Using
maps in an hierarchical manner may avoid the inevitable discordances between different
maps, but this is not necessarily the best order for integration. In some cases for example,
YAC STS content data may be more accurate than RH data, or a genetic map may be more
reliable than a BAC contig. Both genetic maps and RH maps show a relative confidence
in marker order by LOD scores using appropriate maximum likelihood statistical methods
(Boehnke et al., 1991). A LOD of 3.0 (odds 1000 : 1) or more is generally accepted as
a strong indication of a contiguous relationship between markers. Comparison of LOD
scores can help to integrate different data sources in an attempt to reach a consensus. But
sometimes, all that can be done in silico is to flag up an unresolvable discrepancy between
maps to receive special attention in the laboratory. Bioinformatic tools and databases can
be a great help in the integration and evaluation of genetic and physical maps. MapViewer,
GDB and UDB allow the user to compare and integrate maps; these are described below.
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The UCSC human genome browser also provides graphical data on the positions of STS
markers on the golden path versus their positions in other maps, including radiation hybrid,
sex-averaged genetic (Marshfield), cytogenetic and YAC STS maps at the following URL:
http://genome.ucsc.edu/goldenPath/mapPlots/.

It is also possible to view and integrate genetic and physical maps on an ad hoc basis
using bioinformatics tools, such as Map View at the NCBI (reviewed below).

7.8 TOOLS AND DATABASES FOR MAP ANALYSIS AND INTEGRATION

There are some excellent tools which have recently become available for viewing the
human genome sequence. Ensembl and the UCSC human genome browser are shining
examples of the kind of biological data integration that geneticists need for their studies.
But unfortunately they are lacking in functionality to enable map integration. Other more
specialized tools, such as GDB and UDB exist, which allow a user to view and integrate
different maps, but unfortunately these have not generally been integrated with the human
genome sequence. Fortunately Entrez Map View at the NCBI, is one tool which straddles
both the human genome and human genetic maps.

7.8.1 Entrez Map View
(http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/map−search)

In Chapter 5 we reviewed Map View alongside Ensembl and the UCSC human genome
browser as a tool for annotation of the human genome sequence. Map View would prob-
ably appear lower in most researchers’ preferences for this purpose, although it does
provide some unique gene annotation information. However, as the name suggests, Map
View truly excels in its integration of a wide range of cytogenetic, genetic and physical
maps with the NCBI draft and finished sequence contigs. Although this tool is sometimes
a little difficult to navigate, once these idiosyncrasies are overcome, Map View becomes
a complex and powerful tool.

Map View is an integrated component of the NCBI Entrez system, in the Entrez
Genomes division. This division presents a unified graphical view of genetic and physical
maps (including sequence maps) for over four vertebrates, including human and mouse.
The tools present different genomes at four levels of detail:

• Organism home page — summarizing the resources available for that organism

• Genome View — graphical display of chromosome ideograms and search page

• Map View — presents one or more maps aligned against a master map

• Sequence View — graphically annotates the biological features in a region

7.8.1.1 Searching and Browsing Map View

Map View can be searched with almost any marker, SNP, gene or genomic element either
targeted at a chromosome or genome level. Searches at the genome level return a graphic
view of the location of the hit with red marks on the chromosome ideograms, this will
quickly identify if a query hits multiple regions or chromosomes. A summary of the maps
in which the query exists is returned in tabular format at the bottom of the page. This is
the essence of the Map View tool — selection of a map from the tabular summary links to
a detailed Map View of the corresponding genomic region, with the selected map as the
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‘master’ map. The master map is presented in detail with supporting information, such
as LOD scores, cM locations or gene information. To view and integrate the master map
with other maps, select the ‘maps & options’ link at the top of the page. This will summon
a pop-up window for Map View configuration. It is possible to select up to eight maps
to view alongside the master map, each is presented in a compact view alongside the
master map. The alignment between maps is based on common or corresponding objects.
Markers or objects shared between maps are indicated by lines connecting the maps. Map
View allows the user to zoom and pan into progressively more detailed views.

It is also possible to search and browse Map View by map position or cytoband. This
can be achieved from the Map View of a chromosome, by entering a range of interest in
the boxes in the side window. A range can be specified in base pairs, cytogenetic bands
or between two gene symbols. General chromosomal browsing is possible by clicking on
the region of interest in the chromosome thumbnail graphic in the sidebar, or by clicking
on a region of interest on the ideograms in the genome view.

Map View is very effective for integration of genetic and physical maps on an ad hoc
basis. Figure 7.2 shows an integrated view of the Genethon genetic map and the human
genome contig for chromosome 3. In this map, the Genethon markers are mapped to
sequence and a line is drawn between the marker positions on the two maps. This clearly
illustrates some key map integration issues. Firstly several markers in the genetic map
are seen to conflict with the order of markers on the sequence (or physical) map. This
may be due to an error in either map, so further maps need to be compared to support
either order and the LOD scores on the genetic map need to be examined. Figure 7.3
shows such a comparison. The red line traces the Genethon marker, AFMA121WD5,
through the Marshfield, GB4, G3 and TNG maps through to the genomic contig level. In
this case the marker order is confirmed by each map. Sometimes it may not be possible
to conclusively determine which map is ‘right’, instead further laboratory work may be
necessary to resolve marker order. Figure 7.2 also clearly shows the variable relationship
between genetic and physical distance. In particular it highlights some of the physical
properties of chromosomes, for example the genetic physical distance ratio at the telomere
of the P arm of chromosome 3 is very low; the marker AFM234TF4, for example, has a
genetic location of 22 cM and physical location of 8 Mb. This illustrates the higher rates of
recombination that are often observed in telomere regions (Riethman, 1997). Both figures
indicate the presence or absence of each marker in available maps by an array of symbolic
green circles at the far right of each marker. This helps to indicate non-specific markers.
For example, some markers map to multiple locations in the same chromosome, these
are indicated by green circles with a strike through. Other markers map to more than
one chromosome, these are indicated by yellow circles and finally some markers, map
to multiple chromosomes and multiple locations, indicated by a yellow struck through
circles (e.g. AFMA191ZG5 in Figure 7.2).

There are a number of somewhat idiosyncratic features in Map View which might
confuse the user. Firstly if a map is viewed in low resolution, it seems to display a
somewhat arbitrary selection of markers, the full marker set only becomes visible when
the user zooms in. Secondly, if the locus is too large to view in one window it is broken
up into pages indicated at the top of the window. This pagination feature can make it
slow and difficult to assess a whole locus, but this can be overridden by altering the page
size in the configuration window. Setting a page size of 100–200 will allow a very large
map to be viewed in a single window, this may take some time to load but it is worth
it in the end.
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Figure 7.2 Integration of genetic maps and genome contigs. This figure shows an inte-
grated view of the Genethon genetic map and the human genome contig for chromosome
3 generated by the NCBI Map View tool. The Genethon markers are mapped to sequence
with a line drawn between the marker positions on the two maps. Lines which cross
over show markers which conflict in order between the genetic map and the physical
sequence map.

7.8.2 The Genome Database (GDB) (www.gdb.org)

The Genome Database (GDB) was the first web-based graphical interface to the human
genome, as such it was a pioneering bioinformatic tool. Now Ensembl, UCSC and Map
View present effortless graphical genome views and the GDB graphical interface is starting
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Figure 7.3 Integration of genetic and physical maps with the human genome contig on
chromosome 3 using the NCBI Map View tool. The grey line traces the Genethon marker,
AFMA121WD5, through though the Marshfield, GB4, G3 and TNG maps through to
the genomic contig level. In this case the marker order of this marker is confirmed by
each map.

to look a little tired and most of the graphical functionality is covered by Map View. But
GDB does have a productive text/table-based search interface which is an improvement
on Map View’s limited text-based capability. GDB is also a comprehensive source for
some forms of genetic data, particularly tandem repeat polymorphisms (it contains over
18,000), and an eclectic range of information on fragile sites, deletions, disease genes and
mutations, collected by a mixture of curation and direct submission. This makes GDB a
valuable tool for text-based data mining to assist in the construction of marker lists and
the identification of marker variables, such as primer and marker sequences.

The text-based search interface is accessible on the front page of the GDB database by
following the ‘advanced search’ link. This interface allows complex queries, for example,
it is possible to retrieve all known polymorphic or non-polymorphic markers between
two markers or genes. Results are retrieved and ordered based on the genetic distances
of the markers, along with a very roughly estimated Mb location (unfortunately actual
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integration with the human genome draft is currently lacking). As the markers are ordered
by genetic distance, the distances are very approximate, with no fine measure of distance
or order. It may be necessary to clarify the order with another tool such as Map View.

7.8.3 The Unified Database for Human Genome Mapping (UDB)
(http://bioinformatics.weizmann.ac.il/udb/)

The Unified Database for Human Genome Mapping (UDB) is maintained by the Weiz-
mann Institute of Science, Israel. UDB has attempted to create an integrated map based
on a diverse range of human genome mapping data retrieved from a number of pub-
lic databases. The map consists of an integrated hierarchy of genetic, RH, cDNA and
YAC maps down to a kilobase resolution, on a scale converted from centiRays (cR) to
megabases (Mb). UDB generates its maps using data from the Whitehead/MIT STS map,
GeneMap’98, the Stanford TNG map and Genethon maps. The database can be searched
in several different ways. An initial search by chromosome number can be narrowed by
specification of cytogenetic band, position (in Mb) or marker interval. It is also possible
to search by gene or marker name. This gives the estimated location of the gene as well
as links to GeneCards and the Genome Database (GDB). The database also displays the
estimated boundaries (in Mb) of the cytogenetic bands of any chromosome.

The UDB database is a good starting point for constructing physical or transcript maps
across a genomic region. The main benefit of the database is that it eliminates the need to
look at a number of different websites and integrates markers from several different maps
with genomic contigs from NCBI. Unfortunately UDB is somewhat over zealous in its
map integration, sometimes this might cause problems. It assumes an hierarchical value
of RH maps over genetic maps and genetic maps over YAC maps which is not necessarily
the best order for integration, it may have been better to flag conflicting marker orders
for laboratory-based resolution. However as the human genome map solidifies around
finished sequence this approach will begin to represent the simplest and most effective
use of time and resources.

7.9 CONCLUSIONS

As this chapter has described, there are many tools available to give an integrated view
of genetic and physical maps across a defined chromosomal locus. Comparison of the
physical and genetic distances between markers can provide a great deal of information
about the underlying nature of a locus. Yu et al. (2001) compared the genetic and physical
distances across the whole genome and found that the genetic/physical distance ratio
ranged widely between 0 and 9 cM per Mb. They used this ratio to infer recombination
rates and identified several chromosomal regions up to 6 Mb in length with very low
or high recombination rates, which they termed recombination ‘deserts’ and ‘jungles’,
respectively. Linkage disequilibrium (LD) was much more extended in the deserts than
in the jungles as higher rates of recombination are likely to reduce the extent of LD.

When sequencing of the human genome is truly complete genetics will become tech-
nically much easier. Human map QC may become a distant memory, but presently we are
still struggling to study complex phenotypes with draft contigs and incomplete datasets.
Every piece of data and data curation may count in this struggle — in Section III of
this book we review how physical and genetic map data can come together with lit-
erature data, marker data, gene data and comparative organism data to assist genetic
studies in the laboratory.
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8.1 INTRODUCTION

Linkage analysis of complex traits using family-based samples (see Chapter 11) typically
results in a number of broad, ill-defined linkage peaks that represent several megabases
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of DNA (see for example Grettarsdottir et al., 2002); beneath the expanse of each peak
there may lie a gene (or genes) associated with the disease in question. Under the prior
assumption that this preliminary linkage analysis has been completed, the goal of this
chapter is to take the investigator through the process of characterizing and narrowing
such a region using a population-based approach, with the ultimate aim of identifying
candidate genes and testing them directly for association with the disease or trait in ques-
tion. This is often achieved by testing markers in the linkage interval for differences in
allele frequency between case and control cohorts, where the cohorts comprise unrelated
individuals (although methods employing family structure, based on the difference in fre-
quency of allele transmission in a large number of small pedigrees are also used — see
below; this is covered in more detail in Chapter 11). In general, population-based methods
offer large increases in both power and resolution over linkage-based approaches (McGin-
nis, 2000; Risch 2000; discussed in Chapter 11) and are well suited to the follow-up of
preliminary (and often equivocal) linkage results. Examples of the successful application
of this two-step linkage-association approach include identification of the involvement of
ApoE in Alzheimer’s disease (Strittmatter et al., 1993) and the recent discovery of the role
of NOD2 in Crohn’s disease (Hugot et al., 2001; Ogura et al., 2001). The first part of this
chapter focuses on theoretical and practical considerations for good study design, whilst
the second part covers a systematic approach to identification of the disease-associated
gene, with emphasis on the application of methods, software tools and databases.

8.2 THEORETICAL AND PRACTICAL CONSIDERATIONS

8.2.1 Choice of Study Population

Wherever possible the study population selected for a follow-up analysis of linkage peaks
should be derived from the same geographic area as the families used for the original
linkage analysis. As the genetic components contributing to complex disease are likely
to be varied, there is no guarantee that the predisposing genetic factors in one population
will be the same in a second. If we use the term ‘study population’ in the broadest sense
as applied to genetic association studies, a variety of study population structures may be
considered. Three of the most common configurations are the case–control cohort, the dis-
cordant sib-pair cohort (i.e. one affected and one unaffected sib) and the parent–offspring
triad (affected offspring with both parents) cohort. Each of these structures has advantages
and disadvantages (for an evaluation of each, see Risch, 2000; Cardon and Bell, 2001).

Case–control cohorts simply consist of one group of individuals (cases) with the
disease state and a second group without the disease (controls). Case–control cohorts
have the advantage of being more straightforward to collect than the other two structures
described above and generally provide more statistical power than similarly sized discor-
dant sib or other nuclear family-based cohorts (McGinnis, 2000; Risch, 2000). However,
case–control cohorts are prone to ‘population stratification’ (or substructure) effects. Pop-
ulation stratification occurs when the cohort under study contains a mix of individuals that
can be separated on grounds other than the phenotype under study (most commonly on
the basis of geographic origin). This can lead to allele frequency differences in cases and
controls that are due to circumstances unrelated to the phenotypic difference under investi-
gation, resulting in erroneous conclusions regarding association between the marker under
test and the disease phenotype. Careful selection of individuals for inclusion in disease
and control cohorts is necessary to ensure as homogenous a background as possible and
therefore avoid stratification. If stratification is suspected it is possible to test for it using
randomly selected genetic markers (Devlin and Roeder, 1999; Pritchard and Rosenberg,
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1999). It is also important to match the cohorts for phenotypic or environmental variables
that may otherwise confound any genetic analysis; for example, hormone replacement
therapy (HRT) has a large impact on bone mineral density (BMD) and it would be nec-
essary to account for this in a search for genetic factors influencing BMD using a cohort
of post-menopausal women.

Although population homogeneity and well matched cases and controls are preferred,
it may be possible to use a cohort even if stratification is present; Pritchard et al. (2000)
have developed a method for testing for genetic association in the presence of pop-
ulation stratification, by using unlinked markers to make inferences about population
substructure and employing this information to test for associations within the identified
subpopulations. STRUCTURE and STRAT, software tools for the detection of stratifica-
tion and testing for genetic association in the presence of stratification can be downloaded
from http://pritch.bsd.uchicago.edu/software.html. An alternative approach to correction
for population stratification, termed genomic control, measures the degree of variability
and magnitude of the test statistics observed at random loci and uses this information to
adjust the critical value for significance tests at candidate loci by the appropriate degree
(Devlin and Roeder, 1999). However, it should be noted that correction for stratification
cannot completely remove the possibility of increased false positive results under all cir-
cumstances (Cardon and Bell, 2001; Devlin et al., 2001; Pritchard and Donelly, 2001)
and stratification should be avoided where possible.

The main advantage of using study populations that incorporate elements of fam-
ily structure (e.g. discordant sibs or trios) is that, unlike case–control cohorts, they are
immune to population stratification effects. However, as mentioned above, family-based
samples are typically more difficult to collect than case–control samples (particularly for
late onset diseases) and generally offer less statistical power than the equivalent sized
case–control cohort (McGinnis, 2000; Risch, 2000). The remainder of this chapter will
focus predominantly on case–control methodology where reference to population structure
is necessary; statistical methods for analysing family-based cohorts, such as the transmis-
sion disequilibrium (TDT) and sib transmission disequilibrium (S-TDT) tests, together
with tools for the analysis of quantitative traits are covered in Chapter 11.

Estimation of required cohort size for a genetic study depends on a number of factors,
including the size of the effect of the locus under test, the frequency of the disease-risk
conferring allele and genetic nature of this ‘risk allele’, i.e. recessive, dominant, additive
etc. If the causal variant is not being tested directly, the distance between the causal variant
and the surrogate marker under test (see Section 8.2.3 below) is also relevant. Most of
these factors are unknown prior to the start of the study and the minimum required
population size is usually based on assumptions concerning these factors (see McGinnis,
2000; Risch, 2000). In reality, pragmatism typically dictates the available sample size;
investigators use the largest obtainable cohort, with the caveat that the available sample
may not provide sufficient statistical power to detect effects below a certain magnitude.
To detect genetic factors of fairly small or moderate effect, cohorts of a several hundred
to a few thousand individuals may be required (McGinnis, 2000; Risch, 2000).

8.2.2 Sequence Characterization at the Locus under Investigation

Following a whole genome linkage scan the investigator is typically faced with sev-
eral genetic loci of potential involvement in the disease process, the limits of each
defined by two genetic markers (usually simple tandem repeats or STRs) spanning sev-
eral centiMorgans (cM). As 1 cM equates to 1 megabase (Mb) on average, and each Mb
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contains an estimated average of 15 genes (based on 45,000 genes in the entire 3000-Mb
genome; Das et al., 2001), this may represent several thousand kilobases (kb) of DNA
and over 100 genes per locus. The first task is to define the locus in the context of
the human genome, in order to gain a comprehensive knowledge of genes and further
genetic markers in the interval. Until very recently this involved the laborious laboratory
process of identifying and ordering genomic clones into contigs and using those con-
tigs as a framework for gene and marker identification. Thankfully locus characterization
has become far more straightforward in the wake of the Human Genome Sequencing
Project, which provides free access to assembled sequence covering 97% of the human
genome at the time of writing, with the goal of complete coverage by 2003. A num-
ber of web-based tools are available for exploiting the human genome. These tools are
described very briefly in Section 8.3.1 and their practical application is covered in detail
in Chapters 5 and 9.

8.2.3 SNPs, Linkage Disequilibrium, Haplotypes and STRs

8.2.3.1 Introduction

In this section we provide a simple introduction to the underlying principles of the
detection of genetic association using a population (i.e. non-family)-based approach. The
majority of studies of this nature are undertaken using single nucleotide polymorphism
(SNP) markers (see Chapter 3). Biallelic SNPs are currently the marker of choice due to
their abundance in the human genome and because they are amenable to high throughput
genotyping approaches. The other marker system commonly used for genetic studies is
the multiallelic STR (see Chapter 3). The paragraphs below on linkage disequilibrium
and haplotypes refer mainly to SNPs. The use of STRs for population-based association
studies is discussed at the end of this section.

8.2.3.2 Linkage Disequilibrium

A polymorphism associated with a disease state (in the true, rather than statistical, sense)
may either directly contribute to the disease process, or may be a surrogate marker which
is co-inherited with an adjacent functional variant that contributes to the disease state.
This co-inheritance of the surrogate marker with the disease allele can occur to varying
degrees and is termed ‘linkage disequilibrium’ (LD). By strict definition, LD is said to be
present if co-occurrence of the two polymorphisms happens with a frequency greater than
would be expected by chance. A number of measures of LD are used, two of the most
commonly employed being � and D. Both measures are based on the difference between
the observed and expected (assuming independence) number of haplotypes (see below)
bearing specified alleles of two markers (see Chapter 11 for a complete explanation of
D and Devlin and Risch (1995) for a discussion of D, � and other measures of LD).
Although by the strict definition given above LD can occur between unlinked variants,
for example in the presence of recent population admixture, in the following paragraphs
we refer specifically to LD between two linked markers.

Clearly, the greater the extent of LD between two polymorphisms, the larger the chance
of detecting the phenotypic influence of one by genotyping the other in a case–control
experiment. The degree of LD is dependent on the history of the two adjacent markers
and is influenced by the relative times of appearance of the two polymorphisms in the
population and the degree of recombination between them. An extreme example would
be two polymorphisms that appeared simultaneously on the same chromosome through
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spontaneous mutation and between which no recombination events have occurred over
2000 generations. During this period, these two linked polymorphisms have attained a
population frequency of 20% through chance (random genetic drift) and are in absolute
linkage disequilibrium. Imagine an alternative scenario, where a new polymorphism arises
adjacent to an ancient polymorphism which has already attained a frequency of 20% over
the previous 1000 generations; over the subsequent 1000 generations, there is a high
degree of recombination between the markers, eroding the LD (Figure 8.1). Clearly the
former case would be more favourable for using one of the markers as a surrogate for
detecting the phenotypic influence of the other.

SCENARIO A SCENARIO B

1000 GENERATIONS

1000 GENERATIONS 1000 GENERATIONS

1000 GENERATIONS

Figure 8.1 Alternative hypothetical scenarios depicting the evolution of a relationship
between two SNPs. Identical stretches of DNA within a population are represented by
black lines. In scenario A, two adjacent polymorphisms, represented by a white star and
a grey star, arise simultaneously and by random drift achieve a population frequency
of 0.1 after 1000 generations, increasing to 0.2 after 2000 generations, at which time
they are still co-segregating as a tightly linked unit. In scenario B, a lone polymorphism
(white star) reaches a frequency of 0.2 after 1000 generations, at which point a new poly-
morphism (grey star) arises spontaneously, some distance away. Note that although the
grey polymorphism only occurs on a background bearing the white polymorphism, the
association is less clear-cut than scenario A due to the chromosomes bearing the white
polymorphism in the absence of the grey polymorphism. During the subsequent 1000
generations, association between the two polymorphisms is further clouded by recombi-
nation between the two SNPs and divergence through random drift. Unfortunately for the
genetics investigator, scenario A is idealized and scenario B is more typical.
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8.2.3.3 Haplotypes

A haplotype is a string of co-inherited alleles of different markers which are arranged in
a successive fashion along a given stretch of DNA, hence each haplotype represents a
linear section of DNA rather than the single point corresponding to a single marker. The
extent of discernible haplotype length varies widely for different regions of the genome;
well-defined haplotypes (characterized by moderate or high LD) are punctuated by regions
of extremely low LD, suggesting that the recombination processes, selective pressures and
other factors that dictate the degree of LD vary widely in an abrupt fashion across the
genome (Goldstein, 2001). Although the length of preserved haplotypes shows dramatic
variation from haplotype to haplotype, recent data suggest that the typical length of a
discernible haplotypic block is 10–100 kb in the Caucasian population (Daly et al., 2001).

In certain circumstances, statistical analysis of haplotypes is more powerful than single
SNP analysis. This is because an SNP usually has only two allelic states, whereas a stretch
of DNA can typically be represented by several different haplotypes; the chance that one
of the many haplotypes shows strong association with a functional variant (i.e. a variant
that influences the phenotype) is higher than the odds of a strong, pure correlation with
one of only two possible alleles for a single SNP. In this sense, a series of haplotypes is
analogous to a multi-allelic STR marker (although regarded as more stable — see below).
Clearly if the functional variant itself is under test, or a polymorphism which shows
perfect co-segregation with the functional variant, haplotypic analysis offers no advantage.
It should also be noted that haplotype analysis is a double-edged sword and in addition to
increasing statistical power has the potential to reduce it by introducing multiple testing
and possibly by diluting an association signal due to undetected recombination within
the haplotypes.

Haplotypes are usually constructed by comparing the genotypes of closely related
individuals at two or more linked markers and identifying groups of alleles which are
co-inherited as a set from one generation to the next. However, where no family members
are available and the cohort under study consists of a population of unrelated indi-
viduals, it is necessary to infer haplotypes and haplotype frequencies using statistical
methods. The most common method for the estimation of haplotypes is the expectation-
maximization (EM) maximum likelihood estimate (MLE; Excoffier and Slatkin, 1995).
The ARLEQUIN software package developed in the Genetics and Biometry Laboratory
at the University of Geneva contains an EM algorithm for this purpose. ARLEQUIN
can be downloaded from http://lgb.unige.ch/arlequin/. Another popular program for hap-
lotype construction and analysis is EHPLUS (Zhao et al., 2000). EHPLUS can be down-
loaded from http://www.iop.kcl.ac.uk/IoP/Departments/PsychMed/GEpiBSt/software.stm.
Both packages are discussed in detail in Chapter 11. Note that haplotype construction
using family inheritance patterns, although more robust than population-based MLE, also
typically requires a degree of inference and resulting haplotypes may be probable rather
than actual (Hodge et al., 1999). For absolute definition of all haplotypes, it is necessary
to physically separate the two copies of each stretch of DNA under analysis, i.e. reduction
from a diploid to a haploid state, to allow unmixed analysis of a single haplotype. For very
short stretches of DNA (up to approximately 10 kb), this can be achieved by allele-specific
PCR (Michalatos-Beloin et al., 1996); for large-scale haplotype construction it is neces-
sary to separate entire chromosomes. This strategy has been successfully employed by the
California-based company Perlegen Sciences Inc., who have used a rodent–human somatic
cell hybrid technique to physically separate the two copies of human chromosome 21 for
haplotype elucidation (Patil et al., 2001; see below). However, most investigators employ
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the less laborious MLE or family-based inference methods for haplotype construction and
accept a certain degree of error or loss of power.

In addition to potentially providing greater power than single markers in subsequent
statistical analyses, a knowledge of the haplotypes representing the locus under study is
extremely valuable for maximizing efficiency in study design. For example, two markers
which always co-segregate (as in Figure 8.1, scenario A) will provide the same infor-
mation, regardless of which of the two is genotyped, therefore typing both markers
is inefficient as the genotype of one can be inferred from the other. Consequently, a
detailed knowledge of the haplotypes across the interval theoretically allows a minimum
marker set to be identified that will permit the extraction of all haplotypic information
(Figure 8.2; see Johnson et al., 2001; Patil et al., 2001). David Clayton of the Medical
Research Council Biostatistics Unit, UK has written software (htSNP) to aid the selection
of optimum marker sets based on haplotypic information which can be downloaded from
http://www-gene.cimr.cam.ac.uk/clayton/software/stata.

Before this optimized marker set can be selected, it is necessary to identify
all common SNPs within the area under study and construct haplotypes. The
publicly available SNPs catalogued in the SNP database hosted by NCBI (dbSNP:
http://www.ncbi.nlm.nih.gov/SNP/) are far too sparse for this purpose at the time of
writing (Johnson et al., 2001). Comprehensive identification of all common SNPs in a
given interval requires sequencing of a significant number of individuals from the relevant
population. For example, sequencing 24 individuals would give a 95% probability of
detecting all variants with a minor allele frequency of greater than 5% (Kruglyak and
Nickerson, 2001); 5% is a sensible lower cut-off point, as sample size requirements
for case–control studies increase dramatically when allele frequencies fall below 5%
(Johnson et al., 2001).
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Figure 8.2 Using haplotypic information to maximize efficiency in genotyping study
design. Twenty SNPs spanning four haplotypes are shown. Each SNP is represented by
a circle; the circle is black or white, depending on the allelic state of the SNP. The
SNPs can be grouped into nine blocks — each block contains a group of SNPs with an
identical allelic pattern in the four haplotypes. Genotyping all SNPs in any given block is
unnecessary, as the genotype of one SNP per block allows the genotypes of the other SNPs
in the block to be inferred; for example, genotyping SNP 1 allows the genotypes of SNPs
2 and 3 to be predicted. Moreover, in this simplified example, all four haplotypes can
be unambiguously identified by genotyping just two SNPs, 5 and 14 (boxed), yielding
a 90% reduction in genotyping compared to a ‘blind’ strategy (i.e. no knowledge of
haplotypic structure).
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Obviously it is impractical to sequence a region covering several Mb in 24 individuals.
A more realistic approach is the identification of all genes in the interval and sequencing of
the coding sequence plus flanking splice sites, together with 1–2 kb of putative promoter
(i.e. the region immediately upstream of the transcription start site) and any other known
regulatory elements. Although not comprehensive, as unidentified regulatory elements
can be intronic or several tens of kilobases away from the genes under their influence
(Blackwood and Kadonaga, 1998), this approach offers a good compromise between
exhaustive coverage of the locus and practicality. For SNP identification purposes, it may
be preferable to use individuals derived from the disease, rather than control, population.
This will give a greater chance of detecting rare functional variants (mutations) that are at
a higher frequency in the disease population. For example, NOD2 mutations predisposing
to Crohn’s disease were recently found to occur at a frequency of 6–12% among cases,
but at <5% among controls (Hugot et al., 2001; Ogura et al., 2001).

Having identified the majority of coding and regulatory sequence SNPs with a fre-
quency of greater than 5%, it is necessary to construct haplotypes to allow redundant
SNPs to be identified and eliminated from the association study. A subset of 96 indi-
viduals from the population under study should be sufficient to detect the majority of
haplotypes with a frequency of greater than 5% (B-Rao, 2001; note that studies to date
indicate that common haplotypes at any given locus in Caucasian populations are restricted
in number and account for the majority of all haplotypes observed; see Daly et al., 2001;
Johnson et al., 2001). These haplotypes can then be used as a basis for selecting a minimal
SNP set for the full association study. It should be noted, however, that SNPs which sug-
gest a strong possibility of functional consequence (e.g. those that alter residues which
are conserved between a number of species, or result in non-conservative amino acid
changes; see Chapters 12–14) should not be excluded from analysis and should always
be tested individually.

Clearly extensive haplotype information covering the entire human genome for a num-
ber of different populations would be an invaluable resource for all research groups under-
taking association studies. Perlegen Sciences Inc. has recently released a haplotype map
covering the whole of human chromosome 21. Although the number of chromosomes sam-
pled was limited to 48, drawn from a number of different ethnic groups (Patil et al., 2001)
this represents a good start in developing a genome-wide haplotype map. Perlegen’s haplo-
type data have been incorporated into the Golden Path Browser (http://genome.ucsc.edu/)
and can also be viewed at Perlegen’s own website (http://www.perlegen.com/haplotype/).

8.2.3.4 Simple Tandem Repeat Markers (STRs)

STRs (also known as microsatellites — see Chapter 3) were the mainstay of monogenic
trait linkage analysis during the 1990s, but are now frequently overlooked following the
explosion of interest in SNPs for population-based studies. STRs are out of favour for two
main reasons: (i) they are less amenable to cheap, high-throughput genotyping methodol-
ogy than SNPs and (ii) STRs typically have a much higher mutation rate than SNPs (up
to 10−3 per meiosis compared with an average of 10−9 for SNPs; Ellegren, 2000). It has
been suggested that this extreme mutation rate might confound genetic association studies,
as a single microsatellite allele may represent an excessive number of haplotypes, having
independently arisen on the different haplotypic backgrounds through mutation events (see
Moffatt et al., 2000). This may prevent the detection of association between the STR allele
and an adjacent polymorphism associated with disease. However, comparison of the entire
STR allele frequency distribution profiles for cases and controls may highlight differences
which reflect a difference in the frequency of an adjacent disease-associated SNP, due to
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divergence of the STR profiles associated with SNP allele 1 and SNP allele 2 as a result
of frequent STR mutation (Abecasis et al., 2001; Koch et al., 2000). There is also some
evidence to suggest that LD can be detected over greater distances with STRs than with
SNPs; possibly 10 times as far (Koch et al., 2000), perhaps because in some circumstances
STR mutation significantly outstrips recombination at flanking sites. Given the caveat that
limited empirical evidence is available at present and the extent of detectable LD is likely
to be highly locus and marker specific, inclusion of STRs spaced at intervals of 50–100 kb
in a preliminary case–control analysis may assist in identifying regions of potential asso-
ciation within the critical interval that can be prioritized for follow-up with SNPs.

8.2.4 Statistical Analysis

Methods and software for the statistical analysis of both single marker and haplotype
data in both a case–control and family-based cohort scenarios are described in detail
in Chapter 11. Briefly, a chi-square analysis may be used to test for departure between
observed and expected allele frequencies for a biallelic marker in a case–control cohort,
while multi-allelic systems (e.g. STRs) may be tested by permutation using software such
as CLUMP (Sham and Curtis, 1995a; see Section 8.3.2 below). Family-based samples
such as parent–offspring trios and discordant sibs can be analysed using the transmission
disequilibrium test (TDT) and associated methods (Spielman et al., 1993; discussed in
depth in Chapter 11); although the TDT was originally developed for biallelic markers, an
extension of the TDT has been developed for testing multi-allelic markers and haplotypes
(Sham and Curtis, 1995b). For case–control studies, haplotypes can be assessed using
software such as EHPLUS (see Section 8.2.3 above) which, in addition to haplotype
construction, can be used for testing for differences in haplotype frequency between cases
and controls (see Chapter 11).

8.3 A PRACTICAL APPROACH TO LOCUS REFINEMENT
AND CANDIDATE GENE IDENTIFICATION

Figure 8.3 gives an overview of the practical process of locus refinement, candidate gene
selection and testing for phenotype–genotype association using a case–control approach.
Each step is described in detail in the following sections.

8.3.1 Sequence Characterization

The most popular web tools for the purpose of human genome sequence characteriza-
tion are the human genome browser hosted by the National Center for Biotechnology
Information (NCBI) at http://www.ncbi.nlm.nih.gov/, the ‘Golden Path’ genome browser
hosted by the University of California, Santa Cruz at http://genome.ucsc.edu/ and the
Ensembl human genome browser maintained by the European Bioinformatics Institute
(EBI) and the Wellcome Trust Sanger Institute at http://www.ensembl.org/Homo sapiens/.
These browsers are described and reviewed in detail in Chapter 5 and we refer the reader
to Chapter 9 for a comprehensive description of methods for defining a locus between
two genetic markers at the sequence level using these three tools.

8.3.2 STR Analysis

We suggest that the first step following complete locus characterization should be an
attempt to identify regions of potential association within the critical interval using STRs.
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PROCESS OUTCOME

Family-based genome scan

Human genome database mining

STR discovery & genotyping in
case−control cohort 

Gene prioritization, SNP discovery
& preliminary genotyping

Full-scale genotyping &
statistical analysis

Replication of association &
functional verification

Linkage peak

Characterized DNA sequence

Refined locus

Haplotype definition

No association with phenotype

Association with phenotype

Failure to replicate and/or
lack of functional evidence

Validated phenotype−
genotype correlation

Figure 8.3 Flow diagram describing the logical steps in pinpointing and verifying
a gene–phenotype association using a case–control follow-up to a family-based
genome scan.

Any regions thus identified can then be prioritized for follow-up with SNPs. It should
be noted however, that there is limited empirical data on the use of STRs to detect
association in populations and lack of evidence for association with STRs should not
deter the investigator from proceeding with a SNP-based association study. STRs can be
identified using the tandem repeat finder software at http://c3.biomath.mssm.edu/trf.html
(Benson, 1999; see Chapter 9). STR genotyping is typically performed by gel or capillary
electrophoresis coupled with a fluorescence detection system (usually an adapted DNA
sequencing platform); instrument and software suppliers include Molecular Dynamics,
Applied Biosystems and LI-COR Biosciences.

Using a subset of 24 individuals from the control population, test the STRs for poly-
morphism; aim for a series of polymorphic STRs spaced at 50–100-kb intervals across the
critical interval. These markers may then be typed in the entire case and control cohorts
and the allele frequency distribution patterns checked for differences between cases and
controls in an attempt to pinpoint areas of potential disease association. One of the most
popular pieces of software for comparing STR allele frequency distributions is the CLUMP
program developed by David Curtis and Pak Sham of the Institute of Psychiatry, London
UK (Sham and Curtis, 1995a). CLUMP uses a Monte Carlo simulation to test for depar-
ture from expected values for a number of chi-square measures, including the intuitively
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appealing techniques of considering each allele in turn against the rest and grouping
(‘clumping’) alleles to maximize the chi-squared value. CLUMP is straightforward to use
and can be downloaded from http://www.mds.qmw.ac.uk/statgen/dcurtis/software.html.

8.3.3 Gene Selection, SNP Discovery and Haplotype Construction

Genes in the critical interval can be arranged in rank order for analysis, based on biological
plausibility with respect to association with the disease under study or other considerations
(e.g. pharmaceutical companies may wish to prioritize any tractable drug targets). We sug-
gest sequencing coding and known or putative regulatory regions from each gene in 24
individuals selected randomly from the disease population, as discussed in Section 8.2.3
above, followed by genotyping of all SNPs thus identified in 96 random individuals
derived from the control population. ARLEQUIN, EHPLUS (see Section 8.2.3 and Chap-
ter 11) or similar software may then be used to construct haplotypes from this sub-sample,
and htSNP (see Section 8.2.3 and Chapter 11) implemented to aid selection of the min-
imal marker set required for accurate representation of each haplotype. Note that several
SNP genotyping platforms are currently available; we will not review them here and
the investigator should select the most appropriate system based on cost, robustness and
required throughput.

8.3.4 Genotyping and Statistical Analysis

Having selected the optimal SNP set, the whole cohort may now be genotyped. Fol-
lowing genotyping, an EM algorithm can be used again for haplotype construction and
haplotype frequency determination (see Chapter 11). It may be beneficial to divide the
cohort randomly into two case–control groups for statistical analysis, to allow the pos-
sibility of replication of any positive association using the second subset. Haplotype
frequency distributions in cases and controls can be compared using CLUMP, as for STRs
(see Section 8.3.3) or more specific software tools such as EHPLUS (see Section 8.2.3;
discussed in detail in Chapter 11). Individual SNPs can be tested using a chi-square
test (see Chapter 11). A test for Hardy–Weinberg equilibrium (HWE) is a useful prior
check for ensuring that there is no (or little) population stratification and that each
marker is giving the expected genotype distribution for the observed allele frequencies.
Expected genotype frequencies are calculated from allele frequencies under the assump-
tion p2 + q2 + 2pq = 1, where p and q are the allele frequencies and p2, q2 and 2pq
correspond to the frequencies of the three possible genotypic states. The actual genotype
frequencies are then tested for departure from the expected frequencies using a chi-square
test. The calculation is simple and can be performed by hand or in a Microsoft Excel macro
for biallelic markers. Alternatively the ARLEQUIN software suite includes a program for
checking HWE for both biallelic and multi-allelic marker systems.

An acceptable p-value threshold for declaring association between a marker and disease
is the subject of considerable debate. Clearly a nominal cut-off of p = 0.05 is inappropriate
where multiple tests have been performed, as this value (or lower) may occur several times
by chance. However, standard methods of correction for multiple testing, for example by
Bonferroni correction, may be overly stringent (Cardon and Bell, 2001). The authors
suggest that the investigator avoids setting thresholds that are excessively rigorous and
instead follows up promising leads, adding to the weight of evidence for involvement (or
lack of involvement) in the disease process by additional means (see below).
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8.3.5 The Burden of Proof — is an Associated Gene Really Involved
in the Disease Process?

Unfortunately detection of association between a gene and disease phenotype does not
constitute definitive proof that the gene under test is involved in the disease process.
Rather, it provides a single piece of evidence to suggest possible involvement in the
disease process that requires further substantiation. Replication of the association in a
second cohort considerably strengthens the argument for involvement; for example the
association between the insulin gene and type 1 diabetes has been reproduced a number of
times (Bennett and Todd, 1996). However, even in the event of independent replication
of results, one should consider the possibility that the replication is due to chance or
that the apparent disease association is due to an adjacent gene in LD with the marker
under test. If the polymorphism is in protein coding sequence and causes an amino acid
change, it may be possible to assess the possible impact on protein function by the
nature of the change (conservative or non-conservative), the context in which it occurs
(potential disruption of secondary or tertiary protein structure) and the degree of cross-
species conservation and conservation within protein families. Conservation may also be
used to gauge the potential impact of polymorphisms in putative regulatory elements.
These areas are covered in detail in Chapters 12 and 13. However, it should also be
remembered that polymorphisms that appear to be innocuous on cursory examination can
have functional consequences, for example synonymous coding changes that occur in
exonic splicing enhancer (ESE) regions (Liu et al., 2001).

Ultimately it is likely that the investigator will wish to instigate additional laboratory-
based experiments to judge the functional effect of the variant in question. These may
include gene expression and cell-based reporter assays for putative promoter polymor-
phisms, functional enzyme or signal transduction assays for amino acid changes and in
vivo analysis in the mouse using gene knock-out or polymorphism knock-in technology
for studies in the context of the whole organism, to name but a small fraction of the
available techniques.

8.4 CONCLUSION

In this chapter we have given a basic overview of the process of moving from a large
genetic locus to the identification and screening of candidate genes for disease association.
More detailed information on all aspects of study design and data analysis can be gleaned
from the references cited in the text and further review of the literature and we strongly
advise readers to broaden their knowledge beyond the limits of this chapter. Although
we have highlighted a number of popular tools and techniques, several other equally
valid approaches exist and we encourage investigators to actively seek out and develop
further methods for comparison with those presented here. Continual development of new
approaches and improvement of existing methodology is a dominant feature of this rapidly
moving field; consequently there is a constant need for investigators to keep abreast of
new developments to maximize the chances of success.
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9.1 INTRODUCTION

Without risk of hyperbole, the process of definition of a locus or gene in the human genome
sequence is probably the single most valuable bioinformatics process that a geneticist can
carry out. This immediately places a gene or locus in a wider context. Now we can quickly
find out what known genes are in the locus, what evidence exists for novel genes and
what markers are available across the locus to study these genes. Digging a little deeper
into the data will soon tell us where the genes are expressed and what their biological
role is likely to be. We will even gain an insight into some of the common variation that
exists across the locus, and also what rare mutations exist in some of the genes. Finally
study of the sequence of the locus itself can tell us something about the physical nature
of the region. We may even be able to draw some conclusions about the likely genetic
nature of the region in terms of recombination and Linkage Disequilibrium (LD). All this
is possible before setting foot in the laboratory. But we also need to be aware that there
are limitations to this approach and sometimes stepping into the laboratory is the only
way to resolve these limitations.

The availability of the golden path is a great advance for genetics — it is too easy to
forget the pre-genome era, imprecise genetic localizations are now superseded by absolute
genome locations to the nearest base pair. But the golden path must be used carefully; with
proper quality checks the data can serve as an invaluable template for genetics, without
these checks it can create as many problems as it solves. These caveats should not be
ignored. Firstly the golden path is a draft dataset composed of hundreds of thousands of
fragments of various sizes with many gaps. The order and orientation of the fragments is
often not known from the sequencing process itself. In some cases the same part of the
genome will be duplicated in more than one fragment. To address the technical challenges
of whole genome assembly, the golden path is released as defined ‘builds’ on a quarterly
basis (Lander et al., 2001; reviewed in Chapter 5). This implicitly involves some lag in
availability of the most current sequence data. At the time of writing this chapter (March
2002), the December 2001 release of the golden path was in use. It is important to be
aware that golden path coordinates can only be compared if both tools are using the same
build version of the golden path. Finally, if complete sequence across a locus is critical
to a study, additional draft sequence may be available in addition to the material in the
golden path; this can be identified by searching the Human Genome BLAST database at
the NCBI.

In this chapter we will take a hands-on approach to the application of genomic sequence
data to genetics. We will look at the key bioinformatic steps needed to take a genetic study
from an initial LOD peak to laboratory genotyping. Figure 9.1 illustrates each step of this
process, with genomic sequence as a common thread through every stage.

9.2 DEFINING THE LOCUS

A geneticist may come to be interested in a gene or locus by many routes. The locus
could be identified as part of a published genome scan or as part of the scientist’s own
work; it could be syntenic with a mammalian disease model; it could contain a candidate
gene with biological rationale. The possibilities are limitless, but how ever the locus is
identified the next steps to define the region in the human genome are similar. Firstly
the locus needs to be defined as accurately as possible. In some cases, this may not be
easy due to insufficient or unclear data. Taking a complex disease linkage peak as an
example, the linkage across the locus may be defined by a broad flat peak, or multiple
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Figure 9.1 Using the Golden Path as a template for genetics. Key bioinformatic steps to
take a genetic study from an initial LOD peak to laboratory genotyping are illustrated. The
reader should note the role of genomic sequence as a common thread through every stage.

peaks with no well-defined apex. In such cases, it is difficult to define a critical region;
unlike monogenic diseases it is not possible to define a region by a clear recombination
event between affected and unaffected family members. Instead analysis of complex traits
generates an imprecise probabilistic signal based on the increased observance of an allele
in affected versus unaffected individuals. Faced with such uncertainties, the best approach
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is to define a core region within a maximal region, based on LOD score thresholds; this
gives some margin for error. Figure 9.2 shows an example of a theoretical complex disease
linkage peak. In this case we define an acceptable ‘core region’ as any region with a LOD
score of >3, with a ‘maximum region’ defined by markers with a LOD >2 or perhaps >1
(respectively a 10- and 100-fold drop in linkage probability). Definition of these regions is
necessarily approximate. Where markers do not exactly define a locus it may be necessary
to map markers on either side of the locus boundary. So for example in Figure 9.2 the
core region would be defined as the region between markers E–K, while the maximum
region would be encompassed between markers D and M. If linkage peaks are very flat,
approximation to the nearest marker below the threshold might mean including a very
large region, in such cases it may be worthwhile extrapolating between markers to identify
the most probable region with an estimated LOD above the threshold.

Once the markers delineating the boundaries of the locus have been identified, they
need to be mapped onto the human genome to view the full genomic context of the locus.
In Chapter 5 Colin Semple reviewed the three primary tools which offer the user an
opportunity to localize markers to the draft human genome assembly (the golden path).
These tools are Ensembl at the EBI, the UCSC Human Genome Browser (HGB), and
NCBI Map View. It is very easy to develop a preference for one or other of these tools,
but each tool has its own distinct merits, so for complete characterization of a locus
we recommend using all three. In practice this is easy as all three tools use the same
coordinates from the same draft version of the golden path allowing reciprocal linking
between each tool. Direct comparison between tools allows a second and third opinion
across an identical region, which is always a good thing.

In this chapter we will describe some specific case studies which lead the reader through
some of the common bioinformatics processes which can help the genetic characterization
of genomic loci. In each case we will describe the use of the UCSC HGB, Ensembl or
Map View to achieve a specific objective, but the reader should be aware that very similar
approaches will produce similar results with each of the other tools unless otherwise
mentioned. We will try to highlight the strong points of each tool, where possible with
case studies, for an overview of the pros and cons of all three tools see Table 9.1.
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Figure 9.2 Definition of a linkage region by LOD score. In this example of a theoretical
complex disease linkage peak, we define an acceptable ‘core region’ as any region with
a LOD score of >3, with a ‘maximum region’ defined by markers with a LOD >2 or
perhaps >1 (respectively a 10- and 100-fold drop in linkage probability).
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TABLE 9.1 Pros and Cons of the Three Major Genome Viewers for Genetics

Map View Ensembl UCSC HGB

www.ncbi.nlm.nih.gov/cgi-
bin/Entrez/map−search

www.Ensembl.org/ genome.ucsc.edu/

Pros
Good genetic/RH map

integration
Genetic/physical map

focused
Fully integrated with

NCBI tools
Comprehensive genetic

markers
Exclusive data:

• GB4, G3 and TNG
RH maps

• Genethon/Marshfield
maps

• Mitelman morbid
map

• YAC contigs

• FISH clones

Pros
Innovative sequence

annotation
Sequence data focused
Novel gene prediction

focused
Clean innovative

interface
Excellent data export
Distributed annotation

(DAS)
Good integration with

mouse and other
genomes

Free source code
available

Exclusive data:

• Ensembl gene
predictions

• Detailed gene report

• Eponine promoter
prediction

• Drosophila genome

• Zebrafish genome

• Mosquito genome

• Many DAS tracks

Pros
Innovative sequence

annotation
Sequence data focused
Good sequence export
Excellent for contig QC
Archives previous golden

path annotation/
converts coordinates

Fast BLAT search tool
Exclusive data:

• Chr. 21 haplotype
data

• Fish genome
comparison

• SAGE expression
data

• NCI expression

• GNF expression data

• Identifies bridged
gaps

• Genome duplications

• Novel tandem repeats

Cons
Poor data export
Limited sequence

annotation
Linked from Ensembl

and HGB but no link
back

Complex and sometimes
confounding interface

Cons
No genetic/RH map

integration
No golden path version

archive
Accession numbers can

be unstable between
versions

Not possible to view
detailed region >1 Mb

Cons
No genetic/RH map

integration
Data tracks appear and

disappear frequently
Newer golden path has

less data tracks

Finally, the reader should note, that these browsers are subject to frequent change as
datasets are updated and software tools improved. It is possible that the steps described
here and the data returned may be superseded within months of being written! Nonetheless,
the reader should not despair; we hope that the following examples may still be used as
a rough overall guide for accessing the required information. Indeed, there are typically
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many routes to the same data and once familiar with the browser, the user will generally
have no problem in retrieving the required datasets.

9.3 CASE STUDY 1: IDENTIFICATION AND EXTRACTION
OF A GENOMIC SEQUENCE BETWEEN TWO MARKERS
(RECOMMENDED TOOL: UCSC HUMAN GENOME BROWSER (HGB))

In Chapter 2 we reviewed methods for searching the literature for key elements of bio-
logical information. A literature search is an important preliminary stage for any study, to
define the current state of knowledge in a specific research area. For the purposes of the
following case studies imagine we are intending to follow up linkage results to investigate
the role of a specific region in bipolar depression. Several linkage studies report a locus
for bipolar depression in a region that we define between the genetic marker D21S1245
and the Radiation Hybrid marker D21S1852. To evaluate this region further — to get an
idea of its physical and genetic size and number of genes — our first objective should be
to locate the markers in the human genome assembly.

Marker localization to the human genome can be achieved either by searching by
marker name or by searching directly with the sequence of the marker. The former
approach can be problematic as no single tool contains a fully comprehensive index of
genetic markers and their aliases. Map View probably contains the most comprehensive
list of marker aliases but will not unambiguously localize a marker in genomic sequence.
The UCSC HGB is a much more user-friendly tool for this purpose. From the home page
select the most current ‘browser’ from the top left hand menu (for this exercise we used
the December 2001 freeze). Type the marker names in the ‘position’ window, separated by
a semicolon (e.g. D21S1245; D21S1852) and submit the request. This returns a 1.04-Mb
sequence interval covering the genetic marker D21S1245 and the RH marker D21S1852.
Note that in a marker name-based query HGB always returns a larger interval with 100 kb
flanking either side of the markers. So in this case the markers D21S1245–D21S1852
actually encompass a 0.84-Mb interval.

The alternative strategy to searching by marker name is to search by marker sequence.
This can be a useful technique to use when a marker alias is not found by the genome
viewer; in such cases it may be necessary to consult other marker databases, such as GDB
or dbSTS to retrieve a marker sequence (see Chapter 3). If all else fails and a marker
sequence cannot be found it may be necessary to consult genetic and physical maps to
find a neighbouring marker (see Chapter 8). Once a few hundred base pairs of sequence
spanning each marker has been found, the sequence between the two marker locations
can be identified by using the BLAT sequence search tool at HGB. Select ‘BLAT’ and
enter the DNA sequence spanning the marker. Submit the search and make a note of
the genomic position (take the ‘start’ position for the 5′ marker). Repeat for the second
marker (take the ‘end’ position for the 3′ marker). Return to the genome browser and
enter the range spanned by the two markers; this will return the exact genomic interval
between the two markers. So for example, a BLAT search with D21S1245 and D21S1852
will return a 0.84-Mb locus without the flanking sequence retrieved by the marker name
query. Now that this locus is defined it can be saved for future reference by simply adding
a bookmark for the browser page.

9.3.1 Extracting the Genomic Sequence Across the Locus

Either of these approaches will define a genetic locus in the draft human genome sequence;
once this has been achieved the sequence can be extracted to provide the ultimate physical
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map of the region (at 1-bp resolution!). To achieve this select the ‘DNA’ link in the top
tool bar of the HGB, this presents the user with a number of basic options to format the
DNA sequence across the selected region. If at this point you are only interested in the
DNA sequence, select ‘all lower case’ and press the submit button. Alternatively, you
can select ‘lower case repeats’ to highlight repeats in the sequence or you can mask them
for primer design and other applications. There is also an option to reverse complement
the sequence; this is particularly useful if you would like to retrieve a sequence across
a gene that is in the reverse orientation in the golden path. If you would like to receive
full annotation of the sequence in terms of all the features reported by the HGB then
select ‘extended case/colour options’ and press the submit button. This will take the user
to a highly sophisticated annotation interface which allows annotation of almost every
available feature on the sequence, with a combination of toggled case, underlining, bold,
italics and full colour lettering. This feature can be remarkably useful for preparing figures
for publication etc., but bear in mind that the time to retrieve the sequence increases
considerably with each added feature. In most cases toggled case annotation of repeats
and exons is sufficient, also note that most sequence analysis tools will only maintain
upper and lower case annotation, all other annotations (e.g. colour, underlining etc.) will
be lost, unless viewed in a rich-text viewer, such as Microsoft Word.

If the sequence across the region is completely finished with no gaps (check the status
of the clones in the assembly across the region) then this sequence can be used immediately
for further genetic and genomic characterization (see Case study 3), however further QC
is needed if the region is still in a draft form or contains gaps, as in the case of our locus
between D21S1245 and D21S1852.

9.4 CASE STUDY 2: CHECKING THE INTEGRITY OF A GENOMIC
SEQUENCE BETWEEN TWO MARKERS (RECOMMENDED TOOLS:
UCSC HGB, NCBI MAP VIEW, NCBI EPCR)

In Figure 9.3 we show the UCSC HGB view of the locus identified between D21S1245
and D21S1852. The HGB interface can be configured to show and hide different datasets,
for simplicity we only show tracks with an immediate application to the QC of the
genomic sequence.

Now that the genetic locus has been identified in genomic sequence, the next key
objective is to check the quality and orientation of the contig across the region. The view
of this region immediately identifies two gaps, dividing the region into three contigs. The
HGB differentiates between bridged and non-bridged gaps in contigs. Gaps not bridged
by any other known physical clone or mRNA are indicated by a black box. If the relative
order and orientation of the contigs on either side of the gap is known, then the gap is
‘bridged’ and indicated by a horizontal white line scored through the black box. This is
a valuable feature; contigs between two non-bridged gaps should be evaluated to try to
confirm the contig order and orientation. In Figure 9.3 neither gap is bridged, this makes
it possible that contig NT 030187 between the two gaps could be incorrectly orientated,
or even in the wrong location. This is important information to determine, as this contig
constitutes one-third of the entire locus and also contains a complete gene.

9.4.1 Detecting Duplications in Genomic Assemblies

Localized duplications are a common error during genome assembly. Detection of these
errors in human genome sequence is complicated by the high number of genuinely dupli-
cated regions, which are estimated at around 3% of the total genome (Bailey et al., 2001).
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Figure 9.3 Definition of the D21S1245 and D21S1852 interval in genomic sequence
using the UCSC human genome browser. The view immediately identifies five known
genes, two gaps and several duplications across the region (See Colour Plates).

The HGB interface presents a very useful ‘duplication’ track. This identifies regions of
>1000 bp which are duplicated in other golden path contigs. In this case five duplicated
regions are identified across the region; the duplications are coloured red indicating that
they have 99% or more similarity. Duplications of 98–99% and 90–98% similarity are
shown in yellow and grey respectively. The left hand column reports the location of the
duplicate regions. In this case the contigs are all from various ‘NA rand’ locations — these
are singleton contigs which cannot be placed in a chromosome contig. These are most
probably missed overlaps between contigs, so they may not be an overt cause for concern,
although this continues to suggest that this region may need careful curation.

The gaps and duplications across this region highlight a need for further QC to vali-
date the sequence assembly before using the sequence as a basis for the construction of a
laboratory study. One key in silico approach to validate the order and orientation of these
contigs is to compare and integrate them with the RH and genetic map frameworks across
the human genome. The HGB interface includes links to identical golden path regions in
Ensembl and Map View. By selecting the Map View link a view of the region appears in
a new window with a default view of the chromosome 21 contig map, unigene clusters
and genes. To view the integrated maps, select ‘Maps & Options’. Another window will
open. In this window select the following pull-down menus, the ‘NCBI RH’ map, the
‘Marshfield’ Genetic Map and ‘Transcript (RNA)’, finally select the ‘show connections’
tick box and click ‘Apply’. The main Map View window will now reload to show an inte-
grated view of the RH maps and genetic maps across the locus. Markers shared between
maps are linked by lines, which also show the location of the markers in the human
genome contig. The data can also be viewed in a tabular view (with extra information) by
selecting the ‘Data as Table View’ link. Figure 9.4 displays the Map View returned for
this region. Examination of the NCBI Integrated RH map supports the correct ordering
and orientation of the first contig (NT 011512). The genetic map is also broadly in agree-
ment with the RH map, although there are some conflicts, however comparison with other
RH maps supports the RH order for NT 011512 (not shown). Map View also supports
the order of the third contig (NT 030188), however no links are drawn to support the
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Figure 9.4 Using NCBI Map View to produce an integrated view of genetic and physical
map data. Examination of the RH maps and genetic maps support the correct ordering
and orientation of the first and third contigs (NT 011512 and NT 030187). No links are
drawn to support the order between any of the maps and the second contig (NT 030187)
spanned by the gaps, this requires further investigation.

order between the RH map and the second contig (NT 030187) spanned by the gaps. This
highlights one problem with Map View: it does not comprehensively localize markers
in the human genome draft sequence. In the data reviewed so far there is no firm evi-
dence to place NT 030187 in the region under study. The only solution to this problem
is to extract the genomic sequence across the region and screen it directly for matches to
STS marker sequences. The tool to achieve this is Electronic PCR (ePCR) at the NCBI
(http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi). This tool maps known STSs from the
dbSTS and RHdb databases to a submitted sequence (Schuler, 1998).

Submission of the 0.84-Mb sequence to the NCBI ePCR server identifies 57 STS
markers across the sequence. The contig we need to check, NT 030187, maps from 0.56



188 GENETIC STUDIES FROM GENOMIC SEQUENCE

TABLE 9.2 RH Marker Order versus Sequence Order across Contig NT−030187

Location in Region
(Base Pair) Marker

TNG cR50000
(LOD)

GeneMap99 GB4
cR3000 (LOD)

489,493–489,804 SHGC-140546 16451 (12.3) —
558,505 GAP1 — —
645,681–645,988 SHGC-147821 16519(8.7) —
659,283–659,421 D21S1449 16508(14.4) —
689,527–689,653 stSG46899 — 222.98(3.00)

703,493–703,795 D21S356 — —
711,656–711,819 stSG52786 — 222.23(2.43)

767,022–767,332 SHGC-148000 16583(9.7) —
770,359–770,649 WI-20889 16567(14.6) 225.80(3.00)

771,401–771,520 stSG3262 16563(17.1) 225.21(3.00)

777,760 GAP2 — —
843,780–844,059 D21S1852 16617 (11.9) —

to 0.78 Mb, 10 STS markers span this region. In Table 9.2 we list these markers and note
their map order in the other available maps. Integration of maps presents a somewhat
confusing picture. Both the TNG and GeneMap99 GB4 maps show local discrepancies in
marker order. These results are somewhat inconclusive, RH map resolution is unreliable
below 60–100 kb so these localized discrepancies in marker order over 10–30-kb regions
may be due to the lack of resolution of the maps. Alternatively it is possible that the
finished BAC clone (AP001743) which constitutes most of the NT 030187 contig may
contain a sequence rearrangement; further laboratory analysis would be required to confirm
this. However, the overall order of the contigs in this region appears to be supported by
the integrated maps across the region.

9.5 CASE STUDY 3: DEFINITION OF KNOWN AND NOVEL GENES
ACROSS A GENOMIC REGION (RECOMMENDED TOOLS: ENSEMBL
AND HGB)

Now that we are (relatively) sure of the order and orientation of the contig across the
D21S1245–D21S1852 region, it is important to identify all the known and novel genes
in the region, so that they can be evaluated as candidates or to ensure that marker maps
across the region are sufficient to detect any genetic effect in genes or regulatory regions. In
Chapter 4 we presented a detailed examination of the art of delineating genes in genomic
sequence. The UCSC human genome browser and Ensembl are valuable assistants in this
process. Both tools run the human genome sequence through sophisticated gene predic-
tion pipelines (Hubbard et al., 2002). These analyses are coupled with a detailed view of
supporting evidence for genes, such as ESTs, mouse and fish genome homology, CPG
islands and promoter predictions. This wealth of data probably makes further de novo
gene prediction unnecessary in most cases; improvement on the quality of annotation
provided by Ensembl and HGB would require an in-depth understanding of the intrica-
cies of gene prediction, which we cannot hope to impart in this book (see Rogic et al.
(2001) for an excellent review of this field). Instead we suggest that the user focuses on
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the available data to build gene models based on existing annotation. Genetics has one
advantage over other fields of biology: detection of a genetic effect does not require a
completely accurate working model of a gene (although obviously this will help). All
that should be needed is an approximate gene model which can be screened by identify-
ing proximal polymorphisms. The only exception to this might be during the analysis of
functional polymorphisms where an accurate model of a gene and its regulatory regions
may be critical.

For the purposes of our study, we need to identify all known and novel genes across
the locus. In Figure 9.5 we show a magnified HGB view of the first contig in the region,
NT 011512. Again we have configured the browser to show tracks which are directly
applicable to the identification of genes in genomic sequence. Without going into an overt
level of detail there are five known genes identified across the region. A number of extra
tracks show pieces of evidence which support the known genes and suggest the possible
existence of a further four novel genes across the locus which we indicate at the bottom
of the figure. Confidence in the identification of novel genes in genomic sequence is in
part dependent on the range and nature of supporting evidence. The most convincing
single item of evidence is a correctly spliced mRNA transcript, either an EST or whole

Figure 9.5 Using the UCSC human genome browser to identify known and novel genes.
A range of evidence including mRNAs, ESTs and human–mouse homology supports the
existence of five known genes and up to four novel genes (See Colour Plates).
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transcript. In this figure several human mRNAs from GenBank are identified across the
region. These include splice variants and redundant entries of the same transcript. So
for example at least two splice variants are apparent for the BACE2 gene (AF188277
and AF188276). There are no novel mRNA transcripts in the GenBank track, however
there are a large number of human ESTs which do not appear to map to any known
gene. Human ESTs are divided into spliced and unspliced tracks. This is in recognition
of the very high number of artefacts that are generated in EST libraries. Spliced ESTs,
that is, ESTs which align across exons are much more reliable confirmatory evidence for
genes than unspliced ESTs. A final strong source of evidence for genes are the range of
tracks which show homology to non-human DNA, including non-human mRNA and com-
parison with mouse and fish genome sequences. Strong sequence conservation between
man and other vertebrates is generally thought to be restricted to coding or regulatory
regions. The four putative novel genes across this locus are supported by a range of
spliced ESTs, mouse homology and gene prediction. Taken individually each of these
pieces of evidence might not be sufficient to reliably support the existence of a novel
gene, but taken together they are quite convincing. All that remains is to characterize
these novel genes in terms of homology and putative function; we reviewed this process
in Chapter 4.

9.6 CASE STUDY 4: CANDIDATE GENE SELECTION — BUILDING
BIOLOGICAL RATIONALE AROUND GENES (RECOMMENDED TOOLS:
HGB, ENSEMBL)

So far in our study of the D21S1245–D21S1852 region, we have identified our locus in
genomic sequence and identified the known and putative novel genes in the region. Further
genetic analysis of the region could now take two routes, we could perform further linkage
or association studies by defining a suitable set of markers across the region (see Case
study 5) or alternatively we could select specific candidate genes for follow-up studies. As
we only have nine or 10 genes in our locus it would be quite viable to study each gene,
but in most cases a region will contain a much larger number of genes which would make
follow-up of each gene an impractical approach. An alternative in such cases would be
to prioritize candidate genes based on their biological rationale in the target phenotype or
trait. Criteria for biological prioritization of candidate genes are discussed throughout this
book. Genes can be prioritized based on a known or putative role in the disease pathway,
gene knock-out models, expression in the disease tissue, functional polymorphism and
many other criteria.

In our hypothetical study we are looking for a gene with a possible role in bipolar
depression, therefore to prioritize our candidate genes, we might first review the literature
to search for a link between the candidate genes in the region and this disease pathway.
The aetiology of bipolar disorder, like many complex diseases is poorly understood, this
makes it difficult to establish a clear biological rationale for any gene in this disorder.
Where biological rationale is found it could range from convincing support, such as
upregulation of the gene or a related gene or pathway component in a disease model or in
a similar phenotype to the most basic support, such as being expressed in a tissue affected
by the disease.

Drawing together the complex strands of evidence in the literature is a skill that
calls for a good background in biology and ideally a broad understanding of the dis-
ease under study. However reliance on literature-based evidence alone can run the risk
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of over-interpreting tenuous links between genes. This could be a particular problem in
the case of poorly understood diseases, where unknown pathways would largely fail to
register as a form of rationale. This issue is an argument to support a truly investiga-
tive approach to candidate gene identification. The candidate should be in the right place
at the right time; beyond this further assumptions may be misleading. Data presented
by tools such as Ensembl and the UCSC HGB can provide solid evidence which can
help to identify genes which are at least expressed in the tissues affected by the dis-
ease. Obviously in the case of bipolar disorder, we are most interested in genes which
show evidence of expression in the brain. This will inevitably include a large number
of genes. In an analysis of the expression profiles of >33,000 genes, Su et al. (2002),
found that on average any individual tissue expresses approximately 30–40% of known
genes. For candidate gene studies, this implies that 30–40% of genes are likely to be
candidates on the basis of expression in the disease tissue (assuming the disease affects
only one tissue).

9.6.1 Analysis of Gene Expression

Four tracks in the UCSC HGB provide information about the tissue expression profiles
of genes (Figure 9.6). The simplest level of information is provided by ESTs, each is
implicitly a measure of gene expression, as each is derived from a specified tissue source.
The UniGene track clusters all ESTs which map to a gene. Viewing ESTs from a UniGene
record will confirm the expression of a gene in a particular tissue. The number of ESTs
represented in each tissue will also give a very rough idea of the expression levels of the

Figure 9.6 Using the UCSC human genome browser to evaluate gene expression across
a locus. Four tracks provide information on gene expression. ESTs implicitly measure
gene expression as each is derived from a specified tissue source. UniGene clusters link
to SAGE expression profiles drawn from the SageMap project. Finally data from two
genome-wide microarray projects are presented, the NCI60 cell line project and GNF
gene expression atlas ratios (See Colour Plates).
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gene, but it will not confirm the absence of a gene in a tissue. The most comprehensive
measure of gene expression is also linked from the UniGene track in the HGB interface.
Clicking on a UniGene cluster links to SAGE expression profiles drawn from the SageMap
project (Lash et al., 2000). Finally the HGB interface also provides two specialist tracks
containing data from two genome-wide microarray projects, the NCI60 Cell Line Project
(Ross et al., 2000) and GNF Gene Expression Atlas Ratios (Su et al., 2002; Table 9.3).

9.6.2 Serial Analysis of Gene Expression (SAGE)

The HGB UniGene track links to SAGE data for eight of the 10 genes in the
D21S1245–D21S1852 interval. SAGE is a quantitative measure of gene expression based
on tags in the 3′ UTR of genes (see Chapter 16 for a detailed explanation of this technique).
Clicking on a UniGene cluster returns a table of SAGE data for every Unigene cluster
contained in the browser window. Selecting the Unigene cluster name will display the
SageMap page for the cluster, leading to a so-called ‘Electronic Northern’, which might
more appropriately be called an ‘electronic dot-blot’, as there is no element of transcript
sizing. The summary data from the SageMap of the genes in the region is presented in
a tabular form, so if you would rather see a graph across the region, it is quite easy
to export this data to a spreadsheet to plot the expression profiles of each gene. SAGE
expression data is available in a selected range of brain and neuronal libraries for eight
of the genes across the locus. This data identifies expression of BACE2, PAPPA, Novel3,
C21orf11, MX2 and MX1 in some of the normal brain tissues in the SAGE libraries.
BACE2, Novel3 and MX1 show high expression in a wide range of normal brain tissues,
which suggests that these genes may warrant priority as candidates. The TMPRSS1 and
Novel2 genes show no evidence of brain expression and so it may be reasonable to reduce
the priority of these genes.

The integration of SAGE data across the genome within the HGB interface, makes
SAGE data one of the most comprehensive and convenient measures of gene expression
across a genetic locus, allowing the user to quickly identify most genes across the locus
which are expressed in a range of common tissues. The only real limit to this method is
in the number and type of tissues, although these are extensive and growing in numbers
(see http://www.ncbi.nlm.nih.gov/SAGE for a list of available tissues).

TABLE 9.3 Comparison of Public Domain Genome-Wide Expression Datasets

Dataset SAGE
NCI60 Cell
Line Project

GNF Gene
Expression Atlas

Technology Serial analysis of
gene expression

cDNA microarray
(Incyte)

Affymetrix U95a
GeneChip microarray

No. of genes >100 K tags∗ ∼8000 ∼33 K
Tissues 37 — 33
Cell lines 4 — —
Induced cell lines 3 — 2
Tumour material

(incl. cell lines)
52 60 13

Total tissues 96 60 48
Reference Lash et al. (2000) Ross et al. (2000) Su et al. (2002)
∗SAGE tags are redundant across genes.
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9.6.3 Microarray Data Tracks

9.6.3.1 The NCI60 Cell Line and GNF Gene Expression Atlas Ratios

The UCSC Human Genome Browser hosts two public domain microarray data tracks.
The NCI60 cell line track presents data from a cDNA microarray experiment to
assay the expression of more than 8000 genes among 60 tumour-derived cell lines
used in the National Cancer Institute’s (NCI) anti-cancer drug screens (Ross et al.,
2000; http://genome-www.stanford.edu/nci60/). The GNF track shows expression data
generated from 46 human tissues and cell lines by the Genomics Institute of the
Novartis Research Foundation (GNF) using a u95A Affymetrix GeneChip (Su et al.,
2002; http://expression.gnf.org/).

Both the NCI60 and GNF tracks are presented in a similar format, although the experi-
mental details differ. Clicking on a transcript in either track, will bring up a tabular view of
all genes in the current browser view, in which each column of coloured boxes represents
the variation in transcript levels for a given cDNA across all of the array experiments and
each row represents the measured transcript levels for all genes in a sample (Figure 9.7A).
The variation in transcript levels for each gene is represented by a colour scale, in which
red indicates an increase in transcript levels, and green indicates a decrease in transcript
levels. These relative transcript levels are measured in a slightly different way between
NCI60 and GNF tracks. In the NCI60 track expression levels are relative to a reference
sample of 12 pooled tumour cell lines. In the GNF track the expression levels are relative
to the signal of the probe in the particular tissue compared to the median signal of all
experiments for the same probe. The saturation of the colour corresponds to the magnitude
of transcript variation. A black colour indicates an undetectable change in expression and
a grey box indicates missing data (see Su et al. (2002) and Ross et al. (2000) for a more
detailed explanation of this method).

As the NCI60 data focuses on tumour-derived cell lines, it is not well suited for the
determination of expression in normal tissues, although obviously this data would be
very valuable for studies of cancer genetics. However, the GNF data track presents some
very valuable information for complex disease genetics, including a breakdown of gene
expression across different regions of the brain. This data is very valuable for candidate
prioritization, as certain regions of the brain may have a more significant role in bipolar
depression than others. For example, functional neuroimaging studies of bipolar patients
have identified the thalamus as a key component of the main neuroanatomic circuitries
which are altered in psychiatric illnesses, such as bipolar disorder (Soares and Mann,
1997). This information indicates that expression in the thalamus could help to prioritize
candidate genes for analysis.

Only one gene from our core region, MX2, is represented in the GNF dataset, this
shows low level expression throughout the different brain regions, with strongest expres-
sion in whole blood (data not shown). However if we expand the D21S1245–D21S1852
interval by 1 Mb on either side to include other flanking genes, much more data becomes
available. Figure 9.7A shows a view of a selection of the available tissues, including all
neuronal tissues for 15 genes across the wider locus. One gene, Purkinje cell protein 4
(PCP4–no. 37576), is immediately apparent with a high level of expression in a wide
range of neuronal tissues, including the thalamus. By clicking on the PCP4 gene number
in the expression view in HGB, a detailed expression profile of the gene in all available
tissues is launched into a new window (Figure 9.7B). This shows that the expression
of this gene is primarily limited to the brain, thyroid and prostate glands, with highest
levels of expression in the caudate nucleus and thalamus. Obviously this makes PCP4 an
interesting candidate gene.
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(A)

(B)

Figure 9.7 GNF gene expression atlas ratios displayed by the UCSC human genome
browser. (A) The browser shows a view of the expression profiles of 15 genes across the
wider locus. One gene, Purkinje cell protein 4 (PCP4, no. 37576), shows high expression
in a wide range of neuronal tissues, including the thalamus. (B) Detailed gene expression
profile for the PCP4 gene (See Colour Plates).

The relative cost of microarray technology was a cause of major concern for the aca-
demic research community, prompting fears that microarray data would be the preserve of
cash-rich industry and biotech. However public domain projects like the NCI60 and GNF
gene expression atlas should in part allay these fears. Although these microarray projects
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currently provide a somewhat limited coverage of human genes, they are complemented
by other technologies such as SAGE and both types of data are constantly expanding in
the public domain.

9.7 CASE STUDY 5: KNOWN AND NOVEL MARKER IDENTIFICATION
(RECOMMENDED TOOLS: ENSEMBL, HGB, MAP VIEW, SNPPER)

Now that we have identified the genes in our locus and established some biological
rationale to prioritize them for study, we need to ascertain which markers are available to
complete this study. The human genome is a very convenient framework for organization
of polymorphism data and so genome viewers are probably the best tools for identifying
these polymorphisms.

All the genome viewers maintain SNP annotation across the human genome. Exact
numbers of SNPs reported may differ between tools, for example, comparison of the
D21S1245–D21S1852 locus between Ensembl, UCSC HGB, Map View and SNPper (see
below), identifies 901, 903, 903 and 876 SNPs respectively. These minor discrepancies
are a likely result of the different SNP mapping and repeat masking parameters between
the tools. Missing a SNP or two across a locus may not be a problem for a large-scale
analysis but if candidate gene analysis is the objective, it may be important to identify
all variation to enable accurate construction of haplotypes or identification of potentially
functional variants.

9.7.1 Identification of Potentially Functional Polymorphisms

Aside from the ordered convenience that genome browsers bring to SNP data, they also
place a SNP into a full and diverse genomic context, giving information on nearby genes,
transcripts and promoters. Both Ensembl and HGB show genome conservation between
human and mouse, while HGB also includes tetradon and fugu (fish) genome conserva-
tion. Genome conservation between vertebrates is generally restricted to genes (including
undetected genes) and regulatory regions (Aparicio et al., 1995). Hence this is a simple
but powerful method for identifying SNPs in regions which are potentially functionally
conserved. Figures 9.8A shows a detailed HGB view of the BACE2 gene. After close
viewing of the locus it is possible to assess the functional context and genomic conser-
vation of the region surrounding each SNP. Where an overlap is unclear it is possible to
zoom in to a resolution of just a few hundred base pairs to determine exact locations and
overlaps between SNPs and gene features (Figure 9.8B). At the simplest level, identifica-
tion of potentially functional SNPs is a matter of identifying SNPs which overlap highly
conserved regions or putative gene or regulatory features. The UCSC browser presents
some detailed information on putative promoter regions, including golden triangle and
transfac analyses (see Chapter 12). Once identified, the impact of different alleles can be
evaluated by running the alleles through the tool originally used to predict the sequence
feature. These could include tools for promoter prediction, splice site prediction or gene
prediction. In Chapters 12–14 we describe these analysis approaches in detail. One final
point on the functional characterization of SNPs is that we currently know very little about
the functional regions of the genome; but we do know that our tools are very limited, and
so it is almost impossible to conclude that a SNP is not functional. All that we can do is
make our best guess from the available evidence.
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Figure 9.8 SNP visualization in the UCSC human genome browser. (A) A detailed
view of the BACE2 gene allows the user to view a range of information, including SNP
haplotype data. (B) Close viewing of the BACE2 locus allows the user to assess the
functional context and genomic conservation of the region surrounding each SNP. (C) A
detailed view of a Perlegen haplotype (See Colour Plates).

9.7.2 Identifying Novel Microsatellites in Sequence Data

The polymorphism data we have identified so far, may be sufficient for a SNP scan
across our locus, however in Chapter 8 we reviewed some data to suggest that LD may
be detected over greater distances with STRs (Koch et al., 2000). Inclusion of STRs
spaced at intervals of 50–100 kb in this locus may assist in narrowing a critical interval
to a distance of a few hundred kb in a case–control association study. Known genetic
marker maps identify three polymorphic STRs across the 0.84-Mb, D21S1245–D21S1852
interval. To generate a sufficiently dense map, we need 10 to 15 extra markers. Potentially
polymorphic STRs can easily be detected across a given region by using Tandem Repeat
Finder (Benson, 1999; http://c3.biomath.mssm.edu/trf.html). The UCSC HGB interface
already presents output from the Tandem Repeat Finder in the ‘simple repeats’ track.
Figure 9.8B shows an example of this output — a simple repeat in the promoter region
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of BACE2 is identified by this tool. Use of the Tandem Repeat Finder interface identifies
tandem repeats in a submitted sequence over a user-defined repeat unit size range (from
1 to 500 bp). Perfect or close to perfect tandem repeats of greater than 12 repeat units
tend to be polymorphic (see Fondon et al. (1998) for a review of these methods).

9.7.3 Exporting SNP and Microsatellite Data

If comprehensive SNP coverage is a priority then results from both Ensembl and HGB
can be compared and collated. The easiest way to do this is to compare both exported SNP
sets in a Microsoft Excel spreadsheet. Both Ensembl and HGB have facilities to export
SNP and microsatellite information across a defined locus. In Ensembl the user needs to
select the ‘export’ menu above the detailed analysis window and select ‘SNP list’. This
allows the user to retrieve information about SNP accessions, golden path location and
gene region directly into Microsoft Excel. The UCSC HGB is slightly more complicated,
the user needs to select ‘TABLES’ and then separately select ‘Random SNPs’ and then
repeat with ‘Overlap SNPs’ from the menu. This produces two similar tab-delimited
files. Both files can be loaded into Excel and sorted by golden path location to obtain a
non-redundant SNP map across the region.

9.7.4 Construction of Marker Maps

To complete an LD-based association scan across this region, we need to define a suffi-
ciently dense set of markers to detect LD across the region. In the absence of knowledge of
the haplotypic diversity of the interval in question, accurate selection of an optimal marker
set is not possible. However a framework of markers spaced at 10–30-kb intervals might
be appropriate; this is accepted as a reasonable assumption of LD in northern European
populations (Ardlie et al., 2002). Informative SNP markers for association studies need
to be carefully selected, ideally with an allele frequency of around 25%, and generally
no lower than 5%. Lower frequencies would require very large sample sizes to reach a
sufficient power to detect association (Johnson et al., 2001; see Chapter 8). Unfortunately
this creates a technical problem, most SNPs from dbSNP, are ‘candidate SNPs’ with no
available frequency information (see Chapter 3 for a discussion of this issue). Marth et al.
(2001) determined the frequency of a large number of candidate SNPs from dbSNP and
found that on average, 50% of SNPs assayed showed a frequency of >10%. Consider-
ing this success rate it may be necessary to identify SNP markers at 5–15-kb intervals
across our region for frequency determination (20 chromosomes should be sufficient to
identify the majority of SNPs with a minor allele frequency >10%), before defining a
final marker map.

Use of an evenly spaced marker map is a pragmatic approach which assumes evenly
spaced LD across the study region. Inevitably this does not always occur; instead LD
extends over variable distances. The optimal, but time-consuming approach to map con-
struction across a region is to first determine common haplotypes and use this data to
define a minimal set of SNPs (‘haplotype tags’) that define these common haplotypes. In
this study we have one major advantage, the UCSC Human Genome Browser presents
information on common SNP haplotypes across the whole of chromosome 21. This data
is derived from a study by the Biotech company, Perlegen, Inc. In their study, Patil et al.
(2001) identified 25,000 SNPs with a frequency >10%, by sequencing 20 haploid copies
of chromosome 21 derived from a cell line. They used these SNPs to directly determine
common haplotypes. This data is visible in the ‘haplotype blocks’ track in Figure 9.8A.
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Each haplotype block is represented by a blue horizontal line with taller vertical blue bars
at the first and last SNPs of each block. The shade of the blue indicates the minimum
number of SNPs required to discriminate between haplotype patterns which account for
at least 80% of genotyped chromosomes, darker colours indicate fewer SNPs are neces-
sary. Individual SNPs are denoted by smaller black vertical bars. This information is also
available at the Perlegen website (http://www.perlegen.com/haplotype). Several haplotype
blocks extend over the BACE2 gene region. Clicking on the haplotype bar opens a window
displaying the structure of the selected haplotype. In Figure 9.8C we show an example of
one of the haplotypes across the BACE2 gene. In this case two SNPs from a total of 10
SNPs (A–J) define four haplotypes (W,X,Y and Z). In this relatively simple haplotype, it
is fairly easy to identify the SNP pairs that would ‘tag’ or distinguish the four haplotypes.
However, the HGVbase website also has a tool, ‘Tag ’n Tell’, to automatically identify
haplotype tags (http://hgvbase.cgb.ki.se/). This is particularly useful for identifying tags in
larger, complex haplotypes. In the case of the haplotype in Figure 9.8C, we can evaluate
the four haplotypes defined by the 10 SNP markers. To format this haplotype for analysis
by ‘Tag ’n Tell’, we need to list the marker IDs (A B C D E F G H I J) on the first line
separated by spaces. Then, we introduce each haplotype, defined by a list of alleles (one
for each marker) followed by the haplotype name preceded by ‘:’. All four haplotypes
are input on separate lines. Thus the input to the tool is as follows:

INPUT HAPLOTYPES (from Figure 9.8C):

A B C D E F G H I J
1 1 2 1 2 1 1 2 1 1 : W
1 2 1 2 1 1 1 1 1 1 : X
2 2 1 1 1 2 2 1 2 2 : Y
2 1 2 1 1 1 1 1 1 1 : Z

The ‘Tag ’n Tell’ program identifies two alternative sets of two tags which will distinguish
all four haplotypes. These are SNPs A and B or SNPs A and C:

A B A C
1 1 : W 1 2 : W
1 2 : X OR 1 1 : X
2 2 : Y 2 1 : Y
2 1 : Z 2 2 : Z

This convincingly demonstrates the power and potential economies afforded by use of
haplotype data. Unfortunately similar data is not yet available for all chromosomes (LD
maps have also been published for chromosomes 19 and 22; see Chapter 7). A publicly
funded genome-wide haplotype determination project is in progress so this situation should
change fairly quickly.

9.7.5 Identifying ‘Candidate SNPs’

Just as the candidate gene approach can complement the locus analysis approach, a com-
plementary approach to regular marker map construction is to screen candidate SNPs
across the locus. A candidate SNP is any SNP with a potential for functional effect,
this could include non-synonymous SNPs, SNPs in regulatory regions or other functional
regions. In fact uncertainty over functional prediction could stretch the definition of a
candidate SNP to any SNP within 10 kb of gene. There are many ways to select such
SNPs (see Chapters 12 and 13 for details). At the most detailed level, it is possible to
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identify all available SNPs in genes and putative regulatory regions by eye using human
genome browsers to identify overlap between SNPs and features such as promoter regions
or comparative genome conservation. This can be a useful and manageable approach for
small loci, however, this is not always a practical approach for larger loci. Larger analyses
can be facilitated by using the feature ‘export facilities’ in the human genome browsers.
The coordinates of most features can be exported as tab-delimited data, these can be
compared in a spreadsheet.

9.7.6 Moving from SNPs to Assays

By using both Ensembl and the UCSC HGB we have been able to identify and export
a comprehensive list of SNPs across our locus in a convenient tab-delimited form. But
one hurdle stands between our data and a large-scale SNP genotyping experiment. The
problem is that the human genome browsers give us a list of SNP accession numbers, but
not a primer design-ready list of SNP sequences. Until very recently the only web based
approach to obtaining these sequences was to access each SNP individually! Fortunately
both dbSNP and SNPper, now incorporate features which allow the user to export a list
of SNPs with flanking sequence. SNPper (Riva and Kohane, 2001) maps RefSNPs and
genes to the golden path in a very similar way to the genome browsers (but without a
graphical interface), allowing SNP searching by gene or SNP name or by golden path
position. This makes SNPper completely compatible with the coordinates generated by
Ensembl and HGB (and so this tool can also be used at an earlier stage for SNP data
mining). SNPper also produces a very effective gene report. The ‘Annotated’ link in the
gene report displays a very informative SNP report which positions SNPs in the context
of introns, exons and other gene features, including a mark-up of non-synonymous SNPs
across a gene.

The great strength of SNPper lies in its data export and manipulation features. At the
SNP report level, SNPs can be sent directly to automatic primer design through Primer3
(which allows the entry of multiple SNP sequences). At a whole gene level or even at
a locus level, SNP sets can be defined and refined and e-mailed to the user in an Excel
spreadsheet with SNP names in the first column and flanking sequences in the second,
ready for primer design. This is a very useful function which is not currently offered by
any other tool.

9.8 CASE STUDY 6: GENETIC/PHYSICAL LOCUS
CHARACTERIZATION AND MARKER PANEL DESIGN
(RECOMMENDED TOOLS: ENSEMBL, HGB AND MAP VIEW)

The wealth of data presented so far in this chapter has enabled us to define our locus to a
level of detail that would allow us to complete a quite effective genetic study. However,
before finalizing the requirements for this study it may be useful to spend some time
characterizing the actual genetic and physical characteristics of the locus.

Ideally we would like to establish a detailed LD map across the D21S1245–D21S1852
interval. The Perlegen haplotype data presented in the HGB interface goes a long way
towards this objective. However the haplotype coverage across this region is not partic-
ularly complete. Extended haplotypes only cover 40–50% of the interval, leaving large
gaps across the region (Figure 9.9). These gaps may simply reflect insufficient coverage
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Figure 9.9 A putative isochore boundary in the BACE2 gene.

of the region by Perlegen SNPs. Alternatively LD across the gaps may actually be lim-
ited. A number of factors are known to influence LD (see Ardlie et al. (2002) for an
excellent review). One of the most influential is the recombination frequency across the
region. As we showed in Chapter 8, comparison of the physical and genetic distances
between markers can give a direct measure of recombination frequency. In a comparison
of Marshfield maps with the golden path, Yu et al. (2001) found that the genome-wide
genetic/physical distance ratio ranged between 0 to 9 cM per Mb. They used this ratio to
infer recombination rates and identified several chromosomal regions up to 6 Mb in length
with very low or high recombination rates. They termed these recombination ‘deserts’ and
‘jungles’, respectively. LD was much more extended in recombination ‘deserts’ than in
‘jungles’ as higher rates of recombination reduced the extent of LD. This is an interesting
approach, although its major drawback is the low resolution of genetic maps, this makes
it very difficult to draw accurate conclusions about recombination over ranges of less than
1 Mb. There are only two genetic markers in the D21S1245–D21S1852 interval, so it is
not possible to draw conclusions on recombination rate across this locus, analysis would
need to encompass a much wider region.

9.8.1 Analysis of GC Ratio and Identification of Isochore Boundaries

Beyond the analysis of genetic and physical ratios, even simpler measures can give
clues to the nature of recombination in a locus. GC content across a locus also has a
weak influence on recombination rates. Lower GC ratios generally correspond to lower
recombination rates (Yu et al., 2001). There is cytogenetic evidence for this phenomenon,
analyses have shown that meiotic crossovers are seen more frequently in GC-rich R and
T bands than in GC-poor G bands (Holmquist, 1992). This observation directly relates
recombination frequency with the gross Giemsa banding of chromosomes. These bands
were believed to be made up of tracts of DNA with homogeneous GC content, known as
isochores. Isochores are divided into two classes the GC-rich H2 and H3 isochores and
the GC-poor L1, L2 and H1 isochores (Bernardi, 2000). Interestingly our region between
D21S1245–D21S1852 spans the 21q22.2–q22.3 cytoband. The region also shows a clear
shift from high GC (average 50%) to low GC (average 40%) in the region of the cyto-
band boundary (high GC is indicated by dark grey in Figure 9.9, lower GC is indicated
by lighter shades of grey). This region is a putative isochore boundary, between an H2
and L1 isochore. It is difficult to determine if there is a significantly different extent of
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LD between the putative L1 and H2 isochore regions. The markers within the first eight
exons of the BACE2 gene do not generally show LD over a greater distance than 5 kb,
while markers in the L1 region near the MX2 gene show LD over longer distances up
to 10–15 kb (Figure 9.9). In a study of the NF1 gene, Eisenbarth et al. (2000), found a
marked reduction in LD, which coincided with an L1 to H2 isochore boundary in the
NF1 gene.

This analysis of the D21S1245–D21S1852 interval, may seem somewhat esoteric. We
are just starting to understand how the physical properties of chromosomes affect their
genetic properties. Undoubtedly, our understanding of these issues is still limited, but
a pragmatic approach to marker map design across this region might be to establish a
baseline marker density across the entire region (say at 1SNP/10 kb), once this has been
reached within the budget of the project, then supplemental markers could be placed in
regions with a higher predicted recombination rate.

9.9 CONCLUSIONS

In this chapter we have reviewed the key steps in the design and construction of genetic
studies using genomic sequence as a template. When sequencing of the human genome is
finally complete and as studies of the genome become more and more precise, much of
genetics as we know it today may become an increasingly in silico process. Ten years ago
who might have believed that the details of the genetic study process would have changed
so dramatically (although the principles remain the same). As the genome wave continues
to roll towards us, we may be looking at much more intelligently designed genetic studies,
with maps which account for local recombination, LD and a detailed knowledge of genes
and regulatory regions. And 10 years further on, perhaps we will look back again and
marvel again at how much things have changed?
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10.1 INTRODUCTION

Single nucleotide polymorphisms (SNPs) are the most abundant form of DNA sequence
variation in the human genome. It is widely believed that a significant fraction of SNPs
contribute to our susceptibility to various diseases. In order to identify the SNPs associated
with diseases, however, many groups are pursuing a case–control mapping strategy that
requires a large number of SNP markers distributed throughout the human genome. Once
a set of genes is implicated in a disease (either by genetic mapping or by obtaining
biological evidence), the candidate genes are scanned for sequence variations that are
likely to alter the genes’ function. Therefore, identifying single base-pair changes, in a
global or targeted fashion, is extremely important in genome research.

The central public polymorphism database, dbSNP (Sherry et al., 2002), serves as
an archival repository of nucleotide sequence variations. An important subset of these
data, nearly 100,000 SNPs in transcribed regions, were found by analysing clusters of
expressed sequence tags (ESTs) (Buetow et al., 1999, 2001; Irizarry et al., 2000) or by
aligning ESTs to the human reference sequence (Marth et al., 1999). The vast majority of
genomic SNPs (single base pair variations found by analysing genomic sequence clones
without regard to whether they represent exonic DNA) were discovered in sequences
from restricted genome representation libraries (Altshuler et al., 2000), random shotgun
reads aligned to genome sequence (Sachidanandam et al., 2001), and in the overlapping
sections of the large-insert clones (mainly bacterial artificial chromosome, or BAC) that
make up the public human reference genome (Tallion-Miller et al., 1998). Because most
sequences of these comparisons involved a small number of chromosomes (typically two),
this collection of SNPs is enriched for common variants. Experimental characterization
of these polymorphisms demonstrates that many of them occur at a high frequency in
independently chosen samples, and often segregate in all or most human populations
(Marth et al., 2001). By the same argument, many rare polymorphisms, including those
that cause noticeable but rare phenotypic effects, are likely to be absent from this set.
The identification of rare phenotypic mutations will require significantly higher sample
sizes and may only be possible by the cross-comparison between large samples of affected
patients and those of controls (see Halushka et al. (1999) for an example of such a study).

Because the numbers are extremely large and the need for identifying SNPs in a
timely fashion is great, computer tools are indispensable in the SNP discovery process.
Fundamentally, one identifies a SNP by comparing two or more sequences from the
same region on the chromosome. This can be done quite easily if the DNA sequence
quality is high and the sequence data are derived from cloned DNA because each clone
comes from a single copy of one of the two chromosomes in the diploid human cell.
There are no unambiguous bases in regions where the data quality is high. In the case
of identifying SNPs in targeted regions in the genome, one amplifies genomic DNA by
PCR and sequences the PCR products derived from different individuals. In this situation,
SNP discovery is complicated by the fact that the same regions on both chromosomes
in the diploid cell are amplified by PCR and some bases will be heterozygous in one or
more individuals. A good computer tool will be able to identify a SNP even when only
heterozygotes and homozygotes of just one of the two alleles are present in the samples
sequenced. This is not a trivial problem because the commonly used dye terminator-based
DNA sequencing methods yield peaks of uneven heights at the polymorphic sites and the
base-calling algorithm will frequently miscall the base at these sites in the sequences of
heterozygous individuals.

In this chapter, we will survey the computer tools used in global and targeted SNP
discovery and PCR-based assay design. Instead of describing the mechanics of how to use
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these bioinformatic tools, we refer the reader to the primary literature and the excellent
documentations of these tools and concentrate on explaining the approaches these tools
take and the limitations (if any) they may have.

10.2 SNP IDENTIFICATION

Computational discovery of polymorphisms in sequence data usually follows a four-step
procedure. First, sequences of high similarity in multiple individuals are identified, usually
with a BLAST (Altschul et al., 1990) similarity search. To avoid spurious similarity due
to known human repeats, sequences are masked for high copy number repetitive elements
with REPEATMASKER (Arian Smit, unpublished data). Still, the possibility exists that
the sequences originate from regions of as yet uncharacterized chromosomal duplications
(Lander et al., 2001). Inclusion of a second, paralogue-filtering step into the procedure can
reduce false positive SNP predictions arising from comparing paralogous sequence copies.
Following this step, false predictions due to paralogy were as low as 0.2% of the data
collected through pooled SNP characterization in the Kwok laboratory (unpublished data).

The third step is the construction of a base-wise multiple alignment of the sequences. In
the general case, this is a computationally expensive task. Aligning expressed sequences
is even more complicated because of exon–intron punctuation and possible alternative
splice variants. In the case of human data one can organize fragmentary sequences on top
of the nearly complete reference sequence (Lander et al., 2001). This approach was shown
to work well for discovering SNPs in clusters of cDNA sequences (Marth et al., 1999).

In the fourth (and final) step, sequences in the precise, base-to-base multiple alignment
are scanned for nucleotide differences. Because of the possibility of sequencing errors,
not every mismatch is a polymorphic site. Discrimination between true polymorphism
and sequencing error uses statistical tools based on measures of sequence accuracy, or
base quality values (Ewing and Green, 1998; Ewing et al., 1998). Each SNP prediction is
accompanied by a measure of confidence. Accurate confidence values permit one to use
the highest number of candidates with an acceptable false positive rate.

Both commercial and academically developed programs are available for use in SNP
detection. Some methods use sequence quality data to eliminate false positives due to
poor sequencing quality. Others incorporate expected mutation rates to distinguish true
SNPs. The most prominent methods of detecting SNPs are PolyBayes, PolyPhred, and
Sequencher. Other methods incorporate neighbourhood quality standard (NQS) gener-
ated by Phred (Ewing et al., 1998) to determine the quality of the data surrounding the
SNP (Altshuler et al., 2000; Mullikin et al., 2000). PolyPhred and PolyBayes are freely
available to academic groups, while Sequencher is produced by Gene Codes Corporation
(URL: www.genecodes.com). Other companies have developed software based on the
same principles. Typically, these products either offer a built-in graphical interface, or use
an external, licensable interface program (such as CONSED). They can be used for both
comparison of short known regions, or long shotgun regions, and are extremely useful
when searching known regions of interest for novel SNPs.

10.2.1 PolyBayes

The POLYBAYES program was developed for de novo SNP discovery in non-ambiguous
(clonal) sequence data (Marth et al., 1999). The SNP detection algorithm employs a
Bayesian approach to combine prior knowledge (such as average polymorphism rate or
expected transition to transversion ratio) with the base calls and base quality values of
the sequences in the multiple sequence alignment. Each SNP prediction comes with a
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Figure 10.1 The POLYBAYES SNP discovery tool applied to EST-Mining. (1) The
genome sequence (BAC clone or assembled sequence contig) is masked for known,
large copy number human repeats. (2) Using the BLAST similarity search tool, expressed
sequences in the public database (dbEST) that match the genomic sequence are identified.
(3) Matching ESTs are aligned to the genomic sequence using an anchored alignment
approach. (4) Possible paralogous ESTs are identified and discarded. (5) The multiple
alignment is scanned for polymorphic sites. (6) Candidates are validated by sequencing
in independent, population-specific DNA pools.

predicted true positive rate, or ‘SNP score’, which have been shown to be accurate (Marth
et al., 2001). Figure 10.1 illustrates an example of using POLYBAYES for SNP discovery
in ESTs aligned to genome sequence. POLYBAYES has been used to discover SNPs in
overlapping regions of human BACs (Marth et al., 1999), in C. elegans (Wicks et al.,
2001) and Drosophila (Berger et al., 2001).

10.2.2 PolyPhred

PolyPhred was developed to be used with Phred, Phrap, and CONSED to identify
candidate SNPs in sequence trace data (Ewing and Green, 1998; Gordon et al., 1998;
Table 10.1). In Consed, coloured marks in the sequence alignment are used to indicate
candidate SNPs as well as confidence in the variations base call. The accuracy of the
calls by PolyPhred has been tested using previously screened mitochondrial DNA. The
results show that this software exhibits over 95% accuracy depending on the quality of
the sequence traces (Nickerson et al., 1998). The primary use of PolyPhred is to identify
SNPs in PCR-amplified data as it can detect heterozygous sequence peaks, and is thus
widely employed in sequence-based genotyping applications.

10.2.3 Sequencher

Sequencher is a tool developed by GeneCodes for sequence alignment, annotation, editing
and mutation identification. Although it is a commercial product, a free demo version is
available (www.genecodes.com/features/html). Sequencher can be used with automated
sequencers such as ABI, Pharmacia/ALF, LI-COR and VISTRA. GeneCodes continues to
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TABLE 10.1 Tools and Related Resources for Primer Design

SNP detection tools
Sequencher http://www.genecodes.com/features.htm
PolyPhred http://droog.mbt.washington.edu/PolyPhred.html
POLYBAYES http://www.genome.wustl.edu/gsc/polybayes/

Repeat masking tools
RepeatMasker www.genome.washington.edu/uwgc/analysistools/repeatmask.html
MaskerAid http://sapiens.wustl.edu/maskeraid/

Primer design tools
Primer3 http://www-genome.wi.mit.edu/cgi-bin/primer/primer3−www.cgi
TSC primer db ftp://snp.cshl.org/pub/SNP/.
Primer design tips http://www.alkami.com/primers/refdsgn.htm.

Tools for sequence extraction and manipulation
SNPper http://bio.chip.org:8080/bio/.
UCSC HGB http://genome.ucsc.edu/index.html

add new tools and functionality to the software. The most appealing part of the software
is the graphical interface, which is intuitive and easy to use on multiple platforms.

10.2.4 Non-sequencing Methods

Several groups have explored non-sequencing methods for SNP discovery. Among the
most promising of these techniques is the use of high density DNA chips (Dong et al.,
2001). Variations of this method have been used to scan for genome wide SNPs (Wang
et al., 1998), in mitochondrial DNA (Chee et al., 1996), and to scan all of chromosome
21 (Patil et al., 2001). Methods for SNP scanning using DNA chips vary considerably in
design (for a review see Draghici et al., 2001).

10.3 PCR PRIMER DESIGN

A large number of candidate SNPs exists in public databases. Key to taking advantage of
this resource is the ability to design PCR assays to amplify these loci uniquely and SNP
genotyping assays for genetic studies under standardized conditions. Genetic researchers
wanting to validate and assay SNPs are faced with the need for high throughput primer
design. Manual picking of primers is time consuming, and some automated tools only
allow for submission of one sequence at a time. There are many tools available over
the web as well as software. In addition, some commercial companies offer genotyp-
ing assay design by order for their customers and a few assays are available through
public databases.

10.3.1 Tools

Currently there is no standard method for calculating the annealing temperature (TM)
of primers. Although many tools have been developed to determine the annealing tem-
perature, their results vary. Furthermore, many of these programs use different entropy
and enthalpy tables in their TM calculations, leading to further discrepancies (Owczarzy
et al., 1997). Despite these variances most of these tools will work and one program that
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has become a standard is Primer3 (http://www-genome.wi.mit.edu/genome software/other/
primer3.html). A comprehensive review of primer picking and TM predicting tools can
be found at http://www.alkami.com/primers/refdsgn.htm.

Primer3 is a standard because it is freely available and easy to use. It is particularly
useful for high throughput design because it can determine primers for multiple sequences
at once. Some of its particular strengths are its many useful and well-documented options,
its easily parsed output and its simple command line interface. Primer3 can be used for the
design of both PCR primers and internal sequencing primers. Although Primer3 allows
for individual SNP position targets and target lengths to be set for each sequence, if the
data is highly varied in position and length it is possible to avoid setting parameters for
each SNP by pre-formatting the data. The SNP sequence retrieval option on SNPper (see
below) is a tool that can provide this uniformly formatted flanking sequence.

10.3.2 Custom Primer Design Services

Although primer design may be carried out in-house, many companies as well as public
databases are offering high throughput design as part of their product support. Sequenom
is one such example. Sequenom is in the process of making primers available through
a site called RealSNP (www.RealSNP.com). Applied Biosystems is another company
providing primer design through their ‘Assay by DesignTM’ Genomic Assay Service. The
researcher provides the sequence, while Applied Biosystems designs and test all assays.
These designs are optimized for TaqmanTM assays (http://www.appliedbiosystems.com/).
There is no charge if an assay cannot be designed. Perkin-Elmer will also be providing
SNP-specific assays through their website.

10.3.3 Public Databases

Primers generated by The SNP Consortium (TSC) Allele Frequency Project are available
via ftp (Table 10.1). These primers have been released, by some of the groups, to the public
with the assistance of TSC. It should be noted that these primers have been generated
by separate groups via different methods and for specific experimental conditions. The
NCBI’s dbSNP database also contains primer designs for some of the SNP entries, but
these have not been specifically designed for SNP validation (Sherry et al., 2002). In
addition to these public databases the Kwok laboratory has over 980,000 assays designed
for sequencing of PCR products, for the specific purpose of pooled allele frequency
determination. The Kwok laboratory also maintains over 1,400,000 SNP genotyping assays
designed for single base extension using fluorescence polarization detection (available at
http://snp.wustl.edu).

10.4 BROADER PCR ASSAY DESIGN ISSUES

SNP assay methods have three major components: (1) allelic discrimination methods,
(2) reaction formats and (3) detection methods. Each area presents different challenges
during SNP assay design. The most important consideration for assay design is the method
of allelic discrimination. These methods vary greatly. For example four main methods of
allelic discrimination are allele-specific hybridization, primer extension (includes single
base extension), ligation and invasive cleavage. The reaction formats are either homoge-
neous reactions or solid phase reactions and the detection methods currently use product
light emissions, product–mass measurements and electrical property changes in the prod-
uct (Kwok, 2001).
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In some cases the critical parameters that apply to one technique will not apply to
others. However, almost all SNP genotyping assay techniques use PCR to amplify DNA.
In order to design the correct primers one must first determine the method of assay.
However, there are some basic guidelines used when designing primers for genomic
sequence. All designs require obtaining sequence, repeat masking, setting experimental
and design parameters, picking primers and formatting the information.

10.4.1 Obtaining Sequence

The flanking sequences for each SNP can be obtained from a variety of sources. For known
SNPs two public databases, dbSNP and SNPper (Riva and Kohane, 2001; Table 10.1)
provide a method for obtaining sequence. SNPper is run by Harvard’s Children’s Hospital
Informatics Program (CHIP). Both dbSNP and SNPper offer batch query modes and return
sequence in FASTA format. In the case of single SNP analysis, SNPper provides a link to
the Primer3 website which will import the retrieved sequence into Primer3 and analyse it
using default values. For SNPs that can be uniquely mapped SNPper can provide up to
1000 bases on either side of the SNP. It should be noted that at this time SNPper does
not contain the most recent uniquely mapped SNPs in dbSNP.

10.4.2 Repeat Masking

A large amount of the genome consists of repeated regions or low complexity DNA. It
is important to avoid selecting primers from these regions in order to avoid amplification
of multiple products. Masking the repeats or making repeated sequence unavailable to
the automated primer-picking programs prevents most unwanted amplification. A com-
monly used program for masking is RepeatMasker (see Table 10.1). A new resource that
improves upon RepeatMasker is MaskerAid (Table 10.1), which increases the speed of
masking more than 30-fold (Bedell et al., 2000). Default parameters in RepeatMasker will
mask known repeat regions with Ns. RepeatMasker accepts FASTA files, and returns the
sequence in the same format. Ready masked sequence can also be obtained from some
of the public databases. dbSNP provides sequence in FASTA format with low-complexity
sequence in lower case, while the University of California Santa Cruz Human Genome
Browser (UCSC HGB) has options to save repeats as either Ns or lower case. However,
this format is problematic when trying to represent the start and stop exons and introns
on UCSC HGB, because lower case can also be used to represent introns. In some cases
two files may be required to represent the masked and unmasked forms of sequence.

Masking repeats can only be accomplished in known repeat regions with current
resources. However, there remain repeat regions of the genome that have not yet been
identified. By using pooled sequencing, it is possible to identify regions that have dupli-
cated and subsequently diverged. These can be identified by the presence of a large number
of apparent SNPs that are all 50% in frequency, as shown in Figure 10.2. When designing
SNP specific primers within PCR products, for example for a single base extension assay,
the RepeatMasking stage is not necessary.

10.4.3 Setting Experimental and Design Parameters

If a large number of SNP candidates are to be assayed it is more efficient to eliminate the
experiments that are less likely to be successful in vitro during the in silico design stage.
Stringent design parameters allow for a first level of screening when designing primers.
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Figure 10.2 Duplicated and diverged regions in genome characterized by multiple
‘SNPs’ at 50% frequency in each pool.

Primer design programs such as Primer3 allow for input of both experimental parameters
and primer structure parameters. The second level of screening can be done after candidate
primers are chosen by primer selection programs to determine if the primers are likely
to work.

Some suggestions for optimizing design parameters for the best experimental results
can be found in PCR Applications (Beasley et al., 1999). In general most primer design
methods work (see http://gsu.med.ohio-state.edu/primer design/sld001.htm for a detailed
guide). However, under stringent experimental conditions optimized design parameters
can decrease the level of experimental failures.

10.5 PRIMER SELECTION

In most design programs primer picking is preformed by the software. The primers are
picked according to the specified parameters. If more than one primer set is returned
some post processing will be required to select the most appropriate pair. Post processing
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can also be necessary for techniques such as pooled sequencing, where selection of a
sequencing primer from the PCR primers is required.

10.5.1 Design Specific to Pooled Sequencing

Pooled sequencing uses sequencing to observe the frequency of a SNP in a group of indi-
viduals in one reaction. The candidate SNP and its flanking sequence is amplified from
pools of DNA each containing individuals and a single reference individual. After sequenc-
ing of the PCR products is preformed using fluorescent dye-terminators, the sequence
traces are aligned, allowing the allele frequencies to be estimated (Kwok et al., 1994).
Pooling DNA in this way prior to PCR amplification and estimating allele frequencies by
subsequent quantitation of trace peak heights yields considerable time and cost savings.

There are several steps to designing pooled sequencing reactions. This method of
design is carried out on a UNIX-based system, using RepeatMasker and Primer3. Repeats
are masked before choosing PCR primers. Sequence that is not masked is retained for post
processing. The input for Primer3 is set according to the optimized parameters (Beasley
et al., 1999) with a few optimizations. The optimizations are most important in the place-
ment of the primers relative to the SNP. The primers are not allowed closer than 25 bases
to the SNP, but are close enough to use one of the PCR primers for sequencing. After
running Primer3 the results are processed to select for the best sequencing primer based
on criteria to optimize experimental performance. These criteria are (1) the sequencing
primer should be 100 bases from the target and (2) there should be no poly As or Ts
greater than eight bases and no poly GTs or CAs greater than 10 pairs between the primer
and the SNP. This design has been shown to work with less than 3% experimental failure
and allows for the primers to be far enough from the SNP that the sequence is of high
quality around the target as shown in Figure 10.3. During the design process as many as
half of the SNPs fail to meet the design criteria, but this failure is at far lower cost than
laboratory-based trial and error (Vieux et al., 2002).

10.5.2 Design Specific to Single Base Extension (SBE) Reactions

SBE requires a primer that abuts the SNP under test. The primer is then extended by a
single base, usually a labelled ddNTP (Hsu et al., 2001). By using two different labels
for the ddNTPs representing the two possible alleles, the allelic state of the SNP can
be determined. SNP-specific SBE primer design can be undertaken using many of the
same tools as pooled sequencing primer design. Both require repeats to be masked before
designing PCR primers. The SNP-specific primers are chosen using non-masked sequence.
The PCR product sizes can be smaller than for sequencing for all of the single base
extension reactions. The SBE primer should not hang over the end of the PCR product
and the PCR primers should not overlap with the SBE primer. In Primer3 the primers can
overlap the target so it is important to give a SNP a large enough target area to prevent
the overlap of primers. When choosing parameters and methods for SBE primers it is
important to remember that different methods can have different primer requirements.

We have found that picking the shortest primer from 16–40 bases which has a TM
between 60–65 degrees works well. In order to calculate TM for a small number of SBE
primers it is possible to use free tools on the web. For high throughput design the best
option is to solve TM equations after determining which set of entropy and enthalpy
tables work best for the relevant method (Owczarzy et al., 1997), and picking the shortest
primer in the defined range. Further optimization can be achieved by picking the SBE
primer with the least amount of secondary structure, and fewest runs of poly As and Ts.
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Figure 10.3 A clean pooled sequencing assay result shows a clear polymorphic site at
the position of the candidate SNP.

10.6 PROBLEMS RELATED TO SNP ASSAY VALIDATION

As with any experimental design, assays for validation of candidate SNPs require attention
to detail. Problems arise that are not always obvious or clearly stated in the documentation
associated with the tools being used. Some problems are easy to overcome, while others
cannot yet be solved.

With the completion of a final version of the human genome assembly a number of
problems will be resolved, while inherent challenges will remain. There are many errors
due to incorrect physical map order, gaps in physical map data and incorrect assembly
(DeWan et al., 2002). These errors lead to SNPs mapping to multiple locations, incorrect
haplotypes and difficulty in identifying paralogues. However, SNP locations are contin-
ually amended as assemblies are progressively corrected. Map locations will continue
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to change until the Human Genome Project is complete. This can cause difficulties in
the analysis of data and obtaining guide sequence. Another difficulty with the unfinished
map is unidentified paralogues. A SNP can appear to map to a unique position, when
it is actually an artefact generated from an unknown paralogue of the original reference
sequence. An example of such an artefact generated by pooled sequencing data is shown
in Figure 10.2.

Guide sequence is provided for known SNPs through dbSNP, TSC and SNPper. The
first two sites only provide a small amount of flanking sequence in their database for
any given SNP. This can lead to failure in the design of PCR primers due to lim-
ited sequence information. SNPper provides far more flanking sequence by mapping the
SNP location and retrieving guide sequence from the human genome assembly at the
UCSC (Table 10.1).

Other problems are inherent when working with DNA and the current technolo-
gies. Long runs of a single nucleotide can cause sequencing reactions to fail, while
insertion/deletion events can cause problems with sequencing and with SNP allelic dis-
crimination methods such as allele-specific hybridization, primer extension (including
SBE), ligation and invasive cleavage. These problems may only be solved with new
technologies for SNP characterization.

10.7 CONCLUSION

Given the large number of SNPs in the human genome and the potential for large-scale
experimentation, bioinformatics tools are essential for SNP discovery and genotyping
assay development. The tools for comparing cloned (and hence homozygous) sequences
are well developed and have proven useful. However, tools for comparing genomic
sequences amplified by PCR, which are often heterozygous, still have room for com-
putational and technical improvements. Following SNP discovery, there are many assay
methods for genotyping, but none can satisfy all requirements. The basic methods for
assay design are well defined, but specific optimizations are different for each method.
With technology improvements, some of the current problems in SNP assay design will
be solved, resulting in a reduction in the number of SNPs that are refractory to successful
assay design. But for now design optimization using currently available tools and careful
interpretation of subsequent results will provide assays and allele frequencies for a large
portion of the SNPs currently available.
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11.1 INTRODUCTION

The focus of this chapter is on methods that aid in the identification of genetic variants that
influence a trait of interest. The trait may be a biological measurement, possibly indicating
risk of disease or it may be the response to an environmental stimulus such as a drug. Tech-
niques such as linkage analysis and association analysis are central to the process. These
methods are described and corresponding software is reviewed, with worked examples
to show how they can be applied. The majority of tools covered may be downloaded,
together with full documentation, by following links at http://linkage.rockefeller.edu. Web
addresses for the few exceptions are provided in the text. Almost all are available free
of charge.

11.2 LINKAGE ANALYSIS

Linkage analysis is applied in the early stages of gene localization and is one means by
which an initial, often broad, chromosomal interval of interest is defined. It is a process
of tracking the inheritance pattern of genetic markers with the inheritance pattern of a
disease or trait. Disease linkage manifests as a marker allele being inherited in diseased
individuals more often than would be expected under independent assortment.

Linkage analysis may be parametric to test whether the inheritance pattern of the trait
fits a specific model of inheritance or it may be non-parametric (model-free). The former
is more powerful under a correctly specified model and is most informative for large,
multiply affected pedigrees. The latter is more powerful when the mode of inheritance is
unknown, as in complex trait analysis for which small pedigrees are often ascertained.

11.2.1 Parametric Linkage Analysis

By the parametric approach (and in certain non-parametric cases), evidence of linkage is
measured by the LOD score (Morton, 1955). It proceeds by an assessment of the recom-
bination fraction, often denoted by theta (θ ). Theta is the probability of a recombination
event between the two loci of interest and as such it is a function of distance. Two unlinked
loci are given by θ = 0.5 and the closer a pair of loci, the lower their recombination
fraction. The LOD may be expressed as follows, using L to denote likelihood.

LOD = log10

L(θ = θ̂ )

L(θ = 0.5)

The likelihood in the numerator is based upon the maximum likelihood estimate of the
recombination fraction, derived from the data. It is compared to that calculated under the
null hypothesis of no linkage (θ = 0.5). A high LOD score is thus consistent with the
presence of linkage. Due to the computational complexity of the likelihood calculation,
software for exact parametric linkage analysis is constrained either by pedigree size or by
the number of markers included in the calculation.

The software VITESSE (O’Connell and Weeks, 1995) allows rapid, exact parametric
linkage analysis of very extended pedigrees. At the expense of some speed, an alterna-
tive, FASTLINK (Cottingham et al., 1993), allows the analysis of large pedigrees that also
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contain loops (marriages between related individuals). Both VITESSE and FASTLINK
are based on an earlier program, LINKAGE (Lathrop et al., 1984) and are available for
UNIX, VMS and PC(DOS) systems. Using these pieces of software, analysis is typi-
cally conducted by means of a sliding window of one, two or four markers along the
chromosome, although larger windows are also possible.

Parametric linkage analysis in more moderately-sized pedigrees is commonly carried
out using the software GENEHUNTER (Kruglyak et al., 1996). It is written in C, to
be run on UNIX and uses a command-line interface. A major feature of this program
is that it allows the rapid, simultaneous analysis of dozens of markers (often an entire
chromosome) in a multipoint fashion, thereby providing increased power over single-
marker analyses when map positions are known (Fulker and Cardon, 1994; Holmans and
Clayton, 1995; Olson, 1995). In order to accommodate uncertainty in marker ordering,
an option to perform single marker tests is also available. On most platforms, pedigrees
up to size 2n − f = 16 may be analysed by GENEHUNTER, where n is the number
of non-founders (those with parents included in the pedigree), and f is the number of
founders. This limit is important to consider, because larger pedigrees are automatically
trimmed until they fall within it, leading to possible information loss. Results are stored
graphically in postscript files for easy interpretation and presentation.

11.2.2 Non-parametric (Model-free) Linkage Analysis

Non-parametric linkage (NPL) analysis does not allow direct estimation of the recombi-
nation fraction, but one source of multiple testing — that derived from examining multiple
models — is removed. The general principle is that relatives who share similar trait values
will exhibit increased sharing of alleles at markers that are linked to a trait locus (see
Holmans (2001) for a review of the method).

Allele sharing may be defined as identical by state (IBS) or identical by descent (IBD).
Two alleles are IBS if they have the same DNA sequence. They are IBD if, in addition to
being IBS, they are descended from (and are copies of) the same ancestral allele (Sham,
1998). A statistical test is performed to compare the observed degree of sharing to that
expected under the assumption that the marker and the trait are not linked. While the test
statistic may take the form of a chi-squared, normal or F statistic, often it is transformed
to allow it to be expressed in LOD units.

NPL analysis often examines IBD or IBS allele sharing in sets of affected sib-pairs
(ASPs), in which both siblings exhibit the trait of interest. In the absence of linkage,
ASPs are expected to share zero, one or two alleles IBD, with probabilities 0.25, 0.5 and
0.25 respectively. The presence of linkage to a tested marker leads to a departure from
these proportions which may be detected by means of a χ2 test (Cudworth and Woodrow,
1975). Another model-free test, the mean test, tests the null hypothesis that the proportion
of IBD allele-sharing equals 0.5. The latter is implemented in the programs SAGE (1999)
and SIBPAIR (Terwilliger, 1996), allowing for larger sibships and cases where IBD status
cannot be determined unequivocally.

MAPMAKER/SIBS (Kruglyak and Lander, 1995) is a piece of software widely used to
test for linkage in sibling data. It was originally written as a stand-alone program, but its
functionality and commands have now also been fully incorporated into GENEHUNTER
(Kruglyak et al., 1996) whose algorithms are similar. It accommodates both qualitative
and quantitative data for either autosomal or sex-linked chromosomes and again, it allows
large numbers of markers to be examined jointly.

For dichotomous trait data, a likelihood ratio (LR) test, analogous to the LOD score
above is constructed in MAPMAKER/SIBS. The LR is a test for comparing two models in
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which the parameters of one model (the reduced model), form a subset of the parameters
of the other (the full model). It has many genetic applications and may be expressed as
follows, where L denotes likelihood.

LR = 2 loge

Lf ull

Lreduced

It is asymptotically distributed as a χ2, with degrees of freedom equal to the difference in
the number of parameters between the two models. In the current context, the numerator
is calculated under maximum likelihood estimates of allele sharing proportions and the
denominator is calculated assuming random segregation (Risch, 1990a, b). This LR test
is also implemented in other software including SPLINK (Holmans and Clayton, 1995),
and ASPEX (Hinds and Risch, 1996).

In the case of quantitative trait (QT) data, a test based on the Wilcoxon rank-sum
test is available in MAPMAKER/SIBS. It is broadly applicable, as it makes no assump-
tions concerning the distribution of phenotypic effects. Alternatively, if the sib-pair QT
differences are normally distributed, then the original Haseman–Elston method (1972),
also implemented, may be applied with greater power. In this test, the squared QT differ-
ences between pairs of siblings are regressed on the proportion of alleles that each pair
is estimated to share IBD. It is also implemented in SIBPAL2, part of SAGE (1999).

For pedigrees larger than sibships, there is an ‘NPL’ option in GENEHUNTER, but it
was shown to be conservative (Kong and Cox, 1997). Alternatives include the modified
version, GENEHUNTER-PLUS (Kong and Cox, 1997) and MERLIN (Abecasis et al.,
2002), which also incorporates this modification. The latter is a C++ program for UNIX,
again with a command-line interface. It offers further improvements in computational
speed and reduction in memory constraints, making it more suited to very dense genetic
maps. It has the attractive properties of incorporating error detection routines to improve
power, and simulation routines to estimate p-values. Graphical output is not however,
currently provided.

For normally distributed quantitative traits (or those capable of being transformed to
normality), variance component analysis represents a powerful approach to the study of
pedigrees of any size (Amos, 1994; Blangero and Almasy, 1996; Goldgar, 1990). The
variance component approach to linkage analysis assumes that the joint distribution of
the data for a family depends only on means, variances and covariances. The variance
of the phenotype is decomposed into (a) components due to linkage to individual marker
locations and (b) residual polygenic and environmental components. Familial covariances
are modelled in terms of a maximum of two parameters: an additive genetic-variance
component and a dominant genetic-variance component, each estimated from the data.
The method is implemented in SOLAR (Blangero and Almasy, 1996), in which the size
of each effect may be estimated and tested by an LR test. This is a powerful approach
and a major advantage is its scope for incorporating into models the effects of covariates,
epistasis and gene–environment interaction. For highly complex problems, Markov Chain
Monte Carlo Methods are also available, as implemented for example in LOKI (Heath,
1997) and BLOCK (Jensen et al., 1995). When the parameter set is large however, the
computational burden of these methods can be prohibitive.

11.2.3 Example: MAPMAKER/SIBS (Kruglyak and Lander, 1995)
11.2.3.1 Data Import
The current example follows a format originally designed for MAPMAKER/SIBS, but
now also accommodated by GENEHUNTER. The input files match rather closely what has
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become known as ‘LINKAGE format’ due to the software in which it was first introduced
(Lathrop et al., 1984; Terwilliger and Ott, 1994). Two files are required, namely a pedigree
file and a map file. In the current example, a genetic trait has been simulated for 200
sibships, and the files have been named regionA.ped and regionA.loc respectively. For
the analysis of a quantitative trait, a third file is also required, called for our purposes,
test.pheno.

The file regionA.ped takes the following form where, for simplicity, only a single
marker, genotyped in two families has been presented.

70 8699 0 0 2 0 0 0
70 8698 0 0 1 0 0 0
70 2230 8698 8699 2 2 1 2
70 2231 8698 8699 2 2 2 2
75 8787 0 0 2 0 0 0
75 8786 0 0 1 0 0 0
75 2238 8786 8787 2 2 2 2
75 2239 8786 8787 2 2 2 2

The columns are as follows: kindred ID, individual ID, father’s ID, mother’s ID, sex
(1 = male, 2 = female), affection status (1 = unaffected, 2 = affected), genotype. In prac-
tice, multiple (paired) columns of genotypes would be included, in map order, for each
individual. Missing values are denoted by a zero.

This file therefore provides pedigree structure information, genotypes and, in the case
of dichotomous traits, phenotype. For liability class data, an additional liability class
column may be included after the affection status column and this is described in more
detail in the manual.

For the current example, quantitative trait data is loaded separately using test.pheno
(not shown). This file contains, on the first line, a count of the number of traits in the
file. All subsequent lines take the space-separated form: kindred ID, individual ID and
phenotype(s). Only sibling phenotypes should be included.

Lastly, the file regionA.loc lists the marker details in map order. Here, the ‘internal’
format is described, but LINKAGE format is also supported. The first line provides a
count of the number of markers in the file, and is followed by a blank line. Subsequent
lines are in six line blocks as follows. The first line has the marker name and number of
alleles; the second has the allele labels; the third has the allele frequencies for each label;
the fourth is blank; the fifth is the distance to the next marker; the sixth is blank. If the
distances are all below 0.5, they are assumed to be recombination fractions, otherwise
they are assumed to be distances in cM. The following is an example of a map file, say
regionA.loc with just the first two markers shown for the sake of brevity.

29

MARKER1 6
1 2 3 4 5 6
.01 .95 .01 .01 .01 .01

5.1

MARKER2 10
1 2 3 4 5 6 7 8 9 10
.114988 .110626 .070579 .218874 .250991 .141158 .028549
.062649 .000793 .000793
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Note that the program tends to crash if inter-marker distances less than 0.1 cM are pro-
vided. This should therefore be used as the lower bound even in the case of apparently
recombinationally inseparable markers.

11.2.3.2 NPL Analysis for a Quantitative Trait

The following sequence of UNIX commands may be used.

load markers regionA.loc
prepare pedigrees regionA.ped
y
test.pheno
increment step 10
scan
p
nonparametric
1
np.out
np.ps
q

The process is as follows. The first step is to import the marker and pedigree data that
are stored, respectively in regionA.loc and regionA.ped. You are then asked whether you
wish to import additional phenotypic data. Upon typing y (yes), you are prompted for a
filename, in this case, test.pheno. Increment step 10 specifies that linkage is to be assessed
at 10 equally spaced points in each marker interval.

The scan command computes the full multi-point probability that two sibs share zero,
one or two alleles identical by descent (IBD) with the given map and allele frequencies.
You are asked whether to include affected (a) or phenotyped pairs (p). The latter (p)
allows NPL analysis to follow. Non-parametric linkage analysis is to be applied to trait
1, with numerical output to be piped to np.out and graphical output to be stored in np.ps
(Figure 11.1, below). Note that if only one trait exists in the phenotype file then the 1
above is not required.

As shown in Figure 11.1, a Z-score provides the measure of linkage and in this case
evidence peaks close to marker 22. Localization cannot however be assumed to be precise
and separation of at least 10 cM may be seen between studies (Hauser and Boehnke, 1997).
It is therefore usual to construct a support interval around a strong linkage signal (Con-
neally et al., 1985). For example, having converted to LOD units, a 1-unit support interval
is the interval that includes all (possibly disjoint) map positions with LOD score less than
1 LOD unit below the peak score. A conservative approach is to adopt a 1.5 to 2 LOD
support interval. All points within the support interval are considered to be of interest.

A determination of information content in MAPMAKER/SIBS allows a representation
of the amount of IBD information extracted by the genotype data, as plotted along the
chromosome. Dips in the graph allow regions to be highlighted in which the typing of
additional markers could be beneficial. The following commands are applied.

scan
a
infomap
info.out
info.ps
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Nonparametric Z-scores
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Figure 11.1 Postscript output from MAPMAKER/SIBS. This is np.ps from the
example run.

A scan of affected pairs (a) is conducted and infomap is requested. The filenames ensure
that numerical output is stored in info.out and a graphical representation is saved as
info.ps (Figure 11.2). In this example the large gaps between markers 4 and 5 and between
markers 8 and 9 manifest as troughs in the Information Content graph.

Another useful option (not shown) is that the IBD distribution can be output as a
text file using the command dump ibd. This is a very rapid means of generating IBD
probabilities for sibships and, after re-formatting, the output may be used to generate
input files for other software such as QTDT (Abecasis et al., 2000), to be discussed
later. Another piece of software, SimWalk2 (Sobel and Lange, 1996) will generate IBD
probabilities for a wider range of family structures, but in the case of sibships it is slower
than MAPMAKER/SIBS.

11.3 ASSOCIATION ANALYSIS

Association analysis may be regarded as a test for the presence of a difference in allele
frequency between cases and controls. A difference does not necessarily imply causality
in disease, as many factors, including population history and ethnic make-up may yield
this effect. In a well-designed study, however, evidence of association provides a flag
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Information content
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Figure 11.2 Postscript output from MAPMAKER/SIBS. This is info.ps from the
example run.

for further study. In some instances it is due to the marker being physically close to the
causal variant.

Association testing for case–control or population data is often carried out using gen-
eral (non-genetic) statistical software packages, such as SAS or S-PLUS. A χ2 test is
applied to a contingency table, in which case/control status is tabulated by frequencies of
either genotypes or alleles. The test takes the usual form,

χ =
∑ (Obs − Exp)2

Exp

where Obs and Exp are the observed and expected frequencies respectively, and the sum
is taken over all cells in the table. The number of degrees of freedom is (r − 1) (c − 1),
where r is the number of rows, and c is the number of columns in the table. Equivalently,
logistic regression can be applied, using disease status as the dependent variable and alleles
or genotypes as the independent variables (see Clayton (2001) for a detailed review of the
method). The remaining sections of this chapter all involve applications and extensions
of the traditional association test.
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11.3.1 Transmission Disequilibrium Tests

In recent years, there has been an upsurge in interest in family-based testing owing
to the concern that ethnic mismatching of non-family cases and controls (population
stratification) can sometimes yield false positive evidence of association. In particular, the
transmission/disequilibrium test or TDT (Spielman et al., 1993) has gained prominence as
a test of linkage in the presence of association that does not give false evidence of linkage
due to population stratification. The TDT is applied by counting alleles transmitted from
heterozygous parents to one or more affected children in nuclear families. The alleles not
transmitted to affected children may be regarded as control alleles, perfectly ethnically
matched to the ‘case’ alleles seen in the affected children. The test takes the form of a
McNemar’s test, which, under the null hypothesis of no linkage, follows a χ2 distribution
with one degree of freedom. The TDT is also a valid test for association, but only
when applied to alleles transmitted from heterozygous parents to just one affected child
per family.

Assuming a diallelic locus, let b denote the counts of heterozygous parent-to-offspring
transmissions in which allele 1 goes to an affected child, while allele 2 is not trans-
mitted. Let c denote the counts of transmissions the other way around, in which allele
2 is inherited in an affected child, while allele 1 is not transmitted. The test takes the
following form:

χ2
1 = (b − c)2

(b + c)

A number of groups have focused on generalizing the TDT to quantitative traits or to
designs in which parental genotypes are not available. The sib-TDT or S-TDT (Spielman
and Ewens, 1998) does not use parental genotypes and, like the original TDT, it is not
prone to false positives due to population stratification. For association testing, the S-TDT
requires that the data in each family consist of at least one affected and one unaffected
sibling, each with different marker genotypes. This test and the original TDT are widely
implemented, for example in the Java-based program TDT/S-TDT (Spielman and Ewens,
1996, 1998).

Multi-allelic markers may be tested using ANALYZE (Terwilliger, 1995). This has the
advantage of taking LINKAGE format files as input and so provides a natural follow-
up to a genome scan. It does however require that LINKAGE (Lathrop et al., 1984) be
installed on your system. Other software able to handle multi-allelic markers includes
ETDT (Sham and Curtis, 1995) and GASSOC (Schaid, 1996).

For quantitative traits, a major development was the release of QTDT (Abacasis et al.,
2000), software which allows TDT testing under a variance components framework. It is
applicable to sibships with or without parental genotypes and incorporates a broad range
of quantitative trait tests — those proposed by Rabinowitz (1997), Allison (1997), Monks
et al. (1998), Fulker et al. (1999) and Abecasis et al. (2000). It is written in C++, to be
run on UNIX and has a command-line interface. Its input files are based on LINKAGE
format, but in addition, one input file of IBD probabilities must be prepared in advance.
QTDT assumes the IBD format generated by the programs SimWalk2 (Sobel and Lange,
1996) and MERLIN (Abecasis et al., 2002). Covariates may also be modelled, but should
be kept to a minimum in order to maintain performance.
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11.4 HAPLOTYPE RECONSTRUCTION

A haplotype is a string of consecutive alleles lying on the same chromosome. Each
individual therefore has a pair of haplotypes for any chromosomal interval — one inherited
from the paternal side and one inherited maternally. In statistical genetics, their importance
lies in the fact that tests of association may be applied to haplotypes instead of single
loci. This may yield increased power if the variant of interest is not being tested directly
or if adjacent loci are contributing to a single effect (see Clark et al., 1998; Nickerson
et al., 1998). Haplotypes can be inferred from the genotypes of parents or other family
members (Weeks et al., 1995) or by laboratory methods (Clark 1990; Nickerson et al.,
1998). Often, however, they are estimated by means of the Expectation–Maximization
(EM) algorithm (Dempster et al., 1977; Excoffier and Slatkin, 1995; Hawley and Kidd,
1995; Little and Rubin, 1987; Long et al., 1995).

The EM algorithm is a method that aims to provide maximum likelihood parameter
estimates in the presence of incomplete data. In the case of haplotype frequency estimation,
it proceeds as follows (Schneider et al., 2000).

1. An initial set of plausible haplotype frequencies is assigned — for example the
product of the relevant allele frequencies may be used.

2. The E-step: assuming Hardy–Weinberg equilibrium, the haplotype frequencies are
used to estimate the expected frequencies of ordered genotypes.

3. The M-step: the expected genotype frequencies are used as weights to produce
improved estimates of haplotype frequencies.

4. Steps 2 and 3 are repeated until the haplotype frequencies reach equilibrium.

Note that, as with other iterative techniques, it is wise to compare the results of multiple
starting points as the EM algorithm may converge to a local, rather than global, optimum.
It is not always reasonable to assume that the maximum likelihood haplotype configuration
has been reached.

Software written specifically for haplotype analysis includes EHPLUS (Zhao et al.,
2000), a reworked and extended version of the earlier program EH (Xie and Ott, 1993). It
is written in C and is available in both UNIX and PC versions. EHPLUS can be applied
to either case–control data or data assumed to come from a random-mating population.
It accommodates large numbers of haplotypes and incorporates a companion program,
PMPLUS, which will reformat genotype data ready for use. Estimated haplotypes and
their frequencies are output and may be subjected to association tests. Permutation features
allow the calculation of empirical p-values for these.

Further software for sophisticated haplotype analysis is available from ftp://ftp-gene.
cimr.cam.ac.uk/software/clayton/. Resources include SNPHAP, a program that uses the
EM algorithm to estimate haplotype frequencies for large numbers of diallelic markers
using genotype data. Another program, TDTHAP (Clayton and Jones, 1999) allows the
TDT to be applied to extended haplotypes. STATA routines to aid SNP selection by haplo-
type tagging (Johnson et al., 2001) are available in ftp://ftp-gene.cimr.cam.ac.uk/software/
clayton/stata/htSNP/.

Haplotype reconstruction from family data can be achieved by using SimWalk2 (Sobel
and Lange, 1996). The derived haplotypes may then be imported to a pedigree-drawing
package such as Cyrillic (Chapman, 1990) for viewing recombinants in positional cloning
for example. MERLIN (Abecasis et al., 2002) and GENEHUNTER (Kruglyak et al.,
1996) also output haplotypes estimated from family data. Another piece of software,
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TRANSMIT (Clayton, 1999) allows association testing of family-based haplotypes. All
of these programs allow for missing parental genotypes.

11.4.1 Example: EHPLUS and PMPLUS (Zhao et al., 2000)

11.4.1.1 Data Import

PMPLUS requires two input files, namely a parameter file and a data file. The data
file contains for each individual, subject ID, subject status (0 = control, 1 = case) and
genotypes listed as either pairs of numbered alleles or as numerical genotype codes. A
data file with three markers takes the following form:

[Subject ID] [Status] [1a] [1b] [2a] [2b] [3a] [3b]
or

[Subject ID] [Status] [1] [2] [3]

where [1a] and [1b] are the alleles of the first genotype or, alternatively, [1] alone
represents the first genotype. Currently, the compiled limits are 15 alleles, 30 markers
and 800 subjects. Note also that whereas subject IDs with a decimal point (e.g. ‘20.1’)
work well, more complex IDs containing several dashes and decimal points may lead to
erroneous output.

The parameter file consists of five lines of space-delimited integer values, and it defines
the tests to be carried out. The following parameter file (hapfrest.par) may be used to
estimate haplotype frequencies:

3 0 0 0
2 2 2
0 0
1 1 1
1 1 1

The four values on line 1 specify the number of markers in the data file, whether to perform
a marker–marker or case–control analysis (0 or 1, respectively), whether case–control
status is to be permuted (0 = no, 1 = yes) and the number of permutations to perform.
Line 2 gives the number of alleles for each marker in the data file. The first value on line 3
specifies whether genotypes in the data file are pairs of alleles or numbered genotypes (0
or 1, respectively), while the second value specifies whether screen output is suppressed
or shown (0 or 1). Line 4 has a 1 for each marker to be included in the analysis; zero
otherwise. Line 5 assigns each marker to one of two blocks (0 or 1), if required in a
marker–marker analysis.

11.4.2 Estimating Haplotype Frequencies

Firstly, PMPLUS is run by typing the following:

>pmplus hapfrest.par hapfrest.dat hapfrest.out

Here hapfrest.out is an output file named by the user and created by PMPLUS to record
chi-squared statistics and associated p-values for the specified analysis. A second output
file named ehplus.dat is also generated, in which the contents of hapfrest.dat have been
converted into EHPLUS format ready for estimation of haplotypes.
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Figure 11.3 EHPLUS interface, as used for estimating haplotype frequencies.

Figure 11.4 Haplotype frequency output from EHPLUS — named ehplus.out .

Haplotype estimation is carried out by typing >ehplus to invoke the program and
then pressing the <CarriageReturn> three times to accept the default options provided.
The process, as seen using the PC(DOS) version, is shown in Figure 11.3. The out-
put file, ehplus.out, shown in Figure 11.4, contains the estimated haplotype frequencies
(see column labelled w/Association) as well as log likelihoods for the null and alterna-
tive hypotheses of No Association between the markers and Allelic Associations Allowed
between the markers. Such inter-marker association is termed linkage disequilibrium and
shall be the topic of the next section of this chapter.

11.4.3 Haplotype-based Association Testing

In order to test 2-point haplotypes for association to a disease, the parameter file, hapfrest.
par was modified to produce the following parameter file (cscntcom.par):
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3 1 1 100
2 2 2
0 0
1 1 0
0 0 0
.01 0 1 1

The second, third and fourth entries on line 1 of this parameter file now specify that
a case–control analysis is to be performed and significance determined by permuting
case–control status 100 times. Furthermore, other entries specify that only the first two
markers are to be included (line 4), and that genotypes are not to be permuted (line 5).
This time a sixth line is included, applicable only to case–control analyses. This line
contains four possibly non-integer values that define a model of the mode of inheritance
of the trait. The first value specifies the assumed disease allele frequency; the following
three are penetrant estimates, resulting from zero, one or two copies of the disease allele
respectively. In the current example, the model assigns a 0.01 allele frequency and a fully
penetrant, pure dominant mode of inheritance. The new data file (cscntcom.dat) contains
the simulated genotypes of both cases and controls, formatted as described previously.
PMPLUS is executed as follows:

>pmplus cscntcom.par cscntcom.dat cscntcom.out.

When PMPLUS is instructed to perform permutations, EHPLUS is automatically invoked
at the end of each PMPLUS run (i.e. following each permutation of the dataset) and thus
program control passes back and forth between the two programs until the permutations
are complete. Since PMPLUS permutes the data via the ehplus.dat input file, the final
EHPLUS output file (ehplus.out) does not have meaningful haplotype frequency estimates.
These are based on permuted, rather than real data.

The output produced by PMPLUS (in this case cscntcom.out) contains the key analy-
sis results. These are the χ2 values and permutation-derived p-values obtained under five
sets of assumptions as follows: (1) under the user-specified disease model, (2) under a
Mendelian recessive model, (3) under a Mendelian dominant model, (4) by maximizing
the log likelihood ratio over multiple disease models and (5) by a non-parametric ‘homo-
geneity’ test, to compare log likelihoods calculated from pooling cases and controls and
considering them separately. The fifth test is completely non-parametric, while the oth-
ers are constrained by the population prevalence of disease implied by the user-specified
disease model. Figure 11.5 shows the results of evaluating the 2-point haplotype for asso-
ciation with the simulated disease. Note that p-values below 0.0001 are rounded down
to zero.

11.5 LINKAGE DISEQUILIBRIUM

Linkage disequilibrium (LD) is a lack of independence, in the statistical sense, between
the alleles at two loci. LD exists between two linked loci when particular alleles at these
loci occur on the same haplotype more often than would be expected by chance alone.
This phenomenon can provide valuable information in locating disease variants from
marker data, as a marker in LD with the causal variant provides a flag for its location. LD
information also provides a means by which the efficiency of high-density marker maps
can be increased. If markers are in strong LD with each other, there is an argument for
genotyping only a subset of them.
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Figure 11.5 Output of haplotype-based association testing in EHPLUS.

The extent of pair-wise LD may be measured by the value D, as follows (Lewontin,
1964). Assume two diallelic loci are linked and let pij be the proportion of chromosomes
that have allele i at the first locus and allele j at the second locus. For example, p12 is
the frequency of the haplotype with allele 1 at the first locus and allele 2 at the second
locus. The disequilibrium coefficient D is the difference between the observed haplotype
frequency p12 and the haplotype frequency expected under linkage equilibrium, the latter
being the product of the two allele frequencies, say p1+ and p+2. It may be written
as follows:

D = p12 − p1+p+2

Another commonly quoted measure of LD is D′ (Lewontin, 1964). This is a normalized
form, with numerator equal to D and denominator equal to the absolute maximum D

that could be achieved given the allele frequencies at the two loci. Many other valid
measures of pair-wise LD exist and have been reviewed elsewhere (Devlin and Risch,
1995; Hedrick, 1987).

As noted above, EHPLUS can perform tests of LD among a group of markers. The
complete set of pair-wise tests for the group, together with D and D′ values, can be
achieved in a single step using software such as Arlequin (Schneider et al., 2000). This
is a C++ program available for PC(Win), Linux and MacOS systems. The statistical
significance of observed LD is estimated for phase known (haplotype) data by means
of a Fisher’s Exact Test. For phase unknown data, a likelihood ratio test is applied. An
alternative tool is GDA (Lewis and Zaykin, 2001), the PC(Win) companion program to
the book, Genetic Data Analysis II (Weir, 1996). Both are well documented and perform
a broad range of population genetic tests.

The software, GOLD (Abecasis and Cookson, 2000), available for PC(Win), is another
program that will calculate D and D′, and it is noteworthy in that it can output them in
graphical form. For each marker pair, the pair-wise disequilibrium statistics are colour
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coded (bright red to dark blue) and plotted. The output is valuable for presentation pur-
poses and provides a useful summary of the properties of dense maps. The software takes
haplotype estimates as input and, in the case of family data, these must be reconstructed
using software such as SimWalk2 (Sobel and Lange, 1996) prior to use. Case–control
data is not well supported by GOLD, which relies for this purpose upon a limited interface
to the software, EH (Xie and Ott, 1993).

Other methods of estimating LD include the Moment Method, applicable to newly-
formed populations under certain assumptions concerning the evolutionary process
(Hastabacka et al., 1992; Kaplan et al., 1995; Lehesjoki et al., 1993). Maximum likelihood
methods have also been explored (Hill and Weir, 1994; Kaplan et al., 1995). Composite
likelihood methods were proposed to evaluate the information from multiple pairs of
loci simultaneously. Examples of software for the composite likelihood approach include
DMAP (Devlin et al., 1996) and ALLASS (Collins and Morton, 1998). The latter uses the
Malecot isolation by distance equation and has the advantage of accommodating multiple
founder mutations. Each method however relies upon population assumptions and may
suffer reduced power when these are not met.

11.5.1 Example: Arlequin (Schneider et al., 2000)

11.5.1.1 Data Import

Arlequin categorizes data into five groups, namely DNA sequences, RFLP data, microsatel-
lite data, allele frequency data and standard data. The latter assumes that different alleles
are mutationally equidistant from each other, as is the case with SNP data. Data can be
loaded in two ways, by importing a project file, or by using the Project Wizard, to guide
you through the creation of a project. Figure 11.6 shows the Arlequin interface in Win-
dows NT, having selected the import screen. As shown, a number of data formats may
be read in, and converted by selecting Arlequin as the Target format. LINKAGE format
is not however, supported.

With the objective of testing for LD between five markers, the current example may
be regarded as a Standard data project. The data and the parameters of the project are
shown below in an Arlequin format, for which the filename extension .arp is required. The
first [Profile] section describes the data before it is listed in the second, [Data] section.
Comments are included, preceded by ‘#’ and these are ignored by the program.

[Profile] # first describe the data for this project

Title = ‘Simulated data for five genetic markers’
NbSamples = 1 # Number of study populations in the project.

DataType = STANDARD
GenotypicData = 1 # 1= yes; 0 = no (i.e. haplotypic)

LocusSeparator = WHITESPACE
GameticPhase = 0 # 1 = yes; 0 = no (i.e. phase unknown)
RecessiveData = 0 # 1 = yes; 0 = no (i.e. codominant alleles)
RecessiveAllele = null # because RecessiveData = 0
MissingData = ‘.’ # the missing data code

[Data] # next list the data points

[[Samples]]

SampleName = ‘Simulation 1’
SampleSize = 200 #200 individuals are in the study set
SampleData = {
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CONFIG1 34 1 1 1 1 2 # The first genotype combination is labelled CONFIG1
2 1 2 1 2 # 34 individuals have this set of five genotypes

CONFIG2 14 2 1 1 1 2
2 1 1 1 2

CONFIG3 9 1 1 1 1 2 # 9 individuals have this set of five genotypes
1 2 2 1 2

Subsequent lines of data follow the same paired format and the final line consists of a
‘}’ symbol. This project file is specific to the problem in hand, namely phase-unknown
genotype data. Variations exist for other data types and are described in detail in the
user manual. It can be seen that genotypes are written with one allele directly below the
other allele. This allows a mechanism for inputting phase-known data, for which each
line represents a haplotype. In our case, the phase is unknown, so the relative orderings
of the alleles are ignored.

Upon successful import, a ‘Project’ is created by Arlequin. It is remembered by the
system and can be recalled at a later date. Its details can be viewed by selecting the menu

Figure 11.6 Arlequin Screen. Initiating an analysis run.
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items Project>View Project Info. The following analyses are then performed by making
selections in the launch pad dialogue box.

11.5.2 Linkage Disequilibrium Analysis of Genotypes with Unknown
Phase

An LR test statistic, denoted by S, is used to test for LD between a pair of loci when phase
is unknown (Slatkin and Excoffier, 1996). It compares the likelihood of a model assuming
linkage equilibrium to that of a model allowing linkage disequilibrium. Asymptotically,
this statistic follows a χ2 distribution, but to allow for small sample size or the study of
markers with large numbers of alleles, Arlequin also uses a permutation procedure to test
for significance.

The analysis screen is given in Figure 11.7. The procedure is as follows:

1. Click on the Calculation Settings tab

2. Click to the left of the folder Linkage disequilibrium

Figure 11.7 Arlequin Screen. Setting up LD analysis of phase-unknown genotype data.
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3. Select Pairwise linkage
4. Select the Linkage Disequilibrium box below the settings window. A plus sign

will appear
5. Input parameter values. Default values are given in Figure 11.7. However in the

manual, it is recommended that 16,000 permutations be conducted to establish
significance and the EM be applied to at least 100 initial conditions

6. Click on the Run button

Detailed output is written to an HTML result file, in a sub-directory of that containing
the input. First, parameter settings are stated, then for each locus pair, there is a listing
of the log-likelihoods under the null and alternative hypotheses, a p-value determined
by permutation, the χ2 test statistic and its corresponding (asymptotic) p-value. Lastly,
a table is provided, in which a ‘+’ sign denotes nominal evidence of a departure from
linkage equilibrium. This allows the results to be scanned rapidly by eye. Samples of the
output are shown below.

Pair(0, 1)
LnLHood LD: -302.71677 LnLHood LE: -319.36838
Exact P = 0.00000 +- 0.00000 (16002 permutations done)

Chi-square test value = 33.30322 (P = 0.00000, 1 d.f.)
Pair(0, 2)

LnLHood LD: -420.27411 LnLHood LE: -420.70319
Exact P = 0.36164 +- 0.00381 (16002 permutations done)

Chi-square test value = 0.85815 (P = 0.35426, 1 d.f.)

(and so on)

Table of significant linkage disequilibrium (significance
level = 0.0500):

Locus # | 0| 1| 2| 3| 4|
----------------------------------------------

0| * + − − −
1| + * + − −
2| − + * − −
3| − − − * −
4| − − − − *

11.5.3 Linkage Disequilibrium Analysis of Haplotypes

Arlequin uses a modified Fisher’s Exact test, as opposed to the LR test, to examine LD in
haplotype data. Such data is given by GameticPhase = 1. The program employs Markov
Chain Monte Carlo sampling to explore the space of different possible contingency tables
rather than enumerating all the possible contingency tables. In this case, the LD measures,
D and D′ may also be generated. The analysis screen reflects these additional options as
shown in Figure 11.8.

The process of initiating the analysis is very similar to that described above. This time,
the number of steps in the Markov chain must be specified, together with the number of
de-memorization steps. Again, the default values are lower than those suggested in the
manual, which mentions values of 100,000 and ‘a few thousand’ respectively. If the D

and D′ boxes are selected, all pair-wise values are tabulated and output in HTML format
as well as in a file called LD DIS.XL, ready for inputting to MS Excel.
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Figure 11.8 Arlequin Screen. Setting up LD analysis of haplotype data.

11.6 QUANTITATIVE TRAIT LOCUS (QTL) MAPPING
IN EXPERIMENTAL CROSSES

In contrast to human studies, in which variances of phenotypic differences are used to
establish the presence of linkage, QTL mapping in experimental crosses involves com-
paring means of progeny inheriting specific parental alleles. This is simpler and more
powerful (Kruglyak and Lander, 1995). It can be achieved by any of a number of standard
statistical methods, such as t-tests, analysis of variance (ANOVA), Wilcoxon rank-sum
and regression techniques. Again, missing data can be accommodated by an application
of the EM algorithm.

Of the very broad array of possible diploid crosses, the following are particularly
common. They are derived from a pair of divergent inbred lines in which the genotypes
at the majority of loci are homozygous and distinct, say aa and bb for a particular locus
in the two lines respectively. The filial F1 generation results from crossing these two lines
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to produce individuals with heterozygous genotype ab. In the backcross (BC) design, F1

is crossed with one of the parent strains. For example, in the case of a cross with the
aa parent, half the offspring produced are ab and half are aa. In the filial F2 design, the
F1 is selfed, or two F1 individuals are crossed so that offspring are aa, ab, and bb in
the ratio 1:2:1. Lastly, in the recombinant inbred line (RIL), each F2 enters individually
a single seed descent-inbreeding programme so that all progeny are homozygous for the
chosen allele.

The original statistical framework for QTL mapping in experimental crosses was based
upon a marker-by-marker analysis. Of particular relevance to sparse maps however, simple
interval mapping (IM or SIM) allows the evaluation of any position within a marker
interval. The maximum likelihood approach to IM proceeds by calculation of a LOD score
(Lander and Botstein, 1989). Similarly, and with lower computational burden, least squares
regression achieves the same goal (Haley and Knott, 1992; Martinez and Curnow, 1992).
IM may be carried out using a range of software, including MAPMAKER/QTL (Lander
et al., 1987). This may appeal to regular users of MAPMAKER/SIBS or GENEHUNTER,
as the syntax is similar. It relies upon data pre-processing in MAPMAKER/EXP (Lander
et al., 1987) and allows simple graphical output.

Two newer and related methods are Composite Interval Mapping (CIM) and Multiple
QTL Mapping (MQM). Both involve performing a genome scan by moving stepwise
along the chromosome and testing for the presence of the QTL using a pre-defined
set of markers as co-factors (Jansen 1992, 1993; Jansen and Stam, 1994; Kao et al.,
1999; Zeng, 1993, 1994; Zeng et al., 1999). In other words, in the sparse map case,
interval mapping is combined with multiple regression on markers. This approach allows
you to control, to some extent, for effects of other QTLs. Software such as QTL
Cartographer (Basten et al., 1994, 1997) and PLABQTL (Utz and Melchinger, 1996;
http://probe.nalusda.gove:8000/otherdocs/jqtl/) allow the selection of such co-factors by
stepwise regression. These programs offer options that will automatically include or
exclude background markers according to user-defined criteria.

Lastly, Bayesian methods allow the consideration of multiple QTLs, QTL positions
and QTL strengths (Jansen, 1996; Satagopan et al., 1996; Sillanpaa and Arjas, 1998;
Uimari et al., 1996). The software Multimapper (Sillanpaa, 1998), for example, allows
the automatic building of models of multiple QTLs within the same linkage group. It
is designed to work as a companion program to QTL Cartographer (Basten et al., 1994,
1997) and allows a more detailed follow-up of regions of interest. As with other Markov
Chain Monte Carlo methods, however, this approach is computer intensive and may
suffer from problems of convergence to a local, rather than global, optimum or of lack
of convergence if run for a short time.

Ten of the most prominent pieces of software for QTL mapping are reviewed in greater
detail by Manley and Olson (1999). The majority will perform IM and CIM for backcross,
filial F2 and recombinant inbred lines. Cordell (2002) provides worked examples of the
usage of three of them, MAPMAKER/QTL, QTL Cartographer and another piece of
software, MapQTL (van Ooijen and Maliepaard, 1996a, b).

A major limitation of QTL mapping using inbred lines is the broad, ill-defined nature
of the resulting linkage peaks, which typically span tens of centiMorgans even if large
numbers of progeny are analysed (for example see Farmer et al., 2001). This is a con-
sequence of the multifactorial nature of quantitative traits, which results in an inability
to identify unequivocal recombinants that precisely delineate a critical genetic interval,
in contrast with monogenic phenotypes. Subsequent attempts to narrow a locus by, for
example, successive rounds of backcrossing are often frustrated by the dilution or loss
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of unlinked genetic co-factors that are required for trait manifestation. In the future,
QTL mapping using genetically heterogeneous stocks may gain in prominence (Mott
et al., 2000). Talbot et al. (1999) were able to achieve a mapping resolution of less than
1 cM by the study of heterogeneous stocks from eight known inbred mouse progeni-
tor strains that had been intercrossed over 30–60 generations. The group has released
software called HAPPY (Mott et al., 2000) which requires knowledge of the ances-
tral alleles in the inbred founders, together with the genotypes and phenotypes in the
final generation. It will then apply variance component methods to test for linkage to
the QTL.

11.6.1 Example: Map Manager QTX (Manley et al., 2001)

Map Manager QTX is available for both MacOS and PC(Win). It has no licence fee and
was selected here due to the usefulness of its graphic user interface. It has both IM and
CIM capability and can reformat data for use in other important software such as QTL
Cartographer. Interval mapping is based on the Haley and Knott (1992) procedure, and
CIM is achieved by adding background loci. Significance can be assessed by permutation
(Churchill and Doerge, 1994).

The genotype data may derive from inbred or non-inbred stock and options are provided
for a variety of experimental designs. Extensive documentation can be downloaded in
either pdf or Hypertext formats. The Tutorial is especially helpful; but readers should be
aware that its files are somewhat inconspicuously tucked in with Sample Data files, rather
than being included in the Map Manager QTX Manual.

For the current example, genotype data was downloaded from the Mouse Genome
Database (2001). Specifically, it consists of mouse chromosome 1 genotypes from the
Copeland–Jenkins backcross, and a selected subset of 10 markers spanning the entire
∼ 100-cM length of the chromosome. Marker En1 is located near the middle of the
chromosome, between markers Col6a3 and D1Fcr15, and it was used to simulate the
quantitative trait (QT) for the 193 backcross mice. Homozygotes (denoted as b) at En1
received a QT value of 50 ± 20 (mean ± SD) while heterozygotes (s) at En1 received a
QT value of 100 ± 20. En1 was then removed from the dataset and Map Manager QTX
was used to analyse QT association with the remaining nine markers as shown below.

11.6.1.1 Data Import

Map Manager QTX is launched by a mouse click on the Map Manager icon (QTXb13.exe),
thus opening the main menu. The genotype data (alternatively termed ‘Phenotype data’
by Map Manager QTX) is imported by selecting File>Import>Text. The name of each
marker and the genotypes (phenotypes) of the cross progeny are imported as a sin-
gle line of text. The marker name is separated from the genotypes by a tab char-
acter but the genotypes, each represented as above by a single letter, can be given
as either an unbroken string of characters or space-separated. In our case, the first
two lines of input therefore took the following form (with missing genotypes given by
a hyphen):

Actn3<tab>sssbbbbbsbsbsbsssbbsbbsbbbbssbsbbsbsb-bbb-ssss
<CarriageReturn>

Laf4<tab>-sbbbb--sb-------bb--bsbb-bbsb--s-bbbbbsbssb-
bs<CarriageReturn>
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Figure 11.9 Screens in Map Manager QTX. The dataset window (upper left), the Phe-
notype window (upper right), the Map window (lower left) and the Statistics window
(lower right). Genotypes with permission from Mouse Genome Database (2001).

Figure 11.10 Output from single marker association testing in Map Manager QTX:
The ‘Links Report’. ‘Add’ denotes the additive regression coefficient for the association.
Genotypes with permission from Mouse Genome Database (2001).
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Quantitative trait data are then read in from a second text file via File>Import>Trait Text.
The format is almost identical, except that the name of the trait replaces marker name
and the trait value for each mouse must be separated from adjacent values by at least one
space. Again, the name of the quantitative trait and all of the values for cross progeny
must be in a single line of text.

Successful import of a text genotype file produces a small pop-up window (the dataset
window), as shown in Figure 11.9, top left. Within it is a menu allowing selection of Phen,
Map, Stat or Ref. Selecting one of these options and double-clicking on a chromosome
name in the dataset window, produces the chosen window as shown in Figure 11.9.
The Phenotype window (top right) displays the marker names on the left side of the
window, with one column for each member of the progeny. The body of the Phenotype
window shows the genotype at each locus and also indicates locations of recombination

Figure 11.11 Output from Map Manager QTX. Results of interval mapping across nine
markers. Genotypes with permission from Mouse Genome Database (2001).
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events with an X. Pairs of question marks denote the possible locations of crossovers
whose more precise location cannot be specified due to missing genotype data. The Map
window (bottom left), shows a genetic map with estimated cM distance between markers,
and the Statistics window (bottom right) summarizes useful numerical information, such
as the number of recombination events between adjacent markers and LOD evidence
for linkage.

11.6.1.2 Single marker association

Testing for association between an individual marker and a quantitative trait
is accomplished by first selecting a p-value cut-off in the Main menu under
Options>Search&Linkage criteria, and then choosing QT>Links Report in the Main
menu. This produces a window allowing the user to select both the name of the quantitative
trait to test and the background QTLs to be included in the analysis.

Figure 11.10 shows the table or Links Report that was produced by testing each of the
nine markers in our panel for association with the simulated trait. Note that only eight
markers appear in the table, as one marker did not meet the p < 0.05 criterion. Note also
that marker Col6a3 is highlighted as giving the strongest association and therefore as being
the best marker to include as a background QTL in analyses of other chromosomal loci.

11.6.1.3 Simple Interval Mapping

Simple interval mapping of a QT across a series of markers is accomplished by choosing
QT>Interval Mapping from the Main menu. This produces a window which again allows
the user to specify the trait to be analysed and whether any background QTLs are to
be included in the analysis. Once options in this window are specified, Map Manager
QTX produces a table and a figure displaying the Interval Mapping results. Figure 11.11
shows the result of interval mapping our simulated trait across the nine markers on mouse
chromosome 1. As indicated by the position of the cursor, the peak of the likelihood ratio
statistic falls very close to the true location of the simulated QT locus, between markers
Col6a3 and D1Fcr15.
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12.1 INTRODUCTION

Human genetic disease is generally characterized by a profound range of phenotypic
variability manifested in variable age of onset, severity, organ specific pathology and
response to drug therapy. The causes underlying this variability are likely to be equally
diverse, influenced by differing levels of genetic and environmental modifiers. The vast
majority of human genetic variants are likely to be neutral in effect, but some may
cause or modify disease phenotypes. The challenge for bioinformatics is to identify the
genetic variants which are most likely to show a non-neutral allelic effect. Geneticists
studying complex disease are already seeking to identify these genetic determinants
by genetic association of phenotypes with markers. The literature is now replete with
reported associations, but moving from associated marker to disease allele is proving
to be very difficult. So why are we so unsuccessful in making this transition? Dis-
regarding false positive associations (which may make up the bulk of reported asso-
ciations to date!) it may be that the diverse effects of genetic variation are helping
disease alleles to elude us. Genetic variation can cause disease at any number of stages
between promotion of gene transcription to post-translational modification of protein prod-
ucts. Many geneticists have chosen to focus their efforts on the most obvious form of
variation — non-synonymous coding variation in genes. While this category of varia-
tion is undoubtedly likely to contribute considerably to human disease, this may over-
look many equally important categories of variation in the genome, namely the effects
of variation on gene transcription, temporal and spatial expression, transcript stability
and splicing.

Clearly all polymorphisms are not equal. Analysis of polymorphism distribution across
the human genome shows significant variations in polymorphism density and allele fre-
quency distribution. Chakravarti (1999) showed an immediate difference between the
density of SNPs in exonic regions and intragenic and intronic regions. SNPs occurred
at 1.2-kb average intervals in coding regions and 0.9-kb intervals in intragenic and
intronic regions. These differences point to different selection intensities in the genome,
particularly in protein coding regions, where SNPs may result in alteration of amino
acid sequences (non-synonymous SNPs (nsSNPs)) or the alteration of gene regulatory
sequences. These observations are intuitive — natural selection is obviously likely to be
strongest across gene regions, essentially encapsulating the objective of genetics — to
identify non-neutral alleles with a role in disease.

So how should we go about identifying disease alleles? One approach used to identify
disease mutations is to directly screen strong candidate genes for mutations present in
affected but not unaffected family members. This approach is very useful in the study of
monogenic diseases and cancers, where transmission of the disease allele can generally be
demonstrated to be restricted to affected individuals/tissues. But in the case of complex
disease the odds of identifying disease alleles by population screening of candidate genes
would seem to be very high and proving their role is problematic as disease alleles are
likely to be present in cases and controls. Instead we detect common marker alleles in
LD with rarer disease alleles. This methodical approach to disease gene hunting localizes
disease alleles rather than actually identifying them directly, the next step is to identify
the disease allele from a range of alleles in LD with the associated marker. To conclu-
sively identify this allele a functional mechanism for the allele in the disease needs to
be identified.
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12.1.1 Moving from Associated Genes to Disease Genes

Many potential associations have been reported between markers and disease phenotypes.
Aside from the potential for false positive association, magnitude of effect in complex
disease is also a problem. There may be a few gene variants with major effects, but
generally complex disease is very heterogeneous and polygenic, it therefore follows that
studies of single gene variants will be inconclusive and inconsistent — this is just some-
thing we have to work with. We may also find a bewildering array of complex disease
genes with somewhat indirect roles in disease, such as modifier genes and redundant
genes, that have many effects on phenotype. Understanding the mode of action of these
associated alleles will help in determining how susceptibility genes may give rise to a
multifactorial phenotype. Bioinformatics may be critical in this process. Follow-up stud-
ies need to be designed to ask the right questions, to ensure that the right candidates
are tested and to confirm the biological role of positive associations. It may also be nec-
essary to attempt to characterize polymorphisms with a potential functional impact, to
help to identify the molecular mechanisms by a combination of bioinformatics and lab-
oratory follow-up. Many of these informatics approaches are similar to the approaches
originally used to identify candidates, but by necessity these analyses benefit from a far
more detailed approach as in-depth analyses transfer to in-depth laboratory investigation.

Moving from an ‘associated gene’ to a ‘disease gene’ is not a purely academic objec-
tive. Genetics may sometimes be our only insight into the nature of a disease, such
insights may help us to restore the normal function of disease genes in patients, develop
drugs and better still it may help prevent disease in the first place. Better diagnosis
and treatments are also prospects afforded by better understanding of the pathology of
disease. A validated ‘disease gene’ is one of the most tangible progressions towards
this end.

12.1.2 Candidate Polymorphisms

To turn the arguments for association analysis on their head, there is also theory that
suggests that the direct identification of disease alleles may not be entirely futile. The
common disease/common variant (cd/cv) hypothesis predicts that the genetic risk for
common diseases will often be due to disease-predisposing alleles with relatively high
frequencies (Reich and Lander, 2001). There is not enough evidence to prove or disprove
this hypothesis, however several examples of common disease variants have been identi-
fied, some of which are listed in Table 12.1, the allele frequency of these variants in the
public databases is also listed.

The possibility that many disease alleles may be common, presents an intriguing
challenge for genetics (and bioinformatics), if the cd/cv hypothesis holds true, then a
substantial number of disease alleles may already be present in polymorphism databases
or the human genome sequence. These might be termed ‘candidate polymorphisms’. To
extend this idea, just as genes with a putative biological role in disease are often pri-
oritized for genetic association analysis, ‘candidate polymorphisms’ can be prioritized
based on a predicted effect on the structure and function of regulatory regions, genes,
transcripts or proteins. Thus selection of candidate polymorphisms is an extension of the
candidate gene selection process — but in this case a link needs to be established between
a predicted functional allelic effect and a target phenotype. As discussed earlier, DNA
polymorphism can impact almost any biological process. Much of the literature in this area
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TABLE 12.1 Disease Alleles Supporting the Common Disease/Common Variant
Hypothesis

Gene
(Allele)

Minor
Allele Freq.
(In dbSNP)

Disease/Trait
Association

OMIM
Review

APOE ε4 16% (14%) Alzheimer’s and cardiovascular
disease

107741

Factor Vleiden

R506Q
2–7% (ND) Deep vein thrombosis 227400

KCNJ11
E23K

14% (25%) Type II diabetes 600937

COMT
V158M

0.1–62%
(45%)

Catechol drug
pharmacogenetics

116790

has focused on the most obvious form of variation — non-synonymous changes in coding
regions of genes. Alterations in amino acid sequences have accounted for a great num-
ber of diseases. Coding variants may impact protein folding, active sites, protein–protein
interactions, protein solubility or stability. But the effects of DNA polymorphism are by
no means restricted to coding regions, variants in regulatory regions may alter the consen-
sus of transcription factor binding sites or promoter elements; variants in the untranslated
regions (UTR) of mRNA may alter mRNA stability; variants in the introns and silent
variants in exons may alter splicing efficiency.

Approaches for evaluating the potential functional effects of DNA polymorphisms
are almost limitless, but there are very few tools designed specifically for this task.
Instead almost any bioinformatics tool which makes a prediction based on a DNA or pro-
tein sequence can be commandeered to analyse polymorphisms — simply by analysing
wild-type and mutant sequences and looking for an alteration in predicted outcome by
the tool. Polymorphisms can also be evaluated at a simple level by looking at phys-
ical considerations of the properties of genes and proteins or they can be evaluated
in the context of a variant within a family of homologous or orthologous genes or
proteins.

12.2 PRINCIPLES OF PREDICTIVE FUNCTIONAL ANALYSIS
OF POLYMORPHISMS

Faced with the extreme diversity of disease, analysis of polymorphism data calls for
equally diverse methods to assess functional effects that might lead to these phenotypes.
The complex arrangements that regulate gene transcription, translation and function are
all potential mechanisms through which disease could act and so analysis of potential dis-
ease alleles needs to evaluate almost every eventuality. Figure 12.1 illustrates the logical
decision-making process that needs to be applied to the analysis of polymorphisms and
mutations. The tools and approaches for the analysis of variation are completely depen-
dent on the location of the variant within a gene or regulatory region. Many of these
questions can be answered very quickly using genomic viewers such as Ensembl or the
UCSC human genome browser (see Chapter 5 for a tutorial on these tools). Placing a
polymorphism in full genomic context is useful to evaluate variants in terms of location
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Figure 12.1 A decision tree for polymorphism analysis.

within or near genes (exonic, coding, UTR, intronic, promoter region) and other function-
ally significant features, such as CPG islands, repeat regions or recombination hotspots.
Once approximate localization is achieved, specific questions need to be asked to place
the polymorphism in a specific genic or intergenic region. This will help to narrow down
the potential range of functional effects attributable to a variant, which will in turn help to
identify the appropriate laboratory follow-up approach to evaluate function. Tables 12.2
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TABLE 12.2 Functional Polymorphisms in Genes and Gene Regulatory Sequences

Location Gene/Disease Mechanism

Transcription
factor binding

TNF in cerebral
malaria

−376A SNP introduces OCT1 binding
site-altering TNF expression,
associated with four-fold increased
susceptibility to cerebral malaria.
(Knight et al., 1999)

Promoter CYP2D6 Common — 48T > G substitution
disrupts the TATA box of the
CYP2D6 promoter, causing 50%
reduction in expression. (Pitarque
et al., 2001)

Promoter RANTES in HIV
progression

−28G mutation increases transcription
of the RANTES gene slowing HIV-1
disease progression (Liu et al., 1999)

cis-regulatory
element

Bruton’s tyrosine
kinase in
X-linked
agammaglo-
bulinemia

+5G/A (intron 1) shows reduced BTK
transcriptional activity, suggesting a
novel cis-acting element, involved in
BTK downregulation but not
splicing (Jo et al., 2001)

Lariat region HNF-4alpha NIDDM-associated C/T substitution in
polypyrimidine tract in intron 1b in
an important cis-acting element
directing intron removal (lariat
region) (Sakurai et al., 2000)

Splice
donor/acceptor
sites

ATP7A in Menke
disease

Mutation in donor splice site of exon 6
of ATP7A causes a lethal disorder of
copper metabolism (Moller et al.,
2000)

Cryptic
donor/acceptor
sites

β-glucuronidase
gene (GUSB) in
MPS VII

A 2-bp intronic deletion creates a new
donor splice site activating a cryptic
exon in intron 8 (Vervoort et al.,
1998)

Exonic splicing
enhancers (ESE)

BRCA1 in breast
cancer

Both silent and nonsense exonic point
mutations were demonstrated to
disrupt splicing in BRCA1 with
differing phenotypic penetrance (Liu
et al., 2001)

Intronic splicing
enhancers (ISE)

Alpha
galactosidase in
Fabry disease

G > A transversion within 4 bp of
splice acceptor results in greatly
increased alternative splicing (Ishii
et al., 2002)

Exonic splicing
silencers (ESS)

CD45 in multiple
sclerosis

Silent C77G disrupts ESS that inhibits
the use of the 5′ exon four splice
sites (Lynch and Weiss, 2001)

Intronic splicing
silencers (ISS)

TAU in dementia
with
parkinsonism

Mutations in TAU intron 11 ISS cause
disease by altering exon 10 splicing
(D’Souza and Schellenberg, 2000)



PRINCIPLES OF PREDICTIVE FUNCTIONAL ANALYSIS OF POLYMORPHISMS 255

TABLE 12.2 (continued )

Location Gene/Disease Mechanism

Polyadenylation
signal

FOXP3 in IPEX
syndrome

A→G transition within the
polyadenylation signal leads to
unstable mRNA with 5.1 kb extra
UTR (Bennett et al., 2001)

TABLE 12.3 Tools for Functional Analysis of Gene Regulation and Splicing

Tool URL

Promoter prediction
NNPP http://www.fruitfly.org/seq−tools/promoter.html
CorePromoter http://sciclio.cshl.org/genefinder/CPROMOTER/
Promoter Scan II http://www.molbiol.ox.ac.uk/promoterscan.htm
Orange http://wwwiti.cs.uni-magdeburg.de/∼grabe/

orange/

Transcription factor binding site prediction
TRANSFAC http://transfac.gbf.de/TRANSFAC/
FastM/ModelInspector http://genomatix.gsf.de/cgi-bin/fastm2/fastm.pl
TESS http://www.cbil.upenn.edu/tess/
TFSEARCH http://www.cbrc.jp/research/db/TFSEARCH.html

Splice site prediction
NETGENE http://genome.cbs.dtu.dk/services/NetGene2/
Splice Site Prediction http://www.fruitfly.org/seq−tools/splice.html
SpliceProximalCheck http://industry.ebi.ac.uk/∼thanaraj/

SpliceProximalCheck.html

Gene prediction and ORF finding
Genscan http://genes.mit.edu/GENSCAN.html
Genie http://www.fruitfly.org/seq−tools/genie.html
ORF Finder http://www.ncbi.nlm.nih.gov/gorf/gorf.html

Detection of novel regulatory elements and comparative genome analysis
PipMaker http://bio.cse.psu.edu/pipmaker/
TRES http://bioportal.bic.nus.edu.sg/tres/
Improbizer http://www.soe.ucsc.edu/∼kent/improbizer/
Regulatory Vista http://www-gsd.lbl.gov/vista/rVistaInput.html

Integrated platforms for gene, promoter and splice site prediction
Webgene http://www.itba.mi.cnr.it/webgene/
BCM Gene Finder http://dot.imgen.bcm.tmc.edu:9331/gene-finder/

gf.html

and 12.3 illustrate some carefully selected examples of non-coding polymorphisms in
genes and transcripts, these publications were specifically selected as each also includes
a detailed laboratory based follow-up to evaluate each form of polymorphism. We refer
the reader to these publications as a potential guide to assist in laboratory investigation.
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12.2.1 Defining the Boundaries of Normal Function in Genes and Gene
Products

Beyond the general localization of variants that general bioinformatics tools, such as
Ensembl, can afford, there is a further more detailed context to many known regulatory
elements in genes and gene regulatory regions. Our knowledge of these elements is still
very sparse, but certain elements are relatively well defined. Many of these elements have
been defined by mutations in severe Mendelian phenotypes. By definition this suggests
that many elements which may have moderate effects on gene function are less likely to
have been identified as they are less likely to have come to the attention of physicians.
In the case of complex disease it may be very difficult to distinguish genuine disease
susceptibility alleles from the normal spectrum of variability in human individuals.

12.2.2 A Decision Tree for Polymorphism Analysis

The first step in our decision tree for polymorphism analysis (Figure 12.1) is a simple
question — is the polymorphism located in an exon? Answering this accurately may not
always be simple or even possible with only in silico resources. As we have already
seen in the previous section, delineation of genes is really the key step in all subsequent
analyses, once we know the location of a gene all other functional elements fall into
place based on their location in and around genes. In Chapter 4 we presented a detailed
examination of the art of delineating genes, including methods for extending sequences to
identify the true boundaries of a gene, not just its coding region. This activity may seem
superfluous in the ‘post genome’ era, but the fact is that we still know very little about the
full diversity of genes and the vast majority of genes are still incompletely characterized.
Gene prediction and gene cloning has generally focused on the open reading frame — the
protein coding sequence (ORF/CDS) of genes. For the most part UTR sequences have
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been neglected in the rush to find an ORF and a protein. In the case of polymorphism
analysis, these sequences should not be overlooked as the extreme 5′ and 3′ limits of UTR
sequence delineate the true boundaries of genes. This delineation of gene boundaries is
illustrated in a canonical gene model in Figure 12.2. As the model shows, most of the
known regulatory elements in genes are localized to specific regions based on the location
of the exons. So for example, the promoter region is generally located in a 1–2-kb region
immediately upstream of the 5′ UTR and splice regulatory elements flank intron/exon
boundaries. Many of these regulatory regions were first identified in Mendelian disorders
and now some are also being identified in complex phenotypes. Table 12.2 lists some of
the disease mutations and polymorphisms that have helped to shape our knowledge of
this complex area.

12.3 THE ANATOMY OF PROMOTER REGIONS AND REGULATORY
ELEMENTS

Prediction of eukaryotic promoters from genomic sequence remains one of the most
challenging tasks for bioinformatics. The biggest problem is over-prediction; current meth-
ods will on average predict promoter elements at 1-kb intervals across a given genomic
sequence. This is in stark contrast to the estimated average 40–50-kb distance of func-
tional promoters in the human genome (Reese et al., 2000). Although it is possible that
some of these predicted promoters may be expressed cryptically, the vast majority of pre-
dictions are likely to be false positives. To avoid these false predictions it is essential to
provide promoter prediction tools with the appropriate sequence region, that is, the region
immediately upstream of the gene transcriptional start site (TSS). It is important to define
the TSS accurately; it is certainly insufficient to simply take the sequence upstream from
the start codon as 5′ UTR can often span additional 5′ exons in higher eukaryotes (Reese
et al., 2000). As Uwe Ohler of the Drosophila genome project so eloquently stated, ‘with-
out a clear idea of the TSS location we may well be looking for a needle in the wrong
haystack’ (Ohler, 2000). If we can identify the TSS, the majority of RNA polymerase
promoter elements are likely to be located within 150 bp, although some may be more
distant so it may be important to analyse 2 kb or more upstream, particularly when the
full extent of the 5′ UTR or TSS is not well defined.

Once a potential TSS has been identified there are many tools which can be applied
to identify promoter elements and transcription factor binding sites. The human genome
browsers (UCSC and Ensembl) are the single most valuable resources for the analysis
of promoters and regulatory elements. Specifically, Ensembl annotates putative promoter
regions using the Eponine tool. The UCSC browser annotates known transcription factor
binding sites from the Transfac database and novel predicted regulatory elements in the
‘golden triangle’ track (see Section 12.6.2 below). These are very useful for rapid evalua-
tion of the location of variants in relation to these features, although this data needs to be
used with caution as whole genome analyses may over-predict or overlook evidence for
alternative gene models. The analysis approaches for promoter and transcription binding
site analysis are reviewed thoroughly in Chapter 13.

Characterization of gene promoters and regulatory regions is not only valuable for
functional analysis of polymorphisms, but it can also provide important information about
the regulatory cues that govern the expression of a gene, which may be valuable for
pathway expansion to assist in the elucidation of the function of candidate genes and
disease-associated genes.



258 PREDICTIVE FUNCTIONAL ANALYSIS OF POLYMORPHISMS: AN OVERVIEW

12.4 THE ANATOMY OF GENES

12.4.1 Gene Splicing

Alternative splicing is an important mechanism for regulation of gene expression which
can also expand the coding capacity of a single gene to allow production of different
protein isoforms, which can have very different functions. The recent completion of the
human genome draft has given an interesting new insight into this form of gene regulation.
Despite initial estimates of a human gene complement of > 100 K genes, direct analysis
of the sequence suggests that humans may only have 30–40 K genes, which is only a two-
to three-fold gene increase over invertebrates (Aparicio, 2000). Indeed, extrapolation of
results from an analysis of alternatively spliced transcripts from chromosomes 22 and 19
have led to estimates that at least 59% of human genes are alternatively spliced (Lander
et al., 2001). This highlights the probable significance of post-transcriptional modifications
such as alternative splicing as an alternative means by which to express the full phenotypic
complexity of vertebrates without a very large number of genes.

A much simpler organism has given us a glimpse of the possibilities of splicing as a
mechanism to generate phenotypic complexity. The drosophila homologue of the human
Down syndrome cell adhesion molecule (DSCAM) has 115 exons, 20 of which are con-
stitutively spliced and 95 of which are alternatively spliced (Schmucker et al., 2000). The
alternatively spliced exons are organized into four clusters, with 12 alternative versions
of exon 4, 48 versions of exon 6, 33 versions of exon 9 and two versions of exon 17.
These clusters of alternative exons code for 38,016 related but distinct protein isoforms!

12.4.2 Splicing Mechanisms, Human Disease and Functional Analysis

The remarkable diversity of potential proteins produced from the DSCAM gene, gives
us some idea of the tight regulation of alternative splicing that must be in place to not
only regulate the choice of each version of a particular exon, but also to exclude all other
versions of the exon once one version has been selected. Regulation of splicing is medi-
ated by the spliceosome, a complex network of small nuclear ribonucleoprotein (snRNP)
complexes and members of the serine/arginine-rich (SR) protein family. At its most basic
level, pre-mRNA splicing involves precise removal of introns to form mature mRNA with
an intact open reading frame (ORF). Correct splicing requires exon recognition with accu-
rate cleavage and rejoining at the exon boundaries designated by the invariant intronic
GT and AG dinucleotides, respectively known as the splice donor and splice acceptor
sites (Figure 12.2). Other more variable consensus motifs have been identified in adjacent
locations to the donor and acceptor sites, including a weak exonic ‘CACCAG’ consensus
flanking the splice donor site, an intronic polypyrimidine- (Y : C or T) rich tract flanking
the splice acceptor site and a weakly conserved intronic ‘YNYURAY’ consensus 18–40 bp
from the acceptor site, which acts as a branch site for lariat formation (Figure 12.2). Other
regulatory motifs are known to be involved in splicing, including exonic splicing enhancers
(ESE) and intronic splicing enhancers (ISE), both of which promote exon recognition, and
exonic and intronic splicing silencers (ESS and ISS, respectively), which have an opposite
action, inhibiting the recognition of exons. DNA recognition motifs for splicing enhancers
and silencers are generally quite degenerate. The degeneracy of these consensus recogni-
tion motifs points to fairly promiscuous binding by SR proteins. These interactions can
also explain the use of alternative and inefficient splice sites, which may be influenced by
competitive binding of SR proteins and hnRNP determined by the relative ratio of hnRNP
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to SR proteins in the nucleus. A natural stimulus that influences the ratio of these pro-
teins is genotoxic stress, which can lead to the often observed phenomenon of differential
splicing in tumours and other disease states (Hastings and Krainer, 2001).

Mutations affecting mRNA splicing are a common cause of Mendelian disorders,
10–15% of Mendelian disease mutations affect pre-mRNA splicing (Human Gene Muta-
tion Database, Cardiff). These mutations can be divided into two subclasses according to
their position and effect on the splicing pattern. Subclass I (60% of the splicing muta-
tions) includes mutations in the invariant splice-site sequences, which completely abolish
exon recognition. Subclass II includes mutations in the variant motifs, which can lead
to both aberrantly and correctly spliced transcripts, by either weakening or strengthen-
ing exon-recognition motifs. Subclass II also includes intronic mutations, which generate
cryptic donor or acceptor sites and can lead to partial inclusion of intronic sequences.
These Mendelian disease mutations have helped to define our understanding of splicing
mechanisms. Considering the proven complexity of splicing in the human genome (Lan-
der et al., 2001), it seems reasonable to expect splicing abnormality to play a significant
role in complex diseases, but examples are rare. This is explained in part by the power
of family-based mutations, the inheritance of which can be traced between affected and
unaffected relatives. It is difficult to determine similar causality for a population-based
polymorphism.

12.4.3 Functional Analysis of Polymorphisms in Putative Splicing
Elements

If taken individually, there are many sequences within the human genome that match the
consensus motifs for splice sites, but most of them are not used. In order to function,
splice sites need appropriately arranged positive (ESEs and ISEs) and negative (ESSs, and
ISSs) cis-acting sequence elements. These cis-acting arrangements of regulatory elements
can be both activated and deactivated by DNA sequence polymorphisms. DNA polymor-
phism at the invariant splice acceptor (AG) and donor (GT) sites, are generally associated
with severe diseases and so, are likely to be correspondingly rare. But, as we have seen,
recognition motifs for some of the elements that make up the larger splice site consen-
sus are very variable, so splice site prediction from undefined genomic sequence is still
imprecise at the best of times. Bioinformatics tools can fare rather better when applied to
known genes with known intron/exon boundaries — this information can be used to carry
out reasonably accurate evaluations of the impact of polymorphisms in putative splice
regions. There are several tools which will predict the location of splice sites in genomic
sequence, all match and score the query sequence against a probability matrix built from
known splice sites (see Table 12.3). These tools can be used to evaluate the effect of
splice region polymorphisms on the strength of splice site prediction by alternatively run-
ning wild-type and mutant alleles. As with any other bioinformatics prediction tool it is
always worth running predictions on other available tools to look for a consensus between
different prediction methods. These tools can also be used to evaluate the propensity of
an exon to undergo alternative splicing. For example an unusually low splice site score
may indicate that aberrant splicing may be more likely at a particular exon compared to
exons with higher splice site scores. The phase of the donor and acceptor sites also needs
to be taken into account in these calculations. Coding exons exist in three phases 0, 1 and
2, based on the codon location of the splice sites, if alternative donor or acceptor sites
are in unmatched phases then a frameshift mutation will occur.

Splice site prediction tools will generally predict the functional impact of a polymor-
phism within close vicinity of a splice donor or acceptor site, although they will not predict
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the functional effect of polymorphisms in other elements such as lariat branch sites. Def-
inition of consensus motifs for these elements (Figure 12.2) makes it reasonably easy to
assess the potential functional impact of polymorphisms in these gene regions by simply
inspecting the location of a polymorphism in relation to the consensus motif. As with all
functional predictions laboratory investigation is required to confirm the hypothesis.

Other cis-regulatory elements, such as ESE, ESS, ISE and ISS sites are very poorly
defined and may be located in almost any location within exons and introns. There are
currently no available bioinformatics tools to generally predict the locations of these
regulatory elements. Some specific elements, cis-regulatory elements, have been defined
in specific genes, but these do not form a consensus sequence to search other genes. One of
the only possible approaches for in silico analysis of such elements is to use comparative
genome data to look for evolutionarily conserved regions, particularly between distant
species, e.g. comparison of Human/Fugu (fish) genomes. Although there may be some
value in these approaches, confirmation of cis-regulatory elements really needs to be
achieved by laboratory methods (see D’Souza and Schellenberg (2000) for a description
of such methods).

12.4.4 Polyadenylation Signals

Polyadenylation of eukaryotic mRNA occurs in the nucleus after cleavage of the precursor-
RNA. Several signals are known which determine the site of cleavage and subsequent
polyadenylation, the most well known is a canonical hexanucleotide (AAUAAA) signal
20–50 bp from the 3′ end of the pre-RNA, this works with a downstream U/GU-rich
element which is believed to regulate the complex of proteins necessary to complete
3′ processing (Pauws et al., 2001). The specific site of cleavage of pre-RNA is located
between these regulatory elements and is determined by the nucleotide composition of
the cleavage region with the following nucleotide preference A > U > C >> G. In a
study of 9625 known human genes Pauws et al. (2001) found that 44% of human genes
regularly used more than one cleavage site, resulting in the generation of slightly different
mRNA species.

Mutations in the canonical AAUAAA polyadenylation signal have been shown to
disrupt normal generation of polyadenylated transcripts (Bennett et al., 2001). This signal
is needed for both cleavage and polyadenylation in eukaryotes, and failure to polyadenylate
will prevent maturation of mRNA from nuclear RNA (Wahle and Keller, 1992). The
complete aggregate of elements that make up the polyadenylation signal including the
U/GU-rich region may not be universally required for processing (Graber et al., 1999).
Single nucleotide variations in this region cannot be conclusively identified as functional
although any polymorphism in this region might be considered a candidate for further
consideration.

12.4.5 Analysis of mRNA Transcript Polymorphism

The potential functional effects of genetic polymorphism can extend beyond a direct
effect on the genomic organization and regulation of genes. Messenger RNA is far more
than a simple coded message acting as an intermediary between genes and proteins.
mRNA molecules have different fates related to structural features embedded in discrete
regions of the molecule. The processing, localization, translation or degradation of a
given mRNA may vary considerably, depending upon the environment in which it is
expressed. Figure 12.3 illustrates a simplified model of an mRNA molecule, indicating the
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Figure 12.3 The anatomy of an mRNA transcript. This figure illustrates some of
the key regulatory and structural elements that control the translation, stability and
post-transcriptional processing of mRNA transcripts. Polymorphisms in these regions
should be investigated for functional effects.

key features and regulatory motifs that could potentially be disrupted by polymorphism.
At the most basic level an mRNA molecule consists of a protein coding, open reading
frame (ORF), flanked by 5′ and 3′ UTR. Most polymorphism analysis in the literature
has tended to focus on the coding sequence of genes, but there is evidence to suggest
that UTR sequences also serve important roles in the function of mRNA. At the risk of
generalizing, 5′ UTR sequences are important as they are known to accommodate the
translational machinery, while there is accumulating evidence that strongly implicates the
3′ UTR in the regulation of gene expression. In Table 12.4 we highlight some examples
of polymorphisms which impact mRNA transcripts.

12.4.6 Initiation of Translation

If a gene is known, the ORF will probably be well defined, but if a novel transcript is being
studied the ORF needs to be identified. Again we refer the reader to Chapter 4 which
contains details on the extension of mRNA transcripts and ORF finding procedures. The
accepted convention is that the initiator codon will be the first inframe AUG encoding the
largest open reading frame in the transcript. There is evidence of a scanning mechanism
for initiation of translation; the initiator codon generally conforms to a ‘CCACCaugG’
consensus motif known as the Kozak sequence (Kozak, 1996). However, Peri and Pandey
(2001) and others have recently reappraised this convention and actually found that more
than 40% of known transcripts contain inframe AUG codons upstream of the actual
initiator codon, some of which conform more closely to the Kozak motif than the authentic
initiator codon. Their revised Kozak consensus ‘C32C39A47C41C45A100U100G100G53’ was
much weaker. These observations have cast some doubt on the validity of the scanning
mechanism for initiation of translation, some have argued that the frequent occurrence of
AUG codons upstream of the putative initiator codon, may indicate misassignment of the
initiator codon or cDNA library anomalies (Kozak, 2000), others point to the empirical
increase in gene expression measured in the laboratory when initiator codons conforming
to the Kozak consensus are compared to other sequences. This debate may never resolve
conclusively and it seems certain that the mechanism for translation initiation is still not
fully understood.
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TABLE 12.4 Functional Non-Coding Polymorphisms in mRNA Transcripts

Location Gene/Disease Mechanism

Internal ribosome
entry segment
(IRES)

Proto-oncogene
c-myc in multiple
myeloma

C–T mutation in the c-myc-IRES causes
aberrant translational regulation of
c-myc, enhanced binding of protein
factors and enhanced initiation of
translation leading to oncogenesis
(Chappell et al., 2000)

Kozak initiation
sequence

Platelet glycoprotein
Ib-alpha (GP1BA)
in ischaemic stroke

C/T polymorphism at the −5 position
from the initiator ATG codon of the
GP1BA gene is located within the
‘Kozak’ consensus nucleotide
sequence. The presence of a C at this
position significantly increases the
efficiency of expression of the
GPIb/V/IX complex (Afshar-Kharghan
et al., 1999)

Anti-termination
mutation and 3′
UTR stability
determinants

Alpha-globin in
alpha-thalassemia

UAA to CAA to anti-termination
mutation allows translation to proceed
into the 3′ UTR which masks stability
determinants to substantially decrease
mRNA half-life (Conne et al., 2000)

UTR stability Protein tyrosine
phosphatase-1B
(PTP1B)

1484insG in 3′ UTR causes PTP1B
over-expression leading to insulin
resistance (Di Paola et al., 2002)

There are some examples of polymorphisms in Kozak sequences that appear to have
a direct bearing in human disease. Kaski et al. (1996) reported a T > C SNP with an
8–17% minor allele frequency at the −5 position from the initiator ATG codon of the
GP1BA gene. This SNP is located within the most 5′ (and weakest) part of the Kozak
consensus sequence. The cytosine (C) allele at this position conforms more closely to the
consensus and subsequent studies of the SNP found that it was associated with increased
expression of the receptor on the cell membrane, both in transfected cells and in the
platelets of individuals carrying the allele. The polymorphism was also associated with
cardiovascular disease susceptibility (Afshar-Kharghan et al., 1999).

An alternative mechanism for translation initiation has been identified which does
not obey the ‘first AUG rule’, this involves cap-independent internal ribosome binding
mediated by a Y-shaped secondary structure, denoted the Internal Ribosome Entry Site
(IRES), located in the 5′ UTR of 5–10% of human mRNA molecules (see Le and Maizel,
(1997) for a review of these elements). IRES elements are complex stem loop structures,
there is no reliable sequence consensus to allow prediction of the possible functional
effects of polymorphisms in these elements instead this needs to be attempted by the use
of RNA secondary structure prediction tools such as MFOLD (see below).

12.4.7 mRNA Secondary Structure Stability

While we have already established that nucleotide variants in mRNA can alter or create
sequence elements directing splicing, processing or translation of mRNA, variants may
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also influence mRNA synthesis, folding, maturation, transport and degradation. Many of
these diverse biological processes are strongly dependent on mRNA secondary structure.
Secondary structure is essentially determined by ribonucleotide sequence and so folding
of mRNA is also likely to be influenced by SNPs and other forms of variation at any
location in a transcript. Shen et al. (1999) studied two common silent SNPs in the coding
regions of two essential genes — a U1013C transition in human alanyl tRNA synthetase
(AARS) and a U1674C transition in the human replication protein A 70-kDa subunit
(RPA70). The minor allele frequency was 0.49 for the AARS U allele and 0.15 for the
RPA70 C allele. Using structural mapping and structure-based targeting strategies they
demonstrated that both SNPs had marked effects on the structural folds of the mRNAs,
suggesting phenotypic consequences of SNPs in mRNA structural motifs.

RNA stability is an intriguing disease mechanism, unfortunately beyond this and a
handful of other published studies (see Conne et al. (2000) for a review), the true extent
of detectable differences in mRNA folding caused by polymorphism is quite unknown,
this may reflect the difficulties involved in studying such mutational effects in vitro.

There are several tools which can help to construct in silico secondary-structure models
of polymorphic mRNA alleles. One of the best tools is MFOLD (M. Zuker, Washing-
ton University, St. Louis, MO), this is maintained on the Zuker laboratory homepage
which also contains an excellent range of RNA secondary structure-related resources
(http://bioinfo.math.rpi.edu/∼zukerm/rna/). MFOLD will construct a number of possible
models based on all structural permutations of a user-submitted mRNA sequence. Sub-
mission of mutant and wild-type mRNA alleles to this tool will give the user a fairly good
indication of whether an allele could alter mRNA secondary structure. This can help to
prioritize alleles for laboratory-based investigation of mRNA stability studies.

12.4.8 Regulatory Control of mRNA Processing and Translation

Beyond splicing and promoter based regulation, mRNAs are also tightly controlled by
regulatory elements in their 5′ and 3′ untranslated regions (Figure 12.3). Proteins that
bind to these sites are key players in controlling mRNA stability, localization and transla-
tional efficiency. Consensus motifs have been identified for many of these factors, usually
corresponding to short oligonucleotide tracts, which generally fold in specific secondary
structures, which are protein binding sites for various regulatory proteins. Some of these
regulatory signals tend to be protein family specific, while others have a more general
effect on diverse mRNAs. AU-rich elements (AREs) are the largest class of cis-acting 3′
UTR-located regulatory molecules that control the cytoplasmic half-life of a variety of
mRNA molecules. One main class of these regulatory elements consists of pentanucleotide
sequences (AUUUA) in the 3′ UTR of transcripts encoding oncoproteins, cytokines and
growth and transcription factors. Many RNA-binding proteins, mostly members of the
highly conserved ELAV family, recognize and bind AREs (Chen and Shyu, 1995). Defec-
tive functioning of AREs can lead to the abnormal stabilization of mRNA, this forms the
basis of several human diseases, including mantle cell lymphoma, neuroblastoma, immune
and several inflammatory diseases. Polymorphisms which disrupt AU-rich motifs in a 3′
UTR sequence may be worth evaluation as potentially functional polymorphisms. Some
databases to assist in the identification of these motifs are described below.

12.4.9 Tools and Databases to Assist mRNA Analysis

To assist in the analysis of diverse and often family specific regulatory elements,
such as ARE elements, Pesole et al. (2000) have developed UTRdb, a specialized
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non-redundant database of 5′ and 3′ untranslated sequences of eukaryotic mRNAs
(http://bighost.area.ba.cnr.it/BIG/UTRHome/). In March 2002, UTRdb contained 39,527
non-redundant human entries; these are enriched with specialized information absent from
primary databases including the presence of RNA regulatory motifs with experimental
proof of a functional role. It is possible to BLAST search the database for the presence
of annotated functional motifs in a query sequence.

Jacobs et al. (2002) have also developed Transterm, a curated database of mRNA
elements that control translation (http://uther.otago.ac.nz/Transterm.html). This database
examines the context of initiation codons for conformation with the Kozak consensus
and also contains a range of mRNA regulatory elements from a broad range of species.
Access is provided via a web browser in several different ways: a user-defined sequence
can be searched against motifs in the database or elements can be entered by the user
to search specific sections of the database (e.g. coding regions or 3′ flanking regions or
the 3′ UTRs) or the user’s sequence. All elements defined in Transterm have associated
biological descriptions with references.

12.5 PSEUDOGENES AND REGULATORY MRNA

As a final word on the analysis of mRNA transcripts, it is important to be aware that not
all mRNAs are intended to be translated. Some genes may produce transcripts that are
truncated or retain an intron or are otherwise configured in a way that precludes translation.
It is difficult to clarify the role of some of these transcripts; where a transcript has multiple
premature termination codons, it is likely to be a pseudogene, others may have no obvious
open reading frames, these may also be pseudogenes or they may be regulatory mRNA
molecules. Several non-coding RNA (ncRNA) molecules have been described which act as
riboregulators with a direct influence on post-transcriptional regulation of gene expression
(see Erdmann et al. (2001) for a comprehensive review of the properties of regulatory
mRNA). Analysis of polymorphisms in these molecules is difficult as they are very poorly
defined in terms of functionality.

12.6 ANALYSIS OF NOVEL REGULATORY ELEMENTS AND MOTIFS
IN NUCLEOTIDE SEQUENCES

It is very likely that our current knowledge of regulatory elements in the human genome is
quite superficial. In terms of transcription factors alone, the TRANSFAC database contains
a redundant set of 2263 profiles for vertebrate binding sites (Heinemeyer et al., 1999),
yet the first pass analysis of the human genome has identified over 4000 proteins with
a putative DNA binding role (Venter et al., 2001). This is likely to be an underestimate.
Geneticists are working at the vanguard of efforts to close the gap between our current
understanding and the full complexity of human gene regulation. Genetics has already
contributed greatly to the identification of new regulatory elements by the identification
of regulatory mutations and polymorphisms.

In this chapter we have reviewed a number of regulatory mechanisms and motifs
in DNA sequences, including motifs in promoter regions, splice sites, introns and tran-
scripts. Functional analysis of polymorphisms located in the consensus sequences identi-
fied for some of these elements may be an important indicator of a potential functional
effect. However, despite advances in bioinformatic tools, predictive functional analysis
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of sequence polymorphism is still difficult to validate without laboratory follow-up. Even
with the benefit of laboratory verification, identification of deleterious alleles can be labo-
rious and the results of analyses do not always hold true between in vitro and in vivo
environments. In a sense evolution is an in vivo experiment on a grand scale and so Syd-
ney Brenner (2000) and others have proposed the concept of ‘inverse genetics’ to cover
the use of information recovered from different genomes to inform on function. Brenner
suggested comparing genomes to highlight conserved areas ‘in a vast sea of randomness’.
This is an elegant approach for the characterization of polymorphisms. Characterization
by conventional genetics demands analysis of large sample numbers, complex in vitro
analysis or laborious transgenic approaches. In the case of inverse genetics, evolution and
time have already done the work in a long-term ‘experiment’ which would be impossible
to match in the laboratory.

Inverse genetics also has a wider application — analysis of a single promoter sequence
will often identify many putative regulatory elements by chance alone. However, simulta-
neous analysis of many evolutionarily-related but diverse promoter sequences will clearly
identify known and novel conserved motifs which are more likely to be functionally
important to a particular family of genes. This approach known as phylogenetic footprint-
ing, has been used to successfully elucidate many common regulatory modules (Gumucio
et al., 1996). Kleiman et al. (1998) used a similar approach to identify a novel potential
element in the polyadenylation regulatory apparatus, a TG deletion (deltaTG) in the 3′
UTR of the HEXB gene, 7 bp upstream from the polyadenylation signal. The deltaTG
HEXB allele, which occurred at a 10% frequency, showed 30% lower enzymatic activi-
ties compared to WT individuals. Polyacrylamide gel electrophoresis analysis of the allele
revealed that the 3′ UTR of the HEXB gene had an irregular structure. After studying
a large range of eukaryotic mRNAs, including human, mouse and cat HEXB genes they
found that the TG dinucleotide was part of a conserved sequence (TGTTTT) immersed in
an A/T-rich region observed in more than 40% of mRNAs analysed. This study clearly
illustrates how effective bioinformatic analysis of mRNA processing signals may require
more than sequence analysis of known regulatory motifs; clearly tools are needed to iden-
tify novel regulatory elements. The web-based TRES tool is an example of a tool to assist
in the identification of such novel elements.

12.6.1 TRES (http://bioportal.bic.nus.edu.sg/tres/)

TRES can be used to compare as many as 20 nucleotide sequences. The tool is multi-
functional, it can either be used to identify conserved sequence motifs between submitted
sequences or alternatively it can be used to identify known transcription factor binding
sites shared between sequences using nucleotide frequency distribution matrices described
in the TRANSFAC database (Heinemeyer et al., 1999). This approach is not just appli-
cable to evolutionarily-related sequences it can also be used to study unrelated sequences
which may share similar regulatory cues, such as genes which show similar patterns of
gene expression.

TRES also has another versatile search mode which allows detection of palindromic
motifs or inverted repeats shared between sequences. These have unique features of dyad
symmetry which can form hairpins or loops to facilitate protein binding in homo- or
heterodimer form. Many transcription factors have palindromic recognition sequences
and bind as dimmers; these motifs may be important to allow greater regulatory diversity
from a limited number of transcription factors (Lamb and McKnight, 1991).

Although TRES is generally focused on the identification of transcription factor binding
sites and promoter elements, the sequence motif identification facilities of the tool also
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make it suitable for the identification of other motifs in non-coding sequences including
UTR sequences and intronic sequences.

12.6.2 Improbizer

Improbizer was developed at the UCSC; the tool searches for motifs in DNA or RNA
sequences that occur with an improbable frequency; that is greater than might be
expected to occur by chance alone. Probabilities are estimated using the expectation
maximization (EM) algorithm (Jim Kent, personal communication; for more details see
http://www.soe.ucsc.edu/∼kent/improbizer/improbizer.html).

Improbizer is available as a web interface, this allows the analysis of multiple sequences
(up to 100 can be entered) for common motifs between sequences. Improbizer has also
been used to annotate a large number of predicted promoter regions in the UCSC human
genome browser (see Chapter 5). This data is presented as the so-called ‘golden triangle’
track. Kent and colleagues adopted this name to describe the process they called ‘Reg-
ulatory region Triangulation’ (J. Kent and D. Haussler, personal communication). This
approach combines cDNA, genomic DNA and microarray data to locate and characterize
regulatory regions in the human genome. The method identified a large set of putative
transcription start sites by aligning G-cap selected ESTs (which represent 5′ ends of tran-
scripts) and other cDNA data to the human genome using BLAT. This data was compared
with regions conserved between the human and mouse genomes with BLASTZ. Finally to
complete the ‘triangulation’ process, they clustered Affymetrix microarray data to find co-
regulated clusters of genes; once identified the promoter sequences were analysed using
Improbizer. The highly novel data generated by this analysis is a valuable resource for
the evaluation of polymorphisms in regulatory regions.

12.7 FUNCTIONAL ANALYSIS ON NON-SYNONYMOUS CODING
POLYMORPHISMS

The huge diversity of protein molecules makes it very difficult to provide a generic model
of a protein. Returning to our decision tree for polymorphism analysis (Figure 12.1), the
consequences of an amino acid substitution are first and foremost defined by the environ-
ment in which the amino acid exists. Different cellular locations can have very different
chemical environments which can have diverse effects on the properties of amino acids.
The cellular location of proteins can be divided at the simplest level between intracellular,
extracellular or transmembrane environments. The latter location is the most complex as
amino acids in transmembrane proteins can be exposed to all three cellular environments,
depending upon the topology of the protein and the location of the particular amino acid.
Environments will also differ in extracellular and intracellular proteins, depending on the
location of the residue within the protein. Amino acid residues may be buried in a protein
core or exposed on the protein surface. Once the environment of an amino acid has been
defined, different matrices are available to evaluate and score amino acid changes. For
reference we have provided four amino acid substitution matrices in Appendix II. These
matrices can be used to evaluate amino acid changes in extracellular, intracellular and
transmembrane proteins; where the location of the protein is unknown, a matrix for ‘all
proteins’ is also available. Preferred (conservative) substitutions have positive scores, neu-
tral substitutions have a zero score and unpreferred (non-conservative) substitutions are
scored negatively. These matrices are another application of ‘inverse genetics’ and are con-
structed by observing the propensity for exchange of one amino acid for another based on
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Figure 12.4 Functional evaluation of an Arg184Cys mutation in the Jagged protein
family. Arg184Cys causes Alagille syndrome (OMIM 118450). Alignment of the mutated
human amino acid sequence with vertebrate and invertebrate orthologues and homologues
in the Jagged family identifies the Arg184 residue in a highly conserved position through-
out this gene family. A mutation to a cysteine at this position would be expected to lead
to the aberrant formation of disulphide bonds with other cysteine residues in the Jagged
protein, this is likely to have a disruptive effect on the structure of the Jagged1 protein.

TABLE 12.5 Tools for Functional Analysis of Amino Acid Polymorphisms

Sequence manipulation and translation
Sequence Manipulation Suite http://www.bioinformatics.org/sms/

Amino acid properties
Properties of amino acids http://www.russell.embl-heidelberg.de/aas/

Secondary structure prediction
TMPRED http://www.ch.embnet.org/software/

TMPRED−form.html
SOSUI http://sosui.proteome.bio.tuat.ac.jp/

sosuiframe0.html
TMHMM http://www.cbs.dtu.dk/services/TMHMM/
PREDICTPROTEIN http://www.embl-heidelberg.de/predictprotein/
GPCRdb 7TM plots (Snake plots for

most 7TMs)
http://www.gpcr.org/7tm/seq/snakes.html

Tertiary structure prediction and visualization
Swiss-Model http://expasy.hcuge.ch/swissmod/

SWISS-MODEL.html
SCOP http://scop.mrc-lmb.cam.ac.uk/scop/

Identification of functional motifs
INTERPRO http://www.ebi.ac.uk/interpro/scan.html
PROSITE http://www.ebi.ac.uk/searches/prosite.html
PFAM http://www.sanger.ac.uk/Software/Pfam/
NetPhos (serine, threonine and

tyrosine phosphorylation)
http://www.cbs.dtu.dk/services/NetPhos/

NetOGlyc (O-glycosylation) http://www.cbs.dtu.dk/services/NetOGlyc/
NetNGlyc (N-glycosylation) http://www.cbs.dtu.dk/services/NetNGlyc/
SIGNALP (signal peptide prediction) http://www.cbs.dtu.dk/services/SignalP/
Swissprot (functional annotation) http://www.expasy.ch/cgi-bin/sprot-

search-ful



268 PREDICTIVE FUNCTIONAL ANALYSIS OF POLYMORPHISMS: AN OVERVIEW

comparison of very large sets of related proteins (see Chapter 14 and www.russell.embl-
heidelberg.de/aas for more details). Defining the environment of an amino acid may be
relatively straightforward if the protein is known, by looking at existing protein annota-
tion or better still a known tertiary structure. Beyond the cellular environment of a variant
there are many other important characteristics of an amino acid that need to be evaluated.
These include the context of an amino acid within known protein features and the conser-
vation of the amino acid position in an alignment of related proteins. Figure 12.4 shows
an example of an evaluation of a mutation in Jagged1, a ligand for the Notch receptor
family. Krantz et al. (1998) identified an Arg184Cys missense mutation in patients with
Alagille syndrome (OMIM 118450). In terms of amino acid substitutions, Arg > Cys is
very non-conservative (the extracellular substitution matrix score for this change is — 5).
Alignment of the mutated human amino acid sequence with vertebrate and invertebrate
orthologues and homologues in the Jagged family identifies the Arg184 residue as a
highly conserved position throughout this gene family. A mutation to a cysteine at this
position would be expected to lead to the aberrant formation of disulphide bonds with
other cysteine residues in the Jagged protein, this is likely to have a disruptive effect
on the structure of the Jagged1 protein, presumably leading to the Alagille syndrome
phenotype (see Chapter 14 for a description of the effects of inappropriate disulphide
bond formation).

There are many different sources of protein annotation and tools to evaluate the impact
of substitutions in known and predicted protein features, some of the best are listed in
Table 12.5. The protein analysis approaches underlying these tools are comprehensively
reviewed in Chapter 14.

12.8 A NOTE OF CAUTION ON THE PRIORITIZATION OF IN SILICO
PREDICTIONS FOR FURTHER LABORATORY INVESTIGATION

Just as the complexity of genes, transcripts and proteins are virtually limitless, so too
are the possibilities for developing functional hypotheses. If every aspect of the analyses
explored in this chapter were examined in any single polymorphism, it would probably
be possible to assign a potential deleterious function to almost every one. But clearly the
human genome does not contain millions of potentially deleterious mutations (thousands
maybe, but not millions!), so it is important to treat in silico predictions with caution. If a
polymorphism shows genetic association with a phenotype it is important to first consider
if the polymorphism is causal or in LD with a causal mutation. Hypotheses need to be
constructed and tested in the laboratory. For example if a polymorphism is predicted
to impact splicing, then in vitro analysis methods need to be employed to investigate
evidence for alternative transcripts.

12.9 CONCLUSIONS

In this chapter we have taken an overview of some of the approaches for predictive func-
tional analysis of polymorphisms in genes, proteins and regulatory regions. These methods
can be applied equally at the candidate identification stage or at later stages to assist in the
progression of associated genes to disease genes. The chapter has also examined the role
of bioinformatics in the formulation of laboratory-based investigation for confirmation of
functional predictions. As we have shown there are very few tools specifically designed
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to evaluate the impact of polymorphisms on gene and protein function. Instead functional
prediction of the potential impact of variation requires a very good grasp of the full gamut
of bioinformatics tools used for predicting the properties and structure of genes, proteins
and regulatory regions. This huge range of applications makes polymorphism analysis one
of the most difficult bioinformatics activities to get right. The complexity of some analysis
areas are worthy of special attention, particularly the analysis of polymorphisms in gene
regulatory regions and protein sequences. To address some of these highly specialized
analysis issues, Tom Werner presents a detailed examination of gene regulatory sequence
analysis (Chapter 13) and Rob Russell and Matthew Betts present on tools and principles
of protein analysis (Chapter 14).
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13.1 INTRODUCTION

The total amount of nucleotides within the human genome was found to be well within the
expected range of about 3 billion base pairs. That was no big surprise since the physical
size of the genome could already be measured fairly accurately by biophysical means
well before sequencing became possible. However, the number of genes turned out to
be surprisingly low, especially after the gene counts of Drosophila melanogaster and
Caenorhabtis elegans were released (Adams et al., 2000; The C. elegans Sequencing
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Consortium, 1998). It was common sense that humans should have at least double or
triple the amount of genes as compared to those much simpler organisms. However,
despite high expectations and correspondingly high initial estimates, the number of genes
to be expected within the human genome decreased constantly. There is still no final
answer but current estimates converge somewhere between 30,000 and 40,000 (Venter
et al., 2001). This leads to a lot of questions as to where the huge differences between
species will be found in the genomes, if not in gene numbers. It is also quite obvious
from those numbers that only about 2–3% of the human genome is expected to encode
proteins. Even disregarding the 40% repetitive sequences present in the human genomic
sequence, this leaves more than half of the genomic sequence in search of a function.

Of course, encoding proteins is just one of the many known functions of the genome.
There are three very prominent additional tasks that must be fulfilled by the genome. The
first one is to maintain some physical ordered structure of the genomic sequence, which
is a prerequisite for everything else. A hopeless tangle of 3 billion base pairs would most
likely interfere severely with gene expression as well as with DNA replication.

The second task that has to be faithfully fulfilled over a lifetime in any organism is the
correct replication of the genomic information to allow cell divisions. And last but not
least, gene expression itself involves much more than synthesis of an RNA copy of the
coding parts of the genome. The correct regulation both of transcription as well as DNA
replication in space and time is probably the most crucial part of life for any organism.
No cell let alone a multicellular organism, can develop or survive without perfect control
over gene expression (control of replication is just one of the consequences of controlled
gene expression).

Here the genome has to fulfil a formidable task. The information encoded within
the genome can be regarded as invariant regardless of the few mutations that occur
continuously within a living cell (most are either repaired or eliminated by selection).
This view also includes Single Nucleotide Polymorphisms (SNPs) because most SNPs
are frozen in evolution and very few arise during the lifespan of an individual organism.
Survival of such mutations becomes most prominently visible in allelic differences where
there appears to be more than one solution for a functional sequence. Development and
differentiations are examples of extremely complex and linked programmes that have to
be fulfilled in an exact time-frame. Nevertheless, this is the easy part for the genome as
both of these processes are deterministic and every step is clear from the very beginning
with very little variation included.

In contrast, every organism encounters a variety of unexpected environmental stim-
uli (availability of food resources, climate conditions, interactions with other organisms
such as predators or competing species). The static genome must provide a priori all
information suitable to react appropriately to such external challenges. This requires
an enormous amount of ‘conditional programming’ within the genetic code, most of
which is not directly manifest in protein sequences. This is probably the major rea-
son why regulatory sequences appear to occupy almost five to 10 times more genomic
sequence than coding regions (this estimate includes all regulatory sequences not only
transcriptional regulation). For the very same reason most of this chapter will focus on
regulatory aspects. The allelic differences (something in the region of one nucleotide
in 1000) also called Single Nucleotide Polymorphisms SNPs (pronounced ‘Snips’) may
have no effect under normal conditions but can make a huge difference in the case of
changing conditions. Such changes do not need to be external. A developing tumour
can bring a dramatic change to the physiology of an organism and genetic predis-
position is linked to a large extent to allelic differences. However, the effect of any
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individual SNP or sets of SNPs (e.g. haplotypes) depends critically on the local context
within which the SNP is located. Therefore, functional analysis or estimation of SNPs
requires detailed understanding of the functional features and sequence regions within
the genome.

13.2 GENERAL STRUCTURE OF CHROMATIN-ASSOCIATED DNA

DNA is complexed with histone proteins forming nucleosomes which are distributed
along most of the genomic DNA like beads on a string. This structure is then organized
in chromosomal loops and such loops are known to form solenoids (Daban and Bermudez,
1998). Solenoids in turn form the chromosomal fibres already visible by microscopy. For
the purpose of this chapter the most relevant structures are all within a chromosomal loop.
Therefore, the schematic organization of a chromosomal loop will be used as a framework
for the explanation of all further components.

Repetitive DNA of retroposon origin is ubiquitously found throughout the genome.
As we learned from the first published chromosomal sequence (chromosome 22, Dun-
ham et al., 1999) about 40% of the human genomic DNA consists of repetitive DNA,
most prominent among these are ALU repeat sequences. They have been named after the
restriction enzyme (ALU I) which generates a characteristic satellite band in digests of
genomic DNA. ALUs belong to the class of short interspersed elements (SINEs) which
are short retroposon sequences of only about 300 nucleotides in length. Another class
of repetitive DNA is the long interspersed elements (LINEs) which reach up to 7 kb in
length and include retroviral sequences (Smit, 1999).

A chromatin loop is the region of chromosomal DNA located between two con-
tact points of the DNA with a protein framework within the nucleus, the so-called
nuclear matrix. These contact points are marked in the genomic DNA as Matrix/Scaffold
Attachment Regions (S/MARs). Association of DNA with this nuclear matrix is a pre-
requisite for transcription of nucleosomal DNA (Bode et al., 2000). S/MARs are them-
selves complex structures not yet fully understood at the molecular level. There is an
excellent review on chromatin domains and prediction of MAR sequences by Boulikas
(1995) explaining S/MARs and their elements in detail. There are currently two meth-
ods to detect S/MAR elements in genomic sequences, the first is MARFinder by Kramer
(1996) (http://www.ncgr.org/MAR-search/). The second method is SMARTest developed
by Genomatix Software GmbH, Munich and available for academic researchers free of
charge from http://www.genomatix.de (Frisch et al., 2002).

Enhancers are regulatory regions found within chromosomal loops that can significantly
boost the level of transcription from a responsive promoter regardless of their orientation
and distance with respect to the promoter within the same chromatin loop. Currently,
there is no way to detect enhancers in general by in silico methods. However, at least
a subclass of enhancers is organized in a very similar manner to that of promoters, i.e.
they also contain frameworks of transcription factors (Gailus-Durner et al., 2000). In
cases where enhancers share modules with promoters it is possible to find them via the
module. However, since an isolated module match is no proof of either a promoter or
an enhancer, experimental verification is still mandatory. Silencers are basically identical
to enhancers and follow the same requirements but exert a negative effect on promoter
activities. Enhancers and silencers often show a similar internal organization as promoters
(Werner, 1999).
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13.3 GENERAL FUNCTIONS OF REGULATORY REGIONS

The biological functionality of regulatory regions is generally not a property evenly spread
over the regulatory region in total. Functional units are usually defined by a combination
of defined stretches that can be delimited and possess an intrinsic functional property
(e.g. binding of a protein or a curved DNA structure). Several functionally similar types
of these stretches of DNA are already known and will be referred to as elements. Those
elements are neither restricted to regulatory regions nor individually sufficient for the
regulatory function of a promoter or enhancer. The function of the complete regulatory
region is composed of the functions of the individual elements either in an additive
manner (independent elements) or by synergistic effects (modules) (Werner, 1999). With
respect to SNPs it is important to view regulatory DNA in a similar way as we regard
coding genes: there are short stretches of immediate functional importance (e.g. exons
or regulatory elements) and there are much larger regions with either unknown or more
implicit functions (introns, ‘spacer’ DNA in regulatory regions). As a direct consequence
of this sort of discontinuous organization of functional sequences the potential effects of
SNPs can vary dramatically (from none to lethal) depending which part of the sequence
the SNP is located in.

13.4 TRANSCRIPTION FACTOR BINDING SITES (TF-SITES)

Binding sites for specific proteins are most important among regulatory elements. They
consist of about 10 to 30 nucleotides, not all of which are equally important for protein
binding, a reminder of the somewhat fractal properties of genomic sequences, i.e. a binding
site looks like a tiny copy of a promoter, which in turn looks like a small copy of a gene,
etc. Individual protein binding sites may vary in part of their sequence, even if they
bind to the same protein. There are nucleotides which are in contact with the protein
in a sequence-specific manner (‘recognition exons’), which usually represent the best-
conserved areas of a binding site. Different nucleotides are involved in more non-specific
contacts to the DNA backbone (i.e. not sequence specific as they do not involve the bases
A, G, C or T), and there are internal ‘spacers’ (‘introns’) which are not in contact with
the protein at all. All in all, protein binding sites exhibit enough sequence conservation to
allow for the detection of candidates by a variety of sequence similarity-based approaches.
There have been many attempts to collect TF binding sites (Wingender et al., 2001), as
well as several developments in the location of TF binding sites in genomic sequences
(Chen et al., 1995; Prestridge, 1996; Quandt et al., 1995). However, potential binding
sites can be found almost anywhere in the genome and are not restricted to regulatory
regions. Quite a number of binding sites outside regulatory regions are also known to
bind their respective binding proteins (e.g. Kodadek, 1998). Therefore the abundance of
predicted binding sites is not just a shortcoming of the detection algorithms but reflects
biological reality although currently hard to interpret in functional terms.

13.5 STRUCTURAL ELEMENTS

Secondary structures are mostly known for RNAs and proteins but they also play important
roles in promoters (e.g. Bates et al., 2001). Potential secondary structures can be easily
determined. For an excellent start point see Michael Zuckers homepage (Table 13.1).
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TABLE 13.1 Useful URLs for Regulatory SNP Analysis

RNA secondary structure prediction
Homepage of M. Zucker http://bioinfo.math.rpi.edu/∼zukerm/
Pattern definition:
CoreSearch (ftp) ariane.gsf.de/pub/unix/coresearch−1.2.tar.Z
CONSENSUS http://bioweb.pasteur.fr/seqanal/interfaces/consensus-

simple.html

S/MAR detection
MARFinder http://www.ncgr.org/MAR-search/
SMARTest http://www.genomatix.de

UTR analysis
UTR database http://bighost-area.ba.cnr.it/BIG/BioWWW/#UTRdb

Genomatix tools
(free to academic users)

SMARTest http://www.genomatix.de/free−services/
PromoterInspector
MatInspector professional
GEMS Launcher
ELDorado
Sequence tools

There is a plethora of tools now available on the web. However, Michael Zucker has
been one of the most important pioneers in the field, so starting from his page would be
a good choice. Secondary structures are also often not conserved in primary nucleotide
sequence but are subject to strong positional correlation within the structure. There is also
always a trade-off between best and fastest structure prediction. Some algorithms dive
deep into energy calculations to provide the best possible structure for one RNA while
others do a much more rudimentary analysis, which can be applied to many sequences
within the same time-frame as a single in-depth analysis would take. It is impossible
to decide in advance which approach will be most suitable for any problem. A few
experiments using different methods will be called for.

13.6 ORGANIZATIONAL PRINCIPLES OF REGULATORY REGIONS

Regulatory regions are not just statistical collections of the regulatory elements introduced
above. Therefore, it is necessary to understand at least some basic organizational features
of regulatory regions in order to understand the different consequences SNPs can have.
Eukaryotic polymerase II promoters will serve as examples as they appear to be the
currently best-studied regulatory regions. The TF-sites within promoters (and likewise
most other regulatory sequences) do not show any obvious general patterns with respect
to location and orientation within the promoter sequences. TF binding sites can be found
virtually everywhere in promoters but in individual promoters possible locations are much
more restricted. A closer look reveals that the function of a TF binding site often depends
on the relative location and especially on the sequence context of the binding site.

The context of a TF-site is one of the major determinants of its role in transcription
control. However, the context is not merely a few nucleotides around the binding site,
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which would be more like an extension of the binding site rather than a context. More
important is the context of other TF binding sites located at some distance that are
often grouped together and such functional groups have been described in many cases.
A systematic attempt to collect synergistic or antagonistic pairs of TF binding sites has
been made with the COMPEL database (Kel et al., 1995, Heinemeyer et al., 1998). In
many cases, a specific promoter function (e.g. a tissue-specific silencer) will require more
than two sites simultaneously. Such groups of promoter subunits consisting of several TF
binding sites that carry a specific function independent of the promoter, will be referred
to as promoter modules. This is a definition at the molecular level, which is more specific
than the definition recently given by Arnone and Davidson (1997) requiring only the
presence of the sites within a loosely defined DNA region. Within a molecular promoter
module both sequential order and distance can be crucial for function indicating that these
modules may be the critical determinants of a promoter rather than individual binding
sites. However, promoters can contain several modules that may use overlapping sets
of binding sites. Therefore, the conserved context of a particular binding site cannot be
determined from the primary sequence without additional information about the modular
structure (Figure 13.1).

The peculiar property of promoter modules to function only as intact units has an
important consequence for the effects SNPs can have in promoters. A SNP inactivating
a single TF binding site can in fact destroy the function of a complete module, which
will not be obvious from inspection of the individual binding site in which the SNP
was detected. A SNP affecting another binding site of the same factor within the same
promoter may have a quite different effect if this binding site is either part of another
module or has no direct function at all. Therefore, identification of binding sites affected
by SNPs is not enough to estimate the functional consequences of regulatory SNPs.

Figure 13.1 Hierarchical structure of a polymerase II promoter (schematic). Oval shapes
indicate modules without defined internal structure; rectangular boxes in the lower part
of the figure indicate transcription factor binding sites. Note that a direct assignment of
individual binding sites to functional modules is only possible for molecular modules.
The arrows below molecular modules indicate strand orientation of the modules.
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Similar logic holds for insertions/deletions in promoter sequences (e.g. polymorphic
microsatellite sequences). The quite variable distances found between elements in func-
tionally related promoters could be interpreted as the result of insertion/deletion events,
although it is hard to find clear evidence for this. Insertions or deletions affecting the
organization of modules may well interfere with function. However, as most of the pro-
moter functions are crucial for the function of the whole gene, such deleterious mutations
are most likely selected against in evolution. Therefore, the variability in spacing seen in
present time sequences should be considered neutral with respect to function unless there
is direct evidence to the contrary.

13.7 RNA PROCESSING

Genomic regulation does not stop at the level of the genomic DNA sequence. RNAs
contain important regulatory signals of their own, among them are transport signals that
direct the RNAs to specific subcellular locations and RNA instability signals that mark
RNAs for rapid destruction unless specifically protected. Most of these signals reside
within the 5′ and 3′ untranslated terminal regions of the mRNAs (UTRs), which have
been collected in a specialized database (Pesole et al., 1996, see Table 13.1 for URL).
This database is an excellent representation of the knowledge about UTRs as reported
in the literature. However, there were no efforts made to complete 5′ or 3′ UTRs in
case they were reported incomplete. Because RNAs are faithful copies of the genomic
sequences (except for RNA editing) all of these signals can also be directly studied in the
genomic DNA.

Removal of intronic sequences is one of the most important processing steps of pri-
mary transcripts (splicing). As became quite clear in recent years splicing is governed
by complex and discontinuous signals located within exons as well as introns (Kramer,
1996). The set-up of complete splice signals resembles the general set-up of promoters and
enhancers to a large extent. There are splice enhancers, splice donor and acceptor sites,
branch point sequences as well as some less well defined accessory sequences within
introns. Again the organizational context of splicing elements is most likely the most
important factor determining biological function.

13.8 SNPs IN REGULATORY REGIONS

SNPs are to be found all over the genome and as a mere consequence of the amount
of sequence a considerable number of SNPs are expected to be located within regu-
latory sequences. As discussed above the potential effects of SNPs on gene regulation
depend on the location of SNPs with respect to the regulatory elements. SNPs located in
non-functional spacer DNA (if anything like that exists) will not affect regulation in all
likelihood, whereas a SNP destroying the binding site of a crucial transcription factor can
alter transcription of a gene quite dramatically.

13.8.1 Examples for Regulatory SNPs

SNPs can influence TF binding sites in three different ways. A binding site can be
destroyed by loss of binding affinity due to the SNP. The opposite effect is also possible,
that is, generation of a new binding site within a regulatory sequence. A combination
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of these two events would result in an altered binding site that might have switched
specificity to another protein. There are examples with well-established effects on gene
regulation for TF binding sites being deleted as well as created by SNPs.

The RANTES gene encodes a chemokine involved in immune signalling. Unfortu-
nately, RANTES expression is also involved in supporting HIV-1 infection, which of
course is detrimental for the individual. There is one mutation (SNP) known in the
RANTES promoter that destroys a potential c-myb binding site immediately upstream
of the TATA box. This mutation has the astonishing effect of delaying the CD4 depletion
by HIV-1 infection although it has no effect on the infection itself. However, it was found
that this mutation increases the transcription of the RANTES chemokine gene, demon-
strating nicely that SNPs per se are not determined to be positive or negative (Lui et al.,
1999). The positive effect of this SNP only becomes apparent upon HIV-1 infection.

Cystic fibrosis is a devastating disease caused by a defective protein which results in
a dramatically shortened lifetime for the sufferers. In one case a SNP generated a new
binding site for the transcription factor YY1 in the promoter of the gene already affected
by a mutation in exon 11, which caused the disease. The effect of this new YY1 binding
site was over-expression of the (not completely) defective protein via attracting additional
protein(s) to the promoter complex, which reduced the symptoms of the disease via a
gene dosage effect (Romey et al., 2000).

The ‘bottom line’ of all these examples is that SNPs affected transcriptional control
elements that were actually involved in the gene transcription of the respective genes.

13.9 EVALUATION OF NON-CODING SNPs

In a case where a SNP is located within the coding sequence of a gene it is very simple
to find out whether this is a silent exchange or not, just from the triplet code. In the case
where there is an amino acid exchange it is much less obvious whether the exchange will
affect protein function or not. If there is no known example for the particular exchange
there is no way to predict the functional consequences solely from the sequence.

SNPs in regulatory regions are always difficult to assess for two reasons: the first is
simply to find out whether a SNP is located inside regulatory regions at all. Given that
locating regulatory regions is much more difficult than locating coding sequences, this
is no trivial task. However, even if this prerequisite can be satisfied there remains the
question of whether the SNP affects any regulatory elements. This requires knowledge
or at least a well-supported hypothesis about the regulatory elements relevant for the
regulation of the gene in question. Since this information cannot be directly derived from
the nucleotide sequence of a promoter for example, this requires additional efforts to
locate relevant regulatory elements.

Once it has been established that a SNP is located within a putative regulatory element,
it is possible to evaluate the primary effect of the SNP on this regulatory element. The
primary effect is the change in binding affinity or specificity of a TF binding site or the
change in the stability of a secondary structure. This kind of information can be derived
from a comparison of the wild-type sequence with the SNP-containing sequence and
usually a fair estimate of the resulting changes can be made.

Unfortunately, even that information is only part of the answer. The real question is
whether the SNP-induced change has functional consequences on regulation, which is
not necessarily a consequence of a single altered regulatory element. Therefore, it is also
necessary to ascertain the relevant context of the affected elements, e.g. whether a TF
binding site is part of a transcriptional module or not.
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13.10 SNPs AND REGULATORY NETWORKS

Although SNPs are always necessarily located within one gene or one regulatory region
and they can have pleiotropic effects. SNPs affecting the protein sequence or the regulation
of transcription factors can influence the expression of many target genes of this partic-
ular factor and lead to pronounced systemic effects. This is achieved via the regulatory
networks in which the affected transcription factor participates. A functional correlation
of a SNP with an observed phenotype can be established generally by epidemiological
studies. However, this kind of correlation does not reveal any data about the molecular
mechanisms behind the correlation. The molecular link between the regulatory SNP and
the observed phenotype is finally established on the level of regulatory networks by track-
ing relevant transcriptional modules. However, reconstruction of regulatory networks on
the molecular level is far from easy with current tools and may turn out to be (still) a
futile effort in many cases. Where it works, it provides the final answer not only to the
effect of the SNP but also reveals the molecular mechanisms behind the phenotype. Due
to that enormous gain in insight as well as the therapeutic possibilities, it is well justified
to invest a significant effort into the elucidation of the pertinent regulatory networks even
if the chances of success are sometimes slim.

13.11 SNPs MAY AFFECT THE EXPRESSION OF A GENE
ONLY IN SPECIFIC TISSUES

In addition, SNPs are always necessarily present in all tissues and their effects may
vary dramatically. As outlined above many promoter modules are active under specific
conditions only, such as when they are stimulated by a signalling pathway or only in
particular cell or tissue types. Consequently, a SNP affecting a specific module will only
show an effect under conditions where the corresponding module is active. Therefore, lack
of association of a promoter SNP with an observable phenotype in cell culture experiments
only excludes a functional effect in the particular cell type under the specific conditions
used in the experiment. The very same ‘silent’ SNP may have a clear effect either in
the same cells under different conditions or in other cells/tissues which have not been
tested. Therefore, in vitro results are only conclusive in the case of positive results, while
negative results are of limited value.

13.12 IN SILICO DETECTION AND EVALUATION
OF REGULATORY SNPs

So far we have established the basic factors and requirements of how to attack the problem
of regulatory SNPs. Now it is time to detail the strategies that will help to elucidate the
different levels of SNP-caused effects in a practical approach.

Figure 13.2 shows an overview of the general strategy to analyse SNPs for potential
regulatory effects. In brief SNPs are first mapped onto predetermined regulatory regions
(in this example, promoters). The gene annotation is used to identify promoters of interest
as well as to include pre-existing knowledge about functional aspects of these promoters,
e.g. promoter elements already known to be involved in promoter function. Then relevant
transcriptional elements are identified either from knowledge databases or by comparative
analyses of sets of functionally related promoters (detailed below). At this point it is
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Figure 13.2 Strategy to qualify genomic SNPs as relevant regulatory SNPs. GPR (Geno-
matix Promoter Resource now part of ElDorado). The transparent light grey box sym-
bolizes a promoter region; darker boxes indicate transcription factor binding sites. (See
note added in proof).

possible to determine whether the SNP is located within a relevant transcription factor
binding site and the effect on binding affinity can be calculated. The comparative sequence
analysis may also have revealed promoter modules facilitating estimation of regulatory
effects. However, since a promoter can contain several independent functional modules
it may be necessary to re-analyse the promoter in another functional context to focus on
the effect of a particular SNP.

How to implement such a general strategy for real life application? This will be shown
in the example below of Genomatix sequence analysis tools that were especially developed
to facilitate this kind of approach.

13.13 GETTING PROMOTER SEQUENCES

Promoter sequences can be derived from the literature (about 10 to 20% of genomic
promoters), by promoter prediction (about 50% of the genomic promoters) or by mapping
of 5′-complete mRNAs (up to the Transcription Start Site, TSS) to the genomic sequence.
In the last case the promoter is the sequence containing about 100 bp of the mRNA and
a region of about 500–600 nucleotides immediately upstream of the TSS. So far there
are also only about 10% of the mRNAs available as 5′-complete sequence. In summary
it is possible to obtain about 50 to 70% of the human promoters by a combination of
these approaches.
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Of course, there are resources as well as methods claiming to be able to provide up
to 90% of human promoters. However, the problem is that higher sensitivity is always
achieved at the cost of lower specificity and a promoter collection containing all true
promoters burdened by a high amount of false positives is absolutely useless for the
regulatory SNP analysis, while half of the promoters with few false positives are sufficient
to obtain useful results, although only for a subset of regulatory SNPs.

There is no best way to deal with the results of promoter prediction. For example, while
it is quite popular to let the user play with some sort of cryptic scoring/quality Genomatix
PromoterInspector does not have such a parameter. A promoter cannot be predicted with
more or less scoring. The point is that every method will also produce false positives
at any threshold. Any specificity given is only valid using exactly the corresponding
parameters. A much better way to strengthen the likelihood of a true prediction is to
check for additional evidence, e.g. a gene annotation or prediction that indicates the same
region as the potential promoter. However, for a significant part of the human genome
there is no alternative to prediction at this time.

Genomatix provides the Genomatix Promoter Resource (GPR) for this purpose (con-
taining predictions for about 50% of all human promoters with a false positive rate of less
than 15%, Scherf et al., 2000, 2001) complemented by mRNA mapping as well as pro-
moters extracted from the experimental literature. This is by no means the most complete
collection of promoters available but most likely the one with the least false positives.
GPR is a product of Genomatix that requires licensing. However, the software tool used
to generate GPR (PromoterInspector) is available (with some restrictions) to academic
scientists free of charge (URL see Table 13.1).

This resource can be used to map SNPs to the promoter regions (Genomatix software
can do this automatically high throughput). Based on the gene annotation corresponding to
these promoters, genes of interest with SNPs inside the promoter regions can be selected
for further analysis.

At this point there are two possible strategies to evaluate the functional importance of
the SNPs in question. A straightforward approach involves epidemiological data connect-
ing the SNP to a phenotype by statistical coupling as can be seen in haplotype studies
(e.g. Judson et al., 2000, Stephens et al., 2001). If such data are available the analysis
can directly proceed to the identification of the transcription factor binding sites affected
and the consequences for binding affinities (see below).

13.14 IDENTIFICATION OF RELEVANT REGULATORY ELEMENTS

If no such epidemiological data are available it is necessary to first select binding sites
which are likely to be involved in promoter function, because direct analysis for potential
binding sites usually yields about a 10 times excess of potential binding sites. Selection
can be carried out with Genomatix software (GEMS Launcher) and is based on the
principle of evolutionary conservation of functional binding sites in promoters. There are
two ways to assess such functional conservation. The first is to compare promoters from
orthologous genes in several species (e.g. man, mouse and dog or another non-rodent
mammal). Of course mouse, rat and hamster might be related too closely to reveal a
useful pattern. Such an analysis usually results in a conserved framework of about three
to eight binding sites, which can be directly used for further evaluation. An example of
such an analysis was the determination of the general mammalian actin promoter model
(Frech et al., 1998).
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Another approach is horizontal conservation derived from sets of genes within the
same organisms that are coupled functionally, e.g. by co-expression. The strategy has
already been outlined in detail in Werner (2001).

Although not immediately evident, the difference between co-regulation and mere
co-expression is of great importance for this strategy. Co-regulated genes usually share
partial promoter features, so-called modules responsible for the observed co-regulation.
Co-expressed genes which just show up at the same time but are not co-regulated do not
necessarily share such modules. Therefore, they may interfere with comparative sequence
analysis and should be removed first. There are several possible ways to focus co-regulated
rather than co-expressed genes.

The basic idea of transcription event-oriented clustering is to include additional infor-
mation beyond the mere expression level into the clustering process. One way to do this is
to use multiple time points. Different pathways might resemble each other in expression
level of genes for a limited period of time but separate at other time points. Clustering
of genes based on time profiles of gene expression is leading more directly towards iden-
tification of the underlying mechanisms than clustering based on expression levels at a
single time point. Groups of genes suitable for clustering can be derived from pathway
information or directly from expression arrays. Again the GPR can be used to locate
the corresponding promoters for human genes (or PromoterInspector to analyse other
mammalian genomic sequences for promoters, Scherf et al., 2000).

Comparative sequence analysis of such a set of co-expressed genes usually reveals
the promoter module responsible for the observed co-expression and not a complete
model. If the same promoter is analysed in combination with different sets of expression-
related genes, different modules may be found. For example, analysis of a set of pro-
moters expressed during glucose starvation may reveal a different module within the
promoters than analysis of one of these promoters in a context of growth factor-induced
genes.

13.15 ESTIMATION OF FUNCTIONAL CONSEQUENCES
OF REGULATORY SNPs

The selection of conserved binding sites either from the analysis of orthologous promoters
or from sets of co-expressed genes can be directly evaluated for SNP-induced differences
in binding affinities, e.g. by applying the MatInspector program (also integrated in the
GEMS Launcher, Frech et al., 1997; Quandt et al., 1995). If a site from this selected set is
affected, GEMS Launcher can directly determine the resulting change in binding affinity
for the protein at least in a qualitative manner.

If promoters from co-expressed genes were used, there are also indications about
module structures, indicating which signal response might be affected by the SNP. In
this manner it is possible to formulate a detailed hypothesis about the functional con-
sequence of a particular SNP. However, final proof will only come from an experi-
ment. The bioinformatics analysis will provide exact guiding of how to set up a deci-
sive experiment.

The analysis for conserved binding sites as well as the evaluation of binding affinity
changes will be fully automatic in a new software package Genomatix is releasing in 2002.
So far, these steps remain interactive and may require a substantial amount of interactive
work in some cases.
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13.15.1 Limitations of this Approach

The up-side of the approach is that the tedious work of defining the promoter framework
has only to be done once. After that an unlimited number of SNPs hitting this promoter
can be evaluated automatically.

Unfortunately, this strategy has more limitations than the amount of work required. If
a SNP hits the promoter outside of any binding site belonging to an identified framework,
there is no guarantee that this will be a silent mutation as promoter frameworks are usually
incomplete and there is always the possibility that a binding site, unknown so far, may
be affected. In such cases additional experimental validation of the SNP is required or
orthologous or co-expressed promoters have to be analysed for unknown but conserved
patterns that might correspond to new binding sites. There is also software available
to carry out such analyses (e.g. Stormo and Hartzell, 1989, Wolfertstetter et al., 1996)
(CONSENSUS and CoreSearch, see Table 13.1 for URLs).

13.16 CONCLUSION

In summary, SNPs located within known elements of frameworks can be evaluated for
potential functional consequences, while SNPs located in a region not assigned to any
functional framework remain unresolved in the absence of additional data. Fortunately,
the information about regulatory sequences which accumulates during the analysis of
individual SNPs remains valid for additional SNP analyses. Therefore, this new kind of
genomic analysis may have a steep learning curve in the beginning but will gradually
develop into a very powerful high throughput system in the near future.

The Evaluation of regulatory SNPs described in 13.12 to 13.15 and in Figure 13.2
down to the level of target SNPs has been carried out genome-wide in the meantime and
is all available as part of the ElDorado system.
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14.1 INTRODUCTION

Since the earliest protein sequences and structures were determined, it has been clear that
the positioning and properties of amino acids are key to understanding many biological
processes. For example, the first protein structure, haemoglobin provided a molecular
explanation for the genetic disease sickle cell anaemia. A single nucleotide mutation
leads to a substitution of glutamate in normal individuals with valine in those who suffer
the disease. The substitution leads to a lower solubility of the deoxygenated form of
haemoglobin and it is thought that this causes the molecules to form long fibres within
blood cells which leads to the unusual sickle-shaped cells that give the disease its name.

Haemoglobin is just one of many examples now known where single mutations can
have drastic consequences for protein structure, function and associated phenotype. The
current availability of thousands or even millions of DNA and protein sequences means
that we now have knowledge of many mutations, either naturally occurring or syn-
thetic. Mutations can occur within one species, or between species at a wide variety
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of evolutionary distances. Whether mutations cause diseases or have subtle or drastic
effects on protein function is often unknown.

The aim of this chapter is to give some guidance as to how to interpret mutations
that occur within genes that encode for proteins. Both authors of this chapter have been
approached previously by geneticists who want help interpreting mutations through the use
of protein sequence and structure information. This chapter is an attempt to summarize our
thought processes when giving such help. Specifically, we discuss the nature of mutations
and the properties of amino acids in a variety of different protein contexts. The hope
is that this discussion will help in anticipating or interpreting the effect that a particular
amino acid change will have on protein structure and function. We will first highlight
features of proteins that are relevant to considering mutations: cellular environments, three-
dimensional structure and evolution. Then we will discuss classifications of the amino
acids based on evolutionary, chemical or structural principles, and the role for amino
acids of different classes in protein structure and function in different contexts. Last, we
will review several studies of mutations, including naturally-occurring variations, SNPs,
site-directed mutations, mutations that allow adaptive evolution and post-translational
modification.

14.2 PROTEIN FEATURES RELEVANT TO AMINO ACID BEHAVIOUR

It is beyond the scope of this chapter to discuss the basic principles of proteins, since
this can be gleaned from any introductory biochemistry text-book. However, a number of
general principles of proteins are important to place any mutation in the correct context.

14.2.1 Protein Environments

A feature of key importance is cellular location. Different parts of cells can have very
different chemical environments with the consequence that many amino acids behave
differently. The biggest difference is between soluble proteins and membrane proteins.
Whereas soluble proteins tend to be surrounded by water molecules, membrane proteins
are surrounded by lipids. Roughly speaking this means that these two classes behave
in an ‘inside-out’ fashion relative to each other. Soluble proteins tend to have polar or
hydrophilic residues on their surfaces, whereas membrane proteins tend to have hydro-
phobic residues on the surface that interact with the membrane.

Soluble proteins also come in several flavours. The biggest difference is between
those that are extracellular and those that are cytosolic (or intracellular). The cytosol
is quite different from the more aqueous environment outside the cell; the density of
proteins and other molecules effects the behaviour of some amino acids quite drastically,
the foremost among these being cysteine. Outside the cell, cysteines in proximity to one
another can be oxidized to form disulphide bonds, sulphur–sulphur covalent linkages that
are important for protein folding and stability. However, the reducing environment inside
the cell makes the formation of these bonds very difficult; in fact they are so rare as to
warrant special attention.

Cells also contain numerous compartments, the organelles, which can also have slightly
different environments from each other. Proteins in the nucleus often interact with DNA,
meaning they contain different preferences for amino acids on their surfaces (e.g. positive
amino acids or those containing amides most suitable for interacting with the negatively
charged phosphate backbone). Some organelles such as mitochondria or chloroplasts are
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quite similar to the cytosol, while others, such as lysosomes or Golgi apparati are more
akin to the extracellular environment. It is important to consider the likely cellular location
of any protein before considering the consequences of amino acid substitutions.

A detailed hierarchical description of cellular location is one of the three main branches
of the classification provided by the Gene Ontology Consortium (Ashburner et al., 2000),
the others being ‘molecular function’ and ‘biological process’. The widespread adoption
of this vocabulary by sequence databases and others should enable more sophisticated
investigation of the factors governing the various roles of proteins.

14.2.2 Protein Structure

Proteins themselves also contain different microenvironments. For soluble proteins, the
surface lies at the interface with water and thus tends to contain more polar or charged
amino acids than one finds in the core of the protein, which is more likely to comprise
hydrophobic amino acids. Proteins also contain regions that are directly involved in protein
function, such as active sites or binding sites, in addition to regions that are less critical
to the protein function and where mutations are likely to have fewer consequences. We
will discuss many specific roles for particular amino acids in protein structures in the
sections below, but it is important to remember that the context of any amino acid can
vary greatly depending on its location in the protein structure.

14.2.3 Protein Evolution

Proteins are nearly always members of homologous families. Knowledge about the family
a protein belongs in will generally give insights into the possible function, but several
things should be considered. Two processes can give rise to homologous protein fam-
ilies: speciation or duplication. Proteins related by speciation only are referred to as
orthologues, and as the name suggests, these proteins have the same function in differ-
ent species. Proteins related by duplications are referred to as paralogues. Successive
rounds of speciation and intra-genomic duplication can lead to confusing situations where
it becomes difficult to say whether paralogy or orthology applies.

To be maintained in a genome over time, paralogous proteins are likely to evolve
different functions (or have a dominant negative phenotype and so resist decay by point
mutation (Gibson and Spring, 1998)). Differences in function can range from subtle dif-
ferences in substrate (e.g. malate versus lactate dehydrogenases), to only weak similarities
in molecular function (e.g. hydrolases) to complete differences in cellular location and
function (e.g. an intracellular signalling domain homologous to a secreted growth factor
(Schoorlemmer and Goldfarb, 2001)). At the other extreme, the molecular function may
be identical, but the cellular function may be altered, as in the case of enzymes with
differing tissue specificities.

Similarity in molecular function generally correlates with sequence identity. Mouse and
human proteins with sequence identities in excess of 85% are likely to be orthologues,
provided there are no other proteins with higher sequence identity in either organism.
Orthology between more distantly related species (e.g. human and yeast) is harder to
assess, since the evolutionary distance between organisms can make it virtually impossible
to distinguish orthologues from paralogues using simple measures of sequence similar-
ity. An operational definition of orthology can sometimes be used, for example if the
two proteins are each other’s best match in their respective genomes. However there
is no substitute for constructing a phylogenetic tree of the protein family, to identify
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which sequences are related by speciation events. Assignment of orthology and paralogy
is perhaps the best way of determining likely equivalences of function. Unfortunately,
complete genomes are unavailable for most organisms. Some rough rules of thumb can
be used: function is often conserved down to 40% protein sequence identity, with the
broad functional class being conserved to 25% identity (Wilson et al., 2000).

When considering a mutation, it is important to consider how conserved the position
is within other homologous proteins. Conservation across all homologues (paralogues
and orthologues) should be considered carefully. These amino acids are likely to play
key structural roles or a role in a common functional theme (i.e. catalytic mechanism).
Other amino acids may play key roles only in the particular orthologous group (i.e.
they may confer specificity to a substrate), thus meaning they vary when considering
all homologues.

14.2.4 Protein Function
Protein function is key to any understanding of the consequences of amino acid substitu-
tion. Enzymes, such as trypsin (Figure 14.1), tend to have highly conserved active sites
involving a handful of polar residues. In contrast, proteins that function primarily only to
interact with other proteins, such as fibroblast growth factors (Figure 14.2), interact over
a large surface, with virtually any amino acid being important in mediating the interac-
tion (Plotnikov et al., 1999). In other cases, multiple functions make the situation even
more confusing, for example a protein kinase (Hanks et al., 1988) can both catalyse a
phosphorylation event and bind specifically to another protein, such as cyclin (Jeffrey
et al., 1995).

It is not possible to discuss all of the possible functional themes here, but we emphasize
that functional information, if known, should be considered whenever studying the effects
of substitution.

14.2.5 Post-translational Modification
Although there are only 20 possible types of amino acid that can be incorporated into a
protein sequence upon translation of DNA, there are many more variations that can occur

His

Asp

Ser

Figure 14.1 RasMol (Sayle and Milner-White, 1995) figure showing the catalytic
Asp-His-Ser triad in trypsin (PDB code 1mct; Berman et al., 2000).
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Figure 14.2 Molscript (Kraulis, 1991) figure showing fibroblast growth factor interac-
tion with its receptor (code 1cvs; Plotnikov et al., 1999). Residues at the interface are
labelled. The two molecules have been pulled apart for clarity.

through subsequent modification. In addition, the gene-specified protein sequence can be
shortened by proteolysis, or lengthened by addition of amino acids at either terminus.

Two common modifications, phosphorylation and glycosylation, are discussed in the
context of the amino acids where they most often occur (tyrosine, serine, threonine and
asparagine; see below). We direct the reader to the review by Krishna for more infor-
mation on many other known types and specific examples (Krishna and Wold, 1993).
The main conclusion is that modifications are highly specific, with specificity provided
by primary, secondary and tertiary protein structure, although with detailed mechanisms
being obscure. The biological function of the modified proteins is also summarized, from
the reversible phosphorylation of serine, threonine and tyrosine residues that occurs in
signalling through to the formation of disulphide bridges and other cross-links that stabi-
lize tertiary structure, and on to the covalent attachment of lipids that allows anchorage to
cell membranes. More detail on biological effects is given by Parekh and Rohlff (1997),
especially where it concerns possible therapeutic applications. Many diseases arise by
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abnormalities in post-translational modification, and these are not necessarily apparent
from genetic information alone.

14.3 AMINO ACID CLASSIFICATIONS

Humans have a natural tendency to classify, as it makes the world around us easier
to understand. As amino acids often share common properties, several classifications
have been proposed. This is useful, but a little bit dangerous if over-interpreted. Always
remember that, for the reasons discussed above, it is very difficult to put all amino acids
of the same type into an invariant group. A substitution in one context can be disastrous
in another. For example, a cysteine involved in a disulphide bond would not be expected
to be mutatable to any other amino acid (i.e. it is in a group on its own), one involved in
binding to zinc could likely be substituted by histidine (group of two) and one buried in
an intracellular protein core could probably mutate to any other hydrophobic amino acid
(a group of 10 or more). We will discuss other examples below.

14.3.1 Mutation Matrices

One means of classifiying amino acids is a mutation matrix (or substitution or exchange
matrix). This is a set of numbers that describe the propensities of exchanging one amino
acid for another (for a comprehensive review and explanation see Durbin et al., 1998).
These are derived from large sets of aligned sequences by counting the number of times
that a particular substitution occurs and comparing this to what would be expected by
chance. High values indicate that a substitution is seen often in nature and so is favourable,
and vice versa. The values in the matrix are usually calculated using some model of
evolutionary time, to account for the fact that different pairs of sequences are at different
evolutionary distances. Probably the best known matrices are the Point Accepted Mutation
(PAM) matrices of Dayhoff et al. (Dayhoff et al., 1978) and BLOSUM matrices (Henikoff
and Henikoff, 1992).

Mutation matrices are very useful as rough guides for how good or bad a particular
change will be. Another useful feature is that they can be calculated for different data-
sets to account for some of the protein features that effect amino acid properties, such as
cellular locations (Jones et al., 1994) or different evolutionary distances (e.g. orthologues
or paralogues; Henikoff and Henikoff, 1992). Several mutation matrices are reproduced
in Appendix II.

14.3.2 Classification by Physical, Chemical and Structural Properties

Although mutation matrices are very useful for protein sequence alignments, especially
in the absence of known three-dimensional structures, they do not precisely describe
the likelihood and effects of particular substitutions at particular sites in the sequence.
Position-specific substitution matrices can be generated for the family of interest, such
as the profile-HMM models generated by HMMER (Eddy, 1998) and provided by Pfam
(Bateman et al., 2000), and those generated by PSI-BLAST (Altschul et al., 1997). How-
ever, these are automatic methods suited to database searching and identification of new
members of a family, and as such do not really give any qualitative information about
the chemistry involved at particular sites.

Taylor presented a classification that explains mutation data through correlation with
the physical, chemical and structural properties of amino acids (Taylor, 1986). The major
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factor is the size of the side chain, closely followed by its hydrophobicity. Effects of
differerent amino acids on protein structure can account for mutation data when these
physico-chemical properties do not. For example, hydrophobicity and size differ widely
between glycine, proline, aspartic acid and glutamic acid. However, they are still closely
related in mutation matrices because they prefer sharply turning regions on the surface of
the protein; the phi and psi bonds of glycine are unconstrained by any side chain, proline
forces a sharp turn because its side chain is bonded to the backbone nitrogen as well as to
carbon, and aspartate and glutamate prefer to expose their charged side chains to solvent.

The Taylor classification is normally displayed as a Venn diagram (Figure 14.3). The
amino acids were positioned on this by multidimensional scaling of Dayhoff’s mutation
matrix, and then grouped by common physico-chemical properties. Size is subcategorized
into small and tiny (with large included by implication). Affinity for water is described
by several sets: polar and hydrophobic, which overlap, and charged, which is divided into
positive and negative. Sets of aromatic and aliphatic amino acids are also marked. These
properties were enough to distinguish between most amino acids. However, properties
such as hydrogen-bonding ability and the previously mentioned propensity for sharply
turning regions are not described well. Although these factors are less important on aver-
age, and would confuse the effects of more important properties if included on the diagram,
the dangers of relying on simple classifications are apparent. This can be overcome some-
what by listing all amino acids which belong to each subset (defined as an intersection
or union of the sets) in the diagram, for example ‘small and non-polar’, and including
extra subsets to describe important additional properties. These subsets can be used to
give qualitative descriptions of each position in a multiple alignment, by associating the
positions with the smallest subset that includes all the amino acids found at that position.
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Figure 14.3 Venn diagram illustrating the properties of amino acids.
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This may suggest alternative amino acids that could be engineered into the protein at
each position.

14.4 PROPERTIES OF THE AMINO ACIDS

The sections that follow will first consider several major properties that are often used to
group amino acids together. Note that amino acids can be in more than one group, and
that sometimes properties as different as ‘hydrophobic’ and ‘hydrophilic’ can be applied
to the same amino acids.

14.4.1 Hydrophobic Amino Acids

Probably the most common broad division of amino acids is into those that prefer to be
in an aqueous environment (hydrophilic) and those that do not (hydrophobic). The latter
can be divided according to whether they have aliphatic or aromatic side chains.

14.4.1.1 Aliphatic Side Chains

Strictly speaking aliphatic means that the side chain contains only hydrogen and carbon
atoms. By this strict definition, the amino acids with aliphatic side chains are alanine,
isoleucine, leucine, proline and valine. Alanine’s side chain, being very short, means that
it is not particularly hydrophobic and proline has an unusual geometry that gives it special
roles in proteins as we shall discuss below. Although it also contains a sulphur atom, it
is often convenient to consider methionine in the same category as isoleucine, leucine
and valine. The unifying theme is that they contain largely non-reactive and flexible side
chains that are ideally suited for packing in the protein interior.

Aliphatic side chains are very non-reactive, and are thus rarely involved directly in
protein function, although they can play a role in substrate recognition. In particular,
hydrophobic amino acids can be involved in binding/recognition of hydrophobic ligands
such as lipids.

Several other amino acids also contain aliphatic regions. For example, arginine, lysine,
glutamate and glutamine are amphipathic, meaning that they contain hydrophobic and
polar areas. All contain two or more aliphatic carbons that connect the protein backbone
to the non-aliphatic portion of the side chain. In some instances it is possible for such
amino acids to play a dual role, with part of the side chain being buried in the protein
and another being exposed to water.

14.4.1.2 Aromatic Side Chains

A side chain is aromatic when it contains an aromatic ring system. The strict definition
has to do with the number of electrons contained within the ring. Generally, aromatic
ring systems are planar and electrons are shared over the whole ring structure. Phenylala-
nine and tryptophan have very hydrophobic aromatic side chains, whereas tyrosine and
histidine are less so. The latter two can often be found in positions that are somewhere
between buried and exposed. The hydrophobic aromatic amino acids can sometimes sub-
stitute for aliphatic residues of a similar size, for example phenylalanine to leucine, but
not tryptophan to valine.

Aromatic residues have also been proposed to participate in ‘stacking’ interactions
(Hunter et al., 1991) (Figure 14.4). Here, numerous aromatic rings are thought to stack
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Phe

Trp

Figure 14.4 Example of aromatic stacking.

on top of each other such that their PI electron clouds are aligned. They can also play
a role in binding to specific amino acids, such as proline. SH3 and WW domains, for
example, use these residues to bind to their polyproline-containing interaction partners
(Macias et al., 2002). Owing to its unique chemical nature, histidine is frequently found
in protein active sites as we shall see below.

14.4.2 Polar Amino Acids

Polar amino acids prefer to be surrounded by water. Those that are buried within the
protein usually participate in hydrogen bonds with other side chains or the protein main-
chain that essentially replace the water. Some of these carry a charge at typical biological
pHs: aspartate and glutamate are negatively charged; lysine and arginine are positively
charged. Other polar amino acids, histidine, asparagine, glutamine, serine, threonine and
tyrosine, are neutral.

14.4.3 Small Amino Acids

The amino acids alanine, cysteine, glycine, proline, serine and threonine are often grouped
together for the simple reason that they are all small in size. In some protein structural
contexts, substitution of a small side chain for a large one can be disastrous.

14.5 AMINO ACID QUICK REFERENCE

In the sections that follow we discuss each amino acid in turn. For each we will briefly
discuss general preferences for substitutions and important specific details regarding their
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possible structure and functional roles. More information is found on the WWW site
that accompanies this chapter (www.russell.embl-heidelberg.de/aas). This website also
features amino acid substitution matrices for transmembrane, extracellular and intracellu-
lar proteins. These can be used to numerically score an amino acid substitution, where
unpreferred mutations are given negative scores, preferred substitutions are given positive
scores and neutral substitutions are given zero scores.

14.5.1 Alanine (Ala, A)
14.5.1.1 Substitutions

Alanine can be substituted by other small amino acids.

14.5.1.2 Structure

Alanine is probably the dullest amino acid. It is not particularly hydrophobic and is non-
polar. However, it contains a normal Cβ carbon, meaning that it is generally as hindered
as other amino acids with respect to the conformations that the backbone can adopt.
For this reason, it is not surprising to see alanine present in just about all non-critical
protein contexts.

14.5.1.3 Function

The alanine side chain is very non-reactive, and is thus rarely directly involved in protein
function, but it can play a role in substrate recognition or specificity, particularly in
interactions with other non-reactive atoms such as carbon.

14.5.2 Isoleucine (Ile, I)
14.5.2.1 Substitutions
Isoleucine can be substituted by other hydrophobic, particularly aliphatic, amino acids.

14.5.2.2 Structure
Being hydrophobic, isoleucine prefers to be buried in protein hydrophobic cores. How-
ever, isoleucine has an additional property that is frequently overlooked. Like valine and
threonine it is Cβ branched. Whereas most amino acids contain only one non-hydrogen
substituent attached to their Cβ carbon, these three amino acids contain two. This means
that there is a lot more bulkiness near to the protein backbone and this means that these
amino acids are more restricted in the conformations the main chain can adopt. Perhaps
the most pronounced effect of this is that it is more difficult for these amino acids to
adopt an α-helical conformation, although it is easy and even preferred for them to lie
within β-sheets.

14.5.2.3 Function
The isoleucine side chain is very non-reactive and is thus rarely directly involved in protein
functions like catalysis, although it can play a role in substrate recognition. In particular,
hydrophobic amino acids can be involved in binding/recognition of hydrophobic ligands
such as lipids.

14.5.3 Leucine (Leu, L)

14.5.3.1 Substitutions
See Isoleucine.
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14.5.3.2 Structure

Being hydrophobic, leucine prefers to be buried in protein hydrophobic cores. It also
shows a preference for being within alpha helices more so than in beta strands.

14.5.3.3 Function

See Isoleucine.

14.5.4 Valine (Val, V)

14.5.4.1 Substitutions

See Isoleucine.

14.5.4.2 Structure

Being hydrophobic, valine prefers to be buried in protein hydrophobic cores. However,
valine is also Cβ branched (see Isoleucine).

14.5.4.3 Function

See Isoleucine.

14.5.5 Methionine (Met, M)

14.5.5.1 Substitutions

See Isoleucine.

14.5.5.2 Structure

See Isoleucine.

14.5.5.3 Function

The methionine side chain is fairly non-reactive, and is thus rarely directly involved in pro-
tein function. Like other hydrophobic amino acids, it can play a role in binding/recognition
of hydrophobic ligands such as lipids. However, unlike the proper aliphatic amino acids,
methionine contains a sulphur atom, that can be involved in binding to atoms such as
metals. However, whereas the sulphur atom in cysteine is connected to a hydrogen atom
making it quite reactive, methionine’s sulphur is connected to a methyl group. This means
that the roles that methionine can play in protein function are much more limited.

14.5.6 Phenylalanine (Phe, F)

14.5.6.1 Substitutions

Phenylalanine can be substituted with other aromatic or hydrophobic amino acids. It
particularly prefers to exchange with tyrosine, which differs only in that it contains an
hydroxyl group in place of the ortho hydrogen on the benzene ring.

14.5.6.2 Structure

Phenylalanine prefers to be buried in protein hydrophobic cores. The aromatic side chain
can also mean that phenylalanine is involved in stacking (Figure 14.4) interactions with
other aromatic side chains.
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14.5.6.3 Function
The phenylalanine side chain is fairly non-reactive, and is thus rarely directly involved in
protein function, although it can play a role in substrate recognition (see Isoleucine).
Aromatic residues can also be involved in interactions with non-protein ligands that
themselves contain aromatic groups via stacking interactions (see above). They are also
common in polyproline binding sites, for example in SH3 and WW domains (Macias
et al., 2002).

14.5.7. Tryptophan (Trp, W)
14.5.7.1 Substitutions
Trytophan can be replaced by other aromatic residues, but it is unique in terms of chemistry
and size, meaning that often replacement by anything could be disastrous.

14.5.7.2 Structure
See Phenylalanine.

14.5.7.3 Function
As it contains a non-carbon atom (nitrogen) in the aromatic ring system, tryptophan is
more reactive than phenylalanine although it is less reactive than tyrosine. Tryptophan
can play a role in binding to non-protein atoms, but such instances are rare. See also
Phenylalanine.

14.5.8 Tyrosine (Tyr, Y)
14.5.8.1 Substitutions
Tyrosine can be substituted by other aromatic amino acids. See Phenylalanine.

14.5.8.2 Structure
Being partially hydrophobic, tyrosine prefers to be buried in protein hydrophobic cores.
The aromatic side chain can also mean that tyrosine is involved in stacking interactions
with other aromatic side chains.

14.5.8.3 Function
Unlike the very similar phenylalanine, tyrosine contains a reactive hydroxyl group, thus
making it much more likely to be involved in interactions with non-carbon atoms. See
also Phenylalanine.

A common role for tyrosines (and serines and threonines) within intracellular proteins
is phosphorylation. Protein kinases frequently attach phosphates to these three residues
as part of a signal transduction process. Note that in this context, tyrosine will rarely
substitute for serine or threonine since the enzymes that catalyse the reactions (i.e. the
protein kinases) are highly specific (i.e. tyrosine kinases generally do not work on ser-
ines/threonines and vice versa (Hanks et al., 1988)).

14.5.9 Histidine (His, H)
14.5.9.1 Substitutions
Histidine is generally considered to be a polar amino acid, however it is unique with
regard to its chemical properties, which means that it does not substitute particularly well
with any other amino acid.
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14.5.9.2 Structure

Histidine has a pKa near to that of physiological pH, meaning that it is relatively easy
to move protons on and off of the side chain (i.e. changing the side chain from neutral
to positive charge). This flexibility has two effects. The first is ambiguity about whether
it prefers to be buried in the protein core or exposed to solvent. The second is that it
is an ideal residue for protein functional centres (discussed below). It is false to pre-
sume that histidine is always protonated at typical pHs. The side chain has a pKa of
approximately 6.5, which means that only about 10% of molecules will be protonated.
The precise pKa depends on local environment.

14.5.9.3 Function

Histidines are the most common amino acids in protein active or binding sites. They are
very common in metal binding sites (e.g. zinc), often acting together with cysteines or
other amino acids (Figure 14.5; Wolfe et al., 2001). In this context, it is common to see
histidine replaced by cysteine.

The ease with which protons can be transferred on and off of histidines makes them
ideal for charge relay systems such as those found within catalytic triads and in many
cysteine and serine proteases (Figure 14.1). In this context, it is rare to see histidine
exchanged for any amino acid at all.

14.5.10 Arginine (Arg, R)

14.5.10.1 Substitutions

Arginine is a positively-charged, polar amino acid. It thus most prefers to substitute for
the other positively-charged amino acid, lysine, although in some circumstances it will
also tolerate a change to other polar amino acids. Note that a change from arginine to
lysine is not always neutral. In certain structural or functional contexts, such a mutation
can be devastating to function (see below).

Cys
Cys

His

His

Figure 14.5 Example of a metal binding site coordinated by cysteine and histidine
residues (code 1g2f; Wolfe et al., 2001).
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14.5.10.2 Structure

Arginine generally prefers to be on the surface of the protein, but its amphipathic nature
can mean that part of the side chain is buried. Arginines are also frequently involved in
salt-bridges where they pair with a negatively charged aspartate or glutamate to create
stabilizing hydrogen bonds that can be important for protein stability (Figure 14.6).

14.5.10.3 Function

Arginines are quite frequent in protein active or binding sites. The positive charge means
that they can interact with negatively-charged non-protein atoms (e.g. anions or carboxy-
late groups). Arginine contains a complex guanidinium group on its side chain that has
a geometry and charge distribution that is ideal for binding negatively-charged groups
on phosphates (it is able to form multiple hydrogen bonds). A good example can be
found in the src homology 2 (SH2) domains (Figure 14.7; Waksman et al., 1992). The
two arginines shown in the figure make multiple hydrogen bonds with the phosphate. In
this context arginine is not easily replaced by lysine. Although lysine can interact with
phosphates, it contains only a single amino group, meaning it is more limited in the num-
ber of hydrogen bonds it can form. A change from arginine to lysine in some contexts
can thus be disastrous (Copley and Barton, 1994).

14.5.11 Lysine (Lys, K)

14.5.11.1 Substitutions

Lysine can be substituted by arginine or other polar amino acids.

14.5.11.2 Structure

Lysine frequently plays an important role in structure. First, it can be considered to be
somewhat amphipathic as the part of the side chain nearest to the backbone is long, carbon-
containing and hydrophobic, whereas the end of the side chain is positively charged. For

Arg
Asp

Figure 14.6 Example of a salt-bridge (code 1xel).
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Arg
Arg

Phosphate

pTyr

Figure 14.7 Interaction of arginine residues with phosphotyrosine in an SH2 domain
(code 1sha; Waksman et al., 1992).

this reason, one can find lysines where part of the side chain is buried and only the charged
portion is on the outside of the protein. However, this is by no means always the case
and generally lysines prefer to be on the outside of proteins. Lysines are also frequently
involved in salt-bridges (see Arginine).

14.5.11.3 Function

Lysines are quite frequent in protein active or binding sites. Lysine contains a positively-
charged amino group on its side chain that is sometimes involved in forming hydrogen
bonds with negatively-charged non-protein atoms (e.g. anions or carboxylate groups).

14.5.12 Aspartate (Asp, D)

14.5.12.1 Substitutions

Aspartate can be substituted by glutamate or other polar amino acids, particularly aspara-
gine, which differs only in that it contains an amino group in place of one of the oxygens
found in aspartate (and thus also lacks a negative charge).

14.5.12.2 Structure

Being charged and polar, aspartates generally prefer to be on the surface of proteins,
exposed to an aqueous environment. Aspartates (and glutamates) are frequently involved
in salt-bridges (see Arginine).

14.5.12.3 Function

Aspartates are quite frequently involved in protein active or binding sites. The negative
charge means that they can interact with positively-charged non-protein atoms, such as
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cations like zinc. Aspartate has a shorter side chain than the very similar glutamate
meaning that is slightly more rigid within protein structures. This gives it a slightly
stronger preference to be involved in protein active sites. Probably the most famous
example of aspartate being involved in an active site is found within serine proteases such
as trypsin, where it functions in the classical Asp-His-Ser catalytic triad (Figure 14.1). In
this context, it is quite rare to see aspartate exchange for glutamate, although it is possible
for glutamate to play a similar role.

14.5.13 Glutamate (Glu, E)

14.5.13.1 Substitutions

Substitution can be by aspartate or other polar amino acids, in particular glutamine, which
is to glutamate what asparagine is to aspartate (see above).

14.5.13.2 Structure

See Aspartate.

14.5.13.3 Function

Glutamate, like aspartate, is quite frequently involved in protein active or binding sites.
In certain cases, they can also perform a similar role to aspartate in the catalytic site of
proteins such as proteases or lipases.

14.5.14 Asparagine (Asn, N)

14.5.14.1 Substitutions

Asparagine can be substituted by other polar amino acids, especially aspartate (see above).

14.5.14.2 Structure

Being polar asparagine prefers generally to be on the surface of proteins, exposed to an
aqueous environment.

14.5.14.3 Function

Asparagines are quite frequently involved in protein active or binding sites. The polar side
chain is good for interactions with other polar or charged atoms. Asparagine can play a
similar role to aspartate in some proteins. Probably the best example is found in certain
cysteine proteases, where it forms part of the Asn-His-Cys catalytic triad. In this context,
it is quite rare to see asparagine exchange for glutamine.

Asparagine, when occurring in a particular motif (Asn-X-Ser/Thr) can be N-
glycosylated (Gavel and von Heijne, 1990). Thus in this context it is impossible to
substitute it with any amino acid at all.

14.5.15 Glutamine (Gln, Q)

14.5.15.1 Substitutions

Glutamine can be substituted by other polar amino acids, especially glutamate (see above).
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14.5.15.2 Structure

See Asparagine.

14.5.15.3 Function

Glutamines are quite frequently involved in protein active or binding sites. The polar side
chain is good for interactions with other polar or charged atoms.

14.5.16 Serine (Ser, S)

14.5.16.1 Substitutions

Serine can be substituted by other polar or small amino acids in particular threonine which
differs only in that it has a methyl group in place of a hydrogen group found in serine.

14.5.16.2 Structure

Being a fairly indifferent amino acid, serine can reside both within the interior of a protein,
or on the protein surface. Its small size means that it is relatively common within tight
turns on the protein surface, where it is possible for the serine side chain hydroxyl oxygen
to form a hydrogen bond with the protein backbone, effectively mimicking proline.

14.5.16.3 Function

Serines are quite common in protein functional centres. The hydroxyl group is fairly
reactive, being able to form hydrogen bonds with a variety of polar substrates.

Perhaps the best known role for serine in protein active sites is exemplified by the
classical Asp-His-Ser catalytic triad found in many hydrolases (e.g. proteases and lipases;
Figure 14.1). Here, a serine, aided by a histidine and an aspartate act as a nucleophile
to hydrolyse (effectively cut) other molecules. This three-dimensional ‘motif’ is found
in many non-homologous (i.e. unrelated) proteins and is a classic example of molecular
convergent evolution (Russell, 1998). In this context, it is rare for serine to exchange with
threonine, but in some cases, the reactive serine can be replaced by cysteine, which can
fulfil a similar role.

Intracellular serines can also be phosphorylated (see Tyrosine). Extracellular serines
can also be O-glycosylated where a carbohydrate is attached to the side chain hydroxyl
group (Gupta et al., 1999).

14.5.17 Threonine (Thr, T)

14.5.17.1 Substitutions

Threonine can be substituted with other polar amino acids, particularly serine (see above).

14.5.17.2 Structure

Being a fairly indifferent amino acid, threonine can reside both within the interior of a
protein or on the protein surface. Threonine is also Cβ branched (see Isoleucine).

14.5.17.3 Function

Threonines are quite common in protein functional centres. The hydroxyl group is fairly
reactive, being able to form hydrogen bonds with a variety of polar substrates. Intracellular
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threonines can also be phosphorylated (see Tyrosine) and in the extracellular environment
they can be O-glycosylated (see Serine).

14.5.18 Cysteine (Cys, C)

14.5.18.1 Substitutions

In the case of cysteine there is no general preference for substitution with any other amino
acid, although it can tolerate substitutions with other small amino acids. Cysteine has a
role that is very dependent on cellular location, making substitution matrices dangerous
to interpret (e.g. Barnes and Russell, 1999).

14.5.18.2 Structure

The role of cysteines in structure is very dependent on the cellular location of the protein in
which they are contained. Within extracellular proteins, cysteines are frequently involved
in disulphide bonds, where pairs of cysteines are oxidized to form a covalent bond. These
bonds serve mostly to stabilize the protein structure and the structure of many extracellular
proteins is almost entirely determined by the topology of multiple disulphide bonds (e.g.
Figure 14.8).

The reducing environment inside cells makes the formation of disulphide bonds very
unlikely. Indeed, instances of disulphide bonds in the intracellular environment are so
rare that they almost always attract special attention. Disulphide bonds are also rare
within the membrane, although membrane proteins may contain disulphide bonds within
extracellular domains. Disulphide bonds are such that cysteines must be paired. If one
half of a disulphide bond pair is lost, then the protein may not fold properly.

Figure 14.8 Example of a small, disulphide-rich protein (code 1tfx).
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In the intracellular environment cysteines can still play a key structural role. Their sul-
phydryl side chain is excellent for binding to metals, such as zinc, meaning that cysteines
(and other amino acids such as histidines) are very common in metal binding motifs such
as zinc fingers (Figure 14.5). Outside of this context within the intracellular environment
and when it is not involved in molecular function, cysteine is a neutral, small amino acid
and prefers to substitute with other amino acids of the same type.

14.5.18.3 Function

Cysteines are also very common in protein active and binding sites. Binding to metals (see
above) can also be important in enzymatic functions (e.g. metal proteases). Cysteine can
also function as a nucleophile (i.e. the reactive centre of an enzyme). Probably the best
known example of this occurs within the cysteine proteases, such as caspases or papains,
where cysteine is the key catalytic residue, being helped by a histidine and an asparagine.

14.5.19 Glycine (Gly, G)

14.5.19.1 Substitutions

Glycine can be substituted by other small amino acids, but be warned that even apparently
neutral mutations (e.g. to alanine) can be forbidden in certain contexts (see below).

14.5.19.2 Structure

Glycine is unique as it contains a hydrogen as its side chain (rather than a carbon as is
the case for all other amino acids). This means that there is much more conformational
flexibility in glycine and as a result of this it can reside in parts of protein structures that
are forbidden to all other amino acids (e.g. tight turns in structures).

14.5.19.3 Function

The uniqueness of glycine also means that it can play a distinct functional role, such as
using its backbone (without a side chain) to bind to phosphates (Schulze-Gahmen et al.,
1996). This means that if one sees a conserved glycine changing to any other amino acid,
the change could have a drastic impact on function.

A good example is found among the protein kinases. Figure 14.9 shows a region around
the ATP binding site in a protein kinase; the ATP is shown to the right of the figure and
part of the protein to the left. The glycines in this loop are part of the classic ‘Gly-
X-Gly-X-X-Gly’ motif present in the kinases (Hanks et al., 1988). These three glycines
are almost never mutated to other residues; only glycines can function to bind to the
phosphates of the ATP molecule using their main chains.

14.5.20 Proline (Pro, P)

14.5.20.1 Substitutions

Proline can sometimes substitute for other small amino acids, although its unique prop-
erties mean that it does not often substitute well.

14.5.20.2 Structure

Proline is unique in that it is the only amino acid where the side chain is connected to
the protein backbone twice, forming a five-membered ring. Strictly speaking, this makes
proline an imino acid (since in its isolated form, it contains an NH2+ rather than an
NH3+ group, but this is mostly just pedantic detail). This difference is very important as
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ATP

Gly

Gly
Gly

Figure 14.9 Glycine-rich phosphate binding loop in a protein kinase (code 1hck;
Schulze-Gahmen et al., 1996).

Pro

Figure 14.10 Example of proline in a tight protein turn (code 1ag6).

it means that proline is unable to occupy many of the main-chain conformations easily
adopted by all other amino acids. In this sense, it can be considered to be an opposite of
glycine, which can adopt many more main-chain conformations. For this reason proline is
often found in very tight turns in protein structures (i.e. where the polypeptide chain must
change direction; Figure 14.10). It can also function to introduce kinks into α-helices,
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since it is unable to adopt a normal helical conformation. Despite being aliphatic the
preference for turn structure means that prolines are usually found on the protein surface.

14.5.20.3 Function

The proline side chain is very non-reactive. This, together with its difficulty in adopting
many protein main-chain conformations means that it is very rarely involved in protein
active or binding sites.

14.6 STUDIES OF HOW MUTATIONS AFFECT FUNCTION

Several studies have been carried out previously in an attempt to derive general principles
about the relationship between mutations, structure, function and diseases. We review
some of these below.

14.6.1 Single Nucleotide Polymorphisms (SNPs)

A SNP is a point mutation that is present at a measurable frequency in human populations.
They can occur either in coding or non-coding DNA. Non-coding SNPs may have effects
on important mechanisms such as transcription, translation and splicing. However, the
effects of coding SNPs are easier to study and are potentially more damaging, and so they
have received considerably more attention. They are also more relevant to this chapter.
Coding SNPs can be divided into two main categories, synonymous (where there is no
change in the amino acid coded for), and non-synonymous. Non-synonymous SNPs tend
to occur at lower frequencies than synonymous SNPs. Minor allele frequencies also tend
to be lower in non-synonymous SNPs. This is a strong indication that these replacement
polymorphisms are deleterious (Cargill et al., 1999).

To examine the phenotypic effects of coding SNPs, Sunyaev et al. (2000) studied the
relationships between non-synonymous SNPs and protein structure and function. Three
sets of SNP data were compared: disease causing susbtitutions, substitutions between
orthologues and those represented by human alleles. Disease-causing mutations were more
common in structurally and functionally important sites than were variations between
orthologues, as might be expected. Allelic variations were also more common in these
regions than were those between orthologues. Minor allele frequency and the level of
occurrence in these regions were correlated, another indication of evolutionary selection
of phenotype. The most damaging allelic variants affect protein stability, rather than
binding, catalysis, allosteric response or post-translational modification (Sunyaev et al.,
2001). The expected increase in the number of known protein structures will allow other
analyses and refinement of the details of the phenotypic effects of SNPs.

Wang and Moult (2001) developed a description of the possible effects of missense
SNPs on protein structure and used it to compare disease-causing missense SNPs with a
set from the general population. Five general classes of effect were considered: protein
stability, ligand binding, catalysis, allosteric regulation and post-translational modifica-
tion. The disease and population sets of SNPs contain those that can be mapped onto
known protein structures, either directly or through homologues of known structure. Of
the disease-causing SNPs, 90% were explained by the description, with the majority (83%)
being attributed to effects on protein stability, as reported by Sunyaev et al. (2001). The
10% that are not explained by the description may cause disease by effects not easily iden-
tified by structure alone. Of the SNPs from the general population, 70% were predicted
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to have no effect. The remaining 30% may represent disease-causing SNPs previously
unidentified as such, or molecular effects that have no significant phenotypic effect.

14.6.2 Site-directed Mutagenesis

Site-directed mutagenesis is a powerful tool for discovering the importance of an amino
acid in the function of the protein. Gross changes in amino acid type can reveal sites that
are important in maintaining the structure of the protein. Conversely, when investigat-
ing functionally interesting sites it is important to choose replacement residues that are
unlikely to affect structure dramatically, for example by choosing ones of a similar size
to the original. Peracchi (2001) reviews the use of site-directed mutagenesis to investi-
gate mechanisms of enzyme catalysis, in particular those studies involving mutagenesis of
general acids (proton donors), general bases (proton acceptors) and catalytic nucleophiles
in active sites. These types of amino acid could be considered to be the most important
to enzyme function as they directly participate in the formation or cleavage of covalent
bonds. However, studies indicate that they are often important but not essential — rates are
still higher than the uncatalysed reaction even when these residues are removed, because
the protein is able to use an alternative mechanism of catalysis. Also, direct involvement
in the formation and cleavage of bonds is only one of a combination of methods that
an enzyme can use to catalyse a reaction. Transition states can be stabilized by comple-
mentary shape and electrostatics of the binding site of the enzyme and substrates can be
precisely positioned, lowering the entropy of activation. These factors can also be studied
by site-directed mutagenesis, with consideration of the physical and chemical properties
of the amino acids again guiding the choice of replacements, along with knowledge of
the structure of the protein.

14.6.3 Key Mutations in Evolution

Golding and Dean (1998) reviewed six studies that demonstrate the insight into molecular
adaptation that is provided by combining knowledge of phylogenies, site-directed muta-
genesis and protein structure. These studies emphasize the importance of protein structure
when considering the effects of amino acid mutations.

Many changes can occur over many generations, with only a few being responsible
for changes in function. For example, the sequences of lactate dehydrogenase (LDH)
and malate dehydrogenase (MDH) from Bacillus stearothermophillus are only about 25%
identical, but their tertiary structures are highly similar. Only one mutation, of uncharged
glutamine 102 to positive arginine in the active site, is required to convert LDH into a
highly specific MDH. The arginine is thought to interact with the carboxylate group which
is the only difference between the substrate/products of the two enzymes (Figure 14.11;
Wilks et al., 1988).

Thus amino acid changes that appear to be radical or conservative from their scores
in mutation matrices or amino acid properties may be the opposite when their effect on
protein function is considered; glutamine to arginine has a score of 0 in the PAM250
matrix, meaning that it is neutral. The importance of the mutation at position 102 in LDH
and MDH could not be predicted using this information alone.

Another study showed that phylogeny and site-directed mutagenesis can identify key
amino acid changes that would likely be overlooked if only structure was considered; the
reconstruction of an ancestral ribonuclease showed that the mutation that causes most of
the five-fold loss in activity towards double-stranded RNA is of Gly38 to Asp, more than
5 Å from the active site (Golding and Dean, 1998).
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Figure 14.11 Lactate and malate dehydrogenase specificity (codes 9ltd and 2cmd; Wilks
et al., 1988).

A third study showed that knowledge of structure can be important in understanding
the effects of mutations. Two different mutations in different locations in the haemoglobin
genes of the bar-headed goose and Andean goose give both species a high affinity for
oxygen. Structural studies showed that both changes remove an important van der Waals
contact between subunits, shifting the equilibrium of the haemoglobin tetramer towards
the high-affinity state. The important point in all these studies is that no single approach,
such as phylogeny alone or structural studies alone, is enough to understand the effects
of all amino acid mutations.

14.7 A SUMMARY OF THE THOUGHT PROCESS

It is our hope that this chapter has given the reader some guidelines for interpreting how
a particular mutation might affect the structure and function of a protein. Our suggestion
would be that you ask the following questions:

First about the protein:

1. What is the cellular environment?

2. What does it do? Is anything known about the amino acids involved in its function?

3. Is there a structure known or one for a homologue?

4. What protein family does it belong to?

5. Are any post-translational modifications expected?
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Then about a particular amino acid:

1. Is the position conserved across orthologues? Across paralogues?
2. If a structure is known: is the amino acid on the surface? Buried in the core of

the protein?
3. Is it directly involved in function or near (in sequence or space) to other amino

acids that are?
4. Is it an amino acid that is likely to be critical for function? For structure?

Once these questions have been answered it should be possible to make a rational guess
or interpretation of effects seen by an amino acid substitution and select logical amino
acids for mutagenesis experiments.
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APPENDIX: TOOLS

Protein sequences

http://www.expasy.ch/

http://www.ncbi.nlm.nih.gov/

Amino acid properties

http://russell.embl-heidelberg.de/aas/

Domain assignment/sequence search tools

http://www.ebi.ac.uk/interpro/

http://www.sanger.ac.uk/Software/Pfam/

http://smart.embl-heidelberg.de/

http://www.ncbi.nlm.nih.gov/BLAST/

http://www.ncbi.nlm.nih.gov/COG/

http://www.cbs.dtu.dk/TargetP/

Protein structure

Databases of 3D structures of proteins

http://www.rcsb.org/pdb/

Structural classification of proteins

http://scop.mrc-lmb.cam.ac.uk/scop/

Protein function

http://www.geneontology.org/
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15.1 INTRODUCTION

Unravelling the molecular mechanisms in living cells is one of the major challenges in
current biology. Understanding these mechanisms will help us to recognize and finally
treat a range of diseases such as cancer. Gene expression profiling provides one approach
to study cellular processes at the gene level. There are many approaches for the measure-
ment of gene expression, at a single gene level, technologies such as RT-PCR and Taqman
provide detailed gene expression profiles across a defined range of tissues (Heid et al.,
1996; Riedy, et al., 1995). At a genome-wide level, Serial Analysis of Gene Expression
(SAGE) (Velculescu et al., 1995) and DNA microarrays (Lockhart et al., 1996; Schena
et al., 1995; Zammatteo et al., 2000) enable the simultaneous measurement of the expres-
sion of thousands of genes in a single tissue.

The advances in physical transcript mapping afforded by the recently released draft
sequence of the human genome (Lander et al., 2001; Venter et al., 2001) creates a new
opportunity to combine genome-wide gene profiling and gene mapping efforts. Combination
of gene expression data with gene positions will further unravel molecular mechanism in the
cell. This chapter focuses on in silico sources of gene expression data, such as SAGE and the
Human Transcriptome Map (HTM; Caron et al., 2001), for the evaluation of gene expression
across loci, specifically addressing the needs of positional cloning and cancer genetics.

Cancer results from changes in DNA sequence, which are reflected in altered amino
acid sequences of the corresponding proteins or changes in protein expression levels, either
of which ultimately changes cell function (King, 2000). These DNA changes can include
(relatively) small mutations involving substitutions, insertions or deletions of bases, but
also gross changes in DNA content per nucleus manifested as chromosome rearrangements
or as gene amplifications.

DNA changes that eventually lead to cancer may be reflected in the expression levels
of the corresponding genes or in the expression levels of genes that are directly or indi-
rectly regulated by the mutated gene(s). Consequently, comparison and analysis of gene
expression profiles of normal and tumour tissue at different stages of carcinogenesis helps
to increase our knowledge of the molecular biology of cancer. Although the translation of
expression profiles to relevant biological information is still one of the major challenges in
biology and bioinformatics, integral gene expression analysis is already used extensively
in cancer research (e.g. Alizadeh et al., 2000; Ben-Dor et al., 2000; Cole et al., 1999;
Golub et al., 1999; Hastie et al., 2000; Spieker et al., 2001; Yeang et al., 2001; Zhang
et al., 1997).

One problem that occurs in the comparison of gene expression profiles for normal and
tumour tissues is the large number of genes that are differentially expressed. Not all these
genes are interesting candidates for further investigation, most are not directly implicated
in carcinogenesis, but instead they may be part of the multiple downstream pathways
which are activated during carcinogenesis, including for example, responses of the cell to
stress or apoptosis. Therefore, to facilitate the identification of candidate genes it could be
useful to select those genes that are positioned at aberrant regions of chromosomes. Many
such regions are already known for different types of cancer or they can easily be detected
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by screening tumour material (Mitelman et al., 2001). For example, the embryonal tumour
neuroblastoma shows common genetic aberrations such as the amplification of the MYCN
oncogene (Schwab et al., 1983) and loss of chromosome 1p (Brodeur et al., 1977).

The Human Transcriptome Map (HTM) was specifically developed to enable the com-
parison of expression levels of genes in such regions. The HTM provides a clear example
of a project that was initiated with a simple question: ‘Is it possible to develop a tool
that guides the identification of candidate genes from chromosomal regions known to be
involved in neuroblastoma (or other cancers) from genome-wide gene expression profiles
obtained with Serial Analysis of Gene Expression (SAGE)?’. To answer this question,
the HTM integrates the position of human genes on chromosomes with genome-wide
expression profiles provided by SAGE (Velculescu et al., 1995).

Although the HTM seems a straightforward integration of a gene mapping database
and SAGE expression profiles, the development of such an application is actually quite
complex as will be shown in this chapter. Numerous aspects had to be considered during
the development of the HTM such as the development of sequence analysis algorithms as
part of the SAGE analysis, the application of statistical methods to analyse the data and
the development of a relational database to enable the integration of data from different
(public) resources.

HTM was initially developed for the selection of candidate genes but it also provides
more fundamental insight into the organization of the human genome. Inspection of the
expression profiles for all chromosomes reveals an intriguing pattern of domains of genes
with an above-average expression in each tissue. These domains were named RIDGEs
(Regions of Increased Gene Expression) and understanding them may further advance our
knowledge of normal organization of the genome and of cancer.

In using computational tools such as HTM it is important to have a basic understanding
of the underlying principles of the tool to avoid misinterpretation of results. In general,
software applications are used as ‘black boxes’ that give answers to questions when data
is put in. On the other hand, once underlying technologies and principles are understood,
it is possible to identify new possibilities for application of tools or generation of ideas for
the development of new tools. The use of public biological databases also requires caution
since they may contain errors, ambiguous data or data may be missing (e.g. Karp, 1998;
Karp et al., 2001). Understanding the nature of the data contained in these databases will
facilitate the interpretation of the results obtained. This chapter provides some examples
of the issues and pitfalls that are involved in the construction and the application of gene
expression analysis tools.

This chapter focuses specifically on issues related to the Human Transcriptome Map
and therefore it necessarily concentrates on SAGE technology and bioinformatics of SAGE
analysis. However, it will become clear that the overall approach, technologies and prob-
lems described during the development of the HTM are not specific for SAGE analysis
but also apply to technologies such as DNA microarrays. In this chapter we will describe
the SAGE and DNA microarray technologies and discuss some important differences
between these two technologies. We will introduce the Cancer Genome Anatomy Project,
which has made several tools and databases for gene expression analysis available via the
internet. We will discuss the processing and statistical analysis of SAGE data and explain
the data integration process that was required to construct the HTM.

Parts of Sections 15.4.2 and 15.6 are reprinted (abstracted/excerpted) with permission
from Caron et al. (2001). (Copyright 2001 American Association for the Advancement
of Science).
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15.2 TECHNOLOGIES FOR THE MEASUREMENT OF GENE
EXPRESSION

A range of methods are available to measure gene expression or changes in gene expres-
sion. In this section the SAGE and DNA microarray technologies are described since
these are the primary methods used for genome-wide profiling.

15.2.1 Serial Analysis of Gene Expression (SAGE)

Serial Analysis of Gene Expression (SAGE; Velculescu et al., 1995) is a technique used
to construct quantitative genome-wide gene expression profiles (van Limpt et al., 2000;
Porter et al., 2001; Scott and Chrast, 2001; Velculescu et al., 2000). Three principles
underlie the SAGE methodology (Figure 15.1):

(1) A short 10-base pair sequence tag contains sufficient information to uniquely
identify a transcript provided that this tag is obtained from a unique position
within each transcript (there are many more possible tags (410 = 1,048,576) than
human genes).

(2) Sequence tags can be linked together to form long serial molecules (concatemers)
that can be cloned and sequenced.

(3) Counting of the number of times a particular tag is observed provides the expres-
sion level of the corresponding transcript.

Figure 15.1 Serial Analysis of Gene Expression (SAGE; Velculescu et al., 1995).
mRNA is extracted from a cell tissue sample. Subsequently, a 10-base pair tag that
is right to the most 3′ CATG site is extracted from each transcript by using the NlaIII
restriction enzyme. These tags are then ligated to ditags, which are amplified and linked to
form concatemers containing approximately 30 tags. These concatemers are then cloned
and sequenced.

[Image not available in this electronic edition.]
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The sequenced concatemers consist of ditags and include approximately 30 to 40 tags.
The sequenced concatemers are the starting point for data processing, which is explained
in more detail in Section 15.4. The number of tags that is obtained in a SAGE experiment
ranges from 10,000 to over 100,000. The frequency of a tag directly reflects the fraction
of the corresponding transcript in the cell. In other words, if a particular tag is observed
25 times in a SAGE library that consists of 50,000 tags, then the number of corresponding
transcripts is also 25 per 50,000 transcripts in the cell. In this sense, SAGE provides an
‘absolute’ expression level.

15.2.2 DNA Microarrays

The principle of a DNA microarray experiment is to hybridize labelled cDNA to DNA
sequences that are immobilized on a solid surface in an ordered array. The labelled
cDNA is often referred to as the target and the immobilized DNA sequences as the probe.
A DNA microarray allows the detection and quantification of thousands of transcripts
simultaneously. Two main types of DNA microarrays can be distinguished according to
the arrayed material. The first type is the cDNA microarray in which the probes are
usually products of the polymerase chain reaction generated from cDNA libraries or
clone collections (Bowtell, 1999; Brown and Botstein, 1999; Schena et al., 1995, 1996).
These probes are spotted onto glass slides or nylon membranes at defined positions.
The second type or arrays are the oligonucleotide arrays for which short 20–25mers are
synthesized in situ by photolithography onto silicon wafers (GeneChip technology of
Affymetrix (Lockhart et al., 1996)). Alternatively, pre-synthesized oligonucleotides can
be printed onto glass slides (Okamoto et al., 2000, Zammatteo et al., 2000). For target
preparation, mRNA from cells or tissue is extracted, which is converted to cDNA and
labelled. The target is then hybridized to the DNA probes on the array and detected by
phospho-imaging or fluorescence scanning. In the case of fluorescence, two fluorescent
dyes with different colours (Cy3 and Cy5) are used to label the cDNAs from two dif-
ferent cell populations. The resulting two targets are mixed and hybridized to the same
array, which results in competitive binding of the target to the spotted probe sequences.
Subsequently, the array is scanned using two different wavelengths, corresponding to the
two dyes and the intensity of each spot in both channels is ‘mixed’ in silico. This results
in an expression level, relative to the chosen control condition, for each gene that is
represented on the array (see Chapter 9 Section 9.6, for some examples of output from
oligonucleotide arrays).

15.2.3 Comparison of SAGE and DNA Microarrays

The SAGE and DNA microarray technologies differ in several important ways. SAGE
measures expression levels that directly reflect the fraction of mRNAs in the cell, i.e.
SAGE produces ‘absolute’ expression levels. In contrast, the DNA microarray technique
measures expression levels relative to a control condition. Consequently, different SAGE
libraries can be directly compared because the expression levels do not depend on the use
of a reference mRNA or experimental conditions, while DNA microarray experiments can
only be compared if they have been measured relative to the same control tissue under
the same conditions. For the same reason, the gene expression levels within one SAGE
library can be directly compared, while expression levels obtained for genes on one DNA
microarray cannot be compared due to differences in labelling and hybridization efficiency
of individual genes. Another difference between SAGE and DNA microarrays comprises
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the genes that can be measured in an experiment. In a DNA microarray experiment one
only measures the genes for which the array contains probes, while SAGE in principle
measures every mRNA in the sample. Consequently, SAGE is very suitable for discov-
ering new genes, although low abundance transcripts are only likely to appear in large
SAGE libraries. The DNA microarray is, however, very suitable for quickly screening
cells or tissues for the expression of a pre-selected set of genes. A disadvantage of SAGE
is that the extracted mRNA tags need to be identified in silico (Section 15.4) while for
DNA microarrays it is already known which probes (genes) are on the array. Furthermore,
the construction of a SAGE library requires much more effort than carrying out a DNA
microarray experiment once the array has been printed.

15.3 THE CANCER GENOME ANATOMY PROJECT (CGAP)

The Cancer Genome Anatomy Project (CGAP; Lal et al., 1999; Lash et al., 2000; Riggins
and Strausberg, 2001; Schaefer et al., 2001; Strausberg et al., 1997, 2000) is a project
of the National Cancer Institute (NCI). Their main objective is to decipher the molecular
mechanism of cancer. For this goal, information is gathered from different resources such
as gene expression data, aberrations of chromosomes, gene variation and biochemical path-
ways. CGAP collaborates with the National Centre for Biotechnology Information (NCBI)
to develop computational technologies for the management and analysis of these large
amounts of data. All data and programs for analysis are made available via the internet
(cgap.nci.nih.gov).

The HTM makes extensive use of two CGAP resources. Firstly, HTM includes the
SAGE libraries that were constructed as part of the CGAP project. Secondly, HTM algo-
rithms use the SAGEmap tag-to-gene mapping as a starting point for constructing an
improved tag-to-gene mapping (Section 15.4.2). These mappings are used for SAGE tag
identification. In addition, several other CGAP tools and databases are regularly used
during the analysis of SAGE data. Therefore, this section provides a brief overview of
the resources offered by CGAP.

The CGAP resource contains cDNA and SAGE libraries of normal cells and cancer
cells in different stages. These libraries include the 3′ and 5′ clones of cDNAs from
the dbEST database (Boguski et al., 1993), the CGAP subset of dbEST, the Mammalian
Gene Collection (MGC) subset of dbEST, randomly cloned cDNAs from the ORESTES
(Open Reading Frame EST sequencing) project and SAGE libraries. The MGC is an NIH
initiative that supports the production of cDNA libraries, clones and sequences (Strausberg
et al., 1999). The goal of the MGC is to provide a complete set of full-length (open
reading frame) sequences and cDNA clones of expressed genes for human and mouse. The
ORESTES project aims for the completion of gene annotation by sequencing randomly
primed cDNAs (Pandey, 2001). CGAP also supports the generation of SAGE libraries
and their sequencing to obtain gene expression profiles of normal, pre-cancer, and cancer
cells, which resulted in high-quality SAGE gene expression profiles for a range of normal
and tumour tissues. The generation of these profiles still continues. At present over 140
SAGE libraries are available from the SAGEmap database (Lal et al., 1999; Lash et al.,
2000) including more than 5 million tags.

The CGAP Library Finder Tool retrieves any cDNA library from dbEST or SAGE
libraries. The search can be narrowed to the CGAP, MGC or ORESTES subsets. A query
first returns a single library or a list of libraries, each of which is linked to its own Library
Info page where details of the library and its preparation can be found. The Library Finder
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Tool allows the retrieval of libraries according to tissue type, tissue preparation, tissue
histology, library protocol and library name.

CGAP offers a range of tools to examine gene expression data from their cDNA or
SAGE collection. The Gene Library Summarizer (GLS) generates unique and non-unique
genes expressed in a single cDNA library or library group. It then identifies the genes in
each of these groups as known or unknown. The cDNA xProfiler is a tool that compares
gene expression between two pools of libraries by counting the number of clones in the
library. The Digital Gene Expression Displayer (DGED) is a tool that compares gene
expression between two pools of libraries. In contrast to the cDNA xProfiler that counts
clones, the DGED treats the presence of a gene in a library pool as a matter of degree.
It compares the ‘degree’ of presence of a gene in pool A with its ‘degree’ of presence
in pool B by using a chi-squared test. The SAGEmap xProfiler performs differential-type
analyses on (pooled) SAGE libraries. Similar libraries can be placed into one of two
groups based on their characteristics (e.g. normal colon and colon cancer). Comparisons
are then made between the two groups using a statistical test developed specifically for
SAGE data (Lash et al., 2000). The SAGEmap Virtual Northern (vNorthern) tool has been
designed to accept mRNA or EST sequences as input. Possible tags are then extracted
from this sequence and links provided to access the data from the various SAGE libraries
currently represented on the SAGEmap website.

CGAP also provides access to the Mitelman database of chromosome aberrations
in cancer (Mitelman et al., 2001). This database contains manually selected data from
about 40,000 scientific articles and is organized as three distinct sub-databases. The sub-
database ‘Cases’ contains the data that relates chromosomal aberrations to specific tumour
characteristics in individual patient cases. The sub-database of ‘Molecular Biology and
Clinical Associations’ contains no data from individual patient cases. Instead, the data is
pulled from studies with distinct information about molecular biology or clinical asso-
ciations. The molecular biology associations relate chromosomal aberrations and tumour
histologies to genomic sequence data, while clinical associations relate chromosomal aber-
rations and tumour histologies to clinical variables such as prognosis, tumour grade and
patient characteristics. The ‘Reference’ sub-database contains all the references culled
from the literature.

Another tool to examine the chromosomes uses the CGAP FISH-mapped BACs, which
are BAC clones that are mapped both cytogenetically by FISH and physically by STSs
to the human genome. Genetic and physical SNP maps are available, which show the
genetic and physical locations of confirmed, validated and predicted SNPs per individ-
ual chromosome.

CGAP also includes the graphical biochemical pathway maps from KEGG (Kanehisa
and Goto, 2000) and BioCarta (www.biocarta.com). The entities on these maps are linked
to the above-mentioned CGAP resources.

15.4 PROCESSING OF SAGE DATA

The processing of SAGE data generally consists of three steps. First a list of tags is
compiled from the concatemer sequences. Secondly, the SAGE tags are identified and
finally the expression levels can be compared statistically. The extraction of tags from
the concatemer sequences is straightforward since each concatemer consists of ditags that
are separated by the CATG sequence. Each ditag contains one tag in the 5′ → 3′ (sense)
direction and a second tag in the 3′ → 5′ (complementary-reverse) orientation. The ditags
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are extracted from the concatemers and duplicate ditags are removed because they are most
likely experimental artifacts (Velculescu et al., 1995). The length of the resulting ditags
must be between 20 and 24 bp. Shorter and longer ditags are discarded as experimental
artefacts. Subsequently, from each extracted ditag the sense and complementary-reverse
(which is converted to a sense tag) tags are extracted and added to the list of SAGE tags.
The number of times that a tag occurs in this list directly reflects the expression level of
the corresponding transcript.

As a result of this experimental procedure the association between tag and transcript
from which the tag is extracted is lost. Consequently, after compiling the tag list (i.e.
gene expression profile) each tag in this list has to be identified by matching it against
a tag-to-gene map. This tag-to-gene mapping database must first be compiled by elec-
tronically extracting a tag from each mRNA/EST sequence in the GenBank database and
subsequently storing the annotated tag in the tag-to-gene mapping. The compilation of
this tag-to-gene mapping is one of the crucial steps in the SAGE analysis.

The CGAP SAGEmap tag-to-gene mapping (Lal et al., 1999) is an example of such
mapping. Typical entries in this tag-to-gene mapping look something like the following:

AAAAATACAA 5/EST/+3−label 43744 ESTs AI093649, AI263776, N26090, N67808 (4 6)

TATTAGGATA 5/EST/+3−label 43744 ESTs AI434789, AI813305, AW271602 (3 3)

AAAAAATACA 1/mRNA/+orient 1119 nuclear receptor subfamily 4, group A D85245 (1 1)

AAAAAATACA 2/EST/+orient+3−label 107526 UDP-Gal:betaGlcNAc beta 1,4-galactosyltrans-
ferase, polypeptide 5 AA046634 (1 10)

Each entry (tag annotation) contains five attributes, i.e. the 10-bp tag (bold), the sequence
type of the clones from which the tag was extracted (underlined), the UniGene cluster
number and cluster name (italic), the accession codes of clones (comma delimited list)
and two frequency numbers (between parentheses).

The sequence type provides information about the reliability of the determination of
the 3′-end of the GenBank sequence. Since tags are only valid if extracted adjacent to
the most 3′ CATG in the sequence, it is very important to establish whether the sequence
indeed includes the 3′-end. The following sequence types are defined:

‘1/mRNA/+orient’ Well-characterized mRNA or RefSeq sequence
(Pruitt and Maglott, 2001).

‘2/EST/+orient+3−label’ EST, with polyA signal and/or polyA tail, and
labelled as 3′

‘3/EST+orient’ EST, with polyA signal and/or polyA tail,
but unlabelled

‘4/EST+orient+5−label’ EST, with polyA signal and/or polyA tail, and
labelled as 5′

‘5/EST+3−label’ EST, without polyA signal or polyA tail, but
labelled as 3′

The polyA signal and polyA tail both provide information about the 3′-end of the sequence.
In the definition of these sequence types only the two most common polyA signals
(ATTAAA and AATAAA) were considered. A polyA tail was defined as a stretch of
10 consecutive As at the end of the sequence of 10 consecutive Ts at the beginning of
the sequence. Additional information to identify 3′-end sequences is obtained from the
depositors of the cDNA sequences, which have assigned a label (3′ or 5′) to the GenBank
sequence based on the cloning and sequencing procedures.
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The frequency numbers provide information about the reliability and uniqueness of
the tag. The first frequency number denotes the number of GenBank clones of this type,
with this tag and this UniGene cluster assignment. The second frequency number denotes
number of GenBank clones of this type with this tag in any UniGene cluster. In the
example above, we see that the tag AAAAATACAA (5/EST+3 label) corresponds to
four clones in UniGene cluster 43744. However, from the second frequency number it
can be seen that this tag of this type is also extracted from two clones in one or two other
UniGene clusters. Therefore, this tag is not unique for a gene or it may be an incorrect tag.

15.4.1 The Construction of Tag-to-Gene Mapping in HTM

To obtain a reliable mapping of gene expression profiles to chromosomes it is impor-
tant to have a tag-to-gene mapping in which false positive tag identifications (tags that
are extracted from the wrong position of the database sequence and therefore do not
correspond to the experimentally determined tag of the gene) are removed. False posi-
tive tags would strongly compromise the genome-wide expression patterns. The CGAP
SAGEmap tag-to-gene mapping contains many false positive tags because this mapping
was designed to include all potential tags. To improve the quality of SAGE analysis,
the Academic Medical Centre (AMC) tag-to-gene mapping process was constructed to
exclude as many false positive tags as possible. The AMC tag-to-gene mapping basically
comprises four steps:

1. Identification of the 3′-end of cDNA clones and the electronic extraction of tags.

2. Removal of erroneous tags that result due to EST sequence errors in the 10-bp tag.

3. Removal of erroneous tags that result due to EST sequence errors in the
CATG sequence.

4. Identification of anti-sense tags.

Sequencing of cDNA clones occurs, by definition, from the 5′-end to the 3′-end of
the sequence. The 5′ → 3′ sequence is called the ‘sense’ sequence, while the 3′ → 5′

sequence is called the ‘complementary-reverse’ sequence. This implies that the most
likely orientation of sequences in a database of sequenced cDNA clones is either ‘sense’
or ‘complementary-reverse’. In the case of 3′-end sequences this will, respectively, show
the polyA tail as an A-stretch at the end or as a T-stretch at the beginning of the sequence.
However, two other possible sequence orientations (reverse or complement) occur in the
GenBank database as a result of human errors in submitting or processing the sequence.
The frequency of the four possible sequence orientations were analysed by using the
718,271 clones included in the CGAP SAGEmap tag-to-gene mapping of which 12,381
clones contain a stretch of >30 As or Ts at either end of the sequence. Of these clones,
11,476 (93%) end with >30 As (sense) or start with >30 Ts (complementary-reverse).
Only 7% of the polyA tails are on the wrong side of the sequence and these clones could
result from wrong sequence orientation in the database. Therefore, only the sense and
complementary-reverse sequence orientations are considered in the subsequent electronic
tag extraction procedures to build the AMC tag-to-gene map. The algorithms that were
constructed to build the AMC tag-to-gene map used the cDNA clones (and UniGene clus-
ter assignment) that are included in the CGAP SAGEmap tag-to-gene map. In addition,
the sequence type that was assigned to each tag was used.
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15.4.2 Identification of 3′-end cDNA Clones and Electronic Tag
Extraction

The 3′-end of a processed gene transcript is characterized by a polyA tail and a polyA
signal. Besides the two ‘classical’ polyA signals (AATAAA and ATTAAA), other polyA
signals have been reported (Proudfoot, 1991; Sheets et al., 1990; see Chapter 12 for
more details). The clones included in the CGAP SAGEmap tag-to-gene map were ana-
lysed for the occurrence of ‘alternative’ polyadenylation signals. The clones containing
either >30 As at the end or >30 Ts at the beginning of their sequence were selected.
Polyadenylation signals are thought to occur within 50 to 100 bp from the polyA addi-
tion site (Salamov and Solovyev, 1997). Therefore the 150 nucleotides adjacent to the
polyA or polyT stretch were analysed for the presence of the two classical polyadeny-
lation signals, nine possible alternative polyA signals (AATTAA, AATAAC, AATAAT,
AATACA, ACTAAA, AGTAAA, CATAAA, GATAAA, TATAAA) and six random hex-
amer sequences. The two classical polyA signals were found in 55.8 and 17.7% of
those clones respectively, and showed a clear preference for occurrence within the first
50 nucleotides from the polyA tail. Four possible alternative polyA signals (AATTAA,
AATAAT, CATAAA, AGTAAA) occur in these 50 nucleotides with a frequency ranging
from 5.7 to 8.4%. The other five possible polyA signals and the six random hexamers
showed no appreciable preference for occurring in the 3′-end of transcripts. Therefore,
the sequence orientation algorithms that were developed were configured to search for the
six most abundant polyA signals within 50 bp from the polyA site. The same frequency
and position patterns for the six polyA signals were found in cDNA clones ending with at
least 10 As or starting with at least 10 Ts. This indicates that the occurrence of stretches
of 10 or more As or Ts at the end and the beginning of a cDNA sequence, respectively,
is likely to represent a polyA tail.

The sequence types that are included in the CGAP SAGEmap tag-to-gene map provide
additional information to identify the 3′-end clones. This sequence type was combined
with the presence of one of the six polyA signals at either end of the clone sequence
(within 50 bp) and/or a polyA tail (>10 As at the end or >10 Ts at the beginning) to
select for reliable 3′-end clones. To minimize the risk of extracting erroneous tags (false
positives) from GenBank sequences, only ‘reliable 3′-end’ clones were used for electronic
tag extractions. When both strands of a cDNA encoded conflicting polyadenylation signals
and/or polyA/polyT stretches, clones were not used for tag extraction.

15.4.3 Identification of 10-base Pair Tag Sequencing Errors

Single pass high throughput sequencing of EST libraries is one of the more error prone
sequencing methods; therefore the chance of a sequence error is about 1% per base.
Consequently, tags that are electronically extracted from database sequences may include
sequencing errors. Therefore, the tags were checked for errors in the 10-bp sequence
resulting from sequencing errors in ESTs. If it is assumed that sequencing errors are
independent for each base and the error rate is 1%, then the probability of one error
being present is only 10 × 0.01 × 0.999 = 0.091. We designed algorithms that detected
any combination of matching tags with maximal two-base substitutions, insertions or
deletions because the chance that a tag will contain three errors is negligible (0.01%). To
check for sequencing errors all EST clones in a UniGene cluster were compared pair-wise
and checked for substitutions, insertions or deletions. If two tags were identical, except
for one or two mismatches, a potential sequencing error in the tag might be involved.
The tag corresponding to the largest number of clones was considered to be a correct
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tag. The tag with the potential sequencing error was removed when it was found in less
than five ESTs/cDNAs and was five times less frequent then the correct tag. This ensured
that variant tags resulting from frequent single nucleotide polymorphisms (SNPs) were
not discarded in the AMC tag-to-gene mapping.

15.4.4 Identification of CATG Sequencing Errors

Sequence errors (Figure 15.2) in the most 3′ CATG sequence of an EST will result in
skipping of the corresponding tag by the extraction algorithm and erroneous use of the
next CATG for tag extraction. Also, an EST sequence error may create a new CATG distal

Figure 15.2 Identification of (CATG) sequencing errors. This example shows 15 EST
clones (five 3′ cDNA clones, five 3′ cDNA clones of the alternatively spliced gene and
five 3′ cDNA clones of the alternatively polyadenylated gene). TAG2 (GATTTCCGAT)
is the correct tag for the first five clones. However, clone 4 is rejected because a CATG
is created due to a sequencing error (T → G). If this clone was not rejected then TAG1
(GGTGCAATGA) would mistakenly be associated to this transcript. Clone 5 is rejected
because TAG2 contains a sequencing error. Both sequencing errors are not considered to
be SNPs because they only occur once in these five clones. TAG5 (AATATGGATT) is
the correct tag for the alternatively spliced gene. Clone 9 is rejected because the CATG is
destroyed due to a sequencing error (T → A). If this clone was not rejected then TAG5
would be mistakenly associated to this clone. In the case of the alternatively polyadeny-
lated genes no clones are rejected because too few clones are available to make a decision.
Consequently, TAG4 (TTCGAATACT) is extracted from clones 11 and 12, TAG4 (CAAT-
GATCAT) from clone 13 (CATG was destroyed) and TAG6 (TTCAAATACT) from clones
14 and 15.
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to the true most 3′ CATG. This also results in extraction of a false tag for an EST. An
algorithm to remove these tags should preserve tags from alternatively spliced transcripts
of the same gene. Each gene can have a series of tags belonging to alternatively spliced
or alternatively polyadenylated transcripts. Furthermore, SNPs in the CATG sequence
can cause extraction of alternative tags that are correct and should be preserved. Our
algorithms were directed to the identification and removal of all tags that are caused by
CATG sequence errors. The remaining tags were accepted as reliable tags.

15.4.5 Identification of Sense and Antisense Tags

One of the major problems with the UniGene clustering algorithm is that it can place
overlapping genes encoded on opposite DNA strands in one UniGene cluster. In such
cases, tag extraction routines may extract the tags from both genes. Therefore, algorithms
to recognize oppositely oriented tags were designed. In such clusters, the orientation of
the most frequent tag was considered as ‘sense’. The antisense tags were marked and
preserved in the AMC tag-to-gene mapping.

15.4.6 Comparison of SAGE Libraries

The HTM does not include statistical routines to establish whether two expression levels
are significantly different. Therefore, once a candidate gene has been identified (based

TABLE 15.1 Public Resources (Software and Databases) Available for the (Statis-
tical) Analysis of SAGE Data

Resource Main Functionalities Website

SAGE300 (Zhang
et al., 1997)

Tag extraction, tag
identification, statistical
comparison

www.sagenet.org

CGAP SAGEmap
(Lal et al., 1999)

Tag identification, statistical,
xProfiler, Virtual
Northern

www.ncbi.nlm.nih.gov/SAGE/

USAGE (van
Kampen et al.,
2000)

Tag extraction, tag
identification, statistical
comparison, management
of SAGE libraries (pool,
merge, etc.)

www.cmbi.kun.nl/usage/

eSAGE (Margulies
and Innis, 2000)

Tag extraction, statistical
comparison, data
management

ehm@umich.edu

Detecting sequencing
errors (Colinge and
Feger, 2001)

Detection of sequencing
errors in SAGE libraries

georg.feger@serono.com

Audic and Claverie
(1997)

Statistical comparison igs-server.cnrs-mrs.fr/∼audic/
significance.html

SAGEstat (Kal et al.,
1999)

Statistical comparison j.m.ruijter@amc.uva.nl or
www.cmbi.kun.nl/usage/

POWER−SAGE
(Man et al., 2000)

Statistical comparison michael.man@pfizer.com
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on visual inspections of tag counts) one may calculate the statistical difference between
the tag counts. Several statistical methods are available (see also Table 15.1) and are
discussed in this section.

The aim of statistical comparison of two SAGE libraries is to reject the null hypothesis
that the observed tag counts in both libraries are equal. Testing of this hypothesis is
hampered by the fact that SAGE experiments are generally not repeated, and therefore,
each SAGE library is only one measurement: the necessary information on biological
variation and experimental precision is not available in the data. It is possible that all
differences between two libraries are just the result of random sampling from the same
population. Therefore, before starting a pair-wise comparison of specific tags in two
libraries, the null hypothesis that the differences between libraries result from random
sampling has to be rejected. In the context of SAGE research, only one reference to a test
for this purpose has been published (Michiels et al., 1999). This overall test is based on
a simulation of a large number of possible distributions of two libraries within the pooled
marginal totals of the observed SAGE libraries. By calculating the chi-squared statistic for
each simulated pair of libraries, a distribution of this statistic under the null hypothesis can
be constructed. From this simulated distribution and the chi-squared value of the observed
libraries, one can then determine the probability of obtaining the observed tag distributions
at random. Rejection of the null hypothesis that all differences between SAGE libraries
are just the result of random sampling then opens the way for pair-wise comparisons.

15.4.7 Statistical Tests for Differences Between SAGE Libraries

Several statistical tests have been published for the pair-wise comparison of SAGE
libraries. For all tests the null hypothesis states that there is no difference in tag numbers
between the two libraries that are compared. It should be kept in mind that in most com-
parisons between specific tags in SAGE libraries, there is no a-priori knowledge about
the direction of the effect. Therefore, all decision rules have to be formulated to result in
a two-sided test. The significance level (α) can be set to 0.001 to safeguard against the
rate of accumulation of false positives that may result from multiple testing (Bonferroni
correction; Altman, 1991).

The different methods that can be used to test the difference between two SAGE
libraries can be compared by considering the critical values. Critical values are defined
as the highest or lowest number of tags that, given an observed number of tags in one
library, needs to be found in the other library to result in a p-value below the significance
level when the pair-wise test is carried out. They can be determined by repeatedly testing
simulated tag numbers until the resulting p-value leads to rejection of the null hypothesis
at the required level of significance.

In the original SAGE paper (Velculescu et al., 1995), tag numbers in different libraries
are compared pair-wise with a test based on a Monte Carlo simulation of tag counts.
This approach is included in the SAGE software package SAGE300 (Zhang et al., 1997).
SAGE300 performs, in each pair-wise comparison, at least 100 with a maximum of
100,000 simulations to determine the chance of obtaining a difference in tag counts equal
to or greater than the observed difference. This results in a one-sided p-value that has to
be compared to α/2. Since the Monte Carlo-based test of SAGE300 does not give the
same p-value every time the same input is tested, each input is run six times and the
mean p-value is used for the determination of the upper critical values that are given
in Figure 15.3A. In this figure the critical values are given for two SAGE libraries of
equal size (diamonds) and for two SAGE libraries of different size (squares). The critical
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Figure 15.3 Comparison of the critical values of different tests for SAGE data. Critical
values are defined as the numbers of tags that need to be found in the second SAGE library
to be significantly different from the number of tags already found in the first SAGE
library. Upper critical values for a 0.001 level of significance are given for (A) SAGE300
(Zhang et al., 1997), and the tests of (B) Madden et al. (1997), (C) Audic and Claverie
(1997) and (D) the Z-test of Kal et al. (1999). The critical values plotted in each graph
are based on a first SAGE library with a total of 10,000 tags (reference values, plotted as
a dotted continuous line on the x-axis) and a second library with a total of 10,000 tags
(critical values plotted as triangles on the left y-axis) or a second library of 50,000 tags
(critical values plotted as squares on the right y-axis). In B, C and D a plot of the critical
values of SAGE300 (A) are added (thin lines) to facilitate comparison between tests. In
B only critical values for a second library of 10,000 tags are given because Madden’s test
can only be used for libraries of similar size.

values of SAGE300 are copied as continuous lines into Figure 15.3B, C and D to facilitate
comparison with other tests.

The test suggested by Madden et al. (1997) is based on only the number of observed
specific tags in each SAGE library and the test statistic is calculated as:

Z = n1 − n2√
n1 + √

n2
(1)

with n1 and n2 as the number of specific tags in the first and second library, respectively.
This test statistic is estimated to be normally distributed and can be compared to Zα/2. The
test of Madden requires about 25% larger differences than SAGE300 to reach statistical
significance and is, therefore, more conservative (Figure 15.3B). Only one set of critical
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values is given because this test can only be used for two libraries of similar size. However,
the simple mathematics of this test (Eq. 1) are a point in its favour.

Audic and Claverie (1997) derived a new equation for the probability of finding n2

or more tags in one library given the fact that n1 tags have already been observed in the
other library:

P(n2|n1) =
(

N2

N1

)n2 (n1 + n2)!

n1!n2!(1 + N2/N1)(n1+n2+1)
(2)

with N1 and N2 as the total number of tags in the first and second library, respectively.
A summation of this probability over all n from n2 to infinity gives a one-sided p-value
that can be compared to α/2. The upper critical values for a significance level of 0.001
for Audic and Claverie’s test are given in Figure 15.3C. For both the libraries of equal
and different size these critical values are all within 1.5% of those of SAGE300.

The Z-test focuses on the proportions of specific tags in each library and is based on
the normal approximation of the binomial distribution (Altman, 1991; Kal et al., 1999).
The test statistic Z is calculated as the difference in proportions divided by the standard
error of this difference:

Z = p1 − p2√
p0(1 − p0)(1/N1 + 1/N2)

(3)

with p1 = n1/N1 and p2 = n2/N2. The proportion p0, the expected proportion when the
null hypothesis is true, is calculated as p0 = (n1 + n2)/(N1 + N2). Z is approximately
normally distributed and can be compared to Zα/2. The critical values of the Z-test are
given in Figure 15.3D and are also all within 1.5% of those of SAGE300.

The chi-squared test can be used for comparing SAGE libraries (Michiels et al., 1999)
after reorganizing the data in a 2 × 2 contingency table. However, this test is statistically
equivalent to the Z-test on two proportions (Altman, 1991) and will give the same p-
values and have the same critical values. Another test using 2 × 2 contingency tables is
the Fischer exact test (Altman, 1991), which has also been applied to SAGE data (Man
et al., 2000). However, the sampling design required by this test does not apply to SAGE
(Claverie, 1999; Conover, 1980) and moreover, for the large number of tags involved
in SAGE, the chi-squared test is to be preferred. In the paper by Chen et al. (1998), a
procedure based on Bayesian statistics is described to calculate the probability that the
level of expression of a given mRNA is increased by at least x-fold between libraries.
Although this procedure can be used to statistically judge differences in tag numbers, its
approach is clearly different from the classical approach of hypothesis testing and results
of these test procedures cannot be directly compared.

In conclusion, this comparison shows that SAGE300, Audic and Claverie’s test (1997)
and the Z-test, will all give the same test results when applied for pair-wise comparison
of SAGE libraries whereas Madden’s test will behave considerably more conservatively.
In a Monte Carlo comparison of the chi-squared test, Fischer exact test and Audic and
Claverie’s test it was shown that the chi-squared test, which is equivalent to the Z-test,
had the best power and robustness (Man et al., 2000), especially at low expression levels.

15.4.8 Computational Resources for SAGE Analysis

Table 15.1 summarizes the public resources that are available for the analysis of SAGE
data. The SAGE300 program (Zhang et al., 1997) is probably the most commonly used
application for SAGE analysis. To identify SAGE tags the SAGE300 program compiles a
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tag-to-gene map from human (EST) sequences in GenBank. A drawback of this method
is that the orientation of the sequence is not checked before tag extraction and conse-
quently, incorrect tags can result. SAGE300 also includes a Monte Carlo-based method
for statistical comparison of SAGE libraries.

As part of CGAP the NCBI established the SAGEmap public database (Lal et al.,
1999), which includes SAGE libraries and a tag-to-gene mapping. SAGEmap also includes
a ‘reliable tag-to-gene map’, which accounts for sequencing errors in GenBank sequences.
These tag-to-gene maps can be downloaded and used in combination with applications
such as Microsoft Access. Alternatively, the tag-to-gene maps are accessible online from
the SAGEmap site but this only allows the analysis of one tag at a time. No full identi-
fication reports, i.e. for all tags in a SAGE tag list, can be generated as is possible with
SAGE300, which unfortunately does not support the use of these tag-to-gene maps.

The USAGE application (van Kampen et al., 2000) allows construction of tag-to-gene
maps from the EMBL database for any organism. The program allows the extraction of
tags from the sense and complement-reverse orientation of the sequence because the 3′-end
of the clone is not determined prior to tag extraction. However, USAGE also includes
both SAGEmap tag-to-gene maps and the AMC tag-to-gene map and allows the user
to produce full tag identification reports. USAGE includes the Z-test for the statistical
comparison of SAGE libraries (Kal et al., 1999).

The eSAGE software (Margulies and Innis, 2000) is similar to USAGE. It includes
the SAGEmap tag-to-gene mapping and performs statistical comparisons according to the
test proposed by Claverie (1999). The input concatemers can contain any characters from
the standard IUPAC code. In addition, eSAGE reads PHD files generated from phred-
analysed sequence trace files (Ewing and Green, 1998; Ewing et al., 1998) and uses the
phred quality values for each base as a more accurate method of excluding low quality
sequence data.

Colinge and Feger (2001) introduced a method to identify possible sequence errors in
tags in SAGE libraries. This method in combination with an accurate tag-to-gene map
can greatly enhance SAGE tag identification.

15.5 INTEGRATION OF BIOLOGICAL DATABASES
FOR THE CONSTRUCTION OF THE HTM

To enable the mapping of gene expression profiles to chromosomes in the HTM, several
public databases were integrated in a relational database. The HTM was constructed
by mapping gene expression levels (SAGE tag counts) to gene positions as defined
by the GeneMap99 database (Deloukas et al., 1998). GeneMap99 gives the chromo-
somal position of 45,049 human expressed sequence tags (ESTs) and genes belonging
to 24,106 UniGene clusters. The STS markers in GeneMap99 are assigned to a unique
radiation hybrid code (RH-code), which is linked to the accession code of the correspond-
ing clone in the rhdb xrefs human cross-reference file, which is part of the radiation
hybrid database (RHdb; Rodriguez-Tome and Lijnzaad, 1997). This accession code is
linked to the AMC tag-to-gene mapping to obtain the corresponding UniGene cluster
and thereby the corresponding SAGE tags. The tags from the tag-to-gene mapping are
linked to the expression levels in the selected SAGE libraries. If an accession code of
an STS marker was not present in the cross-reference file then the UniGene cluster was
retrieved instead of the accession code. The UniGene cluster was then used to retrieve
the corresponding SAGE tags in the tag-to-gene map and the expression levels in the
SAGE libraries.
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15.5.1 The HTM Relational Database

E. F. Codd at IBM introduced the relational database in 1970 (Codd, 1970), since then this
form of database has developed to fundamentally underpin most modern bioinformatics
databases. A relational database is a collection of data items organized as a set of formally-
described tables from which data can be accessed or reassembled in many different ways
without having to re-organize the database tables (Ullman, 1988). Each table contains one
or more data categories in columns. Each row contains a unique instance of data for the
categories defined by the columns. It is important to carefully design the database model
because a poorly designed database may be slow to query, hard to maintain and extend,
and may contain inconsistent and redundant information.

15.5.2 Relational Database Design

Relational databases are a key concept in bioinformatics and so it is useful to take the
HTM as an example of database design and construction. The integration of the aforemen-
tioned public databases and SAGE libraries into the HTM relational database is shown in
an entity–relationship (ER) diagram (Figure 15.4). The ER diagram describes the HTM
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Figure 15.4 Relational model of database used in the HTM. Each table in the database
(e.g. AMCtagmap) contains a number of attributes (e.g. Tag). The relationship between
the tables are specified as ‘zero-or-one to many’ or as ‘one to many’. For example, each
tag in a SAGE library is linked to zero or more electronic tags in the ‘AMCtagmap’
table. Subsequently, each of these tags is linked via the ‘RHdb xref human’ table to the
‘GeneMap99 gb 4’ table to establish the mapping.
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database tables and relationship between these tables. The relational database model was
implemented by using the Postgresql relational database management system (RDBMS)
(http://www.postgresql.org). A RDBMS tool allows the developer to:

1. Implement a database with tables, columns and indexes.

2. Define the so-called foreign keys, which specify relationships between rows of
various tables.

3. Update the indexes automatically.

4. Interpret an SQL query and combine information from various tables.

Once the tables are implemented it is possible to upload data to the database or extract data
from the database by using SQL (Structured Query Language). SQL is the standard user
and application program interface to a relational database and is used both for interactive
queries for information from a relational database and for gathering data for reports. The
reader should be aware that despite first impressions, SQL is a very easy language to learn;
2 days’ training can quickly enable a new user to perform complex database queries to
integrate diverse forms of data. For example, the next SQL query returns all expression
levels of genes mapped on chromosome 1 (compare the statements in this query with the
ER diagram in Figure 15.4 to get an idea of what this query is doing):

SELECT gm.Chromosome, gm.cR, amc.Unigene, SUM(sage.Count)
FROM GeneMap99 gb4 AS gm JOIN RHdb xrefs human AS rh
ON (gm.RHid = rh.RHid) JOIN AMCtagmap AS amc
ON (rh.Databaseid = amc.Unigene) JOIN SAGE tissue library1

AS sage
ON (amc.Tag = sage.Tag)
WHERE gm.chromosome = ‘chr1’
AND rh.DatabaseName = ‘UniGene’
GROUP BY gm.Chromosome, gm.cR, amc.Unigene
ORDER BY gm.cR

The relational database forms the core of HTM in which all required data to map expres-
sion profiles to chromosomal positions are stored. The SQL queries are part of the
user-interface that is built on top of the relational database and which is introduced in the
next section.

15.6 THE HUMAN TRANSCRIPTOME MAP

The Human Transcriptome Map (HTM; bioinfo.amc.uva.nl) is a database application that
presents gene expression profiles for any chromosomal region in normal and pathological
tissues (Caron et al., 2001). The application can be used to search for genes that are
over-expressed or silenced in cancer. The HTM provides three different ways to present
gene expression profiles obtained with SAGE. The ‘extended view’ provides the most
detailed level of information (Figure 15.5). In this view the expression profiles given
for all SAGE tags that could be linked to the radiation hybrid map (RH-map) are shown.
Different tags may correspond to a single gene as they may occur as a result of differential
splicing or polyadenylation of the gene. In the ‘concise view’, no individual tags are
included but information is presented at the gene (UniGene) level and consequently the
tag counts for all tags belonging to the same genes are pooled, i.e. no distinction is

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



THE HUMAN TRANSCRIPTOME MAP 337

Figure 15.5 Extended view of a chromosome 2p region showing neuroblastoma-specific
over-expression of the neighbouring genes N-myc (UniGene Hs.25960) and DDX-1 (Uni-
Gene Hs.78580). A small part of the interval D2S287 to D2S2375 is shown. The left-hand
columns show the marker and centiRay position as defined on GeneMap99. The right-hand
side shows the UniGene number, tag sequence and the description of the UniGene clus-
ter. Expression levels in the libraries are normalized per 100,000 tags and shown by grey
bars with a range from 0 to 15. Numbers give the counts per 100,000 tags. The tags
are annotated by symbols (explained in the text). (Reprinted with permission from Caron
et al. (2001). Copyright 2001 American Association for the Advancement of Science).

made between different gene variants. In both the concise and extended view, only a
selected region between two framework markers of a chromosome is shown. In the ‘whole
chromosome view’ the expression levels of all genes on a particular chromosome are
displayed (Figure 15.6). Also in the whole chromosome view the tag counts for all tags
belonging to the same gene are pooled to obtain an overall expression level. In this
presentation each unit on the vertical axis represents one gene, i.e. the scale does not
denote a genetic or physical distance. The RH-map contains errors (see Chapter 7) and,
therefore, some genes map two or more times at slightly different positions. Genes that
correspond to multiple markers on the RH-map are shown only on the HTM at the
position of the highest LOD score. Only genes for which a tag was included in the AMC
tag-to-gene map are displayed.

15.6.1 Annotation of the HTM

In the extended and concise view of the HTM, several annotation symbols are used.

15.6.1.1 Unreliable Tags

Two types of tags were considered unreliable for use in the HTM. They are marked as
‘L’, ‘2/3’ or ‘>3’ in a yellow box:

1. Linker tags. The SAGE technique may produce tags derived from linker oligo’s
used in library construction (V. E. Velculescu et al., personal communication).
These 73 linker tags are marked ‘L’ in a yellow box on the extended interval
view, but their expression levels in the SAGE libraries are not shown.
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2. Redundant tags. Some tags are found for more than three UniGene clusters. This
may be explained by coincidental limited sequence homologies between genes.
Other redundant tags are derived from genes with a CATG close to the polyA tail.
This generates tags with a strongly reduced sequence variability, as most of the tag
consists of an A stretch. They are marked ‘>3’ in a yellow box in the extended
interval view and their expression levels in the SAGE libraries are not shown. Tags
belonging to two or three UniGene clusters are marked in a yellow box with ‘2/3’
respectively, and their expression levels in the libraries are shown.

15.6.1.2 Antisense Tags

In the extended interval view, tags with an antisense orientation are marked as ‘AS’ in a
purple box. In the concise interval view, the cumulative expression levels for ‘sense’ and
‘antisense’ tags are shown as separate bars for each UniGene cluster. Antisense expression
levels are not included in the whole chromosome views.

15.6.2 UniGene Clustering Errors

Hybrid UniGene clusters cause many problems, as they include ESTs from different
genes. These genes, which usually have different map positions, each yield their own
correct reliable tags. To identify the hybrid clusters the GenBank database (Genomes
Homo sapiens section) was searched for the corresponding PAC sequenced in the Human
Genome Project, as well as two adjacent PACs, for the markers mapped on GeneMap99.
Tags from the gene corresponding to the marker are expected to be present on these PACs,
whereas tags from a ‘contaminating’ gene in a hybrid cluster are not. The PACs were
analysed for the presence of the 10-bp tag sequence plus adjacent CATG. When positive,
the tag was marked on the extended interval view with a ‘P’ in a light green box. A
one-nucleotide mismatch between tag and PAC sequence was accepted to cover SNPs or
PAC sequencing errors (marked ‘P’ in a dark green box). When a PAC for a marker was
known, but when the tag was not found in the sequence, the tag was marked ‘P’ in a red
box. For all situations the expression level of the tag is shown in all views. This check
is not yet available for all markers, but the progress in sequencing and annotation will
provide this function for all UniGene clusters.

15.7 REGIONS OF INCREASED GENE EXPRESSION (RIDGES)

The Human Transcriptome Map provides an intriguing insight into the higher-order organ-
ization and regulation of expression in the human genome. From the whole chromosome
views it is clear that there is a strong clustering of highly expressed genes in specific

Figure 15.6 Whole chromosome view of expression levels of the 1208 UniGene clusters
mapped to chromosome 11 on the GB4 radiation hybrid map of GeneMap99. Each unit on
the vertical axis represents one UniGene cluster. Expression is shown for SAGE libraries
of 7 out of the 12 available tissue types. Expression levels in the libraries are normalized
per 100.000 tags and tag counts from 0 to 15 are shown by horizontal blue bars while tag
frequencies over 15 are shown as red bars (colors not shown in this figure). The section
to the right represents a moving median with a window size of 39 UniGene clusters
generated from the expression levels in ‘all tissues’. The bars above the moving median
indicate RIDGEs. (Reprinted with permission from Caron et al. (2001). Copyright 2001
American Association for the Advancement of Science).
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Figure 15.7 Comparison of median gene expression levels and gene density for chro-
mosome 3. The lower diagram shows the expression levels as a moving median with
a window size of 39 UniGene clusters. The upper diagram shows gene density. For
each UniGene cluster, the average distance between adjacent clusters in a window of 39
adjacent UniGene clusters was calculated. The inverse of this value is shown (inverse
centiRays per gene). (Reprinted with permission from Caron et al. (2001). Copyright 2001
American Association for the Advancement of Science).

domains, which were named Regions of Increased Gene Expression (RIDGEs) (Caron
et al., 2001). This is clearly demonstrated in Figure 15.6, which shows the whole chro-
mosome view of expression levels of 1208 genes mapped to the RH-map of chromosome
11. Expression is shown for SAGE libraries of seven tissue types. To emphasize the
RIDGEs more clearly, a moving median with a window size of 39 genes was calculated
for ‘all tissues’, which pools all available SAGE libraries. From the resulting median
values, RIDGEs were defined as regions in which at least 10 consecutive genes have
a median expression level of at least four times the genomic median. Green bars in
the resulting graph indicate the resulting RIDGEs. These RIDGEs were observed on
most chromosomes. With the current definition, 27 RIDGEs could be identified (Caron
et al., 2001).

Analysis of RIDGEs for physical characteristics suggests that many of them have a
high gene density. Figure 15.7 shows the correlation between RIDGEs and gene density
(expressed as cR−1/gene) for chromosome 3. This correlation between gene expression
and density of mapped genes is found for most RIDGEs. Typical RIDGEs contain six to
30 mapped genes per centiRay, compared to one to two mapped genes per centiRay for
weakly transcribed regions.

15.7.1 Statistical Evaluation of RIDGEs
To analyse whether the observed RIDGEs could be explained by the random variation
in the distribution of expression levels of the 18,422 UniGene clusters in the HTM, a
Monte Carlo simulation was performed. We permutated the genomic order of all 18,422
UniGene clusters in the Human Transcriptome Map and analysed 10,000 permutated
datasets for the incidence of RIDGEs. The number of RIDGEs according to our definition
was determined for each of the permutations. The observed number of RIDGEs in the
Human Transcriptome Map (27) was about 38 standard deviations (0.7) higher than the
average number of RIDGEs (0.4) observed in the permutations. The observed number of
RIDGEs is therefore unlikely to result from random variation in the distribution of highly
expressed genes over the genome.

15.8 DISCUSSION

This chapter has reviewed one possible approach to the analysis of gene expression data in
which (statistical) data analysis, database technology, informatics and molecular biology
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play an important role. The HTM was designed to assist in the identification of genes that
are involved in cancer; however it has a wider applicability to the study of any disease. In
Chapter 9, approaches for the expression-based prioritization of positional gene candidates
in disease loci were reviewed. The HTM could be a valuable tool for prioritizing such
candidates. As the number of publicly available SAGE libraries increases their value will
also increase (as every SAGE experiment can be directly compared).

Perhaps the most interesting aspect of the SAGE-based, Human Transcriptome Map
is that it is somewhat different from other approaches and therefore it is complementary
to microarray data. Integration of (public) databases using HTM, uncovered a previ-
ously unknown genomic phenomenon — regions of increased gene expression (RIDGEs).
RIDGEs may provide more fundamental insight into the higher-order organization of
the human genome. The biology of RIDGEs is not yet understood but they may play
an important role in gene transcription and therefore, may be relevant to the study of
carcinogenesis or any other disease which involves disregulation of gene expression.

RIDGEs would not have been revealed if DNA microarray data had been used. Since
the overall expression profile for all chromosomes is similar in all tissues, the measurement
of the expression of one tissue relative to a control tissue would reveal only genes that are
differentially expressed between these tissues. Furthermore, as explained in Section 15.2,
the expression levels of genes on one DNA microarray cannot be compared and therefore,
these domains would not have this clear structure. However, DNA microarray data can
be used to further understand the nature of RIDGEs. It can be envisioned that specific
tumour samples have disturbed expression of entire transcriptional domains due to translo-
cations. DNA microarrays are very suitable for measuring gene expression profiles for
large numbers of (tumour) samples; integration of this data with the HTM would directly
reveal whether gene expression in specific domains is turned on or off. Such experiments
may further increase our knowledge about the organization of the genome with respect
to gene expression.

The current HTM is not the end of gene expression analysis but can be regarded as the
starting point of much more research that aims at understanding the biology of RIDGEs.
This research includes the construction of a sequence-based HTM that is much more
precise than the current map that is based on radiation hybrid data. Such a sequence-based
map would allow a more precise definition of RIDGEs. Furthermore, this will allow the
investigation of the correlation between RIDGEs and other domains such as gene density.
To understand why many genes in RIDGEs are highly expressed in comparison to other
regions one could search for regulatory sequences that are common for genes in such
domains. Moreover, and maybe more interesting, is the hunt for regulatory sequences that
turn complete domains of genes on and off. To enhance the search for regulatory sequences
a comparison between the Human Transcriptome Map and a Mouse Transcriptome Map
would be very valuable since conserved sequences can be identified (see Chapter 12 for
an overview of some of the tools which may be suitable for such an analysis). For all
this research much more bioinformatics and laboratory work is required. However, this
will ultimately lead to a further understanding of the molecular biology of cancer and
human disease.
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16.1 INTRODUCTION

16.1.1 A Definition of Proteomics

As genomics is the study of the set of genes in genomes, proteomics deals with the
analysis of the ‘proteome’, that is the product of translation of the transcriptome.

The completion of the sequencing of bacterial and higher eukaryotic organisms marks
the beginning of the post-genomic era. As more and more raw data become available, new
challenges arise, namely handling these data and making sense out of them. Proteomics
is a way of giving relevant meaning to these data by redefining them in a higher-level,
function-oriented context, closer to what we may broadly call ‘biological function’.

16.1.2 Challenge Compared to Genomics: Identification of ‘Function’

The term ‘proteomics’ yields a new conception of the functional assignment issue in
biology. ‘Prote-’ indicates that function is sustained by proteins, not by genes, and ‘-omics’
proposes that function is defined ‘in context’. The function of a protein is not solely an
individual property of the protein but is defined as a combination of its biochemical
interactions with its partners and the environment in which it exists. Information on the
scale of the whole cell is therefore needed to comprehensively understand the function
of proteins.

Protein sequence information is often an endpoint for the geneticist, for example, an
amino acid substitution may be defined by a SNP. But as a matter of fact, this is just
one element of many that can tell us about the properties of a protein. Other meaning-
ful information can tell us a great deal more about the nature of proteins, such as 3D
structure, post-translational modifications, half-life, phenotypic role, enzymatic activity or
quantity (abundance). These properties have also been proven to be tissue- and subcellular
localization-specific. Beyond the properties of the protein itself, protein interactions are a
rather novel data form that have been shown to be amenable to high-throughput analysis
(which will be discussed shortly). These methods are powerful tools to define proteins
and pathways in context on the cellular scale. Ultimately this is the objective of genetics
and hence proteomics is a critical step in the progression from candidate gene to validated
disease gene.

With the completion of many genome sequences, including human, the aforemen-
tioned issue of finding a relevant context to study biological data in is even more acutely
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felt. Many of the recent advances in proteomics have been made during the analysis of
prokaryotic organisms. In this field more than any other, prokaryotes may point the way
forward for analysis methods in higher eukaryotes, such as man, for these methods rely
heavily on fully optimized and complete datasets, an ideal that we still struggle to achieve
in studies of human material. We can safely assume that sequence data is not a sufficient
and rich enough source of information to reach higher levels of understanding or meaning-
ful definition of protein function. Indeed, a raw DNA sequence may be altered by several
phenomena, making any assumption on function difficult. To name a few: alternative splic-
ing may lead a single gene (or pre-mRNA) to produce many gene products (or mature
mRNA) in eukaryotes. Further down the protein synthesis pathway, post-translational
modifications may result in proteic cleavages, glycosylation, etc. The regulation of pro-
teins is by itself an issue: post-transcriptional regulation of protein expression (changes
in protein synthesis and degradation rates) induces no obvious correlation between pro-
tein and mRNA expression levels in humans (Anderson and Seilhamer, 1997) or in yeast
(Gygi et al., 1999); time and space regulations may sometimes be partially uncovered by
sequence analysis (proteic translocation between subcellular compartments may be linked
to the presence of peptide signals which are cleaved when the protein reaches a mature
state) but the subcellular localization per se, turnover, dynamic behaviour or lifetime of
a protein cannot be directly linked to sequence analysis alone.

16.2 PROTEOMIC INFORMATICS

From the term ‘Proteomic Informatics’, we have already given an overview of what
‘proteomics’ may be. As for ‘Informatics’, Luscombe (2001) defines Bioinformatics as
‘conceptualizing biology in terms of molecules (in the sense of physical-chemistry) and
then applying informatics techniques (derived from disciplines such as applied mathemat-
ics, computer science and statistics) to understand and organize the information associated
with these molecules, on a large-scale’. As high-throughput methods for biological data
generation have been developed, we need powerful automated tools for analysing and
understanding them. This is the goal of proteomic informatics. Data may be seen as
a dense, fuzzy cloud of points in a complex, multidimensional space. It is the role of
Bioinformatics to find a relevant subspace and project our data in a meaningful and
understandable way that will enable us to reap the rewards of our data while not losing
valuable information. At first glance, Proteomic Informatics may be seen only as a tool
for data handling and visualization but its purpose is actually two-fold. On one hand, data
may be displayed in a comprehensive way through the efficient use of bioinformatics tools
and stored in rich databases that keep track of experimental settings. On the other hand,
algorithms may be developed and improved to extract new information. As would befit
bioinformatics tools aimed at proteomics applications, they should be able to process high
quantities of data and conceptualize them as integral parts of a cellular context; hence the
need to develop algorithms allowing reconstruction or inference of cellular pathways and
protein–protein interaction maps.

16.3 EXPERIMENTAL WORKFLOW: CLASSICAL PROTEOMICS

The most frequently used high-throughput technology designed to study the proteome is
aimed at identifying and quantifying the expression levels of proteins localized in spe-
cific protein complexes. This method is sometimes referred to as ‘Classical Proteomics’,
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compared to ‘Functional Proteomics’ which concerns itself with the identification of inter-
actions and cell processes. A typical approach consists in the separation of the various
proteins of a cellular extract by gel electrophoresis followed by mass spectrometric anal-
ysis: comparison of the resulting experimental data with that available from sequence
databases provides unique assignments for protein gel spots to their corresponding DNA
sequences. Recent optimizations of the various steps provide one of the most powerful
approaches in proteomics. The following section details the experimental workflow.

16.3.1 Proteome Purification
Sample preparation is the first and a crucial step in classical proteomics. The purer the
sample, the more accurate the expression quantification and protein identification will be.
Proteins can be extracted from whole cells (bacteria, yeasts. . .), tissues, or subcellular
compartments (organelles). Purification methods include mainly centrifugation in density
gradients, exclusion chromatography, affinity chromatography using for example peptide
tags, antibodies (immuno-precipitation) or substrates (for reviews see Legrain et al. (2000)
or Lee (2001)). A tandem affinity purification (TAP) involving a combination of two high-
affinity tags linked to the protein of interest was also suggested as a general method for
protein complex purification in mild conditions after expression in natural conditions
(Rigaut et al., 1999) and was recently comprehensively applied to the yeast proteome
(Gavin et al., 2002).

16.3.2 Proteome Separation: Electrophoresis
In the next step, the protein expression profile of the sample is typically deduced by 2D
gel SDS-polyacrylamide gel electrophoresis (SDS-PAGE), a high-resolution technique for
decomposing protein complexes of tenths of polypeptides (see Lee (2001) for review). Pro-
teins are separated according to both isoelectric point (pI ) and molecular weight (Mw), by
a combination of isoelectric focusing and electrophoresis respectively. Spots are detected
using colour stains, fluorescent dyes or radioactive labels (Figure 16.1).

Proteins can also be separated by classical 1D-PAGE but this requires reduction of the
number of proteins in the cell extract, for instance by immuno-affinity purification (Ho
et al., 2002) or TAP (Gavin et al., 2002).

pI

Mw

Figure 16.1 An example of 2D-PAGE. Proteins are identified by black spots after sep-
aration by electrical focusing (pI ) and electrophoresis (Mw).
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As SDS-PAGE becomes the most commonly used bidimensional protein separation
method in proteomics, the technique is becoming standardized among different labora-
tories and databases of 2D gel images highlighting protein spots with appropriate links
have been created for various proteomes (see Table 16.1).

16.3.3 Proteome Identification: Mass Spectrometry

Third, the separated protein spots on 2D gels are excised and digested in-gel with a
protease (usually trypsin). The eluted peptides are then analysed by Mass Spectrometry
(MS). Reaching a high level of sensitivity, automation and throughput for protein analysis,
mass spectrometry has become one of the key technologies in the proteomics field.

Analysing femtomoles of protein materials is now routinely carried out using MALDI
(Matrix-Assisted Laser Desorption/Ionization)/TOF (Time-Of-Flight)-based peptide mass
fingerprinting, which provides a list of masses for the peptides contained in the digested
2D spot. Matching these against the list of calculated peptide masses from an appropri-
ate protein sequence database characterizes the isolated protein (see for example, Houry
et al., 1999).When the mass fingerprint is not found in databases, Tandem Mass Spec-
trometry (or MS/MS) can be used to sequence the polypeptides, thus providing sequence
tags that could allow protein identification by sequence similarity screening of classical
bioinformatics databases (for example EMBL by using BLAST (Altschul et al., 1997)).
The combination of peptide mass fingerprinting followed by sequence tagging is a suite

TABLE 16.1 Main Online 2D-PAGE Proteomics Resources

Database URL

Aarhus 2DPAGE database biobase.dk/cgi-bin/celis
Aberdeen 2DPAGE www.abdn.ac.uk/∼mmb023/2dhome.htm
Argone protein mapping group www.anl.gov/BIO/PMG/
Cyano2Dbase www.kazusa.or.jp/cyano/cyano2D/
ES cell-2DPAGE www.dur.ac.uk/∼dbl0nh1/2DPAGE/
Harefield HSC 2DPAGE www.harefield.nthames.nhs.uk/nhli/protein/
Maize Genome database moulon.moulon.inra.fr
Maritime pine 2DPAGE www.pierroton.inra.fr/genetics/2D/
Max-Planck Institut 2DPAGE www.mpiib-berlin.mpg.de/2D-PAGE/
MDC Heart-2DPAGE www.mdc-berlin.de/∼emu/heart/
Parasite Host Cell Interaction

2DPAGE
www.gram.au.dk

Plant Plasma Membrane Database sphinx.rug.ac.be:8080/ppmdb/index.html
SWISS-2DPAGE www.expasy.ch/ch2d
SIENA-2DPAGE www.bio-mol.unisi.it/2d/2d.html
SSI-2DPAGE www.ssi.dk/en/forskning/tbimmun/tbhjemme.htm
TMIG 2DPAGE proteome.tmig.or.jp/2D/
Université Paris 13 2DPAGE www-smbh.univ-paris13.fr/lbtp/Biochemistry/

biochimie/bque.htm
2DWGDB (WebGel) www-lmmb.ncifcrf.gov/2dwgDB
WU Inner Ear database oto.wustl.edu/thc/innerear2d.htm
Yeast 2DPAGE yeast-2dpage.gmm.gu.se/
Yeast Protein Map (YPM) www.ibgc.u-bordeaux2.fr/YPM/
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of powerful techniques used to analyse and identify proteins (Quadroni and James, 1999;
Yates, 1998).

One step further, MS coupled with High Performance Liquid Chromatography (HPLC)
techniques and/or combined with biochemical techniques (immunoprecipitation) can pro-
vide shotgun identification of proteins in complex biological mixtures in order to study
protein–protein interaction, to locate and identify single protein or protein complexes
from a subcellular fraction. For instance, using a combination of HPLC and ESI (Electro-
spray Ionization)-MS, it has been shown that a large transmembrane protein (the lactose
permease) could be analysed and studied quickly and with high accuracy (Whitelegge
et al., 1999). High-throughput methods have also been designed to identify various post-
translational modifications of proteins by mass spectrometry (Wilkins et al., 1999).

16.3.4 Building Protein Expression ‘Networks’

Proteome-wide characterization allows the production of global maps of differentially
expressed proteins. By comparing several sets of expression patterns under different con-
ditions (for instance, wild-type versus mutant or normal versus diseased) or at different
time stages, one can deduce clusters of co-regulated proteins that could be interpreted as
a protein expression ‘network’. Such differential protein expression networks have been
applied for instance to the elucidation of cell pathways, the characterization of cell types
or the identification of pathogenic agents (for review see Legrain et al., 2000). They
are complementary to gene regulation networks produced by transcriptomics techniques
(see Chapter 15).

Mass spectrometry also allows the identification of protein complexes, which could be
conceptualized as clusters of the expression network. The technique was recently applied
to detect yeast complexes on a proteome-wide scale (Gavin et al., 2002; Ho et al., 2002).

16.3.5 Analysing Protein Expression Data

Approaches to 2D gel image analysis may range from very basic to fairly complex.
Several commercial 2D gel image analysis software packages are available that allow
display, analysis and comparison of gel images, as well as determination, quantification
and normalization of spots (Table 16.2). One can also use Flicker (Lemkin and Thornwall,
1999), a free web tool for comparing images from different internet sources. Given two gel
images URL, Flicker loads the images and displays them in the web browser. They can be
enhanced in various ways (spatial warping, pseudo 3-dimensional image sharpening. . .),
while regions of interest can be ‘landmarked’ with several corresponding points in each
gel image. One gel image is then warped to the geometry of the other and the two resulting
images are compared visually in a third window (the ‘flicker’ window): as the two gels are
rapidly alternated (‘flickered’), the user can slide one gel past the other to visually align

TABLE 16.2 Some Gel Analysis Software

Software Company Reference

Melanie Geneva Bioinformatics www.expasy.ch/melanie
PDQuest Bio-Rad www.proteomeworks.bio-rad.com
Phoretix Phoretix advanced www.phoretix.com
Flicker www.hi-beam.net
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corresponding spots by matching local morphology. With such image analysis tools, an
expert can locally visualize an expression network and formulate biological hypotheses.
The next step is the automated numerization and database storage of protein expression
patterns to allow high-throughput screening.

16.4 PROTEIN INTERACTION NETWORKS

If protein expression networks give information about co-regulation of proteins and their
response to specific conditions, they are not completely informative about the biochem-
ical function of gene products. Determining which other cell components interact with
proteins addresses this issue. The function of a protein can be defined by the role it takes
in cell pathways and the interactions in which it participates with other cell components
(DNA, RNA, proteins, metabolites or lipids for instance). We distinguish here the interac-
tion networks dealing only with proteins and produced by high-throughput experimental
protocols from those containing heterogeneous factors (referred to as ‘cell pathways’).
The set of technologies used to produce interaction data on a large scale is referred to as
‘Functional Proteomics’.

16.4.1 Experimental Technologies

Low-throughput technologies (co-immunoprecipitations, far-Western blots, ‘pull-downs’,
etc, see Phizicky and Fields (1995) for review) are commonly used for studies on indi-
vidual proteins. The study of interactions at the proteome level, however, requires high-
throughput assays.

16.4.2 Yeast Two-Hybrid (Y2H)

The yeast two-hybrid system (Fields and Song, 1989) can detect interactions between
two known proteins or polypeptides and can also search for unknown partners (prey) of
a given protein (bait) (for review, see Vidal and Legrain, 1999). Yeast two-hybrid assay
remains the main large-scale technology that is available to build protein interaction maps.
Two strategies — namely the matrix approach and the fragment (or polypeptide) library
screening approach — have been tested to find the most efficient way to explore proteomes
for interactions (the interactome).

The matrix approach uses a collection of predefined open reading frames (ORFs),
usually full-length proteins, as both bait and prey for interaction assays. Combinations
of bait and prey can be assessed individually or after pooling cells expressing different
bait or prey proteins. The intrinsic limitation of this strategy is that it tests only known
proteins that are predefined. Y2H was first used to explore interactions among drosophila
proteins involved in the control of cell cycle (Finley and Brent, 1994). Several studies
have now been published for the yeast proteome, either comprehensive (Ito et al., 2000,
2001, Uetz et al., 2000) or using only a subset of specific baits (Newman et al., 2000).

The alternative Y2H assay strategy uses exhaustive libraries to screen for the iden-
tification of new protein interacting partners. Applying this library screening approach
to functionally related proteins results in connection of uncharacterized proteins to spe-
cific pathways. It can be also applied to whole cellular interactomes. Screening numerous
randomly generated fragments contained in the libraries also permits the determination
of interacting domains defined experimentally as the common sequence shared by the
selected overlapping prey fragments (Rain et al., 2001). This approach was first applied



352 PROTEOMIC INFORMATICS

to determine protein networks for the T7 phage proteome which contains 55 proteins (Bar-
tel et al., 1996) and later applied to the yeast proteome focused on the RNA metabolism
(Fromont-Racine et al., 1997) and to the human gastric pathogen Helicobacter pylori
(Rain et al., 2001).

The two two-hybrid strategies are depicted in Figure 16.2. The pros and cons of each
technology are discussed in a review (Legrain et al., 2001). Table 16.3 draws an inventory
of major two-hybrid large-scale assays performed so far.

Preys
×

baits

B2
B1

B3

B4
B5

P1 P2  P3  P4  P5

Promoter Reporter genes

BaitBait
BD

PreyPrey
AD

B2
B1

B3
B4
B5

Preys
×

baits P1 P2  P3  P4  P5

×

Prey fragment
library

Baits

B1
B2
B3
...

Domain network

Figure 16.2 The yeast two-hybrid strategies. The central box schematizes the principle
of the yeast two-hybrid assay: a protein domain that binds specifically to DNA sequences
(BD) is fused to a polypeptide dubbed the ‘bait’ and a domain that recruits the transcription
machinery (AD) is fused to a polypeptide dubbed the ‘prey’. The basis of the assay is
that transcription of a reporter gene will occur only if the bait and the prey polypeptides
interact together. The matrix approach (first column) uses the same collection of proteins
used as bait (B1–B5) and prey (P1–P5). The results can be drawn in a matrix where bait
autoactivators (B4 for example) and ‘sticky’ prey proteins (P1 for example interacts with
many proteins) are identified and discarded. The final result can be summarized as a list
of interactions that can be heterodimers (B2–P3) or homodimers (B5–P5). The library
screening approach identifies for each interacting prey protein the domain of interaction
with a given bait. Sticky prey proteins are identified as fragments of proteins that are often
selected regardless of the bait protein. An autoactivator bait can be used in the screening
process with more stringent selective conditions.
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TABLE 16.3 Key Figures in Large Scale Datasets for Protein–Protein Interaction
Maps

Organism Technology
Number of assays

baits × preys
No. of

interactions Reference

Vaccinia virus Protein array Proteome × proteome 37 McCraith et al.
(2000)

S. cerevisiae Protein array 192 × proteome 281 Uetz et al.
(2000)

Pools of preys Proteome × proteome 692
S. cerevisiae Pools of baits

and preys
430 assays of pools 175 Ito et al. (2000)

(96 × 96)
S. cerevisiae Pools of baits

and preys
3844 assays of pools 841∗ Ito et al. (2001)

(96 × 96)
S. cerevisiae Protein array 162 × 162 213 Newman et al.

(2000)
C. elegans Protein array 29 × 29 8 Walhout et al.

(2000)
Library

screening
27 × proteome 124

HCV Protein array 10 × proteome 0 Flajolet et al.
(2000)

Library
screening

22 fragments ×
proteome

5

S. cerevisiae Library
screening

15 × proteome 170 Fromont-
Racine et al.
(1997)

S. cerevisiae Library
screening

11 × proteome 113 Fromont-
Racine et al.
(2000)

H. pylori Library
screening

261 × proteome 1524 Rain et al.
(2001)

∗ This number corresponds to highly significant interactions (more than three hits, see Ito et al., 2001).

16.4.3 Other Technologies

Phage display technology is another assay used to screen a library of polypeptides for
interaction with a target protein. Each polypeptide is expressed on the surface of a bac-
teriophage particle, as a fusion with a phage coat protein. This provides a physical link
between the expressed polypeptide and its encoding gene. The phage-displayed polypep-
tide can be selected by binding to a target using affinity chromatography and further
characterized by amplification and sequencing of the corresponding gene located within
the phage particle. No protein–protein interaction map using phage display has been
published so far either for an organism or an entire cell but the technology has a high-
throughput potential (see for example Walter et al., 2001). The technology is particularly
suited for screening libraries of random polypeptide variants, such as antibody fragments
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and can be combined to the complementary yeast two-hybrid technology in order to obtain
more relevant results (Tong et al., 2001).

Protein microarrays are also emerging in order to study protein–protein interactions.
Known proteins are precisely spotted on glass substrates and used to probe interactions
with peptides (Lueking et al., 1999) or proteins (Haab et al., 2001). A similar method
was also tested to screen for small molecules (MacBeath and Schreiber, 2000).

16.5 BUILDING PROTEIN INTERACTION NETWORKS

16.5.1 From Experimental Results to Graphs

When the two protein partners are identified, a graph can be built where the vertices are the
proteins (bait or prey) and the edges are the protein interactions. This step is trivial when
the two partners are known beforehand, for example in the two-hybrid matrix approach,
but requires post-processing when a partner is screened against a library and has selected a
target/prey. In the latter case, the prey gene must be sequenced and identified in sequence
databases using tools such as BLAST (Altschul et al., 1997). When several experimental
protocols are combined, for instance phage display and yeast two-hybrid (Tong et al.,
2001), one can decide whether to consider the totality of the interactions or only those
common to both techniques, depending on the desired trade-off between false negatives
and false positives (see below).

Moreover, in the two-hybrid strategy using fragment libraries, the functionally inter-
acting domains can be precisely mapped on proteins: the common sequence shared by
the selected overlapping prey fragments experimentally defines the smallest docking site
selected by the bait (Rain et al., 2001). The interaction network can then also be repre-
sented as a graph where the vertices are protein domains instead of full-length proteins.

16.6 FALSE NEGATIVES AND FALSE POSITIVES

One major drawback of the high-throughput experimental technologies described above
is the generation of potential false negatives and false positives, depending on the assay
conditions.

False-negative interactions are biological interactions that are missed because of incor-
rect folding, inadequate subcellular localization, lack of specific post-translational mod-
ifications etc. In yeast two-hybrid assays, the matrix approach is prone to generate a
high level of false negatives (see Table 16.3), because only two assays are performed for
each pair of proteins (bait versus prey, and reciprocally), whereas the fragment library
approach allows testing of millions of potential interactions simultaneously. For instance,
the two exhaustive studies of the yeast proteome (Ito et al., 2001; Uetz et al., 2000) have
failed to recapitulate as much as 90% of interactions previously described in the literature
(Ito et al., 2001). The intrinsic limitations of the matrix approach concerning the choice
of selective conditions can also explain this high rate of false negatives (for review see
Legrain et al., 2001).

Conversely, searching for many potential interactions, especially when screening a
random fragment library, increases the chance of selecting biologically non-significant
interacting polypeptides, thus leading to false positives. First, some bait proteins might
have a predisposition to activate the transcription of reporter genes without specific inter-
action with any prey protein. These auto-activator bait proteins may randomly select
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(a)

(b)

(c)

Figure 16.3 The PIMRider: an integrated exploration platform for protein interaction
networks. The main window (a) displays the cell-wide protein interaction map as a graph
and allows the biologist to navigate through the network, filter information depending on
its reliability (PBS) and focus on a particular pathway. Clicking on a specific interaction
gives access to primary two-hybrid data (b) where interacting fragments and the computed
Selected Interacting Domain (SID) are positioned relative to the coding sequence of the
two proteins. The biologist can make up his/her own mind about the interaction signifi-
cance. All the interacting domains of one protein with its partners to formulate biological
hypotheses, for instance about dominant negative interactors (c), can also be displayed.

prey proteins in addition to specific ones. Second, some chimeric prey proteins, dubbed
sticky proteins, may similarly be non-specifically selected by many independent bait pro-
teins. Discarding autoactivator bait proteins (that select many prey proteins) or sticky
prey proteins (that are selected in many screens) leads to results with a reduced rate of
false positives, although it may also mean a slightly increased number of false negatives
(Ito et al., 2000, 2001). Less stringent filtering was used for the interaction network of
H. pylori, based on a fragment library approach (Rain et al., 2001). A scoring scheme
was designed that computes an E-value for each bait–prey interaction by comparing the
observed pattern of selected prey fragments with the theoretical pattern that would be
obtained by randomly picking fragments in the library. At the end, each interaction yields
a reliability value (see Figure 16.3).

16.7 ANALYSING INTERACTION NETWORKS

The first protein interaction databases available on the internet provided a basic display
of the alphabetical protein interaction list. An interaction is represented by its two protein
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TABLE 16.4 Main Protein–Protein Interaction Databases

Database URL Reference

EcoCyc ecocyc.org/ecocyc/ecocyc.html Karp et al. (2000)
BIND www.bind.ca Bader and Hogue (2000)
Cellzome yeast.cellzome.com Gavin et al. (2002)
CuraGen portal portal.curagen.com Uetz et al. (2000)
DIP dip.doe-mbi.ucla.edu Xenarios et al. (2000)
FlyNets gifts.univ-mrs.fr/FlyNets/ Sanchez et al. (1999)
Interact bioinf.man.ac.uk/interactso.htm Eilbeck et al. (1999)
MIPS www.mips.biochem.mpg.de Mewes et al. (2000)
PIM Rider pim.hybrigenics.fr Rain et al. (2001)
ProNet pronet.doubletwist.com

partners, sometimes with basic annotations or cross-references to other protein databases.
Some websites also propose packages to graphically display interaction networks (Mrowka,
2001). The main protein–protein interaction sources are listed in Table 16.4.

However, a simple list of interactions poorly tackles the issue of result reproducibility.
To evaluate false positives and reproducibility, access to primary data is necessary. For
example, the interactions listed at the MIPS (Mewes et al., 2000) only present a brief
indication of the experimental source, such as ‘two-hybrid’ or ‘co-immunoprecipitation’,
without any quality clue or reference to the source experiment or laboratory. Bioinformatics
tools are now emerging to tackle this issue, such as the PIM Rider (Rain et al., 2001)
which gives access to primary data (see Figure 16.3b).

Visualization software is in parallel being enriched with options to help the biologist
in his/her discovery process. They let the user search for interaction paths between two
given proteins, filter displayed interactions depending on their reliability value or simul-
taneously display all interacting domains identified in one specific protein (see Table 16.4
for examples, such as PIM Rider from Hybrigenics (Rain et al., 2001), PIScout from
LION Biosciences, or the visualisation tool of DIP (Xenarios et al., 2000)).

16.8 CELL PATHWAYS

Cell pathways extend protein interaction networks by integrating interactions with lipids,
small molecules (e.g. metabolites), RNA, DNA etc. They are mainly deduced from
a compilation of literature resources, contrary to protein interaction networks that are
technology-driven results.

16.8.1 Metabolic Pathways

The metabolism of living systems and their evolution have been investigated for a long
time. The fluxes of metabolites inside a cell and the cascades of enzymatic reactions
leading from one compound to another have been depicted in charts, that is, heterogeneous
interaction networks mixing small molecules (metabolites) and proteins (enzymes). For
example, Figure 16.4 illustrates the pyruvate metabolic pathway: the circles represent the
small molecules that are the vertices of the metabolic network, whereas edges are catalytic
reactions and are labelled with boxed enzymes. Several databases regroup information
about these cell networks, especially for prokaryotic organisms (Kanehisa and Goto, 2000;
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Karp et al., 2000; Selkov et al., 1998). Enzymes are referenced by their EC (Enzyme
Commission) number, a system which overlays a functional hierarchy on enzymes (see
Bairoch (2000) for a review).

16.8.2 Signal Transduction Networks

The signal transduction pathways are particular instances of internal cell pathways. They
describe the cascades of molecular interactions from the reception of an extracellular
signal (e.g. binding of a cytokine to its receptor) to the activation of transcription fac-
tors triggering the transcription of specific genes. The signal transduction networks are
generally described in terms of physical interactions between proteins (e.g. binding or
phosphorylation, etc; see Figure 16.5).

16.8.3 Gene Regulation Networks

Downstream of the signal transduction pathways a complex array of gene regulation
networks takes place. The transcriptional regulatory networks mix heterogeneous physical
interactions (protein–protein, protein–DNA, and protein–RNA) and genetic interactions
(activation, inhibition, etc). Gene regulation networks are however still more studied at a
higher level of abstraction (see Chapters 13 and 15).

Signal transduction and regulatory pathways have been constructed from individual
experiments and stored in dedicated databases such as, SPAD http://www.grt.kyushu-
u.ac.jp/spad/, TRANSFAC (Heinemeyer et al., 1999), or MIPS (Mewes et al., 2000).
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Figure 16.5 Signal transduction networks of TK receptors. The binding of a ligand
to its tyrosine kinase receptor (RTK) provokes the dimerization of the receptor and the
initialization of several intra-molecular signalling cascades, involving physical interactions
and activation (black arrows: phosphorylation (P), GTP-binding (GTP), and others). One
signal pathway triggers several biological effects (grey arrows).
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These databases have allowed researchers to computationally predict regulatory networks,
for example, Pilpel et al. (2001), computationally predicted an extensive transcriptional
regulatory network in yeast by combinatorial analysis of promoter elements.

16.9 PREDICTION OF PROTEIN NETWORKS

16.9.1 Prediction of Functional Networks by Comparative Genomics

With the completion of many genome sequences, new techniques are emerging to predict
the function of gene products by analysing the genes on a genome scale and comparing
genomes between organisms. This new set of methods dubbed ‘comparative genomics’
has allowed the prediction of functional links between many proteins (see Eisenberg et al.
(2000) for review).

Comparing genomes means comparing sequences of genes and establishing similarity
links between genes means identifying orthologues, i.e. genes sharing the same function
across organisms. In the following prediction method, the identification of orthology is
often reduced to the detection of a significant sequence similarity, that is below a fixed
E-value threshold, in a sequence similarity search (such as BLAST). Implications of this
statement on prediction accuracy will be discussed below.

16.9.2 Gene Fusion Events

The gene fusion event method was first introduced by Marcotte et al. (1999a) and extended
thereafter by other works (Enright et al., 1999; Marcotte et al., 1999b). The method is
based on evolutionary interaction hypotheses. Basically, if two genes A and B participate
in the same function, they are likely to be fused together during evolution to enhance the
effective concentration of the fused gene product. Few mutations can then appear between
the proteic domains from A and B. If genes A and B are once again separated, their
products could still physically interact (Figure 16.6). Thus, if two separate genes in a given
organism are fused together in another organism, they are likely to be functionally linked,
that is to participate in the same structural complex, in the same biological pathway, in the
same biological process or sometimes to physically interact (see examples in Figure 16.7).
However, one cannot distinguish between these four kinds of functional links without extra
information. The gene fusion event method is often referred to as the Rosetta-stone method
(Marcotte et al., 1999a) in reference to the Rosetta stone which allowed Champollion to
make sense of hieroglyphs (‘word fusion’) by comparing them to Greek and Demotic
(languages using ‘unitary’ words).

The gene fusion event method was applied to the prediction of the protein functional
network of Escherichia coli by comparing its genome to a set of 22 genomes of archaeal,
bacterial and eukaryotic species (Tsoka and Ouzounis, 2000). In terms of participation
in fusion events, a three-fold preference was evidenced for metabolic enzymes compared
with control sets. It is worth mentioning that 76% of the detected pairs of enzymes
participating in fusion events are known to be subunits of an enzymatic complex in the
EcoCyc database (Karp et al., 2000; Table 16.4). The fusion event method thus seems to
be able to detect physical interactions for metabolic enzymes.

16.9.3 Gene Neighbourhood

It was postulated for a long time that the way genes are organized in clusters in bacter-
ial chromosomes is probably the result of an evolutionary constraint. The completion
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Figure 16.6 Underlying hypotheses of the gene fusion event method. This figure rep-
resents a model for the evolution of protein–protein interactions. If two genes a and b,
originally separated in the genome (a), are fused together during evolution (b), the result-
ing chimeric protein A-B could mutate to develop intra-molecular contacts between A
and B domains (c). Then, if the two initial genes are once again separated in genomes,
the corresponding gene products A and B could still physically interact, or at least be
functionally linked (d).

H. pylori rpoB

E. coli rpoB
E. coli rpoC

HP1198

H. sapiens sco

H. pylori scoA
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(a)
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Figure 16.7 Examples of gene fusion events. (a) The β and β ′ subunits of the
DNA-dependent RNA polymerase are encoded by two separate genes in most eubacteria
and archea, but are fused together in a single gene in Helicobacter pylori (HP1198). These
two subunits are known to be part of the RNA polymerase holoenzyme complex. (b)
Similarly, the α and β subunits of the succinyl-CoA transferase in H. pylori (HP0691 and
HP0692, respectively) are fused together in human and the corresponding gene products
are predicted to physically interact in two-hybrid screens (Rain et al., 2001).

of many genome sequences now allows testing of this hypothesis at a comprehensive
level. Dandekar and co-workers first analysed three triplets of sequenced genomes to
identify conserved gene pairs (Dandekar et al., 1998). About 100 genes were found to
be conserved as pairs, among them 75% of the encoded protein pairs physically interact.
This suggests that conservation of gene order and physical interaction of encoded proteins
are evolutionarily correlated.

Overbeek et al. (1999) extended this kind of analysis by building synteny groups,
i.e. gene clusters across organisms, in order to infer functional links. They defined a
gene cluster as a set of genes located on the same strand, and in which the maximal
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intergenic distance is 300 base pairs. If two genes XA and YA in a given cluster of
genome A have orthologues XB and YB in a cluster of genome B, they are defined
as functionally coupled. A coupling score is also derived depending on the number of
organisms in which orthologous pairs are found and the phylogenetic distances between
these organisms and A.

The use of this gene neighbourhood method is obviously more efficient for microbial
genomes with their conserved gene organization. But it may also be extended for eukary-
otes where operon-like cluster structures have been observed (Wu and Maniatis, 1999).

16.9.4 Phylogenetic Profiles

A phylogenetic profile is defined as the occurrence pattern of orthologues for a given
gene in a set of reference genomes (Pellegrini et al., 1999). It describes the absence or
presence of a particular gene across this set of genomes (Figure 16.8). If two proteins
have the same phylogenetic profile across these genomes (for instance P1 and P2, as well
as P4 and P6 in Figure 16.8), it is assumed that they are functionally linked because they
have probably co-evolved.

The major underlying hypothesis of the method is that orthologues, that is proteins
having exactly the same function, are correctly identified. Moreover, all the reference
genomes must be completely sequenced to avoid false-negative information. Note also that
paradoxically if the identification of orthology heavily relies on sequence similarity, the
phylogenetic profile method is referred to as a sequence-independent clustering algorithm,
since proteins that are functionally linked in this way, i.e. that have the same phylogenetic
profile, do not share sequence similarity in general.

16.9.5 Combination of Several Methods

Each of the previously described methods predicts functional links between proteins
according to evolutionary and sequence-based hypotheses. Combining these approaches
theoretically minimizes the false-positive prediction rate. Eisenberg and colleagues com-
bined five types of protein–protein interaction links to build a functional linkage network
for yeast, three of them are predictions from bioinformatics algorithms, two others are
derived from experimental data (Marcotte et al., 1999b):

Protein
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Figure 16.8 Clustering by phylogenetic profiles. The presence or absence of six proteins
labelled P1 to P6 is indicated by 1 or 0, respectively, in four genomes. Proteins with the
same profiles are boxed.
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• Links from the Rosetta-stone method

• Links from the phylogenetic profile method

• Links between yeast proteins that have Escherichia coli homologues linked in
metabolic pathways, as defined in the EcoCyc database (Karp et al., 2000)

• Links from known physical interactions in the DIP database (Xenarios et al., 2000)

• Links between proteins whose mRNA levels are correlated in cell cycle microarray
experiments (Spellman et al., 1998)

The combination of these five networks represents over 93,000 pair-wise links between
yeast proteins (about 30 links per protein), indicating a potentially high proportion of false
positives. However, taking into account only ‘highest confidence links’, defined as links
found by any two out of the three prediction methods or deduced from one of the two
experimental techniques, reduces the number of links to 4130 (about 5%).

16.9.6 Inferences Across Organisms

Once a protein network is built for a given organism (by experimental or predictive
methods) one might wonder how to transport it to other organisms. The classical inference
mechanism involves two major steps:

1. A correspondence is established between proteomes, classically by identifying ortho-
logues between organisms by sequence comparison.

2. The interaction links in the source protein network are transported to the target
proteome along this correspondence.

The accuracy of these inference processes is highly dependent on the criteria chosen for
orthology (i.e. conservation of function). Caveats of inferences will be further discussed
in Section 16.10.

16.9.7 Protein Interaction Inferences

The inference process can be applied to all types of protein networks. It was recently tested
on protein interaction methods (Wojcik and Schächter, 2001). An inference method similar
to the one described above (correspondence according to sequence similarity on full-length
sequences), referred to as the ‘naive’ method was assayed together with another method,
dubbed the ‘Interacting Domain Profile Pair’ (IDPP) method, that combines sequence
similarity searches with clustering based on interaction patterns and interaction domain
information.

The principle of the IDPP method is illustrated by the prediction of a protein inter-
action network for E. coli from an experimental protein interaction map for H. pylori
(Rain et al., 2001) in Figure 16.9. From the 1524 interactions in the original H. pylori
network, the IDPP method led to 881 interaction predictions, connecting 412 proteins of
E. coli (9.6%). Compared to the naive method, the IDPP method yields 35 additional,
highly domain-specific, predicted interactions. The use of sequence similarity searches
restricted to interacting domains rather than full-length proteins increases the sensitivity
of the method. Similarly, the use of interacting domain clusters instead of single interact-
ing domain sequences allowed the detection of homologies at lower levels of sequence
similarity (see Figure 16.10 for an example). Six-hundred and fifty-one interactions were
predicted by the naive method but not by the IDPP method. Two hundred and fifty-two
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(a)
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(c) Inferred protein interaction map

Experimental PIM®

Figure 16.9 The interacting domain profile pair method. From the initial protein inter-
action map of H. pylori (a), an abstract domain cluster interaction map is derived (b).
Domains are clustered together if (i) they share a significant sequence similarity and (ii)
they share a common interaction property with a third partner (e.g. interacting domains of
proteins B and C both interact with A). Each domain or profile of domains is then used
as a probe to screen a library of E. coli protein sequences and domain cluster interactions
are transferred (c).

of these 651 interactions were demonstrated to be false positives using the naive method
since the prediction is achieved through sequence similarity of a region that does not
contain the interacting domain. The 399 remaining interactions were obtained through
sequence similarity that was significant when considering the whole protein but not when
considering the shorter interacting domain and thus, might be considered as potential
false positives.

16.10 ASSESSMENT AND VALIDATION OF PREDICTIONS

The methods described above predict protein networks. Each prediction method is based
on a specific biological hypothesis and yields a set of given parameters both of which
must be validated. The validation of bioinformatics predictions means the comparison
of predicted results with the state of the art of biology. We distinguish here automated
validation methods, that are systematic, reproducible, comparable and easy to perform but
often yield weak biological confirmation, and manual validation methods, that are much
more biologically informative but also more biased and laborious. We do not discuss here
the validation of prediction methods per se but only the validation of predicted results.
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Figure 16.10 Prediction of GyrA homodimerization in E. coli by the IDPP method. In
the H. pylori reference protein interaction map, the β interacting domain (ID) of HP1411
interacts with ID γ of HP0701 and HP1411 interacts with itself through ID α (b). When
the IDPP method is applied, ID α and ID γ are clustered together since they both interact
with the same region of HP1411 (b) and they share a sequence similarity (region 197–332
of HP1411 and region 498–627 of HP0701, 103 amino acid overlap, 32% of identity,
(a)). This leads to the creation of a ‘homodimer’ profile pair connecting the α/γ domain
profile with itself. When used as a probe to screen an E. coli protein sequence library,
the α/γ domain profile selected a 172-amino acid-long domain on the GyrA protein, and
GyrA was predicted to interact with itself through this domain (c). This prediction is
confirmed by the literature: GyrA is known to form an A2–B2 complex with GyrB.

16.10.1 Automated Validations

The most widely used validation method is the ‘keyword retrieval’ technique. The princi-
ple is simple: if two proteins are linked together in the protein network, one compares their
keywords according to a specific biological annotation and if they share similar keywords,
the weight of the link is reinforced. The percentage of shared keywords at the network
level is compared to a theoretical background noise to evaluate the global validity of
the prediction. For instance, the keywords can be SWISS-PROT annotation keywords or
functional categories (Jenssen et al., 2001; Marcotte et al., 1999b; Wojcik and Schächter,
2001). However, this validation method relies heavily on database annotations that are
always reductive and sometimes false. For example, Marcotte et al. (1999a) noted that
‘even truly related proteins show only a partial SWISS-PROT keyword overlap’. In this
case they observed only a 35% overlap. Thus, this method, while significantly better than
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random noise, probably gives a poor biological validation. Cross-validating protein inter-
action predictions by comparing annotations of both partners is also very dependent on
the existence, the format and the quality of these annotations.

The second idea is to consider that a prediction, here a functional link between proteins,
made by several independent methods is more reliable (in fact the random background
noise of co-occurring independent facts is lower). This was used for instance to define
high-confidence links in protein networks (Marcotte et al., 1999b) or to assess inter-
action predictions against physical location of genes in prokaryotic genomes (Wojcik
and Schächter, 2001). In that case, there is a caveat to assess the real independence of
prediction methods since the majority of them are sequence based. Basically, the more
independent the prediction methods, the more relevant (in terms of false positives) the
overlapping results will be.

Finally, predicted protein–protein links can be evaluated by checking their existence
in dedicated databases, such as MIPS (Mewes et al., 2000), DIP (Xenarios et al., 2000)
or OMIM (Hamosh et al., 2000). For instance these databases can be used to validate
networks predicted from literature mining (Jenssen et al., 2001). These manually curated
databases however regroup heterogeneous information and one must be cautious about
data source quality. Predictions can also be compared to other types of data, such as
gene clusters deduced from microarray data (Jenssen et al., 2001). In both cases, the
significance of the predictions is evaluated by calculating the fold improvement over a
virtual random experiment and/or the correlation between the two datasets.

16.10.2 Manual Validations

Using manual validation, each predicted interaction link between two proteins of a network
is assessed by manually comparing the annotations in public databases, by checking
literature references of each protein partner. This method is obviously low-throughput and
by essence biased, but can lead to interesting conclusions about protein network quality.

It was for the first time applied to the assessment of inferred protein interactions from
H. pylori to E. coli (J. Wojcik et al., unpublished data). The inference process is based
on clustering and a definition of orthology restricted to the interacting protein domains
(Wojcik and Schächter, 2001). The true positive prediction rate was evaluated to be at
least 12%, i.e. at least 12% of the 1280 predicted interactions make biological sense
according to biological curators. Three main causes were identified to explain predictions
that are not confirmed by the literature: (i) predictions are true positives but are not yet
referenced in the literature; (ii) one of the protein functions in the source interaction was
completely lost during evolution (the corresponding gene has only paralogues in E. coli );
or (iii) the source interaction is a false-positive result. The comparison of these exact but
not statistically significant results with those obtained by automated validation by keyword
retrieval (Wojcik and Schächter, 2001) emphasizes the need to have real and exhaustive
reference datasets in order to validate predictions.

16.10.3 Literature Mining

The literature mining method, sometimes called ‘Information Retrieval’, can be viewed
both as an assessment method to predict protein networks and as a prediction method per
se. Assuming that the major part of current biology knowledge is contained in scientific
literature, the parsing of titles, headings, abstracts and/or full texts of articles should enable
us to extract links between genes or proteins and then build networks. Several techniques
exist to perform this parsing, including linguistic methods that tag parts of words (e.g.
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Ono et al., 2001) or statistical methods that estimate discriminating word distributions
(e.g. Marcotte et al., 2001). One major issue in these studies is the establishment of an
unambiguous nomenclature for gene or gene product names. Gene name dictionaries can
be created from various nomenclature databases such as HUGO, LocusLink or OMIM,
but problems remain due to insufficient synonym definition, synonym variations and gene
families with fuzzy naming conventions.

A recent work aimed to analyse over 10 million MEDLINE records to detect and count
human gene symbols or names co-occurring in titles or abstract. This resulted in a protein
interaction network containing about 140,000 interactions connecting 7512 human genes
(Jenssen et al., 2001). This is the largest protein network predicted from literature mining
so far. For now mining literature is more profitably used to help the scientist by screening
abstracts and reducing the number of articles to read. This is used to enrich the Database
of Interacting Proteins (DIP) (Marcotte et al., 2001).

16.11 EXPLOITING PROTEIN NETWORKS

Once a protein network is experimentally built or predicted or inferred by bioinformatics
algorithms, it represents a valuable source of information to understand molecular mech-
anisms on the scale of a whole cell, either by assigning function to gene products in
context (local analysis of the protein map) or by analysing the global network shape and
suggesting biological hypotheses.

16.11.1 Functional Assignments: the ‘Guilt-By-Association’ Rule

The first attempts to assign function used ‘guilt-by-association’ methods to annotate pro-
teins on the basis of the annotations of their interacting partners or, more generally, of
the proteins sharing a common property in a given cluster (Mayer and Hieter, 2000).

For example, a set of yeast protein interactions described in the literature or revealed by
large-scale two-hybrid screens was analysed through a clustering method (Schwikowski
et al., 2000) based on cellular role and subcellular localization annotations from the Yeast
Proteome Database (Costanzo et al., 2000). The function of an uncharacterized protein is
assigned on the basis of the known functions of its interacting partners. A function was
assigned to 29 proteins (out of 554) that have two or more interacting proteins with at
least one common function.

However, ‘guilt-by-association’ functional assignments must be used with caution. First
the predictions are highly dependent on the database function annotations which are often
reductive (only one keyword) and sometimes false. Poorly defined annotations can gather
different concepts and induce biologically non-significant clustering. The assignments
also obviously depend on the quality of the source protein network. If there are too few
connections or, on the contrary, if there are too many false-positive connections to a
protein node, the guilt-by-association would lead to erroneous conclusions. This point
is especially crucial with two-hybrid interaction data, for which false positives represent
highly connected nodes in the network.

Last, but not least, a major hurdle in this kind of automated function annotation method,
common to all bioinformatics prediction algorithms, is the absence of an independent
reference dataset and validation methods. For instance, the 29-function assignments made
in the former study were compared with the corresponding high confidence links obtained
in the study of Marcotte et al. (1999b) which were themselves partially predicted from
interactions listed at MIPS, one of the yeast protein interaction databases used in the
original study (Schwikowski et al., 2000). This exemplifies the fact that predictions must
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be used with caution: the oversight of the initial study hypothesis and the deficiency in
independent data sources could lead to biased conclusions.

Bioinformatics clustering of protein interactions still represents a powerful annotation
tool which will become more and more useful as the interaction data accumulate and their
quality improves. However, in order to be used successfully for appropriate functional
annotation, the data needs to be stored in elaborate structures that allow each individual
scientist to test their own hypothesis against complex heterogeneous primary data and
then to design further experiments to validate the functional assignment.

16.12 DEDUCING PREDICTION RULES FROM NETWORKS

Given a protein interaction network and assuming that it is complete enough and has a low
rate of false positives, one can deduce from the list of protein–protein interactions some
biological information at a molecular level. We give here two examples of statements
deduced from the analysis of comprehensive interaction maps that could a posteriori be
used to predict protein interactions.

16.12.1 Domain–Domain Interactions

Two independent groups have analysed the available protein–protein interaction net-
work of Saccharomyces cerevisiae in terms of domain–domain interactions (Ito et al.,
2000, 2001; Mewes et al., 2000; Uetz et al., 2000; Xenarios et al., 2000). The first
group (Park et al., 2001) considered protein structural domains from the SCOP classifica-
tion (scop.mrc-lmb.cam.ac.uk/scop/; Murzin et al., 1995) and the second group (Sprinzak
and Margalit, 2001) studied motifs from the InterPro database (www.ebi.ac.uk/interpro/;
Apweiler et al., 2001). The basic idea is to count the co-occurrence of pairs of domains
in interacting proteins, and to compare it to a theoretical background, in order to use
over-represented domain pairs as predictors.

16.12.2 Correlated Mutations

As stated previously, the interactions in which a protein participates define its function.
The specificity of these interactions is essential for the protein function to some extent.
Thus, if the protein evolves and some point mutations occur at the interaction interface,
‘complementary’ mutations should also occur on protein partners to guarantee the inter-
action specificity. This hypothesis was developed by Pazos et al. (1997) who showed that
correlated mutations in interacting domain pairs occur favourably close to the structural
protein–protein interface. They proposed the use of this information to help to discrimi-
nate between several docking propositions when the 3D structure of both protein partners
is known.

16.12.3 Analysis of the Shape of Protein Networks

Rather than focusing on a specific protein node in a protein network, one can analyse the
whole interaction map to deduce biological hypotheses on the cellular scale. Jeong and
co-workers published such an analysis of the public yeast protein interaction map (Jeong
et al., 2001). They showed that this network forms a scale-free network: the probability
that a given protein interacts with k partners follows a power law. This kind of struc-
ture is particularly tolerant to random attacks on one hand, and fragile against attacks
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targeted on the most connected nodes on the other hand (Albert et al., 2000). Simi-
lar non-homogeneous network structures were also evidenced for metabolic networks
(Jeong et al., 2000) and another protein interaction map in bacteria (Rain et al., 2001).
The authors established a positive correlation between connectivity and lethality: highly
connected proteins are three times more likely to be essential, i.e. the yeast cell dies
if the corresponding gene is deleted. This correlation has been attributed to evolution-
ary selection.

Although the existence of such a correlation makes biological sense, one should proba-
bly wonder about the relative weight of technological bias in establishing it. Jeong’s work
indeed rests mainly on interaction data produced by one systematic two-hybrid system in
yeast. The technology is prone to induce false negatives and false positives, as illustrated
and commented on in a more recent similar study (Ito et al., 2001). The corresponding
protein interaction network which contains 1870 proteins (31% of the whole yeast pro-
teome), is not complete. Its shape would probably be different if all ‘real’ interactions
were known. Proteins that exhibit few interacting partners in this network could actually
represent highly connected nodes. Conversely, false positives in the two-hybrid system are
likely to result in highly-connected nodes of the network: so-called ‘sticky prey’ proteins
bind ‘by chance’ to many independent bait proteins. The correlation between lethality
and centrality in networks evidenced by Jeong and co-workers, could actually be much
stronger if genes that are both non-essential and highly connected on the one hand and
genes that are both essential and poorly connected on the other hand, proved to be the
consequences of a technological bias in data.

16.12.4 Precautions for Protein Networks

To conclude, both local ‘guilt-by-association’ functional assignment rules and global net-
work analysis methods are fragile against poor interaction data quality or incompleteness.
They can thus hardly produce reliable ‘local’ conclusions and the fact that the conclu-
sion appears biologically meaningful is not evidence of the validity of the demonstration
per se.

It is, moreover, imperative to assess the technological data bias prior to analysing
networks and formulating biological conclusions. Ideally, the false-negative rate should
be minimized by building comprehensive networks and false positives should be filtered
out by independent bioinformatics or experimental validations. Meanwhile, both should
be assessed using technology-specific reliability score assignments (Rain et al., 2001).

16.13 CONCLUSION

Since proteins and RNA sustain function rather than genes, and since function can no
longer be considered as an individual property of each molecular actor taken indepen-
dently from others, proteomics has appeared as the post-genomic method of choice.
High-throughput experimental technologies are now routinely used to produce protein
expression and interaction networks. When combined with complementary literature data,
these networks become cellular pathways that are key elements for understanding the
cell functions in context. Proteomic informatics enables the massive production of these
data by storing them in dedicated databases allowing quality control, and by proposing
adapted mining and visualization tools. Bioinformatics algorithms further allow predic-
tion of protein networks by comparing genome sequences or by inferring networks across
organisms. Even if one still lacks independent reference datasets and validation methods
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to precisely evaluate the efficiency of such algorithms; they will probably soon be the
main tools for looking for associations between heterogeneous biological data.

While the sheer amount of data made available by various means of analysis is a
challenge in itself, its heterogeneity should be one of today’s main concerns: not only
does it make any hypothesis difficult to test extensively, it is only by cross-referencing
independent data-sources that we will be able to develop a consistent corpus of knowl-
edge and extract from it an adequate validation set for reliable comparison and accurate
evaluation of existent and as yet undiscovered analysis methods.
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The sequencing of the human genome is complete. This is an obvious milestone for all
fields of biology, none more so than genetics. As we have seen throughout this book, the
availability of a complete genome makes the study of the genetics of an organism much
less haphazard, and bioinformatics is an essential enabling skill for the geneticist to make
the most of the genome. In the pre-genome era, geneticists probed the genome like early
explorers penetrating a dark continent ripe for exploration. Relying on only the most basic
data they painstakingly reconstructed genes and methodically drafted maps to find disease
alleles. Now, in the post-genome era, instead of stars and a compass the genetic explorers
have the equivalent of a global positioning satellite system and a detailed A–Z directory
of genes. With all this technology it might be hard to imagine how genetics can now fail
to locate disease genes, but failure will still be a frequent outcome.

Why? Firstly, we may be looking for something that does not exist or is too small
to detect using existing methodology. Complex human disease is a product of both envi-
ronment and genes, but the environment is often overlooked as a source of disease,
particularly in the current era of high-profile genetics. The contribution of a single gene
to a multifactorial disease or trait may be vanishingly small and consequently even large
studies may have insufficient power to detect it. Secondly our directory of genes may
not be as comprehensive as we think, with significant weaknesses in certain areas, for
example the assignment of function to poorly understood regulatory motifs and the degree
and nature of inter-individual genome diversity. Thirdly our maps are not yet completely

Bioinformatics for Geneticists. Edited by M.R. Barnes and I.C. Gray
 2003 John Wiley & Sons, Ltd ISBNs: 0 470 84393 4; 0 470 84394 2 (PB)



374 CONCLUDING REMARKS: FINAL THOUGHTS AND FUTURE TRENDS

error free. Bioinformatics cannot help with the first problem directly, although novel sta-
tistical methods may improve the chances of identifying small genetic effects and will
form part of a continually evolving software suite for genetic analysis of complex traits.
As more pieces of the genetic and environmental jigsaw puzzle are put into place for
each complex trait, it should become progressively easier to position the remaining pieces
to give a more complete picture. Although bioinformatics may be perceived as playing
a secondary role in developing techniques for improved statistical analysis of complex
trait data, it is the key to providing the equally important solutions required for a truly
complete characterization of the genome coupled with unimpeachable data integrity.

17.1 HOW MANY GENES?

The biggest revelation of the human genome sequencing project was that humans appear
to have fewer genes than we had expected. Estimates of the total number of human genes
were widely anticipated to reach the 100,000 gene mark (Aparicio, 2000). As sequencing
progressed these estimates were downgraded to 60–70,000 and finally as the first draft
appeared estimates were consolidated to a mere 35,000 genes (Ewing and Green, 2000). If
this figure is to be believed, then humans have only seven times as many genes as yeast,
∼2.5 times as many as the fly Drosophila melanogaster and less than twice as many as
the nematode worm Caenorhabditis elegans. This figure may increase as understanding
of the genome and gene prediction increases, although it seems unlikely that the number
will rise beyond 50,000.

This smaller than expected number of genes might be viewed as good news for geneti-
cists — fewer genes to screen for disease association. But fewer genes does not necessarily
equate to reduced complexity. Complexity can manifest at many levels, including splic-
ing, gene regulation, post-transcriptional editing and post-translational modification. In
Chapter 12, we described the Drosophila DSCAM gene which has 115 exons which are
alternatively spliced to code for 38,016 related but distinct protein isoforms (Schmucker
et al., 2000). This remarkable gene gives us a hint that many of the gene models described
so far in humans could under-represent the true diversity of the human gene repertoire.
Instead it may be wise to view every gene transcript as a unit specific to a particular
tissue, time or cellular condition. Alterations in any of these conditions could direct the
expression of an alternative transcript.

It may also be pertinent to question the definition of a gene. Traditionally a gene is
viewed as a protein-coding unit. Transcripts which do not obviously code for a protein are
often dismissed as ‘regulatory RNA’ — a virtual dumping ground for transcripts which we
are just beginning to understand (see Szymanski and Barciszewski, 2002). This situation is
exacerbated by the wealth of data generated by genomics; for example a very large number
of ESTs and cDNAs show no in silico evidence of splicing (i.e. by each end aligning
either side of an intron in a genomic sequence). There are a number of explanations for
the existence of such transcripts. They could be derived from a real gene but simply do
not span an intron and therefore show no evidence of splicing; alternatively they could be
in vitro artefacts generated during the construction of cDNA libraries or in vivo artefacts
generated from cryptic promoters or pseudogenes.

This highlights one of the biggest challenges for the bioinformatic interpretation of the
human genome — data overload. Gene prediction and annotation tools generally disregard
unspliced ESTs as supporting evidence for the existence of a gene. This is a necessary
precaution to avoid over-prediction of genes across the genome; tools designed to analyse
whole genomes have to sacrifice sensitivity to avoid extensive over-prediction of genes
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and to maintain the performance of genome analysis pipelines, but where geneticists seek
to identify all candidate genes in a defined locus, it may be prudent to evaluate equivocal
information such as unspliced ESTs in a more thorough fashion. This can be achieved
easily with genome browser tools such as Ensembl and the UCSC human genome browser
which present all available data across a locus. However, it is wise to proceed with caution
when planning experimental work based on ambiguous data derived from in silico sources
in order to avoid frustration as well as wasted time and resources. Simple, rapidly executed
experiments to provide supporting evidence for the in silico observation should be the
first step.

17.2 MAPPING THE GENOME AND GAINING A VIEW OF THE FULL
DEPTH OF HUMAN VARIATION

Our incomplete understanding of genes and genome organization may not necessarily
be a big problem for genetics. Experimental frameworks can be primarily focused on
the physical and genetic composition of a region, in terms of genetic markers, recom-
bination frequency and other characteristics, rather than its perceived functional content.
‘Phenotype-driven’ family-based whole genome linkage scans to identify genes respon-
sible for monogenic traits illustrate one such approach. Use of linkage disequilibrium
(LD) to identify genomic regions of genetic association is a second example, and is more
appropriate for complex traits. This approach assumes little about the function of a marker
or gene, but can allow mapping of a genetic association to a very small region (typically
10–100 kb) following the construction of detailed population-based LD maps. Comple-
tion of an LD map of the entire human genome will in itself be a highly significant
milestone for genetics. Already provisional LD maps of chromosomes 21, 22 and 19
have been published (Dawson et al., 2002; Patil et al., 2001; Michael Phillips personal
communication). A whole genome LD map generated by many of the former members of
TSC should be made publicly available in late 2003. This will finally make comprehen-
sive SNP-based whole genome association scans a realistic possibility; selecting SNPs
which tag all of the major haplotype blocks across the genome will shift the empha-
sis toward good experimental design and away from conjecture when initiating genetic
association studies.

However, evolution toward a whole-genome haplotype-based approach to genetic
studies will present considerable challenges. For example, although all of the available evi-
dence suggests that the majority of haplotypes in any given genomic region are common
to multiple ethnic groups (Gabriel et al., 2002), haplotype frequencies may vary consider-
ably between groups. Thus markers that tag common haplotypes in one ethnic group may
not identify the most common haplotypes in other groups. Furthermore, approaches based
on attempts to associate common haplotypes with a disease state are broadly reliant on the
veracity of the ‘common disease caused by common variants’ hypothesis (see Pritchard,
2001). A low frequency haplotype which is associated with disease may evade detection,
and a rare predisposing SNP occurring on a common haplotypic background may not be
detected due to insufficient statistical power. Only empirical data gathered over the next
few years will reveal the true scale of such issues. A further consideration is the increase
in throughput and reduction in cost required to render the necessary scale of genotyping
for population-based association studies, which are likely to require several million data
points per genome-wide experiment, feasible. However significant investment in this area
has led to promising improvements across a range of genotyping platforms over the last
few years and we expect this trend to continue.
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17.3 HOLISTIC ANALYSIS OF COMPLEX TRAITS

One of the weaknesses of genetic association studies is the difficulty in drawing a firm
conclusion regarding the robustness of the finding from the statistical evidence for asso-
ciation between a given gene and trait, particularly if the level of significance is marginal.
A key future application of bioinformatics is likely to be the drawing together of diverse
threads of data from a number of sources in a more holistic approach toward the analysis of
complex traits. The output from human linkage and population-based association studies
can be combined with animal model quantitative trait loci, phenotypic data from sys-
tematic gene knock-out and transgenic mouse approaches, genome-wide expression data
from microarrays, proteomic profiles and other sources, to provide a substantial body of
evidence relating to the gene or locus in question. This will require the development
of both new interfaces for the integration of disparate datasets and sophisticated global
analysis software.

17.4 A FINAL WORD ON BIOINFORMATICS

It is always difficult to present a rapidly moving field such as bioinformatics in a book.
Despite the best efforts of the authors, editors and publisher, by the time this book reaches
the reader many of the tools described in the preceding chapters will have evolved to offer
yet more functionality and utility. Keeping abreast of new developments in bioinformatics
is as important an activity as using the data themselves. Current awareness of the field is
essential to ensure that all of the relevant available data are captured, maximizing research
efficiency. Finally, the best approach to becoming proficient in the use of software tools
is often trial and error, and bioinformatics is no exception; trial and error in silico can
obviate the far less desirable prospect of trial and error in the laboratory, so do not be
afraid to experiment with bioinformatics applications — see what the human genome can
yield in your hands. Good luck!
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APPENDIX I

IA IUPAC Nucleotide Ambiguity Codes

IUPAC Code Meaning Complement
A A T
C C G
G G C

T/U T A
M A or C K
R A or G Y
W A or T W
S C or G S
Y C or T R
K G or T M
V A or C or G B
H A or C or T D
D A or G or T H
B C or G or T V
N G or A or T or C N

IB IUPAC Amino Acid Codes
IUPAC Amino Three Letter Code Amino Acid

Acid Code
A Ala Alanine
C Cys Cysteine
D Asp Aspartate
E Glu Glutamate
F Phe Phenylalanine
G Gly Glycine
H His Histidine
I Ile Isoleucine
K Lys Lysine
L Leu Leucine
M Met Methionine
N Asn Asparagine
P Pro Proline
Q Gln Glutamine
R Arg Arginine
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IUPAC Amino Three Letter Code Amino Acid
Acid Code

S Ser Serine
T Thr Threonine
V Val Valine
W Trp Tryptophan
Y Tyr Tyrosine

IC Human Codon Usage Table

Second Codon

First Last

Codon U C A G Codon

U

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C

Leu Ser Stop Stop A

Leu Ser Stop Trp G

C

Leu Pro His Arg U

Leu Pro His Arg C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

A

Ile Thr Asn Ser U

Ile Thr Asn Ser C

Ile Thr Lys Arg A

Met Thr Lys Arg G

G

Val Ala Asp Gly U

Val Ala Asp Gly C

Val Ala Glu Gly A

Val Ala Glu Gly G



APPENDIX II

Amino Acid Substitution Matrices

More information on these matrices is available on the following www site (www.russell.
embl-heidelberg.de/aas).

Bioinformatics for Geneticists. Edited by M.R. Barnes and I.C. Gray
 2003 John Wiley & Sons, Ltd ISBNs: 0 470 84393 4; 0 470 84394 2 (PB)
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GLOSSARY OF TERMS AND ABBREVIATIONS

BLAST Basic Local Alignment Search Tool — a tool for identifying sequences in a
database that match a given query sequence. Statistical analysis is applied to judge the
significance of each match. Matching sequences may be homologous to, or related to,
the query sequence. There are several versions of BLAST:

— BLASTP compares an amino acid query sequence against a protein sequence
database

— BLASTN compares a nucleotide query sequence against a nucleotide sequence
database

— BLASTX compares a nucleotide query sequence translated in all reading frames
against a protein sequence database

— TBLASTN compares a protein query sequence against a nucleotide sequence data-
base dynamically translated in all reading frames

— TBLASTX compares the six-frame translations of a nucleotide query sequence
against the six-frame translations of a nucleotide sequence database.

BLAT BLAST-Like Alignment Tool. BLAT might superficially appear to be like
BLAST, also being a tool for detecting subsequences that match a given query
sequence, however BLAT and BLAST have a number of differences. BLAT was
developed at the UCSC; it searches the human genome by keeping an index of
the entire genome in memory. The index consists of all non-overlapping 11-mers
except for repeat sequences. A BLAT search of the human genome will quickly find
sequences of 95% and greater similarity of length 40 bases or more. It may miss more
divergent or shorter sequence alignments (see the UCSC FAQ for more details on this
tool — http://genome.ucsc.edu/FAQ.html).

CDS Coding sequence.

Contig Map A map depicting the relative order of overlapping (contiguous) clones
representing a complete genomic or chromosomal segment.

DAS (Distributed Annotation System) DAS is a protocol for browsing and sharing
genome sequence annotations across the Internet, allowing users to search and com-
pare annotations from several sources. Ensembl provides a DAS reference server
giving access to a wide range of specialist annotations of the human genome (see
http://www.ensembl.org/das/ for more detail).

Data Mining The ability to query very large databases in order to satisfy a hypothe-
sis (“top-down” data mining); or to interrogate a database in order to generate new
hypotheses based on rigorous statistical correlations (“bottom-up” data mining).

Bioinformatics for Geneticists. Edited by M.R. Barnes and I.C. Gray
 2003 John Wiley & Sons, Ltd ISBNs: 0 470 84393 4; 0 470 84394 2 (PB)
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Domain (protein) A region of special biological interest within a single protein seq-
uence. However, a domain may also be defined as a region within the three-dimensional
structure of a protein that may encompass regions of several distinct protein sequences
that accomplishes a specific function. A domain class is a group of domains that share
a common set of well-defined properties or characteristics.

Electronic PCR (ePCR) An electronic process analogous to lab based PCR. Two pri-
mers are used to map a sequence feature (e.g. a SNP). To validate the position both
primers must map in the same vicinity spanning a defined distance, effectively pro-
ducing an electronic PCR product.

Expressed Sequence Tag (EST) A short sequence read from an expressed gene derived
from a cDNA library. Databases storing large numbers of ESTs can be used to gauge
the relative abundance of different transcripts in cDNA libraries and the tissues from
which they are derived. An EST can also act as a physical tag for the identification,
cloning and full length sequencing of the corresponding cDNA or gene.

FASTA format FASTA format, originally devised for Lipman & Pearson’s FASTA
(Fast-All) sequence alignment algorithm, is one of the simplest and most widely
accepted formats for sequences, taking the form of a simple header preceded by a
“>” sign and sequence on the following line, e.g.
>sequence id
gataggctgagcgatgcgatgctagctagctagc

Golden Path The golden path is a term applied to the first and subsequent assemblies
of the human genome.

Hidden Markov model (HMM) A joint statistical model for an ordered sequence of
variables. The result of stochastically perturbing the variables in a Markov chain (the
original variables are thus “hidden”), where the Markov chain has discrete variables
which select the “state” of the HMM at each step. The perturbed values can be
continuous and are the “outputs” of the HMM. A Hidden Markov Model is equiv-
alently a coupled mixture model where the joint distribution over states is a Markov
chain. Hidden Markov models are valuable in bioinformatics because they allow a
search or alignment algorithm to be trained using unaligned or unweighted input
sequences; and because they allow position-dependent scoring parameters such as gap
penalties, thus more accurately modelling the consequences of evolutionary events on
sequence families.

Homology (strict) Two or more biological species, systems or molecules that share a
common evolutionary ancestor. (general) Two or more gene or protein sequences that
share a significant degree of similarity, typically measured by the amount of identity
(in the case of DNA), or conservative replacements (in the case of protein), that they
register along their lengths. Sequence “homology” searches are typically performed
with a query DNA or protein sequence to identify known genes or gene products
that share significant similarity and hence might inform on the ancestry, heritage and
possible function of the query gene.

in silico (biology) (Lit. computer mediated). The use of computers to simulate, process,
or analyse a biological experiment.

NCBI National Center for Biotechnology Information, Washington, D.C., USA.

Open reading frame (ORF) Any stretch of DNA that potentially encodes a protein.
Open reading frames start with a start codon, and end with a termination codon. No
termination codons may be present internally. The identification of an ORF is the first
indication that a segment of DNA may be part of a functional gene.
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Ortholog/Paralog Paralogs are genes related by duplication within a genome. Orthologs
retain the same function in the course of evolution, whereas paralogs evolve new
functions, even if these are related to the original one.

PERL PERL is the short form acronym for Practical Extraction and Report Language.
Perl is relatively straightforward up to a certain level — this has encouraged its devel-
opment as the primary language of biological computing.

Relational Database A database that follows E. F. Coddı́s 11 rules, a series of mathe-
matical and logical steps for the organization and systemization of data into a software
system that allows easy retrieval, updating, and expansion. A relational database man-
agement system (RDBMS) stores data in a database consisting of one or more tables
of rows and columns. The rows correspond to a record (tuple); the columns correspond
to attributes (fields) in the record. RDBMSs use Structured Query Language (SQL) for
data definition, data management, and data access and retrieval. Relational and object-
relational databases are used extensively in bioinformatics to store sequence and other
biological data.

Secondary structure (protein) The organization of the peptide backbone of a protein
that occurs as a result of hydrogen bonds e.g. alpha helix, Beta pleated sheet.

Sequence Tagged Site (STS) A unique sequence from a known chromosomal location
that can be amplified by PCR. STSs act as physical markers for genomic mapping
and cloning.

Single Nucleotide polymorphism (SNP) A DNA sequence variation resulting from
substitution of one nucleotide for another.

SQL Structured Query Language. A type of programming language used to construct
database queries and perform updates and other maintenance of relational databases,
SQL is not a fully-fledged language that can create standalone applications, but it is
powerful enough to create interactive routines in other database programs.

Substitution matrix A model of protein evolution at the sequence level resulting in the
development of a set of widely used substitution matrices. These are frequently called
Dayhoff, MDM (Mutation Data Matrix), BLOSUM or PAM (Percent Accepted Muta-
tion) matrices. They are derived from global alignments of closely related sequences.
Matrices for greater evolutionary distances are extrapolated from those for lesser ones.

Tertiary structure (protein) Folding of a protein chain via interactions of its side-chain
molecules including formation of disulphide bonds between cysteine residues.

UCSC University of California Santa Cruz

UTR Untranslated region. The non coding region of an mRNA transcript flanking either
side of the open reading frame.
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identical by descent (IBD) 219, 222–3, 225
identical by state (IBS) 219
minor 311
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transmitted 225
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AMC (Academic Medical Centre) tag-to-gene
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amphipathic 298
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site-directed mutagenesis 312
small 299
stacking interactions 298–9
structural property classification 296–8
structure 299–311
subsets 297
substitution 294, 299–311

matrices 296, 379, 380–3
tools 316

analysis of variance (ANOVA) 236
ANALYZE program 225
angiotensin converting enzyme (ACE) 48
animal models 15, 16
annealing temperature (TM) 207–8, 211
anticipation 47

triplet repeat 47–8
APOE gene 9
ApoE gene 166
Arachne assembly 129
Arg148Cys missense mutation 267
arginine 299, 303–4, 305
ARLEQUIN program 170, 175, 231–3, 234,

235
asparagine 299, 306
aspartate 299, 305–6
aspartylprotease genes 78
ASPEX program 220
Assay by DesignTM Genomic Assay Service

208
association analysis 223–4
association studies 10–11

markers 11–12
asthma 10
AU-rich elements (AREs) 263
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BACE gene 76–8
accession numbers 77–8
gene portal inspection 79–80
nomenclature 78

BACE mRNA 77, 78
BACE2 gene

detailed view 195, 196
linkage disequilibrium 201
promoter region repeat 196–7

Bacillus stearothermophillus 312
bacterial artificial chromosome (BAC) 12

clone-based genome map 96
clones 152
FISH-mapped 325
mouse clone sequencing 129
physical maps 151–2

mouse genome 126–7
rat library 128
rat physical map 128
sequence overlaps 97–8

BioCarta graphical biochemical pathway maps
325

biochemical pathway dissection 15–16
bioinformatics

applications 5
role 6

biological information on internet 23
biological sciences, web resources 24
biological sequence databases 31–6

primary 31–3
secondary 33–4

nucleic acids 34–5
BioMedNet platform 25
bipolar disorder, candidate gene identification

190–5
BLAST database 7, 23, 31, 180

BACE gene searches 77
comprehensive search 88
against Ensembl 88–9
Ensembl use 104, 106
LocusLink/RefSeq 35
matching 104
mouse assemblies 129
nucleotide searches 76
protein interaction networks 354
proteome identification 349
searching 57, 60, 264
similarity search 205

BLASTN 99
BLASTP 101
BLASTZ 266
BLAT 100, 266

data retrieval 107
mouse 74, 83, 84, 86

nucleotide searches 76
sequence search tool 184

BLOCK program 220
BLOSUM matrices 296
Bonferroni correction 175
boolean searching 26, 27–8
BRCA1 gene 9, 44
breast cancer 9

susceptibility gene 44

Caenorhabditis elegans 15
cancer

DNA sequence changes 320
gene overexpression 336, 337
gene silencing 336
genomic aberrations 50
Mitelman Map 50, 62–3, 325

Cancer Genome Anatomy Project (CGAP) 50,
51, 63, 324–5

Digital Gene Expression Displayer 324,
325

Gene Library Summarizer 324, 325
Genetic Annotation Initiative (GAI) 65–6
Library Finder Tool 324
SAGEmap tag-to-gene mapping 327, 328

cardiovascular disease 9
mouse mutagenesis projects 135

case–control cohorts 166, 167
case–control studies 10
CATG sequence 337

errors 328–9
causal variants 167
Cd36 17
cDNA 266, 323

3’-end of clones 326, 327–8
5’-end of clones 327
CGAP resource 324, 325
libraries 374

Celera Genomics (CG) 96
draft genome assembly 96–7
human genome assembly 96–7, 98
marker inconsistencies 154

CEPH families 146, 147
CFTR gene 9, 44
CGAP see Cancer Genome Anatomy Project
Charcot–Marie–Tooth disease type 1A

(CMT1A) 49
chloroplasts 292–3
chromatin loop 275
chromosomal loops 275
chromosome(s)

aberrations
in cancer 50, 62–3, 320, 325
gross 49–50
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abnormalities 48–9
gene expression 336, 338
recurrent duplications/deletions 49
sequencing in mouse 129

chromosome 1p loss 320
chromosome 2p 337
chromosome 3 340
chromosome 11 338

radiation hybrid map 338, 339
chromosome 17p11.2 49
chromosome 21

hard-to-clone DNA 153
human 170, 172
physical separation of two copies 170

chromosome 22q11.2 49, 50
cis-regulatory elements 260
CLUMP program 173, 174–5
ClustalW 31
Clusters of Orthologous Groups (COGs) of

proteins 101
coding sequence (CDS) 34
codons, initiator 261, 262
common disease/common variant (cd/cv)

hypothesis 251
compartmentalized shotgun assembler 97
COMPEL database 278
complex disease 9, 10

environmental factors 373
genes 251, 373
linkage peak 180–1, 182
magnitude of effect 251
processes 15
rodents 137
splicing abnormalities 259

complex trait holistic analysis 375–6
Composite Interval Mapping (CIM) 236
composite likelihood methods 231
CONSED program 205, 206
CONSENSUS 277, 285
Contig Explorer (iCE) 127
contigs

physical maps 151–2
sequences 108

initial 96
CoreSearch 277, 285
CpG islands 108, 109
Crohn’s disease 9

NOD2 gene 166, 172
crosses, experimental 236–9
cysteine 292, 299, 303, 308–9
cystic fibrosis 9, 44, 280
cytogenetic maps 148–9
cytogenetic studies, Mitelman map 62, 63

cytosine allele 262
cytosol 292–3

Danio rerio 15
data

accessing 7
curation 111
functional 15
indexing 23
integration for rat/mouse bioinformatics

121–2
management 6–8
mining 6–8, 22
resources 6
storage, retrieval and handling systems 4
sub-division of biological on internet 23

database(s) 4, 6
biological sequence 31–6
comprehensive searching 88–90
controlled vocabulary 28
gene nomenclature 28
genetic 7
genetic marker 60–1
genetic variation 50, 51
insertion/deletion polymorphisms 49
locus-specific 30
microsatellite 60–1
model organism for rat/mouse 122–4
mouse mutagenesis 135
mutations 46

non-nuclear/somatic 61–3
proteins 36, 73
public 7

primers 208
sequence variation 58
unindexed 25
VNTR 48
see also individual named databases

Database of Interacting Proteins (DIP) 366
visualization tool 356

Database of Transcribed Sequences (DoTS)
109

dbEST 84
BACE gene searches 77
CGAP subset 324
POLYBAYES SNP discovery tool 206

dbSNP 7, 8, 12, 35–6, 46, 51
BACE gene searches 77
candidate SNPs 55–6, 197
data submission 52–3, 55
export of list of SNPs 199
flanking sequences 209
HGVbase relationship 57
mouse 133
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dbSNP (continued)
primer designs 208
searching 52, 53, 54
sequence variations 204
short insertion/deletion polymorphisms 49
tools 64

dbSTS 35, 60
development defects, mouse mutagenesis

projects 135
diabetes 10

insulin gene 176
PPARγ association 14

disease
gene association with phenotype 176
monogenic 181
post-translational modification abnormalities

295–6
rodent models 137
single nucleotide polymorphisms causing

311–12
see also complex disease; genetic disease;

Mendelian disorders
disease-susceptibility gene 14–15
Distributed Annotation System 113–14
disulphide bonds 308
DMAP program 231
DNA 4

amplification 209
chips 207
chromatin-associated 275
chromosomal 275
deletion 40
elements 276
genomic 275

amplification 204
hard-to-clone 153
insertion 40
internet searching 30–1
mitochondrial 61, 62
nucleosomal 275
physical separation of two copies 170
polymorphisms 252
regulatory 276
repetitive 275
sequence changes 320
sequencing methods 204
variants 15
see also cDNA

DNA Database of Japan (DDBJ) 31
DNA mapping panels, mouse 124
DNA markers, rat 123
DNA microarrays 323–324

technology 321–323
domain–domain interactions 367

Down syndrome cell adhesion molecule
(DSCAM) gene 258, 374

Drosophila melanogaster 15, 258, 374
drug target identification 10
DUP25 interstitial duplication 49

e-PCR 43, 153, 187
EcoCyc database 359
EHPLUS program 170, 173, 175, 226, 227

haplotype-based association testing 229,
230

haplotype frequency estimation 227, 228
linkage disequilibrium 230

ELAV family 263
EMBL database 31

mouse sequences 121
proteome identification 349
rat sequences 121
USAGE application 334

enhancers 275
Ensembl 7, 8, 22

BLAST use 88–9, 104, 106
candidate gene selection 190–5
characterization of genetic/physical locus

199–201
data retrieval 106
definition of known/novel genes across

genomic region 188–90
duplication detection in genomic assemblies

186
genome sequence annotation 104–6
genome viewing applications 61, 63, 79,

157
genomic features 104–5
identification of known and novel markers

195–9
marker mapping to human genome 182
marker panel design 199–201
motif recognition 86–7
mouse genome assembly 74, 126, 127
novel gene analysis 81, 86–8
promoter analysis 257
pros and cons 183
proteins 73
regulatory element analysis 257
sequence characterization 173
unspliced ESTs 374

Entrez Map View 155–6, 157
Entrez-PubMed 23, 30, 31
ENU mutagenesis projects 134–5
environmental factors 9, 373
enzymes 294
ePCR program 99
eSAGE program 334
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Escherichia coli
gene fusion events 359
IDDP prediction method 364
inference of protein interactions 365

ETDT program 225
European Bioinformatics Institute (EBI) 102

Radiation Hybrid Database (RHdb) 125
European Mouse Mutant Resource (EMMA)

134
Exofish program 107
exonic splicing enhancer (ESE) regions 176,

256, 258, 259, 260
exonic splicing silencers (ESS) 256, 258, 259,

260
exons

recognition 276
silent variants 252

expectation–maximization (EM)
algorithm 226, 236, 266
maximum likelihood estimate (MLE) 170

Expert Protein Analysis System 36
expressed sequence tags (ESTs) 10

accession numbers 35
analysis of clusters 204
BACE gene 77
CATG-sequencing errors 328–9
cDNA sequence resources 7
CGAP–GAI database 65–6
clones 73
correctly spliced mRNA transcript 189
G-cap selected 266
gene portal inspection 79–80
libraries 14, 328
matches 83
mouse 73
novel gene analysis 82–3, 84
orthologous 73
overlapping 72
POLYBAYES SNP discovery tool 206
rat 124
secondary databases 35
sequence tagged sites 153
sequencing errors 328–9
spliced 82, 190
TBLASTN 84, 86
UniGene

clusters 75
record 191–2

unspliced 190, 374
virtual mRNA 85
see also dbEST

family-based cohorts 167
FANTOM Consortium 130
FAST 25

FASTLINK program 218–19
feature identifiers 32
Fgenesh program 106
fibroblast growth factor 294, 295
Fisher’s Exact test 235
Flicker program 350–1
fluorescent in situ hybridization (FISH)

BAC mapping 325
data 128
mapping 149

FlyBase 103
FOXP2 gene 102

coding sequence 107
Genome Channel browser 109, 110, 111
genomic region 105–7, 108, 109

FPC program 127
fragile X syndrome 47
Frataxin 9
Friedreich’s ataxia 9, 47
Fugu rubripes 15

gap sizes 154–5
GASSOC program 225
gbPAT 88

records 33
GDB database 46, 61, 157–9

chromosome aberrations 49
genetic maps 146
insertion/deletion polymorphisms 49
maps 154
radiation hybrid maps 151
text-based data mining 158

gel image analysis 348–9, 350–1
GEMS Launcher program 283, 284
GenBank database 31, 36

accession numbers 35
author responsibility 32–3
BAC clone 96
clones 326, 327
comprehensive search 88
Homo sapiens CAGH44 mRNA 102
human mRNA 72–3
mouse sequences 121
PAC sequences 339
patent subdivision 33
rat sequences 121

gene(s)
aliases 78
analysis of novel 81–4, 85, 86–8
anatomy 256, 258–64
annotation 71–2, 123

tools 374
associated 251
candidate 14–15
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gene(s) (continued)
genetic analysis 12, 13
identification 173–6
selection for analysis 14

characterization 15
clustering 284
co-expression 284
co-regulation 284
complex disease 251
complex trait holistic analysis 375–6
computational prediction 98
controlled nomenclature 28
definition 374

known/novel across genomic region
188–90

density in RIDGES 340
detection 74
disease contribution 373
function 136
fusion events 359, 360
modifier 251
name dictionaries 366
nomenclature 78, 123

standards 122
normal function 256
number in human genome 273–4, 374
ontology 136–7
overlapping 75
prediction 100–1

tools 374
promoter region anatomy 257
rat 123
redundant 251
regulation

networks 358–9
tools for functional analysis 255

regulatory elements 257
selection 175

candidate 190–5
sequence similarity 100–1
splicing 255, 258–9
structure prediction 100
transcripts 374
see also mutations; open reading frames

(ORFs)
Gene and Position Predictor (GAPP) 123, 131
gene expression

analysis 320–1
control 274
genome-wide surveys 132, 136
genotype variation 132
informatics 320–1
patterns 15
regulation 258

SAGE measure 192
in silico resources 14
single nucleotide polymorphisms 281
technologies for measurement 321–3
tumour tissues 320
see also RIDGES

Gene Expression Database (GXD) 123
gene identifier (GI) numbers 32
gene knock-out animals 15
gene model 75

approximate 189
gene neighbourhood method 359–61
Gene Ontology Consortium 293
Gene Ontology (GO) database 123, 136–7

annotation 103
gene products

evidence cascade 72–5
normal function 256

GeneChipTM technology 323
gene–gene interactions 15
GENEHUNTER program 219, 220, 226, 236
GeneMap99 334–6
GeneReviews 30
Genethon human linkage map 146
Genetic Annotation Initiative (GAI) 65–6
genetic disease 4

alleles 42, 250, 251
associations 42
gene mapping 100
gene splicing mechanisms 258–9
mutations 250
phenotype 4
phenotypic variability 250
VNTR-mediated 47–8

genetic distance 154
genetic drift, random 169
genetic load 41
genetic maps 144, 145–8

accuracy 154
construction 145
draft sequence curation 152–3
haplotype 148
human 144, 145–8
integration 155, 156, 158
linkage 145
linkage disequilibrium 148
mouse 124–5
rat 127–8
SNP-based haplotype 148
UDB database 159
value 154

genetic marker databases 60–1
genetic study designs 8–12, 13
genetic traits, complex 373–4
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genetic variation 250
data integration 42–3
see also human genetic variation

genetical genomics 17
genetics 4

bioinformatics
applications 5
role 6

comparative 15–17
inverse 265, 266

GENEWISE
exon structure prediction 104
sequence similarity 100–1

GenMapDB 152
Genomatix Promoter Resource (GPR) 283
Genomatix sequence analysis tools 282
genome

annotation 123
coordinates 78
cross-species comparisons 8
data 4
genetic variation data integration 42–3
manipulation techniques in mouse 133
maps 145
protein encoding 274
regulatory regions 101
viewer 79–80
see also human genome

Genome Biology 22
Genome Channel browser 108–9, 110, 111

FOXP2 gene 109, 110, 111
gene prediction 108–9
ratio analysis 200–1

genome database see GDB database
Genome Monitoring Table 95
genome sequence

annotation 99–109, 110, 111, 112, 113–14
data curation 111
nucleotide level 99–101
process level 102–3
protein level 101–2, 111, 113
specific 103–9, 110, 111

assembly 96–9
resources for rat/mouse 128–31
splice site location prediction 259
websites 112–13

genome-wide genetic/physical distance ratio
200

genome-wide microarray projects 192
genomic assemblies, duplication detection

185–8
genomic control 167
genomic DNA 154–5
genomic fragments, random 153

genomic instability 49
genomic prediction 73–4
genomic region, definition of known/novel

genes 188–90
genomics 4, 15–17

comparative 131–2, 359
functional 135–7
genetical 17

genotoxic stress 259
genotype

expected frequency 175
linkage to phenotype 24

genotyping, high-throughput methods 42
Genscan 74

gene prediction 82, 100–1, 104
Giemsa bands 200
GigAssembler 97
glutamate 299, 306
glutamine 299, 306–7
glycine 299, 309, 310
glycosylation 295
GNF Gene Expression Atlas Ratio 192,

193–5
GOLD program 230–1
Golden Path genome browser 7, 71, 72, 173

draft dataset 180
gene location 76–8
marker inconsistencies 154
missing genes 80–1
raw sequence data 76–7
STS marker positions 155
template for genetics 181
unified assembly 78

golden triangle track 266
Golgi apparatus 293
Google 24, 25, 27
guilt-by-association rule 366–7, 368

haemoglobin 291
mutations 313

haplotype map 197–8, 199–200
human chromosome 21 172

haplotype tags 148, 197, 375
design tool 57

haplotypes 12, 170–2
association testing 228–9
construction 170, 172, 175
frequency

determination 175, 375
differences 173
estimation 227–8

genetic maps 148, 172
length 170
linkage disequilibrium analysis 234
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haplotypes (continued)
marker sets 171
patterns 198
reconstruction 226–9
statistical analysis 170, 173

HAPPY program 237
Hardy–Weinberg equilibrium 175, 226
header records 32
Helicobacter pylori

gene fusion events 360
inference of protein interactions 365
interaction network 355

heterogenous stocks 17
HEXB gene 265
HGMD database 46, 57–8
HGVbase 36, 56–7

short insertion/deletion polymorphisms 49
SRS database 58

high-performance liquid chromatography
(HPLC) 350

High Throughput Genomic Sequences (HTGS)
80–1

HighWire 29–30
histidine 298, 299, 302–3
HIV-1 infection 280
HMMER program 102, 296
Homo sapiens CAGH44 mRNA 102
homology support 74
HTRA3 80, 81
HTRA4 80, 81
htSNP program 171
Human Gene Mutation Database see HGMD

database
human genetic variation 40–2

databases 50, 51
forms 43–50
mechanisms 43–50
quantity 41

human genome 3
annotation 98–109, 110, 111, 112, 113–14
browsers 7, 12, 52
completion 98–9

of sequencing 144
data

interrogation 71–2
overload 374–5

draft sequence 95
genetic data integration 7
genetic maps 154
high-throughput technologies 103
locus 168
mapping 375
marker localization 184
misassembly rate 98

number of genes 273–4, 374
other vertebrate comparisons 74
QC 154
sequence

characterization 173
physical maps 153–4

sequencing 373
web-based tools 168
websites 112–13

Human Genome Browser (HGB) see UCSC
human genome browser

Human Genome Variation database see
HGVbase

Human Proteomics Initiative (HPI), SwissProt
sequences 73

Human Transcriptome Map (HTM) 320–1,
336–7, 338, 339, 340–1

annotation 337, 339
construction 334–6
relational database 334–6
RIDGES 340
tags

antisense 337, 339
unreliable 337

human variation 375
Huntingtin 9
Huntington’s disease 9, 47
hypermutability 42
hypothesis construction 22

Improbizer tool 266
indexing of data 23
Induced Mutant Resource, mouse 133–4
Information Retrieval 365–6
insertion/deletion (INDEL) polymorphisms

40, 48–9
dbSNP database 52

insulin gene, diabetes type 1 176
Interacting Domain Profile Pair (IDPP)

362–3, 364
interactome 351
Internal Ribosome Entry Site (IRES) 262
International Human Genome Sequencing

Consortium (IHGSC) 96–8
International Protein Index (IPI) 73

analysis 88
ORFs 75

internet 4, 6
biological data sub-division 23
heart 30
resources 22–37
search methods 22
see also search engines

InterPro database 102, 367
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InterProScan 31
intronic sequence

identification 266
removal 279

intronic splicing enhancers (ISE) 256, 258,
259, 260

intronic splicing silencers (ISS) 256, 258,
259, 260

introns 276
variants 252

inverse genetics 265, 266
inverted repeat detection 265
isochore boundary identification 200–1
isoleucine 298, 300

Jackson Lab Radiation Hybrid Map 124, 125
Jagged 1 267
journals, full-text 29–30

KEGG graphical biochemical pathway maps
325

keyword retrieval technique 364–5
knowledge management 6
Kozak sequence 261–2, 264
KWOK 54
Kyoto Encyclopedia of Genes and Genomes 14

laboratory information management systems
(LIMS) 7

lactate dehydrogenase 312, 313
least squares regression 236
leucine 298, 300–1
likelihood methods 231
likelihood ratio 219–20
linkage analysis 9–10, 165–76, 218–23

non-parametric 219–20, 222–3
parametric 218–19
recombination 9
study population 166–7

linkage disequilibrium 10, 11, 12, 41–2,
168–9, 229–35

absolute 169
definition 229
genetic nature of region 180
genotypes with unknown phase 233–4
haplotype analysis 235
human variation 375
maps 148, 199–200, 375
marker maps 197
measures 168
recombination frequency 200
two polymorphisms 168–9

linkage maps 145–8, 146–8
genome-wide 145–6

LINKAGE program 221, 225

Linux 22
literature

digests 30
mining 365–6
search 6, 14, 28–9

full-text journals 29–30
locus

characterization of genetic/physical
199–201

defining 180–4
genetic characterization 182
genome sequence extraction 184–5
human genome 168
known/novel genes 189
refinement 173–6
sequence characterization 167–8

locus-specific databases 57
LocusLink 52, 64
LocusLink/RefSeq (LLRS) 34–5, 36
LOD (log of the odds) score 10

GDB database 61
linkage measurement 218
locus definition 182
maps 154, 156
quantitative trait locus mapping 236
quantitative trait NPL analysis 222

LOKI program 220
long interspersed elements (LINEs) 275
lysine 299, 304–5
lysosomes 293

malate dehydrogenase 312, 313
MALDI/TOF peptide mass fingerprinting 349
Malecot isolation 231
Mammalian Gene Collection 130–1, 324
Map Manager QTX program 237–9, 240
MapMaker 145
MAPMAKER/EXP program 236
MAPMAKER/QTL program 236, 237
MAPMAKER/SIBS program 219–23, 224,

236
mapping, simple interval 236
MapQTL program 237
maps

construction of marker 197–8
cytogenetic 148–9
genome 145
haplotype 148, 172
integration 155, 156, 158
linkage disequilibrium 148, 197, 199–200,

375
master 156
see also genetic maps; physical maps;

radiation hybrid maps
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MapViewer 146, 154
genome viewer 157–8
radiation hybrid maps 151

MARFinder 275
markers

density 9, 11, 42
single nucleotide polymorphisms 147

disease association 175
genomic sequence

identification/extraction 184–5
integrity checking 185–8

identification of known and novel 195–9
localization to human genome 184
map

construction 197–8
order 188

mapping to human genome 182
multi-allelic 225
order resolution 154–5, 159
panel design 199–201
sequence 184
sets 171
statistical analysis 173, 175

Markov Chain method 220, 235, 236
Marshfield genetic linkage map 146, 147
Marshfield website 49
MaskerAid 207, 209
mass spectrometry 349–50
MatInspector program 284
Matrix-Assisted Laser Desorption/Ionisation

(MALDI)/Time-of-Flight (TOF)-based
peptide mass fingerprinting 349

Matrix/Scaffold Attachment Regions (S/MARs)
275

maximum likelihood estimate (MLE),
expectation–maximization (EM) 170

maximum likelihood methods 231
mDNA 207
MEDLINE 25, 28

record analysis 366
MEGABLAST 84
Mendelian disorders 8, 9

genes 10
mutations affecting mRNA splicing 259
regulatory regions 257

MERLIN program 220, 225, 226
metabolic pathways 356, 357, 358
MetaCrawler 25
metasearch engines 25
methionine 298, 301
MFOLD program 263
MHC locus 128
microarrays 15

data 14
tracks 193–5

expression 15
technology costs 194

microsatellites 7, 40, 47
data 197
databases 60–1
genome map 145
identifying in sequence data 196–7
mouse 133
polymorphic sequences 279
Sequence Tagged Sites 60
see also single tandem repeat (STR) markers

minisatellites 41, 47
MIPS database 358, 365, 366–7
Mitelman Map of Chromosome Aberrations in

Cancer 50, 62–3, 325
mitochondria 292–3
MITOMAP database 61–2
Molecular Biology Database Collection 33
Molecular Modelling Database of 3D

structures (MMDB) 31
Moment Method 231
monogenic disorders see Mendelian disorders
monogenic traits

linkage analysis 172–3
mapping 16

Monte Carlo simulation test 174, 220, 236
SAGE tags 331, 333

motif recognition 86–7
mouse

bioinformatics 120–1
data integration 121–2

BLAT 74
cDNA clone resources 130–1
chemical mutagenesis 133
chromosome sequencing 129
concensus linkage map 124
disease models 137
DNA mapping panels 124
functional genomics 135–7
gene targeting 133
genetic maps 124–5
genetic variants 133
genome 15, 16–17, 106

assembly 74
manipulation techniques 133
sequence 126, 127

genome sequencing
comparative genomics 131–2
completion 144
initiative 128–9
resources 129–30
systematic genome-wide approaches 132
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Induced Mutant Resource 133–4
microsatellites 133
model organism databases 122–4
monogenic trait mapping 16
phenotypic variants 134
physical maps 125–7
radiation hybrid maps 124–5
single nucleotide polymorphisms 133
strains

characterization resources 134
nomenclature standards 122

transgenic 133
whole genome shotgun data 128

Mouse Atlas and Gene Expression Database
Project 103

Mouse Genome Database 103, 122, 123, 124
DNA mapping panels 124
maps of curated orthologues 131

Mouse Genome Informatics (MGI) 123
Mouse Genome Resources, NCBI 130
Mouse Genome Sequencing Project (MGS)

123
Mouse Phenome Database (MPD) 134
Mouse Tumor Biology Database (MTB) 123
MouseBLAST 129–30
mRNA

3’ UTR 75, 79, 261
regulatory elements 263
RNA instability signals 279

5’ UTR 75, 79, 261
IRES 262
regulatory elements 263
RNA instability signals 279

accession numbers 77–8
analysis tools/databases 263–4
correctly spliced transcript 189–90
extended 72–3, 84
folding 263
Homo sapiens CAGH44 102
human 72–3
LocusLink/RefSeq (LLRS) 34–5
mature 258
mutations affecting splicing 259
regulatory 264
regulatory control of processing/translation

263
regulatory elements 264
secondary structure stability 262–3
splice variants 190
transcripts 75

polymorphisms 260–1
UTRs 252
virtual 72, 84, 85, 86

mtDNA 61, 62

multigenic disease see complex disease
Multimapper program 236
Multiple QTL Mapping (MQM) 236
mutagenesis, site-directed 312
Mutant Mouse Regional Resource Centres

134
mutations 8, 40, 41, 291–2

AAUAAA polyadenylation signal 260
Alagille syndrome 267
amino acids 311–13
correlated 367
databases 46, 57–8, 59, 60

non-nuclear/somatic 61–3
disease 250
haemoglobin 291
human data 7
key in amino acid evolution 312–13
loss 44–5
mapping 4
matrices 296, 297
Mendelian 44
multiple founder 231
natural history 44–6
non-nuclear 61–3
phenotypic 204
point 50, 311
potentially deleterious 269
single nucleotide polymorphism relationship

43–6
somatic 50

databases 61–3
survival 274
tools for visualization 63–6

MYCN oncogene 321
myotonic dystrophy 47

National Centre for Biotechnology Information
see NCBI

NC160 Cell Line Project 192, 193–5
NCBI Acembly tool 106, 108
NCBI browser 173
NCBI database 60

genome viewer 79–80
Human BAC resource page 152
human genome sequencing 97–8
Mouse Genome Resources 130
novel gene analysis 81, 82–3, 88
radiation map 186
see also LocusLink

NCBI MapViewer tool 50, 60, 63, 107–8
characterization of genetic/physical locus

199–201
duplication detection in genomic assemblies

186, 187
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NCBI MapViewer tool (continued)
FOXP2 gene genomic region 108, 109
identification of known and novel markers

195–9
marker localization to human genome 184
marker mapping to human genome 182
marker panel design 199–201
pros and cons 183

NCBI RefSeq, human transcripts 73
neighbourhood quality standard (NQS) 205
neurological disorders, mouse models 135
neutral theory of evolution 41
NF1 gene 201
NOD2 gene 9

Crohn’s disease 166, 172
Notch receptor family 267
nuclear matrix 275
nucleic acid sequences, secondary database

34–5
Nucleic Acids Research 33
nucleosomes 275
nucleotide sequences

analysis of novel regulatory elements and
motifs 264–6

databases 30–1

Oak Ridge National Laboratory (ORNL)
Genome Channel 108–9, 110, 111

On-line Mendelian Inheritance in Man (OMIM)
6, 14, 30, 58, 60

chromosome aberrations 49
insertion/deletion polymorphisms 49
literature search 31
LocusLink 35
MITOMAP linkage 62
predicted protein–protein links 365

Open Reading Frame EST sequencing 324
open reading frames (ORFs) 72, 73, 256, 258

identification 261
International Protein Index 75
novel protein 84, 85
yeast two-hybrid system 351

ORESTES 324
organelles 292–3
ovarian cancer 9

palindromic motif detection 265
pentanucleotide sequences 263
peptide mass fingerprinting 349
PFAM 36
phage display 354
phenotype

evolutionary selection 311
genetic interactions 103
mouse variants 134

similarity 137
single nucleotide polymorphism effects 311
variance 220

phenotype–genotype correlation 8, 24
phenylalanine 298, 301–2
phosphorylation 295
Phusion 129
physical distance 154
physical locus analysis 12, 13
physical maps 144, 148–51

accuracy 154
bacterial artificial chromosome 151–2
contig 151–2
cytogenetic 148–9
draft sequence curation 152–3
FISH 149
human 148–51
human genome sequence 153–4
integration 155, 156, 158
mouse 125–7
radiation hybrid 149–51
rat 128
UDB database 159
value 154
yeast artificial chromosome 151–2

PIMRider program 355, 356
PIPMAKER 131
PIScout program 356
PLABQTL program 236
PMPLUS program 226, 227, 229
Point Accepted Mutation (PAM) matrices 296
polyA signal 326, 328
polyA sites 108, 109
polyA tail 326, 328, 337
polyacrylamide gel electrophoresis (PAGE)

348–9
polyadenylation signals 260
POLYBAYES 205–6, 207
polymerase chain reaction (PCR)

allele-specific 170
assay design for SNPs 204, 208–10
DNA amplification 209
electronic 43, 153, 187
primer design 207–8
primers 211

annealing temperature 207–8, 211
polymerase II promoters 277, 278
polymorphic markers 145
polymorphic microsatellite sequences 279
polymorphisms 41, 176

amino acids 266–7, 268
approximate localization 253
AU-rich motif disruption in 3’ UTR

sequence 263
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candidate 251–2
computational discovery 205
DNA 252
functional in genes/gene regulatory

sequences 254–5
identification of potentially functional 195,

196
mapping 4
mRNA transcript 260–1
multiple 9
non-synonymous coding 266–8
predictive functional analysis 250–69

decision-making 252, 253, 256–7, 266
gene promoter characterization 257
novel regulatory element/motif analysis

264–6
putative splicing elements 259–60
regulatory region characterization 257

regulatory regions 266
in silico predictions 268–9
splice region 259
see also single nucleotide polymorphisms

(SNP)
Polyphred 205, 206, 207
population stratification 166–7, 175
PPARγ , diabetes association 14
Primer3 208, 209, 210, 211

pooled sequencing 211
Probe-Set data 31
proline 298, 299, 309–11
promoter(s) 278, 281, 282, 283

modules 278
prediction tools 26–7
TF-sites 277–8

promoter region anatomy 257
promoter sequences 282–3

analysis 265
deletions/insertions 278

PromoterInspector program 283
PROSITE 36
protein(s)

amino acids 266, 267
behaviour 292–6
structural 294
substitution matrices 379, 380–3

annotation 268
auto-activator bait 354–5
cellular location 266, 292–3
Clusters of Orthologous Groups (COGs)

101
complexes

co-localization 15
purification 348

correlated mutations 367

cytosolic 292
databases 36, 73
docking propositions 367
domain–domain interactions 367
duplication 293
environments 292–3
evolution 293–4
expression data analysis 350–1
expression networks 350
extracellular 292

amino acid substitution matrices 381
function 294
functional analysis 58
gene fusion events 359, 360
gene neighbourhood 359–61
gene regulation networks 358–9
guilt-by-association rule 366–7, 368
homologues 101, 293, 294
ID numbers 32
Interacting Domain Profile Pair (IDPP)

362–3, 364
interaction inferences 362–3
interaction networks 351–4

analysis 355–6
automated validation 364–5
building 354
cell pathways 356, 357, 358–9
centrality 368
combined methods 361–2
comparative genomics 359
exploitation 366–7
false-negative/-positive interactions

354–5, 368
inference mechanism across organisms

362
lethality 368
literature mining 365–6
manual validation 365
prediction 359–63
prediction assessment/validation 363–6
prediction rule deduction 367–8
shape analysis 367–8

intracellular 382
matches 88
membrane 383
metabolic pathways 356, 357, 358
microarrays 354
orthologues 101, 102, 293, 294
pairs 101
paralogues 101, 102, 293, 294
phylogenetic profiles 361
post-translational modification 294–6
prey 355
prey gene sequencing 354
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protein(s) (continued)
regulation 347
sequence information 346
signal transduction networks 358
speciation 293
structure 293
websites 36
yeast two-hybrid system 351–2, 353

protein-binding sites 276
protein kinase 294
Protein Mutation Database (PMD) 58
protein sequence databases, internet searching

30–1
protein–protein interactions 15, 351–2, 353,

354, 356
domain–domain interactions 367
predicted links 365

proteome
cell pathways 356, 357, 358–9
false-negative/-positive interactions 354–5
identification 349–50
interactions 351
purification 348
separation 348–9
see also protein(s), interaction networks

proteome-wide characterization 350
proteomic informatics 347
proteomics

classical 347–51
definition 346
see also protein(s), interaction networks;

proteome
pseudogenes 264
PSI-BLAST program 296
PubMed 23, 24, 28–9

full-text journals 30
GenBank accession numbers 35
literature search 31

pufferfish genome 106
Purkinje cell protein 4 193, 194
pyruvate metabolic pathway 356, 357, 358

QTDT program 223
QTL Cartographer 236, 237
quantitative trait loci 17

multiple 236
rat 123, 124
rodents 137

quantitative trait locus mapping 236–9
heterogeneous stocks 237
simple interval mapping 236, 239–40

quantitative traits 220, 221
non-parametric linkage analysis 222–3

quotation mark use 26

radiation hybrid code (RH-code) 334
Radiation Hybrid Database (RHdb) 125
radiation hybrid maps

duplication detection in genomic assemblies
186–7

human 149–51, 154
Human Transcriptome Map 336
mouse 124–5
rat 128
resolution 188

RANTES gene 280
rat

bioinformatics 120–2
disease models 137
functional genomics 135–7
genes 123
genetic maps 127–8
genome 15, 16–17
genome sequencing

comparative genomics 131–2
initiative 131
systematic genome-wide approaches 132

genomic resources 127
model organism databases 122–4
monogenic trait mapping 16
physical maps 128
radiation hybrid maps 128
strains 121, 122

Rat Genome Database 122, 123–4
RatMap 123, 127, 128, 131
RealSNP 208
recombinant inbred line 236
recombination 180

events 145
reduced representation shotgun (RRS)

sequencing 54
reference sequence (RefSeq) 34, 35
Reference SNPs (RefSNPs) 52
regions of increased gene expression see

RIDGES
regulatory elements 257, 276

bioinformatic characterization 15
identification 283–4

regulatory regions 276
relational database management system

(RDBMS) 335, 336
repeat sequences 108, 109
RepeatMasker 205, 207, 209, 211
restriction fragment length polymorphisms

(RFLPs) 11
RIDGES 321, 338, 339–40, 341

statistical evaluation 340
RIKEN Exploration Research Group 130
RING-finger 86–7
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risk allele 167
RNA

instability signals 279
non-coding 101, 264
processing 279
regulatory 374
see also mRNA

RNA-binding proteins 263
Rosetta-stone method 359
RPCI BAC libraries 126–7
RS number 35, 36
RT-PCR data 14

Saccharomyces cerevisiae 15
proteome 103

Saccharomyces Genome Database 103
SAGE 14, 192, 219, 220, 320, 323

analysis 321
computational resources 333–4

concatemer sequences 322, 325
critical values 331, 332
data processing 325–34
DNA microarray technology comparison

323
expression profiles 192, 321
Human Transcriptome Map 336, 337,

340–1
libraries 323, 324, 325, 330–1

Human Transcriptome Map construction
334, 335

RIDGES 339
statistical tests 331–3

principles 322
statistical analysis resources 330
tag-to-gene mapping 325–6, 327, 330, 333
tags 322, 325–30, 331–3

anti-sense 330
Human Transcriptome Map construction

334, 337
sense 330
sequence errors 334

Z-test 333, 334
SAGE300 331, 333
SAGEmap

tag-to-gene mapping 327, 328, 333, 334
Virtual Northern tool 325

SAHA nucleotide searches 76
salt bridges 304, 305
SANGER 54
SCA10 gene 47
schizophrenia 10
Schizosaccharomyces pombe 15
Scirus 23, 25–6, 27

point mutations 50
SDS-PAGE 348, 349

search engines 23, 24–6
domain restriction 26–7
filtering results 26
quotation mark use 26
search syntax 26–7

sequence data 30–1
biological sequence databases 31–6

Sequence Retrieval Server (SRS) 30, 31, 32,
58

sequence tagged sites (STS) 60, 145
genetic maps 152–3
markers 151
physical maps 152–3
rat 124
see also dbSTS

sequence variation database 58
Sequencher 205, 206–7
Serial Analysis of Gene Expression see SAGE
serine 299, 307
serine/arginine-rich (SR) protein family 258
serine proteases 80, 81
short insertion/deletion polymorphisms (SIDPs)

49
short interspersed elements (SINEs) 275
short tandem repeats see microsatellites
sib transmission disequilibrium (S-TDT) 167,

225
SIBPAIR program 219
sickle cell disease 291
signal transduction networks 358
silencers 275
simple interval mapping 236, 239–40
SimWalk2 223, 225, 226
single base extension (SBE) reactions 211
single gene disorders see Mendelian disorders
single marker association 239–40
single nucleotide polymorphisms (SNP) 8, 11,

35, 168
allelic discrimination methods 208
amino acids 311–12
annotation 195
assay methods 208–9
assay validation 212–13
BACE gene 77
base-wise multiple alignment 205
biallelic 168
candidate 55–6, 57, 66, 197

identification 198–9
CATG sequence 329, 330
common 41
consortium 12



406 INDEX

single nucleotide polymorphisms (SNP)
(continued)

cystic fibrosis new binding site creation 280
data 7, 54–5

integration 43
databases 51–7

mouse 133
density 250
design 211, 212

parameters 209–10
detection

algorithm 205
methods 205–7, 208

discovery 175, 204
de novo 205
global 204
method 55
non-sequencing methods 207
targeted 204

disease
gene mapping 100
susceptibility 204

disease-causing 311–12
effects in promoters 278
exonic region 250
experimental parameters 209–10
exporting 197, 199
flanking sequences 209
gene coding sequence 280
gene expression 281
genetic maps 325
genome map 145
genome-wide 207
genome-wide linkage map 145–6
genomic 204

overlap 54–5
genotyping 175
guide sequence 213
haplotype

and linkage dysequilibrium maps 148
patterns 198
tags 197

human variation 375
identification 205

for marker set selection 171, 172
of potentially functional 195, 196

intragenic region 250
intronic region 250
large-scale discovery 42
location 276, 279, 280
map locations 212–13
mapping to promoter region 283
marker density 147
missense 311–12

mouse 133
mRNA secondary structure 263
mutation

events 40
relationship 43–6

natural history 44–6
non-coding 273–85

evaluation 280
non-synonymous (nsSNP) 250, 311
nucleotide difference scanning 205
phenotypic effects 311
physical maps 325
pooled sequencing 211, 212
potential effects 274–5, 276, 279
primer

design 209–10
selection 210–11, 212

private 55, 56
reaction formats 208
reference 52
regulatory 277–8, 279–80

functional consequence estimation 284–5
in silico detection/evaluation 281–2

regulatory analysis 277, 281–2
regulatory DNA 276
regulatory networks 281
regulatory regions 279–80, 280
relationship evolution 169
repeat masking 209, 211
score 205
sequence trace data 206
single base extension reactions 211
statistical analysis 175
structural elements 276–7
TF binding site influence 279–80, 282
tools for visualization 63–6
TSC linkage map 147–8
validation 285
variation 43–6
see also dbSNP

single tandem repeat (STR) markers 9, 11, 12,
172–3

allele frequency distribution 172–3, 174
analysis 173–5
genotyping 174
identifying in sequence data 196–7
multiallelic 168
mutation rate 172, 173
polymorphic 9
polymorphism testing 174
see also microsatellites

slipped-strand mispairing 48
small nuclear ribonucleoprotein (snRNP)

complexes 258
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SMARTest 275
The SNP Consortium (TSC) Allele Frequency

Project 208
SNPHAP program 226
SNPper 52, 64–5, 199, 208

flanking sequences 209
identification of known and novel markers

195–9
SOLAR program 220
solenoids 275
SPAD database 358
spinocerebellar ataxia 10 (SCA10) 47
splice acceptor/donor sites 259
splice signals 279
splice site prediction

location 259
tools 259–60

spliceosome 258
splicing 279
SPLINK program 220
SQL (Structured Query Language) 335–6
SSAHA 99
statistical analysis tools 218–40

association analysis 223–5
haplotype reconstruction 226–9
quantitative trait locus mapping 236–9
single marker association 239–40
see also linkage analysis; linkage

disequilibrium
STRAT program 167
structural elements 276–7
STRUCTURE program 167
Swiss-3Image 36
SWISS-PROT keyword overlap 364
SwissProt/TrEMBL (SPTR) 36, 73
synteny groups 360–1

Tag ′n Tell 57, 198
tandem affinity purification (TAP) 348
Tandem Mass Spectrometry 349
Tandem Repeat Finder 196–7
tandem repeat polymorphisms 46–8

see also variable number of tandem repeats
(VNTR)

TaqmanTM assays 208
TBLASTN expressed sequence tags 84, 86
TDTHAP program 226
Tetraodon nigroviridis (pufferfish) 15, 106
TG deletion 265
The SNP Consortium (TSC) Allele Frequency

Project 208
threonine 299, 307–8
TIGR human gene index 35, 73, 84

EST assemblies 88

TNG radiation hybrid map 98, 149
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