

Contributing Authors
�

Brad ‘RenderMan’ Haines is one of the more visible and vocal members
of the wardriving community, appearing in various media outlets and speak-
ing at conferences several times a year. Render is usually near by on any
wardriving and wireless security news, often causing it himself. His skills have
been learned in the trenches working for various IT companies as well as his
involvement through the years with the hacking community, sometimes to
the attention of carious Canadian and American intelligence agencies. A firm
believer in the hacker ethos and promoting responsible hacking and sharing
of ideas, he wrote the ‘Stumbler ethic’ for beginning wardrivers and greatly
enjoys speaking at corporate conferences to dissuade the negative image of
hackers and wardrivers.

His work frequently borders on the absurd as his approach is usually
one of ignoring conventional logic and just doing it. He can be found in
Edmonton, Alberta, Canada, probably taking something apart.

Michael J. Schearer is an active-duty Naval Flight Officer and Electronic
Countermeasures Officer with the U.S. Navy. He flew combat missions
during Operations Enduring Freedom, Southern Watch, and Iraqi Freedom.
He later took his electronic warfare specialty to Iraq, where he embedded
on the ground with Army units to lead the counter-IED fight. He currently
serves as an instructor of Naval Science at the Pennsylvania State University
Naval Reserve Officer Training Corps Unit, University Park, PA.

Michael is an active member of the Church of WiFi and has spoken
at Shmoocon, DEFCON, and Penn State’s Security Day, as well as other
forums. His work has been cited in Forbes, InfoWorld and Wired.

Michael is an alumnus of Bloomsburg University where he studied
Political Science and Georgetown University where he obtained his degree
in National Security Studies. While at Penn State, he is actively involved in
IT issues. He is a licensed amateur radio operator, moderator of the Church
of WiFi and Remote-Exploit Forums, and a regular on the DEFCON and
NetStumbler forums.

�i
Frank Thornton runs his own technology consulting firm, Blackthorn
Systems, which specializes in wireless networks. His specialties include
wireless network architecture, design, and implementation, as well as
network troubleshooting and optimization. An interest in amateur radio
helped him bridge the gap between computers and wireless networks.
Having learned at a young age which end of the soldering iron was hot,
he has even been known to repair hardware on occasion. In addition to
his computer and wireless interests, Frank was a law enforcement officer
for many years. As a detective and forensics expert he has investigated
approximately one hundred homicides and thousands of other crime
scenes. Combining both professional interests, he was a member of the
workgroup that established ANSI Standard “ANSI/NIST-CSL 1-1993
Data Format for the Interchange of Fingerprint Information.” He co-au-
thored RFID Security (Syngress Publishing, ISBN: 1597490474), WarDriv-
ing: Drive, Detect, and Defend: A Guide to Wireless Security (Syngress, ISBN:
193183603), as well as contributed to IT Ethics Handbook: Right and Wrong
for IT Professionals (Syngress, ISBN: 1931836140) and Game Console Hack-
ing: Xbox, PlayStation, Nintendo, Atari, & Gamepark 32 (ISBN: 1931836310).
He resides in Vermont with his wife.

Chapter 1
Introduction to Wireless
Networking,
Wardriving, and Kismet
Solutions in this chapter

Exploring Past Discoveries That Led to
Wireless

Exploring Present Applications for Wireless

Introduction to Wardriving

Introduction to Wardriving with Linux

Wardriving with Linux and Kismet

■

■

■

■

■

˛	Summary
�

w

� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
Exploring Past
Discoveries That Led to Wireless
Wireless technology is the method of delivering data from one point to another without
using physical wires, and includes radio, cellular, infrared, and satellite. A historic
 perspective will provide you with a general understanding of the substantial evolution
that has taken place in this area. The common wireless networks of today originated
from many evolutionary stages of wireless communications and telegraph and radio
applications. Although some discoveries occurred in the early 1800s, much of the
evolution of wireless communication began with the emergence of the electrical age
and was affected by modern economics as much as by discoveries in physics.

Because the current demand of wireless technology is a direct outgrowth of
traditional wired 10-Base-T Ethernet networks, we will also briefly cover the advent
of the computer and the evolution of computer networks. Physical networks, and
their limitations, significantly impacted wireless technology. This section presents
some of the aspects of traditional computer networks and how they relate to wireless
networks. Another significant impact to wireless is the invention of the cell phone.
This section will briefly explain significant strides in the area of cellular
communication.

Discovering Electromagnetism
Early writings show that people were aware of magnetism for several centuries before
the middle 1600s; however, people did not become aware of the correlation between
magnetism and electricity until the 1800s. In 1820, Hans Christian Oersted, a Danish
physicist and philosopher working at that time as a professor at the University of
Copenhagen, attached a wire to a battery during a lecture; coincidentally, he just
happened to do this near a compass and he noticed that the compass needle swung
around. This is how he discovered that there was a relationship between electricity
and magnetism. Oersted continued to explore this relationship, influencing the works
of contemporaries Michael Faraday and Joseph Henry.

Michael Faraday, an English scientific lecturer and scholar, was engrossed in
magnets and magnetic effects. In 1831, Michael Faraday theorized that a changing
magnetic field is necessary to induce a current in a nearby circuit. This theory is
actually the definition of induction. To test his theory, he made a coil by wrapping a
paper cylinder with wire. He connected the coil to a device called a galvanometer, and
then moved a magnet back and forth inside the cylinder. When the magnet was
ww.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 �
moved, the galvanometer needle moved, indicating that a current was induced in the
coil. This proved that you must have a moving magnetic field for electromagnetic
induction to occur. During this experiment, Faraday had not only discovered induc-
tion but also had created the world’s first electric generator. Faraday’s initial findings
still serve as the basis of modern electromagnetic technology.

Around the same time that Faraday worked with electromagnetism, an American
professor named Joseph Henry became the first person to transmit a practical electri-
cal signal. As a watchmaker, he constructed batteries and experimented with magnets.
Henry was the first to wind insulated wires around an iron core to make electromag-
nets. Henry worked on a theory known as self-inductance, the inertial characteristic of
an electric current. If a current is flowing, it is kept flowing by the property of self-
inductance. Henry found that the property of self-inductance is affected by how the
circuit is configured, especially by the coiling of wire. Part of his experimentation
involved simple signaling.

It turns out that Henry had also derived many of the same conclusions that Faraday
had. Though Faraday won the race to publish those findings, Henry still is remembered
for actually finding a way to communicate with electromagnetic waves. Although
Henry never developed his work on electrical signaling on his own, he did help a man
by the name of Samuel Morse. In 1832, Morse read about Faraday’s findings regarding
inductance, which inspired him to develop his ideas about an emerging technology
called the telegraph. Henry actually helped Morse construct a repeater that allowed
telegraphy to span long distances, eventually making his Morse Code a worldwide
language in which to communicate. Morse introduced the repeater technology with his
1838 patent for a Morse Code telegraph. Like so many great inventions, the telegraph
revolutionized the communications world by replacing nearly every other means of
communication—including services such as the Pony Express.

Exploring Conduction
Samuel Morse spent a fair amount of time working on wireless technology, but he also
chose to use mediums such as earth and water to pass signals. In 1842, he performed a
spectacular demonstration for the public in which he attempted to pass electric current
through a cable that was underwater. The ultimate result of the demonstration was
wireless communication by conduction, although it was not what he first intended. Morse
submerged a mile of insulated cable between Governor’s Island and Castle Garden in
New York to prove that a current could pass through wire laid in water. He transmitted
a few characters successfully, but, much to his dismay, the communication suddenly
www.syngress.com

w

� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
halted—sailors on a ship between the islands, unseen to the spectators, raised their ship’s
anchor and accidentally pulled up the cable, and not knowing what it was for, proceeded
to cut it. Morse faced considerable heckling from the spectators and immediately began
modification to the experiment. He successfully retested his idea by transmitting a
wireless signal between copper plates he placed in the Susquehanna River, spanning a
distance of approximately one mile. In doing so, he became the first person to demon-
strate wireless by conduction. Conduction is the flow of electricity charges through
a substance (in this case, the water in the river) resulting from a difference in electric
potential based on the substance.

Inventing the Radio
After the significant discoveries of induction and conduction, scientists began to test
conduction with different mediums and apply electricity to machinery. The scholars
and scientists of the day worked to apply these discoveries and explore the parameters
of the properties. After the theory of conduction in water was proven, new theories
were derived about conduction in the air. In 1887, a German named Heinrich Hertz
became the first person to prove electricity travels in waves through the atmosphere.
Hertz went on to show that electrical conductors reflect waves, whereas nonconduc-
tors simply let the waves pass through the medium. In addition, Hertz also proved
that the velocity of light and radio waves are equal, as well as the fact that it is
 possible to detach electrical and magnetic waves from wires and radiate. Hertz served
as inspiration to other researchers who scrambled to duplicate his results and further
develop his findings. Inventors from all across the world easily validated Hertz’s
experiments, and the world prepared for a new era in radio, the wireless transmission
of electromagnetic waves.

An Italian inventor called Guglielmo Marconi was particularly intrigued by Hertz’s
published results. Marconi was able to send wireless messages over a distance of ten
miles with his patented radio equipment, and eventually across the English Channel.
In late 1901, Marconi and his assistants built a wireless receiver in Newfoundland and
intercepted the faint Morse code signaling of the letter “S” that had been sent across the
Atlantic Ocean from a colleague in England. It was astounding proof that the wireless
signal literally curved around the earth, past the horizon line—even Marconi could not
explain how it happened, but he had successfully completed the world’s first truly long-
distance communication, and the communication world would never be the same.

Today we know that the sun’s radiation forms a layer of ionized gas particles
approximately one hundred miles above the earth’s surface. This layer, the ionosphere,
ww.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 �
reflects radio waves back to the earth’s surface, and the waves subsequently bounce
back up to the ionosphere again. This process continues until the energy of the waves
dissipates.

Another researcher by the name of Reginald Fessenden proceeded to further
develop Marconi’s achievements, and he became the first person to create a radio
band wave of human speech. The importance of his results was felt worldwide, as
radio was no longer limited to telegraph codes.

Mounting Radio-Telephones in Cars
In 1921, mobile radios began operating in the 2 MHz range, which is just above the
Amplitude Modulation (AM) frequency range of current radios. These mobile radios
were generally used for law enforcement activities only. They were not integrated
with the existing wireline phone systems that were much more common at that
time—since the technology was still so new, the equipment was considered experi-
mental and not practical for mass distribution. In fact, people originally did not
consider mobile radio as a technology for the public sector. Instead, the technology
was developed for police and emergency services personnel, who really served as the
pioneers in mobile radio.

It was not until 1924 that the voice-based wireless telephone had the ability to be
bi-directional, or two-way. Bell Laboratories invented this breakthrough telephone.
Not only could people now receive messages wirelessly, they could also respond to
the message immediately, greatly increasing convenience and efficiency. This
improved system was still not connected to landline telephone systems, but the
evolution of wireless communication had taken one more major step. One issue that
still plagued this early mobile radio system was the sheer size of the radio; it took up
an entire trunk. Add to the size restriction, the cost of the radio system that was
almost as expensive as the vehicle.

In 1935, Edwin Howard Armstrong introduced Frequency Modulation (FM). This
technology not only increased the overall transmission quality of wireless radio but
also drastically reduced the size of the equipment. The timing could not have been any
better. World War II had begun, and the military quickly embraced FM technology to
provide two-way mobile radio communication. Due to the war, companies immedi-
ately sensed the urgency to develop the FM technology rapidly, and companies such as
Motorola and AT&T immediately began designing considerably smaller equipment.
Many of these new inventions became possible due to the invention of the circuit
board, which changed the world of electronic equipment of all types.
www.syngress.com

ww

� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
Inventing Computers and Networks
Though the beginning of the computer age is widely discussed, computer discoveries
can be attributed to a long line of inventors throughout the 1800s, beginning with
the Englishman Charles Babbage, who in 1822 created the first calculator called the
“Difference Engine.” Then came Herman Hollerith, who in 1887 produced a punch
card reader to tabulate the American census for 1890. Later developments led to the
creation of different punch card technologies, binary representation, and the use of
vacuum tubes.

The war effort in the 1940s produced the first decoding machine, the Colossus,
used in England to break German codes. This machine was slow, taking about 3 to
5 seconds per calculation. The next significant breakthrough was the creation of the
Electronic Numerical Integrator and Computer (ENIAC) by Americans John Presper
Eckert and John W. Mauchley. The ENIAC was the first general-purpose computer
that computed at speeds 1000 times greater than the Colossus. However, this machine
was a behemoth, consuming over 160 Kilowatts of power–when it ran; it dimmed
lights in an entire section of Philadelphia. The main reason these machines were so
huge was the vacuum tube technology. The invention of the transistor in 1948
changed the computer’s development and began shrinking the machinery. In the next
thirty years, the computers got significantly faster and smaller.

In 1981, IBM introduced the personal computer for the home, school, and business.
The number of PCs more than doubled from 2 million in 1981 to 5.5 million in 1982;
more than 65 million PCs were being used ten years later. With the surge of computer
use in the workplace, more emphasis was being placed on how to harness their power
and make them work together. As smaller computers became more powerful, it became
necessary to find a way to link them together to share memory, software, and informa-
tion, and to find a way for them to communicate together. Network technology to this
point consisted of a mainframe that stored the information and performed the processes
hooked to several “dumb terminals” that provided the input.

Ethernet was developed in the early 1970s and was used to link multiple PCs
within a physical area to form what is known as a Local Area Network (LAN).
A LAN connects network devices over a short distance. Common applications include
offices, schools, and the home. Sometimes businesses are composed of several LANs
that are connected together. Besides spanning a short distance, LANs have other
distinctive attributes. LANs typically are controlled, owned, and operated by a single
person or department. LANs also use specific technologies, including Ethernet and
w.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 �
Token Ring for connectivity. There are typically two basic components to the LAN
configuration: a client and a server. The client is the node that makes a request, and
the server is the node that fulfills that request. The client computer contains the client
software that allows for access to shared resources on the server. Without the client
software, the computer will not actively participate in either of the two network
models.

Wide Area Networks (WANs) span a much wider physical distance. Usually a
WAN is a widely dispersed collection of LANs. The WAN uses a router to connect
the LANs physically. For example, a company may have LANs in New York, Los
Angeles, Tokyo, and Sydney; this company would then implement a WAN to span
the LANs and to enable communication throughout the company. WANs use differ-
ent connectivity technology than LANs—typically, T1 or T3 lines, Asynchronous
Transfer Mode (ATM) or Frame Relay circuits, microwave links, or higher speed
Synchronous Optical Network (SONET) connections.

The largest WAN is the Internet. The Internet is basically a WAN that spans the
entire globe. Home networks often implement LANs and WANs through cable
modems and digital subscriber line (DSL) service. In these systems, a cable or DSL
router links the home network to the provider’s WAN and the provider’s central
gateway to reach the Internet.

A wireless local area network transmits over the air by means of base stations, or
access points, that transmit a radio frequency; the base stations are connected to an
Ethernet hub or server. Mobile end-users can be handed off between access points,
as in the cellular phone system, though their range generally is limited to a couple
hundred feet.

Inventing Cell Phones
Wireless technology is based on the car-mounted police radios of the 1920s. Mobile
telephone service became available to private customers in the 1940s. In 1947,
Southwestern Bell and AT&T launched the first commercial mobile phone service in
St. Louis, Missouri, but the Federal Communications Commission (FCC) limited the
amount of frequencies available, which made possible only 23 simultaneous phone
conversations available within a service area (the mobile phones offered only six
channels with a 60 kHz spacing between them). Unfortunately, that spacing schema
led to very poor sound quality due to cross-channel interference, much like the cross
talk on wireline phones. The original public wireless systems generally used single
high-powered transmitters to cover the entire coverage area. In order to utilize the
www.syngress.com

w

� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
precious frequencies allotted to them, AT&T developed an idea to replace the single
high-powered transmitter approach with several smaller and lower-powered transmit-
ters strategically placed throughout the metropolitan area; calls would switch between
transmitters as they needed a stronger signal. Although this method of handling calls
certainly eased some of the problems, it did not eliminate the problem altogether. In
fact, the problem of too few voice channels plagued the wireless phone industry for
several years.

The problem was that demand always seemed to exceed supply. Since the FCC
refused to allocate more frequencies for mobile wireless use, waiting lists became AT&T’s
temporary solution as the company strove for the technological advances necessary to
accommodate everyone. For example, in 1976, there were less than 600 mobile phone
customers in New York City, but there were over 3500 people on waiting lists. Across
the United States at that time, there were nearly 45,000 subscribers, but there were still
another 20,000 people on waiting lists as much as ten years long. Compare this situation
to today’s, in which providers give away free phones and thousands of minutes just to
gain a subscriber.

Cellular technology has come a long way. The term cellular describes how each
geographic region of coverage is broken up into cells. Within each of these cells is a
radio transmitter and control equipment. Early cellular transmission operated at
800 MHz on analog signals, which are sent on a continuous wave. When a customer
makes a call, the first signal sent identifies the caller as a customer, verifies that he or
she is a customer of the service, and finds a free channel for the call. The mobile
phone user has a wireless phone that in connection with the cellular tower and base
station, handles the calls, their connection and handoff, and the control functions of
the wireless phone.

Personal communications services (PCS), which operates at 1850 MHz, followed
years later. PCS refers to the services that a given carrier has available to be bundled
together for the user. Services like messaging, paging, and voicemail are all part of the
PCS environment. Sprint is the major carrier that typically is associated with PCS.
Some cellular providers began looking into digital technology (digital signals are
basically encoded voice delivered by bit streams). Some providers are using digital
signals to send not only voice, but also data. Other advantages include more power of
the frequency or bandwidth, and less chance of corruption per call. Coverage is based
on three technologies: Code Division Multiple Access (CDMA), Time Division
Multiple Access (TDMA), and Global System for Mobile Communication (GSM).
ww.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 �
Exploring Present
Applications for Wireless
Many corporations and industries are jumping into the wireless arena. Two of the
industries most committed to deploying wireless technologies are airports and hotels,
for business travelers’ communications needs. If they are traveling in a car, they use their
wireless phones. When they are at work or home, they are able to use their computers
and resources to again be productive. But when staying in a hotel for the night or even
a week, there are few choices—a business traveler can look for the RJ-11 jack and
connect to the Internet via 56-kilobit modem, not connect at all, or connect wirelessly.
When a hotel provides the correct configuration information based on the provider,
and a software configuration, a business traveler with wireless capabilities can connect
to their network without worrying about connection speed or out-of-date modems.

Airports offer such services to increase travelers’ productivity at a time when they
would otherwise be isolated from business resources. The same configuration applies:
set the configuration in the wireless client software and voilà, you are connected. This
wireless technology allows users to get access to the Internet, e-mail, and even the
corporate intranet sites utilizing a virtual private network (VPN) solution. Now, the
work (or in some cases, gaming) can be done during what used to be known as idle
time. This increase in productivity is very attractive to corporations who need their
increasingly mobile workforce to stay connected. This scenario is accomplished using
the following scheme:

A wireless Internet service provider contracts with the airport or hotel to set
up wireless access servers and access points.

Access points are located in specific locations to provide wireless coverage
throughout the hotel or airport.

Using this scenario, anyone with an account to that service provider can get access
to the Internet by walking into the location where the service is offered with their
laptop, Personal Digital Assistant (PDA), or other wireless device, such as a mobile
phone with 802.11 capability. This access includes such applications as e-mail, Intranet
connection via VPN solution, push content such as stock updates or email, and Web
browsing. Not that this is not all work and no play–you can also set up online gaming
and video-on-demand sessions. In fact, non-work scenarios open up the possible user
base to children and families, multiplying the use and demand of this technology.

■

■

www.syngress.com

10 Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
Applying Wireless
Technology to Vertical Markets
There are several vertical markets in addition to airports and hotels that are realizing
the benefits of utilizing wireless networks. Many of these markets, including delivery
services, public safety, finance, retail, and monitoring applications, are still at the begin-
ning of incorporating wireless networks, but as time passes and the demand and popu-
larity grows, they will integrate wireless networking more deeply.

Using Wireless in Delivery Services
Delivery and courier services, which depend on mobility and speed, employ a wireless
technology called Enhanced Specialized Mobile Radio (ESMR) for voice communica-
tion between the delivery vehicle and the office. This technology consists of a dispatcher
in an office plotting out the day’s events for a driver. When the driver arrives at his
location, he radios the dispatcher and lets them know his location. The benefit of ESMR
is its ability to act like a CB radio, allowing all users on one channel to listen, while still
allowing two users to personally communicate. This arrangement allows the dispatcher
to coordinate schedules for both pick-ups and deliveries and track the drivers’ progress.
Drivers with empty loads can be routed to assist backlogged drivers. Drivers that are on
the road can be radioed if a customer cancels a delivery. This type of communication
benefits delivery services in two major areas, saving time and increasing efficiency.

United Parcel Service (UPS) utilizes a similar wireless system for their business
needs. Each driver carries a device that looks like a clipboard with a digital readout
and an attached penlike instrument. The driver uses this instrument to record each
delivery digitally. The driver also uses it to record digitally the signature of the person
who accepts the package. This information is transmitted wirelessly back to a central
location so that someone awaiting a delivery can log into the Web site and get accurate
information regarding the status of a package.

Using Wireless for Public Safety
Public safety applications got their start with radio communications for maritime
endeavors and other potentially hazardous activities in remote areas. Through the use
of satellite communications and the coordination of the International Maritime
Satellite Organization (INMARSAT), these communications provided the ships with
information in harsh weather or provide them a mechanism to call for help. This type
of application led to Global Positioning Systems (GPS), which are now standard on
www.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 11
naval vessels. In many cases, a captain can use the 24 satellites circling the globe in
conjunction with his ship’s navigational system to determine his exact location and
plot his course. GPS is also used for military applications, aviation, or for personal use
when tracking or pinpointing the user’s location could save his or her life.

Today, there are medical applications that use wireless technology such as ambulance
and hospital monitoring links. Remote ambulatory units remain in contact with the
hospital to improve medical care in the critical early moments. An emergency medical
technician can provide care under a doctor’s instruction during transport prior to
arriving in the hospital’s emergency room. Standard monitoring of critical statistics are
transmitted wirelessly to the hospital.

Using Wireless in the Financial World
Wireless applications can keep an investor informed real-time of the ticker in the
stock market, allowing trades and updates to be made on the go. No longer is the
investor tied to his desk, forced to call into his broker to buy and sell. Now, an online
investor has the opportunity to get real-time stock quotes from the Internet pushed
to his wireless device. He can then make the needed transactions online and make
decisions instantaneously in response to the market.

There are also services that allow you to sign up and get critical information about
earmarked stocks. In this scenario, you can set an alarm threshold on a particular stock
you are following. When the threshold is met, the service sends a page to you instantly.
Again, this improves the efficiency of the investor.

Using Wireless in the Retail World
Wireless point-of-sale (POS) applications are extremely useful for both merchant and
customer, and will revolutionize the way retail business transactions occur. Registers
and printers are no longer fixed in place and can be used at remote locations. Wireless
scanners can further assist checkout systems. Wireless technology is used for connecting
multiple cash registers through an access point to a host computer that is connected to
the WAN. This WAN link is used to send real-time data back to a corporate headquar-
ters for accounting information.

Another type of wireless point-of-sale application is inventory control. A handheld
scanner is used for multiple purposes. The operator can check inventory on a given
product throughout the day and wirelessly transfer the data back to the main com-
puter system. This increases efficiency in that the device is mobile and small, and the
data is recorded without manually having to enter the information.
www.syngress.com

w

1� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
Using Wireless in Monitoring Applications
We have been using wireless technologies for monitoring for years. There are typically
two types of monitoring: passive and active. Active monitoring is conducted by use of
radio signals being transmitted, and any of a number of expected signals received. An
example of this implementation is the use of radar guns in traffic control. In this case,
the patrolman points the gun and pulls the trigger, and a specific reading of a specific
target is displayed on the radar unit. Passive monitoring is a long-term implementation
whereby a device listens to a transmitter and records the data. An example of this
is when an animal is tagged with a transmitter and the signal is collected and data is
gathered over a period of time to be interpreted at a later date.

Monitoring applications in use today include NASA listening to space for radio
signals, and receiving pictures and data relayed from probes; weather satellites
 monitoring the weather patterns; geologists using radio waves to gather information
on earthquakes.

Applying Wireless
Technology to Horizontal Applications
Along with the many vertical markets and applications, you can apply wireless tech-
nologies to horizontal applications, meaning that delivery services, public safety, finance,
retail, and monitoring can all use and benefit from them. The next section gives an
overview of some of the more popular horizontal trends in wireless technology.

Using Wireless in Messaging
The new wave of messaging is the culmination of wireless phones and the Wireless
Application Protocol (WAP) and Short Message Service (SMS). This service is similar
to the America Online Instant Messaging service. The ability for two-way messaging,
multiservice calling, and Web browsing in one device creates a powerful tool for
consumers, while providing the vendors the ability to generate higher revenues. Look
for wireless messaging services to be introduced in local applications, particularly
within restaurants, to replace conventional wait lists.

Using Wireless for Mapping
Mapping in a wireless environment, of course, relates back to the GPS system; GPS
not only assists the maritime industry with navigation, but also commercial vehicles
and private cars for safety. In a few cars out today, a GPS receiver is placed on board to
ww.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 1�
prevent drivers from becoming lost. It will also display a map of the surrounding area.
The signal from the GPS satellites is fed into an onboard computer, which contains an
application with software that contains a topographical map. The more current the
software is, the more accurate the map will be. The coordinates of the receiver are
placed on the topographical map in the program, usually in the form of a dot, and a
display screen provides a visible picture of where in relation to the map someone is at
that moment. This is updated live as the receiver moves.

Using Wireless for Web Surfing
In addition to the standard laptop computer connected to a wireless LAN with
Internet connectivity, there has been an explosion of other wireless units that offer
multiple voice and data applications integrated in one piece of equipment. Typically,
personal organizer functionality and other standard calculation-type services are
offered, but now, these devices are used with appropriate software to get access to the
Internet. This brings the power of the Internet and the vast repository of information
to the palm of the hand.

PDAs, Palm, Inc.’s handheld devices, and wireless phones with the appropriate
hardware and software are now being used for Internet access at speeds of up to
56 Kbps. With new technologies such as Evolution Data Only (EVDO), some wireless
phones now even offer speeds up 400-700 Kbps with maximum speeds of 2.4 Mbps.
This is moving wireless into the realm of not only browsing the Internet, which is a
big accomplishment in and of itself, but Internet gaming. As the interface of the
wireless devices gets better and better, the gaming community will be able to offer
high quality online games played on your PDA.

Using Bluetooth Wireless Devices
In recent years Bluetooth devices that also transmit in the 2.4 GHz frequency range have
become increasingly popular. With the convenience of Bluetooth, it is now possible to
wirelessly sync devices such as PDAs or smartphones with laptop computers. Bluetooth
headsets that allow hands free, wireless communication with wireless phones can be seen
almost everywhere. In fact, many new cars now come with Bluetooth capability so that
wireless phones can be paired with the car stereo allowing hands free calls to be made
and received without even requiring a headset.

As more organizations and corporations realize the convenience that Bluetooth
devices offer the popularity of these devices will only continue to increase. In addition
to headsets and syncing capabilities, some wireless phones that have Internet access
www.syngress.com

1� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
allow tethering via Bluetooth. Tethering allows you to connect your phone to the
Internet through your wireless phone and access the Internet through your laptop
computer.

Introduction to Wardriving
In this section, we’ll briefly introduce you to wardriving and Kismet. Before you
begin wardriving, it is important to understand what it is and, more importantly,
what it is not. It is also important to understand some of the terminology associated
with wardriving. In order to successfully wardrive, you need certain hardware and
software tools. Since there are hundreds of possible configurations that can be used
for wardriving, some of the most popular are presented to help you decide what to
buy for your own initial wardriving setup.

Many of the tools that a wardriver uses are the same tools that an attacker uses to
gain unauthorized access to a wireless network. These are also the tools that you will
use during your wireless penetration tests.

Wardriving has the potential to make a difference in the overall security posture
of wireless networking. By understanding wardriving, obtaining the proper tools, and
then using them ethically, you can make a difference in your overall security. First,
let’s look at where wardriving comes from and what it means. (See Mike Schearer’s
Chapter 9 for much more on wardriving.

The Origins of Wardriving
Wardriving is misunderstood by many people; both the general public and the news
media. Because the name “Wardriving” sounds ominous, many people associate
wardriving with criminal activity. Before discussing how to wardrive, you need to
understand the history of wardriving and the origin of the name. The facts necessary
to comprehend the truth about wardriving are also provided.

Definition
Wardriving is the act of moving around a specific area, mapping the population of
wireless access points for statistical purposes. These statistics are then used to raise
awareness of the security problems associated with these types of networks (typically
wireless). The commonly accepted definition of wardriving is that it is not exclusive
of surveillance and research by automobile. Wardriving is accomplished by anyone
moving around a certain area looking for data, which includes: walking, which is often
www.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 1�
referred to as warwalking; flying, which is often referred to as warflying; bicycling, and
so forth. Wardriving does not utilize the resources of any wireless access point or
network that is discovered, without prior authorization of the owner.

The Terminology History of Wardriving
The term wardriving comes from “War dialing,” a term that was introduced to the
general public by Matthew Broderick’s character, David Lightman, in the 1983 movie,
WarGames. War dialing is the practice of using a modem attached to a computer to
dial an entire exchange of telephone numbers sequentially (e.g., 555-1111, 555-1112,
and so forth) to locate any computers with modems attached to them.

Essentially, Wardriving employs the same concept, although it is updated to a more
current technology: wireless networks. A wardriver drives around an area, often after
mapping out a route first, to determine all of the wireless access points in that area.
Once these access points are discovered, a wardriver uses a software program or Web
site to map the results of his or her efforts. Based on these results, a statistical analysis is
performed. This statistical analysis can be of one drive, one area, or a general overview
of all wireless networks.

The concept of driving around discovering wireless networks probably began the
day after the first wireless access point was deployed. However, wardriving became
more well-known when the process was automated by Peter Shipley, a computer
security consultant in Berkeley, California. During the fall of 2000, Shipley conducted
an 18-month survey of wireless networks in Berkeley, California and reported his
results at the annual DefCon hacker conference in July 2001. This presentation,
designed to raise awareness of the insecurity of wireless networks that were deployed
at that time, laid the groundwork for the “true” wardriver.

Wardriving Misconceptions
Some people confuse the terms wardriver and hacker. The term “hacker” was originally
used to describe a person that could modify a computer to suit his or her own pur-
poses. However, over time and owing to the confusion of the masses and consistent
media abuse, the term hacker is now commonly used to describe a criminal; someone
that accesses a computer or network without owner authorization. The same situation
can be applied to the term wardriver. Wardriver has been used to describe someone
that accesses wireless networks without owner authorization. An individual that accesses
a computer system (wired or wireless) without authorization is a criminal. Criminality
has nothing to do with hacking or wardriving.
www.syngress.com

w

1� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
In an effort to generate ratings and increase viewership, the news media, has
sensationalized wardriving. Almost every local television news outlet has done a story
on “wireless hackers armed with laptops” or “drive-by hackers” that are reading your
e-mail or using your wireless network to surf the Web. These stories are geared to
propagate fear, uncertainty, and doubt (FUD). FUD stories are usually small risk, and
attempt to elevate the seriousness of a situation in the minds of their audience.
Stories that prey on fear are good for ratings, but they don’t always depict an activity
accurately.

An unfortunate side effect of these stories is that reporters invariably ask ward-
rivers to gather information that is being transmitted across a wireless network so
that the “victim” can see all of the information that was collected. Again, this has
nothing to do with wardriving, and while this activity (known as sniffing) in and of
itself is not illegal, at a minimum it is unethical and is not a practice that wardrivers
engage in.

These stories also tend to focus on gimmicky aspects of Wardriving such as the
directional antenna that can be made using a Pringles can. While a functional antenna
can be made from Pringles cans, coffee cans, soup cans, or pretty much anything
cylindrical and hollow, the reality is that very few (if any) Wardrivers actually use these
for Wardriving. Many of them make these antennas in an attempt to verify the original
concept and improve upon it in some instances.

The Truth about Wardriving
The reality of wardriving is simple. Computer security professionals, hobbyists, and
others are generally interested in providing information to the public about the security
vulnerabilities that are present with “out-of-the-box” configurations of wireless access
points. Wireless access points purchased at a local electronics or computer store are not
geared toward security; they are designed so that a person with little or no understanding
of networking can purchase a wireless access point, set it up, and use it.

Computers are a staple of everyday life. Technology that makes using computers
easier and more fun needs to be available to everyone. Companies such as Linksys and
D-Link have been very successful at making these new technologies easy for end users
to set up and use. To do otherwise would alienate a large part of their target market.
(See Chapter 10 for a step-by-step guide to enabling the built-in security features of
these access points.)
ww.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 1�
The Legality of Wardriving
According to the Federal Bureau of Investigation (FBI), it is not illegal to scan access
points; however, once a theft of service, a denial of service (DoS), or a theft of infor-
mation occurs, it becomes a federal violation through 18USC 1030 (www.usdoj.gov/
criminal/cybercrime/1030_new.html). While this is good, general information, any
questions about the legality of a specific act in the U.S. should be posed directly to
either the local FBI field office, a cyber-crime attorney, or the U.S. Attorney’s office.
This information only applies to the U.S. Wardrivers are encouraged to investigate
the local laws where they live to ensure that they aren’t inadvertently violating them.
Understanding the distinction between “scanning” and identifying wireless access
points, and actually using the access point, is the same as understanding the difference
between Wardriving (a legal activity) and theft, (an illegal activity).

Introduction to
Wardriving with Linux
Linux is the most robust operating system for wardriving. Unlike Windows, Linux offers
the ability to place your wireless card in monitor (rfmon) mode, which allows you to
perform passive scanning to detect access points that are not broadcasting the Service
Set Identifier (SSID) beacon. These are commonly referred to as cloaked, or hidden access
points. This capability, along with the large amount of open source and freeware wireless
programs that have been developed for Linux, has helped make Linux one of the most
popular operating systems used by both wardrivers and penetration testers.

Preparing Your System to Wardrive
Before you can wardrive using Linux, you need to ensure that your operating system
is properly configured to utilize the tools that are available. Specifically, you need a
kernel that supports monitor mode and your specific Wireless Local Area Network
(WLAN) card. After kernel configuration is complete, you need to install the proper
wardriving tools and tailor their configurations to your preferences.

Preparing the Kernel
Configuring Linux to Wardrive used to be a very difficult process that involved
both kernel configuration and driver patching. That is no longer the case. As of the
www.syngress.com

http://www.usdoj.gov/criminal/cybercrime/1030_new.html
http://www.usdoj.gov/criminal/cybercrime/1030_new.html

1� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
2.6.16 kernel revision, it is possible to build a Linux kernel with all of the support
you need compiled into it. Depending on your personal preference, this can be done
by either compiling support directly into the kernel or by building the appropriate
kernel modules.

Preparing the Kernel for Monitor Mode
There are several ways to generate a new kernel configuration, the easiest of which is
probably using the menuconfig option.
cd /usr/src/linux

make menuconfig

Once the menu configuration opens, enable Generic IEEE 802.11 Networking
Stack, IEEE 802.11 Wireless Encryption Protocol (WEP) encryption (802.1x), IEEE
802.11i Counter-Mode/CBC-Mac Protocol (CCMP) support, and IEEE 802.11i
Temporal Key Integrity Protocol (TKIP) encryption:
Networking --->

--- Networking support

 Networking options --->

<*> Generic IEEE 802.11 Networking Stack

<*> IEEE 802.11 WEP encryption (802.1x)

<*> IEEE 802.11i CCMP support

<*> IEEE 802.11i TKIP encryption

The 802.11i CCMP and TKIP support are not necessary for monitor mode;
however, they are required for penetration testing of WiFi Protected Access
(WPA)-encrypted networks.

Next, you need to configure your kernel to support your Wireless Fidelity (WiFi)
card. Regardless of your type of card, you need the following options:
Device Drivers --->

Network device support --->

[*] Network device support

 Wireless LAN (non-hamradio) --->

 [*] Wireless LAN drivers (non-hamradio) & Wireless Extensions

Next you need to compile in support for your specific card(s). First you need to
decide if you want to compile your drivers into the kernel or install them as kernel
www.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 1�
modules. In many cases, this is a personal choice. For the purpose of this book, we’ll
compile the drivers as modules. Two of the most popular cards for Wardriving are the
Hermes chipset-based Orinoco Gold Classic card and the Prism 2.5-based Senao NL
2511 EXT 2.

Adding support for these cards is simply a matter of telling the kernel to compile
the module:
Device Drivers --->

Network device support --->

Wireless LAN (non-hamradio) --->

<M> Hermes chipset 802.11b support (Orinoco/Prism2/Symbol)

…

<M> IEEE 802.11 for Host AP (Prism2/2.5.3 and WEP/TKIP/CCMP)

[] Support downloading firmware images with Host AP driver

<M> Host AP driver for Prism2/2.5/3 in PLX9052 PCI adaptors

<M> Host AP driver for Prism2.5 PCI adaptors

<M> Host AP driver for Prism2/2.5/3 PC Cards

Compiling modules for all three of these gives you the ability to use both Personal
Computer Memory Card International Association (PCMCIA)-based Prism2 cards
and Mini-PCI cards. This can be useful when performing penetration testing tasks
that require two cards.
Note

The Hermes driver also has support for Prism2 cards. If you plan to use the
Host access point drivers (which you will for many penetration testing tasks)
you should not compile in both Hermes support and Host access point sup-
port. The Hermes driver will generally load first; consequently, you will have
to unload it and manually modprobe the Host access point drivers.
Once you have selected all of the modules you need to compile, you are ready to
make your kernel. Exit out of the menuconfig and choose <Yes> when prompted to
save your new kernel configuration (see Figure 1.1).
www.syngress.com

�0 Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet

Figure 1.1 Saving the Kernel Configuration
Next, compile the new kernel and the selected modules:
make && make modules_install

Now copy the bzImage to vmlinuz in your boot partition:
cp arch/i386/boot/bzImage /boot/linux/vmlinuz

If you use Grub for your bootloader, you do not need to make any configuration
changes. If you use LILO, you need to rerun /sbin/lilo to update the bootloader
configuration.

Issuing the lsmod command allows you to verify that the proper drivers were loaded
at boot (see Figure 1.2).
www.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 �1

Figure 1.� Host ACCESS POINT Drivers for a Mini-PCI Senao Card
At this point, all of the drivers and kernel options you need are installed to run a
WLAN scanning program in monitor mode.

Preparing the Kernel for a Global Positioning System
Discovering WLANs is a lot of fun if you can generate maps of your drives. In order
to do that, you need to prepare your kernel to work with a Global Positioning
System (GPS). Most GPS units come with a serial data cable; however, you can now
purchase a unit that has a Universal Serial Bus (USB) cable. If you need to use a USB
serial converter, you have to have support for your converter in the kernel.

Go to the /usr/src/linux directory and issue the make menuconfig command. Then
select the appropriate driver for your USB serial converter:
Device Drivers --->

USB support --->
www.syngress.com

�� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
USB Serial Converter support --->

<*> USB Serial Converter support

[*] USB Generic Serial Driver

<*> USB Prolific 2303 Single Port Serial Driver

The Prolific 2303 driver is a very common USB serial converter driver. You will
need to ensure that you have compiled in support for your specific converter.

Next, exit out of the menuconfig, save your kernel configuration, compile your
new kernel, move or copy the bzImage to your boot partition, and, if necessary, update
your bootloader. After rebooting, insert your USB serial adapter. The system dmesg will
show if the kernel correctly recognized your converter (see Figure 1.3).
www.syngress.com

Figure 1.� The Prolific USB Serial Converter

Note

When you execute make menuconfig, it reads from the running kernel or
from the kernel configuration file for the current kernel. This configuration
has all of the changes that were previously made, therefore, they do not
need to be repeated.

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 ��
Now you have all of the kernel support you need to both wardrive and perform
wireless penetration tests.

Installing the Proper Tools
Once you have generated a kernel to support monitor mode and have compiled the
proper drivers, you are ready to install the necessary tools to perform a wardrive.
There are two tools that you need to install in order to accomplish this: Kismet and
GPSD (www.pygps.org/gspd/downloads).

Installing Kismet
In this section, we’ll provide a brief introduction to installing Kismet. See Chapter 2
for complete installation instructions. Kismet installation is a very straightforward
process. Simply download the latest release of Kismet from www.kismetwireless.net/
download.shtml and save it in a directory of your choice. (Older versions of Kismet
can be retrieved from www.kismetwireless.net/code.) Uncompress and untar the file
and then change to the directory it created and issue the following commands:
./configure

make

make install
Note

These three commands are the standard way to configure and compile Linux
programs from source. For the remainder of this chapter and unless other-
wise noted, “compile the program” refers to these three steps.
This installs Kismet in the default directory (/usr/local/bin/kismet) and the Kismet
configuration files in (/usr/local/etc/kismet).
www.syngress.com

http://www.pygps.org/gspd/downloads
http://www.kismetwireless.net/download.shtml
http://www.kismetwireless.net/download.shtml
http://www.kismetwireless.net/code

�� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet

Compiling from Source or Packages

The compilation examples in this chapter show how to compile programs from
source by first obtaining the source from the developer’s Web site and then
manually compiling the program. This is only one way to compile and install
programs. Most distributions have some sort of package management system
that can be used to either install programs, or obtain and install them. Red Hat
and Fedora use the Red Hat Package Manager (RPM) package management
system, Gentoo uses emerge, and Slackware packages are in .tgz format.
Sometimes it is beneficial to use your distribution’s package management sys-
tem to install programs; however, it should be noted that when you use a
package manager to compile and install a program, it may place the binaries
and configuration files in non-standard directories. This chapter assumes that
you have compiled from source or that your package manager has placed the
binaries and configuration files in the standard locations. If your package
manager did not do this, you can search for the configuration files or binaries
by using the find command:

find / -name kismet.conf –print

This command searches the entire filesystem for the kismet.conf file and
displays the results on the screen. The –print switch is rarely required on Linux
systems; however, adding it doesn’t change the functionality of the command.
Installing GPSD
GPSD is a program that interfaces with your GPS unit, which in turn passes data to
Kismet to provide GPS coordinates of your location when an access point is discov-
ered. The installation of GPSD is slightly different from the normal Linux installation
procedure, because there is not a “make install” option. Issue the ./configure and make
commands, and then run either gpsd from the location where you compiled it, or
copy the gps and gpsd files to a directory in your path such as /usr/bin or /usr/local/bin.

Configuring Your System to Wardrive
Once you have compiled and installed Kismet and GPSD, you need to edit the Kismet
configuration files so that Kismet will function properly on your system. Unless you
www.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 ��
(or your package manager) have changed the location, the configuration files are put in
/usr/local/etc. There are two files you need to edit: kismet.conf and kismet_ui.conf.

The kismet_ui.conf file controls the user interface options of Kismet. For the
most part, you can leave these options at their default, unless you want to tweak the
appearance of the interface. Kismet does have a Welcome window that displays
every time you start Kismet (see Figure 1.4).
Figure 1.� The Kismet Welcome Window
To get rid of the Welcome window when Kismet starts, change the showintro
option to false:
Do we show the intro window?

showintro=false

The kismet.conf file is where the important Kismet options are set. In order for
Kismet to function properly, this file must be edited to reflect your environment and
hardware. First, you need to edit the suiduser variable:
www.syngress.com

�� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
User to setid to (should be your normal user)

suiduser=roamer

Next you need to set your source variable. This is the option that tells Kismet what
type of driver and card you are using, as well as what interface your card is configured
on. The following example tells Kismet to use the Host access point driver and that
your card is configured as wlan0. The third option, wlan, can be set to any value.
source=hostap,wlan0,wlan

Here are some of the more common source options for different cards and
drivers:
Source line for Intel Pro Wireless 2100

source=ipw2100,eth0,ipw2100source

Source line for wlan-ng Prism2 driver

source=prism2,wlan0,prism

Source line for Cisco (dependent on Cisco driver used)

source=cisco,eth0,cisco

Alternate Source line for Cisco (dependent on Cisco driver used)

source=cisco_cvs,eth1:wifi0,ciscocvs

Source line for Hermes based cards (Orinoco)

source=orinoco,eth0,orinocosource

Unless you plan to enable multiple sources, you don’t need to change the enable-
sources variable, which is commented out unless it is changed.

By default, Kismet hops channels. This is what allows Kismet to detect access
points that are operating on the different channels in the 2.4 GHz range. Unless you
only want to detect access points on a specific channel, this should be left as is:
Do we channelhop

channelhop=true

If you want to identify access points on a specific channel, disable channel
hopping and set the initial channel in your source variable. For instance, to identify
access points on channel 8 only:
source=hostap,wlan0,wlan,8

channelhop=false

The next option to tweak is the channel velocity. This controls how many channels
Kismet should cycle through per second. By default, this is set to three channels per
second. This is an acceptable, if conservative, option. To increase the speed that Kismet
hops channels, increase this number. To decrease the speed, decrease this number:
www.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 ��
How many channels per second do we hop? (1-10)

The following option scans each channel for 1/5 of a second

channelvelocity=5

The following option scans each channel for ½ of a second

channelvelocity=2

The options between channel hopping and the GPS configuration are set correctly
by default and do not usually need to be edited. The GPS configuration options should
be set if you are using a GPS unit to capture report coordinates. Unless you change the
port, GPSD listens on port 2947; therefore, the kismet.conf options for GPS should be
set to reflect this:
Do we have a GPS?

gps=true

Host:port that GPSD is running on. This can be localhost OR remote!

gpshost=localhost:2947

The next option you need to look at is the interval that the log files are written.
The default setting is to write the logs every 5 minutes. For a casual wardrive, this is
probably acceptable; however, for professionals, it is a good idea to write the logs
regularly in case of a system or program crash (every minute is a safe option):
How often (in seconds) do we write all our data files (0 to disable)

writeinterval=60

Kismet produces a very comprehensive set of log files as shown in Table 1.1.
www.syngress.com

Table 1.1 The Kismet Log Filetypes

Dump A raw packet dump that can be opened in Ethereal of other
packet analyzers.

Network A text file listing the networks that have been detected.

CSV A comma-separated listing of networks detected

XML An eXtensible Markup Language (XML) formatted log of net-
works detected. This is useful for importing into other
applications.

Weak The weak Initialization Vector (IV) packets detected in AirSnort
format.

Cisco A log of Cisco Discovery Protocol (CDP) broadcasts produced by
Cisco equipment.

GPS The log of GPS coordinates of access points detected.

w

�� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
The logtypes variable tells Kismet which types of log files you want it to generate.
The default options are acceptable (dump, network, csv, xml, weak, cisco, and gps);
however, you may not need all of these. The bare minimum that you should ensure
are generated are the dump, network and gps logs:
logtypes=dump,network,gps

The logdefault variable specifies what text should be prepended to the log file
name. Kismet writes the files in the format [logdefault]-[date]-[sequence-number].[filetype].
For instance, if the logdefault is set to Roamer, then the gps log of the third wardriving
session of the day would be named Roamer-Oct-14-2006-3.gps. This option can be
helpful for sorting results if you are wardriving multiple areas in the same day:
Default log title

logdefault=MyCustomer

The final option that you may want to change in the kismet.conf file is the logtem-
plate. This option controls both the location that the logs are created and stored in
and the format of the log files. If no changes are made to this variable, the logs will
be created in the default format, with the default title, in the directory that Kismet is
launched from. However, it can be beneficial to store all of your logs in one location,
or to store the different types of logs in different directories. There are seven variables
that can be set in relation to the logtemplate:

%n is the title set in logdefault

%d is the current date in the format Month-Day-Year (Mon-DD-YYYY)

%D is the current date in the format YYYYMMDD

%t is the time that the log started

%i is the increment number of the log (i.e., 1 for first log of the day, 2 for
second, and so forth)

%l is the log type

%h is the home directory

■

■

■

■

■

■

■

ww.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 ��
For example, if you wanted to have your logs generated in different directories
by filetype, and created in the wardrives directory, you would have the following
logtemplate:
logtemplate=WarDrives/%l/%n-%d-%i

Assuming you set the logtypes variable to dump, network, and gps, you would need
to create the wardrives directory with three sub-directories: dump, network, and gps.

After you have made any changes, save the file and you are ready to wardrive
with Kismet.

Wardriving with Linux and Kismet
There are a lot of reasons to use Kismet to wardrive. The exceptional range of log
files you can generate make it very attractive. Unlike some other wardriving software,
Kismet doesn’t just detect the access points, but also saves a complete log of all of the
packets it sees. These dumps can be opened with other packet analyzers and can be
fed into penetration test programs. Monitor mode allows you to identify access points
that are cloaked (not broadcast via the SSID). Additionally, since the SSID is sent in
cleartext when a client authenticates to the network, Kismet can often determine the
SSID of these cloaked networks.

Now that we have tweaked the Kismet configuration files to our liking, we are
ready to start wardriving with Kismet. In this section, you will learn how to start Kismet
and how to use the Kismet interface once you have it running. We look at the different
options that Kismet provides and, how to use a graphical front end for Kismet.

Starting Kismet
Starting Kismet is relatively simple. Assuming Kismet is in your path, type kismet at
the command line as shown in Figure 1.5.
www.syngress.com

w

�0 Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet

Figure 1.� Starting Kismet … Something is Wrong Here
The process ID file (pidfile) could not be set. This is because you don’t have
permission to write to /var/run. There are two ways to fix this. You can change
the location where the pidfile is written in the kismet.conf:
Where do we store the pid file of the server?

piddir=/home/roamer

Changing the location of the pidfile is one option, but because you have already set
a suiduser in your kismet.conf, it is probably easier to su to root and then run kismet.
Root has permission to write the pidfile, but after it has performed that action, Kismet
drops the privilege down to the suiduser, avoiding the potential security risks of running
as root.
ww.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 �1

Figure 1.� Kismet Starts Successfully
Using the Kismet Interface
In this section, we’ll provide you with an introduction to the Kismet interface. See
Chapter 4 for a complete discussion of the Kismet menus and functionality. In addition
to its ability to identify access points, Kismet has a very powerful user interface. You can
find a large amount of information about each access point you have identified by
examining the Kismet options in the user interface. Obvious information (e.g., the SSID)
is available to you immediately, whether or not an access point is encrypted. For a casual
wardrive, this may be all of the information that you need. However, if you want to
understand more about the networks you have discovered, you need to be familiar with
the different options available to you.
www.syngress.com

w

�� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
Understanding the Kismet Options
When using the different options with Kismet, you will need to change your sort
option first. By default, Kismet is in autofit sort mode. Unfortunately, in this mode you
can’t obtain a lot of information about the different access points beyond the infor-
mation displayed in the default view. To change the sort mode, press the s key to
bring up a menu of the sort options (see Figure 1.7).
Figure 1.� Kismet Sort Options
At this point, you have 14 different sort options to choose from. Choose the option
that best suits your needs. For instance, if you are only interested in access points with
a specific SSID, you would choose s to have the access points sorted by SSID and then
scroll down to the desired SSID.
ww.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 ��
Once you have chosen your sort method, you can start to find out additional
information about each network. Using the arrow keys, highlight the access point you
are interested in and press Enter to get the Network Details (see Figure 1.8).
Figure 1.� Network Details
You now know the MAC address (Basic Service Set Identifier [BSSID]) of the
access point. Because the access point has a max rate of 54.0, you know that it is an
802.11 g access point operating in infrastructure mode. Although the main screen said
that the network was using encryption, you can now identify WPA as the encryption
mechanism in place. Once you are satisfied with the information, press the q key to
close the details and return to the main view.

You may want to know what clients are connected to a network. By highlighting
the access point and pressing the c key, you are presented with a list of any clients
associated with the network (see Figure 1.9).
www.syngress.com

w

�� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet

Figure 1.� The Client List
In client view, you can determine the MAC address of any clients associated with
the access point. Additionally, in some cases, you can determine what type of card it is.
The number of data packets that Kismet has seen and the number of those packets
that are encrypted are identified. Once Kismet determines the Internet Protocol (IP)
address of a specific client it is noted as well as the strength of the signal. Again, when
you are finished looking at the client list, press q to return to the Network List.

There will be times where you are only interested in collecting information
about access points on a specific channel. To disable channel hopping and collect data
only on one channel, highlight an access point on that channel and press the
Shift+L key to lock on that channel.

To resume channel hopping, press Shift+H.
Kismet also has a robust help panel. If you are unsure of an option, press h to display

the Help menu (see Figure 1.10).
ww.syngress.com

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 ��

Figure 1.10 Kismet Help Interface
Using a Graphical Front End
In addition to the standard Kismet interface, you can also use a graphical front end
with Kismet. Gkismet (http://gkismet.sourceforge.net) is a front-end interface that
works with Kismet. Once you have downloaded, compiled, and installed gkismet,
you need to start the Kismet server:
/usr/bin/kismet_server

Next, start gkismet:
/usr/bin/gkismet

This opens the gkismet interface and prompts for the kismet_server information
(see Figure 1.11). In most cases, you will be connecting to localhost (127.0.0.1) on
default port 2501.
www.syngress.com

http://gkismet.sourceforge.net

�� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet

Figure 1.11 Connecting to the Kismet Server
Once you have entered your server information, gkismet connects to the Kismet
server and you receive a display of the access points Kismet has discovered
(see Figure 1.12).
www.syngress.com

Figure 1.1� Gkismet in Action

 Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 ��
There are several advantages to using a graphical front end. For instance, the card
power is displayed on the main screen. This can be very beneficial for direction
finding and walking down rogue access points. Additionally, you can easily examine
the information on each access point by double-clicking on the access point you
want information on.

Additionally, the sort options can be accessed by right-clicking on the SSID of
the access point and choosing how you want the information sorted.
www.syngress.com

�� Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet
Summary
In this chapter we have explored some of the history of how wireless technology
evolved into what it is today. Wireless technology has been around a long time, consid-
ering the decades of development in radio and cellular telephone technology. These
technologies have been quietly developing in the background while PDAs, Palm Pilots,
and other handheld wireless devices have been gaining notoriety. Other uses such as
GPS and satellite communications to the home have also been developing for main-
stream applications. These applications offer consumers many advantages over wireline
counterparts, including flexibility, mobility, and increased efficiency and timeliness.

Kismet is a very powerful tool for both wardriving and penetration testing. One
of the biggest advantages of using Kismet is the ability to use monitor or rfmon
mode. This allows you to identify wireless networks that are not broadcasting the
SSID in the beacon frame and sets Kismet apart from it’s Windows counterpart
NetStumbler.

It is important to understand the many features of Kismet in order to maximize its
effectiveness. You can edit the kismet.conf file to customize Kismet to your specific
needs. The Kismet panel interface provides many different user options for sorting and
viewing information about the networks you discover. Additionally, graphical front
end programs like gkismet can make viewing data a bit easier on the eyes.

Kismet is also a great tool for a penetration tester that needs to perform WLAN
discovery to identify a target network. Although not always 100% accurate, Kismet
can be used to identify the type of encryption used on a network. For complete
accuracy you can open your Kismet.dump file, which is a pcap formatted packet
capture with a packet analyzer like Ethereal or Wireshark to get an accurate reading
of the encryption level. Once you have identified your target and the encryption level
there are several open source tools available to continue the penetration test. Tools
like SirMacsAlot can spoof the MAC address and bypass MAC Address filtering. The
Aircrack suite provides a rich set of tools for collecting packets, injecting packets and
cracking WEP. CoWPAtty is a great tool for breaking WPA-PSK when used with
a good dictionary file.

Performing a penetration test on a wireless network is often a way to get an
initial foothold into the network. While always remembering to stay within scope,
you can then begin your normal penetration test process for the internal network
with your entry vector into the wireless network providing you with an excellent
jumping off point.
www.syngress.com

Chapter 2
Basic Installation
Solutions in this chapter:

Introduction

Kismet Perquisites

Kismet installation

Compiling and installing Kismet on
a Linux laptop

Choosing a wireless card driver

Wireless card driver compiling and installation

Editing the Kismet configuration file for a
basic Kismet installation

Run Kismet

■

■

■

■

■

■

■

■

39

 Basic Installation • Chapter 2 55
Wireless Card Driver Compiling and Installation
Just like building and installing Kismet itself, the Madwifi driver has to be down-
loaded as source code, then compiled and installed. So the first thing we have to do is
download the source files from madwifi.org. (See Figure 2.8.)
Figure 2.8 MadWifi.orgWebsite
By following the download link, you will receive the latest version of the MadWifi
driver in a compressed tar.gz file. Again, we change to the source code directory and
decompress the source code.

cd /usr/src

tar –zxvf madwifi-0.9.4.tar.gz

Following that, we will change to the newly created sub-directory, and then run
the commands configure,make, and make install.
www.syngress.com

40 Chapter 2 • Basic Installation
Introduction
This chapter will introduce you to the basic installation of Kismet. A basic installation
is one in which the server and the client portions of Kismet are on the same laptop.
This is the installation that most people will be interested in, at least initially. Advanced
installations for separate servers and clients, as well as remote and drone machines, will
be covered in Chapters 7 and 8.

Here we’ll be focusing on a “typical Kismet install” on a “typical Linux system.” For
those who don’t know, Linux (formally known “GNU/Linux”) is a UNIX-like operat-
ing system (OS), created in 1991 by Linus Tourvolds. Kismet can be installed on most
“Unix-like” OS, including Linux, Debain, Berkeley Software Distribution (BSD), Apple
OSX/Darwin, and Linux virtual machines running under Microsoft Windows. However,
since Linux is the “native” operating system for Kismet, and is what most users will be
using for running Kismet, it’s going to be the basis for our initial “typical Kismet install.”

While Kismet will run on almost any personal computer in which Linux is installed,
it is assumed here that most people who are using a basic Kismet setup will be doing so
on a wireless networking-enabled laptop. Therefore, throughout this chapter the terms
“computer,” “personal computer,” “PC,” and “laptop” are used interchangeably.

Also, as Linux systems tend to be almost as individualistic as their owners, the
word “typical” is used here with a grain of salt. The installation covered here will be
as generic as possible, but please understand that variations in how Linux has been
installed on your laptop may render some of the following information useless. It will
be impossible to cover all possible departures from the norm, although we will try to
cover some common variations.

Going into this chapter, you will need to have some Linux distribution (or “distro”
in Linux jargon) already installed on you laptop, and at least a passing familiarity
with Linux’s command-line interface (CLI) and how to do things in Linux such as
downloading files.
www.syngress.com

 Basic Installation • Chapter 2 41

Notes from the Underground

Live Distros
If you are brand new to Linux and the idea of learning a new OS seems over-
whelming, you can still try Kismet and Linux without a huge investment of time,
effort, or money. Many variations of complete Linux distributions, known as
“Live Distros,” are available on bootable read-only Compact Disks (CD-ROMs).
To try a live distro, you simply download the CD-ROM image (called an
International Organization for Standardization [ISO] file) from a creator’s Web
site, and burn it to a blank CD-ROM. When the computer is then booted off the
new CD-ROM, it will start up in Linux. Most Live distros are based on standard
distros such as Slackware.

To return to your original operating system, simply remove the CD-ROM
and boot off the hard disk as you would normally.

One of the most popular live distros is Knoppix, available from www.knop-
pix.de and www.knopper.net. Knoppix runs with a Graphic User Interface (GUI)
to make it easier for the novice Linux user to navigate. It has Kismet pre-
installed along with a number of drivers for many popular cards.

Another popular live distro is Backtrack (www.remote–exploit.org).
Backtrack is designed to be used by Information Security (InfoSec) profession-
als for system and network security audits, and as such has a plethora of secu-
rity tools in addition to Kismet. It also has a number of popular wireless card
drivers pre-installed. As of this writing, Backtrack 2 has been out for well over
a year, and Backtrack 3 is in Beta Release.

Running Kismet in Backtrack is covered in detail in Chapter 10.
To keep the beginning as simple as possible, we’ll discuss the basic installation
of Kismet and its use with a common wireless card, but we aren’t going to discuss
things like antennas or using Kismet with a Global Positioning System (GPS) receiver
until the next chapter. We will be installing Kismet as the user “root” for this initial
installation. In Unix-type systems such as Linus, “root” is the administrator-level user.

Kismet Prerequisites
Depending on how you installed Linux on your machine, you may need some addi-
tional software before you install Kismet. Kismet is written in the C++ computer
www.syngress.com

http://www.knoppix.de
http://www.knoppix.de
http://www.knopper.net
http://www.remote-exploit.org

42 Chapter 2 • Basic Installation
programming language. At a minimum, you will need the development package that
contains a C++ language complier. Since Kismet is a wireless network program, the
Linux networking package will also be required. If you haven’t installed the develop-
ment or networking packages on your Linux machine, it is recommended that you
get them working on your PC before you go any further. It will be difficult, if not
downright impossible, to get Kismet working on your laptop without these packages
being installed ahead of time.

A package called SOMElib is also needed for Kismet to properly compile.
SOMElib is used in conjunction with the C++ language. However, some Linux
distributions split their SOMElib library packages into two, named the “SOMElib”
and “SOMElib-devel” packages. If you have a distribution where the SOMElib is split,
you will need to have both of these packages installed in order for Kismet to compile.

The LibPcap package is a Packet Capture library, and is required for the packet
capturing portions of Kismet to compile properly. It provides the common capturing
systems that Kismet uses to capture data packets on the wireless card interfaces.
LibPcap 0.9.8 is the current version, and any version over 0.9 is preferred.
www.syngress.com

Tools & Traps

Application Installations in Linux
Kismet is installed from “source code,” as is most software under Unix-like
operating systems. Source code is simply a list of instructions of how a program
should run, and what it should do as it runs, although this code will not func-
tion or execute as a program itself. In order to do that, you need to construct
or “compile” the source code into an instruction set that the PC can under-
stand. The resulting machine-capable instruction set can be executed by the
laptop directly.

If you are familiar with the standard cycle of compiling and installing
software on Linux, then installing Kismet shouldn’t pose any great obstacle.
However, if you’re only accustomed to Windows, in which 99.999 percent of
software is distributed as pre-compiled binary executable “EXE” programs,
then the first time that you build your own software under Linux can be
daunting, if not downright confusing and intimidating. Some Linux distros

Continued

 Basic Installation • Chapter 2 43

such as Red Hat’s Fedora also make their software available in pre-compiled
binary formats. Since they were originally made for use with the Red Hat
Package Manager, these packages are called RPM files. Users of such distribu-
tions may also be unfamiliar with how to compile and install under a “stan-
dard” distro. For those of you who are new to the compiling and installation
cycle, here is a brief overview of installing Linux programs from source code
and cover the needed commands.

The standard way to compile source code into an executable program is
done via a series of three main commands: configure, make, and make install.
Briefly, these commands tell the compiler, a program that constructs other
programs, how to go about building the desired software package.

Configure This command, usually run as ./configure due to the way
Linux is normally set up, tells the compiler what options are needed
for the next step, and where to find the various sources of informa-
tion that are needed to build the desired program. It is not uncom-
mon to add your own options to the configure command.

Make The make command is the step where the various options
are used to actually create the executable binary program. Typically,
make is the longest part of the creation cycle.

Make Install The make install command is used to install all the vari-
ous parts of the software into the appropriate directory locations on
the laptop.

Some other steps such as make dep in which dependant programs are
created, may be required for installation of some software packages. Such steps
may be intermediary to the configure, make, and make install commands.

If you are having trouble getting a program to install and run under any
Unix-like OS, the first place you should look is within the uncompressed source
code directory. Most programmers will include what is known as a “README”
file, usually named “README.TXT” or something very similar. Most README’s
will tell you what needs to be done to install a program, including some of the
more common procedures that need to be completed prior to installation.

■

■

■

Kismet Installation
Kismet is installed from “source code.” Source code is text files that tell the compiler
program how to build the actual Kismet program itself. To get started on the installa-
tion, you need to log into your laptop as the root user. Then, download the latest
source code from www.kismetwireless.net. Follow the links to the download page,
and get the latest “Stable Source Release.” (See Figure 2.1.)
www.syngress.com

http://www.kismetwireless.net

w

44 Chapter 2 • Basic Installation

Figure 2.1 The Kismet Home Page. www.kismetwireless.net
As of this writing, the latest stable release is kismet-2007-10-R1. It was issued on
Monday, October 8, 2007. Kismet’s release version follows a naming convention of:
kismet-yyyy-mm-Rn.tar.gz

where:
Yyyy = year
Mm = month
Rn is the revision number.
You should make sure that you download the latest stable release, as it will have

the most up-to-date code and bug fixes.
For those new to Linux, the file extension of tar.gz indicates that the file is a type

known as a “tar” or Tape ARchive (from an old name convention, when tapes were
commonplace for storing archives), and that it is compressed using the GNU Zip
compression utility.

We recommend that you place the downloaded file into the directory /usr/src,
which is the normal folder to place Linux source code files. To get to the /usr/src
folder, enter this command at the CLI:
ww.syngress.com

http://www.kismetwireless.net

 Basic Installation • Chapter 2 45
cd /usr/src

Next we’ll extract the Kismet source code files. This is done using the command:
tar –zxvf kismet-2007-10-R1.tar.gz

This command tells the tar program to pull the component files from the archive
file. Specifically, the z tells tar that the component files were compressed using gzip.
The x tells it to perform the extract function, while the v means that tar is to be
verbose, or give information to the user about what it is doing as it performs the file
extraction. Finally, f is used to force overwriting, which means that if a file was already
extracted with that name, tar will write over it with the new file from the archive.

Once this command is entered on the command line, the tar program creates a new
sub-directory following the same naming convention. In this case, the sub-directory
name will be kismet-2007-10-R1. Following that, the program quickly extracts over
150 files and 8 additional folders into the newly created Kismet source code folder.
Figure 2.2 shows the archive being extracted into the source code directory
www.syngress.com

Figure 2.2 Uncompressing Kismet Into Its Directory

46 Chapter 2 • Basic Installation
Change to the new sub-directory. It will have the same naming convention as the
source code tar.gz file, and it will have the name /usr/src/kismet-yyyy-mm-Rn based on
the year, month, and revision number.
cd /usr/src/kismet-2007-10-R1

The next step is to run the configure command. This is run by typing:
./configure

Note the “./” in front of the command. If you’re new to Linux, make sure you type
the period and the forward slash in front of this command. It has to be there due to the
way the command functions and where it is located in the Linux directory paths.

At this point, you should watch the output scrolling by on the screen. You don’t
have to pay rapt attention to it, as it may be too fast to follow. However, if Kismet
runs into any problems, such as not finding the libraries or other development pack-
ages that it needs to run, this is where the error messages will appear. In Figure 2.3
you can see the configure command being run, and how the output will appear.
www.syngress.com

Figure 2.3 Running configxure

 Basic Installation • Chapter 2 47
When it finishes, the configure command will give a summary of how it ran, and
what libraries were installed. A typical summary is illustrated in Figure 2.4. If additional
libraries are missing from your computer, you will most likely see error messages listed
here saying which libraries are missing. Missing file libraries are a common cause of
make failures. If any libraries are missing, you will need to download and install them,
and then run the configure command again.
Figure 2.4 Configure Completes and Gives a Summary
Now you need to execute three commands in succession. They are make dep, make,
and make install. All three are run from the CLI. Run them one at time, letting the
output from each one complete before executing the next command.
www.syngress.com

48 Chapter 2 • Basic Installation
make dep

make

make install

Each one of these commands will produce some output on the screen. The
output for each command will all differ to some extent, but they will look similar
to the output screen in Figure 2.5.
www.syngress.com

Damage & Defense

The “make suidinstall” Option
Kismet needs root access to configure the wireless card to use the Radio
Frequency Monitor mode (known as rfmon). It also needs root access to start
the packet capture. The final make install command can also be run as make
suidinstall. Running this option allows Kismet to run with root user privileges
from any regular user account. This is potentially a big security problem on
multiuser systems, as it makes your laptop vulnerable to misuse if you have
users that you do not want to have full administrative privileges. Users who
have full administrative privileges, have the ability to impact the entire system,
and this can be very bad for those people who are malicious or simply don’t
know what they are doing.

If you have no other users on the machine besides the root account and
trusted accounts, you can install Kismet using make suidinstall. This will allow
you to run Kismet from any regular user account without changing to the root
account.

If you have other, unprivileged users on the computer, you should install
Kismet normally, which will only allow it to be run from the root account.
When you want to run Kismet from any normal account, you would then use
the superuser command su to access the root account, and start Kismet from
there. The sudo command may also be used. There is a slight difference
between this su and the sudo commands. The su command switches you to the
root user until such time as you type “exit”, which will drop to your normal
user status. On the other hand, the sudo command allows you to execute a
single command as the root user, and then instantly drop back to the normal
user state, but it must be typed prior to each command. If you are going to
run more than a few commands as the root user, then you probably would
prefer to use the su command, as it will save you some time while typing.

 Basic Installation • Chapter 2 49

Figure 2.5 The make install Command
Once the make install command has finished, Kismet is installed on the laptop, but
it’s not quite ready to run. We have to make sure drivers are installed to work with
the wireless card, and then edit some options to make the card work with Kismet.
www.syngress.com

50 Chapter 2 • Basic Installation

Tools & Traps

Advance Packaging Tool
One other type of install is worth mentioning here. Some Linux distributions
use the Advance Packaging Tool (APT), which is designed to greatly simplify
the installation of software. The most notable of these distributions is Debian
and its popular derivative, Ubuntu. To install Kismet using APT, the apt-get
command is used. Since the root user is rarely used, the sudo command must
prefix the apt-get command, or the user must switch to the root user using the
su command as previously mentioned.

sudo apt-get install kismet

Running the apt-get command in this way will install Kismet in any system
using the APT, and eliminates having to download and uncompress the source
code, and then compile and install the program using the configure,make and
make install commands.
Choosing a Wireless Card Driver
In order to use Kismet, you obviously need to have some wireless information being
sent to the server portion of the program, which then passes it on to the client. Usually
this is accomplished by a wireless card talking to the server. What may not be quite as
obvious is that the wireless card needs a special program called a driver to allow it to
talk to the server program in the first place. For those of you who don’t often delve
into the realm of hardware, a driver is nothing more than a small program that trans-
lates low-level electronic signals from a particular piece of hardware into information
which can be easily used by a higher level program or the operating system itself. In
this case, the hardware is your wireless card and the higher level program is Kismet.

Since around 2001, when 802.11b wireless equipment became common con-
sumer items, the electronics marketplace has exploded with any number of different
brands of wireless card. Due to this flood of wireless cards, you need to ask the
question “Which wireless card am I going to use with Kismet?” In order to answer
that question, we need to look at the available drivers for cards, and make sure that
the card that we want to use has a driver that will work with Kismet.
www.syngress.com

 Basic Installation • Chapter 2 51
To determine which card will work under Linux and with Kismet, we first need
to find out what chipset the wireless card is based upon. Chipsets are exactly what
the name implies, a collection or set of integrated circuit chips that are designed to
work together and produce a specific end function. In the case of wireless cards, most
tend to be based on one of several chipsets.

To confuse matters further, many cards are actually the same unit, made by the
same manufacturer, but sold under a different brand name label or “badge.” These
“rebadged” cards will typically use the same driver as the manufacturer named card.
The real trick in many cases is to figure out which card was made by what manufac-
turer, and then determine what chipset was used to make the card’s hardware.

Some manufacturers will change chipsets, but will not change model names or
numbers. Sometimes the manufacturer’s name changes, as in the case of a buy-out or
corporate takeover, but the model names remain the same.

Finally, you will need to find out what kernel your particular Linux distro is using.
The kernel is the core of a given OS. Although many drivers will work with most
Linux distribution, some drivers will work differently with different Linux kernels. For
example, with the introduction of kernel version 2.6.13, Linux has a new way that the
drivers are able to talk to the kernel, called the “hotplug mechanism.” Some distros
will have kernels below that number, while other distros will have that or a higher
kernel. Some drivers will work with the hotplug mechanism, and some will not.

For example, version 0.13e-SN-9 of the ORiNOCO driver works closely with
the hotplug mechanism, while the version 0.13e-SN-8 does not. Therefore, version
0.13e-SN-9 should be used with any kernel 2.6.13 or higher, where 0.13e-SN-8
card would need to be used with any Linux kernel 2.6.12 or below.

If you don’t know which kernel you have currently installed, the Linux com-
mand uname -r will return the kernel version if entered at a CLI. The CLI is usually
reached by a terminal or console session, or via an alternate login. For example, on
one of the author’s machines, typing the command uname –r returns the result
“2.4.33.3,” indicating that the kernel version is 2.4.33.3.

uname –r

2.4.33.3

The command uname –a will show all available system information.

uname –a

Linux ghost 2.4.33.3 #1 Fri Sep 1 01:48:52 CDI 2006 i686 pentium3 i386 GNU/Linux

For further information, typing uname –help will give a list of all available options
for the command.
www.syngress.com

52 Chapter 2 • Basic Installation
Once you have the kernel version, the next step is to determine the chipset used
in the card. To help you figure out which cards and chipsets will work with some
common wireless cards, their chipsets and their drivers are listed in Table 2.1. If your
card isn’t listed here, our suggestion is that you perform a search using your favorite
World Wide Web (WWW) search engine. For example, if you have an ORiNOCO
Gold 11b/g Card, you would search for “ORiNOCO gold 11b/g chipset.” Adding
the words “Linux “and “driver” to the search string may help you find sites where
you may download a driver that will work with your particular card.

In addition, the Kismet README file has a list of known drivers and chipsets.
The README file comes with the source files and is also available as a Web page at
the http://www.kismetwireless.net Web site.
www.syngress.com

Table 2.1 Wireless Cards Chipsets and Linux Drivers

Chipset Driver

ADMTek ADMTek

Aironet 340, 350 Kernel 2.4.10–2.4.19, Kernel 2.4.20+, CVS

Atheros Kernel/Madwifi

Atheros madwifi; madwifi-ng

Atheros 802.11a vtar5k

Atmel-USB Berlios-Atmel

Broadcom BCM43XX

Intel/Centrino ipw2100-0.44+; ipw2200-1.0.4+; ipw3945;
ipw2200/3945; iwl3945; iwl4965

Lucent, Orinoco Patched orinoco_cs; Orinoco 0.14+

Nokia/TI Nokies/TI

Prism/2 HostAP 0.4;wlan-ng 0.1.3 and earlier; wlan-ng
0.1.4–0.1.9; wlan-ng 0.2.0+

PrismGT prism54

Ralink 2400 11b rt2400-gpl, rt2500-gpl, rt73-gpl-cvs

Realtek 8180 11b rtl8180-sa2400

TI ACX100 ACX100

ZyDAS USB zd1211

http://www.kismetwireless.net

 Basic Installation • Chapter 2 53
The same procedure can be applied to any other OS that you might be running
Kismet under. Table 2.2 gives a similar listing of chipset and drivers for use with
several different OSes.
Table 2.2 Wireless Card Chipsets, Other OSes and Drivers

Cards OS Driver

Airpcap USB cygwin CACE Tech

Airport OSX viha

OSX native cards OSX/Darwin OSX

Prism/2 OpenBSD Kernel

Radiotap BSD Kernel
There are two chipsets that are known not to work with Kismet, under any circum-
stances; the Atmel and Hermes II chipsets. Additionally, a special driver used for many
wireless cards is the ndiswrapper driver. The ndisdriver is used to allow some cards which
only have Microsoft Windows drivers to function somewhat under Linux. Unfortunately,
due to the way that the ndiswrapper works, it is not compatible with Kismet.

For our working example, we’re going to use a common and popular card, the
ORiNOCO Gold 11b/g Card, Model 8470-FC, manufactured by Proxim. Following
the steps above, and from looking at the chart, we know that this particular
ORiNOCO card uses the Atheros chipset, and can be run using the Madwifi driver.
(See Figures 2.6 and 2.7.)
www.syngress.com

www.syngress.com

54 Chapter 2 • Basic Installation

Figure 2.7 Proxim ORiNOCO 802.11b/g Wireless Card, back

Figure 2.6 Proxim ORiNOCO 802.11b/g Wireless Card, front

56 Chapter 2 • Basic Installation
cd /usr/src/madwifi-0.9.4

./configure

make

make install

When the configure,make, and make install commands have completed, the MadWifi
driver has been installed. The installation process should be similar for any other wire-
less card driver.

Configuring Kismet (Editing kismet.conf)
At this point, we have successfully installed both Kismet and a wireless card driver.
We’ve almost completed the process, but there is still one more task we have to
complete before we can successfully run Kismet on the laptop. Kismet has to be told
two pieces of information. The first piece of information is the name of the user
who will be running Kismet, and the second is what wireless card will be receiving
the wireless data, and passing that on to Kismet itself.

To accomplish this, we have to tell the kismet.conf file, which controls the Kismet
configuration, which wireless card is running and send the wireless data to Kismet.
This will be a brief introduction to editing the kisment.conf, enough to get this basic
installation running. Editing kismet.conf will be fully covered in Chapter 6.

To set up the kismet.conf file, open it in a text editor. If using the CLI, then editor
such as vi or nano will be perfect. The kismet.conf file is usually located in the /usr/
local/etc/ directory.

vi /usr/local/etc/kismet.conf

Alternatively, you may use the GUI, and then pick a test editor which can be
selected from a menu. The screenshots here were done in KWrite, which is a text
editor under the KDE GUI.

First find the line that begins with suiduser. In the initial state, this line should
read suiduser=your_user_here. (See Figure 2.9.)
www.syngress.com

 Basic Installation • Chapter 2 57

Figure 2.9 Find the Line Beginning with suiduse
The your_user_here needs to be changed to the name of the user who will be
running Kismet. Since we are installing Kismet as the user “root,” this is the name
that we want to type on this line. (See Figure 2.10.)
www.syngress.com

w

58 Chapter 2 • Basic Installation

Figure 2.10 Edit the Line to Show the User Namer
Next we need to find the line that says source=none.none.addme. This line tells
Kismet which card is the “capture source,” in other words, what card will be sending
Kismet the wireless data. (See Figure 2.11.)
ww.syngress.com

 Basic Installation • Chapter 2 59

Figure 2.11 Locate the Line Beginning with source
We need this line to show the card driver, the card physical name, and a reference
name. In this case we are changing this line so that it says source=madwifi_g,
wifi0,ProximBG. This line tells Kismet that the capture source is using the madwifi_g
driver on physical card wifi0. The card’s reference name is simply the brand name,
“Proxim” and “BG,” since the card is the type that uses both the 802.11b and 802.11g
protocols. (See Figure 2.12.)
www.syngress.com

60 Chapter 2 • Basic Installation

Figure 2.12 Change the source Line to the Appropriate Driver and Physical Card
Run Kismet
Finally, we’re done with the installation and ready to run Kismet. From the CLI, you
should now be able to type “kismet” and the program will start. Initially, you will see
a list of file names where Kismet will be saving the data files. These files will be in
the directory of the user that is logged in and running Linux. If you’ve followed the
directions in this chapter so far, then these files should be located in the root user’s
home directory.

kismet

A number of lines of text will scroll by as Kismet loads its needed files and
parameters. After several seconds, the main Kismet screen will open. Kismet should
begin to detect any wireless networks within range of the wireless card almost imme-
diately. Figure 2.13 shows Kismet running.
www.syngress.com

 Basic Installation • Chapter 2 61

Figure 2.13 Running the Basic Install of Kismet
This completes the basic installation of Kismet. You should now have Kismet up
and running on your laptop, and it should be able to detect wireless networks in your
immediate vicinity.

To quit Kismet, press Shift-Q on the keyboard.
In the next chapter, we’ll begin adding on to this basic installation, thus giving us

the means to use Kismet as a true wireless security tool.
www.syngress.com

Chapter 3
Operating Kismet
Solutions in this chapter:

Introduction

The Kismet User Interface

Additional RF Equipment: Antennas
and Cables

Using a Global Position System receiver
with Kismet

Putting It All Together: The Complete
Kismet Setup

■

■

■

■

■

˛	Summary
63

w

64 Chapter 3 • Operating Kismet
Introduction
In Chapter 2, our focus was to get Kismet installed and running in a minimal
configuration. So far we have discussed the very basics needed to get it to operate
on a laptop. Now, we are going to expand on that basic installation, and take the
first steps to turning the Kismet laptop into a true wireless analysis tool.

Kismet has several configuration files that control its functions, most notably the
kismet_ui.conf and kismet.conf files contained in the /etc/kismet directory. We briefly
mentioned editing the kismet.conf file in Chapter 2. In order to make Kismet more
functional, this time we’ll be performing editing to both the kismet_ui.conf and kismet.
conf files to get Kismet running for everyday use.

The kismet_ui.conf and kismet.conf files are fully detailed in Chapters 5 and 6, but
the changes noted in this chapter are those that are likely to be the most useful for
those who are new to Kismet.

In addition to editing those files to make Kismet more functional and useful, we’ll
also discuss adding several pieces of equipment that will help you get the most out of
the computer that you are using to run Kismet. Many users have an expectation that
they can immediately use Kismet with little more than a laptop and a wireless network
card. However, to obtain the best possible results, most users quickly find that they
must add some extra Radio Frequency (RF) equipment in the form of external
antennas and associated cables, and a Global Positioning Satellite (GPS) receiver.
In addition to the GPS receiver, the gpsd software package will need to be added to
the basic Kismet installation so that Kismet will work with the GPS receiver.

The Kismet User Interface
The first thing we should do is edit the kismet_ui.conf file, which controls how the
user interface presents itself to the user. The user interface is the client portion of
Kismet that the user sees when running the application.

The kismet_ui.conf file is a simple text file that can be edited by any text editor.
Two common text editors under Linux are vi and nano, which are used on the
command-line interface (CLI). Most window managers that run under Linux,
such as KDE and Gnome, also have graphic text editors that are suitable for
 editing kismet_ui.conf.

To use a text-based editor such as vi, you would enter the editor name followed
by the file name that you to edit on the CLI.
vi /etc/kismet_ui.conf
ww.syngress.com

 Operating Kismet • Chapter 3 65
The Introductory Splash Screen
When Kismet is first run, a small splash screen opens up over the main window.
The splash screen, entitled “Welcome to Kismet” tells you what Kismet client
you’re running, including the version and build number. It welcomes you to the
Kismet panel’s front end and advises you that you can press h at any time to get
help information. It also tells you that you can turn off of the message by editing
the kismet_ui.conf file. Pressing the space bar will get rid of the splash screen. This
splash screen is shown in Figure 3.1.
Figure 3.1 Welcome to Kismet
Now we want to get rid of the splash screen, so that it doesn’t open whenever
Kismet is run. To do this, edit the line showintro=true to and change it to showintro=false.
www.syngress.com

w

66 Chapter 3 • Operating Kismet
Save the file and restart Kismet. Kismet will now start up without the splash
screen. Remember, press the h key to open a Help screen. The Help screen is
further discussed in Chapter 4.

Play Sounds
Kismet, by default, plays sounds when certain events happen or are detected. Those
events are when:

A new network is detected

Traffic is seen on a detected network

Junk traffic is seen on a detected network

Alarm conditions are triggered

Four sound files for these functions are installed in the /usr/share/kismet/wav direc-
tory when Kismet is installed. Playing sounds can be turned on or off by setting the
sound value to true or false. By default, the sound is on, and can be found on this line:
sound=true

The sound application that comes as part of most Linux installations is play, and
by default, Kismet uses play to present those sounds to the user. This can be seen
from this line:
soundplay=/usr/bin/play

However, some Linux distributions come with different sound applications. If play
is not the sound application on your laptop, then you will have to change the sound-
play=/usr/bin/play line to reflect the sound player that is installed. For example, aplay
is the sound player application that comes with Ubuntu Linux version 8.04. If you
are using Ubuntu v.8.04, you have to change the line to soundplay=/usr/bin/aplay,
so that the aplay application is used to play the sound files.

Additional RF Equipment: Antennas and Cables
Most people using Kismet for the first time will use it for the activity known as “war
driving,” or locating Wireless Local Area Networks (WLANs) while driving through
a given area. The steel and aluminum body panels in most auto bodies block radio
signals very effectively, and because of this, an antenna is usually one of the first

■

■

■

■

ww.syngress.com

 Operating Kismet • Chapter 3 67
accessories purchased to be added to the Kismet laptop. An external antenna for
WLAN uses functions in the same way as the AM/FM radio antenna on your car. It
allows a weak signal, which otherwise might not penetrate the car body, to be
brought in where the receiver—or in the case of Kismet, the wireless networking
card—is located.

To help you understand antennas and how they work, here are some basic terms
you should know when determining what type of antenna you want to use while
running Kismet:

Gain Gain describes how well an antenna performs. The units used to
describe gain are the decibels.

Decibel (dB) A decibel is the unit of measure for power ratios describing
loss or increase of apparent radio frequency power, normally expressed in
watts. A decibel is not an absolute value—it is the measurement of power
gained or lost between two communicating devices. These units are usually
given in terms of the logarithm to Base 10 of a ratio.

dBi value. This is the ratio of the gain of an antenna as compared to an
isotropic antenna. The greater the dBi value, the higher the gain. If the gain is
high, the angle of coverage will be more acute.

Isotropic Antenna An isotropic antenna is a theoretical antenna that radi-
ates its signal to cover the area in a perfect sphere. It is used as the starting
point to describe the performance and gain of a real antenna.

Generally, an antenna capable of transmitting and receiving the signal equally in
all directions is preferred. These antennae are known as “omni-directional” or “omni”
for short. Most war drivers use an omni antenna in the 3 dBi to 8 dBi range, as these
give the best compromise on signal gain and pattern. Commonly, this type of omni-
directional antenna has a magnetic base that sticks readily to a steel car body roof.
Such “mag mount” antennas allow the antenna to be transferred between different
vehicles without a complicated installation. Two small omni-directional antennas
along with a wireless card can be seen in Figure 3.2. The antenna on the left is
approximately 6 inches in height and has a magnetic base that allows it to be easily
mounted on a car body.The antenna on the right is made for use on tabletop.
Both have a gain of approximately 5 dBi.

■

■

■

■

www.syngress.com

w

68 Chapter 3 • Operating Kismet

Figure 3.2 3dBi Omni-Directional Antenna with Magnetic Mount Base
One common misconception is that the higher the gain of the antenna, the
better your results will be when using Kismet. This is not true. The important thing
to understand from the preceding definition of dBi value is the last sentence: “If the
gain is high, the angle of coverage will be more acute.”

The signal coverage area of an omni-directional antenna is shaped roughly like a
donut. The higher (or larger) the gain, the “shorter” the donut. The opposite is true as
well. A smaller gain antenna has a “taller” donut. Figure 3.3 shows the signal donut of
a 5 dBi gain omni-directional antenna compared to that of an 8 dBi gain omni-
directional antenna. The signal donut of the 5 dBi is taller than the signal donut of an
8 dBi gain omni-directional antenna. This is illustrated in the side view. What this
means is that although it has a “weaker” signal, as indicated in the overhead view, a
5 dBi gain omni-directional antenna is likely to provide better results in a neighbor-
hood with tall buildings, such as an urban downtown area. Also, because these antennas
rely on line-of-sight communication, a 5 dBi gain antenna works well in residential
areas where homes and other buildings provide obstructions between your antenna
and any wireless access points (APs).
ww.syngress.com

 Operating Kismet • Chapter 3 69

Figure 3.3 Omni-directional Antenna Patterns with Different Gain Levels
Antennas of this type usually come with an attached cable, 10 to 20 feet in length.
This cable allows the signal to be received easily inside a car or truck. The cable end
opposite the antenna usually terminates in a “Type N-Male” connector. If the attached
cable is too short or absent, a cable of the appropriate length will have to be purchased.

In addition to an omni-directional antenna, directional antennas of different types
are available from a wide variety of sources. A directional antenna is confined to
sending and receiving in a single direction, as the name implies. Directional antennas
also come in different gain levels, and usually are described as having a particular
“beam width” in degrees. Think of it like a flashlight beam of light. The beam width
on a directional antenna is the area the antenna will send and pick up radio signals.

Due to the narrow focus of the beam, directional antennas are of limited use
for general war driving, since the signal is confined to sending and receiving in one
area only. Most times while war driving, you are attempting to find as many APs as
possible, in all directions. However, for those people who are using Kismet for
purposes such as security auditing of a WLAN, a directional is a must, especially if
you are attempting to locate a specific AP. For example, when attempting to locate
an unauthorized or “rogue” AP on a company network, a directional antenna is an
indispensable tool.
www.syngress.com

70 Chapter 3 • Operating Kismet
Pigtails
The frequencies used by 802.11 WLANS fall into the microwave area of the radio
spectrum. In order not to lose too much of the radio energy in the connectors, the
connectors must be of the proper type and rated for microwave use. The “N” type
connector is one of the most commonly used for microwave RF communications,
and is seen on many brands of antennas and cables. Unfortunately, an “N” connector
is huge in comparison to the average WLAN cards. The combined weight of the cable
and the connector would almost certainly destroy most cards in short order. For this
reason, the card manufacturers use tiny connectors on the cards. To convert from the
tiny connector used on the card to an “N” connector, we need what is known as a
“pigtail” cable.

The term “pigtail” comes from radio engineering and ham radios. A pigtail is
nothing more than a short piece of antenna cable, with different connectors on each
end. They are used to convert one connector type to another. Usually, the cable used
for a pigtail is a smaller diameter and type than the main cable, but this is not always
true. The exact origins of the term seem to be lost, but since most small diameter
coaxial cables curl rather tightly after being unwound from a cable spool, it seems
reasonable that the name came from the fact that a small length of cable might
resemble the curled tail of a pig.

Two common pigtails used for WLAN antenna connections are the Orinoco
proprietary connector (Type MC) to a Type N-Female connector, which is a reflec-
tion of the popularity of the ORiNOCO card and the Type MMCX connector to
a Type N-Female connector. When purchasing a pigtail, you must determine the
connectors that you need on each end of the cable. This will depend on the brand
and model of your card, and the connector on the antenna cable. If you have more
than one card that you will be using with you Kismet laptop, most likely you will
need more than one pigtail. Most pigtails are about 12 to 18 inches (30 to 45 cm)
in length. Longer pigtails may be found, but are generally best avoided. This is
because the thin cables have a high signal loss, and the longer the cable, the more
www.syngress.com

 Operating Kismet • Chapter 3 71
signal is lost before it gets to the radio card. Figure 3.4 shows an 802.11b WiFi card
and its pigtail.The connector on the left joins to a standard antenna cable, and the
connector on the right attaches directly to the card itself.
Figure 3.4 Pigtail (Type N to Type MC)
Using a GPS Receiver with Kismet
In order to physically locate a WLAN AP or to map WLAN locations, you have to
know where you are when the AP is detected. So how do you track where you are
when a WLAN is detected? You could take notes, writing down your exact location
www.syngress.com

72 Chapter 3 • Operating Kismet
every time Kismet finds an AP. But this could be rather difficult because getting a
precise location might involve taking measurements along with detailed notes. For
instance, “Thirty-five feet north of the ‘No Parking’ sign in front of 23 Main St.; five
feet from the edge of the sidewalk.” Using such a technique might be rather tedious,
and you would proceed at a snail’s pace.

However, there is a much easier way to do this, with a level of precision within
approximately 25 feet. By attaching a GPS satellite receiver to your computer, Kismet
will automatically log your location every time it receives an 802.11 frame.

GPS units are radio receivers that measure a signal from several different global
position satellites. By using triangulation, the receiver calculates its location on the
surface of the Earth using those signals. The location is reported in terms of the lati-
tude, longitude, altitude, and other data. Most GPS units continuously update their
location information. The unit then sends out this position data over a serial data link,
typically about once every second. In turn, Kismet reads the data via another program
called gpsd, and then records the longitude and latitude from the GPS whenever it
monitors an 802.11 packet or frame. Because of this ease of use in recording the
location of a detected WLAN, a GPS is the second accessory that most users will
add to their Kismet laptop.

Features of GPS receivers vary, but generally they fall into two categories: those
that have an integral display and those that have no display. Those that are without
a display are generally referred to as “mouse” or “puck” styles, since they tend to
resemble either a computer mouse or a hockey puck. Mouse or puck GPS receivers
without a display are generally less expensive, but they need to be connected to a
computer (or some other device) to work properly. Those with displays can function
in a standalone mode. If you plan on using your GPS solely for use with Kismet, a
mouse or puck style may be fine. However, if you plan on using the GPS for other
activities such as hiking, then you will want to buy one with a display. Figure 3.5
shows three common GPS units. The two on either end have a built-in Liquid
Crystal Display (LCD), while the center one is a “puck” without a display.
www.syngress.com

 Operating Kismet • Chapter 3 73

Figure 3.5 Typical GPS Receiver Models
In addition to the GPS receiver itself, an additional software package known
as gpsd is needed. The gpsd program collects the serial data from the GPS receiver
and makes it available to be queried by Kismet and other programs on Transmission
Control Protocol (TCP) port 2947. Like other UNIX-type software, the source
code must be downloaded and the configure, make, and make install commands must
be run to install the program. If you are unfamiliar with these procedures, complete
information on downloading, compiling, and installing software packages from
source code was covered in the last chapter. Documentation for gpsd can be
downloaded from http://gpsd.berlios.de.
www.syngress.com

http://gpsd.berlios.de

w

74 Chapter 3 • Operating Kismet
Debian-based Linux distributions such as Ubuntu, install gpsd by typing this
command at the CLI:
sudo apt-get install gpsd

Once installed, gpsd is started on the CLI by typing the command “gpsd” followed
by the device designator of the port into which the GPS receiver is plugged. The
gpsd program normally runs without further configuration, and will self-determine
any parameters needed for communicating with the GPS receiver. For example, if
the GPS receiver is plugged into the first serial port on the laptop, usually known as
device /dev/ttyS0, then the command would be:
gpsd –p /dev/ttyS0

If the GPS receiver is plugged into the second Universal Serial Bus (USB) port
on the laptop, usually known as device /dev/ttyUSB1, then the command would be:
gpsd –p /dev/ttyUSB1

In order to have Kismet report and record the information coming from gpsd,
you also have to edit the kismet.conf file. Open kismet.conf located in the /etc/kismet
directory, in your favorite text editor, just like you did previously with kismet_ui.conf.
Find the line marked:
gps=false

and change it to read:
gps=true

Now save the kismet.conf file and close the editor. Now, run Kismet again.
If everything is working correctly, you will see GPS data in the form of the current
longitude and latitude listed on the bottom boarder of the main Kismet panel. Addi-
tionally, you should see a “2D” or “3D” status flag, depending on whether the GPS
has locked on to enough satellites to determine a full three-dimensional location or
only a two-dimensional location. A full three-dimensional location has the longitude,
latitude, and altitude, so if a full three-dimensional location is being tracked by the
GPS, all three figures will be displayed. Otherwise, for a two-dimensional location,
only the longitude and latitude will be shown.

Typical GPS Problems
There are several potential stumbling blocks to using your GPS receiver with
Kismet. If you experience problems getting the GPS data, you need to do a bit
of troubleshooting.
ww.syngress.com

 Operating Kismet • Chapter 3 75
The first requirement to getting a GPS unit to work with Kismet is to get the
GPS to transmit its data over some manner of communications link. Most GPS
receivers will output location data in the National Marine Electronics Association
(NMEA) 0183 data protocol, using a serial cable. Technically, the NMEA 0183
 output is EIA-422A data, but for all practical purposes it is the same as RS-232
serial data. This means a GPS that sends NMEA 0183 data will talk to the serial
communications (COM) ports used on most computers. Some newer GPS units
use Bluetooth low-power radio communications to transmit the NMEA data.

However, before you attempt to use the GPS receiver with Kismet, you must
go through an initialization procedure. The procedure needs to be done before the
GPS will send out the correct location data. Be sure to read the instructions for
your GPS, and go through the setup routine.

The Map Datum from the GPS should be set to the World Geodetic System of
1984 (WGS84). This is the default setting for most GPS receivers, but occasionally the
data output is set to the North American Datum of 1927 (NAD27). While the two
data sets are very similar, there can be a difference in location of over 100 meters (320
feet) in different sections of the United States. Therefore, using the NAD27 setting may
result in inaccurate location information, especially if you later try to map the AP site.

A second problem is that some GPS brands and models need to lock on to the
satellite signals and establish their location before they send any serial data. More than
one person has started checking cables and connections and analyzing RS-232 data
protocols, only to realize that the receiver had not seen enough satellite signals to
establish a location, and had not sent anything out of the serial port.

Conversely, many GPS units will send out data, but it may not be accurate if the
receiver has not locked onto the satellite signals. One chipset used in some popular
GPS units is known to initialize itself to Tokyo if it cannot see any satellite signals.
That’s fine if you happen to be in Tokyo when you start collecting data, but probably
isn’t of much use to people starting outside of Tokyo.

The lesson here is to make sure your GPS receiver has a satellite lock before you
head out to use Kismet. GPS satellite signals are relatively weak since the satellites are
in high orbit, and the GPS receiver may need several minutes to figure out where it
is on the Earth’s surface. If you are inside a building, moving outdoors will help speed
up this process, as the receiver will have better “line of sight” to the satellites, and
therefore have better signal reception. Also, anything that blocks the GPS receiver’s
clear view of the sky, from heavy tree cover to a city’s “concrete canyons,” can hinder
the ability of the receiver to determine location. When using Kismet with GPS in a
www.syngress.com

w

76 Chapter 3 • Operating Kismet
vehicle, you should keep the GPS receiver where it can “see” the sky. In most vehicles,
this will be an area on the dashboard under the windshield, or near another window.
For the sake of safety, make sure the GPS receiver (or any other device) does not
obstruct the driver’s field of view.
ww.syngress.com

Tools & Traps

Troubleshooting GPS Problems
If Kismet does not seem to be communicating with your GPS receiver, it is
sometimes difficult to determine if the fault lays with the Kismet, gpsd, the
GPS unit itself, or something else such as the cables and connectors.

The first step is to check if the GPS is sending data to gpsd. The gpsd pro-
gram uses TCP 2947 to communicate to other programs and applications;
therefore, you are able to use the program Telnet to communicate with gpsd,
to see if it is working. First, start gpsd using the appropriate device:

gpsd /dev/ttyS0

Then, start Telnet, pointing it to the gpsd TCP port on the laptop (known
as the localhost), and type the command r to have gpsd respond with the
NMEA data.

telnet localhost 2947

r

If the GPS receiver is working properly, you should see NMEA sentences
scroll by on the screen. NMEA sentences should look similar to those below,
although the data will differ slightly according to your location.

$GPGSV,3,1,10,17,78,216,38,23,63,311,42,26,56,051,41,15,52,303,43*7E
$GPGSV,3,2,10,18,46,295,49,09,36,152,,29,36,053,,03,09,317,*7C

Continued

 Operating Kismet • Chapter 3 77

$GPGSV,3,3,10,10,08,097,,06,04,203,,,,,,,,,*7C
$GPGLL,4422.2935,N,07313.8332,W,005702.969,A*21
$GPGGA,005702.97,4422.2935,N,07313.8332,W,1,05,2.7,00075,M,,,,*3E
$GPRMC,005702.97,A,4422.2935,N,07313.8332,W,00.0,000.0,150303,15.,W*67
$GPGSA,A,2,17,23,26,18,15,,,,,,,,2.7,2.7,*13
If you see information similar to this, then the GPS and gpsd are working

properly, and you may close Telnet by typing the following commands:

^c

e

If no characters show at all, then this indicates a probable cable issue. In
this case, you may need to purchase a null modem, which will swap the con-
nections of several common lines used in serial connections. Null modems for
serial cables can be obtained at most Radio Shack stores for under $10.
A third issue is that RS-232 serial data has its own pitfalls. Almost all serial con-
nections on the GPS receivers are proprietary, so most users will need to purchase a
cable from the GPS manufacturer. The plugs and sockets for the PC end of the cable
are usually DB9 sub-connectors on most laptops, but sometimes those are also pro-
prietary. Encountering a plug (or socket) on both the laptop and the GPS is quite
common, requiring the purchase and use of gender-changer plugs or sockets in order
to get the equipment to connect to each other. Another common difficulty with the
RS-232 standard is finding that a null modem is required to switch the location of
the data lines within the connectors. A gender changer and a null modem are shown
in Figure 3.6.
www.syngress.com

w

78 Chapter 3 • Operating Kismet

Figure 3.6 A “Gender Changer” Plug and a Null Modem Needed to Connect
Various GPS Cables
The final common problem with using a GPS is that many laptops produced in
the last few years lack RS-232 serial ports. Instead, the serial ports have been replaced
with the faster and more flexible USB ports. However, many GPS receivers still only
use an RS-232 serial port. This will require the use of a serial-to-USB converter.
Several manufactures such as Belkin make serial-to-USB converters.

Putting It All together: The Complete
Kismet Setup
At this point you should have collected all of the pieces. Hopefully, you have been
able to configure everything, and confirmed it’s all working. No doubt, you are about
to head out on your first war drive or at least your first use of Kismet. Before you do,
ww.syngress.com

 Operating Kismet • Chapter 3 79
look over these set ups and make sure you are ready. You can see a typical Kismet
setup in Figure 3.7. Most setups will include the following or very similar items:

A laptop with PC Card or Personal Computer Memory Card International
Association (PCMCIA) slot(s)

Wireless network interface card

Antenna pigtail

Portable omni-directional Antenna in the 3dBi to 8dBi range, with magnetic
mount base

GPS

Serial or USB communications cable for GPS, or possibly a Bluetooth link.

■

■

■

■

■

■

www.syngress.com

Figure 3.7 A Complete Kismet War Driving Rig; Laptop, GPS Receiver, Omni
Antenna, and Pigtail

w

80 Chapter 3 • Operating Kismet
A laptop carrying case (shoulder bag or backpack) is not shown in the photo,
but is certainly an item that you don’t want to overlook. It helps make carrying all
the equipment around a lot easier.

Three other accessories that you may find useful are a mobile power supply for
the laptop, a multiple socket cigarette lighter adapter, and a DC-AC power inverter.
The multiple cigarette lighter socket adapter allows you to have extra 12-volt power
sockets in your vehicle without rewiring, and a DC-AC converter allows you to
power devices that you might not own an automotive power supply for, such as a
laptop. Independently or together, these two accessories allow you to have a flexible
electrical power arraignment in your vehicle.
ww.syngress.com

 Operating Kismet • Chapter 3 81
Summary
This concludes the two chapters on getting Kismet set up and running. You now
have all the information you need to get Kismet installed, and how to build from
the initial setup using an antenna and a GPS receiver.

From this point on, the remaining chapters in this book will build on these basics,
so if you haven’t installed Kismet, you at least need to have a good understanding of
the procedures and particulars needed and how to go about getting the install done.
www.syngress.com

C
hapter 4
Kismet Menus
Solutions in this chapter:

Main display

Popup windows

Customizing the panels interface

Third party front-ends

■

■

■

■

˛	Summary

˛	Solutions Fast Track
83

ww

84 Chapter 4 • Kismet Menus
Introduction
Kismet is a text-based application that uses an ncurses/panels interface for its default
front-end menus. Visually, the front ends are similar, although the ncurses interface is
black and white, while the panels interface users color (see Figure 4.1). As we will see
through this chapter, the value of color is immeasurable to Kismet’s panels interface
in terms of the amount and value of the information it provides. In addition, the
ncurses interface is a single, non-interactive display; the various secondary and popup
menus specified within this chapter do not work.
Figure 4.1 Ncurses/Panels Interface
The choice of graphical user interface type to use is specified in the kismet_ui.conf
file:

Gui type to use

Valid types: curses, panel

gui=panel

This file is typically located in /usr/local/etc. The panel interface is the default, and
is highly recommended. For the remainder of this chapter, all references and figures
will use the panels interface.

An important feature of the Kismet panels interface is the integrated help screen.
From the primary window, simply press h to bring up the help pop-up window
(see Figure 4.2).
w.syngress.com

 Kismet Menus • Chapter 4 85

Figure 4.2 Kismet Panels Interface

Tip

In any of Kismet’s pop-up windows, the bottom right corner of the window
provides you with data regarding the amount of information being
 displayed. In the case of Figure 4.2, this data tells us that only 26 percent
of the help pop-up screen is displayed, and that you should scroll down for
more information.
Main Display
The primary window or main display provides a general overview of Kismet’s
operations (see Figure 4.3).
www.syngress.com

w

86 Chapter 4 • Kismet Menus

Figure 4.3 Kismet’s Main Display
The display is divided into three panels: the network list panel, the information
panel, and the status panel.

Network List Panel
The primary source of information on Kismet’s main display is the network list
panel (see Figure 4.4). This panel consumes a considerable amount of screen space,
and desires to strike a balance between displaying as many networks as possible, while
still providing valuable information about each of those individual networks. In this
section, we’ll discuss the various options to sort networks as well as the default
columns and colors displayed by Kismet in the network list panel, and how they
provide information to users.
ww.syngress.com

 Kismet Menus • Chapter 4 87

Figure 4.4 Network List Panel
Sorting
As you will note in Figure 4.4, Kismet’s default sorting mode is known as autofit.
The goal of autofit is to display as many currently active networks as possible. While
using autofit, network selection, tagging, grouping, scrolling, and so forth is disabled.
To use any of these features, simply sort the network list by another method. To bring
up the sort options, simply press s (see Figure 4.5).
www.syngress.com

Figure 4.5 Sort Options

ww

88 Chapter 4 • Kismet Menus
The sort options displayed in Figure 4.5 are self-explanatory; although, as
previously explained, you’ll need to choose something other than autofit to do any-
thing useful. Service Sent Identifier (SSID) is common, and displayed in Figure 4.6:
Figure 4.6 Networks Sorted by SSID
Sorting also gives you a cursor-enabled selection bar that indicates which
network is currently highlighted. Note in Figure 4.6, that the sort is ascending
by default. In the case of first time seen, latest seen, Basic Service Sent Identifier
(BSSID), SSID, and packet count, the capital letter equivalent (S rather than s)
is a descending sort.

Columns
Kismet supports in excess of 20 column descriptions, although only the nine listed
below are displayed by default (see “Customizing the Panels Interface” below for
more information). Kismet will display as many columns as it can within the space
provided.
w.syngress.com

 Kismet Menus • Chapter 4 89

Tip

If the Kismet window isn’t big enough to display all of the columns, simply
use the left and right arrow keys to scroll in the appropriate direction.
Decay
The first column is decay, although it has no header and may not be immediately
obvious. Decay is a measure of network activity and the amount of time passed, and
is controlled by the decay variable in the kismet_ui.conf file. The default setting is
three seconds:

Active If the network is active within the decay time, an exclamation point
“!” is displayed prior to the network name.

Recent If the network was active within two periods of the decay time
(i.e., six seconds), a period “.” is displayed prior to the network name. See the
“WOPR” network in Figure 4.4 for an example.

Inactive In all other cases (i.e., the network has not been active within six
seconds), nothing is displayed.

Name
The network name is the most prominent column in the network list display.
Typically, this lists the SSID, although you can change the name of any particular
network with the “n” pop-up window. If a network is not broadcasting the SSID,
Kismet can still infer its presence and will publish the network as <no ssid> until it
can determine the name.

Type
The T column specifies the type of network:

A (Access Point) A wireless access point (AP) or wireless router; by far
the most common network type

D (Data Network) Data packets have been seen, but Kismet has not
captured any beacons or management frames and thus cannot yet tell what
kind of network it is

■

■

■

■

■

www.syngress.com

w

90 Chapter 4 • Kismet Menus
G (Group) Networks that have been manually grouped together by the
user (t to tag networks, g to group tagged networks together)

H (Ad-hoc) Typically a wireless network set up between multiple laptops
or clients without using an AP

P (Probe Request) A client probing for an AP that has not yet associated

T (Turbocell) Turbocell/Karlnet/Lucent router (uncommon)

WEP
The W column denotes whether or not encryption is being used on the network.
However, it is more relevant to ask the question, “is WEP being used, or something else?”
to understand the possible responses:

Y (Yes) Wireless Encryption Protocol (WEP) is in use

N (No) The network is not encrypted

O(Other) The network is encrypted with something other than WEP
(for example, WPA)

Channel
The channel of the network is displayed in the C column:

For the more common 802.11b/g networks, the associated channels are
1–11 in the United States and 1–14 outside the United States.

For 802.11a, the following are allowable channels with the United States:
36, 40, 44, 48, 52, 56, 60,64, 149, 153, 157, 161, and 165. Outside of the
United States, particularly in Europe and Japan, more channels are available.

Packets
“Packts” is simply a cumulative total of packets captured for that particular network.

Flags
The Flags column displays brief information about the network:

F (Factory Configuration) The bells should be going off in your head;
this user has not changed anything from the original factory configuration

■

■

■

■

■

■

■

■

■

■

ww.syngress.com

 Kismet Menus • Chapter 4 91
W (WEP Decrypted) This is a WEP-encrypted network that has been
decrypted with a user-supplied key

If Kismet can determine the address range and Internet Protocol (IP), it will
display in the Flags column the method by which it obtained this information:

T (TCP) The address range was determined via Transmission Control
Protocol (TCP) traffic

U (UDP) The address range was determine via User Datagram Protocol
(UDP) traffic

A (ARP) The address range was determined via Address Resolution
Protocol (ARP) traffic

D (DHCP) The address range was determined via Dynamic Host
Configuration Protocol (DHCP) traffic

In addition, the T, U, and A flags may display a number (1–4), which indicates the
number of octets discovered. For example, referring again to Figure 4.4, the linksys
network displays the A4 flags, indicating that the address was discovered using ARP
traffic, and all four octets have been discovered.

IP
By monitoring traffic, Kismet attempts to determine the IP address of the network,
and this is displayed in the “IP Range” column. Kismet will display 0.0.0.0 until it
finds some useful data via one of the methods described in the Flags section above.
As you might suspect, more traffic collected from a particular network will provide a
greater likelihood of finding the IP range, and more particularly, the exact IP address.

Size
The size column displays the total size of all the packets collected for that particular
network.

Colors
While it is not accurately reproduced in a grayscale screenshot, the Kismet interface
also displays to the shrewd observer, some valuable information by color-coding the
networks:

■

■

■

■

■

www.syngress.com

w

92 Chapter 4 • Kismet Menus
Networks in yellow are not encrypted, meaning they are not using WEP
or WPA. While these networks are coded as unencrypted, they still may be
using a Virtual Private Network (VPN) or some other form of authentica-
tion after associating with the network. Yellow networks also indicate that at
least some settings have been changed from their factory defaults.

The red color code is the signature of a network that is using the factory
defaults. You may also see the F flag with this network. If the user hasn’t
changed the factory configuration, you just might find that they haven’t
changed the default password either!

Networks in green are using some form of encryption, usually either WEP
or WPA. If Kismet cannot determine between the two, the Kismet .dump
file can be imported into Wireshark, and the exact form of encryption
determined there.

Blue networks are using SSID cloaking or are not broadcasting the SSID.
An active scanner such as Network Stumbler (for Windows), which relies on
the broadcast frame to determine the SSID, would not be able to locate this
network.

GPS
When a supported Global Positioning System (GPS) is used together with Kismet,
the applicable GPS data will be displayed along the bottom edge of the network list
panel (see Figure 4.7).

■

■

■

■

Figure 4.7 GPS Status Information
As is typical of coordinates without north/south/east/west labels, positive latitudes
indicate north, while negative latitudes indicate south. Likewise, positive longitudes
indicate the eastern hemisphere, while negative longitudes indicate the western.
In Figure 4.7, our coordinates are north of the equator, and in the western hemisphere
(central Maryland to be more precise). Also included is a measure of altitude, speed,
heading, and quality of fix.
ww.syngress.com

 Kismet Menus • Chapter 4 93
Information Panel
The information panel labeled as “Info” is a small vertical panel to the right of the
network list panel (see Figure 4.8).

Ntwrk Total number of collected networks

Pckets Total number of collected packets

Cryptd Total number of collected packets that were encrypted

Weak Total number of weak packets collected

Noise Worthless garbage packets

Discrd Total number of discarded packets; includes noise and packets
discarded from the use of filters

Pkts/s Rate of packet collection (per second)

Elapsd Total time (HH:MM:SS) since the Kismet was started

■

■

■

■

■

■

■

■

Figure 4.8 Info Panel
Status Panel
The status panel occupies the bottom section of the Kismet interface (see Figure 4.9).
The status panel provides scrolling messages to the user:
www.syngress.com

www

94 Chapter 4 • Kismet Menus

Fig

N

Updates Kismet will post a message to the status panel when it finds a new
network, and provide additional information about networks when it
becomes available

Problems Kismet will alert you to information regarding potential
problems with Kismet’s connection to other services; for example, if Kismet
cannot connect to gpsd

Alerts These are primarily useful when using Kismet as an intrusion detec-
tion system (IDS); provides integration with third-party systems (i.e., Snort)

Battery Meter Kismet will indicate if you are plugged into external
power (AC), and display the percentage of battery life remaining; when using
the battery Kismet will display an estimate of how much life is left. Keep
in mind that you’ll need an APM-enabled kernel for battery life to report
correct estimates.

■

■

■

■

ure 4.9 Status Panel

oTe

Even though Kismet places your wireless adapter in rfmon mode (meaning
it does not transmit), simply having your wireless adapter radio on consumes
more power from your battery. It is estimated that your battery life will be
somewhere between 2–7 percent shorter. While this is not necessarily a
hugely significant amount, it makes the battery meter all the more useful.
Pop-up Windows
All of Kismet’s windows beyond the main display are secondary displays or pop-up
windows. These exist primarily as a means of displaying further information on a
particular network, group, or client; providing statistics and useful information
regarding packet rates and types; and other interesting data.
.syngress.com

 Kismet Menus • Chapter 4 95
Network Details
The network details window displays the most comprehensive and detailed
information collected about a particular network. When sorting by any mode other
than autofit, simply scroll to the network of your choice and press enter or i
(see Figure 4.10).

The network details window is useful if you need more information then is
already provided in the network list. For example, the network list may show a
particular network with the WEP flag “O,” which signifies the network is encrypted,
but with something other than WEP. Under some circumstances, Kismet’s network
details may be able to tell you specifically what type of encryption is being used.
Be sure to scroll down as there is likely to be more than one screen of information.
Figure 4.10 Network Details Window
From the network details window, n will move you to the next network or group,
while p will return you to the previous network or group. Alternatively, you can close
the pop-up (q) and scroll to a different network. The network details window is one
means of getting to the client list (c); you can also type (c) directly from the network list.
www.syngress.com

w

96 Chapter 4 • Kismet Menus
Client List
The client list window is very similar in both display and functionality to the network
list panel. The default sort mode is also autofit, and the client list can be sorted in a
similar manner.
Figure 4.11 Client List Window
The n and p keys display the client list of the next and previous network or
group, respectively. Once a particular client is highlighted, the i key (or pressing
enter) changes to the client details display.

Columns
The following columns are displayed by default (again, as with the network list panel,
see “Customizing the Panels Interface” later on in this chapter for changing the defaults):

Decay
The decay variable for a client is the same as it is for a network. As with the network
list panel, the column is unlabeled and unseen unless a client is active or recent.
ww.syngress.com

 Kismet Menus • Chapter 4 97
Type
The T column denotes the type of client. The client types are as follows:

F (From DS) From a wireless distribution system (WDS) or AP to a
wireless client; normally this means the client is wired

T (To DS) To a WDS/AP from a wireless client; normally this means the
client is wireless

I (Intra DS) A node of the WDS/AP communicating to another node
within the system

E (Established) Most often a wireless client entering and leaving the
WDS/AP

S (Sent To) A client that has received data but not yet responded

(Unknown) Self-explanatory

Manufacturer
The “Manuf” displays the manufacturer of the client based on the first three octets
of the Media Access Control (MAC) address, which is known as the Organizationally
Unique Identifier (OUI). As the name suggests, each manufacturer is assigned a
specific block of octets that designate their equipment. Kismet attempts to match
the client MAC with a list of OUIs in the client_manuf file. If a match is made, the
manufacturer will be shown; otherwise unknown will be displayed.

■

■

■

■

■

■

www.syngress.com

NoTe

In some cases, Kismet may also be able to fingerprint the fourth octet of the
MAC address, which is the first octet of the Network Interface Control (NIC)-
specific portion of the MAC address. In this case, potentially more detailed
information about a specific wireless adapter may be learned, such as the
exact model of the particular device. In other cases, especially newer or rare
equipment, Kismet may return unknown because it simply doesn’t know the
MAC address. Likewise, a spoofed MAC address will fool Kismet as to the
original manufacturer.

w

98 Chapter 4 • Kismet Menus

Tip

Kismet’s ap_manuf and client_manuf files are intentionally small to reduce
memory use and Central Processing Unit (CPU) consumption. For those users
that desire to use the full Institute of Electrical & Electronics Engineers, Inc.
(IEEE) OUI list, Kismet provides a script (in the extras directory) called
ieee-manuf-tr.sh, which will convert the OUI text file into a Kismet readable
format. Of course, this will result in increased memory and CPU usage.
Data
This column displays the total number of data packets transferred by the client.

Crypt
The “Crypt” column displays the total number of encrypted packets transferred by
the client.

Size
Size displays the total amount of data transferred by the client.

IP Range
“IP Range” displays the last known IP address of the client.

Sgn
The “Sgn” column displays the most recent signal strength of the client. As with all
other issues related to signal strength, the accuracy of this data is entirely dependent
upon the proper reporting of the data by the driver and/or firmware of the wireless
adapter you’re using. To reiterate: if your card and/or driver does not support proper
signal reporting, this value is useless.

Client Details
In the same way that the network details window shows the comprehensive collec-
tion of details about a particular network, the client details provides the same level of
data for a particular client. Figure 4.12 provides an example of the level of client
detail. Notice the client type is now a little clearer. This particular client is “From DS”
or from the AP to a wireless client. As we know, these clients are typically wired.
In fact, in this particular case, this client is the AP itself.
ww.syngress.com

 Kismet Menus • Chapter 4 99

Figure 4.12 Client Details Window
The n and p keys display the details of the next and previous client, respectively.
Similarly to the network details display, scrolling down will provide you with more
information.

Packet rate
Kismet’s packet rate window will display a 5-minute history of the packet rate
per second (see Figure 4.13).
www.syngress.com

ww

100 Chapter 4 • Kismet Menus

Figure 4.13 Packet Rate Display
Packet Types
Kismet will also dump the packet type information to the screen (see Figure 4.14).
w.syngress.com

Figure 4.14 Packet Type Display

 Kismet Menus • Chapter 4 101
The packet types panel is divided into two sections: the top displays a history of
packet types by abbreviation (see the list below), while the bottom displays a scrolling
list of the most recent packets with more detailed information. By default, Kismet
will display packet types from all networks. However if you have tagged individual
networks you can toggle between “all” and “tagged” with the a key. The following is
a list of the applicable packet types:
‘N’ - Noise

‘U’ - Unknown

‘Mx’ - Management frame

‘Ma’ - Association request

‘MA’ - Association response

‘Mr’ - Reassociation request

‘MR’ - Reassociation response

‘Mp’ - Probe request

‘MP’ - Probe response

‘MB’ - Beacon

‘MM’ - ATIM

‘MD’ - Disassociation

‘Mt’ - Authentication

‘MT’ - Deauthentication

‘M?’ - Unknown management frame

‘Px’ - Physcial frame

‘Pt’ - Request to send

‘PT’ - Clear to send

‘PA’ - Data Ack

‘Pc’ - CF End

‘PC’ - CF End+Ack

‘P?’ - Unknown phy frame

‘Dx’ - Data frame

‘DD’ - Data frame

‘Dc’ - Data+CF+Ack

‘Dp’ - Data+CF+Poll

‘DP’ - Data+CF+Ack+Poll

‘DN’ - Data Null

‘Da’ - CF Ack

‘DA’ - CF Ack+Poll

‘D?’ - Unknown data frame
www.syngress.com

102 Chapter 4 • Kismet Menus
Statistics
Kismet will display overall statistics that include the time you started the program,
how many servers are currently running, the number of networks (broken down into
encrypted and default), total number of packets seen, and maximum packet rate.
In addition, Kismet provides both a graph and chart, which display channel usage
information. See Figure 4.15 for the statistics window.
Figure 4.15 Statistics Display
Wireless Card Power
The l key will display signal power as well as report noise (see Figure 4.16). The
name of this display is a bit of a misnomer, because it is not reporting the power of
your wireless card; rather it is reporting the signal strength of the particular network
or client. Remember that Kismet places your wireless card in rfmon mode, therefore
your card is precluded from transmitting while Kismet is running.
www.syngress.com

 Kismet Menus • Chapter 4 103

Figure 4.16 Wireless Card Power Display

WarNiNg

Kismet does not calculate signal power or noise; rather it simply displays
information provided by the wireless card driver and/or firmware. Some
drivers or firmware may not report this information (especially while in
rfmon mode), and in this case Kismet will not provide you with anything
useful. Furthermore, even when cards do properly report this data, there is
no consistency in terms of a scale, so comparing signal and noise levels
among different cards is more or less useless.
Network Location
Kismet has a nice (and not very well known) feature that will attempt to geo-locate a
network. The accuracy of this information is wholly dependent upon GPS location
data. Since estimating range based upon non-existent signal and noise standards is
virtually impossible, this data is (unfortunately) not very useful in geo-location.
Rather Kismet will guess location based upon a sample of GPS-logged locations.
www.syngress.com

104 Chapter 4 • Kismet Menus
Furthermore, Kismet does this on the fly; therefore it is advantageous to get sample
data from a variety of locations to get a better guess. See Figure 4.17 for an example
of the network location feature.
Figure 4.17 Network Location Display
Essentially, network location compares the location of where you were versus
where you are now. This also assumes that your laptop is facing the direction of
travel.

Customizing the Panels Interface
As has already been noted, Kismet can display a wealth of information about a network
or client on the network and client lists (respectively), the only limitation being size.
Should you find your work requires additional information to be available to you from
one of these two displays, you can easily modify Kismet’s user interface configuration
file to add or remove columns. Also, Kismet provides the ability to change colors to suit
your needs.
www.syngress.com

 Kismet Menus • Chapter 4 105
Customizing the Network List Window
As we have seen, Kismet’s main display contains a significant amount of useful
information in the network list section. All of the information for a particular net-
work is available in the network details window. Any or all of this information can be
displayed in the main window by modifying the kismet_ui.conf file. The recognized
columns, and their appropriate descriptions, are as follows (default columns are bold):
bssid BSSID (MAC address) of the network

channel Last-advertised channel for network

clients Number of clients (unique MACs) seen on network

crypt Number of encrypted packets

data Number of data packets

decay Displays ‘!’ or ‘.’ or blank, based on network activity in the
last ‘decay’ seconds (controlled by the ‘decay’ variable in the config file)

dupeiv Number of packets with duplicate IVs seen

flags Network status flags (Address size, decrypted, etc)

info Extra AP info included by some manufacturers

ip Detected/guessed IP of the network

llc Number of LLC packets

manuf Manufacturer, if matched

maxrate Maximum supported rate as advertised by AP

name Name of the network or group

noise Last seen noise level

packets Total number of packets

shortname Shortened name of the network or group for small displays

shortssid Shortened SSID for small displays

signal Last seen signal level

signalbar Graphical representation of signal strength

snrbar Graphical representation of signal-to-noise ratio

size Amount of data transfered on network

ssid SSID/ESSID of the network or group

type Network type (Probe, Adhoc, Infra, etc)

weak Number of packets which appear to have weak IVs

wep WEP status (does network indicate it uses WEP)

To modify the default columns in the main window, edit the kismet_ui.conf file at
the following location:
What columns do we display? Comma seperated. Read the documentation for what

columns are valid.

columns=decay,name,type,wep,channel,packets,flags,ip,size
www.syngress.com

106 Chapter 4 • Kismet Menus
Figure 4.18 shows a modified network list panel showing network name,
 manufacturer, total number of data packets by network, signal and noise information,
and amount of data transferred per network.
w

Figure 4.18 Modified Network List Window
Customizing the Client List Window
Similarly, the columns in the client window can be modified (all are on by default
except “maxrate”):
crypt Number of encrypted data packets transfered by client

data Number of data packets transfered by client

decay Displays ‘!’, ‘.’, or ‘ ’ based on network activity

ip Last seen IP used by client

mac MAC address of client

manuf Manufacturer of client (if known)

maxrate Maximum rate client seen transfering
ww.syngress.com

 Kismet Menus • Chapter 4 107
noise Last seen noise level of client

signal Last seen signal level of client

size Amount of data transfered by client

type Type of client (Established, To-DS, From-DS, etc)

weak Number of packets which appear to have weak IVs

To modify the default columns in the client window, edit the kismet_ui.conf file at
the following location:
What columns do we display for clients? Comma seperated.

clientcolumns=decay,type,mac,manuf,data,crypt,size,ip,signal,quality,noise

Customizing Colors
Kismet’s colors can be turned on or off, the background and border colors can be
changed, and the default colors listed above can be changed by modifying the
 applicable portion of kismet_ui.conf:
Colors (front, back) of text in the panel front. Valid colors are:

black, red, yellow, green, blue, magenta, cyan, white

optionally prefixed with “hi-” for bold/bright colors, ie

hi-red, hi-yellow, hi-green, etc.

Enable colors?

color=true

Background

backgroundcolor=black

Default text

textcolor=white

Window borders

bordercolor=green

Titles

titlecolor=hi-white

GPS and APM info

monitorcolor=hi-white

WEP network color

wepcolor=hi-green

Factory network color

factorycolor=hi-red

Open color

opencolor=hi-yellow

Decloaked network color

cloakcolor=hi-blue
www.syngress.com

108 Chapter 4 • Kismet Menus
Third Party Front-ends
While the large majority of this chapter has focused on Kismet’s native panels
interface, there are a number of third-party interfaces that have been developed over
the years. These third-party front-ends are designed primarily as a way of enhancing
the look or changing the interface from an ncurses/panel one to a truly graphical
one. This section is not meant to be an exhaustive review of such graphical user
interfaces (GUIs), but rather a brief survey of some of the options that are available.
NoTe

It is important to note that these third-party front-ends are simply replace-
ments for the Kismet client (interface), and don’t actually do anything by
themselves. They still require you to run Kismet in server mode and connect
to it with the particular interface of your choice.
gkismet
One example of a popular Linux-based Kismet front end is gkismet (see Figure 4.19).
The gkismet interface is designed to supplement or replace the native Kismet panels
interface for those that prefer something more GUI-based. Many of the same features
are available, and development is ongoing to remain compatible with the latest
version of Kismet. For more information about gkismet, see http://gkismet.
sourceforge.net/.
www.syngress.com

http://gkismet.sourceforge.net/
http://gkismet.sourceforge.net/

 Kismet Menus • Chapter 4 109

Figure 4.19 gkismet
KisWin
KisWin (not to be confused with RenderMan’s Kismet for Windows package also
known as KisWin, and located at http://www.renderlab.net/projects/wrt54g/) is a
Windows-based GUI front-end for Kismet (see Figure 4.20). Whether you are run-
ning Kismet on Windows/Cygwin using a remote drone (such as a modified Linksys
WRT54G), using CACE Technologies’ AirPcap adapter, or simply running Kismet
www.syngress.com

http://www.renderlab.net/projects/wrt54g/

w

110 Chapter 4 • Kismet Menus
over a network to a Windows PC, KisWin provides you with a GUI interface.
For more information about KisWin, see http://kiswin.taz00.com/
Figure 4.20 KisWin
dumb kismet client
The last interface we’ll mention is dumb kismet client for Win32. This particular client
is lightweight, and should be able to run in front of any of the same Windows/
Cygwin configurations as KisWin. While dkc is designed for Windows, it also worked
fine under Linux using wine. For information about dumb kismet client, see
http://www.d3tr.de/dkc/.
ww.syngress.com

http://kiswin.taz00.com/
http://www.d3tr.de/dkc/

 Kismet Menus • Chapter 4 111

Figure 4.21 dumb kismet client
Further information
Once again, this section is not designed to be the end-all solution for third-party
front-ends for Kismet, rather a sampling of some of the solutions that are available
to users. See http://www.kismetwireless.net/links.shtml for more information on
third-party tools for Kismet.
www.syngress.com

http://www.kismetwireless.net/links.shtml

w

112 Chapter 4 • Kismet Menus
Summary
The Kismet client is the primary interface between the Kismet server and the user.
The default display is the panels interface, which is a lightweight, interactive GUI
display. The primary display provides the user with a general overview of Kismet’s
collected data, and can be manipulated and modified to the user’s content. The
remainder of the windows are secondary displays or pop-up windows that provide
additional and amplifying information about selected networks, groups, or clients,
as well as statistics and additional interesting information. Some of these displays can
also be modified to the user’s liking. Lastly, there are a number of third-party front-
ends to supplement or replace the default Kismet client.

What happens when you have a question? Your first source of information should
be Kismet itself. Most if not all of the displays have integrated help screens (always
the h key). Your second source should be the online documentation, found at www.
kismetwireless.net/documentation.shtml. Of particular interest to this chapter are
sections 10 (Ncurses/panel interface), 17 (Troubleshooting, and 18 (Frequently Asked
Questions). You would benefit greatly from reading the documentation in its entirety
(all the way to the end!). Once you exhaust those sources, move on to the Kismet
forums (http://www.kismetwireless.net/forum.php), being sure to search before you
post. Finally, consider using your best friend Google who, more often than not, can
find something that will guide you in the right direction.

Solutions Fast Track
Main Display

The Kismet panels display is the primary interface between the Kismet client
and server and the user.

The main display is divided into the network list panel, status panel, and
information panel; and is designed to provide the user with an overview of
Kismet’s collected information.

Kismet’s integrated help feature is the gateway to more detailed information
about a particular network.

˛

˛

˛

ww.syngress.com

http://www.kismetwireless.net/documentation.shtml
http://www.kismetwireless.net/documentation.shtml
http://www.kismetwireless.net/forum.php

 Kismet Menus • Chapter 4 113
Popup Windows
All windows beyond the main display are secondary or pop-up windows,
and provide additional and amplifying information about selected networks,
groups, or clients, as well as statistics and additional interesting information.

The information provided on the wireless card power and network location
pop-up windows is wholly dependent upon the wireless card drivers and/or
firmware. Kismet does not calculate signal or noise information, rather it
simply reports it.

Customizing the Panels Interface
Both the network list and client list can be modified to the user’s
specifications by editing the kismet_ui.conf file.

Kismet’s color scheme, including the background, borders, and default
color-coding of networks, can be modified as well.

Third-Party Front-ends
Third-party front-ends are GUIs designed to supplement or replace the
Kismet client panels interface.

Third-party clients are available to run on both Linux and Windows.

˛

˛

˛

˛

˛

˛

www.syngress.com

Chapter 5
Configuring the
Kismet Server
Solutions in this chapter:

The Kismet Config File

Kismet.conf

■

■

˛	Summary
115

116 Chapter 5 • Configuring the Kismet Server
Introduction
The Kismet server is controlled primarily from one big scary configuration file. Usually
located in /usr/local/etc, the kismet.conf file is where you’ll spend most of your configu-
ration time. Anyone who’s spent any time working on config files will find themselves
pretty comfortable. It is an untapped resource for both the Kismet beginner and even
for experts who have been using Kismet for a while. Not many people go through and
check out the extent of the configuration options available to them. There’s a great
amount of information that can be tracked and recorded by Kismet, as well as filtering
and targeting of certain information. Understanding what options are available will help
you use Kismet in the best possible way for your needs.

The Kismet Config File
The config file is not as scary as it may seem. It is very large, however, because Dragorn
was kind enough to leave a lot of very verbose comments about the various options.
Some areas are fairly self-explanatory while others are not. This section will go through,
almost line-by-line and examine and explain each of them. The comments are good,
however some areas are open to tweaks not specified in the comments, and a lot of
power can be revealed once you start digging into the config file.

Kismet Parameters
The kismet.conf config file can be edited directly with your favorite UNIX text
editor (such as vi, pico, emacs), just be aware of word wrapping and UNIX file
format. The config file is parsed at runtime by the server and expects a UNIX text
file. DOS and UNIX use different control characters for their text files and as such,
using a DOS or windows editor on a UNIX text file will probably change it and
make the file unreadable to the server. In general, if you are editing the kismet.conf
file, use a UNIX editor. This can be either a native Linux application, or an editor
through Cygwin if you are running under windows or some other UNIX text
format-capable editor.

Comments in the kismet.conf file are lines starting with a “#” symbol. These
are often comments or example configurations and can usually guide you to what
options you need to set. Lines that do not start with a comment are the actual
parameter variables acted upon by the server. It’s a good idea to comment out the
existing line by putting a “#” in front of the line and adding a new line with
www.syngress.com

 Configuring the Kismet Server • Chapter 5 117
the adjusted parameter. This way if something goes wrong, you know what the
original parameter was.

Kismet.conf
Kismet config file

Most of the “static” configs have been moved to here -- the command line

config was getting way too crowded and cryptic. We want functionality,

not continually reading --help!

The Kismet server used to be controlled through command-line parameters
(many of which still can be used), but as the program and functionality grew, it
became a huge effort to set all the command-line arguments for sources, ports, and
so forth. So everything was moved into the kismet.conf file. The above lines are the
beginning of the kismet.conf file, and is a throwback to those early days when people
spent forever looking at the –help command line switches.
Version of Kismet config

version=2007.09.R1

This line indicates the version of the config file itself, not the version of the server
or any other portion of the program. A lot of people confuse this line with the server
version and wonder why their server is three versions back. The config file doesn’t
change as often as the rest of the tool suite, so it has a separate version number listed
on this line.
Name of server (Purely for organizational purposes)

servername=Kismet

This parameter is one of those often-overlooked sections of the config, and it’s
right at the top. The servername parameter allows you to name the server for your
own organizational purposes. This is particularly useful if you are monitoring several
remote servers with one client instance. You could have servers named after location
(server_north_east, server_north_west, warehouse) or channel (server_ch1, server_ch2) or
however you want to keep things sane. The server name must not contain any spaces,
so use underscores or dashes in place of spaces. This allows you to know which server
you’re connected to and it’s location for either troubleshooting purposes or for
incident tracking. It has no real affect on performance; it’s just useful for keeping you
sane, particularly in large installations.
User to setid to (should be your normal user)

suiduser=your_user_here
www.syngress.com

118 Chapter 5 • Configuring the Kismet Server
This line is often a misunderstood by people just beginning with Kismet. This is
the user that Kismet will run it’s processes as once it’s started. Kismet requires root
access to set monitor mode and other options, then it drops privileges on the Kismet
processes to the user specified in this parameter.
suiduser=foo

The above is an example, where “foo” is a normal user account on the system.
Note

As noted in the chapter on basic Kismet install, unless you build Kismet Set
User ID (SUID) root, you need to have a normal non-privileged user on the
system. This is for security reasons. The user specified here also has to have
write permission on the directory where you are storing your captured data
and logs. A major problem people trip on is that they run Kismet as root and
specify root as the SETUID user. Unless you built it SETUID root, this will halt
Kismet from starting. They also make the mistake of logging in as root,
running Kismet from /root and the server fails to start as the SETUID user
does not have write permission on the /root directory. The simple solution is
to login as a normal user and either su to root or use sudo to start Kismet.
Specify the username of a non-privileged (non-root) user on the system and
make sure that wherever you store the data it has write permission. The logical place
for this is the non-privileged users home directory. The best order to run Kismet to
avoid problems is to login as a normal user, change to the directory you want the
resulting data saved to, then “su” to root and then run Kismet.
Do we try to put networkmanager to sleep? If you use NM, this is probably

what you want to do, so that it will leave the interfaces alone while

Kismet is using them. This requires DBus support!

networkmanagersleep=true

This line in the config file tells Kismet to use Dbus to disable Network Manager,
the common gnome desktop manager applet, to disable itself for the duration of the
Kismet session. After Kismet exits, the network manager will resume control.
www.syngress.com

 Configuring the Kismet Server • Chapter 5 119

Note

Many modern Linux distributions use fancy X widgets to control the network
cards. It’s an attempt at making the system user friendly and avoiding users
to have to go to the command line to connect to a wireless network. The
problem is, if we want to do anything weird with the card, such as monitor
mode, these network monitor programs fight for control of the card and can
cause no end of grief for Kismet.

If you have any weird scanning situations such as things randomly stop-
ping scanning or getting stuck on one channel and not hopping, this is a
likely candidate. For the most part, you’ll want this option enabled.

In some situations, this may cause issues. The most common will be when
you are scanning with one interface but using the network manager to
control another for communication (such as an intrusion detection system
(IDS) setup reporting to a server. Kismet disables network manager for all
interfaces, wired and wireless. If you run into problems with the network
manager being disabled, you may want to not use the network manager at
all and manually configure the other interfaces.
Sources are defined as:

source=sourcetype,interface,name[,initialchannel]

Source types and required drivers are listed in the README under the

CAPTURE SOURCES section.

The initial channel is optional, if hopping is not enabled it can be used

to set the channel the interface listens on.

YOU MUST CHANGE THIS TO BE THE SOURCE YOU WANT TO USE

Probably one of the most important areas of the config file; where do we get
our data. The source line tells Kismet what it needs to know to get data into the
program so we can start scanning. Each source has three parameters: a Kismet source
name for the specific type of card, the interface name, and a logical name found in
the Kismet client. The Kismet README has a list of compatible sources and their
proper interface names.
hostap Prism/2 Linux HostAP 0.4

 http://hostap.epitest.fi/

 Capture interface: ‘wlanX’

 HostAP drivers drive the Prism/2 chipset in access point
www.syngress.com

http://hostap.epitest.fi/

w

120 Chapter 5 • Configuring the Kismet Server
 mode, but also can drive the cards in client and monitor

 modes. The HostAP drivers seem to change how they go

 into monitor mode fairly often, but this source should

 manage to get them going.

The README has many entries, such as this one for hostap-compatible cards.
You’ll need to find the one for your card type and follow any special instructions
to get it to work (different drivers or patches, and so forth).

For the above card, the source line would be “source=hostap,wlanx,hostap” where
hostap is the name of the type of card (according to the readme), and wlanx is the
interface name for that card (usually will be wlan0 or wlan1). The last part is a logical
name for your information. The client displays the status of each card and what
channel it is currently on. It is useful to give a short descriptive name so you know
which is which. Identifying on board network cards vs. add-on cards can be especially
useful so you know which one is active and on what channel.

You can also specify the initial channel the cards start on when Kismet is started by
adding a fourth parameter after a comma. If you want the card to start on channel 11,
you simply add a “,11” after the logical name. The source line would now read
“source=hostap,wlanx,onboard,11.” This is especially useful if you have multiple cards
and want to monitor different channels on each; you can have Kismet set the channels
instead of manually doing it. This setting does not affect much if channel hopping is
enabled and only works for static channel monitoring.

Drones are also specified here in the source= line. Drones are like any other source
except that we specify a remote address of the drone device instead of a local interface.

If we have a drone running on a computer at 192.168.0.45, the source= line
would look like:
source=kismet_drone,192.168.0.45:3501,Drone

Just as with local interfaces, we specify the type of device, in this case kismet_drone,
the address of the device and the port the drone is running on (default is 3501), and
a logical name for the device that is shown in the client.

Drones need to be running before the Kismet server is started or the server will
fail to start. If a drone disconnects for any reason, you will need to restart the Kismet
server to reconnect to that drone. This limitation is being addressed in the development
of Kismet-Newcore.
Per-source special options

sourceopts=srcname:options
ww.syngress.com

 Configuring the Kismet Server • Chapter 5 121
srcname * indicates “all sources”. Individual source options can be turned

off with “no”, ie “noweakvalidate”. Some sources may have special options.

sourceopts=demo:fuzzycrypt,weakvalidate

sourceopts=demo2:nofuzzycrypt

Sources can have special parameters for what type of data to collect. If we have
multiple sources, you can specify some sources to collect all data, and others to ignore
some. For the most part, it’s not necessary to change any of these as each driver is
unique and there is no way to tell what options are available to change.
Comma-separated list of sources to enable. This is only needed if you defined

multiple sources and only want to enable some of them. By default, all defined

sources are enabled.

For example:

enablesources=prismsource,ciscosource

This is a very useful parameter for multi-source installations, or for situations
where you use different cards for different types of detection. Define all your poten-
tial sources (different cards, or configurations of cards) above in the source= lines and
depending on the logical names you specify for each source, you can toggle them
here by either editing the enablesource= line or setting up multiple lines with different
combinations of cards and commenting out with a “#” at the start of the lines you
don’t need. Remember that only one enablesources= line should be uncommented
at once.

For example, if you had a configuration for wardriving with two cards, you could
have a line that says “enablesources=engenius1,engenius2” and another one for direction
finding as “enablesources=proxim.” This becomes particularly useful when dealing with
large numbers of drones. You can enable and disable groups very quickly and easily
by setting up multiple lines and just commenting and uncommenting different ones.
Automatically destroy VAPs on multi-vap interfaces (like madwifi-ng).

Madwifi-ng doesn’t work in rfmon when non-rfmon VAPs are present, however

this is a fairly invasive change to the system so it CAN be disabled. Expect

things not to work in most cases if you do disable it, however.

vapdestroy=true

Some WiFi drivers create Virtual interfaces, VAP’s, off a parent device for different
functions. Madwifi-ng is the most common of these. With Madwifi-ng, the parent
device is typically called something like wifi0 and all VAP’s are named ath0, ath1, and
so forth, depending on the specifics of the card. You can have a single card operating
www.syngress.com

122 Chapter 5 • Configuring the Kismet Server
in multiple modes simultaneously, however that doesn’t mean they work properly.
Madwifi-ng in particular has great problems operating with one VAP in monitor
mode and channel hopping when there’s another VAP trying to connect and/or stay
connected to a network.

Setting vapdestroy=true tells Kismet that if there is a parent/virtual device driver
in use, destroy all the VAP’s and create an interface for Kismet in monitor mode.
If you have some reason for needing those other VAP’s, you’ll have to create the
monitor mode interface manually. Don’t be surprised if things like monitor mode and
channel hopping don’t get along with other VAP’s present. If in doubt, enable it and
let Kismet sort out the interfaces.
Do we channelhop?

channelhop=true

This is fairly obvious. It specifies whether or not to invoke the channel-hopping
sections (if channel hopping is possible on the source). Set to channelhop=false if you
want to lock to a specific channel. This will have the source card scan the channel it
is on when Kismet is started, or the channel specified in the optional initial source
parameter on the source= line for that source.
How many channels per second do we hop? (1–10)

channelvelocity=5

You can tweak the speed at which you hop channels. This is mostly something
you have to fine tune yourself. If you hop slow, it takes longer to get through all the
channels. If you hop fast, there’s the chance you could miss something. Generally, if
you’re wardriving or traveling fast, you want to hop fast. If you’re on foot or can take
the time to be thorough, you can hop slow. If you are traveling fast and only in range
of an access point (AP) for a split second, you want to scan through as many channels
as you can to hopefully be on the correct channel when you’re in range. If you’re on
foot or moving slow as you would be for rogue hunting, you can take your time and
make sure to check channels. Default is 5, but might need to be tweaked depending
on your situation and preference.
By setting the dwell time for channel hopping we override the channelvelocity

setting above and dwell on each channel for the given number of seconds.

channeldwell=10

This setting overrides the channel velocity setting and specifies that, rather than a
certain number of channels per second, Kismet should spend a certain amount of
www.syngress.com

 Configuring the Kismet Server • Chapter 5 123
time on each channel. This is a more useful setting for static installations and drones.
This way you can thoroughly inspect each channel. It’s up to you to determine
which works for you to make the most of your time and coverage. Increments of
1 second can be adjusted.
Do we split channels between cards on the same spectrum? This means if

multiple 802.11b capture sources are defined, they will be offset to cover

the most possible spectrum at a given time. This also controls splitting

fine-tuned sourcechannels lines which cover multiple interfaces (see below)

channelsplit=true

Channel splitting enables Kismet to cover more spectrums at any given time
when multiple sources are in use. If you have two cards, both hopping, Kismet will
make sure that they are both always on different channels at any given time. If card 1
is on channel 5, card 2 is on a channel other than 5, maximizing the covered spectrum.
This is especially useful for situations of several cards, where having all of them on
one channel makes little or no sense. If you are using several drones or other situations
where you need blanket coverage of a channel across several locations, consider
disabling this.
Basic channel hopping control:

These define the channels the cards hop through for various frequency ranges

supported by Kismet. More finegrain control is available via the

“sourcechannels” configuration option.

#

Don’t change the IEEE80211<x> identifiers or channel hopping won’t work.

Users outside the US might want to use this list:

defaultchannels=IEEE80211b:1,7,13,2,8,3,14,9,4,10,5,11,6,12

defaultchannels=IEEE80211b:1,6,11,2,7,3,8,4,9,5,10

802.11g uses the same channels as 802.11b …

defaultchannels=IEEE80211g:1,6,11,2,7,3,8,4,9,5,10

802.11a channels are non-overlapping so sequential is fine. You may want to

adjust the list depending on the channels your card actually supports.

defaultchannels=IEEE80211a:36,40,44,48,52,56,60,64,100,104,108,112,116,120,124,
128,132,136,140,149,153,157,161,184,188,192,196,200,204,208,212,216

Here you can specify what channels, by default, a source should hop through.
More fine control is available in the sourcechannels= line later on, we are just specifying
the channels that are possible here.
www.syngress.com

w

124 Chapter 5 • Configuring the Kismet Server

Note

This setting also allows you to set the channels for your regulatory domain.
By default, it is set up for the North American regulator domain, which is for
channels 1–11, but not all users are in the North American regulatory domain
and can use more or less channels. This is also where you can hack things a
bit. If your card supports all 14 channels, or more than your regulatory
domain allows, you can specify all the possible channels, even the ones not
technically allowed in your regulatory domain. Check your local laws before
doing this, however.

Since we are not transmitting in Kismet it shouldn’t be a problem (check
your local laws) to listen to see if someone has set up a rogue AP on channels
not normally used or allowed, to try and avoid detection. Please don’t abuse
this as the regulations are there for a reason.
Combo cards like Atheros use both ‘a’ and ‘b/g’ channels. Of course, you

can also explicitly override a given source. You can use the script

extras/listchan.pl to extract all the channels your card supports.

defaultchannels=IEEE80211ab:1,6,11,2,7,3,8,4,9,5,10,36,40,44,48,52,56,60,64

You can also specify channels to be covered by a/b/g combo cards if you happen
to have one. The listchan.pl script in the extras directory of the install package will
poll your card(s) to see what channels are supported. A useful thing to see if your
card is capable of more than you thought it was.
Fine-tuning channel hopping control:

The sourcechannels option can be used to set the channel hopping for

specific interfaces, and to control what interfaces share a list of

channels for split hopping. This can also be used to easily lock

one card on a single channel while hopping with other cards.

Any card without a sourcechannel definition will use the standard hopping

list.

sourcechannels=sourcename[,sourcename]:ch1,ch2,ch3, … chN

ie, for us channels on the source ‘prism2source’ (same as normal channel

hopping behavior):

sourcechannels=prism2source:1,6,11,2,7,3,8,4,9,5,10

This parameter is where you can fine-tune the channel hopping. In the defaultchannels
parameter, we specified what channels were available, now we can specify which ones we
specifically want to listen on and what order to sequence through.
ww.syngress.com

 Configuring the Kismet Server • Chapter 5 125

Notes from the Underground

Hack
There is a very cool hack possible here. For b/g networks, channels 1, 6, and 11
are statistically the most popular since they don’t overlap. If we have one card,
it makes no sense to spend only 8/11th’s of our time on channels less likely to
have something on them. You can specify channels more than once and the
sequence will loop back to the beginning when done. So if you specify chan-
nels 1, 6, and 11 more than once, you’ll end up spending more time there
overall and even out your distribution of time/channels.

sourcechannels=prism2source:1,6,11,2,7,1,6,11,3,8,1,6,11,4,9,1,6,11,5,10

With the above line we are spending 6/10th’s of our time checking the
most popular channels. You can tweak this distribution to your liking, but it
has been tested and tends to work for high-speed scanning such as highway
speed wardriving. You can also specify additional channels such as 12–14 if
your card supports it and add those to the mix.

You can do the same for 802.11a channels. Either adding them to the mix
of b/g channels if you have an a/b/g card or just the 802.11a channels f you
have a single mode card.
Given two capture sources, “prism2a” and “prism2b”, we want prism2a to stay

on channel 6 and prism2b to hop normally. By not setting a sourcechannels

line for prism2b, it will use the standard hopping.

sourcechannels=prism2a:6

If you don’t specify a sourcechannels parameter and channelhop=true, the system will
automatically hop through the default channels. If you have multiple sources, you can
have a specific sourcechannels for one device and have it monitor a few specific channels,
while the other one checks the remainder. This is effective with wardriving. One
source spends all it’s time checking 1, 6, and 11 where there are most likely going to
be signals, and the other can check the remaining channels.

You can also use this to break up the workload across multiple sources. Once card
can do the lower channels, the other the higher channels, and be able to sequence
through everything much faster than a single card.
www.syngress.com

126 Chapter 5 • Configuring the Kismet Server
To assign the same custom hop channel to multiple sources, or to split the

same custom hop channel over two sources (if splitchannels is true), list

them all on the same sourcechannels line:

sourcechannels=prism2a,prism2b,prism2c:1,6,11

You can also nest multiple sources in an assigned sourcechannel. If channelsplit=true,
Kismet will cycle through the channels, and make sure that no two sources are on the
same channel at the same time, maximizing the time spent on high-usage channels,
and making sure not to overlap scanned channels. In the config file example, three
sources would cycle through each of three channels without overlapping.
Port to serve GUI data

tcpport=2501

Here you can specify what TCP port the server will serve clients on. There
should be no real reason to change this setting. If you feel the need to change this,
make sure to make the appropriate change in the kismet_ui.conf file.
People allowed to connect, comma seperated IP addresses or network/mask

blocks. Netmasks can be expressed as dotted quad (/255.255.255.0) or as

numbers (/24)

allowedhosts=127.0.0.1

This is where remote monitoring can be set up. By default, for security reasons,
only the host running the server can connect a client (localhost). If you want to use
the Kismet client on another system and connect to a remote server, you need to
specify the network address of the host that will be connecting to the server. This is
accomplished by appending it to the existing line with a comma and no space.
allowedhosts=127.0.0.1,192.168.0.34,10.0.50.45

You can also specify valid netblocks; allowedhosts=127.0.0.1,192.168.0.0/24 or
allowedhosts=127.0.0.1,192.168.0.0/255.255.255.0 will allow the entire 192.168.0.x
netblock to connect.

It is best to limit what hosts can connect. If you’re monitoring your corporate
network and you let anyone connect, you could end up giving access to your data
dumps to an attacker, since Kismet does not do any authentication beyond this.
Address to bind to. Should be an address already configured already on

this host, reverts to INADDR_ANY if specified incorrectly.

bindaddress=127.0.0.1
www.syngress.com

 Configuring the Kismet Server • Chapter 5 127
The Kismet server can be bound to specific addresses on a multi-homed system.
By default, Kismet will bind to all addresses configured and listen on all interfaces.
If you want to limit it to only one address, specify it here.
Maximum number of concurrent GUI’s

maxclients=5

This specifies exactly what it says; the maximum number of clients that can
connect to a server. The more clients, the more work the server has to do, so it’s
best not to allow too many or run too many.
Do we have a GPS?

gps=true

This is a pretty self-explanatory parameter. If you want to use a GPS, you need
to set this to true in order to use it. If it’s set to false, you can save a little memory
on really slim systems.
Host:port that GPSD is running on. This can be localhost OR remote!

gpshost=localhost:2947

Kismet uses GPSD for getting GPS coordinates into Kismet and in turn into
your logs. GPSD interfaces with your serial/Universal Serial Bus (USB) port and
takes the incoming NMEA data and puts it out over a TCP port. Kismet connects
to that port and puts the data into the server.

Specify where GPSD is running and on what port. Most configurations have GPSD
running on the same system as kismet_server, so it would be set to “gpshost=localhost:2947”
or “gpshost=127.0.0.1:2947” depending on if name resolution is working or not.
www.syngress.com

Note

If for some reason you have GPSD on another machine on the same network
as the kismet_server and GPSD is available on it, you can specify that system’s
address instead. Note: If you get your GPS data from a source other than one
attached to the system running kismet_server, then all your locations will
seem to be from the location at the remote system, skewing your results.
This is also true if you are running remote drones. If your GPS location is not
at the location of your sensor, then your GPS data will not be correct.

w

128 Chapter 5 • Configuring the Kismet Server
Do we lock the mode? This overrides coordinates of lock “0”, which will

generate some bad information until you get a GPS lock, but it will

fix problems with GPS units with broken NMEA that report lock 0

gpsmodelock=false

This parameter is a workaround for GPS’s that don’t send proper data until you
get a lock on the GPS satellites. Set this to “true” if your GPS is giving you issues on
startup. You may also want to check for updated firmwares for your GPS.
Packet filtering options:

filter_tracker - Packets filtered from the tracker are not processed or

recorded in any way.

filter_dump - Packets filtered at the dump level are tracked, displayed,

and written to the csv/xml/network/etc files, but not

recorded in the packet dump

filter_export - Controls what packets influence the exported CSV, network,

xml, gps, etc files.

All filtering options take arguments containing the type of address and

addresses to be filtered. Valid address types are ‘ANY’, ‘BSSID’,

‘SOURCE’, and ‘DEST’. Filtering can be inverted by the use of ‘!’ before

the address. For example,

filter_tracker=ANY(!00:00:DE:AD:BE:EF)

has the same effect as the previous mac_filter config file option.

filter_tracker= …

filter_dump= …

filter_export= …

Kismet can filter out specific MAC addresses at various levels of the program.
This can be useful if you wish to eliminate known AP’s and clients from your logs
or display. You can also limit how far the packet gets in the client server chain and if
it’s recorded or not in the logs.

filter_tracker= If any packets match the specified parameters, they are not
added to the display or any of the log files, and are simply dropped on the
floor.

filter_export= If any packets match the specified parameters, they are not
included in the CSV, network, xml, gps, etc files but are recorded in the
dump file.

filter_netclient= If a packet comes from a specific network client, don’t
record it.

■

■

■

ww.syngress.com

 Configuring the Kismet Server • Chapter 5 129
The MAC addresses can be specified as SOURCE, DEST (destination), BSSID,
and ANY. Source and destination are useful for eliminating known clients, BSSID is
for specifying the MAC of a wireless AP. ANY will filter any packets with that MAC,
regardless of where it appears in the frame. Just specifying the MAC will activate the
filter on a match to that address, or you can specify the inverse with an exclamation
point at the beginning to filter everything but the specified address.
filter_tracker=ANY(!”00:00:DE:AD:BE:EF”)

This will filter any packet out of the logs and packet tracker that does not match
the specified MAC of 00:00:DE:AD:BE:EF
filter_dump=BSSID(“00:00:DE:AD:BE:EF”)

This line will filter out packets from the AP with the BSSID of 00:00:DE:AD:
BE:EF from the dump file.
filter_tracker=ANY(“00:00:DE:AD:BE:EF”)

This line would drop any packets with the MAC of 00:00:DE:AD:BE:EF from
the display and the logs. This is particularly good if you want to monitor for rogue
networks and eliminate known networks and clients from the logs and display.
Alerts to be reported and the throttling rates.

alert=name,throttle/unit,burst/unit

The throttle/unit describes the number of alerts of this type that are

sent per time unit. Valid time units are second, minute, hour, and day.

Burst rates control the number of packets sent at a time

For example:

alert=FOO,10/min,5/sec

Would allow 5 alerts per second, and 10 alerts total per minute.

A throttle rate of 0 disables throttling of the alert.

See the README for a list of alert types.

Kismet has some rudimentary IDS capability to detect certain patterns in packets
known to be attacks, or the presence of certain pieces of software that could be used
maliciously.

These alerts can give a network administrator a great deal of power in determin-
ing if their network is under attack, or if problems are from some other source. While
a certain amount and types of alerts are normal, excessive amounts can indicate
problems or attacks.

These alert patterns are built into the Kismet source and are not easily changed.
The threshold for triggering an alert is configurable, however. The “alert=” line
www.syngress.com

w

130 Chapter 5 • Configuring the Kismet Server
specifies an alert built in the source and it’s threshold before triggering a note in the
alert log. If you want to disable the alert, just add a comment “#” in front of it.

Each alert has it’s own parameters. alert=FOO,10/min,5 would enable the FOO
alert. When the FOO event happens 5 times in a second. it triggers an alert. After
that initial trigger, it would spawn another alert if FOO occurred again in the same
time frame, to a maximum of 10 alerts per minute, so as to avoid clogging the alert
window with thousands of the same alerts.

These alerts will clue you in to the presence of some active network discovery
applications, and some odd patterns that denote attacks. Passive sniffers such as
Kismet, cannot be detected, and offline attacks obviously cannot be detected either.
It is not an exhaustive IDS system, but it can be useful for quickly identifying common
attacks and problems.
alert=NETSTUMBLER,10/min,1/sec

This alert detects the presence of the Netstumbler network discovery tool
through unique packets being broadcast while it is in use.
alert=WELLENREITER,10/min,1/sec

This alert detects the presence of another network discovery tool, Wellenreiter.
Specifically this alert detects Wellenreiter’s SSID bruteforcer. If a network is not
broadcasting it’s SSID, it is possible to reveal the SSID by probing using a dictionary
and listening for responses. This alert is triggered by certain behaviors of Wellenreiter
when it is doing this, namely between each probe attempt, it resets the card to probe
for “this_is_used_ for_wellenreiter.”
alert=LUCENTTEST,10/min,1/sec

This alert is for the presence of lucent networks link test. This is a site survey tool
that could be used for rudimentary stumbling and reconnaissance.
alert=DEAUTHFLOOD,10/min,2/sec

This detects deauthentication floods. If an attacker is spoofing deauthentication
packets from the MAC of the AP to clients, an alert is generated. An alert is not
triggered if the disassociation is normal, but only if excessive deauthentications are
occurring.
alert=BCASTDISCON,10/min,2/sec

This alert is for broadcast floods, which should never occur normally. In a broadcast
flood, the attacker floods a network with disassociation or deauthentication packets in
ww.syngress.com

 Configuring the Kismet Server • Chapter 5 131
an attempt to get clients to disassociate with their current AP and associate to a rogue
network.
alert=CHANCHANGE,5/min,1/sec

This alert notes if a previously detected network suddenly changes channels. This
is a good indication of an attempt at spoofing a network, since most networks don’t
change channels on a regular basis.
alert=AIRJACKSSID,5/min,1/sec

This alert looks for the probe SSID name of “airjack,” the initial SSID of airjack
tools. The airjack tools allow for raw mode injection and reception, and are used in a
number of possibly malicious tools. This alert only detects the SSID of airjack and
not the tools themselves. A skilled attacker could easily change the initial SSID to
something more innocuous.
alert=PROBENOJOIN,10/min,1/sec

If a client probes for an existing network and is accepted but does not join, this is
an indication of some firmware-based network discovery tools such as Netstumbler.
In some situations, this can generate a great number of false positives and may not be
indicative of an attack. This can also be triggered by some network client applications
waiting for user input before associating.
alert=DISASSOCTRAFFIC,10/min,1/sec

If a client appears to disassociate from the AP, it should normally not be attempting
to communicate with the AP right afterwards. If this alert is triggered, it is likely the
client specified in the alert has been the victim of a disassociation attack where an
attacker sends a forged packet to the AP indicating the client is leaving.
alert=NULLPROBERESP,10/min,1/sec

This is an indication of an attack against some firmware versions by many
 manufacturers that have a fatal error if they receive a SSID probe of null length (no
length). This can be a sign of a Denial of Service (DoS) attack or misbehaving client.
alert=BSSTIMESTAMP,10/min,1/sec

Each packet from an AP is time-stamped and should be received in something
resembling a continuous stream. It is not possible to spoof the time stamp with
normal drivers, so a wildly different time stamp received is an indication that someone
may be trying to spoof the AP’s SSID and/or MAC address. This may trigger some
false positives in situations of high loss where not all packets are being received.
www.syngress.com

132 Chapter 5 • Configuring the Kismet Server
alert=MSFBCOMSSID,10/min,1/sec

Several exploits exist for drivers of several manufacturers of wireless cards. The
Metasploit project exploit framework contains an exploit for some broadcom drivers.
This exploit uses an overly large SSID to cause a buffer overflow in the driver.
This alert will tell you if someone is attempting to exploit this.
alert=LONGSSID,10/min,1/sec

The IEEE spec allows for a maximum of 32 bytes in the SSID field. If frames are
detected with SSID’s over 32 bytes, it’s a very good indication that someone is doing
something bad to your network. This alert will let you know if something is amiss.
alert=MSFDLINKRATE,10/min,1/sec

Metasploit contains an exploit for a D-link driver. The exploit revolves around
how the driver handles an overly long accepted data rate field. This alert detects the
usage of this exploit, and likely, someone doing something bad.
alert=MSFNETGEARBEACON,10/min,1/sec

Just like the D-link and Broadcom cards, some drivers for Netgear are exploitable,
this time through oversized beacon frames. This alert indicates as the others do, that
someone is using Metasploit to do something possibly bad to your network.
alert=DISCONCODEINVALID,10/min,1/sec

alert=DEAUTHCODEINVALID,10/min,1/sec

Both the DISCONCODEINVALID and DEAUTHCODEINVALID are alerts
for related issues. In this case, it relates to the way some APs and client adapters
handle unknown or invalid reason codes in disassociation or deauthentication packets.
This alert is indicative of problems on the network or possibly an attack against
exploitable equipment.
Known WEP keys to decrypt, bssid,hexkey. This is only for networks where

the keys are already known, and it may impact throughput on slower hardware.

Multiple wepkey lines may be used for multiple BSSIDs.

wepkey=00:DE:AD:C0:DE:00,FEEDFACEDEADBEEF01020304050607080900

If you are monitoring your own network, hopefully it is encrypted. If you use
WEP it can be useful to have the packets decrypted for passing to snort or other
third-party programs. With the wepkey= parameter, you can specify the BSSID of the
particular network and the key in hexadecimal format. Multiple keys can be specified
with multiple wepkey= lines. Keep in mind that if you are decrypting traffic, the server
www.syngress.com

 Configuring the Kismet Server • Chapter 5 133
host system has to work harder to decrypt everything on the fly, and that the captured
data will be in plaintext in the dump file. You want to keep access to it secure.

Hopefully you are not running WEP and are using something stronger like WPA.
WEP can be cracked in less than 60 seconds using freely available tools. At this time,
there is no way to decrypt a WPA network on the fly through Kismet.
Is transmission of the keys to the client allowed? This may be a security

risk for some. If you disable this, you will not be able to query keys from

a client.

allowkeytransmit=true

Depending on your configuration and monitoring needs, you may not want the
Kismet server to inform the Kismet client what the keys are. Change to false if you
don’t want this, particularly if others can read the data from the server or the dump file.
How often (in seconds) do we write all our data files (0 to disable)

writeinterval=300

By default, Kismet writes the logs to disk every 5 minutes (300 seconds). You can
adjust this if you like, but as the size of the logs grow, the longer it takes to save them.
If you specify a time too low, then it might cause your system to thrash its hard disk
in a constant save cycle.
How old (and inactive) does a network need to be before we expire it?

This is really only good for limited ram environments where keeping a

total log of all networks is problematic. This is in seconds, and should

be set to a large value like 12 or 24 hours. This is intended for use

on stationary systems like an IDS

logexpiry=86400

In some situations you may want to have networks expire from the list. If you are
running the server for several days and want to limit the amount of resources used,
you can set the logexpiry= parameter to a reasonable expiry time. This is particularly
of interest when used as an IDS and you want to automatically remove networks that
haven’t been active for quite a while (such as clients passing by or way off nets that
you might have gotten a lucky reflection and a single packet).
Do we limit the number of networks we log? This is for low-ram situations

when tracking everything could lead to the system falling down. This

should be combined with a sane logexpiry value to flush out very old

inactive networks. This is mainly for stationary systems like an IDS.

limitnets=10000
www.syngress.com

w

134 Chapter 5 • Configuring the Kismet Server
Some situations such as limited resource machines or noisy environments, might
make you want to limit the number of networks. Most situations usually require that
you record everything, so it may not be the best solution. Smart usage of the logexpiry=
parameter above can hopefully help keep your system logs from growing beyond the
capabilities of your system.
Do we track IVs? this can help identify some attacks, but takes a LOT

of memory to do so on a busy network. If you have the RAM, by all

means turn it on.

trackivs=false

This parameter can be useful for some real time tracking of possible attacks.
If you track IV’s, you can keep an eye on the rate at which they appear and see if
someone is attempting to perform any injection attacks. This can also be useful if you
are attempting to collect enough IV’s to break WEP, and are using Kismet to do the
collection. On most modern systems it’s not a bad idea to turn it on.
Do we use sound?

Not to be confused with GUI sound parameter, this controls whether or not the

server itself will play sound. Primarily for headless or automated systems.

sound=false

The server can be made to play sounds on events (new network, and so forth),
which is not to be confused with sound events from the client (controlled from the
kismet_ui.conf file). This is useful for headless and automated systems. If you have a rig
in the back of your car with no monitor, there’s not much need to run a client, but
you still need to keep an eye (or more correctly, an ear) on the status of the server to
make sure it’s operating properly. So having it beep or squawk it’s status is a useful
thing to have.
Path to sound player

soundplay=/usr/bin/play

If the server is to play sound, it obviously needs to know what program on your
system it should use to play them. By default it’s /usr/bin/play, but adjust to your
system’s specific sound player.
Optional parameters to pass to the player

soundopts=--volume=.3

If you want to get fancy, you can also pass parameters such as sound volume or
any other command-line parameters for your player program. Simple specify them
as you would on the command line.
ww.syngress.com

 Configuring the Kismet Server • Chapter 5 135
New network found

sound_new=@sharedatadir@/kismet/wav/new_network.wav

Wepped new network

sound_new_wep=@sharedstatedir@/kismet/wav/new_wep_network.wav

Network traffic sound

sound_traffic=@sharedatadir@/kismet/wav/traffic.wav

Network junk traffic found

sound_junktraffic=@sharedatadir@/kismet/wav/junk_traffic.wav

GPS lock aquired sound

sound_gpslock=@sharedatadir@/kismet/wav/foo.wav

GPS lock lost sound

sound_gpslost=@sharedatadir@/kismet/wav/bar.wav

Alert sound

sound_alert=@sharedatadir@/kismet/wav/alert.wav

Each event can have it’s own sound, and if you want, your own custom sound.
Simply load your own WAV files onto your system and point each event at the sound
you want to use. You can also only enable specific event sounds such as the new
network or GPS lock lost by commenting out un-needed sounds lines.
Does the server have speech? (Again, not to be confused with the GUI’s speech)

speech=false

The server, just like with sounds on a headless system, can also speak. Using
festival, the server can speak out the names of the networks. If your system has festival
installed, just change speech to true. This is best used by headless and automated
systems, and should not be confused with the client speech configuration in the
kismet_ui.conf file.
Server’s path to Festival

festival=/usr/bin/festival

Kismet also needs to know where festival is installed if you want to use it.
Depending on your system, just point your config to the festival executable.
By default it is /usr/bin/festival.
Are we using festival lite? If so, set the above “festival” path to also

point to the “flite” binary

flite=false

If you are using festival lite, you can set this option to true and set the path on
the above festival= line and point it to the flite binary.
www.syngress.com

136 Chapter 5 • Configuring the Kismet Server
Are we using Darwin speech?

darwinsay=false

If you built Kismet for OSX on a Mac, you can use Darwin’s speech functionality
in place of festival to speak server events.
What voice do we use? (Currently only valid on Darwin)

speech_voice=default

Darwin also has a selection of voices that can be used. Choose the voice in
the system preferences, and Kismet will use that voice as the default option in
the config file.
How do we speak? Valid options:

speech Normal speech

nato NATO spellings (alpha, bravo, charlie)

spell Spell the letters out (aye, bee, sea)

speech_type=nato

If we are using festival and speech, how do we want it to speak? Setting this to
“speech” has festival speak (or approximately speak) the names of the networks that
are detected. Setting speech_type to nato will use the nato alphabet to “speak” each
letter (linksys is read out as “LIMA, INDIA, NOVEMBER, KILO, SIERRA,
YANKEE, SIERRA”). If you set it to “spell”, festival will read out each letter as a
normal “L,I,N,K,S,Y,S.”
speech_encrypted and speech_unencrypted - Speech templates

Similar to the logtemplate option, this lets you customize the speech output.

speech_encrypted is used for an encrypted network spoken string

speech_unencrypted is used for an unencrypted network spoken string

#

%b is replaced by the BSSID (MAC) of the network

%s is replaced by the SSID (name) of the network

%c is replaced by the CHANNEL of the network

%r is replaced by the MAX RATE of the network

speech_encrypted=New network detected, s.s.i.d. %s, channel %c, network encrypted.

speech_unencrypted=New network detected, s.s.i.d. %s, channel %c, network open.

You can customize the output of festival and construct the sentences that it
speaks. There are separate lines for encrypted and unencrypted networks. Festival will
speak whatever words you put after the equals sign in the speech_encrypted= or speech_
unencrypted= lines, with specific symbols replaced by the settings for the network
being read out.
www.syngress.com

 Configuring the Kismet Server • Chapter 5 137
speech_encrypted=New network detected, s.s.i.d. %s, channel %c, network encrypted.

The default lines would read out the above-detected linksys network as
“New network detected SSID LINKSYS Channel 6 network encrypted” if it was
encrypted. You can easily shrink this to “Detected SSID LINKSYS” if you change
the line to “speech_encrypted=Detected, s.s.i.d. %s” for both the speech_encrypted and
speech_unencrypted parameters.
Where do we get our manufacturer fingerprints from? Assumed to be in the

default config directory if an absolute path is not given.

ap_manuf=ap_manuf

client_manuf=client_manuf

All manufacturers register the MAC addresses of their devices with the IEEE
OUI database. From this we can tell what manufacturer made the devices we are
detecting. Kismet comes with a database for APs and client devices, but sometimes
this gets out of date or you may want to adjust or update it. You can adjust or replace
the files or just set the ap_manuf= line to the path of the file you want Kismet to use.
If it is not in the default config directory (usually /usr/local/etc/) then you should
specify an absolute path.
Use metric measurements in the output?

metric=false

Kismet can automatically change measurements from imperial (feet, miles)
to metric (meters, kilometers). False uses imperial (default) and true uses metric
measurements.
Do we write waypoints for gpsdrive to load? Note: This is NOT related to

recent versions of GPSDrive’s native support of Kismet.

waypoints=false

If we are using gpsdrive, we can, in semi-realtime, plot discovered networks
on the GPSDrive map. The file is purged when Kismet_server starts and is read by
GPSDrive periodically, and used to generate waypoints on the map. This is good
for a low spec laptop that might not be able to run other mapping utilities. It also
gives you access at the same time to GPSDrives’ other functions (track log, and so
forth). It is not able to determine closed or open networks or use special symbols,
but it is a quick and dirty way of mapping your networks. There is approximately a
15-second delay between a network being detected and GPSDrive picking up the
change to the file.
www.syngress.com

138 Chapter 5 • Configuring the Kismet Server
Provided you have not restarted the kismet_server, you can copy the Kismet way-
points file specified in the following parameter to another file name and open it in
GPSDrive for a basic map of your route and results.
GPSDrive waypoint file. This WILL be truncated.

waypointdata=%h/.gpsdrive/way_kismet.txt

This parameter specifies the file write network information and location for
GPSDrive to load as waypoints. By default, it looks in the home directory .gpsdrive/
directory.
Do we want ESSID or BSSID as the waypoint name ?

waypoint_essid=false

When Kismet parses the waypoint file, do you want to use the ESSID or the
BSSID as the network name? Extended Service Set Identifier (ESSID) is false,
BSSID is true.
How many alerts do we backlog for new clients? Only change this if you have

a -very- low memory system and need those extra bytes, or if you have a high

memory system and a huge number of alert conditions.

alertbacklog=50

If a new client connects to the server, we want to fill it in on any alerts that have
occurred. This parameter sets how many alerts we buffer for newly connecting
clients. If you have a low memory system, you can save a bit of memory here by
turning this down or even to 0. Conversely, if you have the memory and are running
a logging system without a client running all the time (such as a network logging/
monitoring system on your network), you can catch up to the alerts when you
connect a client by setting this high.
File types to log, comma seperated

dump - raw packet dump

network - plaintext detected networks

csv - plaintext detected networks in CSV format

xml - XML formatted network and cisco log

weak - weak packets (in airsnort format)

cisco - cisco equipment CDP broadcasts

gps - gps coordinates

logtypes=dump,network,csv,xml,weak,cisco,gps
www.syngress.com

 Configuring the Kismet Server • Chapter 5 139
What type of log files do we want to save:

pcapdump The raw packet dump file; everything recorded is derived
from here.

gpsxml XML log of the network’s locations.

netxml XML list of the networks detected, network settings, and so forth.

nettxt TXT file output list of all the networks detected.

Do we track probe responses and merge probe networks into their owners?

This isn’t always desireable, depending on the type of monitoring you’re

trying to do.

trackprobenets=true

Sometimes we detect the clients looking for networks before we detect the
network itself, so this setting controls whether we merge these detected client probes
in when we detect the network in the probes. Sometimes you may want to keep
client broadcasts separate, in which case, you should change this to false.
Do we log “noise” packets that we can’t decipher? I tend to not, since

they don’t have anything interesting at all in them.

noiselog=false

Some packets are just garbage, but if you are trying to diagnose problems, it might
be useful to capture them to dissect later. Set this to true if you want to capture
them, normally though, it’s best to keep it on false and save the disk space since they
are usually truly garbage.
Do we log corrupt packets? Corrupt packets have enough header information

to see what they are, but someting is wrong with them that prevents us from

completely dissecting them. Logging these is usually not a bad idea.

corruptlog=true

Corrupt packets can be very useful in troubleshooting network problems,
and should probably be recorded. Setting corruptlog to false will save you disk space,
but overall, not very much.
Do we log beacon packets or do we filter them out of the dumpfile

beaconlog=true

■

■

■

■

www.syngress.com

140 Chapter 5 • Configuring the Kismet Server
This parameter specifies if we want to record SSID beacon frames. Most networks
by default, spew these out at a fairly high rate, so it might save some disk space if
you don’t want them. Setting beaconlog to false would be a good idea on a headless
monitoring system or an automated system with limited storage space.
Do we log PHY layer packets or do we filter them out of the dumpfile

phylog=true

Logging PHY layer packets is usually a good idea for troubleshooting purposes.
Set to false if you don’t want to.
Do we mangle packets if we can decrypt them or if they’re fuzzy-detected

mangledatalog=true

If we receive a damaged packet and we can mangle it into being correct, should
we decrypt it? Normally this is a good idea, but packets decoded this way may not
be 100 percent correct, but can be useful for troubleshooting.
Do we do “fuzzy” crypt detection? (byte-based detection instead of 802.11

frame headers)

valid option: Comma seperated list of card types to perform fuzzy detection

on, or ‘all’

fuzzycrypt=wtapfile,wlanng,wlanng_legacy,wlanng_avs,hostap,wlanng_wext,
ipw2200,ipw2915

Sometimes it may be necessary to detect packets for encryption based on their
size, rather than what the packet flags say. This depends a lot on the card type, as
some drivers add extra information. Comment out the fuzzycrypt= line if you need
or want to trust the frames to report their encryption status, rather than actually
checking the bytes in the packet.
Do we do forgiving fuzzy packet decoding? This lets us handle borked drivers

which don’t indicate they’re including FCS, and then do.

fuzzydecode=wtapfile,radiotap_bsd_a,radiotap_bsd_g,radiotap_bsd_bg,radiotap_bsd_b,
pcapfile

Some drivers are better than others for claiming one set of capabilities and
reporting another. As above, if you want to double check packets and make sure all
is as is being reported, enable this option.
Do we use network-classifier fuzzy-crypt detection? This means we expect

packets that are associated with an encrypted network to be encrypted too,

and we process them by the same fuzzy compare.

This essentially replaces the fuzzycrypt per-source option.

netfuzzycrypt=true
www.syngress.com

 Configuring the Kismet Server • Chapter 5 141
This parameter overrides the fuzzycrypt= parameter and basically assumes that if a
network is encrypted, any associated clients must be encrypted too.
What type of dump do we generate?

valid option: “wiretap”

dumptype=wiretap

At this point, Kismet will only generate wiretap dump files. In the future, more
options may be available, but for now, just leave it at wiretap.
Do we limit the size of dump logs? Sometimes ethereal can’t handle big ones.

0 = No limit

Anything else = Max number of packets to log to a single file before closing

and opening a new one.

dumplimit=0

Sometimes you may want to limit the size of your dump files. Maybe you have
limited storage or want to make things more manageable for storage. A setting of 0 is
the default and has no size limit. Anything else is the number of packets to record
before closing the file and starting a new one.
Do we write data packets to a FIFO for an external data-IDS (such as Snort)?

See the docs before enabling this.

#fifo=/tmp/kismet_dump

This setting allows you to pipe the data out a First In, First Out (FIFO) pipe
to share real time information with other programs that can read from a file. This
requires that the program connect to the FIFO pipe before Kismet will start. The
fifo= setting specifies the location of the FIFO pipe. The third-party program needs to
have access to where the FIFO pipe is, so make sure that if your program is running
as a normal user and that you don’t have the FIFO pipe in a root-only directory.
Default log title

logdefault=Kismet

The log file output filename can be tweaked to your hearts content. Kismet by
default has a name structure of “Kismet” - “Month – Date – Year” and the number
of file in the sequence (i.e., Kismet-Sep-26-2006-1.gps). The logdefault parameter
starts the file name specifying “Kismet” by default. If you want a different start to the
filename, just change it here (no spaces).
logtemplate - Filename logging template.

This is, at first glance, really nasty and ugly, but you’ll hardly ever

have to touch it so don’t complain too much.
www.syngress.com

142 Chapter 5 • Configuring the Kismet Server
#

%n is replaced by the logging instance name

%d is replaced by the current date as Mon-DD-YYYY

%D is replaced by the current date as YYYYMMDD

%t is replaced by the starting log time

%i is replaced by the increment log in the case of multiple logs

%l is replaced by the log type (dump, status, crypt, etc)

%h is replaced by the home directory

ie, “netlogs/%n-%d-%i.dump” called with a logging name of “Pok” could expand

to something like “netlogs/Pok-Dec-20-01-1.dump” for the first instance and

“netlogs/Pok-Dec-20-01-2.%l” for the second logfile generated.

%h/netlots/%n-%d-%i.dump could expand to

/home/foo/netlogs/Pok-Dec-20-01-2.dump

#

Other possibilities: Sorting by directory

logtemplate=%l/%n-%d-%i

Would expand to, for example,

dump/Pok-Dec-20-01-1

crypt/Pok-Dec-20-01-1

and so on. The “dump”, “crypt”, etc, dirs must exist before kismet is run

in this case.

logtemplate=%n-%d-%i.%l

As the comments for the log template say, it looks scary, but it isn’t. Using the
listed % variables, you can change the order and even the whole filename of the log
files. Specifying the %l/ variable at the beginning will split the log files into separate
log files, based on the type of file (dump/ crypt/ and so forth).

The possibilities are endless, so adjust to your needs. The default of
logtemplate=%n-%d-%i.%l is replaced with Kismet, %d is replaced with the date, %i is
replaced with the log increment, and %l is the file type, in this case it is also used as
an extension.
Where do we store the pid file of the server?

piddir=/var/run/

The pid file of the server when it’s running. There should be no reason to change
this unless you are running an odd UNIX variant and need to specify something else.
Where state info, etc, is stored. You shouldnt ever need to change this.

This is a directory.

configdir=%h/.kismet/
www.syngress.com

 Configuring the Kismet Server • Chapter 5 143
This setting is where Kismet stores it’s state info. This directory is usually in the
home directory of your SUID user. There shouldn’t be a need to change this at all.
cloaked SSID file. You shouldn’t ever need to change this.

ssidmap=ssid_map

The ssidmap= parameter specifies the file that Kismet should use to keep a tab on
what BSSID matches each SSID. This is usually stored within the directory specified
in the configdir parameter. If you discover the BSSID from a cloaked network and you
have previously determined the SSID, this will fill in the blank automatically from
this file. You shouldn’t need to change this parameter unless you are running on a
weird distribution without home directories.
Group map file. You shouldn’t ever need to change this.

groupmap=group_map

The groupmap= parameter specifies the file that Kismet should use to keep a
running list of network groups as specified by the user. This is usually stored within
the directory specified in the configdir parameter. You shouldn’t need to change this
parameter.
IP range map file. You shouldn’t ever need to change this.

ipmap=ip_map

The ipmap= parameter specifies the file that Kismet should use to keep a tab on
what networks are using what IP range. This is usually stored within the directory
specified in the configdir parameter. This file holds the previously detected mappings
of networks and their IP spaces to help fill in the blanks. You shouldn’t need to
change this parameter.

Kismet Server Command Line
The Kismet server, in addition to the config file, can be controlled at start by
command-line switches. Previously this was how all parameters were set on early
versions of Kismet, but the config file became necessary when so many options
were added. There are times, however, that you want to change a parameter for that
one run of the server, and many are still available as command-line switches.

These options override the settings in the config file, and require that the server
be launched separate from the client. You can’t use the Kismet command/script to
start the server and client, you will need to start the kismet_server and kismet_client
separately:
www.syngress.com

144 Chapter 5 • Configuring the Kismet Server
Usage: kismet_server [OPTION]

Like most command-line programs, just list the switch after the kismet_server
command, usually with a dash “-,” just as the following list shows.
-I, --initial-channel <n:c> Initial channel to monitor on (default: 6) Format
capname:channel

You can specify the initial channel to monitor for each source you are monitoring.
If you have channel hopping enabled, then this is not that useful since the server will
immediately start hopping. However, using the –force-no-channel-hop switch, you can
turn off hopping and the –initial channel switch will lock to the channel number you
specify.
-x, --force-channel-hop Forcibly enable the channel hopper

If you have channel hopping disabled, you can enable it with this:
-X, --force-no-channel-hop Forcibly disable the channel hopper

Disabling channel hopping is the more likely option you might use. –force-no-
channel-hop if best used with –initial-channel or else the card will monitor a random
channel, or at least whatever channel it was last set to.
-t, --log-title <title> Custom log file title

This will specify a customized log file title. This overrides the logdefault= parameter in
the config file. Use this if you want to change the log file name for this run temporarily.
This can be particularly useful if you are rogue hunting and want to separate your logs
when you get close to each target for later processing.
-n, --no-logging No logging (only process packets)

Most of the time, Kismet is being used because it logs, but sometimes, particularly
when testing something, you can disable logging easily.
-f, --config-file <file> Use alternate config file

Alternate config files are the most common reason to use command switches.
Typically on a single system, there is one install of Kismet and one Kismet server
config file. If you find yourself altering configurations often, you can have multiple
config files on your system, one for each configuration. Just specify the config you
want when you start the server, rather than having to go and edit the config each time.

One config could be with just the onboard wireless chipset, and another could be
for directional rogue hunting with an external antenna and another wireless card.
Just copy the default config file somewhere and make your changes. When you start
www.syngress.com

 Configuring the Kismet Server • Chapter 5 145
the server, you can specify kismet_server -f /<path to config>/kismet-alterrnate.conf and
the server will use the alternate config file. This is particularly powerful in combina-
tion with scripting.

You can also use this to launch several Kismet servers at the same time on the
same system. Just be careful of using the same sources between them, as the servers
may fight for control of things like channel hopping and channel locking.
-c, --capture-source <src> Packet capture source line (type,interface,name)

If you want to add a source at runtime that is not set up and enabled in the
config file, you can specify it at the command line. Just like in the config file, specify
the type, interface name, and a logical name for the device, just like in the source=
parameter of the config file.
-C, --enable-capture-sources Comma separated list of named packet sources to use.

If you have specified all yours sources in the config file but don’t need all of them
enabled, you can specify which ones to enable with the -C option. This overrides the
enablesources= parameter of the config file.
-l, --log-types <types> Comma separated list of types to log,

 (ie, dump,cisco,weak,network,gps)

You can specify which log types you want to record. Just list the various types of
logs you want (e.g., dump, network, csv, xml, weak, cisco, gps)
-d, --dump-type <type> Dumpfile type (wiretap)

For the moment, Kismet only supports wiretap dump files, so there should be no
reason to change this.
-m, --max-packets <num> Maximum number of packets before starting new dump

Some systems may have issues with single large files, or for organizational purposes
you may want to split your log files evenly. The –max-packets switch will tell the server
when a certain number of packets is reached, at which point, Kismet will start a new file.
-q, --quiet Don’t play sounds

If you want, you can temporarily quiet the server and disable all sounds with
the –quiet switch. This is useful if you’re rogue hunting and want to sneak up on the
target.
-g, --gps <host:port> GPS server (host:port or off)

To change the location of the GPSD source used by Kismet, specify the host and
port running the server.
www.syngress.com

146 Chapter 5 • Configuring the Kismet Server
-p, --port <port> TCPIP server port for GUI connections

On occasion, sometimes with third- party scripts or clients you will need to
adjust which port the client should connect to. Just remember not to specify one
in use by another program.
-a, --allowed-hosts <hosts> Comma separated list of hosts allowed to connect

Allowing remote hosts to connect clients should be done carefully, as you are
giving full access to the sniffed data. If you want to temporarily add a remote network
to the allowed list, specify it here at runtime. Just as in the config file, you can specify
single addresses or whole netblocks.
-b, --bind-address <address> Bind to this address. Default INADDR_ANY

By default Kismet will bind to any address on the system and clients can connect
through any of them. If you want to limit which interface, or to temporarily relax a
restriction, you can do so at runtime here with the –bind-address.
-r, --retain-monitor Leave card in monitor mode on exit

If your plans include using a tool needing monitor mode after leaving Kismet,
you can leave it in monitor mode with the –retain-monitor switch.
-s, --silent Don’t send any output to console.

Sometimes the server output can be too verbose and you just want it to go away.
--silent will suppress this output.
-N, --server-name Server name

If you want to change the server name (as seen in the client) at runtime, you can
do that here.
--daemonize Background server in daemon mode

This switch is very useful if you are going to run the client immediately afterwards
on the same system. Once the server starts, it goes into the background and returns
you to the shell prompt, the perfect place to start the client from.
-v, --version Kismet version

If you’re like me and upgrade often, sometimes you need to know what version
of the server you are running. kismet_server –version will output the current version of
the installed kismet_server binary.
-h, --help What do you think you’re reading?

This will output the list of command-line switches we just went through. A very
useful thing in case you don’t have this book handy.
www.syngress.com

 Configuring the Kismet Server • Chapter 5 147
Summary
The Kismet server configuration file, kismet.conf, has a great deal of untapped power.
From setting up sources, to limiting log sizes, to filtering out known SSID’s, you can
do a lot. In combination with the command-line switches, the server can perform
many neat tricks.

Exploring all the available options in the server configuration file can greatly
expand your ability to monitor your wireless network.
www.syngress.com

Chapter 6
Kismet Client
Configuration File
Solutions in this chapter:

The Kismet Client Config File

Command-Line Switches

■

■

˛	Summary
149

150 Chapter 6 • Kismet Client Configuration File
Introduction
Like the Kismet server, the Kismet client is controlled from a single configuration
file. On the surface, this file seems as scary as the server configuration; however, it’s
just as well commented and fairly easy to understand when you dig in. The client
configuration file is usually in /usr/local/etc and is named kismet_ui.conf. For the most
part, after you come up with a client configuration that suits your needs you will not
need to change it much. That being said, there is a very large and often untapped
amount of configuration of the client available. Most people don’t seem to change
much beyond the standard configuration.

The Kismet Client Config File
The config file is not as large as the server configuration file, but offers the same
amount of flexibility and options. There are lots of very verbose comments about
the various options listed. Some areas are fairly self-explanatory while others are not.
This section will go through, almost line-by-line, and examine and explain each of
them. The comments are good, however some areas are open to tweaks not specified
in the comments and a lot of power can be revealed once you start digging into the
config file.

Kismet Parameters
The kismet.conf config file can be edited directly with your favorite UNIX text editor
(such as vi, pico, emacs), just be aware of word wrapping and UNIX file format. The
config file is parsed at runtime by the server and expects a UNIX text file. DOS and
UNIX use different control characters for their text files and as such, using a DOS or
windows editor on a UNIX text file will probably change it and make the file unread-
able to the server. In general, if you are editing the kismet_ui.conf file, use a UNIX
editor. This can be either a native Linux application, or an editor through Cygwin if
you are running under windows or some other UNIX text format-capable editor.

Comments in the kismet_ui.conf file are lines starting with a “#” symbol. These are
often comments or example configurations and can usually guide you to what options
you need to set. Lines that do not start with a comment are the actual parameter
variables acted upon by the server. It’s a good idea to comment out the existing line
by putting a “#” in front of the line and adding a new line with the adjusted parameter.
This way if something goes wrong, you know what the original parameter was.
www.syngress.com

 Kismet Client Configuration File • Chapter 6 151
Kismet GUI config file

Version of Kismet config

version=2004.10.R1

The Kismet client configuration has its own version number, separate from the
package release number and other config files. The config file doesn’t change as often
as the rest of the tool suite, so it has a separate version number listed on this line.
Do we show the intro window?

showintro=true
By default, Kismet shows an intro screen with some instructions on accessing
help menus and other information. This is often a very annoying thing for early users
of Kismet. Changing the showintro= line to false will prevent this intro message from
showing up every time you start the client. This is probably the first thing that you
should adjust.
Gui type to use

Valid types: curses, panel

gui=panel

Depending on your system’s capabilities, your options for the type of Graphical
User Interface (GUI) to use may need to change. By default, Kismet uses panels for
www.syngress.com

152 Chapter 6 • Kismet Client Configuration File
its display. For most modern Linux-based systems, this is not a problem. For some
systems like handheld devices, or low power or embedded systems, your options for
shell GUI’s may be limited, in which case, you may need to use the curses libraries,
and change the gui= parameter to curses if needed. This is a more advanced feature,
and if you are working on a system with limited resources you may need it.
Server to connect to (host:port)

host=localhost:2501

This parameter is where the client is told where the server is to connect to.
The default is to connect to a server running on the local computer, port 2501.
If you want to connect to a remote server, this is where to specify it. To connect to
a remote computer over the Local Area Network (LAN) or Internet, just specify the
Internet Protocol (IP) address in the host= line. To connect to a server running on
192.168.0.45, just change the line to “host=192.168.0.45:2501.” However, if you do
this, you need to make sure to add the address of the client your connecting to the
allowedhosts= parameter in the server configuration, or the server will not allow the
remote client to connect.

Several servers can be specified and monitored at once with separate host lines,
but all detected data will be mashed together in the client. If you want to keep the
data separate, it is better to run separate instances of the client for each server.
Network traffic decay (active/recent/inactive) and packet click rate - increase

this if you are doing prism2 channel hopping.

Decay=3

Traffic decay is the exclamation point and period that appear to the left of the SSID
in the default client layout. They indicate the presence of activity for that network
within the recent amount of time. When the data for that network is seen, an exclama-
tion point shows beside the Set User ID (SUID). If no data is seen, in the next update
(typically 1 second) the symbol changes to a period. If nothing is seen on the next
update, no symbol is shown. In this case, the decay= parameter allows you to configure
how many updates (seconds) this transition takes. Some cards, like prism2 (hostap
drivers) may take a few updates to properly report seeing data. Adjust this higher if
things don’t seem to be updating right.
What columns do we display? Comma separated. Read the documentation for what

columns are valid.

columns=decay,name,type,wep,channel,packets,flags,ip,size
www.syngress.com

 Kismet Client Configuration File • Chapter 6 153
This is where the rubber meets the road and some good configuration can make
Kismet more useful to you. Columns are the various types of info listed in the client
window. Things like the SSID, channel, number of packets seen, and so forth, are all
configurable in terms of which are shown and in what order. By default, Kismet
shows for a typical network, from left to right.

Recently seen decay (see above parameter)

The BSSID of the network

Type of network (ad-hoc, infrastructure)

Security protocol in use (if any)

Channel of the network

Number of packets seen

Any special flags set on the packets from the network

IP range in use on the network (if it can be determined)

Total size of the packets collected for the network

For most people this is enough information for basic scanning, however there are
a great many other options available to use in the client beyond the default ones
listed above. These can allow you to customize the display on the client to whatever
information you need. Not everyone needs to know what flags are coming from the
server or the IP range of the network. If you specify more columns than the display
can handle, the display can be scrolled to the right with the arrow keys.

To customize the columns displayed, put them in a comma separated list (no
spaces) on the columns= line. The available options are:

BSSID The BSSID (MAC address) of the network. The BSSID is the
advertised name of the network.

Channel The last channel advertised by the network. If the network
changes channels, the display is updated to reflect this change.

Clients The number of unique client MAC addresses seen on the network.
This includes wireless stations and wired stations sending packets (broadcast
and direct) to wireless stations. The client’s menu will show you which
stations are which and further info.

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

ww

154 Chapter 6 • Kismet Client Configuration File
Crypt This is the number of encrypted packets. This is usually the same as the
data column, unless the network is switching from encrypted to un-encrypted,
which it should generally not be unless something is going very wrong.

Data The number of data packets. The total number of data packets is just
the total Transmission Control Protocol (TCP)/IP packets, not the 802.11
management frames. This is actual data being passed around the network, not
just management overhead. Typically if the network is encrypted, the data
and crypt counters will be the same.

Decay Displays “!” or “.” or blank, based on network activity in the last
“decay” seconds (controlled by the “decay” variable in the config file). Decay
is the column mentioned earlier that indicated to the user if there has been
data seen in the last few updates. Typically if data is seen on the latest update,
an exclamation point will be shown (!), if the next update doesn’t have any
new data (as typically happens with channel hopping), a period will be shown
(.), and if no data is seen recently, this column is blank. The rate at which this
updates can be controlled by the decay= parameter mentioned earlier.

dupeiv The number of packets with duplicate IVs seen. It is sometimes
useful to know if networks you’re monitoring are generating a lot of duplicate
IV’s, particularly in stationary Intrusion Detection System (IDS) situations.
This only applies to Wireless Encryption Protocol (WEP) networks. If you are
seeing excessive duplicate IV’s on a WEP network, either the access point
(AP) is misbehaving (old firmware problems, and so forth) or if you are seeing
large numbers of duplicate IV’s with excessively high data packet rates, you
may be under an active injection attack on your network. Not a useful thing
for wardriving, but for security monitoring of a legacy WEP network, it can
be very useful.

Flags Network status flags (address size, decrypted, and so forth). The Kismet
server sets various flags on each network to indicate some status information.
This information is a very brief overview of what has been discovered about a
network.

The various flags (from the client help menu) are:

F Vulnerable factory configuration. Many people don’t bother to ever change
the configuration on their WAP. This is bad.

■

■

■

■

■

■

w.syngress.com

 Kismet Client Configuration File • Chapter 6 155
T# Address range of # octets found via TCP traffic

U# Address range of # octets found via User Datagram Protocol (UDP)
traffic

A# Address range of # octets found via Address Resolution Protocol
(ARP) traffic

D Address range found via observed Dynamic Host Configuration Protocol
(DHCP) traffic

W WEP’d network decrypted with user-supplied key

These flags can be useful to quickly note to other apps that something is amiss or
should be noted (such as a default-configured network).

■

■

■

■

■

Info The extra AP info included by some manufacturers. Some manufacturers
include extra information in their traffic about the APs, which may or may
not be of use to your scans. If you do want it, add “info” to the list of columns
displayed.

■

www.syngress.com

ww

156 Chapter 6 • Kismet Client Configuration File
IP The detected/guessed IP of the network. Kismet can make a guesstimate
of what IP addresses are in use on a network through dissection of the
packets it sees. Kismet will display any IP addresses it sees in the traffic. This
only applies to open networks. Encrypted networks typically do not divulge
their addresses since they are encrypted. If there are more than one network
address spaces in use over a wireless link, Kismet may switch between address
spaces on the client display.

LLC The number of LLC packets. The LLC column is a counter for bea-
cons and other management frames. These are the logical link layer packets
that manage the wireless link. This counter is separate from the data and
crypt columns.

Manuf The manufacturer, if matched. Kismet can guess what manufacturer
made the network device by comparing the Extended Service Set Identifier
(ESSID) (MAC address) with the Organizational Unique Identifier (OUI)
database. Network device manufacturers register the address spaces they
make their devices in with the Institute of Electrical & Electronics
Engineers, Inc. Using this list, Kismet can look at the addresses seen and
compare to this list to make an educated guess about who made the device.
This obviously does not work if the network address for the device has been
changed for whatever reason.

■

■

■

w.syngress.com

 Kismet Client Configuration File • Chapter 6 157
Maxrate The maximum supported rate as advertised by the AP. Networks
advertise the maximum data rate available so that incoming clients know
what the maximum rate they should try when connecting.

Name The name of the network or group. Typically this is the ESSID of
the network Service Set Identifier (SSID), but some manufacturers add
additional fields for things like location or other organizational data.

Noise The last seen noise level. The noise column shows the noise level
reported by the wireless driver. The problem with the signal and noise
readings from wireless cards is that there is no standard unit of measurement
across all the different chip sets and drivers. This means that any values
reported by various drivers are pretty much useless. The reason that commer-
cial products can do this is that they have access to documentation that open
source developers do not, to decode some of this information. They typically
also have a limited number of cards they work with that they have had access
to the documentation for.

Packets The total number of packets. The packet counter column is the
cumulative total of all the packets seen, data, crypt, and LLC.

■

■

■

■

www.syngress.com

ww

158 Chapter 6 • Kismet Client Configuration File
Shortname The shortened name of the network or group for small displays.
Use this column for systems with smaller displays. This column is not as wide as
the “name” column and can fit in skinnier displays without as much whitespace
on the right. If the name is too long for the column, it is truncated.

Shortssid The shortened SSID for small displays. Much like the shortname
column, this column is useful for smaller display systems. However, the SSID
shown is often the same as the name column, so you may be duplicating
some information.

■

■

w

Signal The last seen signal level. Like the noise column, this reports the
signal level reported by the driver of the card you’re using. Also, like the
noise column, there is no standard units for reporting this information and
it is a hit or miss venture to use. However, it can be useful in giving you an
idea of the relative strength of one network to another.

■

.syngress.com

 Kismet Client Configuration File • Chapter 6 159
Signalbar The graphical representation of signal strength. The signalbar
column just gives a graphical representation of the signal strength. This,
however, is just as reliable as the numeric values from the signal column for
the same reasons.

Snrbar The graphical representation of signal-to-noise ratio (SNR). The
SNR bar column attempts to show graphically, the signal as compared to the
noise levels. As before however, this graph is hit or miss depending on what
driver and chipset you are using. It can be useful for comparing the relative
strength of the various networks detected.

Size The amount of data transferred on network. The size column is the
total (in Bytes, Kilobytes, etc) of the captured data packets, giving a relative
comparison of which networks are transmitting the most data.

SSID The SSID/ESSID of the network or group. The SSID column shows
the ESSID of the network. This is also pretty much the same as the name
column.

Type The network type (Probe, Adhoc, Infra, and so forth). The type col-
umn indicates what type of network this is (probing client, AP, and so forth).
From the Kismet help menu:

P Probe request No associated connection yet.

A Access point Standard wireless network.

H Ad-hoc point-to-point wireless network.

T Turbocell Turbocell (aka Karlnet or Lucent outdoor router) network.

G Group of wireless networks.

D Data Data only network with no control packets

This column is only a single character wide and only shows a title of “T.”

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

160 Chapter 6 • Kismet Client Configuration File
Weak The number of packets that appear to have weak IV’s. Weak IV’s used
to be an issue with early WEP cracking tools. Most modern AP firmware
doesn’t leak weak packets as much as they used to. It may be useful to use
this column to monitor for excessive amounts of weak IV’s, which could
indicate attack or something else going wrong.

WEP The WEP status (does network indicate it uses WEP). This column is
one of the most useful but sadly mislabeled, because Kismet grew organically
with changes and updates being made as they were introduced and integrated
into the program.

The WEP column is actually the encryption status. Early on, WEP was the only
option available, so it was a simple Y/N status indication. Since those days, WPA and
WPA2 (802.11i) have been added. From the client help:

N No encryption detected

Y Standard WEP encryption

O Other encryption methods detected

The “O” indicator shows if WPA/WPA2 is present, as well as if other proprietary
methods are available. The network information screen shows more specific informa-
tion of what encryption is available. However, this does not necessarily mean that the
strongest encryption available is in use.

■

■

■

■

■

www.syngress.com

 Kismet Client Configuration File • Chapter 6 161
What columns do we display for clients? Comma seperated.
clientcolumns=decay,type,mac,manuf,data,crypt,size,ip,signal,quality,noise

Like the main network display, we can specify the columns to be shown when
we are in the client information screen that gives us information about the clients
associated with that network.

The options, just as with the main screen, are added, comma separated with no
spaces, to the clientcolumns= line.

The available columns are:

Crypt The number of encrypted data packets transferred by client. The crypt
counter, like the main network screen, shows the total number of encrypted
packets transferred to and from the client. If the network is open, this counter
does not count anything.

Data The number of data packets transferred by client. The data counter
counts all data packets to and from the client, both unencrypted and
encrypted packets.

Decay Displays “!,” “.,” or ‘’ based on network activity. Once again, the
client’s recent activity can be tracked through the decay column. This column
shows the user if there has been data seen from or too a client in the last few
updates. Typically if data is seen on the latest update, an exclamation point

■

■

■

www.syngress.com

w

162 Chapter 6 • Kismet Client Configuration File
will be shown (!), if the next update doesn’t have any new data (as typically
happens with channel hopping), a period will be shown (.), and if no data is
seen recently, this column is blank.

IP The last seen IP used by client. Kismet can dissect packets to determine
the IP a client is using. This only works on unencrypted networks.

Mac The MAC address of client. The MAC address of the client’s are
on every packet sent to or from the client and is listed here for your tracking
enjoyment.

Manuf The manufacturer of the client (if known). As with the APs, we can
use the OUI database to make a best guess about the manufacturer of the
client adapters. The manufacturer’s guess is to be taken with a grain of salt,
as it’s trivial to change the MAC address of client adapters to anything else
in the allowable range of addresses.

Maxrate The maximum rate client seen transferring. Kismet can track the
maximum rate the client has seen transferring. This can be useful in diagnosing
client’s complaining of low transfer speeds.

■

■

■

■

ww.syngress.com

 Kismet Client Configuration File • Chapter 6 163
Noise The last seen noise level of client. The noise level column refers to
the Kismet server’s level of noise between it and the client, not the client to
it’s associated AP. The server could be seeing a lot of noise that is not being
experienced between the client and the AP. All readings should be taken
with a grain of salt. Once again, with differences in drivers and a lack of
standard reporting of signal levels, this value is not an absolute and only
useful for relative comparison.

Signal The last seen signal level of client. Same as the noise, this is the value
of the signal strength between the client and the Kismet server, not the
client and the AP. All values should be taken with a grain of salt due to the
lack of standards in the drivers and chipsets.

Size The amount of data transferred by the client. The size column counts
the size of the packets (in bytes, kilobytes, and so forth) collected from and
to the client.

Type The type of client (Established, To-DS, From-DS, and so forth).
Clients can be wired or wireless. Kismet can tell this depending on the
direction of traffic and if telltale wireless traffic is seen.

The clients list shows the following (from the client help menu):

F From DS The client broadcast from wireless distribution system.
These clients are typically wired systems.

T To DS The client transmitted over the wireless to the distribution system.
These clients are typically wireless nodes.

I Intra DS The client is a node of the distribution system talking to
another node in the distribution system.

E Established The client has been seen entering and leaving the DS.
These are typically wireless nodes.

S Sent-to The data has been sent to this client, but no data has been seen
FROM this client, possibly a hidden node.

U Unknown The client is in an unknown state. Depending on what flag
is set, you can make a reasonable guess as to what clients are wireless and
which are wired.

■

■

■

■

■

■

■

■

■

■

www.syngress.com

w

164 Chapter 6 • Kismet Client Configuration File
Weak The number of packets which appear to have weak IV’s. This column
counts the number of packets with weak IV’s. Not a problem commonly seen
nowadays, but excessive weak packets could be an indication of problems or
an attack.

Does the GUI use sound?

NOT to be confused with “sound” option later, which is for the SERVER to make

noise on whatever host it’s running on.

sound=true

The sound option enables the client (as opposed to the server) sound options.
The client can make noises and play sounds on various events (new network, and
so forth). This can be very useful for systems where you can’t keep your eye on the
system (like in a moving car).

It’s best to use either the server sound or the client sound, but not both at the
same time or it will be awfully confusing and noisy.
Path to sound player

soundplay=/usr/bin/play

If the client is to play sound, it obviously needs to know what program on your
system it should use to play them. By default it’s /usr/bin/play, but adjust to your
system’s specific sound player.
Optional parameters to pass to the player

soundopts=--volume=.3

If you want to get fancy, you can also pass parameters such as sound volume or
any other command-line parameters for your player program. Simple specify them as
you would on the command line.
New network found

sound_new=@sharedatadir@/kismet/wav/new_network.wav

Wepped new network

sound_new_wep=@sharedstatedir@/kismet/wav/new_wep_network.wav

Network traffic sound

sound_traffic=@sharedatadir@/kismet/wav/traffic.wav

Network junk traffic found

sound_junktraffic=@sharedatadir@/kismet/wav/junk_traffic.wav

GPS lock aquired sound

sound_gpslock=@sharedatadir@/kismet/wav/foo.wav

■

ww.syngress.com

 Kismet Client Configuration File • Chapter 6 165
GPS lock lost sound

sound_gpslost=@sharedatadir@/kismet/wav/bar.wav

Alert sound

sound_alert=@sharedatadir@/kismet/wav/alert.wav

Each event can have its own sound, and if you want, your own custom sound.
Simply load your own WAV files onto your system and point each event at the
sound you want to use. You can also enable only specific event sounds such as the
new network or Global Positioning System (GPS) lock, lost by commenting out
un-needed sounds lines.
Do we automatically make a group for probed networks or do we show them

amidst other networks?

autogroup_probe=true

The client can take and group all the probe networks (clients looking for net-
works) together. They will be listed under the <probe networks> group, and can be
expanded by selecting the group and pressing Enter to show information about all
the probe networks. If a probe is seen and then associated with a network, it will be
moved to the client list for that network.
Do we autogroup data-only networks?

autogroup_data=true

Like probe networks, the client can group data-only networks together in the same
manner. Select the data networks group and press Enter to see the data networks.
Do we autogroup adhoc networks?

autogroup_adhoc=true

Once again, we can group ad-hoc networks together just like probe and data
networks. It is sometimes a good idea to set this as false, to see if anyone may be
setting up ad-hoc networks that circumvent your security policies.
Display battery status?

apm=true

If your system has APM enabled, Kismet can report your battery status at the
bottom left of the client. Useful if your running around on battery power and want
to keep an eye on your time left before you have to plug in and charge up.
Does the GUI talk to us with Festival?

speech=false
www.syngress.com

166 Chapter 6 • Kismet Client Configuration File
Using festival, the client can speak out the names of the networks. If your system
has festival installed, change the speech to true. This should not be confused with the
server usage of festival.
Where is festival located for the GUI?

festival=/usr/bin/festival

Kismet also needs to know where festival is installed if you want to use it.
Depending on your system, point your config to the festival executable. By default it
is /usr/bin/festival.
Are we using festival light? If so, point the above “festival” path to the

“flite” binary.

flite=false

If you are using festival lite you can set this option to true and set the path on the
above festival= line and point it to the flite binary.
Are we using speech on Darwin?

darwinsay=false

If you built Kismet for OSX on a Mac, you can use Darwin’s speech functionality
in place of festival, to speak server events. Set this to true if you want to use Darwin’s
speech.
What voice do we use? (currently only supported on darwin)

speech_voice=default

Darwin also has a selection of voices that can be used. Choose the voice in the
system preferences and Kismet will use that voice as the default option in the config file.
How do we speak? Valid options:

speech Normal speech

nato NATO spellings (alpha, bravo, charlie)

spell Spell the letters out (aye, bee, sea)

speech_type=nato

If we are using festival and speech, how do we want it to speak? Setting this to
“speech” has festival speak (or approximately speak) the names of the networks that
are detected. Setting speech_type to nato will use the nato alphabet to “speak” each
letter (linksys is read out as “LIMA, INDIA, NOVEMBER, KILO, SIERRA,
YANKEE, SIERRA”). If you set it to “spell,” festival will read out each letter as
a normal “L,I,N,K,S,Y,S.”
www.syngress.com

 Kismet Client Configuration File • Chapter 6 167

speech_encrypted and speech_unencrypted - Speech templates

Similar to the logtemplate option, this lets you customize the speech output.

speech_encrypted is used for an encrypted network spoken string

speech_unencrypted is used for an unencrypted network spoken string

#

%b is replaced by the BSSID (MAC) of the network

%s is replaced by the SSID (name) of the network

%c is replaced by the CHANNEL of the network

%r is replaced by the MAX RATE of the network

speech_encrypted=New network detected, s.s.i.d. %s, channel %c, network encrypted.

speech_unencrypted=New network detected, s.s.i.d. %s, channel %c, network open.

You can customize the output of festival and construct the sentences that it
speaks. There are separate lines for encrypted and unencrypted networks. Festival will
speak whatever words you put after the equals sign in the speech_encrypted= or speech_
unencrypted= lines with specific symbols replaced by the settings for the network
being read out.
speech_encrypted=New network detected, s.s.i.d. %s, channel %c, network encrypted.

The default lines would read out the above detected linksys network as “New
network detected SSID LINKSYS Channel 6 network encrypted” if it was
encrypted. You can easily shrink this to “Detected SSID LINKSYS” if you change
the line to “speech_encrypted=Detected, s.s.i.d. %s” for both the speech_encrypted and
speech_unencrypted parameters.
Simple borders (use - and | instead of smooth vertical and horizontal

lines. This is required on Zaurus, and might be needed elsewhere if your

terminal doesn’t display the border characters correctly.

simpleborders=false

Depending on your terminal, you may need to change from straight lines to
terminal characters. Usually this in not an issue unless you’re running Kismet
on some exotic hardware and not a standard laptop.
Colors (front, back) of text in the panel front. Valid colors are:

black, red, yellow, green, blue, magenta, cyan, white

optionally prefixed with “hi-” for bold/bright colors, ie

hi-red, hi-yellow, hi-green, etc.

Enable colors?

color=true

Background

backgroundcolor=black
www.syngress.com

168 Chapter 6 • Kismet Client Configuration File
Default text

textcolor=white

Window borders

bordercolor=green

Titles

titlecolor=hi-white

GPS and APM info

monitorcolor=hi-white

WEP network color

wepcolor=hi-green

Factory network color

factorycolor=hi-red

Open color

opencolor=hi-yellow

Decloaked network color

cloakcolor=hi-blue

If the default black, green, and yellow color scheme for the client is not to your
liking, you can change any of the elements colors you want. Just change any of the
elements config lines to black, red, yellow, green, blue, magenta, cyan, white, or add
“hi-” in front of the color name to make it bold.

Command-Line Switches
Just as the server, you can specify command-line switches for the Kismet client. This
does require you to start the Kismet server separately using kismet_sever. You can’t use
the Kismet script that launches both the server and client together. The command-
line switches override any settings in the kismet_ui.conf file.
-f, --config-file <file> Use alternate config file

Some of the options for the client come from the server config file, so if you
specify an alternate server config file, the client needs to know about it.
-u, --ui-config-file <file> Use alternate UI config file

Some users like to have one config file with the columns a certain way, and
another with different columns listed. Using the –u switch, you can easily change
from one to another.
-q, --quiet Don’t play sounds
www.syngress.com

 Kismet Client Configuration File • Chapter 6 169
Sometimes sound is useful, other times it’s not. This option will disable it for you
for this run of the client.
-s, --server <host:port> Connect to Kismet host and port

Probably the most common use of command-line switches for the client, is
specifying an alternate server. If you’re running multiple servers, maybe in an IDS
setup, you can specify the IP and port at runtime with the –s switch.
-g, --gui <type> GUI type to create (curses, panel)

If you need to switch between a panel and curses interface for a session (there
shouldn’t be many) you can specify it here. There are only two choices: panel and
curses.
-c, --columns <list> Columns to display initially (comma seperated)

Instead of multiple config files, you can manually specify what columns you want,
in the order you want from the command line. Valid options are the same as in the
config file, listed earlier in the chapter or in the Kismet README file.
-r, --reconnect Try to reconnect after the client/server connection fails.

If you are on a flakey or a high latency connection to a remote server, the client
might disconnect occasionally. The –r switch will automatically have the client try
and reconnect the client to the server if it is disconnected.
-C, --client-columns <list> Columns to display for client info

As with the network columns, you can specify as comma-separated names, which
columns and the order you want them for client devices that are detected. Valid
options are the same as in the config file, listed earlier in the chapter or in the Kismet
README
-v, --version Kismet version

The –v option will print the version number of the client to the command line.
-h, --help What do you think you’re reading?

Finally, the –h option will pull up the list of command-line switches in case you
don’t have this book handy.
www.syngress.com

170 Chapter 6 • Kismet Client Configuration File
Summary
The Kismet client has a great deal of configuration available to it. Proper configura-
tion can give you the information you want, where and when you need it. Adjusting
the columns puts the information at your fingertips and can make your life easier and
hopefully more productive.
www.syngress.com

Chapter 7
Server.conf File
Advanced
Configuration
Solutions in this chapter:

Asus EEEPC installation

Kismet On Windows

Wardriving in a Box

Monitor Installation

■

■

■

■

˛	Summary
171

w

172 Chapter 7 • Server.conf File Advanced Configuration
Introduction
Kismet is capable of some amazing feats. It’s highly useful in a mobile, rogue-hunting
role as it is in a stationary IDS setup. This chapter will show you the various ways that
Kismet can be used. Kismet is used all over, from mobile rogue-hunting systems, to site
surveys, to full IDS setups for monitoring the airwaves around your wireless installations.

Asus eeePC Installation
In 2007, Asus released the eeePC, a diminutive sub-notebook running Linux. These
laptops use a solid state drive, which means fast boot times and they can put up with
a lot of movement. The eeePC comes with xandros Linux installed and with an
atheros wireless chipset, making it a nice light and portable Kismet rig.

The eeePC’s are all fairly identical except for disk space and random access
memory (RAM), but the chipsets are consistent. Installation on the default Linux
install is fairly easy. A few downloads and packages and you’re good to go. You may
choose to put another Linux distro or even Windows onto an eeePC, however, those
instructions are in other chapters. In this case, we are going to use the eeePC as a
quick and light mobile search and sniff rig for your office.

Installation and Updating
Once you’ve opened your eeePC, the first thing you want to do is update it. This is
isn’t necessary for the Kismet install, but is a good idea since the eeePC originally
shipped with a vulnerable version of samba, which could lead to bad things.

To update you can use the update features of the add/remove software under the
settings menu on the eeePC, but we’ll be using the command line since it’s more
thorough.

First connect your eeePC to the Internet and open a command shell with:
ctl-alt-t

You’ll need to change to the super user, which is easiest with:
sudo su

Be careful from now on, you are now super user and if you aren’t careful, you can
cause major damage to your operating system installation.

Now we need to update the apt cache:
apt-get update
ww.syngress.com

 Server.conf File Advanced Configuration • Chapter 7 173
This tells the system to see what packages are available from asus, and if any are
newer than what are installed. Upgrade your system to the latest versions available with:
apt-get upgrade

Apt will probably give you a large list of packages to install and ask for
 confirmation. This can take a few minutes.

Install Development Tools
By default, the eeePC does not ship with a compiler and most of the basic development
tools, however, we can add them, but not from the asus source.

The eeePC is based on Xandros Linux, which is debian-based. This basically
means that we can use debian packages fairly safely with the default operating system
(OS). This is fairly easy and just requires us to add the debian stable packages to our
repository list and load away.

To start, if you haven’t already got one open, open a terminal window with:
ctl-alt-t

Also, make sure you are root with:
sudo su

Now, you’ll need to select a mirror site to download your packages from. Go to
http://www.debian.org/mirror/mirrors_full and select a mirror from the list. For the
examples, we’ll be using the generic ftp.debian.org. You’ll need to add the mirror and
path you choose to the /etc/apt/sources list.
deb http://ftp.debian.org/debian/ stable main contrib non-free

Once again, we need to update our sources to include the new repository:
apt-get update

Once apt knows about the new packages available, we can install the build tools
we need to build Kismet:
apt-get install build-essential

If all goes well, apt will load the necessary build tools. We can now load the
dependencies we need to install to build Kismet. The required ones are:

libncurses5-dev

libpcap0.8-dev

zlib1g-dev

■

■

■

www.syngress.com

http://www.debian.org/mirror/mirrors_full
http://ftp.debian.org
http://ftp.debian.org/debian/

w

174 Chapter 7 • Server.conf File Advanced Configuration
This is necessary to get Kismet running. If you want to include gpsmap, you’ll
need to include the following:

imagemagick

libexpat1-dev

libgmp3-dev

You can add all of these in one apt-get install command, just list them all on one
line with spaces between packages.
Apt-get install libncurses5-dev libpcap0.8-dev zlib1g-dev imagemagick libexpat1-dev
libgmp3-dev

This should take a few minutes.
Once everything is installed, you can download the latest Kismet stable package

from http://www.kismetwireless.net. Check the downloads section for the latest
release version. If you want to track any changes to the source since the last release,
you’ll need to install subversion to get the bleeding-edge development source.
Fortunately, this is easy since we have apt set up:
Apt-get install subversion

followed by:
svn co http://svn.kismetwireless.net/code/trunk kismet-devel

This will download the latest source into the kismet-devel directory you are
working in, so make sure it’s where you want it. If you want to update this source in
the future, go to the directory and type svn update and any new source changes
will be merged into the existing source. Once you have the source, if you need to
unpack it, do so now. Switch to the Kismet source directory and just like any other
install, run:
./configure

make

make install

Check the output from configure and make sure all dependencies that you want/
need are satisfied, and hopefully all will work fine when you run make. Once Kismet
is built and installed, you still need to configure the server. This part is easy once you
know what needs to happen. The Kismet.conf file needs the following lines changed:
suiduser=user

source=madwifi_g,wifi0,<descriptive name here>

■

■

■

ww.syngress.com

http://www.kismetwireless.net
http://svn.kismetwireless.net/code/trunk

 Server.conf File Advanced Configuration • Chapter 7 175
Once you do this, Kismet still will not run. For some reason, Kismet cannot
properly set up the wireless card for monitor mode without manual help. You have
to manually destroy the virtual ath0 interface to leave the parent wifi0 interface:
Wlanconfig ath0 destroy

This command will allow Kismet to control monitor mode and let Kismet run.
If everything is set up right, you can run Kismet and be looking at your very own
Kismet installation on your eeePC.

Kismet on Windows
Kismet is primarily developed on and for Linux systems, due to the abundance of
open source wireless drivers that allow for monitor mode. Kismet can run on
Windows, but with some restrictions. Most if not all consumer wireless drivers do
not support monitor mode and given their closed source and proprietary nature, are
unlikely to. Kismet on Windows will run with drones as a source, and also one
particular Universal Serial Bus (USB) adapter.

The exception is the Airpcap from Cacetech. Available as a USB adapter, these adapters
come with a driver capable of monitor mode as well as a full development kit. Compared
to others, if you need monitor mode on Windows, this is the cheapest and easiest way.
www.syngress.com

Notes from the Underground

The Airpcap Entry in the Kismet README
airpcap Airpcap USB cygwin CACE Tech

 http://www.cacetech.com/products/airpcap.htm

 The CACE AirPcap USB device allows native
capture on

 Win32/Cygwin.

 The explicit airpcap source expects the
Win32/Cygwin
 interface name. This should be used once
the source
 is identified via airpcap_ask or if multiple
simultaneous

 sources are required.

http://www.cacetech.com/products/airpcap.htm

176 Chapter 7 • Server.conf File Advanced Configuration
The Airpcap is the only Windows adapter supported by Kismet. Cacetech has
worked with the open source security tool community, including Kismet, to include
support and ongoing improvements. As part of this, they have made a Windows build
of Kismet available for free on their Web site. Kismet on Windows can be a useful
thing if you have an existing monitoring station on your network running Windows,
and do not want to run an additional station or a VM to monitor your drones.

Kismet on Windows uses Cygwin to run. Cygwin is a library that emulates Linux
application program interfaces (APIs) and allows for some portability of applications
from UNIX to Windows. It is not perfect, but for the purposes of Kismet, it’s been
pretty reliable. Building your own install of Kismet in Cygwin for Windows is possible;
however, Cacetech has been kind enough to provide an installable build of Kismet for
Windows on their Web site: http://www.cacetech.com/support/downloads.htm.

This installable Windows package also provides a very nice interface for setting up
your sources, including drones, which means that you don’t even need to have an
Airpcap to use this package for monitoring drones.

Installation
The first step is to install the Airpcap software. This installs Winpcap and other needed
libraries. The Airpcap driver installer is located on the same download page as the
Kismet installer on the Cacetech. Double-click the downloaded file and follow the
instructions.

This will install Winpcap and other libraries that are needed. If you already have
Winpcap installed, the Airpcap installer may ask you to upgrade to its version. Double
check which version is newer and if the Airpcap version is newer, let it overwrite the
older. If you have a newer version installed already, just cancel the Winpcap part of
the Airpcap installer (this won’t cancel the whole thing, just the Winpcap part).

After the Airpcap software is loaded, run the Kismet installer. Follow the installer’s
instructions, which consist of pressing the next button three times. After it is
installed, you will find a Kismet entry in your Start menu list of programs. Listed in
there is a link for a command-line prompt, the Kismet executable, the Kismet con-
figuration, and a shortcut to the logs folder.

If you run the Kismet executable right away, things will fail since you need to
configure sources. Instead of editing the kismet.conf file, Cacetech made a configura-
tion utility to pass all the options for sources to the Kismet executable, making life
easier. Launch the Kismet for Windows configuration utility through the Start menu
and you will see the available options.
www.syngress.com

http://www.cacetech.com/support/downloads.htm

 Server.conf File Advanced Configuration • Chapter 7 177
The upper left corner is for setting up local sources (or specifying that you have
none). At this point, the Airpcap is the only supported local adapter. If you have one
installed, you can select it from the drop-down box. The adapter name will be in the
format \\.\airpcapXX where XX is the number of the adapter (00, 01, 02, and so forth).
If you have more than one adapter, the Airpcap utilities can flash the LED’s on
different adapters to select the right one, or just select “Enable all sources” and use
everything

The upper right area is for drones. This is as simple as adding the Internet Protocol
(IP) address and port the drone is on (usually port 3501). You can add multiple drones
in this area and use them in conjunction with an Airpcap adapter, or set the airpcap
section to “No local sources” and just use drones as a source.

In the lower left corner you can choose to enable disk logging. The log files are
the same as Kismet on Linux. They are stored in the logs folder in the installed
directory. You can find a shortcut to it in the Start menu. The lower right corner has
three buttons for launching a manual edit of the various config files. The editor that
launches takes care of making sure the config file is UNIX text file formatted so
Kismet can still read them when you save them.

Select the options and configure your sources then click the “Apply and run
Kismet” button in the lower left corner to do exactly that; apply the settings and
launch the Kismet server. Once Kismet starts, if your sources are set up correctly,
everything operates just as it does in Linux.

Troubleshooting
One note about Kismet on Windows with an Airpcap. If you do not get data, get
slow data, or get random weird stuff coming up on the Kismet client display, start the
Airpcap control panel and make sure that the capture type drop down is set to
“802.11 + Radio.” Also, if you don’t have the Airpcap set to capture radio headers,
Kismet doesn’t get all the information it expects to see and generally does not work.

Wardriving in a Box
Kismet’s ability to operate on different hardware and its client/server model, means
that you can operate a Kismet server in a very small package.

If you’re into war driving, you know that it’s a pain to haul all your gear to the
car and back. One of the most useful things you can do with Kismet is build a war
driving appliance to sit on the dash or back shelf of your vehicle.
www.syngress.com

w

178 Chapter 7 • Server.conf File Advanced Configuration
There are an infinite number of ways that you can build such a device, but for
the purposes of this section, we’ll focus on ease of build and use. There are different
ways to accomplish the same thing, but fundamentally you just need:

A central processing unit (CPU) that runs a version of Linux

A compatible wireless network card

Storage media

■

■

■

Note

This guide is meant as an inspiration. If you want more ideas, check out
“Linksys WRT54G Hacking” by Paul Asadoorian and Larry Pesce. They explore
a lot of the potential of the WRT54G as an embedded platform.
For the purposes of this guide, only the following parts are needed and the most
complex hardware hack is the removal of fur screws:

Asus WL-500g Premium router

BU-353 USB Global Positioning System (GPS)

Atheros mini PCI card

USB memory stick (any size)

OpenWRT Kamikaze

The Asus WL-500g is a better platform for this project than a WRT54G because
it has more flash space and more RAM. Since this device will be running a server,
the more the better. The inclusion by Asus of two USB ports makes this project easy
and mod free. The logs will be written to the USB memory stick and the only cable
needed is the power cable.

The Asus router comes from the factory with a Broadcom 43xx mini PCI card,
which works with Kismet, but due to the lack of an open driver features like channel
hopping, are not as well supported as other chipsets. However, since this is a mini
PCI card, it is very easy to replace with a different card that has full support. Some
judicious use of Ebay can get you one for cheap.

Start off by obtaining a WL-500G Premium router. Make sure it has two USB
ports. Other similar models don’t have the USB ports. You need both, one for the
USB stick and one for the GPS.

■

■

■

■

■

ww.syngress.com

 Server.conf File Advanced Configuration • Chapter 7 179
As for OpenWRT, the Kamikaze version works well, but the broadcom chipset
doesn’t channel hop without some effort. As well, the versions of Kismet available
currently as Ipkg’s don’t play nice with the broadcom chipset, so unless you want to
cross compile your own server (instructions are part of the Kismet Drone chapter), just
replace the mini PCI card with one more compatible; in this case, an Atheros card.

Installation of OpenWRT is a bit trickier than on a WRT54G. The OpenWRT
Wiki has more information on that at http://wiki.openwrt.org/OpenWrtDocs/
Hardware/Asus/WL500GP.
www.syngress.com

Notes from the Underground

From the OpenWRT Wiki
To install OpenWrt using Trivial File Transfer Protocol (TFTP) or the Asus firm-
ware restoration tool, you have to put the router in diag mode. To put the
router in the diag mode, do this:

1. Unplug the router’s power cord.

2. Confirm your PC is configured to request an address via Dynamic
Host Configuration Protocol (DHCP).

3. Connect the router’s LAN1 port directly to your PC.

4. Push the black RESTORE button using a pen or such, and keep the
button pushed down.

5. Plug the power on while keeping the RESTORE button pushed for
few seconds.

6. When you see a slowly blinking power light, you are in diag mode.

7. Now the router should accept an image via TFTP or via the Asus
firmware restoration tool.

8. In diag mode, the router takes address 192.168.1.1. It responds to ping,
so you can confirm that it is in diag mode and ready for the TFTP by
using “ping 192.168.1.1.”

http://wiki.openwrt.org/OpenWrtDocs/Hardware/Asus/WL500GP
http://wiki.openwrt.org/OpenWrtDocs/Hardware/Asus/WL500GP

w

180 Chapter 7 • Server.conf File Advanced Configuration
Once the router is in diagnostic mode, upload the firmware by TFTP as usual:
tftp 192.168.1.1

tftp> binary

tftp> rexmt 1

tftp> trace

tftp> put openwrt-wrt54g-squashfs.bin

Once you have flashed the router, wait 6 minutes. The way the router flashes is
that it copies the uploaded flash to RAM, then flashes the flash memory. Interrupting
this process can brick the router. Be patient and wait for 6 minutes after flashing to
power cycle the router and try to connect to it. Telnet to the router at 192.168.1.1
and change the password so Secure Shell (SSH) is enabled:
passwd root

Once you have confirmed that the router flash went well, you can swap out the
WiFi mini PCI card. The router is held together by four screws underneath the rubber
feet on the bottom. Just pop them off and undo the screws to lift the top off the router.

Inside is the mini PCI card. You can see the external antenna connection to the
mini PCI card u.fl connector (http://en.wikipedia.org/wiki/U.FL). This is the first
thing that needs to be removed. The u.fl connector connects flat to the card, just get the
thin edge of a knife or screwdriver to very gently pop the u.fl connector off the card.

Once you have the antenna cable disconnected, slide the tabs on the sides out
and the card should pop up. Once the card has been released, pull it out and reverse
the process to insert the new one. If the card has two u.fl connectors (most do) make
sure you reconnect the external antenna to the primary connector, not the auxiliary
or secondary one. Look for tiny printing to that affect on the card by the connectors.
That’s it for the internal tinkering, the rest is just software and plug-and-play.

To set up the router to talk to the Internet to get some necessary files, edit the
/etc/config/network file. The config files are well documented on the openwrt wiki.
http://wiki.openwrt.org/OpenWrtDocs/KamikazeConfiguration. It contains all the
options, but the few you will probably want to edit are under the “config interface
LAN” section:
option ipaddr 192.168.1.1

If you want to change the IP address of the router:
option netmask 255.255.255.0
ww.syngress.com

http://en.wikipedia.org/wiki/U.FL
http://wiki.openwrt.org/OpenWrtDocs/KamikazeConfiguration

 Server.conf File Advanced Configuration • Chapter 7 181
If you need to change the netmask, here is the place to do it:
option gateway 192.168.0.1

Set your default gateway so that the router can talk to the rest of the Internet:
option dns 64.59.184.13

You should also set up the router with a domain name system (DNS) server so it
can resolve the openwrt.org domain to get software.

For example, here is a working LAN config:
LAN configuration

config interface lan

option type bridge

option ifname “eth0.0”

option proto static

option ipaddr 192.168.0.75

option netmask 255.255.255.0

option gateway 192.168.0.1

option dns 64.59.184.13

After a reboot, you should be able to SSH into the router and ping outside addresses
and resolve domains. The easiest way to install the Kismet server is through ipkg:
ipkg update

ipkg install kismet-server

This will download and install the server onto the router. You’ll need to make
some edits to the /etc/kismet/kismet.conf file to use the different card and the GPS, as
well as a few tweaks for embedded systems.

Change the following lines:
source=madwifi_g,wifi0,foo

Change the source to use the madwifi driver:
channelhop=true

Since the madwifi driver works well with Kismet channel hopping, enable it. No
special scripts are necessary for channel hopping.
allowedhosts=127.0.0.1,<IP other than localhost>

It is useful to use another system as a client to the router’s server for diagnostic
purposes. Set an IP address range that you can use clients on:
gps=true
www.syngress.com

w

182 Chapter 7 • Server.conf File Advanced Configuration
Enable the GPS since you have one on the router:
writeinterval=XX

Since this system can’t shut down gracefully, the server won’t be able to clean up
and write out any remaining data. Adjusting the write interval down to a shorter time
means that when you pull the plug, you won’t lose as much data. Thirty seconds is
reasonable if the system is not in use for a long period of time. Longer usage of the
router means larger files and longer write times. If it takes longer than the time inter-
val set in the config, you can end up in a nasty loop and probably lose a lot of data.

You can adjust other options as you like. Since this is a full server, all the options are
available to be edited. You will also need to install some other software through ipkg:
ipkg install kmod-fs-ext3

ipkg install kmod-usb2

ipkg install kmod-usb-uhci-iv

ipkg install kmod-usb-serial-pl2303

ipkg install kmod-usb-storage

ipkg install gpsd

ipkg install hotplug2

ipkg install usbutils

These packages are for the GPS and the USB memory stick. Support is not built
into the default images, but is easily added.
Note

These instructions are assuming an EXT3 formatted memory stick. If you want
to use another file system, make sure you load the kernel module for that
file system, otherwise the system won’t know how to read it. The EXT3 file
system is probably the best choice. It tends to deal well with having the
power yanked during writes.
Once these packages are installed, it’s time to set up some scripting to start GPSD,
the Kismet server, and the automount system for the memory stick. Enter these
scripts as named into the /etc/init.d folder.
/etc/init.d/usb

#!/bin/sh /etc/rc.common

Copyright (C) 2006 OpenWrt.org

START=39
ww.syngress.com

 Server.conf File Advanced Configuration • Chapter 7 183
start() {

 [-d /proc/bus/usb] && {

/bin/mount -t usbfs none /proc/bus/usb

}

}

/etc/init.d/gps
#!/bin/sh /etc/rc.common

Copyright (C) 2006 OpenWrt.org

START=10

STOP=10

boot() {

sleep 10

start

}

start() {

/usr/sbin/gpsd -n /dev/ttyUSB0

}

stop() {

kill `ps -ef | grep ‘gpsd’ | awk ‘{ print $1 }’`

}

/etc/init.d/kismet
#!/bin/sh /etc/rc.common

Copyright (C) 2006 OpenWrt.org

START=50

STOP=10

boot() {

}

start() {

echo start

commands to launch application

sleep 3

cd /mnt/usbdrive

kismet_server -f /etc/kismet/kismet.conf
www.syngress.com

w

184 Chapter 7 • Server.conf File Advanced Configuration
}

boot() {

echo boot

commands to run at boot

continue with the start() section

start

}

What happens here is that on startup, the USB script runs and mounts the USB
memory stick in /mnt./usbdrive. The GPS script comes next and starts GPSD on the
other USB port. After that, the Kismet server starts up, waits 3 seconds for the other
scripts to settle, then switches to the newly mounted /mnt/usbdrive and then launches
the server, saving the data to the memory stick.

Once all this is done and saved, you can restart the router. Log back in and verify
that GPSD, the Kismet server, and the hotplug daemon are all running with the ps
command.

Monitor Installation
This assumes that you are using something like a stripped down PC or a WRT54GL as
drones, since they are the cheapest and easiest way to get data into a monitor system.

Planning out your monitoring system is essential. If you are covering one access
point, that’s as easy as putting the sensor right beside the access point, but multiple
access points need a bit more planning as to coverage. As well, you probably want to
answer some essential questions about what you want to monitor.

In a typical network, threats come from all around. Monitoring your network is a
good idea, but if you don’t plan, you’ll find yourself buried in data and missing a great
deal of information.
ww.syngress.com

 Server.conf File Advanced Configuration • Chapter 7 185
Summary
In today’s world of everyone using wireless networks, there will almost always be other
networks in the area of yours. This means that you probably only want to monitor
threats directed at your network. In this case, you probably only want to monitor the
channel you are operating your access points on, so as to avoid unnecessary data
collection and possibly violating any number of laws regarding privacy and data inter-
ception. As well, if you decide to channel hop, it’s likely you’ll miss a lot of data, which
can be a problem if you are looking to monitor usage by users or by an intruder. If
you want to monitor for performance reasons, channel hopping may be a good idea,
so you can get a view of the wireless landscape of other networks in the area.

Filters will be your friend as well. If you’re monitoring your network and all the
traffic going over it, filters can be used to limit the amount of data collected to just the
minimum necessary and the unusual, otherwise things will become very big, very
quickly.

The level of complexity is up to your imagination, but for the purposes of this
book, we focus on Kismet’s strength as a cheap and effective way to monitor your
small network in an office.
www.syngress.com

Chapter 8
Kismet Drones
Solutions in this chapter:

Drone Installation

PC Drone Setup

■

■

˛	Summary
187

w

188 Chapter 8 • Kismet Drones
Introduction
This chapter hopes to show you the various ways that Kismet drones can be used and
integrated into your network monitoring. Kismet has a neat trick in terms of sources.
The server doesn’t need to be on the same system as the source feeding it. Kismet
just receives packets and parses them into a human readable view, it doesn’t care
where that data comes from. Kismet supports an installation of remote, dumb sensors
called drones. Drones sniff data from the air and send it down to the server. Kismet
can handle several of these and they don’t need to be powerful systems. This part of
the book will focus on building drones and integrating them with Kismet server.

Drone Installation
A drone is a fairly dumb device. It needs nothing more than a compatible network
device that can support monitor mode. In addition, it needs something resembling
a CPU that can run a very basic Linux and the drone software. Finally, it needs a
backhaul method to get the captured data to the server.

You can run a Kismet drone on any type of system you like, from full, modern PC
to small embedded computers and everything in between. Kismet is built with x86
systems in mind, but ARM, MIPS and other processors are possible to use as well.

In this chapter we will show you both ends of the spectrum in terms of difficulty
and cost.

Linksys WRT54G
The WRT54GL is the latest version of the WRT54G family of routers that have
been a great deal of fun for hardware hackers over the last few years. They contain
a MIPS processor, a wireless chipset, and wired Ethernet connections; everything
we need.

As hackable and available as they are, WRT54G’s are limited. The main problems
with them is that they have a small memory footprint, and a proprietary broadcom
chip set that limits what we can do to what the manufacturer’s driver let’s us do, and
an open source software development cycle that isn’t always up to date.

That being said, their redeeming value of being dirt cheap and well documented
means that we can squeeze a lot of capabilities out of these units if you don’t want
to spend money to get extra features of other hardware, or if those other features are
not necessary.
ww.syngress.com

www.syngress.com

 Kismet Drones • Chapter 8 189

Notes from the Underground

A Word About Cross Compiling
In some cases it’s not possible to compile software on the device it’s going
to run on. Small embedded systems often have no space for a full compiler,
libraries, sources, and so forth, which are needed to build software. The
2 megabytes of memory and 200Mhz processor makes it so we can’t compile
Kismet directly (natively) on the WRT54GL. Cross-compiling is often necessary
to build the software in these cases. Cross-compiling is basically building
software on one architecture for another. In the case of the WRT54GL, you can
build software on your x86 desktop for the MIPS processor.

Cross-compiling can be more a case of voodoo than an art. Setting up
toolchains for other architectures is not something for the timid, or even some
of the experienced users out there. A great deal of time and research was
spent to try and document building your own cross-compiler to build drones
for the WRT54GL, however, it was nearly impossible to document all the vari-
ables required. In addition, the ever-changing sources for OpenWRT, Kismet,
and all the other software needed means it would require an entire book on
it’s own to talk about cross-compiling. For the most part though, with drones,
you can easily be back several revisions of Kismet and not break anything,
since the fields coming across the wire have not changed across versions.

It is highly recommended that if you are using Kismet on architectures
other than x86, let the developers of whatever Linux distribution you will be
using on the device cross-compile it and package it for you. It will save you
from dealing with the same headaches and stress the authors went through.

The OpenWRT Buildroot system is an exception. If everything lines up, the
build root takes care of setting up the toolchains necessary, and all the source
files for building your own firmware and packages.

In short, if you can compile on the system you are going to be running a
Kismet drone on, it’s best that you do. If you can’t, the developers for your
target platform may have a packaged solution that’s easier to set up than
manually trying to build your own cross-compiler.

w

190 Chapter 8 • Kismet Drones
Installation
Installation and configuration of a Kismet drone on a WRT seems to be a lot of steps,
but it’s very easy once you get through your first one. These instructions are adapted
from instructions available online from the authors, which have proven very reliable.
Note

A whole book could be written about the linksys WRT54GL and its many
versions. In fact, there is one from Syngress, “Linksys WRT54G Ultimate
Hacking” by Paul Asadoorian and Larry Pesce. A great read if you want
to know more about the hardware underlying these systems.
The first step should be to get your hands on a compatible WRT54. The best bet
is the WRT54GL. The L designates that this version runs Linux and is compatible
for our needs. The OpenWRT wiki has a huge amount of information on specific
models and compatibility and should be your first stop.
ww.syngress.com

Note

Early WRT versions all ran Linux. When linksys released version 5 of the
ubiquitous router, they changed from a Linux-based firmware to a vxworks
proprietary firmware and also changed the amount of memory and a few
other specifications. The backlash was significant enough that linksys released
the wrt54gl models with the original amount of memory and running Linux
in order to keep feeding the tinkerer market. (See http://wiki.openwrt.org/
OpenWrtDocs/Hardware.)

OpenWRT has two versions available: Whiterussian and Kamikaze.
Whiterussian is the older, stable version, while Kamikaze is the new develop-
ment version. In the first part of the chapter, we will use Whiterussian as
an example even though it is no longer being developed. The second part
will be about Kamikaze. The reason Whiterussian is included is first, because
it’s stable. Kamikaze is a moving target and tricky to write about, because
they haven’t sorted out all the issues that may affect a drone. In the process
of writing, several bugs and problems were found and corrected in the
development version, so Kamikaze will work but needs the additional step
of building your own OpenWRT package with a cross- compiler.

http://wiki.openwrt.org/OpenWrtDocs/Hardware
http://wiki.openwrt.org/OpenWrtDocs/Hardware

 Kismet Drones • Chapter 8 191
First, we need to get the router set up so we can talk to it. This usually starts
with plugging it into your network or to your computer through a crossover cable.
A crossover cable is best since you probably don’t want to introduce a new Dynamic
Host Configuration Protocol (DHCP) server onto your network until you have a
chance to turn that off.

Configure the router’s address, Domain Name System (DNS), and gateway,
so that the router can talk to the rest of the world and we can load packages later.
This can be done after OpenWRT is loaded, but we will use the GUI Linksys here
to make life easier.

Whiterussian
Download the “OpenWRT Whiterussian“ release from http://downloads.openwrt.
org/whiterussian/newest/default/.

OpenWRT uses the jffs or the squashfs file system. Both are writable, so added
files and changes are retained through power cycles, meaning that your drone files are
not erased on reboot. You can also store scripts for running all the commands, to start
up the drone on the router or just have it start up the drone on boot. The squashfs
system makes it easier to keep from messing up the system, since the base files are
read-only. So unless you have a pressing need for the jffs file system, you probably
want to get the squashfs image from the download site.

Select the right firmware for your router type according to the Whiterussian
README on the openwrt site (http://downloads.openwrt.org/whiterussian/
newest/00-README) If you select the wrong one, you might turn your router
into a useless electronic brick, so make sure to get the right one.

Connect to the Web control panel on the router (presuming you have not
removed the Linksys firmware yet or are using another with a Web utility). Using
the Upgrade firmware button under Administration | Upgrade Firmware, violate your
warranty by loading the .bin file you downloaded from the openwrt.org Web site.
www.syngress.com

Note

It is advisable to set the BOOT_WAIT parameter on your router before
you flash. In case you turn your router into a brick, this gives you a few
seconds to try and upload a fresh firmware on powerup. If not, it gets ugly.
The OpenWRT Usersguide has instructions for doing this on the default

http://downloads.openwrt.org/whiterussian/newest/default/
http://downloads.openwrt.org/whiterussian/newest/default/
http://downloads.openwrt.org/whiterussian/newest/00-README
http://downloads.openwrt.org/whiterussian/newest/00-README

w

192 Chapter 8 • Kismet Drones

Linksys firmware, or you can make sure it’s the first thing you do after you
load a firmware that has the BOOT_WAIT parameter as an option on the
Web control panel or command line. At any rate, make sure you turn
this on; it will save you many headaches!
It’s recommended that you use Trivial File Transfer Protocol (TFTP) to load
firmware once you have loaded your first instance of openwrt. This is so you can be
sure you can do it should your router become a brick. If you have access to a *nix
system on the same network as the router, run the following:
tftp <ip of the router>

tftp> binary

tftp> rexmt 1

tftp> tracetftp> put openwrt-wrt54g-squashfs.bin

Then power cycle the router while the TFTP program tries to send the firmware.
The TFTP program should upload the new firmware, provided the BOOT_WAIT
parameter was set and your timing was right on the power cycle.

Once you have loaded the openwrt firmware and left it for a few minutes to boot
and sort itself out, Telnet to 192.168.1.1 (or whatever Internet Protocol (IP) you
manually set it to) and you should get a prompt and the banner for the OpenWRT
firmware. Once you’ve connected via Telnet, you should immediately set up a root
password and Secure Shell (SSH). This is easily accomplished with:
passwd root

Alternatively, you can connect to the Whiterussian Web interface on the router,
by popping the IP of the newly flashed router into a Web browser and clicking on
any of the links to change settings. The Web interface will ask you to set a root
password before you can change any settings. If you need to adjust anything, here
is the time and place to do so.

Provided the router has all the settings for talking to the outside world set
(from the earlier steps), you should just be able to run ipkg from the command line
via SSH:
ipkg update

ipkg list
ww.syngress.com

 Kismet Drones • Chapter 8 193
If the router complains about not finding hosts, double check your set up DNS
and gateway. You may need to set a default gateway with the Web interface or from
the command line using:
route add default gw <IP Address>

and your name server with:
echo ‘nameserver XX.XX.XX.XX >/etc/resolv.conf

where XX is the IP of your DNS server.
Note

Because Kismet drones are just shuttling data to the server, they do not need
to be the same release version to work. You’ll probably find the Kismet drone
package listed in ipkg is from 2006. This is not an issue, as the drone changes
very little with each release, and as long as the version you use supports the
wireless device you are trying to use, it’s not a problem.
You can download and install the kismet-drone package through ipkg with:
ipkg install kismet-drone

This will download and install the kismet-drone binaries to /usr/bin on the router
and the config files to /etc/kismet.

If you run the Kismet binary now, it will fail in two ways. The kismet_drone.conf
file is using the wrong device and it cannot find the wl command (Broadcom Binary
Driver for the Wireless chipset) to enter monitor mode. The wl command is easy to
install with ipkg. Just type:
ipkg update

ipkg install wl

Now we need to edit some files to get the Kismet drone to use the correct
interface. The WRT54G line has several models and the wireless interface changed
slightly across revisions. We need to edit the /etc/kismet/kismet_drone.conf file source=
line, depending on what model we are using.

If you are using a v1.0 or v1.1 router:
source=wrt54g,eth2,wrt54g
www.syngress.com

w

194 Chapter 8 • Kismet Drones
If your using a v2.0, make sure it’s eth1.
source=wrt54g,eth1,wrt54g

If you are using a v3.0 router, change it to:
source=wrt54g,eth1:prism0,wrt54g

Most users using a v4.0 router, however, WRT54GL or others will use prism0
source=wrt54g,prism0,wrt54g

If you run into problems with the drone not capturing data or not starting due
to incorrect interfaces, try another interface name. Revisions to the driver and
OpenWRT mean that it’s possible for things to change between hardware revisions.

You also need to change your allowedhosts line in the kismet_drone.conf file to
something like:
allowedhosts=127.0.0.1,192.168.0.0/24

By default, the drone only allows connections from the local system. You will
need to add your network segment that you will connect your server from to the
list with no spaces. It can be a single IP address, or a whole network using decimal
notation and no spaces. If you don’t change this, it is still possible to connect to the
server, however, no data will come through.

At this point we should set up our server to talk to the drone.

Server Configuration
Set up the Kismet.conf file on your laptop/workstation to use source=kismet_drone,
<IP Address>:3501,drone. You can run other sources at the same time (e.g., wi-fi cards,
other drones) on separate source= lines.

The source line breaks down like this:

Kismet_drone indicates this is a remote drone source, as opposed to a local
card source.

<IP Address>:3501 is the Transmission Control Protocol (TCP)/IP address
and port that the drone is running on. You can change the IP address to
whatever you set your router to. You shouldn’t need to change the port.

drone is just an arbitrary description that is shown in the bottom right
corner of the Kismet window in the sources list. You can change this to
whatever you want for organizational purposes, be it where the drone is
or perhaps what channels it’s monitoring.

■

■

■

ww.syngress.com

 Kismet Drones • Chapter 8 195
To run the drone manually, just SSH into the router in another window or terminal
and run the following commands:

wl ap 0 Put the router in Client mode, just to be sure. We don’t want
anyone associating while we drive by.

wl disassoc To make sure it’s not associated with anything that could
screw up our detection.

wl passive 1 This throws the router scan engine into passive mode, and
prevents any transmissions.

wl promisc 1 Why not put it in promisc mode too?

Run the drone, specifying where the config file is:
/usr/bin/./kismet_drone -f /etc/kismet/kismet_drone.conf

You should then see something like :
Suid priv-dropping disabled. This may not be secure.

No specific sources given to be enabled, all will be enabled.

Enabling channel hopping.

Disabling channel splitting.

Source 0 (wrt54g): Enabling monitor mode for wrt54g source interface eth2

channel 6...

Source 0 (wrt54g): Opening wrt54g source interface eth2...

Kismet Drone 2006-04-R1 (Kismet)

Listening on port 3501 (protocol 8).

Allowing connections from 192.168.0.0/255.255.0.0

If not, double check your steps.
The last line is the most important. It means that the drone will now accept

connections from servers on the 192.168.0.0/24 network, where our server is hope-
fully set up.

You should then be able to fire up Kismet on your workstation and if everything
lines up, you’ll see “accepted streamer connection from” in the router SSH session,
and Kismet will show a drone with channel “--” in the bottom right corner as a
source (This doesn’t mean it’s not scanning channels, it’s just a limitation of the server
to know which channel the drone is on). If it’s also your only source and you detect
networks, you’ll know it is working.

Kismet cannot control the channel of the WRT54G; this is a known limitation with
the Kismet drone and server. If you want to monitor just one channel, you’ll want to

■

■

■

■

www.syngress.com

w

196 Chapter 8 • Kismet Drones
disable channel hopping in the kismet_drone.conf file by changing the channelhop= line to
false (purely for organizational purposes, since it doesn’t work anyways):
channelhop=false

Then set which channel you want to monitor in the Web interface, or through
the command line with:
nvram set channel X

nvram commit

where X is the channel you want to monitor. This will set the WRT54G to a
single channel that will remain persistent through reboots.

In a lot of cases, you’ll want to monitor more than one channel. You can either
set up one drone per channel (that’s a lot of drones) or have them hop channels.
As noted before, Kismet cannot control the channels on the WRT54G hardware,
however the wl utility can.

Joshua Wright of willhackforsushi.com came up with a channel hopping script
that allows for fine control of what channels are monitored.

Using the command line, enter the following in a file called /etc/init.d/S70Wl_scan:
#!/bin/sh

while : ; do

wl channel 1 ; sleep 1

wl channel 6 ; sleep 1

wl channel 11 ; sleep 1

wl channel 2 ; sleep 1

wl channel 7 ; sleep 1

wl channel 3 ; sleep 1

wl channel 8 ; sleep 1

wl channel 4 ; sleep 1

wl channel 9 ; sleep 1

wl channel 5 ; sleep 1

wl channel 10 ; sleep 1

done

Now make it executable with:
chmod 777 /etc/init.d/S70Wl_scan

This will start the channel hopping on startup of the router.
Once you have it there, you can tweak it to your hearts content. Add more sleep

to spend longer on a channel, change the order, or copy more lines in to check certain
ww.syngress.com

http://willhackforsushi.com

 Kismet Drones • Chapter 8 197
channels more often. (See the Kismet server.conf chapter for more information on
tweaking your channel hopping for maximum performance.)

You probably don’t want to SSH into the router every time you want to start the
drone. You probably want it as an appliance that starts the drone automatically.

To do this, use your favorite text editor to create the file /etc/init.d/S60kismet_
drone on the router with the following in it:
#! /bin/sh

echo “Setting radio for kismet_drone”

mkdir /var/log

/sbin/ifconfig eth1 up

/usr/sbin/wl ap 0

/usr/sbin/wl disassoc

/usr/sbin/wl passive 1

/usr/sbin/wl promisc 1

/usr/sbin/wl monitor 1

echo “Running kismet_drone”

/usr/bin/./kismet_drone -f /etc/kismet/kismet_drone.conf > /dev/null 2>&1 &

sleep 3

echo “kismet_drone now running”

Now just make it executable with:
chmod 777 /etc/init.d/S60kismet_drone

This will start the drone on startup first, followed by the channel hopping script
if you chose to use it.

If everything is working fine, you should see data coming in when you start your
server and hopefully across all channels. If you don’t see anything, check the
following:

Troubleshooting
If the server is failing to start:

Is the source line for your drone correct and do you have source entries for
all sources present?

Can you ping the drone’s IP address? Is the Kismet drone shown as running
using the ps command?

■

■

www.syngress.com

w

198 Chapter 8 • Kismet Drones
If the server starts, but no data is coming in:

Is your server’s network on the allowed hosts line in the kismet_drone.conf?
Is the source= line in the kismet_drone.conf correct? Is the channel-hopping
script listed as running using the ps command?

Kamikaze
Kamikaze is the latest version of OpenWRT and is still in development. This means
that things that work today, may change and not work tomorrow. This is why if
you are building drones for a production environment, you probably want to use
Whiterussian, since it’s stable and unlikely to change.

Just like Whiterussian, obtain a compatible WRT54G unit and configure it to
connect to the Internet.

Select the appropriate firmware from the openwrt Web site for your hardware.
Check the release notes for the latest version, to select the right one for your unit
(http://downloads.openwrt.org/kamikaze/release.txt).

If you are starting from a fresh router with the default firmware on it, installing
opwnwrt Kamikaze, connect to the Web control panel on the router. Using the
Upgrade firmware button under Administration | Upgrade Firmware, violate your
warranty by loading the .bin file.

It’s recommended that you use TFTP to load firmware once you have loaded
your first instance of openwrt. This is so you can be sure you can do it should your
router become a brick. If you have access to a *nix system on the same network as
the router, run the following:
tftp <ip of the router>

tftp> binary

tftp> rexmt 1

tftp> trace

tftp> put openwrt-wrt54g-squashfs.bin

Once you have loaded the openwrt firmware and left it for a few minutes to
boot and sort itself out, Telnet to 192.168.1.1 (or whatever IP you manually set it to)
and you should get a prompt and the banner for the OpenWRT firmware. If you
don’t, try a crossover cable between your station and the router. If that still doesn’t
work, set up your workstation as 192.168.1.2 and try again. If none of those work,
try resetting the router, which should hopefully put it back to 192.168.1.1 and you
can try again.

■

ww.syngress.com

http://downloads.openwrt.org/kamikaze/release.txt

 Kismet Drones • Chapter 8 199
Once you’ve connected via Telnet, you should immediately set up a root password
and SSH. This is easily accomplished with:
passwd root

Configuring the router is a bit different than on Whiterussian. The system no
longer uses nvram, but instead uses configuration files to set up all the parameters.

There are a lot of options available for configuring your router, and they are
outside of the scope of this book, however there are a few specific ones worth
mentioning.

/etc/config contains most of the base system configuration files. Before we can load
Kismet, we need to make a few changes.

To set up the router to talk to the Internet to get some necessary files, edit the
/etc/config/network file.

The config files are well documented on the openwrt wiki. http://wiki.openwrt.
org/OpenWrtDocs/KamikazeConfiguration contains all the options, but the few you
will probably want to edit are under the “config interface lan” section:
 option ipaddr 192.168.0.75

The IP address of the router, if you wanted to change it for some reason:
 option netmask 255.255.255.0

If you need to change the netmask, here is the place to do it:
 option gateway 192.168.0.1

Set your default gateway so that the router can talk to the rest of the Internet:
 option dns 64.59.184.13

You should also set up the router with a DNS server so it can resolve the open-
wrt.org domain to get software.

For example, here is my working LAN config:
LAN configuration

config interface lan

 option type bridge

 option ifname “eth0.0”

 option proto static

 option ipaddr 192.168.0.75
www.syngress.com

http://wiki.openwrt.org/OpenWrtDocs/KamikazeConfiguration
http://wiki.openwrt.org/OpenWrtDocs/KamikazeConfiguration

w

200 Chapter 8 • Kismet Drones
 option netmask 255.255.255.0

 option gateway 192.168.0.1

 option dns 64.59.184.13

After a reboot, you should be able to SSH into the router and ping outside addresses
and resolve domains. To install Kismet, it gets a little weirder than Whiterussian.
Note

At the time or writing, the Kismet binaries available through the ipkg reposi-
tory are almost 18 months old and don’t work properly on the broadcom
chips in WRT54GL. By printing time, a new version will hopefully be available
through ipkg, and things will be easy as ipkg installs kismet-drone. If not,
there is always building it yourself, which will be covered further.
The easiest way to install the Kismet-drone is through ipkg:
ipkg update

ipkg install kismet-drone

Any version after 2007-10-R1 should work fine. If that is not available or not
working, it is possible to build your own, as you will see later in this chapter.

Once you have the binaries installed, you need to make some adjustments to the
config file for it to work properly.

Edit the /etc/kismet/kismet_drone.conf file. You can edit it to your liking, but the
source= and allowedhosts= parameters are the most important.

For the source= line on a wrt54g, specify:
source=wrt54g,wl0,foo

wrt54g is the source type, wl0 is the interface name, and foo is the designation that
shows up in the Kismet client in the lower right corner.

If you want to connect to the drone from a remote server, you need to add the
server’s IP address or network to the allowedhosts parameter.
allowedhosts=127.0.0.1,192.168.0.0/24

Where you specify the IP or the server or the network should be comma separated
with no spaces. To make sure everything is working, launch the drone from the
command line:
kismet_drone -f /etc/kismet/kismet_drone.conf
ww.syngress.com

 Kismet Drones • Chapter 8 201
Just like with Whiterussian, you probably want to run the drone as an appliance
running on startup of the WRT54G. The scripting is very different than Whiterussian.
Kamikaze uses a custom startup scripting system that is fairly easy to use. It really
boils down to inserting the commands you want to into one script template, then
that template is used to automatically generate other scripts that are needed. All the
startup scripts that you need to edit exist in /etc/init.d. Create a file named Kismet in
that directory. Insert the following example script framework:
#!/bin/sh /etc/rc.common

Example script

Copyright (C) 2007 OpenWrt.org

START=65

STOP=70

boot() {

 echo boot

 # commands to run at boot

 # continue with the start() section

 start

}

start() {

 echo start

 # commands to launch application

}

stop() {

 echo stop

 # commands to kill application

}

As you can see in the example script, there are three main sections: boot,start and
stop. Each section contains the command needed to start, stop, or do whatever for the
program we want to control.
START=65

STOP=70

The start and stop lines contain numbers, which control in what order the scripts
generated from here start or stop. The higher the number, the later it starts. If you
www.syngress.com

202 Chapter 8 • Kismet Drones
have one program that needs to start before another (i.e. gpsd starting before Kismet),
make sure that the first program has a smaller number than the other.
boot() {

 echo boot

 # commands to run at boot

 #continue with the start() section

 start

}

The boot section runs commands inside it on startup. These commands are run
on startup and then the start section runs. This is a good place to put preparation
commands if you need them.
start() {

 echo start

 # commands to launch application

}

The start section is for commands to be run to start the program, but not
necessarily on boot. If the boot section does not call the start section, these commands
can be run by manually running the script with the start command (i.e. scriptname
start)
stop() {

 echo stop

 # commands to kill application

}

The stop section runs commands to end a program. This section is called when
the system shuts down. When you have all the commands in the script, make the
script executable with:
chmod 777 <scriptname>

then run the script with the enable parameter:
./<scriptname> enable

This will link the script properly into the rc.d startup folder and take care of
things for you.

A lot more information is available from the OpenWRT site:
http://downloads.openwrt.org/kamikaze/docs/openwrt.html-x1-270001.3.2
www.syngress.com

http://downloads.openwrt.org/kamikaze/docs/openwrt.html-x1-270001.3.2

 Kismet Drones • Chapter 8 203
For your drone appliance, the following script will prep the WRT54G and run
the drone on startup:
#!/bin/sh /etc/rc.common

Example script

Copyright (C) 2007 OpenWrt.org

START=65

STOP=70

boot() {

 echo boot

 # commands to run at boot

 # continue with the start() section

 start

}

start() {

 echo start

 # commands to launch application

 wl ap 0

 wl disassoc

 wl promisc 1

 sleep 3

 kismet_drone -f /etc/kismet/kismet_drone.conf

}

The boot section simply calls the start section, which covers the preparation of
the router and launching the drone. Here’s what it does:
 wl ap 0

Put the router in client mode, otherwise you will see beacons from the router in
your data.
 wl disassoc

If the router is changed to client mode, it may associate with a nearby access
point, which would be bad for scanning as well as for legal reasons.
 wl promisc 1

This puts the router in promiscuous mode, mostly for the sake of making sure
we can get all the data we want.
www.syngress.com

w

204 Chapter 8 • Kismet Drones

Note

In the Whiterussian setup, the script uses the “wl passive 1” command. This is
supposed to prevent the router from transmitting anything, however this
command doesn’t play nice with Kamikaze. It has a nasty habit of changing
the wl0 interface from wireless to a wired interface (as far as the system is
concerned), and causes Kismet to fail to start since it’s not seeing the inter-
face as wireless. It’s not a problem for it not to be there in this script. Its a
problem if it is there, so don’t get confused between OpenWRT versions.
 sleep 3

To make sure the wl commands have completed, wait for 3 seconds before mov-
ing along to the next command.
 kismet_drone -f /etc/kismet/kismet_drone.conf

Run the drone command with the -f parameter to specify the config file.
To enable the script for startup, run the Kismet script with the enable option:
 /kismet enable

The stop section is not needed since there is no way to gracefully shutdown the
WRT54G. When you pull the plug, the program and everything else stops.

Server Configuration
Setup the Kismet.conf file on your laptop/workstation to use source=kismet_drone,
<IP Address>:3501,drone. You can run other sources at the same time (e.g., wi-fi
cards, other drones) on separate source= lines.

The source line breaks down like this:

Kismet_drone indicates this is a remote drone source, as opposed to a local
card source.

<IP Address>:3501 is the TCP/IP address and port that the drone is
running on. You can change the IP address to whatever you set your router
to. You shouldn’t need to change the port.

drone is just an arbitrary description that is shown in the bottom right
corner of the Kismet window in the sources list. You can change this to
whatever you want for organizational purposes, be it where the drone is
or perhaps what channels it’s monitoring.

■

■

■

ww.syngress.com

 Kismet Drones • Chapter 8 205
Cross Compiling with OpenWRT-Buildroot
OpenWRT development has a very cool tool called a buildroot, which is basically a
suite of all the compilers and tools you need to build OpenWRT and it’s packages.
It really takes the sweat out of compiling software for OpenWRT, and we can use it
to build a bleeding edge version of Kismet for Kamikaze.

Building your own packages is not the easiest way. Keep in mind that this can
introduce unknown and unanticipated problems. Your mileage may vary.
Note

This section is meant as a guide only. Both Kismet and OpenWRT are constantly
developing, and it’s best to use existing, proven releases to build drone devices.
If you have a need to experiment or update outside of normal releases, here’s
how you can do so.
Buildroot Installation
First, you’ll need to obtain the buildroot. This is easily done through the subversion
system on the openwrt Web site. Goto https://dev.openwrt.org/ and you should see
the available options for the buildroots. There should be a current release version and
a development version. The development version is bleeding edge and likely to cause
problems. If you have loaded a release version, it’s best to use the release version.

You’ll also want to make sure you have enough free space. The buildroot can
grow to several gigabytes (the author’s testing grew to over 4.5 Gb’s).

To obtain a buildroot, use the svn commands listed on the openwrt development
site (this is for the stable buildroot):
svn cohttps://svn.openwrt.org/openwrt/tags/kamikaze_7.09 openwrt_buildroot

This takes a while, but will download all the software needed to build OpenWRT
and it’s package software. Kismet is in the extended set of packages, and must be
added manually by running the following from the command line:
make package/symlinks

This will install the extra package sources to the buildroot, including the out-of-
date Kismet. Once it’s downloaded, you can run “make menuconfig” to start up the
www.syngress.com

http://https://dev.openwrt.org/
https://svn.openwrt.org/openwrt/tags/kamikaze_7.09openwrt_buildroot

w

206 Chapter 8 • Kismet Drones
configuration. There are a huge amount of options here to configure, way more
than we need to worry about. All that matters is the target system. This is where you
can specify the architecture you are building for. The target system setting for the
WRT54GL is “Broadcom BCM947xx/953xx,” and the most stable is the 2.4 kernel.
For the purposes of this section, we are not going to change anything else except to
build Kismet through the buildroot.

The existing Kismet in the buildroot can be enabled in the menuconfig under
network | wireless. Select the Kismet modules you want to build (you can build
the server, client, and drone) and make sure they are selected as modules (it should
say <M> beside the name). This builds them as packages rather than into the base
openwrt image.

Go back to the main screen and exit, then save the config and you are returned
to the command line. If you type “make” at this point, you will download the sources
for everything selected, build the base system, base libraries, and any libraries needed
by Kismet, as well as the Kismet binaries. Now, if you want to upgrade the version of
Kismet that the buildroot builds, you need to edit the Makefile the buildroot uses,
and change where it gets it’s sources from and adjust a few build options.

Within the buildroot, the packages are built according to a Makefile that contains
the location of the source code, the build options, and a list of dependencies. We need
to edit this file to use the newer source, as well as make some adjustments to version
numbers.

The Kismet package Makefile is located in the buildroot directory under packages/
feeds/packages/kismet. The existing Makefile should look something like this:
#

Copyright (C) 2006 OpenWrt.org

#

This is free software, licensed under the GNU General Public License v2.

See /LICENSE for more information.

#

Id

include $(TOPDIR)/rules.mk

PKG_NAME:=kismet

PKG_VERSION:=2007-10-R1

PKG_RELEASE:=1

PKG_SOURCE:=$(PKG_NAME)-$(PKG_VERSION).tar.gz

PKG_SOURCE_URL:=http://www.kismetwireless.net/code

PKG_MD5SUM:=2100c667e69db0cde35fa2d06c8516e2
ww.syngress.com

http://www.kismetwireless.net/code

 Kismet Drones • Chapter 8 207
PKG_BUILD_DEPENDS:=libnotimpl libpcap libncurses uclibcxx

include $(INCLUDE_DIR)/package.mk

define Package/kismet/Default

 SECTION:=net

 CATEGORY:=Network

 TITLE:=Kismet

 DEPENDS:= +uclibcxx

 URL:=http://www.kismetwireless.net/

 SUBMENU:=wireless

endef

define Package/kismet/Default/description

 An 802.11 layer2 wireless network detector, sniffer, and intrusion

 detection system.

endef

define Package/kismet-client

$(call Package/kismet/Default)

 TITLE+= client

 DEPENDS+= +libncurses

endef

define Package/kismet-client/conffiles

/etc/kismet/ap_manuf

/etc/kismet/client_manuf

/etc/kismet/kismet.conf

/etc/kismet/kismet_ui.conf

endef

define Package/kismet-client/description

$(call Package/kismet/Default/description)

 This package contains the kismet text interface client.

endef

define Package/kismet-drone

$(call Package/kismet/Default)

 DEPENDS+= +libpcap

 TITLE+= drone

endef

define Package/kismet-drone/conffiles

/etc/kismet/kismet_drone.conf

endef
www.syngress.com

http://www.kismetwireless.net/

w

208 Chapter 8 • Kismet Drones
define Package/kismet-drone/description

$(call Package/kismet/Default/description)

 This package contains the kismet remote sniffing.and monitoring drone.

endef

define Package/kismet-server

$(call Package/kismet/Default)

 DEPENDS+= +libpcap +dbus

 TITLE+= server

endef

define Package/kismet-server/conffiles

/etc/kismet/ap_manuf

/etc/kismet/client_manuf

/etc/kismet/kismet.conf

endef

define Package/kismet-server/description

$(call Package/kismet/Default/description)

 This package contains the kismet server.

endef

CONFIGURE_ARGS += \

 --enable-syspcap=yes \

 --disable-setuid \

 --disable-wsp100 \

 --disable-gpsmap \

CONFIGURE_VARS += \

 CXXFLAGS=”$$$$CXXFLAGS -fno-builtin -fno-rtti -nostdinc++” \

 CPPFLAGS=”$$$$CPPFLAGS -I$(STAGING_DIR)/usr/include/uClibc++
-I$(LINUX_DIR)/include” \

 LDFLAGS=”$$$$LDFLAGS” \

 LIBS=”-nodefaultlibs -luClibc++ -lm -lnotimpl” \

define Build/Compile

 $(MAKE) -C $(PKG_BUILD_DIR) \

 LD=”\$$$$(CC)” \

 all

endef
ww.syngress.com

 Kismet Drones • Chapter 8 209
#FIXME: remove this package?

define Package/kismet/install

 $(INSTALL_DIR) $(1)/usr/bin/

 $(INSTALL_BIN) $(PKG_BUILD_DIR)/scripts/kismet $(1)/usr/bin/kismet

endef

define Package/kismet-client/install

 $(INSTALL_DIR) $(1)/etc/kismet/

 $(INSTALL_DATA) ./files/ap_manuf $(1)/etc/kismet/

 $(INSTALL_DATA) ./files/client_manuf $(1)/etc/kismet/

 $(INSTALL_DATA) ./files/kismet.conf $(1)/etc/kismet/

 $(INSTALL_DATA) ./files/kismet_ui.conf $(1)/etc/kismet/

 $(INSTALL_DIR) $(1)/usr/bin

 $(INSTALL_BIN) $(PKG_BUILD_DIR)/kismet_client $(1)/usr/bin/

endef

define Package/kismet-drone/install

 $(INSTALL_DIR) $(1)/etc/kismet/

 $(INSTALL_DATA) ./files/kismet_drone.conf $(1)/etc/kismet/

 $(INSTALL_DIR) $(1)/usr/bin

 $(INSTALL_BIN) $(PKG_BUILD_DIR)/kismet_drone $(1)/usr/bin/

endef

define Package/kismet-server/install

 $(INSTALL_DIR) $(1)/etc/kismet/

 $(INSTALL_DATA) ./files/ap_manuf $(1)/etc/kismet/

 $(INSTALL_DATA) ./files/client_manuf $(1)/etc/kismet/

 $(INSTALL_DATA) ./files/kismet.conf $(1)/etc/kismet/

 $(INSTALL_DIR) $(1)/usr/bin

 $(INSTALL_BIN) $(PKG_BUILD_DIR)/kismet_server $(1)/usr/bin/

endef

$(eval $(call BuildPackage,kismet-client))

$(eval $(call BuildPackage,kismet-drone))

$(eval $(call BuildPackage,kismet-server))

There are really only a few lines that we need to worry about updating. Most of
the heavy lifting has been done already.

The first six lines that start with PKG are what interest us at the moment:
PKG_NAME:=kismet
www.syngress.com

210 Chapter 8 • Kismet Drones
Obviously this is the name given to the package:
PKG_VERSION:=2007-10-R1

This is the version number of the Kismet build we are doing:
PKG_RELEASE:=1

For organizational purposes, we can tag this as a version 1, 2, 3, and so forth, of
the package for the same Kismet version.
PKG_SOURCE:=$(PKG_NAME)-$(PKG_VERSION).tar.gz

This tells the buildroot the filename of the source code to download. In this case,
it is using the previous lines as variables to spell out the name of the package kismet-
2007-10-R1.tar.gz. You can just enter the exact filename, but sometimes it’s easier just
to update the PKG_VERSION line.
PKG_SOURCE_URL:=http://www.kismetwireless.net/code

The buildroot needs to know where to download the above file from. In this
case, it’s the Kismet Web site. It can also be from a directory on the local filesystem.
PKG_MD5SUM:=2100c667e69db0cde35fa2d06c8516e2

As an integrity check, you can specify the Message Digest 5 (MD5) checksum
of the download package. You can remove this line if you don’t want to integrity
check the download. We can now edit this file to use a newer source. You can specify
a specific release version by changing the PKG_VERSION and the MD5 of the
package from the Kismet Web site, or if you’re really brave, you can use the develop-
ment source. On your workstation, download a fresh snapshot of the Kismet stable
development branch:
svn cohttp://svn.kismetwireless.net/code/trunk kismet-devel

This will check out the latest development source into the kismet-devel directory.
Next, tar and gzip the source:
tar -czvf kismet-devel.tar.gz kismet-devel

This leaves you with a tarball named kismet-devel.tar.gz. Copy this into your build-
root /dl directory. This is where the buildroot downloads source code before building
it. You should remove any previously downloaded source for Kismet from the direc-
tory while you’re there.

You may want the MD5 of the tarball so that you can verify integrity later in the
build process, just in case something gets downloaded in it’s place. Your Linux distri-
bution may or may not come with the MD5 or MD5SUM command. It should be
www.syngress.com

http://www.kismetwireless.net/code
http://svn.kismetwireless.net/code/trunkkismet-devel

 Kismet Drones • Chapter 8 211
trivial to add it through whatever package management tools are available or through
a quick google search.
md5 kismet-devel.tar.gz

This will spit out a long line of letters and numbers. This is the signature of this
particular file. Save this for later. Now you need to edit the Makefile in the buildroot
packages/feeds/packages directory, specifically the following lines:
PKG_VERSION:=devel

Since this in not a release, tag it as devel. As mentioned before, this becomes part
of the filename. The PKG_NAME parameter is Kismet, now the version is devel,
so the Makefile fills in the blanks of the PKG_SOURCE parameter and looks for
kismet-devel.tar.gz, which is what you named the tarball you made.
PKG_SOURCE_URL:=<PATH TO BUILDROOT>/dl

Specify the local directory where you put the development source tarball earlier.
PKG_MD5SUM:=<MD5 checksum>

If you are using it, change the MD5 sum of the development tarball. Now if you
go back to the top level of the buildroot, and run “make,” the buildroot will churn
through and hopefully build the openwrt system and the Kismet binaries you
selected in the menuconfig as packages.

Troubleshooting
A great deal can go wrong when dealing with bleeding edge software. Incorrect
versions of libraries, missing files, and so forth. Here are a few tips and tricks.

If you are just trying to build the Kismet binaries, go with the defaults for the rest
of the system configuration and just select to build Kismet. This way, only Kismet and
it’s dependent libraries are built and it limits the scope of the problems. Avoid 2.6
kernels if you can. The 2.4 branches are much more stable.

If the build fails on a dependency of Kismet, see if it’s needed. The above Makefile
includes Dbus as a dependency. While it is true the kismet-server can use Dbus, since
the WRT54G is not running X and in particular, network manager, you don’t need
Dbus support to be built to disable it.

Go through the Makefile and find instances of Dbus:
define Package/kismet-server

$(call Package/kismet/Default)

 DEPENDS+= +libpcap +dbus
www.syngress.com

w

212 Chapter 8 • Kismet Drones
Remove the +dbus from the DEPENDS line for the server, then find the
./configure options being used and disable dbus support.

The original file shows the following as configure switches:
CONFIGURE_ARGS += \

 --enable-syspcap=yes \

 --disable-setuid \

 --disable-wsp100 \

 --disable-gpsmap \

To disable dbus support, add “--disable-dbus \” (the space at the end and the slash
are important), so that it reads:
CONFIGURE_ARGS += \

 --enable-syspcap=yes \

 --disable-setuid \

 --disable-wsp100 \

 --disable-gpsmap \

 --disable-dbus \

Save these edits and re-run the top level “make” and hopefully everything will
compile successfully.

PC Drone Setup
To set up a drone on a full PC-type system is just as easy as installing Kismet normally,
and in fact can be easier. As part of the normal Kismet build process, in addition to the
server and client being built, a Kismet drone binary is built and installed along with
the server and client.

The requirements for a Kismet drone on a PC is the same as installation for
Kismet normally; it can even be done on an older, slower computer (old laptops
work great here), as long as it meets the normal drone criteria of having a CPU,
a compatible wireless device, and a backhaul method to get the data to the server.
Install a compatible Linux distro on the PC and follow the normal installation
procedure of:
./configure

make

make install
ww.syngress.com

 Kismet Drones • Chapter 8 213
Once you have the drone binaries built and installed, you can configure the
kismet_drone.conf file with your source just as with the server configuration.

You may need to build and install setuid root, depending on how your PC drone
is configured. If you don’t install setuid root, make sure to add a normal user to the
system that Kismet can drop privileges to. The added advantage to using a PC is that
most compatible cards and driver don’t need external scripts to channel hop. Using
compatible cards also means that the Kismet server can control channel hopping
(locking and re-enabling hopping) and properly report what channel is currently in
use. You also need to change your allowed hosts line in the kismet_drone.conf file to
something like:
allowedhosts=127.0.0.1,192.168.0.0/24

By default, the drone only allows connection from the local system. You will
need to add your network segment that you will connect your server from to the
list with no spaces. It can be a single IP address, or a whole network using decimal
notation and no spaces. If you don’t change this, it is still possible to connect the
server, however, no data will come through.

Set up the Kismet.conf file on your laptop/workstation to use source=kismet_drone,
<IP Address>:3501,drone. You can run other sources at the same time (e.g., wi-fi
cards, other drones) on separate source= lines.

The source line breaks down like this:

Kismet_drone indicates this is a remote drone source, as opposed to a local
card source.

<IP Address>:3501 is the TCP/IP address and port that the drone is
running on. You can change the IP address to whatever you set up your
router to. You shouldn’t need to change the port.

drone is just an arbitrary description that is shown in the bottom right
corner of the Kismet window in the sources list. You can change this to
whatever you want for organizational purposes, be it where the drone is
or perhaps what channels it’s monitoring.

As for running the drone on startup, it all depends on your distribution’s method
of starting programs at startup. There are too many to go over in detail, so just check
with the documentation for your particular distribution.

■

■

■

www.syngress.com

w

214 Chapter 8 • Kismet Drones
Kismet Drone Configuration File
For both embedded (WRT54G and the like) and full PC, there are a few options in
the kismet_drone.conf file you can tweak. Here are all the available options:
Kismet drone config file

version=Feb.04.01a

As with the server and client, the drone configuration version number is separate
from the package version number. As of writing, the kismet_rone.conf hasn’t changed
in over four years
Name of server (Purely for organiational purposes)

servername=Kismet

You shouldn’t need to change this, but if you have a lot of drones, you may want
to adjust this to your taste.
User to setid to (should be your normal user)

suiduser=your_user_here

Just like the server, Kismet prefers to start as root and then drop privileges. If you
want to run as root, just make installsetuid as per the installation chapters.
Port to serve packet data... This probably shouldn’t be the same as the port

you configured kismet_server for, or else you’ll have problems running them

on the same system.

tcpport=3501

The kismet_drone normally runs on port 2501. If you need to change it for what-
ever reason, do so here. It’s probably best not to use the same port as the server’s
graphical user interface (GUI) data on (port 2501).
People allowed to connect, comma seperated IP addresses or network/mask

blocks. Netmasks can be expressed as dotted quad (/255.255.255.0) or as

numbers (/24)

allowedhosts=127.0.0.1

Probably the second most important line in the configuration. The Kismet drone
needs to know what address the server will be connecting from. If you allow just
anyone to connect, an attacker could connect and sniff all the data on your network.
ww.syngress.com

 Kismet Drones • Chapter 8 215
The address can be a specific address or a whole network segment. The values are
comma separated with no spaces.
Address to bind to. Should be an address already configured already on

this host, reverts to INADDR_ANY if specified incorrectly.

bindaddress=127.0.0.1

If the drone has multiple addresses and you want to only connect on one of
the interfaces/addresses, specify that address here. Otherwise, the drone will accept
connections on any and all interface addresses.
Maximum number of concurrent stream attachments

maxclients=5

How many clients of the drone (meaning servers) do we allow to connect? Too
many can overwhelm a drone, but then again, you shouldn’t need to connect to many
servers.
Sources are defined as:

source=sourcetype,interface,name[,initialchannel]

Source types and required drivers are listed in the README.

The initial channel is optional, if hopping is not enabled it can be used

to set the channel the interface listens on.

YOU MUST CHANGE THIS TO BE THE SOURCE YOU WANT TO USE

source=none,none,addme

This is the most important line in the drone configuration file. The source line
tells Kismet what it needs to know to get data into the program so we can start
scanning. Each source has three parameters: a kismet source name for the specific
type of card, the interface name, and a logical name found in the Kismet client. The
Kismet README has a list of compatible sources and their proper interface names.
hostap Prism/2 Linux HostAP 0.4

 http://hostap.epitest.fi/

 Capture interface: ‘wlanX’

 HostAP drivers drive the Prism/2 chipset in access point

 mode, but also can drive the cards in client andmonitor

 modes. The HostAP drivers seem to change how they go

 into monitor mode fairly often, but this source should

 manage to get them going.
www.syngress.com

http://hostap.epitest.fi/

w

216 Chapter 8 • Kismet Drones
The README has many entries, such as this one for hostap-compatible cards.
You’ll need to find the one for your card type and follow any special instructions to
get it to work (different drivers or patches, etc).

For the above card, the source line would be “source=hostap,wlanx,hostap,” where
hostap is the name of the type of card (according to the readme), and wlanx is the
interface name for that card (usually will be wlan0 or wlan1). The last part is a logical
name for your information. The client displays the status of each card and what channel
it is currently on. It is useful to give a short descriptive name so you know which is
which. Identifying on-board network cards vs. add-on cards can be especially useful
so you know which one is active and on what channel.

You can also specify the initial channel the cards start on when Kismet is started,
by adding a fourth parameter after a comma. If you want the card to start on channel
11, you simply add a “,11” after the logical name. The source line would now read
“source=hostap,wlanx,onboard,11.” This is especially useful if you have multiple cards
and want to monitor different channels on each, you can have Kismet set the channels
instead of manually doing it. This setting does not affect much if channel hopping is
enabled, and only works for static channel monitoring.
Comma-separated list of sources to enable. This is only needed if you wish

to selectively enable multiple sources.

enablesources=prism,cisco

If you have multiple source lines, you can specify which ones to enable. This is easier
than removing or commenting out source= lines. These lines are comma separated, with
no spaces.
channelhop?

channelhop=true

The drones can channel hop, just like the server. To enable channel hopping, set
it to true, to disable, and to false. Some platforms require manual channel hopping
scripts, as the drone binary can’t control the channel.
How many channels per second do we hop? (1-10)

channelvelocity=5

You can tweak the speed at which you hop channels. This is mostly something
you have to fine tune yourself. If you hop slow, it takes longer to get through all the
channels. If you hop fast, there’s the chance you could miss something. Most times
ww.syngress.com

 Kismet Drones • Chapter 8 217
you can take your time, since drones are typically stationary and we don’t have to
worry about velocity making detection a problem.
By setting the dwell time for channel hopping we override the channelvelocity

setting above and dwell on each channel for the given number of seconds.

#channeldwell=10

This setting overrides the channel velocity setting and specifies that, rather than
a certain number of channels per second, Kismet should spend a certain amount of
time on each channel. This is a more useful setting for static installations and drones.
This way you can thoroughly inspect each channel. It’s up to you to determine
which works for you to make the most of your time and coverage. Increments of
1 second can be adjusted.
Do we split channels between cards on the same spectrum? This means if

multiple 802.11b capture sources are defined, they will be offset to cover

the most possible spectrum at a given time. This also controls splitting

fine-tuned sourcechannels lines which cover multiple interfaces (see below)

splitchannels=true

Channel splitting enables Kismet to cover more spectrum at any given time when
multiple sources are in use. If you have two cards, both hopping, Kismet will make
sure that they are both always on different channels at any given time. If card 1 is
on channel 5, card 2 is on a channel other than 5, maximizing the covered spectrum.
This is especially useful for situations of several cards where having all of them on
one channel makes little or no sense. If you are using several drones or other situa-
tions where you need blanket coverage of a channel across several locations, consider
disabling this.
Basic channel hopping control:

These define the channels the cards hop through for various frequency ranges

supported by Kismet. More finegrain control is available via the

“sourcechannels” configuration option.

Don’t change the IEEE80211<x> identifiers or channel hopping won’t work.

Users outside the US might want to use this list:

defaultchannels=IEEE80211b:1,7,13,2,8,3,14,9,4,10,5,11,6,12
www.syngress.com

w

218 Chapter 8 • Kismet Drones
defaultchannels=IEEE80211b:1,6,11,2,7,3,8,4,9,5,10

802.11g uses the same channels as 802.11b...

defaultchannels=IEEE80211g:1,6,11,2,7,3,8,4,9,5,10

802.11a channels are non-overlapping so sequential is fine. You may want to

adjust the list depending on the channels your card actually supports.

defaultchannels=IEEE80211a:36,40,44,48,52,56,60,64,100,104,108,112,116,120,124,
128,132,136,140,149,153,157,161,184,188,192,196,200,204,208,212,216

defaultchannels=IEEE80211a:36,40,44,48,52,56,60,64

Here you can specify what channels, by default, the drone should hop through.
More fine control is available in the sourcechannels= line later on, we are just specifying
the channels that are possible here.

This setting also allows you to set the channels for your regulatory domain. By
default, it is set up for the North American regulator domain, which is for channels
1–11, but not all users are in the North American regulatory domain and can use more
or less channels. This is also where you can hack things a bit. If your card supports all
14 channels, or more than your regulatory domain allows, you can specify all the
possible channels, even the ones not technically allowed in your regulatory domain.
Check your local laws before doing this, however.

Since we are not transmitting in Kismet, it shouldn’t be a problem (check your
local laws) to listen to see if someone has set up a rogue access point on channels not
normally used or allowed, to try and avoid detection. Please don’t abuse this as the
regulations are there for a reason.
Combo cards like Atheros use both ‘a’ and ‘b/g’ channels. Of course, you

can also explicitly override a given source. You can use the script

extras/listchan.pl to extract all the channels your card supports.

defaultchannels=IEEE80211ab:1,6,11,2,7,3,8,4,9,5,10,36,40,44,48,52,56,60,64

You can also specify channels to be covered by a/b/g combo cards if you happen
to have one. The listchan.pl script in the extras directory of the install package will
poll your card(s) to see what channels are supported. A useful thing to see if your
card is capable of more than you thought it was.
ww.syngress.com

 Kismet Drones • Chapter 8 219
Fine-tuning channel hopping control:

The sourcechannels option can be used to set the channel hopping for

specific interfaces, and to control what interfaces share a list of

channels for split hopping. This can also be used to easily lock

one card on a single channel while hopping with other cards.

Any card without a sourcechannel definition will use the standard hopping

list.

sourcechannels=sourcename[,sourcename]:ch1,ch2,ch3,...chN

ie, for us channels on the source ‘prism2source’ (same as normal channel

hopping behavior):

sourcechannels=prism2source:1,6,11,2,7,3,8,4,9,5,10

This parameter is where you can fine-tune the channel hopping. In the default-
channels parameter, we specified what channels were available. Now we can specify
which ones we specifically want to listen on and what order to sequence through.
www.syngress.com

Note

There is a very cool hack possible here. For b/g networks, channels 1, 6,
and 11 are statistically the most popular since they don’t overlap. If we have
one card, it makes no sense to spend only 8/11th’s of our time on channels
less likely to have something on them. You can specify channels more than
once and the sequence will loop back to the beginning when done. So if you
specify 1, 6, and 11 more than once, you’ll end up spending more time there
overall and even out your distribution of time/channels.

sourcechannels=prism2source:1,6,11,2,7,1,6,11,3,8,1,6,11,4,9,1,6,11,5,10
With the above line we are spending 6/10th’s of our time checking the

most popular channels. You can tweak this distribution to your liking, but it
has been tested and tends to work for high speed scanning such as highway
speed wardriving. You can also specify additional channels such as 12–14 if
your card supports it and add those to the mix.

You can do the same for 802.11a channels. Either adding them to the mix
of b/g channels if you have an a/b/g card or just the 802.11a channels if you
have a single mode card.

w

220 Chapter 8 • Kismet Drones
Given two capture sources, “prism2a” and “prism2b”, we want prism2a to stay

on channel 6 and prism2b to hop normally. By not setting a sourcechannels

line for prism2b, it will use the standard hopping.

sourcechannels=prism2a:6

If you don’t specify a sourcechannels parameter and channelhop=true, the system will
automatically hop through the default channels. If you have multiple sources, you can
have a specific sourcechannels for one device and have it monitor a few specific channels
while the other one checks the remainder. This is effective with wardriving. One
source spends all it’s time checking 1, 6, and 11 where there are most likely going to
be signals, and the other can check the remaining channels.

You can also use this to break up the workload across multiple sources. One card
can do the lower channels, the other the higher channels, and be able to sequence
through everything much faster than a single card.
To assign the same custom hop channel to multiple sources, or to split the

same custom hop channel over two sources (if splitchannels is true), list

them all on the same sourcechannels line:

sourcechannels=prism2a,prism2b,prism2c:1,6,11

You can also nest multiple sources in an assigned sourcechannel. If channelsplit=true,
Kismet will cycle through the channels, and make sure that no two sources are on the
same channel at the same time, maximizing the time spent on high-usage channels,
and making sure not to overlap scanned channels. In the config file example, three
sources would cycle through each of three channels without overlapping.

Like the server and client, you can specify command-line switches for the drone
that override the options in the kismet_drone.conf file.
-I, --initial-channel <n:c> Initial channel to monitor on (default: 6)

Format capname:channel
This switch sets what channel the enabled sources should start on. If channel

hopping is disabled, this will be the channel that is monitored.
-x, --force-channel-hop Forcibly enable the channel hopper

If channel hopping is disabled in the config file, -x (lower case x) will force it to
be enabled.
-X, --force-no-channel-hop Forcibly disable the channel hopper
ww.syngress.com

 Kismet Drones • Chapter 8 221
The capital X switch will disable the channel hopper, if it is not already disabled.
-f, --config-file <file> Use alternate config file

If you need to specify an alternate location or an alternate filename for your
config file, the -f switch will do that for you.
-c, --capture-source <src> Packet capture source line (type,interface,name)

Sometimes you need to specify another capture source. Much like in the config
file, it consists of the type (see the README for allowed types), the interface name,
and a description with no spaces and all comma separated.
-C, --enable-capture-sources Comma separated list of named packet sources to use.

If you have multiple sources in your config file, you can fine tune which ones are
enabled with the -C switch and listing the descriptions you included in the config file.
-p, --port <port> TCPIP server port for stream connections

Due to firewalls or other restrictions, you may need to specify an alternate port
to serve up connections from on the drone. If you do so, you’ll have to adjust the
source= line on your server system to connect to the new port.
-a, --allowed-hosts <hosts> Comma separated list of hosts allowed to connect

To add a host to allow connections from temporarily, use the -a switch and the
IP address.
-b, --bind-address <address> Bind to this address. Default INADDR_ANY.

On multi-homed systems the drone defaults to accepting connections from any
configured address. If you want to restrict connections to one address, use the
-b switch.
-s, --silent Don’t send any output to console.

Particularly useful in testing is to suppress output from the drone when it runs.
-N, --server-name Server name

For organizational purposes, you can change the server’s name. This doesn’t show
up anywhere major with drones, so no need to worry about it.
-v, --version Kismet version

-v outputs the version of the kismet_drone

-h, --help What do you think you’re reading?

If you find yourself without this book handy, the -h switch will show you the
options available.
www.syngress.com

w

222 Chapter 8 • Kismet Drones
Summary
Drones have limitations and some quirks. You want to be careful how you set up the
backhaul to make sure you don’t interfere with normal operations. In most situations,
you want to backhaul from your drone to the server over a wired network. Some
people try to send the data from the sniffer back over a wireless, which can get you
into a great deal of trouble. If you are monitoring the data you are backhauling,
you’re then capturing it again and broadcasting it back to be sniffed again and getting
into a very ugly loop that will likely saturate things very quickly. Also, if you are
monitoring a heavily used wireless network and sending the captured data back over
the same network, you are effectively doubling the amount of data going down the
wire. This can be an issue if you are already near capacity.

For the headaches it saves and the extra data you have to deal with, it’s best to
run the drones over a separate network from what you are monitoring. Be it through
separate wires or Virtual Local Area Networks (VLANS), this will save you a great
deal of time and effort.

Currently, drones are a pull-type connection. When the server starts, it connects
to all the drones listed as source= lines and requests data to be sent, and if the drone is
functional, it does so. The current architecture of Kismet does not support dynamically
adding sources beyond the startup of the server. This means that if a drone goes down,
you have to restart the whole server to bring it back up. This is being addressed in
kismet-newcore but for now, if something downs a drone, it takes a server restart to
bring it back online.

Drones can be a very cheap and efficient way of extending your view of the
network into the RF layer and to see beyond just TCP/IP packets and see what is
going on in the lower layers of the stack at remote locations. Drones can be nearly
any type of system that runs Linux, has a backhaul method, and a compatible
wireless device. Some devices have their own quirks and issues. A bit of research
and development will save you some headaches and hopefully some money.
ww.syngress.com

Chapter 9
Kismet and Mapping
Solutions in this Chapter:

GPSMap/KisMap

WiGLE

WiGLE Google Map

IGiGLE

GpsDrive

Alternatives

■

■

■

■

■

■

˛	Summary

˛	Solutions Fast Track
223

224 Chapter 9 • Kismet and Mapping
Introduction
Kismet’s data formats are well-suited to allow integration of this data into other tools
and programs. In terms of Kismet, the tools that are often most helpful or useful are
mapping programs. The focus of this chapter will be on the use of mapping programs
(both native and third-party) to enhance Kismet’s ability.

GPSMap/KisMap
Kismet’s native mapping tool is known as GPSMap. GPSMap is designed to download
maps from online repositories and overlay Kismet networks onto them. GPSMap’s
features include:

Travel path/track

Approximate network circular range

Approximate network center

Convex hull of all network sample points

Interpolated (weathermap-style) graphing of power and range

Labeling of network centers

Scatterplot of all detected packets

Legend showing total sample networks, visible networks, colors, power
ranges, network center, and so forth

■

■

■

■

■

■

■

■

www.syngress.com

Note

Unfortunately, the current incarnation of GPSMap is hobbled by the fact that
most of the source data for the maps is no longer available. GPSMap has been
patched to use Expedia data, but this is only available for Europe. To remedy
this situation, you can patch GPSMap to work with Google Maps (see below).

 Kismet and Mapping • Chapter 9 225
Patching GPSMap
You can patch GPSMap to work with Google Maps, but this also presumes that you
have a place to display those maps (i.e., your own Web server).

First, download the patch (http://parknation.com/gmap/files/gpsmap-gmap-
0.1.tgz). Then, uncompress and apply the patch to the source and compile the binary:
tar zxf gpsmap-gmap-0.1.tgz

cd /pentest/svn/kismet-devel

patch -p0 < /root/gpsmap-gmap-0.1/gpsmap-gmap-0.1.diff

./configure

make gpsmap

Next, copy gpsmap to your desired location. Then, copy index.html and the mapfiles
folder from /root/gpsmap-gmap-0.1 (or wherever you uncompressed it) to your web
server. Run gpsmap against one of your Kismet .GPS files:
gpsmap –j –o gpsdata.js –u –r Kismet.gps

Your output file, gpsdata.js, should be copied to your Web server. Finally, you’ll
require a Google Maps API (http://code.google.com/apis/maps/signup.html).
When you get your key, paste it into the index.html file (conveniently, where it
says “KEYHERE”). This process is a bit complicated, and it does require that you
have a Web server, but the results speak for themselves.

KisMap
Due partially to the lack of map sources and the limitations of the patches, GPSMap
is currently being re-written from the ground up as a new python-based tool (cur-
rently known as KisMap). KisMap works with Google Maps (something that was not
originally supported in GPSMap), with other formats likely to come in the future.

WiGLE
As has been mentioned in the BackTrack chapter, WiGLE (Wireless Geographic
Logging Engine) is an online database that includes in excess of 15 million recorded
wireless networks, most with geographic coordinates. WiGLE gives you access to
Service Set Identifier (SSID) and manufacturer statistics, octet and channel usage
statistics, and a browsable Web map of the world (see Figure 9.1).
www.syngress.com

http://parknation.com/gmap/files/gpsmap-gmap-0.1.tgz
http://parknation.com/gmap/files/gpsmap-gmap-0.1.tgz
http://code.google.com/apis/maps/signup.html

226 Chapter 9 • Kismet and Mapping

Figure 9.1 WiGLE Web Maps Display of the Baltimore-Washington, DC Corridor
WiGLE Google Map
WiGLE Google Map (http://wigle.rustyredwagon.com/) is a Web-based tool that
displays WiGLE data on Google Maps. Simply enter an address, select the type of
networks you’d like to see, and WiGLE Google Map will query the WiGLE database
and display the appropriate network data on the map.
www.syngress.com

http://wigle.rustyredwagon.com/

 Kismet and Mapping • Chapter 9 227
IGiGLE
IGiGLE (Irongeek’s WiGLE WiFi Database to Google Earth Client for Wardrive
Mapping) is a simple Windows-based interface between the WiGLE database and
Google Earth (see Figure 9.2). You can query the WiGLE database by zip code or
latitude/longitude, and IGiGLE will download the data and convert it to .KML
format to display in Google Earth (see Figure 9.3). You can choose to download all
data for all particular areas, or just your data. The latter is especially useful if you use
the WiGLE database as your primary location to store your own Kismet-collected
data. IGiGLE can be downloaded at http://www.irongeek.com/i.php?page=security/
igigle-wigle-wifi-to-google-earth-client-for-wardrive-mapping.
www.syngress.com

Figure 9.2 IGiGLE Interface

http://www.irongeek.com/i.php?page=security/igigle-wigle-wifi-to-google-earth-client-for-wardrive-mapping
http://www.irongeek.com/i.php?page=security/igigle-wigle-wifi-to-google-earth-client-for-wardrive-mapping

228 Chapter 9 • Kismet and Mapping

Figure 9.3 IGiGLE’s .KML Output File is Displayed in Google Earth
GpsDrive
GpsDrive is a navigation system designed to display your GPS position on a zoom-
able map (see Figure 9.4). While it can be used completely independently of Kismet
as a standalone mapping program, it integrates nicely with Kismet (and MySQL) to
display Kismet network data on the map. Furthermore, speech output through festival
is supported (flite also works); so you can even have GpsDrive tell you when it finds
new networks. If your GPS receiver works with gpsd (or gpsdold), it should work
with GpsDrive.
www.syngress.com

 Kismet and Mapping • Chapter 9 229

Figure 9.4 GpsDrive Homepage
Installation
Installation of GpsDrive presumes that you have installed BackTrack 3 Beta (or another
distribution of Linux) to your hard drive. You will also require the following packages:
gpsd, GTK-+2.x (better >=2.2.x), pango, atk, pcre, xdevel (X11 development), gettext,
libcrypt, glibc, gcc >=3.x, and make. In many cases, some or all of these packages will
already have been installed. In any case, you ought to check beforehand to avoid any
problems. Finally, GpsDrive requires Structured Query Language (SQL) support to
interface with Kismet. In the case of BackTrack, MySQL is already installed; on other
distributions, you may have to do it yourself.
www.syngress.com

230 Chapter 9 • Kismet and Mapping

WarNiNg

In Debian and Slackware distributions (including BackTrack), GpsDrive will
not compile correctly without gcc 3.x. Unfortunately, slapt-get does not work
correctly out of the box in BackTrack 3 Beta, so you’ll have to do a manual
upgrade of gcc (http://gcc.gnu.org/) and then compile GpsDrive. Alternatively,
you could simply download a pre-compiled version of GpsDrive.
Install from Source
To install from source, download the source from the GpsDrive Web site (http://
www.gpsdrive.de/). The current stable version (although old) is v2.09. Then:
tar –zxvf gpsdrive-2.09.tar.gz

cd gpsdrive-2.09

./configure

make

make install
Note

If you don’t require support for Garmin’s GPS protocol, configure with the
--disable-garmin argument.
Install from Package
Alternatively, you may want to go with a GpsDrive package that is already compiled.
Depending upon the distribution you’re using, the package installation procedure
may vary. You can find a Slackware-compatible (and BackTrack-compatible) Gps-
Drive package at http://slackware-current.net/package.php?id=345 (note that this
version has Garmin’s GPS protocol already compiled into the package). To install
(see Figure 9.5):
installpkg gpsdrive-2.09-i586-1.tgz
www.syngress.com

http://www.gpsdrive.de/
http://www.gpsdrive.de/
http://slackware-current.net/package.php?id=345
http://gcc.gnu.org/

 Kismet and Mapping • Chapter 9 231

Figure 9.5 Installing GpsDrive from Package
To start, type gpsdrive.

MySQL
While GpsDrive will work fine on its own, it does require SQL support to properly
interface with Kismet. As previously noted, MySQL may or may not be installed on
your particular version of Linux; we will be using BackTrack, which comes with
MySQL already installed.

Even if MySQL is already installed, it may seem a little daunting if you haven’t
used it before. No fear! Remote-Exploit forums (http://forums.remote-exploit.org/)
user Dr_GrEeN created a small script, which will do everything for you. Simply
copy and paste the code into a new file (here we call it start-mysql):
www.syngress.com

http://forums.remote-exploit.org/

232 Chapter 9 • Kismet and Mapping
#!/bin/sh

#

Backtrack Mysql Startup Script by Dr_Gr33n

#

option=6

echo “Welcome do the Dr_Gr33n’s Backtrack 2 Mysql Startup Script”

#

echo “1) Start Small Server”

echo “2) Start Medium Server”

echo “3) Start Huge Server”

echo “4) Check Mysql is running”

echo “5) Stop Mysql”

echo “0) Exit”

read option

case $option in

1)echo “Starting Small Server”

cp /etc/my-small.cnf /etc/my.cnf

chown -R root .

chown -R mysql /var

chown -R mysql /var/lib/mysql

/usr/bin/mysql_install_db --user=root

/usr/bin/mysqld_safe --user=root &

su

mysql;;

2)echo “Starting Medium Server”

cp /etc/my-medium.cnf /etc/my.cnf

chown -R root .

chown -R mysql /var

chown -R mysql /var/lib/mysql

/usr/bin/mysql_install_db --user=root

/usr/bin/mysqld_safe --user=root &

su

mysql;;

3)echo “Starting Large Server”

cp /etc/my-huge.cnf /etc/my.cnf

chown -R root .

chown -R mysql /var

chown -R mysql /var/lib/mysql
www.syngress.com

 Kismet and Mapping • Chapter 9 233
/usr/bin/mysql_install_db --user=root

/usr/bin/mysqld_safe --user=root &

su

mysql;;

4)echo “Checking Mysql is running”

/usr/bin/mysqladmin -u root -p version

cd /root;;

5)echo “Stop Mysql Server”

/usr/share/mysql/mysql.server stop

cd /root;;

0)echo “*** Bye ***”

;;

*). exit &;;

esac

Save the file, and don’t forget to chmod 755. When you run the file, it will give
you three options: all of these (small, medium, large) options have been tested and
appear to work fine.

Kismet + GpsDrive + MySQL
Once you have everything installed, it’s time to get started. First, start MySQL
manually, or by using Dr_GrEeN’s script, which we have named start-mysql. This
will start MySQL on port 3306 (its default port). Next, start the GPS daemon (for
example, gpsd –p /dev/tts/USB0). Next, start Kismet. Finally, start GpsDrive (simply,
gpsdrive). On the left-hand side of the GpsDrive interface, be sure to check “Use
SQL.” This is critical to ensuring that Kismet’s networks are stored in MySQL and
properly displayed in GpsDrive.
www.syngress.com

Note

Even though you already started gpsd earlier, you may have to click it to start
within GpsDrive.

234 Chapter 9 • Kismet and Mapping
Maps
You’ll note almost immediately that GpsDrive doesn’t come with any (useful) maps,
so you’ll have to get them yourself. There are two methods of obtaining maps:

Within GpsDrive, click the “Download map” button. This will open a dialog
window (see Figure 9.6), which will allow you to specify the coordinates
and scale. Keep in mind this downloads one map (at one scale) at a time, so
it can be time-consuming if you are trying to get multiple scale maps of
larger areas.

■

w

Figure 9.6 Map Download Dialog Box

tip

GpsDrive will color the map yellow to indicate the area that will be down-
loaded by a particular scale map. Changing the scale will quite obviously
change the area to download; keep in mind that the larger the scale, the
more detail, at the expense of less area, and vice versa.
GpsDrive comes with a perl script gpsfetchmap.pl, which automates the pro-
cess of downloading multiple maps at a time (see Figure 9.7.) Type gpsfetch-
map.pl -–help for available options. You’ll definitely want to read through all
available options to ensure you get the right maps for the right location in
the right scale!

■

ww.syngress.com

 Kismet and Mapping • Chapter 9 235
Lastly, you can create your own maps (see the Maps section of the FAQ located
at http://www.gpsdrive.de/documentation/faq.shtml for more details).
Figure 9.7 GpsDrive Interface
Alternatives
The previously mentioned tools are certainly not the only ones available to do
mapping with Kismet data. In this section, we’ll mention a few alternatives that you
might want to consider. Even so, these alternatives are not the extent of available
tools. Google is your friend!

Kismet Earth
Kismet Earth (http://www.niquille.com/kismet-earth/ is a tool to parse Kismet’s .
XML and .GPS files for display on Google Earth.

OpenStreetMap
While it is not directly related to Kismet, many Kismet users also like to share
their GPS data beyond sites like WiGLE.net. One example is OpenStreetMap
(http://www.openstreetmap.org/), which is an editable map of the world using
user-contributed GPS data.
www.syngress.com

http://www.gpsdrive.de/documentation/faq.shtml
http://www.niquille.com/kismet-earth/
http://www.openstreetmap.org/

236 Chapter 9 • Kismet and Mapping
Summary
As we have seen, Kismet’s data formats are well-suited to allow integration of this
data into mapping-related tools and programs. As we have demonstrated in this
chapter, obtaining, installing, and configuring these tools and programs is relatively
easy; furthermore, it yields some very positive results. Whether you only want to
upload your Kismet data to WIGLE, or configure an elaborate GpsDrive setup with
voice announcements, it is all within your reach with a little bit of additional work.

Solutions Fast Track
GPSMap / KisMap

GPSMap is a native Kismet tool designed to overlay networks on maps
downloaded from online sources.

Due to the lack of map sources, GPSMap was patched to include Expedia
(Europe), and can be patched to use Google Maps.

GPSMap is currently being re-written and replaced with KisMap.

WiGLE
WiGLE is an online database that includes in excess of 15 million recorded
wireless networks, most with geographic coordinates.

WiGLE gives you access to SSID and manufacturer statistics, octet and
channel usage statistics, and a browsable Web map of the world.

You can query WiGLE for overall statistical information, or just information
that you uploaded (provided you uploaded it with a personal account).

WiGLE Google Map
WiGLE Google Map is a Web-based tool that displays WiGLE data on
Google Maps.

˛

˛

˛

˛

˛

˛

˛

www.syngress.com

 Kismet and Mapping • Chapter 9 237
IGiGLE
IGiGLE is a Windows-based program that queries the WiGLE database,
downloads the data, and then converts it to .KML for display in Google
Earth.

IGiGLE will download data by area (latitude/longitude) or zip code.

GpsDrive
GpsDrive is a navigational system that displays Kismet data on maps.

GpsDrive requires SQL support to store Kismet network data.

GpsDrive has festival (and flite) support for voice announcements.

Alternatives
Kismet Earth displays Kismet data on Google Earth.

OpenStreetMap is an editable map of the world using user-contributed
GPS data.

˛

˛

˛

˛

˛

˛

˛

www.syngress.com

Chapter 10
Wardriving
with Kismet
and BackTrack
Solutions in this chapter:

Obtaining BackTrack

Configuring Kismet

Wardriving with Kismet

Managing your Results

■

■

■

■

239

w

240 Chapter 10 • Wardriving with Kismet and BackTrack
Introduction
The goal of this chapter is to provide an explanation and demonstration of wardriving
while using Kismet with BackTrack, a live Linux distribution. The focus will be on
the fact that we’ll be using a live CD, so no installation is required, and very little
configuration is necessary. This is also useful for those who are running Windows and
need to use Kismet but don’t necessarily want to install an entire Linux distribution.
It is also important to note that wardriving is just one example of why you might want
to use Kismet from a live CD. Other possibilities are rogue access point (AP) detection
or graphical mapping of networks.

Obtaining BackTrack
This section will focus on acquiring BackTrack by download (direct or torrent), and
then burning it to CD.

Downloading BackTrack
If you don’t already have BackTrack, it will be necessary for you to download it.
Point your favorite browser to http://www.remote-exploit.org/backtrack_download.
html to find the download page for BackTrack (see Figure 10.1).
ww.syngress.com

Figure 10.1 Remote-Exploit.org Download Page for BackTrack

http://www.remote-exploit.org/backtrack_download.html
http://www.remote-exploit.org/backtrack_download.html

 Wardriving with Kismet and BackTrack • Chapter 10 241
Both BackTrack 2 and BackTrack 3 Beta are available. Since BackTrack 3 Beta
has very few bugs and is otherwise stable, this version is recommended (and will
be the focus of this chapter). Furthermore, there are two versions of BackTrack
3 Beta: a ~700 MB CD image version (used in this chapter), and a larger (~1 GB)
version for Universal Serial Bus (USB) thumb drives that includes some additional
(but unnecessary for our purposes) modules.

You can download directly via Hypertext Transfer Protocol (HTTP) or File
Transfer Protocol (FTP) from ten different mirrors, or by torrent. If you have the
time, it is recommended (and more courteous) to use the torrent so that you can share
some bandwidth. When you’re finished downloading the ISO, be sure to check the
MD5 hash of the file. This will save you some hassle later if the burned CD doesn’t
work correctly. You can find a simple Message Digest 5 (MD5) hash calculator at
http://www.pc-tools.net/win32/md5sums/ (see Figure 10.2, with BT3b hash inset).
Simply match the MD5 calculation with the hash posted at the Remote-Exploit
download page, to confirm that your file is an authentic reproduction of the original,
free from tampering or errors.
www.syngress.com

Figure 10.2 Confirming the MD5 Hash

http://www.pc-tools.net/win32/md5sums/

242 Chapter 10 • Wardriving with Kismet and BackTrack
Burning BackTrack to CD
Your downloaded file is an ISO, or CD image file. To use BackTrack, you’ll need
to burn the ISO to a CD using any of the many available CD burning programs.
A good and easy-to-use example is the program DeepBurner. A freeware version
(DeepBurner Free) can be found at http://www.deepburner.com/.

While this chapter is not meant to be a tutorial on burning CDs, simply follow
the wizard that starts when you open DeepBurner. Select a project type (Burn an ISO
image), browse to and select your image file (bt3b141207.iso), select your CD write
drive and write speed, and finally click Burn ISO (see Figure 10.3). It is that simple.
www.syngress.com

Figure 10.3 DeepBurner Burns BackTrack to CD

Tip

While your CD drive may be capable of burning at high speeds (40x and above),
it is recommended that you burn BackTrack at slower speeds—preferably as
slow as possible (4x or 8x). For whatever reason, more problems have occurred
at higher burning speeds, and lower speeds have had better results.

http://www.deepburner.com/

 Wardriving with Kismet and BackTrack • Chapter 10 243
Configuring Kismet
This section will focus on booting into BackTrack and configuring Kismet.

Booting into BackTrack
To boot into BackTrack, insert the CD and restart your computer, taking care to
ensure that your BIOS is set to boot from CD. BackTrack will run through the boot
process. At the graphical boot menu, select the first option, which boots you into
BackTrack using the KDE graphical desktop. The small, black terminal window icon
on the left side of the taskbar will open up a console window.

Wireless Card Configuration
Perhaps the most important requirement is a wireless card that is supported by
Kismet (see the Kismet documentation, section 12 “Capture Sources,” located at
http://www.kismetwireless.net/documentation.shtml for supported cards). This being
said, if you start BackTrack and simply type kismet at the prompt, you will likely
encounter the most common of all Kismet errors, which is the failure to configure
a capture source (see Figure 10.4).
www.syngress.com

Figure 10.4 Kismet Fails; No Capture Source Enabled

http://www.kismetwireless.net/documentation.shtml

w

244 Chapter 10 • Wardriving with Kismet and BackTrack
Before you decide to give up (and sadly, some people do), read the error message
for an explanation of why Kismet failed to start. In this case, no capture source was
enabled. As you might expect, this is a fatal error. We can also deduce from this error
that we can correct this problem by specifying a capture source either via the kismet.
conf file or the command line.

kismet.conf
To enable a capture source within the kismet.conf file, use your favorite text editor
(in this example, we used nano) and edit /usr/local/etc/kismet.conf (see Figure 10.5).
Figure 10.5 Editing kismet.conf
Scroll down approximately one page to the section that begins with:
Sources are defined as:

Be sure to read through the notes within the section as to what is required: the
source type, the interface, and the name. For source type and driver, refer to section 12,
“Capture Sources,” of the Kismet documentation. The interface is defined by Linux,
ww.syngress.com

 Wardriving with Kismet and BackTrack • Chapter 10 245
and is dependent upon the particular card (in this example, we’re using an Atheros
card, which uses the ath#/wifi# interface). You can also find this information within
the particular source type listing. Finally, the name is whatever you choose;
it is only a label.

Command Line
To enable a capture source from the command line, start Kismet with the –c switch
and follow it with the same syntax you used within the kismet.conf file: sourcetype,
interface, and name:
bt ~ # kismet –c madwifi_g,wifi0,Atheros

Log File Configuration
By default, Kismet will save its log files to the location where you started Kismet.
For example, if you start Kismet while in /root (the default directory if you log on as
the root user), the log files will be saved there. In a hard disk installation, this may be
fine. However, when booting a live CD, these files are only stored in a temporary
RAM disk and will be gone when you power off the system. In this case, you have two
options: either copy the files to a thumb drive (or other device) before powering off; or
better yet, start Kismet from the thumb drive so the files are automatically saved there.
USB drives are typically mounted as sda#, so simply cd to /mnt/sda1 (or whatever the
correct number is) and start Kismet from there.

Other Configuration Issues
While a Global Positioning System (GPS) receiver is not required to use Kismet, it is
required if you want location data. If you’re using Kismet to wardrive, it becomes a
necessity. To configure Kismet to use GPS, you first need a GPS receiver that supports
NMEA (virtually all of them do). Second, you’ll need to start GPSD and point it to
the path of your GPS receiver. To find the correct path of your receiver, plug in your
GPS and look at the results of dmesg (you might try /dev/ttyUSB0 or /dev/tts/USB0
for a USB device):
bt ~ # gpsd –p /dev/tts/USB0

You won’t get any feedback, but you can type ps aux|grep gpsd to ensure that the
process started. To confirm that GPSD is working, Telnet to localhost port 2947 and
type R=1; you should get scrolling NMEA strings with the current latitude and
longitude.
www.syngress.com

w

246 Chapter 10 • Wardriving with Kismet and BackTrack

Tip

For one reason or another, some people have had trouble running Kismet
with the most recent version of GPSD. To fix some of those problems, a
Kismet and Netstumbler forums user named Dutch, released an older, scaled
down version of GPSD, appropriately titled gpsdold. Those who have used
this version (including this author) have reported no problems. Dutch’s ver-
sion of gpsdold can be found at http://www.netstumbler.org/158973-post
1600.html. Download and install to /usr/bin, and then use in the same way
you’d use GPSD.
Wardriving with Kismet
If you’ve made it this far, congratulate yourself: you’ve downloaded BackTrack,
burned it to a CD, booted up the live distro, and properly configured Kismet to work
with your particular wireless card and GPS receiver. Now it’s time to go wardriving.
ww.syngress.com

Tools & Traps…

Optional but Useful Items for Your Wardriving Setup
In addition to your current setup, if your wireless card supports it, you may want
to consider an external antenna. A simple 5 dBi omni-directional antenna designed
for 2.4 GHz will significantly aid in the discovery of networks (an external antenna
outside the car is eminently preferable to an internal antenna inside a wireless
card sitting inside a metal car!). Most antennas will also require a pigtail, which is
a short adapter cable that connects the antenna coaxial cable to the antenna jack
on your wireless card. For special cases, you may want to consider a cantenna or
other form of directional antenna. The folks at http://wardrivingworld.com and
http://www.fab-corp.com are highly respected among wardrivers and will go out
of their way to ensure you get the right equipment for your setup.

An additional consideration, especially for longer drives, is a power
inverter. This device (which typically costs about $25–30) will plug into your
cigarette lighter (or other vehicle power socket) and convert the vehicle’s DC
power to AC for your laptop.

http://www.netstumbler.org/158973-post1600.html
http://www.netstumbler.org/158973-post1600.html
http://wardrivingworld.com
http://www.fab-corp.com

 Wardriving with Kismet and BackTrack • Chapter 10 247
Wardriving
We said that it was time to begin wardriving, but there are a few important tips to
consider before you start (see also “Notes from the Underground”):

Be sure that your wardriving setup does not physically impair your ability to
drive, or block your line of sight. This may seem like common sense, but the
more complex your wardriving setup, the more potential exists for exotic
things that could get in your way of seeing. Don’t let antennas, cables, or the
laptop itself prevent you from being a responsible driver.

Once you start Kismet and configure everything to run (see Figure 10.6), close
your laptop lid. Again, this is a matter of common sense, because an open laptop
is an invitation for distraction. Closing the lid removes the invitation to con-
stantly peek at the screen. And believe me, if the screen is open, you’ll peek at it.

■

■

Figure 10.6 Kismet is Started and Configured to Run
Law enforcement officers will tell you that many more people talk them-
selves into tickets than the other way around. Should you be stopped by law
enforcement, it is not necessary to fabricate some far-fetched story about

■

www.syngress.com

www

248 Chapter 10 • Wardriving with Kismet and BackTrack
what you’re doing, or make false claims about the secret project you’re
working on and how they don’t have a need to know. Wardriving is legal, so
telling the truth is the easiest and simplest explanation.
.syngress.com

Notes from the Underground…

RenderMan’s Stumbler Ethics

1. Do Not Connect! At no time should you ever connect to any AP’s that
are not your own. Disable client managers and Transmission Control
Protocol (TCP)/Internet Protocol (IP) stacks to be sure. Simply associ-
ating can be interpreted as computer trespass by law enforcement.

2. Obey traffic laws. It’s your community too, and the traffic laws are
there for everyone’s safety including your own. Doing doughnuts at
3:00 A.M. gets unwanted attention from the authorities anyways.

3. Obey private property and no-trespassing signs. Don’t trespass in
order to scan an area. That’s what the directional antenna is for.
You wouldn’t want people trespassing on your property would you?

4. Don’t use your data for personal gain. Share the data with like-
minded people, show it to people who can change things for the
better, use it for education, but don’t try and make any money or
status off your data. It’s just wrong to expect these people to
reward you for pointing out their own stupidity.

5. Be like the hiker motto of “take only pictures, leave only footprints.”
Detecting SSID’s and moving on is legal; anything else is irresponsible
to yourself and your community.

6. Speak intelligently to others. When telling others about wardriving
and wireless security, don’t get sensationalistic. Horror stories and FUD
are not very helpful to the acceptance of wardrivers. Speak factually
and carefully. Point out problems, but also point out solutions.

7. If/when speaking to media, remember you are representing the
community. Your words reflect on the rest of us. Do not do anything
illegal no matter how much they ask. They may get pissed off, but
at least you have demonstrated the integrity that this hobby requires.
http://www.renderlab.net/projects/wardrive/ethics.html

http://www.renderlab.net/projects/wardrive/ethics.html

 Wardriving with Kismet and BackTrack • Chapter 10 249
You are wardriving to detect networks. Networks exist where people exist. While
not absolute, it seems likely that the more people in a given area, the more networks.
Office buildings, apartment complexes, and college campuses are locations that are
ripe for wardriving. Furthermore, the closer you can get to buildings, the more likely
it is that you’ll detect more networks. If you can safely and legally drive through a
parking lot to get closer to a particular building, by all means do so.

Do you have a goal in mind? Driving aimlessly in your pimped-out wardriving-
mobile, especially given recent gas prices, can get mighty expensive. You ought to have a
specific objective in mind when wardriving: cover a specific section of a particular
neighborhood, or locate the APs of a particular location (perhaps as part of an authorized
penetration test). Better yet, you might consider wardriving as a secondary effort of
something else: while driving to work, visiting family in a different city, or on the way to
a client’s location. The final reason you ought to be wardriving is that it is fun. Wardriving
is a hobby. If you’re not enjoying yourself, you probably need to find a new hobby!
www.syngress.com

Tools & Traps…

GPS Location Data
Users are often confused about the GPS data that Kismet provides. A common
question is: how does Kismet geo-locate an access point? Or, Are the GPS coor-
dinates the actual location of the access point? While Kismet does take a number
of signal readings at different locations, the real answer to the question is that
it doesn’t actually geo-locate anything; and the GPS coordinates are not the
actual location of the AP.

The GPS receiver marks your location when you detect an AP. So while you’re
driving down the street and detect an AP in a house off the street, Kismet sees the
AP as being in the street at the location where you were when you detected
the AP (a quick look at street level maps at WiGLE.net will confirm this). When
Kismet has more than one set of GPS coordinates, the displayed location is the set
of coordinates where Kismet reported the strongest signal. In an ideal world, this
would seem to provide you with a fairly accurate “abeam” location: as you detect
an AP, the signal will be weak, and growing stronger until you pass abeam the
AP, and then becoming weaker again until it is no longer detected. However,
the harsh reality of obstructions and multi-path reflection will tend to skew these
results. Still, all things considered, Kismet does a pretty darn good job.

w

250 Chapter 10 • Wardriving with Kismet and BackTrack
Before you shut down your laptop, remember to save your log files to a USB
thumb drive (or other external source) if you didn’t already run Kismet from it.
Remember, when running a live CD, the log files are saved to a temporary RAM
disk, which will not be saved when you power off your laptop.

Managing Your Results
You’ve returned home from your first wardrive, and have collected hundreds (or
perhaps even thousands) of networks. Now, what exactly are you going to do with
this data? Hopefully, as we explained in the previous section, you had an objective
in mind. If you were wardriving as part of a penetration test, you might want to
parse out only those networks in the vicinity of your target location. Or, you might
be interested in compiling statistics on the networks you collected: channel usage,
encryption, and so forth. Either way, consider uploading your data to WiGLE.net.

WiGLE
WiGLE.net (Wireless Geographic Logging Engine) is an online database that holds
in excess of 15 million logged wireless networks, most with geographic coordi-
nates. WiGLE gives you access to Service Set Identifier (SSID) and manufacturer
statistics, octet and channel usage statistics, and a browsable Web map of the world.
By creating an account, you can upload and track your logged networks, and be
credited with networks that you found first.

Obtaining BackTrack
You can download directly or via torrent from http://www.remote-exploit.
org/backtrack_download.html.

Be sure to check the MD5 hash to ensure your download is free from
tampering or errors.

Burn the BackTrack ISO at slower speeds (4x–8x) for better results.

Configuring Kismet
Be sure to use a supported card (see http://www.kismetwireless.net/
documentation.shtml for details).

˛

˛

˛

˛

ww.syngress.com

http://www.remote-exploit.org/backtrack_download.html
http://www.remote-exploit.org/backtrack_download.html
http://www.kismetwireless.net/documentation.shtml
http://www.kismetwireless.net/documentation.shtml

 Wardriving with Kismet and BackTrack • Chapter 10 251
Make certain that you enable a capture source, either by editing the /usr/
local/etc/kismet.conf file or via the command line.

Start Kismet from the location where you want the log files to be saved.

Wardriving with Kismet
Don’t let your wardriving interfere with safe driving. Close your laptop lid
to resist the urge to peek at the laptop screen.

Adhere to RenderMan’s “Stumbler Ethics” when wardriving.

˛

˛

˛

˛

www.syngress.com

Index

A
Advance Packaging Tool (APT), 50
Airpcap Windows adapter, 175–177
apt-get command, 50
apt-get install command, 174
Asus eeePC installation

Kismet installation, 172–173
tools installation, 173–175

Asus WL–500g Premium router, 178
Atheros chipset, 53
Atheros mini PCI card, 178
Atmel chipset, 53
autofit, default sorting mode, 87

B
BackTrack

booting, 243
burning into CD, 242
download page, 240
MD5 hash calculation, 241

Backtrack, Live distros, 41
Basic Service Sent Identifier (BSSID),

88, 105, 153, 167
Bluetooth, 13
buildroot tool, 205

C
Cacetech tool, 175–176
channel hopping, 196–198, 216

fine-tune, 124
client_manuf file, 97–98
color-coding, Kismet interface, 91, 113
color scheme, 168
command-line switches, 168–169
cross-compiling process, 189
Cygwin library, 176
D
Darwin’s speech functionality, 166
DeepBurner program, 242
Dr_GrEeN’s script, 233
driver program, 50
drone, 188. See also Kismet drones
dumb kismet client interface, 110–111

E
Electronic Numerical Integrator and

Computer (ENIAC), 6
Enhanced Specialized Mobile Radio

(ESMR), 10
/etc/config/network file, 180, 199
/etc/init.d/S60kismet_drone file, 197
/etc/init.d/S70Wl_scan file, 196
/etc/kismet/kismet.conf file, 181
/etc/kismet/kismet_drone.conf file, 193, 200
Ethernet. See Local Area Network (LAN)
EXT3 file system, 182

F
firmware-based network discovery tools, 131
flags, 154

G
gkismet interface, 108
Global Positioning Systems (GPS), 92, 103,

107, 165
applications

mapping and wireless, 12–13
public safety, 10–11

and kernel, 21
receiver, in Kismet

disadvantages, 74–77
plug and null modem, 77–78
253

254	 Index
Global Positioning Systems (GPS)
(Continued)

signal measurement, 72
software used, 73–74

GPSD interfaces, 127
gpsd-p /dev/ttyS0 command, 74
gpsd-p /dev/ttyUSB1 command, 74
.gpsdrive/ directory, 138
Gpsdrive, navigation system, 137–138

homepage, 229
installation, 229–230
Kismet + GpsDrive + MySQL, 233
mapping, 234–235
MySQL support, 231–233

gpsd software, 72–74
GPSMap

features, 224
patching, 225

Graphical User Interface (GUI), 151

H
Hermes II chipsets, 53
hostap-compatible cards, 120

I
IGiGLE interface, 227
Irongeek’s WiGLE WiFi Database to Google

Earth Client for Wardrive Mapping
(IGiGLE), 227–228

K
Kamikaze OpenWRT

allowedhosts parameter, 200
enable parameter, 202
LAN configuration, 199
start command, 202
wl command, 204

KisMap, python-based tool. See GPSMap
Kismet

complete setup, 78–80
www.syngress.com
configuration
booting BackTrack, 243
GPS receiver, 245
kismet.conf file, 56
log file configuration, 245
madwifi_g,wifi0,ProximBG source, 59
none.none.addme source, 58
suiduser and user root, 56–57
wireless card configuration, 244–245

and C++ program, 41–42
customizing panels interface

client list window, 96, 106
customizing colors, 107
modified network list window, 106

definition, 84
GPS receiver

disadvantages, 74–77
plug and null modem, 77–78
signal measurement, 72
software used, 73–74

graphical front end, 35–37
information panel, 86, 93
Linux installation, 23

APT, 50
card driver and chipsets, 50–54
configure command, 46–47
make dep, make, and make install

command, 47–49
server running, 60–61
source code, 43–45

log files, 27
monitor installation, 184
ncurses/panels interface, 84
network list panel

color-coding, 91, 113
column descriptions, 88
Global Positioning System (GPS),

92, 94, 103
Service Sent Identifier (SSID), 88–89, 92
sort options, 87–88

	 Index	 255
omni-directional antenna
gain levels, 68–69
with magnetic mount base, 67–68

panels interface, 84–85, 104
pigtails, 70–71
pop-up windows display

client details window, 99
client list window, 96, 106
columns description, 105
network details window, 95, 98, 105
network location display, 104
packet rate window, 99
packet type display, 100
statistics display, 102
wireless card power display, 103

server connection, 36
source variable, 26
status panel, 93–94
third-party tools for, 111
user interface

file type, 64
play sound, 66
splash screen, 65–66

wardriving
client List, 34
GPS data, 249
hacking components, 178–179
help Interface, 35
ipkg command, 181–182
LAN configuration, 181
Law enforcement officers, 247–248
network details, 33
network detection, 249
process ID file, 30
router configuration, 179–180
sort options, 32
WiGLE.net online database, 250

in Windows system
installation, 176–177
troubleshooting, 177
kismet_client command, 143
kismet.conf file, 25, 27, 56, 174, 176, 194,

204, 213
Kismet config file, 116–117
kismet-devel directory, 174
kismet_drone.conf file, 193–194,

213–214
kismet_drone file, 120
Kismet drones

buildroot installation
Message Digest 5 (MD5), 210
PKG_VERSION, 210
target system and Makefile, 206
troubleshooting, 211–212

channel hopping, 196–198
cross compiling process, 205
Kamikaze OpenWRT, 198–200
Linksys WRT54G, 188
OpenWRT and buildroot tool, 205
PC drone configuration

channel hopping, 216
command-line switches, 220
defaultchannels parameter, 219
hostap-compatible cards, 216
kismet_drone.conf file, 214
make install command, 212
sourcechannels parameter,

217–220
server configuration

hop channels and command line, 196
run and config file, 194–195
troubleshooting, 197–198
wl commands, 196–197

Whiterussian OpenWRT
BOOT_WAIT parameter, 192
ipkg command, 192–193
jffs and squashfs file system, 191
wl command, 193

Kismet Earth, mapping tool, 235
Kismet parameters. See Kismet server
www.syngress.com

256	 Index
Kismet-Sep-26-2006-1.gps, 141
Kismet server, 116–117

airjack tools, 131
alert patterns, 129
allowedhosts= parameter, 152
channel hopping, 120, 122–124
client= line parameters, 161–164
column= line parameters, 153–160
command-line parameters, 117, 134,

164–165
command-line switches, 143, 146
configdir parameter, 143
decay= parameter, 152–153
defaultchannels parameter, 124
enablesources= parameter, 145
festival= line parameters, 166
fuzzycrypt= parameter, 141
GPSD interfaces, 127
.gpsdrive/ directory, 138
hostap-compatible cards, 120
limitations, 120
logdefault parameter, 141, 144
logexpiry= parameter, 133–134
scripts

/etc/init.d/gps, 183
/etc/init.d/kismet, 183–184

servername parameter, 117
sourcechannels parameter, 125
speech_encrypted and speech_unencrypted

parameters, 167–168
speech_unencrypted

parameters, 137
traffic decay, 152
types of log files, 138, 145

Kismet’s native mapping tool. See
GPSMap

kismet_ui.conf file, 25, 64–65, 84, 89, 105,
126, 134–135, 150, 168

Knoppix, Live distros, 41
KWrite, text editor, 56
www.syngress.com
L
Law enforcement officers,

247–248
LibPcap package, 42
Linksys WRT54G, 178, 188
Linux-based Kismet front end, 108
Linux operating system

GPSD installation, 24
kernel configuration, 17–22
Kismet installation, 23

listchan.pl script, 124, 218
“Live Distros,” 41
Local Area Network (LAN), 6
lsmod command, 20

M
MAC addresses, 128–129, 137
Madwifi driver, 55–56
Madwifi-ng, 121–122
madwifi.org, 55
make command, 43
make dep command, 47–48
make install command, 47–49
make menuconfig command, 21
make suidinstall command, 48
mapping tools, 224, 228, 235
-max-packets switch, 145
Media Access Control (MAC)

address, 97
Metasploit project, 132
MMCX connector, 70
MySQL, 231–233

N
National Marine Electronics Association

(NMEA) protocol, 75
ndiswrapper driver, 53
network discovery tools, 131
North American datum of 1927

(NAD27) data, 75

	 Index	 257
O
OpenStreetMap, mapping tool, 235
OpenWRT

and buildroot tool, 205
Kamikaze version, 178–179
Wiki version, 179

Organizationally Unique Identifier (OUI),
97–98

ORiNOCO Gold 11b/g Card, 52–53
Orinoco proprietary connector, 70

P
Passive sniffers, 130
PC Kismet drone configuration

channel hopping, 216
command-line switches, 220
defaultchannels parameter, 219
hostap-compatible cards, 216
kismet_drone.conf file, 214
make install command, 212
sourcechannels parameter, 217–220

perl script gpsfetchmap.pl, 234
Personal communications

services (PCS), 8
Pigtail cable, 70–71
probe networks group, 165

R
Radio Frequency Monitor mode

(rfmon), 48
-retain-monitor switch, 146
RS-232 data protocol, 75

S
secure shell (SSH), 180

Kismet drones, 192
Service Sent Identifier (SSID), 17, 32,

88–89, 92, 225, 250
SETUID user, 118
Shortssis, 158
SOMElib package, 42
su command, 48, 50
sudo apt-get install gpsd command, 74
sudo command, 48, 50

T
tar-zxvf kismet-2007-10-R1.tar.gz

command, 45
third-party front-end interfaces

dumb kismet client, 110–111
gkismet interface, 108
KisWin interface, 109–110

Trivial File Transfer Protocol (TFTP),
179, 192

U
uname–a command, 51
uname–r command, 51
Universal Serial Bus (USB) adapter, 175
USB memory stick, 178, 182
/usr/bin/festival, 135, 166
/usr/bin/play, 134, 164
/usr/local/etc, 84, 150
/usr/local/etc/kismet.conf, 244, 251
usually/usr/local/etc/, 137

V
virtual private network (VPN), 9

W
Wardriving

definition, 14
and hacker, 15–16
Linux operating system

GPSD installation, 24
kernel configuration, 17–22
Kismet installation, 23

Wellenreiter, network discovery
tool, 130

WEP, 152, 154–155, 160, 164
www.syngress.com

258	 Index
Whiterussian OpenWRT
BOOT_WAIT parameter, 192
ipkg command, 192–193
jffs and squashfs file system, 191
wl command, 193

Wide Area Networks (WAN), 7
WiFi drivers, 121
WiFi mini PCI card, 180
WiFi Protected Access (WPA)

network, 18
WiGLE Google Map, 226
Winpcap libraries, 176
Wireless card configuration

command line sources, 244–245
kismet.conf file, 245

Wireless card driver and chipset, 50–54
Wireless card power, 102–103, 113
Wireless Geographic Logging Engine

(WiGLE), 225–226, 250
Wireless Local Area Networks (WLAN)

omni-directional antenna, 68–69
pigtails, 70–71
www.syngress.com
Wireless technology
in airports and hotels, 9
applications

bluetooth devices, 13–14
delivery and courier services, 10
financial fileld, 11
messaging and mapping, 12–13
monitoring, 12
point-of-sale (POS) applications, 11
public safety applications, 10–11
Web surfing, 13

and cell phones, 7–8
radio

invention description, 4
mobile radios, 5

wl command, 193, 196–197, 204
World geodetic system of 1984

(WGS84) data, 75
www.kismetwireless.net, 43–44

X
XML log files, 139

	cover.jpg
	sdarticle.pdf
	Contributing Authors

	sdarticle_001.pdf
	Introduction to Wireless Networking, Wardriving, and Kismet
	Exploring Past Discoveries That Led to Wireless
	Discovering Electromagnetism
	Exploring Conduction
	Inventing the Radio
	Mounting Radio-Telephones in Cars
	Inventing Computers and Networks
	Inventing Cell Phones

	Exploring Present Applications for Wireless
	Applying Wireless Technology to Vertical Markets
	Using Wireless in Delivery Services
	Using Wireless for Public Safety
	Using Wireless in the Financial World
	Using Wireless in the Retail World
	Using Wireless in Monitoring Applications

	Applying Wireless Technology to Horizontal Applications
	Using Wireless in Messaging
	Using Wireless for Mapping
	Using Wireless for Web Surfing
	Using Bluetooth Wireless Devices

	Introduction to Wardriving
	The Origins of Wardriving
	Definition
	The Terminology History of Wardriving

	Wardriving Misconceptions
	The Truth about Wardriving
	The Legality of Wardriving

	Introduction to Wardriving with Linux
	Preparing Your System to Wardrive
	Preparing the Kernel
	Preparing the Kernel for Monitor Mode
	Preparing the Kernel for a Global Positioning System

	Installing the Proper Tools
	Installing Kismet
	Installing GPSD

	Configuring Your System to Wardrive

	Wardriving with Linux and Kismet
	Starting Kismet
	Using the Kismet Interface
	Understanding the Kismet Options
	Using a Graphical Front End

	Summary

	sdarticle_002.pdf
	Basic Installation
	Introduction
	Kismet Prerequisites
	Kismet Installation
	Choosing a Wireless Card Driver
	Wireless Card Driver Compiling and Installation
	Configuring Kismet (Editing kismet.conf)
	Run Kismet

	sdarticle_003.pdf
	Operating Kismet
	Introduction
	The Kismet User Interface
	The Introductory Splash Screen
	Play Sounds

	Additional RF Equipment: Antennas and Cables
	Pigtails

	Using a GPS Receiver with Kismet
	Typical GPS Problems

	Putting It All together: The Complete Kismet Setup
	Summary

	sdarticle_004.pdf
	Kismet Menus
	Introduction
	Main Display
	Network List Panel
	Sorting
	Columns
	Decay
	Name
	Type
	WEP
	Channel
	Packets
	Flags
	IP
	Size

	Colors
	GPS

	Information Panel
	Status Panel

	Pop-up Windows
	Network Details
	Client List
	Columns
	Decay
	Type
	Manufacturer
	Data
	Crypt
	Size
	IP Range
	Sgn

	Client Details
	Packet rate
	Packet Types
	Statistics
	Wireless Card Power
	Network Location

	Customizing the Panels Interface
	Customizing the Network List Window
	Customizing the Client List Window
	Customizing Colors

	Third Party Front-ends
	gkismet
	KisWin
	dumb kismet client
	Further information

	Summary
	Solutions Fast Track
	Main Display
	Popup Windows
	Customizing the Panels Interface
	Third-Party Front-ends

	sdarticle_005.pdf
	Configuring the Kismet Server
	Introduction
	The Kismet Config File
	Kismet Parameters

	Kismet.conf
	Kismet Server Command Line

	Summary

	sdarticle_006.pdf
	Kismet Client Configuration File
	Introduction
	The Kismet Client Config File
	Kismet Parameters

	Command-Line Switches
	Summary

	sdarticle_007.pdf
	Server.conf File Advanced Configuration
	Introduction
	Asus eeePC Installation
	Installation and Updating
	Install Development Tools

	Kismet on Windows
	Installation
	Troubleshooting

	Wardriving in a Box
	Monitor Installation
	Summary

	sdarticle_008.pdf
	Kismet Drones
	Introduction
	Drone Installation
	Linksys WRT54G
	Installation

	Whiterussian
	Server Configuration
	Troubleshooting

	Kamikaze
	Server Configuration
	Cross Compiling with OpenWRT-Buildroot
	Buildroot Installation
	Troubleshooting

	PC Drone Setup
	Kismet Drone Configuration File

	Summary

	sdarticle_009.pdf
	Kismet and Mapping
	Introduction
	GPSMap/KisMap
	Patching GPSMap
	KisMap

	WiGLE
	WiGLE Google Map
	IGiGLE
	GpsDrive
	Installation
	Install from Source
	Install from Package

	MySQL
	Kismet + GpsDrive + MySQL
	Maps

	Alternatives
	Kismet Earth
	OpenStreetMap

	Summary
	Solutions Fast Track
	GPSMap / KisMap
	WiGLE
	WiGLE Google Map
	IGiGLE
	GpsDrive
	Alternatives

	sdarticle_010.pdf
	Wardriving with Kismet and BackTrack
	Introduction
	Obtaining BackTrack
	Downloading BackTrack
	Burning BackTrack to CD

	Configuring Kismet
	Booting into BackTrack
	Wireless Card Configuration
	kismet.conf
	Command Line

	Log File Configuration
	Other Configuration Issues

	Wardriving with Kismet
	Wardriving

	Managing Your Results
	Wigle
	Obtaining BackTrack
	Configuring Kismet
	Wardriving with Kismet

	sdarticle_011.pdf
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	h
	T
	U
	V
	W
	X

