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ABSTRACT

The scalable, low overhead attributes of Peer-to-Peer (P2P) Internet protocols

and networks lend themselves well to being exploited by criminals to execute

a large range of cybercrimes. The types of crimes aided by P2P technology

include copyright infringement, sharing of illicit images of children, fraud,

hacking/cracking, denial of service attacks and virus/malware propagation

through the use of a variety of worms, botnets, malware, viruses and P2P file

sharing. This project is focused on study of active P2P nodes along with the

analysis of the undocumented communication methods employed in many of

these large unstructured networks. This is achieved through the design and

implementation of an efficient P2P monitoring and crawling toolset.

The requirement for investigating P2P based systems is not limited to the

more obvious cybercrimes listed above, as many legitimate P2P based

applications may also be pertinent to a digital forensic investigation, e.g, voice

over IP, instant messaging, etc. Investigating these networks has become

increasingly difficult due to the broad range of network topologies and the

ever increasing and evolving range of P2P based applications. In this work we

introduce the Universal P2P Network Investigation Framework (UP2PNIF),

a framework which enables significantly faster and less labour intensive

investigation of newly discovered P2P networks through the exploitation

of the commonalities in P2P network functionality. In combination with a

reference database of known network characteristics, it is envisioned that

any known P2P network can be instantly investigated using the framework,

which can intelligently determine the best investigation methodology and

greatly expedite the evidence gathering process. A proof of concept tool

xvi



was developed for conducting investigations on the BitTorrent network. A

Number of investigations conducted using this tool are outlined in Chapter 6.
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CHAPTER

ONE

INTRODUCTION

1.1 Background

In June 1999, the control that the content producing industry (composed of

movie producers, TV show producers, musicians, writers, etc.) had over

their traditional distribution model was permanently changed due to the

release, and subsequent rise in popularity, of Napster by Shawn Fanning [9].

Napster brought the relatively new concept of Internet file sharing into the

mainstream. It facilitated its users in sharing music with millions of other

users around the world. The ease of use, vast library of available content,

perceived anonymity and zero cost model enabled Napster to grow rapidly.

It’s rise in popularity also coincided with the release of new portable devices

capable of playing digital audio files, MP3 players [10]. The difference in

user difficulty between converting store bought CDs into a suitable format

when compared to performing a search for the song’s title and double clicking

the version you wanted was significant. At its peak, it enabled over 25

million users to share more than 80 millions digital songs with each other

[11]. This was not the first implementation of Peer-to-Peer (P2P) technology,

but it certainly was the first to gather attention. It enabled regular computer

users with Internet connections to perform copyright infringement on a scale

incomparable to physical copying of tapes and CDs.

P2P technologies are most known for unauthorised distribution of copyrighted
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content but the merits of P2P have been exploited by other criminals with

more sinister intentions. The ever increasing proliferation of computers

has resulted in a new breed of high-tech, highly skilled, computer savvy

criminals emerging. For the lesser skilled criminal, a large underground

market creating and selling software packages to enable the online execution

of a range of crimes has emerged. As this phenomenon continues, an

increasing number of “offline” crimes are being aided by computers, e.g.,

fraud, identity theft, phishing, terrorism, child sexual exploitation, etc. As

a result, digital forensic investigators and law enforcement in general are

playing catchup in an attempt to gain the necessary expertise to combat

these crimes. Looking to always be one step ahead of the law, criminals are

continually looking for more advanced methods of conducting their crimes.

With the advent of “botnets”, i.e., large distributed networks of compromised

machines, criminals are now able to take advantage of far superior distributed

processing power, bandwidth and other resources than a single machine could

ever afford them. These botnets also award the criminal a relative degree of

anonymity if the botnet itself is entirely decentralised, i.e., no central server or

single point of penetration, such as a P2P botnet. Each compromised node in a

P2P botnets is obliged to forward on received commands and queries to other

known active nodes in the network. The scalable and minimal investment

attributes of P2P and similar distributed Internet protocols lend themselves

well to being exploited by criminals to execute a range of cybercrimes. These

crimes not only include those offline examples previously mentioned, but also

new computer targeted crimes, such as distributed denial of service (DDoS)

attacks, virus/malware propagation, etc.

1.2 Research Problem

Much of the existing research into P2P cybercrimes relies on packet sniffing as

the primary method for collecting information. This method involves setting

up a honeypot, as outlined in greater detail in Section 4.6.2, and deliberately
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infecting the machine with the required malware. The downside of this type

of investigation is that the system is reliant on recording typical network

communication to find out information about the system being investigated.

Any single node on a P2P network may never communicate with every

other node, as each node generally maintains a list in the order of 5–10 other

known active nodes. The motivation for the research detailed in this thesis

is to design and test a new methodology for investigating P2P networks.

This methodology involves emulating and multiplying regular client usage

resulting in the distributed capability of crawling an entire network.

The objectives of this research are as follows:

1. Provide an insight into the technical requirements of the design and

implementation of a forensically sound P2P crawling and investigation

tool; collecting of digital evidence and the counter-detection measures

that may need to be employed.

2. Demonstrate the application of a P2P network crawling system as a

plausible option for forensic investigation.

3. Design an architecture for such a system. It should be forensically

verifiable, cost effective, expandable, reliable and widely compatible

with current computer hardware and network capacities.

4. Prototype the system and perform experimental analysis to measure

the viability of the system for both documented and undocumented

networks.

5. Draw some recommendations about future use of these technologies.
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1.3 Contribution of this Work

Many of the tools available in the field of digital network forensic

investigations are based upon the deployment of packet sniffing or deep

packet inspection devices and software, which are outlined further in Sections

2.3 and 2.4 . These methods can result in a huge volume of data to be

analysed by the forensic investigator. “Typically, only a small fraction of the

examined data is of interest in an investigation” [12]. The existing techniques

are concentrated around the procedures that should be implemented after

the physical confiscation of the computer equipment. The research outlined

as part of this thesis results in a system capable of quickly implementing

the communication protocol of any given P2P network, resulting in more

focused data collection. The data collected can be partially processed at the

point of collection, eliminating the need to store, index and analyse irrelevant

information.

The contribution of this research can be summarised as follows:

• Design of a forensically sound P2P network investigation system, which

can be used for the collection of court-admissible evidence or used for

system monitoring. The system also enables the user to conduct a cloud

based investigation. This results in the forensic investigators being able

to spend more time analysing evidence, as opposed to being in the field

collecting it. The design approach can be extended to defining how to

best deal with the issues of cost, speed, compatibility and redundancy of

the data while ensuring that the process is reproducible and reliable.

• Proof of the viability of the system through experimentation of all the

necessary components. Each component of the system was individually

tested to ensure the forensic integrity of the data collected.

• Performance results from testing “real-world” scenarios where such a

system may be used, i.e., collecting evidence from a live P2P network

investigation.
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• Outline a new forensically sound method for storing remote network

captured P2P evidence.

1.4 Limitations of this Work

With such a large variety of P2P networks and P2P based cybercrimes, a

number of limitations for the scope of this research were introduced:

1. To conduct comprehensive testing across every known P2P network was

deemed too large a task for the purposes of this work due to time and

resource constraints.

2. As a proof of concept for the viability of the system designed as

part of this work, it was deemed acceptable to perform testing and

investigation of unauthorised file-sharing occurring on P2P networks.

The methodology and techniques outlined are equally applicable to the

investigation of any P2P based cybercrimes.

1.5 Structure of the Thesis

This thesis is organised as follows:

• After introducing the context and highlighting the main goals of the

project in this Chapter, in Chapters 2, 3, and 4, we present literature

reviews of related research work and software tools relevant to the

areas of Digital Forensics, P2P File-sharing and Botnet Investigation

respectively. These chapters outline some of the tools, systems,

architectures, and best practices associated with the corresponding fields

from a technical, and legal perspective.

• Chapter 5 presents the architecture and design of the universal P2P

network investigation framework capable of expansion to deal with any
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P2P network investigation. We also outline the design considerations

which should be incorporated into a framework of this nature. Chapter 6

presents the results from a proof of concept investigation tool developed

for the investigation of the BitTorrent file-sharing P2P network. The

results of comprehensive experiments carried out to prove the viability

of such a framework. This testing phase incorporated the testing of each

individual component of the system to ensure forensic integrity and

ultimately, court admissible evidence.

• Chapter 7 summarises and concludes this research. This chapter also

outlines scenarios where the technology developed can be adapted and

reused for additional purposes. Guidelines for further developments to

the presented work are also outlined and discussed.
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CHAPTER

TWO

DIGITAL FORENSIC INVESTIGATION;

STATE OF THE ART

2.1 Introduction

“A forensics expert must have the investigative skills of a detective, the

legal skills of a lawyer, and the computing skills of the criminal.” [13].

This chapter outlines some of the digital network evidence acquisition,

investigation software, and hardware tools commonly used by forensic

investigators in law enforcement and private investigations such as ForNet,

Wireshark, Security Incident and Event Management Software (SIEM),

Network Forensic Analysis Tools (NFAT), and Deep-Packet Inspection (DPI).

Current commercial, research and open-source tools are discussed specifying

their benefits and designs. Common digital evidence storage formats are

also discussed, outlining the cross-compatibility between the tools available

and the associated formats. Best practices associated with the field of digital

forensics from a technical, cryptographical and legal perspective are also

discussed.
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2.2 Computer Forensic Investigation

Generally speaking, the goal of a digital forensic investigation is to identify

digital evidence relative to a specific cybercrime. Investigations rarely rely

entirely on digital evidence to prosecute the offender, instead relying on a

case built from physical evidence, digital evidence, witness testimony and

cross-examination. However, when dealing solely with digital evidence, there

are three major phases [14]:

1. Acquisition Phase – The acquisition phase is concerned with capturing the

state of a digital system for later analysis. This is similar to the collection

of physical evidence from a crime scene, e.g., taking photographs,

collecting fingerprints, fibres, blood samples, tire patterns, etc. During

this phase in a digital investigation, it is typically very difficult to tell

which evidence is relevant to the case, so the goal of this phase is to

collect all possible digital evidence (including any data on removable

storage devices, network traffic, logs, etc.).

2. Analysis Phase – After a successful and complete acquisition of the

system state from a suspect computer, the data acquired needs to be

analysed to identify pieces of evidence. The analysis of evidence is

carried out on an exact copy of the original evidence. This copy is

verified against the original through the use of a hashing algorithm, as

outlined in more detail in Section 2.7. Carrier [14] defines three major

categories of evidence a digital investigator needs to discover when

conducting his analysis:

• Inculpatory Evidence – This is any evidence which supports a given

theory.

• Exculpatory Evidence – This is any evidence which contradicts a

given theory.

• Evidence of Tampering – This is any evidence which cannot be

related to any theory currently under investigation, but shows that
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the system was tampered with to avoid identification.

The procedure followed during this phase includes examining file

and directory contents (including recovered deleted content) to draw

verifiable conclusions based on any evidence that is collected.

3. Presentation Phase – The steps performed in the previous two phases

are the same regardless of the type of investigation being conducted,

e.g., corporate, law enforcement or military. However, the presentation

phase will be different depending on corporate policy or local law. This

phase presents the conclusions and their corresponding evidence that

the digital investigator has deduced. In a court settings, the lawyers

must first evaluate the evidence to confirm that it is court admissible.

2.2.1 Network Forensic Investigation

The 2006 National Institute of Standards and Technology’s (NIST) special

publication “Guide to Integrating Forensic Techniques Into Incident

Response” [15] outlines a number of best practices and legal considerations for

forensic investigators working with network data. The NIST guide outlines

the typical sources of network evidence and tools that should be used during

the evidence collection phase of an investigation:

• Firewall and router logs – These devices are normally configured to

record suspicious activity.

• Packet Sniffing – This allows the investigator to monitor, in real-time, the

activity on the network.

• Intrusion Detection Systems (IDS) – Some larger networks may employ

IDS to capture packets related to suspect activity.

• Remote Access Servers – this includes devices such as VPN gateways

and modem servers that facilitate connections between networks.
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• Security Event Management Software – These tools aid in analysis of logs

files, typically produced by IDS tools, firewalls, and routers.

• Network Forensic Analysis Tools – These tools allow a reconstruction

of events by visualising and replaying network traffic within a specified

period.

• Other Sources – These include Internet Service Provider (ISP)

records, client/server applications, hosts’ network configureration

and connections, and Dynamic Host Configuration Protocol (DHCP)

records.

A number of tools capable of collecting and analysing some of the above

evidence are outlined in Section 2.3.

2.3 Network Investigation Tools

While the area of Computer Forensics and Cybercrime Investigation is

relatively new among the more traditional computer security models, there

is a small number of companies and open-source tools dedicated to forensic

investigations. There are numerous free packet sniffing software tools

available. A number of these tools are discussed in the following subsections:

2.3.1 TCPDump/WinDump

TCPDump and WinDump are the Unix and Windows equivalent command

line network software analysers developed in the 1990s. The tools run on a

local machine and are capable of capturing all the network traffic over ethernet

or wireless connections. They have the ability to display in a semi-coherent

fashion the captured traffic frame by frame and allow the analysis of the data.

As its name might suggest, TCPDump focuses mainly on the TCP/IP protocol

[16]. An example capture of an SSH session using WinDump can be seen in

Figure 2.1.
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Figure 2.1: Example Frame Capture of SSH Session Using WinDump.

2.3.2 Ethereal

Ethereal is another free tool available for both Unix and Windows. It is more

user friendly than TCPDump as it has a graphical user interface (GUI) to assist

its users. Ethereal also provides a large number of protocol decoding options;

more than 400 in total [16]. It allows the forensic investigator to analyse data

collected on a packet basis or protocol basis. An example capture of an SSH

session using Ethereal and its presentation in the GUI can be seen in Figure

2.2.

Figure 2.2: Example Frame Capture of SSH Session Using Ethereal.
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2.3.3 Network Forensic Analysis Tools

NFATs are intelligent packet analysis tools capable of identifying firewall

circumvention [17]. For example, corporate firewalls may block access to

their staff from using instant messaging at work. Yahoo Messenger normally

operates on port 5050, but when this port is blocked it will automatically

switch to port 23 (usually reserved for telnet) [18]. While this port change

might bypass a firewall rule in place, an NFAT would still be able to identify

the network usage as being Yahoo Messenger due to packet analysis. NFATs

are not designed as a replacement for firewalls or IDS software, but are

designed to work in conjunction with them. Typically NFATs will rely on

another piece of software to capture the traffic, e.g., TCPDump.

2.3.4 Security Incident and Event Manager Software

SIEM software is a combination of the formally different software categories

of Security Incident Management Software and Security Event Management

Software and takes a different investigative approach to the “on-the-fly”

analysis tools outlined above. SIEM software is focused on importing security

event information for a number of network traffic related sources, e.g., IDS

logs, firewall logs, etc. [15]. It operates on an “after the fact” basis whereby it

analyses copies of the logs attempting to identify suspicious network activity

events by matching IP addresses, timestamps and other network traffic

characteristics. An open source example of this software is called OSSIM [19].

2.4 Packet Inspection Hardware

In the regular operation of Network Interface Cards (NICs), the devices only

accept incoming packets that are specifically addressed to its IP address.

However when a NIC is placed in promiscuous mode, it will accept all

packets that it sees, regardless of their intended destinations. Packet sniffing
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hardware generally operates on this principle, with configuration available

to capture all packets or only those with specific characteristics, e.g., certain

TCP ports, certain source or destination IP addresses, etc. [15]. This style of

network traffic capture can be used in combination with software sampling

optimisation techniques in order to reduce the overall size of the data to be

investigated [20].

The current standard hardware device used for digital evidence acquisition

in the forensic laboratory is the Forensic Recovery of Evidence Device

(FRED). This machine incorporates a selection of equipment tailored for

digital investigations available from Digital Intelligence [21]. Each FRED

workstation contains a collection of write-blocked (read-only) ports including

Serial Advance Technology Attachment (SATA), Integrated Drive Electronics

(IDE), Small Computer System Interface (SCSI), Universal Serial Bus (USB)

and FireWire. However in order to perform network evidence capture, the

workstation incorporates a standard 10/100/1000Mb ethernet card due to

the requirement for any NIC to both send and receive packets. This NIC is

capable of collecting network evidence when used in conjunction with one of

the software tools outlined above.

2.5 Evidence Storage Formats

There is currently no universal standard for the format that digital evidence

and any case related information is stored. This is due to the fact that there are

no state or international governmental policies to outline a universal format.

Many of the vendors developing forensic tools have their own proprietary

evidence storage format. With such a small target market (mainly law

enforcement), it sometimes makes business sense for them to try to lock their

customers into a proprietary format. This results in their users being more

likely to buy only their software in the future as it will be compatible with

their existing evidence. There have been a number of attempts at creating

open formats to store evidence and its related metadata. The following
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subsections describe the most common evidence storage formats.

2.5.1 Common Digital Evidence Storage Format

The Common Digital Evidence Storage Format (CDESF) Working Group

was created as part of the Digital Forensic Research Workshop (DRFWS) in

2006. The goal of this group was to create an open data format for storing

digital forensic evidence and its associated metadata from multiple sources,

e.g., computer hard drives, mobile Internet devices, etc. [22]. The format

which the CDESF working group were attempting to create would have

specified metadata capable of storing case-specific information such as case

number, digital photographs of any physical evidence and the name of the

digital investigator conducting the investigation. In 2006, the working group

produced a paper outlining the advantages and disadvantages of various

evidence storage formats [23].

Due to resource restrictions, the CDESF working group was disbanded in 2007

before accomplishing their initial goal.

2.5.2 Raw Format

According to the CDESF Working Group, “the current de facto standard for

storing information copied from a disk drive or memory stick is the so-called

“raw” format: a sector-by-sector copy of the data on the device to a file” [24].

The raw format is so-called due to the fact that it is simply a file containing the

exact sector-by-sector copy of the original evidence, e.g., files, hard disk/flash

memory sectors, network packets, etc. Raw files are not compressed in any

manner and as a result, any deleted or partially overwritten evidence that may

lay in the slackspace of a hard disk is maintained. All of the commercial digital

evidence capturing tools available today have the capability of creating raw

files.
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2.5.3 Advanced Forensic Format

The Advanced Forensic Format (AFF) is an open source, extensible format

created by S. Garfinkel in Basis Technology in 2006 [25]. The AFF format has

a major emphasis on efficiency and as a result it is partitioned into two layers;

the disk representation layer which defines segment name used for storing

all data associated with an image and the data storage layer which defines

how the image is stored (binary or XML) [26]. The format specifies three

file extensions; *.aff, *.afd and *.afm. *.aff files store all data and metadata

in a single file, *.afd files store the data and metadata in multiple small files,

and *.afm files store the data in a raw format and the metadata is stored in a

separate XML file [26].

2.5.4 Generic Forensic Zip

Generic Forensic Zip (gfzip) is an open source project. Its goal is to create

a forensically sound compressed digital evidence format based on AFF 2.5.3

[27]. Due to the fact that it is based upon the AFF format, there is limited

compatibility between the two in terms of segment based layout. One key

advantage that gfzip has over the AFF format is that gfzip seeks to maintain

compatibility with the raw format, as described in Section 2.5.2. It achieves

this by allowing the raw data to be placed first in the compressed image [26].

2.5.5 Digital Evidence Bag (QinetiQ)

The method for traditional evidence acquisition involves a law enforcement

officer collecting any relevant items at the crimescene and storing the evidence

in bags and seals. These evidence bags may then be tagged with any relevant

case specific information, such as [28]:

• Investigating Agency / Police Force

• Exhibit reference number
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• Property reference number

• Case/Suspect name

• Brief description of the item

• Date and time the item was seized/produced

• Location of where the item was seized/produced

• Name of the person that is producing the item as evidence

• Signature of the person that is producing the item

• Incident/Crime reference number

• Laboratory reference number

Physical evidence containers, such as evidence bags, are trusted due to the

well understood and practised process called “chain of custody” [29].

Digital Evidence Bag (DEB) is a digital version of the traditional evidence bag,

created by Philip Turner in 2005 [28]. DEB is based on an adaptation of existing

storage formats, with potentially infinite capacity. The data stored in a DEB is

stored in multiple files, along with metadata containing the information that

would traditionally be written outside on an evidence bag. There are currently

no tools released that are compatible with the QinetiQ DEB format.

2.5.6 Digital Evidence Bag (WetStone Technologies)

In 2006, C. Hosmer, from WetStone Technologies Inc. [30], published a paper

outlining the design of a Digital Evidence Bag (DEB) format for storing digital

evidence [29]. This format is independent from the Digital Evidence Bag

outlined in Section 2.5.5. The format emerged from a research project funded

by the U.S. Air Force Research Laboratory. The motivation for this format

was similar to that described in Section 2.5.5, i.e., to metaphorically mimic

the plastic evidence bag used by crime scene investigators to collect physical
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evidence such as fibres, hairs, etc. This format will be released publicly when

complete.

2.5.7 EnCase Format

The EnCase format for storing digital forensic is proprietary to the evidence

analysis tool of the same name [31]. It is by far the most common evidence

storage option used by law enforcement and private digital investigation

companies [26]. Because of the proprietary nature of the format, along with

the lack of any open formal specification from Guidance Software [32], much

remains unknown about the format itself. Some competitors to Guidance

Software have attempted to reverse engineer the format to provide an element

of cross-compatibility with their tools [25]. EnCase stores a disk image as a

series of unique compressed pages. Each page can be individually retrieved

and decompressed in the investigative computer’s memory as needed,

allowing a somewhat random access to the contents of the image file. The

EnCase format also has the ability to store metadata such as a case number

and an investigator [25].

2.6 Evidence Handling

When analysing physical evidence, the commonly used procedure is known

as the “chain of custody” [28]. The chain of custody commences at the crime

scene where the evidence is collected, when the investigating officer collects

any evidence s/he finds and places it into an evidence bag. This evidence bag

will be sealed to avoid any contamination from external sources and signed

by the officer and will detail some facts about the evidence, e.g., description

of evidence, location, date and time it was found etc. The chain of custody

will then be updated again when the evidence is checked into the evidence

store. When it comes to analysing the evidence, it will be checked out to the

analysts’ custody and any modification to the evidence required to facilitate
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the investigation, e.g., taking a sample from a collected fibre to determine its

origin or unique properties. Each interaction with the evidence will be logged

and documented.

The procedures outlined above for physical evidence need to be slightly

modified for evidence acquisition and analysis. Due to the fact that digital

evidence is analysed on forensic workstations, most of the above sequences

can be automated into concise logging of all interactions. During a digital

investigation, there is no requirement to modify the existing evidence in

any way. This is because all analysis is conducted on an image of the

original source and any discovered evidence can be extracted from this

image, documented and stored separately to both the original source and

the copied image. It is imperative when dealing with all types of evidence

that all procedures used are reliable, reproducible and verifiable. In order for

evidence to be court admissible, it must pass the legal criteria for the locality

that the court case is being heard, as outlined in greater detail in Section 2.8.

2.6.1 What does “Forensically Sound” really mean?

Many of the specifications for digital forensic acquisition and analysis tools,

storage formats and hash functions state that the product in question is

“forensically sound” or that the product works with the digital evidence in

a “forensically sound manner”, without specifying exactly what the term

means. In 2007, E. Casey published a paper in the Digital Investigation Journal

entitled “What does “forensically sound” really mean ?” [33].

In the paper, Casey outlined some of the common views of forensic

professionals with regard to dealing with digital forensic evidence. Purists

state that any digital forensic tools should not alter the original evidence in

any way. Others point out that the act of preserving certain types of evidence

necessarily alters the original, e.g., a live memory evidence acquisition tool

must be loaded into memory (altering the state of the volatile memory and

possibly overwriting some latent evidence) in order to run the tool and capture
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any evidence contained in the memory. Casey then goes onto to explain how

some traditional forensic process require the alteration of some of the evidence

in order to collect the required information. For example, collecting DNA

evidence requires taking a sample from some collected evidence, e.g., a hair.

Subsequently, the forensic analysis of this evidentiary sample (DNA profiling)

is destructive in its nature which further alters the original evidence.

Casey summarises that from a forensic standpoint, evidence acquisition

and handling should modify the evidence as little as possible and when

modification is unavoidable, it should be well documented and considered

in the final analytical results. “Provided the acquisition process preserves a

complete and accurate representation of the original data, and its authenticity

and integrity can be validated, it is generally considered forensically sound”

[33].

2.7 Cryptographic Hash Functions

Cryptographic hash functions are deterministic procedures which operate

by taking a block of data or a file as input and output a fixed length digital

fingerprint or cryptographic hash value/sum. The data input to a hash

function is commonly referred to as the “message“, while the hash sum

produced is referred to as the digest.

The ideal collision resistant cryptographic hash function (h) has four main

properties, defined by B. Preneel as part of his Ph.D. thesis in 1993 [34]:

1. The description of h must be publicly known and should not require any

secret information for its operation.

2. The argument/message X can be of arbitrary length and the result h(X)

has a fixed length of n bits (with n � 128).

3. Given h and X, the computation of h(X) must be “easy”.

4. The hash function must be “one-way” in the sense that given a Y, it
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is infeasible to find a message X such that h(X) = Y , i.e., it should be

impractical to modify a message without changing its hash. It should

also be infeasible given X and h(X) to find a message X’ 6= X such that

h(X’) = h(X), i.e., it should not be possible to have two different messages

with the same hash.

5. The hash function must be collision resistant: this means that one should

not find two distinct messages that hash to the same result. It also should

not be feasible to find a message X that has a given hash sum h(X).

2.7.1 Collision Resistance

The measure of the unlikelihood of two different inputs to a hashing function

returning the same hash sum is known as the collision resistance of the hash

function. Generally speaking, the larger the internal state size that the hashing

function has to operate with, the better the collision resistance of that function.

In 2005, Wang and Yu published a paper outlining their attempts to break a

number of specified hash functions, entitled “How to Break MD5 and Other

Hash Functions” [35]. In this paper they described a method for engineering

two files which, when hashed using MD5, would result in having the same

hash sum. In their experiments, they created two different files, F1 and F2, by

reverse engineering them to have the specific bits in the specific file locations

required for the hashing function to produce an identical hash sum so far.

It is important to note that there is no documented evidence that, if given a

specific file F1, that anyone is capable of engineering a second file F2 that has

the same hash sum. As a result of this paper, the United States Computer

Emergency Readiness Team (US-CERT), part of the United States’ Department

of Homeland Security, published a vulnerability note stating that MD5 should

be considered cryptographically broken and unsuitable for further use and

that most United States governmental applications will be required to move to

the SHA-2 family of hashing functions by 2010 [36].

To date, no collisions have been found in any of the SHA-2 family of hashing
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functions.

2.7.2 Avalanche Effect

The avalanche effect of a cryptographic hashing function refers to a desirable

property whereby should the input file be modified slightly [37], e.g., changing

a single bit of the file, the resultant hash sum produced changes significantly.

The term “avalanche effect” used to describe this property was created by H.

Feistel in 1975 [38]. Table 2.1 shows a sample set of common hashing functions

along with sample hash sums they produce for two slightly different input

files showing the influence the avalanche effect has on each function.

2.7.3 Overview of Common Hashing Algorithms

While there are hundreds, if not thousands, of hashing functions in existence,

the list of commonly used functions is significantly shorter. This is due to

the fact that NIST and the National Security Agency (NSA) in the United

States have prioritised the standardisation of hashing functions. The most

popular hashing functions, outlined below, are all based on the message

digest principle. The message digest principle was designed by Ronald Rivest

[39] and constitutes a hash function taking in a message of arbitrary length

and producing a fixed length message digest (hash value/sum) based on that

input.

2.7.3.1 MD Family

The Message Digest (MD) algorithm family of hash functions were all created

by Ronald Rivest, a professor in Massachusetts Institute of Technology, along

with some collaboration from others. The family contains six iterations of

the algorithms; MD, MD2 (1988), MD3 (1989), MD4(1990), MD5 (1991) and

MD6 (2008.) From the original iteration up as far as MD5, the algorithms all

produced 128-bit message digests. These MD hash values are expressed as 32
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Hash
Algorithm

Length
in
bits

Sentence 1: The quick
brown fox jumps
over the lazy dog

Sentence 2: The quick
brown fox jumps
over the lazy cog

Diff
%

Adler32 32 5BDC0FDA 5BD90FD9 25.0%
CRC32 32 414FA339 4400B5BC 87.5%
Haval 128 713502673D67E5FA

557629A71D331945
4C9409BE8321D982
72D9252F610FBB5B

93.8%

MD2 128 03D85A0D629D2C44
2E987525319FC471

6B890C9292668CDB
BFDA00A4EBF31F05

93.8%

MD4 128 1BEE69A46BA81118
5C194762ABAEAE90

B86E130CE7028DA5
9E672D56AD0113DF

93.8%

MD5 128 9E107D9D372BB682
6BD81D3542A419D6

1055D3E698D289F2
AF8663725127BD4B

100%

RipeMD128 128 3FA9B57F053C053F
BE2735B2380DB596

3807AAAEC58FE336
733FA55ED13259D9

93.8%

RipeMD160 160 37F332F68DB77BD9
D7EDD4969571AD67
1CF9DD3B

132072DF69093383
5EB8B6AD0B77E7B6
F14ACAD7

95.0%

SHA-1 160 2FD4E1C67A2D28FC
ED849EE1BB76E739
1B93EB12

DE9F2C7FD25E1B3A
FAD3E85A0BD17D9B
100DB4B3

95.0%

SHA-256 256 D7A8FBB307D78094
69CA9ABCB0082E4F
8D5651E46D3CDB76
2D02D0BF37C9E592

E4C4D8F3BF76B692
DE791A173E053211
50F7A345B46484FE
427F6ACC7ECC81BE

95.3%

SHA-384 384 CA737F1014A48F4C
0B6DD43CB177B0AF
D9E5169367544C49
4011E3317DBF9A50
9CB1E5DC1E85A941
BBEE3D7F2AFBC9B1

098CEA620B0978CA
A5F0BEFBA6DDCF22
764BEA977E1C70B3
483EDFDF1DE25F4B
40D6CEA3CADF00F8
09D422FEB1F0161B

95.8%

SHA-512 512 07E547D9586F6A73
F73FBAC0435ED769
51218FB7D0C8D788
A309D785436BBB64
2E93A252A954F239
12547D1E8A3B5ED6
E1BFD7097821233F
A0538F3DB854FEE6

3EEEE1D0E11733EF
152A6C29503B3AE2
0C4F1F3CDA4CB26F
1BC1A41F91C7FE4A
B3BD86494049E201
C4BD5155F31ECB7A
3C8606843C4CC8DF
CAB7DA11C8AE5045

96.1%

Table 2.1: Example hash sums for a small file containing the sentences
outlined. The percentage difference shows the difference in the hash sums
produced. While each character of a hash is hexadecimal, i.e., 1 of 16 possible
values, it is notable that some hashing functions have differences greater
than the expected maximum difference, i.e., >93.8%. This is due to a more
pronounced avalanche effect in the hashing function.
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hexadecimal digits, as can be seen in Table 2.1. MD6 is based on a variable

length message digest size to improve performance for smaller inputs, and as

a result the message digest can be anywhere in the range from 0 - 512 bits in

length.

MD5 is a popular hash function used in numerous applications. Most of the

tools available to the digital investigator rely on a combination of the CRC32

and the MD5 hash functions for maintaining data integrity [23].

MD6 was entered into the competition for the SHA-3 Family of hash functions.

However, in July 2009, the algorithm was withdrawn from the competition

because in order for it to be fast enough to compete, the design would have

had to compromise its resistance to differential attacks.

2.7.3.2 SHA-0 and SHA-1 Family

The first specification of the Secure Hashing Algorithm (SHA) family of

hashing functions was published in 1993 by the US National Institute for

Standards and Technology. This early specification is now known as the

SHA-0 function. SHA-0 was withdrawn from use by the US National Security

Agency in 1995 and was replaced by a modified version of the function;

SHA-1. Both SHA-0 and SHA-1 produce 160-bit hash sums and they have a

maximum input message size of 264 � 1 bits (or 2048 petabytes).

X. Wang, Y.L. Yin and H. Yu produced a paper entitled “Finding Collisions

in the Full SHA-1” in 2005 [40]. This paper outlined the first attack on the

SHA-1 hash function. The authors successfully found collisions on the SHA-1

function. They achieved this by first finding near-collisions. They then were

able to discover full collisions based on the analysis of the near collisions.

They conclude that although the SHA-1 family of hash functions has message

expansion, it does not offer enough avalanche effect in terms of differing

inputs.
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2.7.3.3 SHA-2 Family

The SHA-2 Family consists of the following hash functions: SHA-224,

SHA-256, SHA-384, and SHA-512. The number in the name of the hash

function represents the output message digest size in bits. H. Gilbert and H.

Handschuh produced a journal paper entitled “Security Analysis of SHA-256

and Sisters” in 2004 [41] which published their results from the analysis of the

SHA-2 family of hash functions. They found that the attacks that have broken

the SHA-1 family no longer are applicable to the SHA-2 family.

The SHA-224 and SHA-256 have the same maximum input file size of 264 � 1

bits (or 2048 petabytes) as with the SHA-1 Family, while the SHA-384 and

SHA-512 have a maximum of 2128 � 1 bits (or 3.78 x 1022 petabytes).

2.7.3.4 SHA-3 Family

NIST, part of the Department of Commerce, held a five year development

competition to decide on which hashing function to choose for the third

iteration of the SHA Family. As part of the competition, NIST accepted over

60 entries into the first round of testing. This number was reduced down to

14 accepted into the second round which was announced in August 2009 [42].

The remaining candidates in the second round are BLAKE [43], Blue Midnight

Wish [44], CubeHash [45], ECHO [46], Fugue [47], Grøstl [48], Hamsi [49],

JH [50], Keccak [51], Luffa [52], Shabal [53], SHAvite-3 [54], SIMD [55] and

Skein [56]. The winner of the hashing function, Keccak, was announced in

November 2012 after evaluation of the final round entries [57]. Keccak uses

a “sponge construction” with no explicit maximum limit for file size and for

produces a variable length hash.
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2.8 Court Admissible Evidence

Since the United States leads the way with the implementation of many

standards in relation to evidence handling and the court admissibility of

evidence, many other countries look to the procedures outlined by the United

States in this area when attempting to create their own legal procedures [58].

As a result, much of the information available regarding the admissibility of

digital forensic evidence into court cases is specifically tailored to the Unites

States, but will influence law makers across the globe. Carrier [14] states that

in order for evidence to be admissible into a United States legal proceeding,

the scientific evidence (a category which digital forensic evidence falls under

in the U.S.) must pass the so-called “Daubert Test” (see Section 2.8.1 below).

The reliability of the evidence is determined by the judge in a pre-trail

“Daubert Hearing”. The judge’s responsibility in the Daubert Hearing is to

determine whether the methodologies and techniques used to identify the

evidence was sound, and as a result, whether the evidence is reliable.

2.8.1 Daubert Test

The “Daubert Test” stems from the United States Supreme Court’s ruling in

the case of Daubert vs. Merrell Dow Pharmaceuticals (1993) [59]. The Daubert

process outlines four general categories that are used as guidelines by the

judge when assessing the procedure(s) followed when handling the evidence

during the acquisition, analysis and reporting phases of the investigation, [14]

and [59]:

1. Testing – Has the procedure been tested? Testing of any procedure should

include testing of the number of false negatives, e.g., if the tool displays

filenames in a given directory, then all file names must be shown. It

should also incorporate testing of the number of false positives, e.g. if

the tool was designed to capture digital evidence, and it reports that

it was successful, then all forensic evidence must be exactly copied to
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the destination. NIST have a dedicated group working on Computer

Forensic Tool Testing (CFTT) [60].

2. Error Rate – Is there a known error rate of the procedure? For example,

accessing data on a disk formatted in a documented file format, e.g.,

FAT32 or ext2, should have a very low error rate, with the only

errors involved being programming errors on behalf of the developer.

Acquiring evidence from an officially undocumented file format, e.g.,

NTFS, may result in unknown file access errors occurring, in addition to

the potential programming error rate.

3. Publication – Has the procedure been published and subject to peer

review? The main condition for evidence admission under the

predecessor to the Daubert Test, the Frye Test, was that the procedure

was documented in a public place and undergone a peer review process.

This condition has been maintained in the Daubert Test [14]. In the area

of digital forensics, there is only one major peer-reviewed journal, the

International Journal of Digital Evidence.

4. Acceptance – Is the procedure generally accepted in the relevant scientific

community? For this guideline to be assessed, published guidelines are

required. Closed source tools have claimed their acceptance by citing the

large number of users they have. The developers of these tools do not

cite how many of their users are from the scientific community, or how

many have the ability to scientifically assess the tool. However, having

a tool with a large user base can only prove acceptance of the tool; it

cannot prove the acceptance of the undocumented procedure followed

when using the tool.

In 2005, The House of Commons Science and Technology Committee in the

United Kingdom published a report entitled “Forensic Science on Trial” [58].

In this report they outline numerous standards to be used across the field

of forensics. As part of this report, the admissibility of expert evidence is

discussed. As it stood in the UK when the report was written, the judge
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of any given case had the role of the “gate-keeper” for any evidence s/he

would admit into his/her court. It was determined that judges are not

well-placed to determine the scientific validity without input from scientists,

especially due to the absence of an agreed protocol for assessment. The main

recommendation to come from the report is that the Forensic Science Advisory

Council should develop a “gate-keeping” test for expert evidence, built in

partnership with judges, scientists and other key players from the criminal

justice system and that it should be built upon the US Daubert Test [58].

2.9 Legal Considerations of Network Forensics

Collecting network traffic can pose legal issues. Deploying a packet sniffing

or deep packet inspection device, such as those outlined above, can result

in the (intentional or incidental) capture of information with privacy and

security implications, such as passwords or e-mail content, etc. As privacy has

become a greater concern for regular computer users and organisations, many

have become less willing to cooperate or share any information with law

enforcement. For example, most ISPs will now require a court order before

providing any information related to suspicious activity on their networks

[15]. In Europe, continental legal systems operate on the principle of free

introduction and free evaluation of evidence and provide that all means of

evidence, irrespective of the form they assume, can be admitted into legal

proceedings [61].

One aspect of the use of search and seizure warrants in an Internet

environment concerns the geographical scope of the warrant issued by a

judge or a court authorising the access to the digital data. In the past, the

use of computer-generated evidence in court has posed legal difficulties

in common law countries, and especially in Australia, Canada, the United

Kingdom and the USA. The countries are characterised by an oral and

adversarial procedure. Knowledge from secondary sources is regarded

as “hearsay evidence”, such as other persons, books, records, etc., and in
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principle is inadmissible. However, digital evidence has become widely

admissible due to several exceptions to this hearsay rule [61].

2.10 Summary

This chapter describes some foundations behind the system described in

Chapter 5. It outlined some of the tools, formats, tests and procedures used

for the acquisition and analysis of digital forensic evidence. This chapter

also outlined some network focused forensic tools and systems developed

for aiding digital forensic investigations. Traditionally, in order for a digital

forensic investigation to begin, the investigator must physically visit the crime

scene and collect any suspect computer equipment. This equipment will

then be brought back to the forensic laboratory. When investigating network

crimes, the procedure is somewhat different. The forensic investigator may

need to install a physical deep packet inspection device onto the suspect’s

Internet connection (assuming a warrant is granted to do so). This will then

typically be left in situ for a predetermined amount of time and then taken

away for analysis. This DPI device will generally contain all of the suspects

network traffic for the investigation duration. Analysis, and subsequent

detection of any incriminating evidence, can only begin at this stage. As a

result of this offline analysis, it may be some time before an arrest can be

made.
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CHAPTER

THREE

PEER-TO-PEER FILE-SHARING

3.1 Introduction

P2P networks can be used in a number of ways including distributed

computing, collaboration and communication, but perhaps they are best

known for their use in file-sharing [62]. In 1999, three influential P2P systems

were launched attracting significant interest in the Internet technology; the

Napster music sharing system, the Freenet anonymous data store and the

SETI@home distributed volunteer-based scientific computing project [63].

In 2008, Cisco estimated that P2P file sharing accounted for 3,384 petabytes

per month of global Internet traffic, or 55.6% of the total usage. Cisco forecast

that P2P traffic will account for 9,629 petabytes per month globally in 2013

(approximately 30% of total global usage) [64]. While the volume of P2P

traffic is set to almost triple from 2008-2013, its proportion of total Internet

traffic is set to decrease due to the rising popularity of media streaming sites

and one-click file hosting sites (often referred to as “cyberlockers”) such as

Rapidshare, Mega, Mediafire, etc. Cisco estimate that P2P file transfer will

decline over the next few years to 5,755 petabytes per month by 2017 [65]. The

decline is accounted for due to the rise in streaming services and traditional

server based file-sharing. BitTorrent is the most popular P2P protocol used

worldwide and accounts for the biggest proportion of Internet traffic when

compared to other P2P protocols. The most recent measurement data from
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Ipoque GmbH. has measured BitTorrent traffic to account for anything from

20-70% of total Internet usage in 2009, depending on the specific geographical

area concerned [66]. With the evolution towards employing encrypted

traffic, these measurement statistics have been upwardly estimated over the

measured traffic.

3.1.1 Financial Impact on Content Producing Industry

The content producing industries report that revenue figures are steadily

declining as a result of online piracy. The International Federation of

the Phonographic Industry’s (IFPI) Digital Music Report 2011 states that

legitimate digital music distribution is up 1000% from 2004 to 2010, although

total global recorded music revenues are down 31% over the same period

[67]. The report cites Internet piracy as having a significant impact on their

sales. The report cites a study from 2010 entitled “Piracy, Music and Movies:

A Natural Experiment” which estimates that physical sales would be up 72%

with the abolishment of piracy in Sweden [68].

The 2012 Digital Music report states that 28% of Internet users are accessing

at least one unlicensed site monthly and that approximately half of those

users are using P2P networks [69]. In 2006, Zentner [70] summarises that

downloading MP3 files online reduces the probability of buying music by

30%. In 2008, the Motion Picture Association of America (MPAA) reported

that Internet piracy cost the film industry $7 billion that year [71].

While the figures outlined above are provided by the content producing

industry, the figures of total physical and digital sales in comparison to illegal

downloads are not available or provided by the industry for independent

verification. However, unauthorised distribution of copyrighted content must

have an impact on the profits of the industry as a whole. As a result of these

financial losses incurred by the content producing industry, there has been

a significant push for technological and legislative measures to deter users

from choosing the pirated option. A number of these measures are outlined in
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Sections 3.2 and 3.6.

Research has been conducted into the decision of an average consumer to

legally purchase digital content versus the decision to illegally download

the content. In his 2005 paper, Fetscherin evaluated the choices made by

consumers in legally or illegally downloading movies on the Kazaa P2P

network [72]. He found that the majority of users prefer to download movies

legally, but that a significant number will always opt for the free option. The

factors affecting consumer behaviour in this legal/illegal choice are, in order,

the risk of being caught, the price, the perceived value of the original and the

availability of high quality copies.

In 2013, the European Commission’s Institute for Prospective Technological

Studies published a working paper analysing the impact of illegal

downloading and legal streaming on the legal purchases of digital music [73].

The results were based on over 16,000 European consumers from all European

Commission (EC) countries. It was found that Internet users do not view

illegal downloading as a substitute for legal digital music. An increase of 10%

of clicks on illegal downloading websites was found to lead to a 0.2% increase

in clicks on legal purchase websites.

3.2 Legislative Response to Online Piracy

While not merely limited to P2P file-sharing, there has been significant

effort globally to create new legislative measures to combat online copyright

infringement. A number of these provisions are outlined below [74]:

1. Stop Online Piracy Act (SOPA) – This United States act states that if a

website is deemed to be dedicated to the theft of U.S. property then it

should be blocked by various Internet companies. These include ISPs,

search engines, payment providers and advertising services. Each must

prevent access to the site for their customers and cease operation with

the site and its owners. This act has facilitated the significant seizure of
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Internet domain names by the U.S. government since 2012.

2. PROTECT IP Act (PIPA) – In the United States, the “Preventing Real

Online Threats to Economic Creativity and Theft of Intellectual Property

Act of 2011” allows the Attorney General to sue operators of Internet

sites dedicated to infringing activities.

3. Anti-Counterfeiting Trade Agreement (ACTA) – This is a treaty signed

between the United States, Australia, Canada, Korea, Japan, New

Zealand, Morocco, and Singapore. The treaty specifies that laws should

be created to make those responsible for copyright infringement on a

commercial scale criminally liable.

4. Trans-Pacific Partnership Agreement (TPP) – This is a trade agreement

negotiated between the United States, Australia, Brunei, Chile, Malaysia,

New Zealand, Peru, Singapore, and Vietnam. This broadly defined

agreement states that its member countries must legislate for significant

wilful copyright infringement for financial gain.

5. Graduated Response – France, New Zealand, South Korea, Taiwan

and the United Kingdom have implemented various “three strikes”

laws, with Ireland and the United States having a voluntary system

put in place [71]. The model requires the rights holders to monitor for

unauthorised online infringing activity and reporting the corresponding

IP addresses to the ISP involved. The ISP can identify the customer and

send them a notification. Repeat infringers risk bandwidth throttling,

protocol blocking or account suspension.

As deduced by Carrier [74], the language used in the existing treaties, acts and

agreements outlined above is quite vague. The resulting lack of clarity enables

biased interpretations, which in turn promotes a litigation based business

model. Carrier claims this will ultimately stem innovation. While it’s clear

that there is a need for legislation to protect content producers, the current

iterations leave much open to various interpretation.
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3.3 Peer-to-Peer File-sharing System Design

When designing and implementing a P2P file-sharing system, developers

must make a number of key decisions regarding the network and its purposes:

1. Centralised/Decentralised/Hybrid – A centralised network can offer a

simpler design whereas a decentralised design can offer a more robust

network. Hybrid networks are much more complex to implement but

can offer many of the advantages of both centralised and decentralised

systems.

2. Open Source/Proprietary – Making the network design and client open

source promotes an active development community but may result in

compatibility issues across numerous clients with different update cycles

resulting in newer features taking some time to roll out across all clients.

3. Encrypted/Unencrypted – Encrypting all network communication

can help eliminate some of the packet sniffing investigation methods

deployed by IT administrators and investigators but can decrease the

performance of the overall system.

3.3.1 Centralised Design

In a centralised P2P network design, there are one or more central servers

which puts users in contact with each other. When a new user wishes to

join the network, s/he registers with a known server which, in turn, is able

to supply the user with a list of other known active peers currently on the

network. Depending on the specific centralised design, the server itself

may index the entire system, i.e., maintain an active list of users and the

content they are sharing, or help contribute to a distributed hash table (DHT)

maintained by the server. The latter option passes much of the querying

load onto the connected peers. Hashing is used to prevent the accidental
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Figure 3.1: Centralised P2P system overview.

downloading of incorrect content, e.g., two files on the network with the same

name but with different content.

A sample centralised usage scenario is shown in Figure 3.1, whereby the server

records each user’s shared files. On the left hand side of the figure, the P2P

client issues a request to the server for any users sharing a specific piece of

content. The server responds with a list (IP addresses and port numbers)

of active nodes on the network sharing that content. Once the user chooses

one of these files to download, the server no longer has any further part in

the interaction. The user’s client software will connect directly to the remote

peer and download the file directly. In most modern systems built using this

design, the user may download part of the desired file from multiple other

peers simultaneously. This is shown on the right hand side of the figure and

results in a faster throughput of the download by distributing the workload.

Once all the required parts are complete, the file is combined into the original

content and is immediately available to the user. By default, many P2P systems

automatically make any newly downloaded files available on the network for

other peers.

The advantage of a centralised design lies in its efficiency of conducting

queries and the resultant small traffic footprint devoted to querying.

However, the most significant downside to a centralised design is that there is

a single point of failure. If the central server is disrupted or removed from the
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network, the entire network ceases to function and is rendered useless.

3.3.2 Decentralised Design

Decentralised P2P network design removes the single point of failure from the

centralised design outlined above. It achieves this by enforcing that each node

in the network simultaneously plays the role of client and server. When a node

receives a query request, that request is passed on to all known nodes and the

results are passed back to the source of the query. Each node in the network

maintains a small active list of current connections and helps to contribute to

a DHT. To remove any loss to the DHT as a result of a node going offline, each

distributed part will exist on multiple nodes.

The primary advantage of a decentralised system is that there is no single point

of failure. Removing any single node from the network will have no significant

impact on the entire system. However, due to its decentralised design, each

query will take much longer to complete as the query needs to be passed

directly from node to node before any response comes back to the source. As a

result, the larger the network becomes, the longer the time required to conduct

a complete search of the entire network will become. This results in a much

larger querying traffic footprint in order to keep the network functional. There

are a number of solutions to this problem, i.e., limiting the number of hops a

query can be passed along, including a specified query timeout, etc. However,

each of these solutions result in a partial search of the network.

A sample usage scenario is outlined in Figure 3.2 showing how each node acts

as both a client and a server. The query can be seen passing from node to

node until a “hit” is found. Depending on the design, this query hit might get

passed back through the same sequence of steps the query took or alternatively

may be relayed directly back to the querying node. The file transfer occurs in

a similar direct fashion as exists in a centralised P2P network. When a new

node wishes to join the network, it needs to bootstrap onto the DHT in some

manner. Depending on the implementation of the network, there may be a
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Figure 3.2: Decentralised P2P system overview.

hardcoded list of always-on DHT servers or a list of always-on nodes. These

servers/nodes can provide a new client with a list of active nodes to bootstrap

onto the network.

3.3.3 Hybrid Design

Hybrid P2P networks take on a number of the features from both centralised

and decentralised networks in an attempt to overcome the limitations of each.

This type of network will employ a large number of centralised servers to

prevent the network becoming dysfunctional if an individual server should

be taken offline. In practice, these servers are actually regular peers on the

network. Static hybrid networks allow a peer to specify that they would like

to become a server, or “supernode” in the configuration of the client software,

e.g., in eDonkey. Dynamic hybrid network clients, e.g., Limewire, FastTrack

and Gnutella, can automatically promote any peer to become a supernode

dependant on specified criteria such as uptime, bandwidth capability, latency

etc.

Querying a hybrid network can involve varying query distribution options.
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Figure 3.3: Hybrid P2P system overview.

There are two main query propagation mechanisms employed by hybrid P2P

networks [75]:

1. Random Walk – Employing this mechanism, a file search query is sent

randomly to known neighbours in the network. If this node can resolve

the query, i.e., has a file matching the request, a query hit is sent back

to the source of the request. If it does not resolve the query, it randomly

passes this query onto another neighbour from its list and the process

iterates until either a hit is returned or a timeout kills the query.

2. Expanding Ring – This query propagation option can be thought of

as a sequence of flooding searches in which the time-to-live (TTL) is

increased at each iteration. A simple flooding search is conducted

whereby a query is sent to all known neighbours. Each neighbour will

propagate the received query onto all of its active neighbours (it will

only forward on each specific query once). Again, if any node can

resolve the query, it will directly reply to the origin of the query with

a hit. The query dies when the TTL reaches zero. This propagation

mechanism is outlined in Figure 3.3, where a query is sent from a node to
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a supernode. If this supernode cannot resolve the query, it is forwarded

onto other supernodes and a query hit is returned directly to the source

node. File transfer then commences directly between the nodes.

3.4 Peer-to-Peer File-sharing Networks

3.4.1 Napster

Figure 3.4: Screenshot of Napster. Downloads can be seen at the top, with
uploads at the bottom.

In 1999, Napster pioneered the idea of global P2P file sharing. This early

stage MP3 sharing network was supported by a centralised file search facility.

Users could query this centralised database for desired content and their

clients would be advised of other users currently sharing that piece of content.

The client would then proceed to download this content directly off the user

hosting the content. Due to its “free” usage model, Napster quickly grew

to become a large global P2P network. By the end of 2000, Napster grew to
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over 75 million users sharing over 10,000 MP3 files every second [62]. The

centralised index ultimately was the downfall of Napster’s design. In July

2001, after losing a court case with the Recording Industry Association of

America, Napster became the first P2P system to be ordered to shutdown in

what has become known as the “Napster Decision” [74].

3.4.2 Gnutella

Figure 3.5: Limewire Screenshot.

Gnutella was released in 2000 as an open source file-sharing protocol by

Nullsoft. When the system was released online, Nullsoft’s owners, America

Online Inc., first learned of its existence and the company quickly ordered the

removal of the release from the Internet. However, the protocol was already

downloaded by numerous other developers who were able to publish the

specification [76]. This enabled numerous popular clients to be built on the

protocol including BearShare, FrostWire, Morpheus, Shareaza and LimeWire
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(shown in Figure 3.5). Gnutella clients are generally capable of resuming any

partially completed downloads by reestablishing connections to previously

known or new peers sharing the same content [77].

The Gnutella protocol adopts decentralised search algorithms which

effectively eliminate the single point of failure of the centralised approach

creating a much more robust network. This results in clients searching for

content shared on Gnutella bouncing the query from node to node, with

any hits being reported back through a reversed sequence of these network

bounces [78]. A sample Gnutella node map is shown in Figure 3.6 with

supernodes, represented as solid dots, acting as servers for many leaf nodes

(represented as hollow dots) [76].

Figure 3.6: Gnutella Node Map.

The decentralisation of the network also left the network open and vulnerable

to exploitation. While “legitimate” sharing of copyrighted content is the

primary focus of the network, it was quickly exploited for malicious purposes

by cybercriminals, e.g., the spread of viruses, worms and botnets. In 2008,

Kalafut et al. found that 68% of all downloadable responses in Limewire

(Gnutella’s largest client at the time) containing archives and executables

contained malware [79].
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3.4.3 eDonkey

eDonkey is one of the most successful P2P applications and operates on

a hybrid P2P network of the same name. Alternative clients built on the

protocol include eMule, Morpheus, Shareaza and MLDonkey. The systems

uses a distributed network of servers running a specific server application.

The servers do not share any files and only aid in the management of the

distributed information through indexing which peers are sharing which files.

The network gained significant popularity in Europe; with Germany, France

and Austria topping the geographical overview accounting for 66.21%, 6%

and 1% respectively in 2004 [80]. Files are divided into chunks of 9,500kb

which an MD4 checksum associated with each chunk.

3.4.4 BitTorrent

Figure 3.7: Visualisation of a Typical BitTorrent Swarm

In July 2001, the first implementation of the BitTorrent protocol was released.

The BitTorrent protocol is designed to easily facilitate the distribution of files

to a very large number of downloaders with minimal load on the original

file source [81]. This is achieved through the downloaders uploading their
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completed parts of the entire file to other downloaders. A BitTorrent swarm is

made up of seeders, i.e., peers with complete copies of the content shared in

the swarm, and leechers, i.e., peers who are downloading the content. Due to

BitTorrent’s ease of use and minimal bandwidth requirements, it lends itself

as an ideal platform for the unauthorised distribution of copyrighted material.

This typically commences with a single source sharing large sized files to many

downloaders.

Based on global bandwidth usage, BitTorrent is the most popular P2P network

in use today. In 2005, D. Erman measured BitTorrent traffic to account for over

60% of the world’s bandwidth usage [82]. The BitTorrent protocol is designed

to easily facilitate the distribution of files to a potentially large number of

interested parties, i.e., other peers, with a minimal load on the original file

source, as outlined in the BitTorrent protocol specification. This is achieved

through the following steps:

1. The file is split up into a number of uniformly sized pieces or chunks

with typical chunk sizes generally ranging from 128kB to 4MB.

2. The initial source of the file creates a UTF-8 encoded “.torrent” metadata

file, which includes unique SHA-1 hash values for the entire file and

each of the file chunks, along with other required file information, e.g.,

filenames, chunk size, total file size, path information, client information,

comments etc.

3. This metadata file is then shared by the creator with other users

interested in acquiring the original content either through direct

distribution, e.g., email, instant messaging etc., or through the much

more common method of uploading onto a torrent indexing website,

such as ThePirateBay.org. Following the recent trend of maximising

decentralisation of the BitTorrent eco-system, many indexing websites

now only serve “magnet” URIs. These URIs enable the user to connect

to a distributed hash table, as outlined below, and acquire the metadata

file from other users.
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4. Users interested in downloading the available content must then

download this metadata file and open it using a BitTorrent client, such

as Azureus/Vuze or µTorrent.

5. The BitTorrent client is then tasked with identifying other peers who

are sharing the file uniquely identified in the metadata file, i.e., other

peers in the swarm. This includes identifying seeders, i.e., peers with

complete copies of the content shared in the swarm, and other leechers,

i.e., peers who are currently downloading the content, but are sharing the

completed chunks with others. This peer discovery is achieved through

a variety of methods including tracker communication, distributed hash

tables and peer exchange.

The success of the BitTorrent protocol can be attributed to uploaders incurring

no additional cost (besides their Internet connectivity costs) to share files

with many users. In practice, the original uploader needs only to stay

connected to the swarm until a sufficient number of leechers have one full

copy of the file between them. This is made possible through the leechers

uploading their completed chunks of the entire file to other downloaders.

Due to BitTorrent’s ease of use, minimal bandwidth requirements and

perceived Internet anonymity, it lends itself well as an ideal platform for the

unauthorised distribution of copyrighted material. Initially this distribution

consists of a single original source for sharing a large sized file between many

peers.

Each BitTorrent client must be able to identify a list of active peers in the same

swarm who have at least one piece of the content and is willing to share it, i.e.,

that has an available open connection and has enough bandwidth available to

upload. By the nature of the protocol, any peer that wishes to partake in a

swarm, must be able to communicate and share files with other active peers.

There are a number of methods that a client can attempt to discover new peers

which are in the swarm:

1. Tracker Communication – BitTorrent trackers maintain a list of seeders
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and leechers for each BitTorrent swarm they are currently tracking. Each

BitTorrent client will contact the tracker intermittently throughout the

download of a particular piece of content to report that they are still alive

on the network and to download a short list of new peers on the network.

2. Peer Exchange (PEX) – Peer Exchange is a BitTorrent Enhancement

Proposal (BEP) whereby when two peers are communicating, a subset of

their respective peer lists are shared during the communication.

3. Distributed Hash Tables – Within the confounds of the standard

BitTorrent specification, there is no intercommunication between peers

of different BitTorrent swarms. Azureus/Vuze and µTorrent contain

mutually exclusive implementations of distributed hash tables as part

of their standard client features. These DHTs maintain a list of all

active peers using each client and enables cross-swarm communication

between peers. Each peer in the DHT is associated with the swarm(s) in

which it is currently an active participant.

Figure 3.8: µTorrent Screenshot.

Due to the fact that the protocol is openly documented, numerous BitTorrent

clients are available besides the official BitTorrent clients produced by

BitTorrent Inc. [83], such as Azureus/Vuze, µTorrent, Shareaza, BitLord,
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BitComet. Each client maintains its list of known active peers in a different

manner. Different client parameters such as when the client decides to close

an inactive connection and how the upload capacity is distributed results

in some clients being more performant than others. In 2010 Iliofotou et al.

conducted a large scale measurement study involving more than 11 million

clients across over six thousand ISPs comparing the real world performance

of the two most popular BitTorrent clients, Vuze and µTorrent [84]. It was

found that µTorrent is on average 16% faster than Vuze.

3.5 Anti-Infringement Measures

With the popularity of acquiring copyrighted content illegally, many content

producers are employing a number of technical solutions in an attempt to

combat online piracy. In recent years, a number of anti-P2P companies have

started to offer their services to the content producing industries.

3.5.1 Attacks on Leechers

In 2008, Dhungel et al. identified some of the techniques employed to interfere

with unauthorised downloading and measured how successful attacks on

BitTorrent leechers were [85]. Two different attack vectors were identified:

1. Fake-Block Attack – In this attack, the goal is to prolong the download

time for a particular leecher. This is achieved by offering fake blocks of

the desired content. While this is easily identified client-side through

the hashing of the completed block, nonetheless time is wasted as the

hashing can only occur once the 128kB to 4MB block is completely

downloaded. The download could be further delayed if the peer decides

to redownload this block, or any other block, from an attacker.

2. Uncooperative Peer Attack – In this scenario, the attacker joins a swarm

and establishes connections with as many peers as possible without ever
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sharing any blocks of the content. With each peer generally maintaining

in the order of ten active connections at a time, taking up one or more

of these valuable connections can have a significant impact on the

performance of the user’s download.

3.5.2 Pollution

In 2005, Liang et al. identified that one way employed to combat unauthorised

file-sharing of copyrighted content is to spam the network with large volumes

of bogus or polluted files [86]. With many P2P networks relying on a simple

metadata (movie title, artist, song title, etc.) keyword search to locate desired

content, polluting the P2P ecosystem with bogus files might be seen as a

useful copyright infringement countermeasure to copyright holders. Due to

each piece of content having as many as 50,000 different variations available,

polluting the system with fake versions of the content can be a simple process

merely requiring a user to rename a bogus file with the desired popular title.

3.6 Forensic Process/State of the Art

3.6.1 Network Crawling

Crawling a P2P network attempts to discover each node participating in a

given network. Depending on the network design, total peer enumeration

may be possible, with decentralised networks generally proving easier to

crawl. For example, Napster can only be crawled through the responses

returned by querying the system for specified content whereas Gnutella

can be crawled through the exploitation of the ping/pong peer discovery

messages built into the protocol [87]. Network crawling may attempt to find

all the nodes sharing a specified piece of content, or attempt to enumerate the

size and geolocation of the entire network.
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3.6.2 Deep Packet Inspection

Deep packet inspection attempts to classify packets as belonging to a given

network. Traditionally this task was deemed relatively simple to implement

as specific applications generally had a specific port number assigned to it.

P2P traffic is becoming harder to identify due to port obfuscation, encryption

and tunnelling. DPI has evolved to take packet flows into consideration when

attempting to identify traffic. A combination of per-packet sampling and

per-flow sampling is generally used to aid in identification. In 2013, Khalife

et al., deployed an OpenDPI testbed in an attempt to identify encrypted P2P

traffic [20]. Incorporating packet flow analysis greatly improved the accuracy

of the detection of P2P traffic, as can be seen in Figure 3.9.

Figure 3.9: Flow accuracy results for P2P traffic as a function of the packet
detection number

3.6.3 Identifying Copyrighted Content

In 2008, Nasraoui et al. proposed a system to identify copyrighted content

(movies, TV shows, ebooks, audio files, etc.) [88]. It was proposed that a

database of known file hashes and metadata could be maintained by law

enforcement agencies facilitating the identification of any content. In order
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for such a system to be complete, it would require cooperation from content

producers and most likely a large number of volunteers in a wiki-style

approach to maintenance. In this model, each audio or video file would have

to be downloaded and manually verified to be a copy of the original. The

hash of the verified file would then be added to the shared database.

An alternative to the per-file hashing approach has been developed by

Audible Magic Corp. The company has patented an audio and video

identification methodology for identifying any piece of content through an

heuristic approach [89]. This system creates a “fingerprint” of the content

not based on the digital signature, but instead based on the recognition of

the audio wave patterns produced by playing the file. This facilitates the

identification of known content, irrespective of the codec, bitrate or metadata

of the file.

3.7 Forensic Counter-measures

Due to privacy concerns from the monitoring of P2P file-sharing, some users

attempt to circumvent detection through the use of forensic countermeasures.

Many ISPs monitor their network traffic and perform throttling or “traffic

shaping” in order to curtail bandwidth hogging services, such as P2P

file-sharing.

3.7.1 Anonymous Proxies

Some users of P2P file-sharing employ anonymous proxy services, such as

Tor (The Onion Router) [90] or I2P (Invisible Internet Project) [91]. These

services are distributed overlay networks designed to anonymise TCP-based

applications. Each packet sent from a client operating on the network is

encrypted and subsequently bounced through a random number of nodes

before reaching its destination server. The response is then sent back through

another random path [92]. There are currently no methods available to reverse
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engineer a users actual IP address from the traffic originating from a Tor

exit node. However, in 2012, Gilad et al. outlined a number a methods for

detecting whether a given client is using Tor or not [93].

3.7.2 Encrypted Traffic

The use of encryption helps to overcome some of the network forensic

investigations utilising packet sniffing or deep packet inspection. An number

of P2P networks employ encryption methods for all communication, e.g, SSL.

Many of the tools deployed by ISPs and network monitoring companies rely

on DPI and payload heuristics to analyse network traffic and this encryption

renders these approaches ineffective [94].

3.7.3 IP Blocking

To avoid detection, some users employ custom firewall tools, such as

PeerBlock, PeerGuardian, Moblock, etc., to ban any incoming or outgoing

communication with specific other users [95]. These tools accept a list of

defined “bad” IP addresses. Users can create their own lists or acquire

lists of known bad IP addresses from numerous online services. One such

service is iBlocklists [96], which allows users to download lists of known IP

address ranges for a number of content producing companies, governmental

organisations, educational institutions, anti-piracy companies, etc. Such

lists can contain over 222,000 IP address ranges and in total can cover over

796,128,149 IP addresses [97].

3.8 Malware Risks on P2P Networks

For almost as long as P2P networks have been used for file-sharing, they

have been exploited for the propagation of viruses and malware. Keyword

based metadata searching systems are most vulnerable to attack due to their
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simplified searching method. For example, a user may easily download

and attempt to play an executable file as opposed to the music file he was

attempting to download. Users can be easily tricked into downloading these

files, by renaming the malware file with a desirable popular artist name, e.g.,

“Katy Perry.exe”. In 2006, Shin et al. found that over 12% of Kazaa client hosts

were infected by over 40 different viruses, with 15-22% of the total crawled

data in their investigation containing viral files [98]. The Kazaa installation file

also came bundled with malware. During the install process, and in order to

complete the installation, the user has to agree to installing some third-party

software alongside the Kazaa installation, as can be seen in Figure 3.10.

Figure 3.10: Kazaa end user licence agreement

In an attempt to propagate itself, many malwares will connect to a popular

P2P network and attempt to get other users to download and infect their

machines. Many of these self-propagating malwares will cleverly respond

with a dynamic filename based on whatever keywords the incoming request

query contains [99].
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3.9 Summary and Discussion

In this chapter, P2P file-sharing systems and their differing design

characteristics were introduced. Many of these popular networks are

used mainly for the unauthorised distribution of copyrighted material which

costs the content producing industry billions of dollars every year. Some

of the methods used for investigating these networks were also introduced.

These generally involve either building a bespoke network crawling tool or

deploying a hardware/software network packet analysis system.

3.9.1 Weaknesses of Current Investigative Approaches

If different investigative bodies, e.g., law enforcement from different countries,

wish to investigate the same network, each body needs to start from scratch

in the development of their own tool. As a result, from a P2P cybercrime

investigation perspective, a significant amount of time is wasted globally in the

duplication of developmental, investigate and analysis efforts in an attempt to

reach a common goal. The universal P2P network investigation framework

described in Chapter 5 introduces solutions to some of these issues.
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CHAPTER

FOUR

BOTNET INVESTIGATION

4.1 Introduction

In the past, cyberattackers required high-end computer equipment coupled

with high bandwidth Internet connections to accomplish their goals. In

recent years, high bandwidth at home and workplace broadband Internet

connections have become common-place. This has resulted in these computers

being targeted by criminals to create large, global distributed systems, i.e.,

botnets, to perform their bidding. The software robots, or bots, which form

these distributed systems are controlled remotely by the criminal attacker, or

botmaster. The paradigm of modern botnet cybercrime involves enslaving

compromised computers as a strategic criminal asset. Traditionally viruses

were created with the intention to attack and destroy infected systems, but

now malware has evolved to gain control of infected machines and use these

machines to build a global network to perpetrate cybercrimes [100].

Botnets have become the tool of choice to conduct a number of online

attacks, e.g., DDoS, malware distribution, email spamming, phishing,

advertisement click fraud, brute-force password attacks, etc. Criminals

involved in conducting their craft online all share one common goal; not to get

caught. Botnet design, as a result, has moved away from the traditional, more

traceable and easily blocked client/server paradigm towards a decentralised

P2P based communication system. P2P Internet communication technologies
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Figure 4.1: Sample CAPTCHA from the reCAPTCHA online service and its
automated book scanning source text

lend themselves well to use in the world of botnet propagation and control

due to the level of anonymity they award the botmaster. For the cybercrime

investigator, identifying the perpetrator of these P2P controlled crimes has

become significantly more difficult. This chapter outlines the state-of-the-art

in P2P botnet investigation.

The prevalence of large, global botnets has resulted in many online services

deploying human authentication systems to reduce or eliminate automated

registration for forums, email accounts, social networks, etc. These systems

aim to prevent automated botnet login attempts resulting in password

cracking or spam. The most common test for telling whether any given visitor

to a website is human or machine is to employ “Completely Automated Public

Turing test to tell Computers and Humans Apart” (CAPTCHA) verification.

The test involves presenting the user with a string of obfuscated characters

and requires the user to identify the often scrambled words in order to

proceed. Figure 4.1 shows a sample word taken from a text with unreliable

results from regular optical character recognition algorithms [101]. It has now
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Figure 4.2: Simple Trojan Horse Architecture Controlling Multiple Computers

become common to use these scanned words which are difficult automated

recognition to verify human website usage. The human delivered results from

these CAPTCHA systems can feed directly into text scanning and recognition

projects, such as Google Books.

4.2 Botnet Architectures

Arguably, the simplest implementation of botnet technology involves an

attacker manually taking control of each victim’s computer using a remote

trojan horse based attack, as shown in Figure 4.2 [102]. In this model, the

attacker had one-to-one direct control of the victim’s machine. The target of

the attack would generally be the user of the infected machine as the attacker

is capable of capturing keystrokes, executing any applications, intercepting

print jobs, accessing local or network files and destroying the victim’s

operating system or system configuration. From an anonymity standpoint,

this design has significant privacy issues for the attacker. Any investigation

of the trojan’s network traffic would easily reveal the attacker’s IP address,

which could subsequently be resolved back to reveal his identity.

Subseven was one of the most popular trojan horse systems (alternatively

referred to as Sub7 or Sub7Server). It consisted of a client trojan horse virus
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Figure 4.3: Subseven Control Panel

and a server or control panel to facilitate the attack. Released in 1999, it

targeted vulnerable Windows machines [103]. The types of commands the

attacker could execute can be seen in Figure 4.3.

4.2.1 Client/Server Botnet Design

The simplest botnet architecture relies on a central server to control all nodes

on the network, often referred to as a centralised design. When a bot comes

online, it registers its availability with the server, which in turn issues the bot

with commands for the work it must complete. These Command and Control

(C&C) servers are directly controlled by the botmaster. The architecture of

this C&C based system contains a single controlling server with multiple

compromised machines communicating with it, as outlined in Figure 4.4.
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Figure 4.4: Command and Control Server Botnet Network Architecture

Traditional botnet design was centred on a client/server paradigm (see Figure

4.4). Using this model, the botmaster issues requests to the HTTP (regular

website based communication) or Internet Relay Chat (IRC) based C&C server.

In the case of IRC, each connecting bot will pick a randomised nickname for

the chatroom and as a result, if necessary, the server has the ability to issue

unique commands to each bot. The use of a C&C server eliminates the need

for the botmaster’s computer to remain online in order to distribute the latest

orders to the entire botnet. C&C servers also award the botmaster an added

level of anonymity from detection.

An advantage to using the HTTP based design over the IRC design, is that

the bots themselves do not need to be continuously connected to the server

[104]. Instead, the client-side HTTP bot software, which runs on the infected
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nodes, is programmed to periodically ”check-in” with the C&C server in order

to get its latest commands. In the IRC based model, the bots remain connected

to the IRC channel while online. This leaves the system vulnerable to IRC

based investigation and manipulation by law enforcement or other forensic

investigators.

The main concern with this simple client/server model is that it leaves the

botnet vulnerable to a single point of failure. To counteract this, multiple

C&C servers may be used optionally in conjunction with a dynamic Domain

Name System (DNS) service, such as DynDNS [105] or No IP [106]. The

dynamic hostnames required are hard-coded into the bot software, enabling

the botmaster to quickly and easily swap in a new command and control

server when needed. This is achieved by simply updating the IP addresses

associated with the dynamic DNS provider ensuring no disruption of the

botnet’s regular operation. Cloud services lend themselves well to being

exploited for running C&C servers and offer the botmaster the ability to

quickly and easily change not only the IP address, but the geographic location

of the C&C servers frequently. In 2009, Amazon discovered that its Elastic

Compute Cloud (EC2) was being used by a new version of the Zeus botnet for

its C&C functionalities [107].

The weak point of the original HTTP/IRC based command and control centre

botnet design, as it can be seen in Figure 4.4, is that there is a single point

of failure. If law enforcement or any other third party wished to destroy the

botnet, the command and control server can be targeted and the botnet can be

effectively destroyed, i.e., left without any commands or work to complete.

The next evolution of botnet design incorporated multiple C&C servers to

attempt to alleviate the strain and weaknesses of a single server design, as

it can be seen in Figure 4.5. In this model, each bot in the system will register

and check-in with multiple C&C servers.
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Figure 4.5: Evolution of botnet architecture to eliminate single point of failure

Figure 4.6: Typical botnet topology with commands optionally routed through
a C&C server.
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4.2.2 P2P Design

The design of botnet architecture has continuously evolved over the last

number of years to improve the performance and attack resilience of the

system, while awarding a greater degree of anonymity to the botmaster.

A natural progression of the client/server design involved expansion to

incorporate as many C&C servers as possible. Further extension of this model

involves utilising P2P technologies in the architecture of the systems. This

effectively turns each bot in the network into a C&C server. This results in

every active node in the network having the ability to communicate with a

subset of all the other nodes in the same botnet. Commands and updates are

passed from peer to peer in a manner that eliminates the need for controlling

servers. As a result, the single point of failure of the client/server botnet

design is effectively eliminated [108].

Decentralised botnet design relies on a DHT to record all the active nodes on

the network [109]. In order for any new bot to participate in the network,

it must have an avenue available to it to initially connect to this DHT. This

is generally done through the hardcoding of an initial “seed” list or a list of

bootstrapping servers. The seed list is a local cache of IP addresses which

are more likely active nodes in the network. A node attempting to join

the network can contact either a seed or one of the bootstrapping servers

to connect to the DHT and begin regular operations. Without some initial

hardcoded bootstrapping method to connect to the DHT, the only other

completely decentralised option available to a P2P system is to employ

random address probing . While this may initially appear an unlikely method,

recall that discovering a single node connected to the DHT is sufficient to

join the system and some of the DHTs involved can contain millions of active

nodes. In practice, Dinger et al. [110] found that limiting the randomised

scan rate to 100 packets per second resulted in locating a BitTorrent DHT peer

within ten minutes with a probability of �94%.

Botnet developers are continuously updating and improving botnet design.
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In 2013, Memon et al. proposed a new botnet system, named Tsunami,

which attempts to eliminate the bespoke bootstrapping server weakness

of decentralised P2P botnet design by parasitically transmitting all botnet

communications on the existing global Kad network [111]. The Kad network

is a DHT based P2P network with over 4 million users most commonly used

by numerous P2P file-sharing applications, such as eMule and MLDonkey.

Commands are sent from the botmaster to any active bots using the “lookup”

messages in Kad. This facilitated a hidden payload instruction up to 106

bits in length. The lookup command in Kad is automatically passed from

node-to-node in a similar method to that of querying the Gnutella P2P

file-sharing network, as described in Section 3.4.2. It was found that Tsunami

could reach 75% of its bots within 4 minutes and receive responses back from

99% of these bots.

4.2.3 Hybrid Design

A hybrid botnet topology builds upon the P2P design by promoting particular

high uptime and high bandwidth nodes to “supernode” status, in a similar

fashion to Gnutella outlined in Section 3.4.2. This results in a two tiered model

with client bots and servant bots [112]. The servant bots are the only ones

receiving the commands directly from the botmaster and are responsible both

for spreading those orders throughout the network and are responsible for the

maintenance of the network itself [113].

4.3 Botnet Lifecycle

For most botmasters, the botnet lifecycle starts with the configuration of the

botnet client (infecting malware to run on victims’ machines) and the botnet

controlling server (responsible for the dissemination of the latest updates and

commands). There are numerous software solutions available to criminals

wishing to create their own botnet, requiring varying degrees of technical
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knowledge and costs:

1. Buy or rent an existing botnet – There are numerous avenues available

to the criminal to buy or rent partial or entire botnets. Botnets are rented

or sold for differing prices depending on the associated “quality”, i.e.,

size, node uptime, bandwidth, latency, geolocation, etc. This option

requires minimal technical knowledge and the perpetration of the crime

can commence almost instantaneously. This model shares many of the

characteristics as renting cloud computing resources from legitimate

providers. Minimal upfront time and money is required on behalf of the

botmaster to get started.

2. Buy pre-developed botnet software – This option will supply the

criminal with developed software. This software is configured to

spread the client malware via P2P networks, email attachments, instant

messaging, etc. The cost of purchasing such a system increases with

the decreased likelihood that the client executable will be discovered by

anti-virus software and the broader the operating system compatibility.

Choosing this option will allow the criminal to create numerous different

botnets if desired, based on the purchased technology. Some technical

knowledge and time is required in order to spread and infect the desired

number of nodes. A significant downside to this option is that the

same software will likely be sold to numerous criminals who may

each create several botnets. The more prevalent the software is, the

higher the likelihood that the malware will be detected or reported to

anti-virus/malware detection providers. In this instance, all botnets

based on this software may be rendered useless. However, in order for

this to occur, all victims must update their virus definitions and remove

the infection.

3. Develop customised bespoke botnet software – This is the most resilient

option against detection, but obviously requires the highest amount of

technical ability. Before any development can commence, a vulnerability
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must first be discovered in a popular operating system, browser, e-mail

client or other common piece of software or hardware. This vulnerability

facilitates the infection of the victims’ machines, as outlined in greater

detail in Section 4.3.1. Assuming a functional botnet client can be

developed, the botmaster still has the same task as described above in

spreading the infection to as many victims as required.

Once the botmaster has the required software (often a PHP/MySQL driven

back-end installed on a command and control server), the configuration of

the infecting malware must take place. Each newly infected machine must

accept new orders, update the bot client software, send information back to the

botmaster and potentially distribute orders with other known nodes in the P2P

system. This configuration file will contain settings and required operational

information, such as trusted C&C servers, update servers, DHT information,

communication frequencies, resource usage limits, etc., [114]. In a purchased

or rented system, this configuration step will likely have been completed by

the seller.

To ensure maximum flexibility, any hardcoded host information, such as

the list of trusted C&C servers, will generally be included using a dynamic

hostname supplied by dynamic DNS providers such as DynDNS [105]. This

allows the botmaster to regularly shutdown or move the C&C servers without

needing to update any of the bots on the network. To achieve this move,

the botmaster merely changes the IP address associated with each dynamic

domain name supplied in the configuration file.

A typical botnet deployment lifecycle from a new vulnerable host’s

point-of-view can be seen in Figure 4.7 [115]. Each of the indicated steps

are outlined in greater detail in Sections 4.3.1 to 4.3.5. Most botnets aim to

achieve, from the point-of-view of the users of the effected machines, no

discernible performance reduction to the regular expected operational speed.

The bot’s client can be configured to intelligently use only available resources

and as a result, potentially never get discovered. A user with what appears
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Figure 4.7: Typical Botnet Lifecycle from a Victim’s Point-of-View

to be a fully functional computer may never decide to install or run anti-virus

software.

4.3.1 Spreading and Infection Phase

In order for a botmaster to execute his desired acts, the bot malware client

must be running on a significant number of infected machines. In order for

a machine to get infected with the malware, either some user interaction

is required or a software vulnerability is exploited in order for the binary

executable to run [116].

The infection or “recruitment” phase is referred to as the phase in which a

clean host is infected by a bot binary and, as a result, becomes a member of the

botnet [117]. This generally involves some malicious executable compromising

a host through any available means, e.g., taking advantage of a software or

hardware exploit through social engineering, instant messaging, unprotected

network shares, malicious email attachments or the mimicking of desirable

content on download sites or on P2P file-sharing networks [118]. In 2007,

the European Network and Information Security Agency (ENISA) conducted
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Figure 4.8: Typical Malware Attack Vectors

research into the infection vectors of botnets and found that the most common

infection method was through browser exploits [119]. The complete results of

their findings are shown in Figure 4.8.

Once a new machine is infected, many bots attempt to self-propagate by

sending emails to the victim’s address book, instant message contacts, etc.

Some bots will also connect to popular P2P file-sharing systems in an attempt

to dupe users into downloading the infection.

4.3.2 Secondary Code Injection Phase

Many of the attack vectors for the malware involve a memory buffer overflow

exploit in software. Due to the nature of the attack, it is common that the

initial “break-in” or “dropper” binary might not contain the entire bot client.

It may merely serve the function of gaining the required operating system

access rights to facilitate the install of the client software [120]. During this
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phase, the binary will download and install the latest version of the botnet

client onto the infected machine. Seeing as a common method for malware

distribution is to email the malware as an executable or to entice a download

from a P2P file-sharing network, it is also common for the version of the

malware distributed to be out of date. For example, the default behaviour

of most P2P file-sharing systems is to automatically share all downloaded

files. As a result of this potentially outdated software, it is also during this

secondary phase that the bot software will update itself to the latest version

from the C&C server.

4.3.3 Command and Control Phase

It is during the C&C phase that a newly infected computer will become

part of the botnet. A traditional client-server bot, once installed on a new

machine, will immediately attempt to “phone home” through an IRC network

or contacting a HTTP C&C server. Decentralised P2P bots are distributed

with a predefined bootstrapping method to connect to the relevant DHT.

Once connected, the newly compromised machine will ask one of its peers

for the latest command. Some of the P2P bots require that a specific port is

open for the peers to be able to communicate with each other [121]. Through

the deployment of a firewall, many of the unnecessarily open ports on any

given machine will be blocked. Any new application that attempts to access

the network for any reason can also be flagged to the user, e.g., immediately

after a recent infection of the botnet malware. Newer versions of the bot client

software will not use a predefined port number to aid in avoiding detection.

There are two different ways to spread a command in a botnet system, namely

push and pull. IRC based bots belong to the push-based category as they sit in

an IRC chat room listening for a new command. HTTP based bots periodically

check with the server to verify if there is any new work. P2P bots can do both

as they send and receive commands to/from other bots.
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4.3.4 Attack Phase

The attack phase is the most important in the botnet lifecycle from the

botmaster’s perspective. The purposes of designing, developing and

spreading the botnet client malware onto as many machines as possible is

to conduct whatever distributed illegal activities the botmaster has in mind.

When a bot receives a command, so long as it remains online it will execute

that command until one of the following two events occur:

1. A predefined stopping condition is met – This condition may be when

a specified execution time has elapsed or when the objective goal

is accomplished, e.g., the taking down of a website or service, or a

password having been cracked, etc.

2. A new order is received – Any new order received will overwrite the

current operation. Modern botnet design facilitates the execution of

multiple orders simultaneously and each job may need to be manually

ordered to cease.

Examples of the types of attacks conducted by botmasters and real-world

monetary rewards for each are outlined in greater detail in Section 4.5.

4.3.5 Update and Maintenance Phase

Botmasters have the ability to issue update commands to their entire system

of slave machines. Due to the interest in botnet detection and investigation,

the attackers need to have a facility to upgrade their tools. This stage allows

the botmaster to update the existing binaries and/or configuration to make the

entire system more resilient to new digital forensic techniques.

The maintenance phase of the botnet lifecycle involves feeding execution,

uptime and update information back to the botmaster. Figure 4.9 shows some

of the information available to a botmaster including the number of currently
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Figure 4.9: Screenshot from the Blackenergy Botnet C&C Server

active nodes, the churn rate per hour or day and the total number of detected

bots [114].

4.4 Underground Economy

Given that financial gain is perhaps the biggest driving force in the growth of

botnet technologies and volume of attacks, it was a natural progression that

a large underground botnet enabled economy would develop. Numerous

vendors, merchants, malware authors and customers are involved in the

daily trade of personal information, attacks, spamming services and botnet

technologies. Among the network of cybercriminals, a vibrant market has

emerged trading in compromised credit cards and financial information.

Much of this collected information would have been harvested by botnets.

Those botmasters who target the collection of these financial details are

usually unable to extract the funds directly from the accounts, so they usually

sell them at a fraction of their value to experienced criminals or organisations

who have a greater infrastructure available to them [100].

Much research has been conducted into how this large underground market

67



of trading criminal tools and technologies can be stopped, or at least

hindered. Specifically to the trade of botnets, one method proposed to stem

the profitability of this economy was proposed by Li et al. in 2009 [122].

This method suggests that by introducing virtual bots into the system, an

uncertainty level in the performance of the network is introduced, e.g., a

botmaster needs a specific amount of active nodes to perform a DDoS attack

on a server and if many of the nodes currently active in the botnet are fake, the

goal cannot be accomplished. This makes the task of achieving the optimal

botnet attack size infeasible for botnet operators and will ultimately effect

their profitability.

4.4.1 Valuation

A significant underground economy of selling, trading or renting botnets has

developed in recent years. A botnet with 10,000 infected machines can fetch

approximately $300-$800, depending on the geolocation of the nodes and the

quality of the nodes. This quality is determined by the nodes being infected

solely by a single botnet client and the nodes’ uptime and internet connection

speeds. Botnets with infected nodes based in the United States are the most

valuable at $125 per 1,000, with European based botnets valued at $35 per

1,000 and Asian botnets valued at just $13 per 1,000 [123]. In 2010, Danchev

found that the average price for renting a botnet is $67 for 24 hours and $9 for

hourly access [124]. Often more money can be made through the renting of a

botnet to multiple customers concurrently, referred to as “Botnet as a Service

(BaaS)” [125].

4.4.2 Spamming

In 2010, it was estimated that over 89% of all emails sent were spam, resulting

in over 262 billion spam emails being sent per day. In 2013, dealing with

the volume of spam will cost over $338 billion in network bandwidth and

infrastructure costs in 2013. The majority of spam originates from botnets and
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it is estimated that 80-85% of all spam is produced by 6-10 huge botnets [126].

Almost all of this spam is illegally distributed under current laws in North

America and Europe. Rao et al. estimate that the sending of spam is a $200

million per year business for the botmasters [127].

In 2011, Stone-Gross et al. analysed a popular underground web-based

forum known as “Spamdot.biz” [123]. The forum required significant social

engineering to gain access, with the authors requiring a reference from at

least three existing members of the forum before they were granted access. It

was found that this forum was used by almost 2,000 users to advertise their

spamming services and to buy/sell information. E-mail address lists were

worth between $25 and $50 per one million, contingent on the geolocation of

the users and the proportion of addresses belonging to email providers with

stronger spam filters, e.g., Gmail, Hotmail or Yahoo.

Kanich et al. found in one specific instance that a major spam campaign

involving the sending of almost 350 million emails using the Storm botnet,

only made $2,731.88 in revenue for the advertiser [128]. The campaign

required over 75,000 active bots in the network to send the emails and

resulted in 28 purchases from the associated online pharmacy website, or a

conversion rate of just 0.0000081%. All but one of these purchases were for

male pharmaceutical products, such as Viagra and Cialis, and the average

purchase price was close to $100. The authors continue to estimate that the

cost of such a campaign would be in the order of $25,000 and as a result,

speculate that the botmasters of the Storm botnet may be the purveyors of the

pharmacies advertised.

An obvious approach for ISPs and email providers to blocking spam emails

is to refuse communication, or blacklist, known IP addresses that are found

to be sending high volumes of messages. In the traditional spamming model,

whereby a spammer hires a server or number of servers to send out the

emails, this approach can prove very effective. However, blacklisting is not

an efficient approach for blocking spam originating from infected nodes in

a botnet. Any single node in the botnet is most likely a regular home or
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business user who is likely to get assigned a new IP address regularly, due to

the common ISP practice of DHCP based IP address allocation. As a result,

blocking every IP address that is found guilty of sending spam will result in

the email service provider ultimately blocking a high number of legitimate

users (who innocently may have been assigned an IP address previously used

by an infected bot).

4.4.3 Phishing

Phishing generally involves an attempt to trick the user of an infected machine

to enter personal or confidential information through faux webpages [104].

These often convincing data harvesting webpages are injected into the user’s

regular browsing habits, popped up in their browser or OS or sent as links

in emails. Phishing attacks are also commonly distributed by email spam.

Webpages emulating those of a bank, online payment provider or lottery

are common themes used in email based phishing attacks to entice the

unsuspecting user into parting with valuable personal information.

Links have been found between distributed online phishing attacks collecting

credit card information and the funding of terrorism. In one example, three

men were arrested in the United Kingdom in 2008 and were found guilty

of funding the terrorist organisation, al-Qaeda [100]. The trio were found to

be in the possession of over 37,000 stolen credit card numbers, along with

associated personal information from victims. They had made over $3.5

million in fraudulent charges and had purchased over 250 airline tickets.

4.4.4 Scamming the Scammers

In 2010, Herley et al. documented that a large proportion of the underground

economy has evolved offering bogus botnet software, email addresses,

botnets, etc., to unsuspecting criminals [129]. The presence of these scammers

ultimately represents a tax on every “honest” transaction, where neither party
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might be familiar with the other. It was also found that a two-tier underground

economy now exists. The top tier consists of elite cybercriminals where their

organisation, alliances and trust is established. At this tier, transactions take

place between known or “reputable” criminals. The lower tier, generally

conducted on IRC marketplaces, is occupied by criminal newcomers without

any experiential skills or alliances and are easily cheated out of their money

by fake sellers or “rippers”, who have no intention of providing the goods or

services offered.

4.5 Botnet Powered Attacks

As proven by the Anonymous “hacktivist” attacks in recent years, innocent

victims’ infected machines do not solely contribute to the the distributed

power of botnet attacks. Regular Internet users with shared political or

activist views can voluntarily decide to contribute their processing power to

a collaborative cause. Partaking in the Anonymous attacks involved users

downloading and configuring an open source network stress testing tool

called “Low Orbit Ion Cannon” (LOIC). Alternatively, users can donate their

computational power via a JavaScript-based version facilitating anyone who

visits the site to participate in the attack [130]. Regular P2P file-sharing

networks, such as BitTorrent, can also be manipulated by malicious

users to aid in the execution of a DDoS attack through the exploitation

of vulnerabilities in the protocol and operation of the network [131]. In a

cyberwarfare scenario, it is conceivable that citizens of countries with limited

computational infrastructure or supporters of terrorist organisations could

similarly be called upon to donate their systems to aid in a collaborated attack

on an enemy’s infrastructure.

The potential for attacks originating from a growing number of sources is a

concern for the security of many nations across the globe. In 2012, Amoroso

et. al defined five possible motivations behind cyberattacks [132]:
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1. Country-sponsored warfare – This is whereby national infrastructure is

attacked by enemy cyber forces in an attempt to disable critical resources

of the opposing country in a similar manner to traditional physical

warfare. The intensity of this attack is only limited by the resources

and devotion of the attacking nation. In a P2P botnet facilitated attack,

citizens could voluntarily donate their computing power towards the

national goals in a similar manner to the Anonymous attacks outlined

above.

2. Terrorist Attack – Groups driven by terrorist motivations could quickly

gain sufficient funding and expertise to conduct their attacks. Also in

this scenario, regular Internet users could partake in a terrorist operation

without requiring any skill or expertise by donating their regular

computer equipment to the attack.

3. Commercially motivated attack – Competing companies might target

their competitors’ e-commerce infrastructure in order to prevent regular

users from purchasing anything from their online stores. A popular

e-commerce site being taken offline has the added effect of harming the

victim company’s reputation in their customers’ eyes.

4. Financially driven criminal attack – These types of attacks could target

individual computer users by recording their Internet banking details,

online payment services and other financial services. Companies can also

be targeted with extortion threats against their online infrastructure.

5. Hacking – This scenario generally involves an individual or group

of hackers attacking targets motivated by little more than mischief or

attaining online recognition of their achievements.

A number of popular botnet powered attacks are outlined in the following

subsections:
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4.5.1 Infection

Often botnet developers integrate some method of self-propagation into their

design. Bots can scan for and infect more vulnerable computers with network

or browser based exploits. Increasingly, web-based infection mechanisms have

been observed online, whereby drone machines infect legitimate websites with

a drive-by exploit and consequently, visitors to those websites can become

infected [100]. These website based attacks are often targeted towards popular

websites to try to infect as many web users as possible.

Figure 4.10: Google Chrome Malware Warning

The prevalence of web based malware distribution has resulted in most of the

major web browsers implementing malware detection to aid in the protection

of their users. A sample browser warning is shown in Figure 4.10.

4.5.2 Distributed Denial of Service Attacks (DDoS)

Distributed Denial of Service attacks are attempts to overload or monopolise a

machine or web service resulting in the resource becoming unavailable for its
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intended purpose. The first DDoS attack occurred in the summer of 1999 and

ranged from several hundred to more than two thousand computers [133].

This type of attack can result in significant financial losses for their targets, as

their web services are rendered useless for the duration of the attack. While

many DDoS attacks result in the target being effectively offline for a certain

period of time, “kinetic world” cyberattacks also exist through firmware code

injection into physical hardware resulting in destroyed routers, firewalls,

motherboards, etc.

The first DDoS attacks were motivated by petty online fights on IRC channels

but soon shifted to monetary motivations with extortion of online gambling,

e-commerce and pornography websites in 2003. These attacks evolved into

politically motivated attacks against national infrastructures in 2007 [133].

In December 2010, the Anonymous “hacktivist” group launched “Operation

Payback” in response to the controversy of the attempted take-down of

the whistle-blowing website, Wikileaks [134]. The operation involved a

coordinated DDoS attack on the financial organisations (e.g. MasterCard,

Visa, Paypal), Wikileaks’s DNS provider and political and legal websites

involved in the controversy. LOIC is the network stress testing application

that was used by Anonymous to accomplish its DDoS attacks. LOIC was

utilised as a botnet whereby individual users download the client application

and voluntarily contribute their computing resources to the collective attack

of targets instigated by Anonymous.

!lazor default targethost=www.moneybookers.com subsite=/ speed=3

threads=15 method=tcp wait=false random=true checked=false

message=Sweet_dreams_from_AnonOPs port=80 start

Snippet 4.1: Example Low Orbit Ion Cannon Instruction

One example attack command sent by Anonymous to the LOIC bots

targeting the online payment provider Moneybookers.com and the included

parameters can be seen in Snippet 4.1 [130]. This particular attack was focused
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on overloading the Moneybookers.com web server running on TCP port 80,

with each bot running 15 concurrent threads to the server and repeating the

request every 3 seconds without waiting for any reply from the server.

Botnet driven DDoS attacks are also commonly used for extortion. In this

scenario, a website or service is sent a threatening demand and must pay

extortion or else be faced with their website being taken offline. A sample

extortion threat is shown in Figure 4.11 [124].

Figure 4.11: DDoS Extortion Example

4.5.3 Espionage

An infected machine is in complete control of the botmaster and often the

intended targets of the criminal activity are the home or corporate owners

of the compromised computer. Local documents, passwords, keystrokes,

financial and personal information are all desirable material that is capable of

being sent back to the controller of the bot. In a similar vein to the original

trojan horse viruses described above, desktop screenshots and webcam

snapshots have been observed getting relayed to the botmaster [100].

4.5.4 Proxies

Many botnet systems have proxy capabilities which effectively let the

botmaster tunnel their internet traffic through one or more of the zombie

machines. This can help facilitate anonymity for the botmaster and aid in

75



the evasion of capture from the authorities in a similar vein to anonymous

proxies, as outlined in Section 3.7.1.

4.5.5 Clickthrough Fraud

“Clickthrough fraud”, often referred to as just “click fraud”, involves

automatically gathering hits, advertising impressions and advertising clicks

on specific websites operated by the cybercriminal. As each bot on the P2P

network has a unique IP address, each infected machine appears to the

advertising network provider (e.g. Google Adwords) as though it is any other

unique visitor to the website. Generally a subset of the entire botnet will

“choose” to click on the advertising available on the site, emulating regular

visitor usage in an attempt to avoid detection. Advertisers are forced to trust

that the advertising engine providers detect and prevent clickthrough fraud

even though the engines still get paid for every undetected fraudulent click

[135].

4.5.6 Cyber Warfare

Cyberattacks on critical domestic or wartime infrastructure, e.g. power, water,

communication and emergency systems, could bring a country and much of

its military coordination to its knees during a time of war. Next generation

warfare will involve coordinated attacks on two fronts; both “traditional”

or “kinetic” ground, sea and air based fighting and attempting to remotely

destroy a nation’s cyber-infrastructure.

In July 2009, several government and business websites in the United States

and South Korea were reportedly invaded. Initial suspicion was focused on

North Korea as a source of these attacks, though no conclusive evidence was

discovered [136]. The rules and principles that govern physical warfare are

largely dictated by easy to comprehend physical laws and limitations. Due

to the fact that the majority of cyberwarfare attacks are conducted online,
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physical limitations, such as distance between warring nations, becomes

almost irrelevant [137].

4.6 Existing Detection Methods

As quickly as botnet technology is evolving, so too must the methodologies

attempting to keep up to date with the latest botnet advancements. Primarily,

the objective of any botnet investigation is to attempt to decipher the methods

of communication used by the system. This is in order to eavesdrop on the

botnet chatter in an attempt to record the manner with which the botnet

propagates itself, what commands the botnet is executing, what systems are at

risk and how many machines are infected. There are three main entry points

to P2P botnet investigation [113]:

1. Deliberately infect a host and participate in the botnet. This is the

most realistic scenario as a real machine is infected and, as a result, no

flags should be raised to either the bot client or any other peers that an

investigation is taking place. In this instance, the network traffic of the

machine can be monitored and analysed.

2. Deliberately infect a virtual host (or multiples thereof). This allows

multiple bot clients to run on the same physical machine allowing

much more network traffic to be gathered in a shorter period of time.

However, many modern bots have the ability to detect if their host is a

virtual machine and may adjust their behaviour accordingly.

3. Create a crawler and mimic the protocol used by the botnet. In order

for a crawler to be built, the bot itself will need to be completely reverse

engineered. The crawler can then act as though it were a regular bot on

the network to every other peer. This method awards the investigator

much control over the network, from enumeration to forwarding bogus

commands and potentially destroying the botnet.
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Figure 4.12: Typical Investigation Topology

Irrespective of the method used, the investigation will appear similar to that

outlined in Figure 4.12. A client machine in a controlled, forensically sound

environment will attempt to partake in the botnet. In order not to raise any

flags to any built-in, counter-forensic measures to either the botnet client

or any other peers on the network, this client machine must appear as any

other regular infected machine. All network communication from that client

machine can then be monitored, recorded and analysed.

In 2009, Feily et al. highlighted four main categories of detection available in

botnet investigation [115]:

1. Signature based detection – This can only be used to aid in the detection

of known bots and operates in a similar fashion to regular anti-virus

signature detection, besides being applied to the identification of

network traffic streams using an Intrusion Detection System.

2. Anomaly based detection – This attempts to identify botnet activity

based on network anomalies such as high network latency, high volumes

of traffic, suspicious port usage and other unusual system behaviour.

3. DNS based detection – Due to the prevalence of dynamic DNS (DDNS)

providers being employed to avoid hardcoding C&C server IP addresses,

the unusual querying of a DDNS provider may trigger detection.
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4. Mining based detection – Identifying C&C based traffic may prove

difficult, as they generally operate on commonly used ports, e.g., HTTP

traffic on TCP port 80. C&C traffic is also generally quite infrequent and

of low volume. As a result, data mining techniques, such as classification

and clustering can be used efficiently to detect C&C traffic.

Detection
Type

Unknown
Bot

Detection

Protocol &
Structure

Independent

Encrypted
Bot

Detection

Real-time
Detection

Low False
Positive

Signature No No No No Yes
Anomaly Yes No Yes No No
DNS Yes Yes No No No
Mining Yes Yes Yes No Yes

Table 4.1: Comparison of Botnet Detection Techniques

In 2013, Vania et al. published the Table 4.1 which presents the most up to date

facts about the various detection methods outlined above [138]. From the data,

it is clear that no single detection method is perfect and as a result, multiple

methods should be deployed in any detection system.

4.6.1 Host Based Approach

In 2007, Nummipuro outlined the three main methods available for detecting

and identifying P2P botnets on an infected host machine [139]:

1. Tracking Network Data – This involves tracking the remote machines

that a specific process is in communication with. Communication with

known C&C servers can aid in identifying a botnet system.

2. Analysing Network Data – This involves the analysis of the payload of

individual packets to identify common botnet communication patterns.

3. Behaviour Based Identification – When a specific piece of malware is

running on an infected machine, it calls on specific Microsoft Windows

API functions. The behaviour of these calls, in combination with one or

both of the above methods, can help identify the infection.
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4.6.2 Hardware Based Approach

Honeypots are a common system used to detect security threats, collect

malware and to understand the behaviours of malware and their perpetrators

[104]. Honeypots are specially constructed computers or network traps which

attract malicious attacks. However, advancements in botnet technology has

resulted in more intelligent honeypot aware, self-destructing bots. From

2006, forensic researchers began documenting ways that a bot could detect

that it was running in a honeypot [140]. The earliest detection methods were

based on the assumption that security and forensic professionals have liability

constraints, such that they cannot allow their infected honeypots to participate

in real (or too many real) attacks. Subsequently honeypot detection methods

expanded to include firewall, anti-virus and virtual machine detection.

Deep packet inspection (as outlined in Section 3.6.2) is another common

hardware based approach and may be used in conjunction with honeypots.

4.7 Investigation Types

4.7.1 Anatomy

Investigating the anatomy of a particular botnet includes analysis of the

behaviour of the bot binary and analysis of the network communication

patterns. This type of investigation attempts to classify the botnet as

centralised/decentralised, client-server or P2P based command and control.

The classification can continue past the architecture of the system to cover

some of its counter-detection and anti-forensic techniques. For example, Goel

et al. discovered that “Agobot” had a built in defence mechanism to kill an

upgradable list of over 610 anti-virus programs [141].
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4.7.2 Wide-Area Measurement

Wide-area measurement investigations concentrates on attempting to

enumerate the population of the botnet, the bandwidth usage, the

computational capabilities as well as the commands being issued. Gathering

the population of a botnet is a non-trivial task, as the number of nodes

connecting to a C&C server may only ever count for a small proportion of the

total infected nodes. There are two definitions of a botnet’s size, as specified

by Rejab et al. [142]:

1. Footprint – This indicates the aggregated total number of machines that

have been compromised over time.

2. Live Population – This measure denotes the number of compromised

machines that are concurrently in communication with the C&C server.

A relatively straightforward method for measuring the size of a botnet is to

run a bot on a deliberately infected machine and monitor the resultant traffic.

The number of IP addresses the infected node is in communication with can be

easily counted, having eliminated all non-botnet related network traffic. While

it would be unsafe to assume that a single node will ultimately communicate

with every other node over any reasonable timeframe; increasing the number

of infected machines (physically or virtually) and amalgamating the results

should lead to a more accurate representation.

Byung et al. proposed in 2009 a methodology for improving botnet size

estimates through the implementation of a botnet crawler, called Passive

P2P Monitor (PPM) [143]. PPM acts as though it were the same as any other

node on the network by implementing the “Overnet Protocol”, as explained

below. This method involves mimicking the functionality of a regular bot with

regards to maintaining the DHT. For each peer the crawler connects to, it can

ask for a list of all known peers. In this manner, a list of all known peers on

the network can be compiled. This approach closely resembles that employed

in the crawling of P2P file-sharing networks described in Section 3.6.1.
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Figure 4.13: Unique Bot IDs and IP Addresses per Hour

4.7.3 Takeover

Botnet takeover involves a third party gaining control of a botnet from its

owner. This third party could be law enforcement, researchers or another

botmaster. Once control of the botnet has been gained, the new botmaster

is able to issue commands, update configurations and operate the botnet as

desired. In 2009, Stone-Gross et al. successfully took over the Torpig botnet for

10 days [125]. During this time, the researchers identified more than 180,000

compromised machines and were sent over 70GB of automatically harvested

personal information.

The number of discovered unique Torpig bot IDs and corresponding number

of IP addresses can be seen in Figure 4.13 [144]. The discrepancy between

the number of bots and IP addresses found is accountable by network effects

such as DHCP churn and NAT. Stone-Gross et al. discovered 182,914 different

bot IDs originating from 1,247,642 distinct IP addresses over the ten day

controlling window.
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4.7.4 Investigation Obstacles

Many of the obstacles facing an investigation on P2P botnets are shared by the

investigation of any P2P network, documented or undocumented [6]:

1. DHCP – Due to a typical lease from an Internet service provider lasting

in the order of 2-7 days, dynamic reallocation of the same IP address

may result in two or more infected machines participating in the network

appearing as a single peer.

2. Proxy servers – Similar to the issue caused by DHCP, any bots that access

the Internet through a transparent or anonymous proxy server will also

appear as a single bot.

3. NAT – Numerous machines behind a shared router may appear to the

outside world as a single machine, as a result of sharing a single external

IP address.

4. Encrypted Communication – Should the bot employ encrypted

communication, the only method available for investigation is to

attempt to reverse engineer the bot. The decryption key for any

incoming commands must be stored within the bot’s client.

5. Difficulty in Take Down – Fighting back against botnets is often a matter

of discovering a vulnerability in the design. Traditionally, this has meant

attempting to take down their centralised C&C server [145]. However,

with the popularity of employing a fully decentralised network design,

the ability to take down a botnet has been made considerably more

difficult. Should the bot be reverse engineered, it is possible that the

botnet could be destroyed or “imploded”, i.e., through the issuing of an

uninstall command to each infected node.
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4.8 Case Studies

4.8.1 Nugache

Nugache used a list of 22 hardcoded IP addresses which each newly infected

host attempted to connect to [118]. These 22 hosts maintained a list of active

nodes, which they shared with each new node. The list of active nodes that

any given peer maintained always contained the initial 22 hosts, along with

any newly shared active IP addresses. The weakness of this design is that

once these 22 hardcoded nodes are taken down, no newly connecting peer

will be able to gather its initial list of active peers to communicate with. The

Nugache botnet communicates across its own bespoke network protocol. The

communication between each node is not encrypted, but there is a degree of

obfuscation employed [121]. In June 2007, Dittrich et al, discovered that there

were at least 6,000 active IP:port pairs in the Nugache botnet at any given time

and a total infected footprint of nearly 11,000 IP:port pairs [113]. It was also

discovered that Nugache propagated itself through two remotely accessible

exploits in the Window’s LSASS and RPC-DCOM services, emailing copies of

itself to targets found in the Windows Address Book and via instant messenger

clients, such as AIM and MSN Messenger.

4.8.2 Storm

The “Storm” botnet, first discovered in January 2007 [146], was the first botnet

discovered that utilised a P2P protocol. It spread through a mixture of social

engineering and exploiting vulnerabilities in Windows XP and Windows 2000.

The social engineering aspect of the worm was realised through the sending of

topical, newsworthy emails with attachments or links to videos and pictures,

which were in fact executables to infect the user’s machine. When it infected

any given machine, it would disable the Windows firewall and open a number

of TCP and UDP ports. Communication in the Storm botnet relies on the

“Overnet Protocol”. Once the malware was installed and the host machine
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was configured, it would then bootstrap onto the Overnet network and start

listening for commands. The worm was also engineered to aggressively attack

anyone who attempted to reverse engineer it [147].

The Overnet Protocol utilises a DHT, storing the IP addresses and unique

IDs of each active peer in the network [148]. It is based on the Kademlia

algorithm, similarly to BitTorrent [147]. Kademlia assigns a 160-bit hash ID

to each participating peer on the network. Each peer maintains a local routing

table consisting of the binding values for other peers that are ”close” to their

own ID. In order to bootstrap onto the DHT, the Storm bot has a hardcoded

list of over one hundred peers it can connect to [139].

4.8.3 Waledec

The Waledec botnet has striking similarities to the Storm botnet, while

simultaneously exhibiting unique refinements to aid in network uptime

and performance, but in part more vulnerable to attack. Waledec follows

a hierarchical architecture design. The lowest level were the spammer

nodes, which, as their name implies, were responsible for sending spam

emails. These spammer nodes communicated exclusively with repeater

nodes or super-nodes. These super-nodes, in turn, were in control of the

communication with the spammer nodes and would receive their commands

from the next level up, known as the sub-controllers [149]. The highest level

in the hierarchy, the C&C server, only communicated directly with these

sub-controllers.

Similar to the Storm botnet, the Waledec binary contains a list of hardcoded

nodes to use to bootstrap onto the network. In the event of all of these

hardcoded nodes being offline, a dynamic URL is also included in the binary

to fall back on HTTP to receive commands. Due to this HTTP fall-back,

this category of botnet can be referred to as a “HTTP2P” botnet [112].

Communication between nodes is encrypted, initially using a constant key for

all nodes, which later evolved into a frequently changing key, which would
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be created at the C&C server and passed down the hierarchy [149].

4.8.4 Zeus

The Zeus botnet is one of the largest botnets in the world [?]. Zeus uses

an entirely decentralised P2P architecture and, like the majority of other

botnets, it originally only operated on Microsoft Windows, but variants have

been discovered infecting Blackberry and Android mobile phones [150]. An

infected machine attempts to connect to its C&C channel by bootstrapping

on to any one of hundreds of predefined nodes. The command and control

channel consists of many thousands of server nodes [151]. Its purpose

is primarily to spy on the users of infected machines, with the intent of

gaining financial benefits for the botmaster [152]. It has the ability to log

any information entered by the unsuspecting user, as well as injecting data

displayed on visited web pages. The targeted information includes email

addresses, passwords, online banking accounts, credit card details and

transaction authentication numbers.

4.8.5 Stuxnet

Discovered in June 2010, Stuxnet was the first cyberwarfare weapon targeting

physical infrastructure [120]. It is believed to have been developed by the

United States and Israel in an attack against a nuclear power plant and

processing facility in Natanz, Iran, although no conclusive evidence has

been discovered about who lies responsible [153]. Stuxnet was not remotely

controlled; it was completely stand-alone and spread itself without any further

interaction. The C&C servers that Stuxnet contacted while in operation appear

to have primarily been used for recording evidence of compromise. It spread

via a Microsoft Windows vulnerability and targeted Siemens industrial

software and equipment. This equipment included electronic controllers for

pumps, valves, thermometers, motors and tachometers used in the nuclear

facility. During the attacks in 2010, Stuxnet temporarily shut down nearly
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Figure 4.14: Example of an Old Client Requesting Latest Version of Stuxnet via
P2P

1,000 of the 5,000 centrifuges Natanz had in operation purifying uranium

[153].

The Stuxnet dropper client was designed to spread itself to as many

machines as possible and spread through network shares, infecting removable

storage devices and exploitation of software vulnerabilities. It utilised P2P

communication for updating itself, as can be seen in Figure 4.14 [154]. The

P2P component had two parts, namely an RPC server and client. When

the malicious code compromises any machine it starts the RPC server.

Through P2P chatter, any other infected machines on the network can update

themselves from any peers that are running code with a higher version

number.

4.9 Ethics of Botnet Mitigation/Takeover

With a lack of precise legal guidance in the investigation of botnets, much

of the decisions required in botnet investigation are left in the hands of

investigators to make the right ethical choices. When Stone-Gross et al. took
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over the Torpig botnet in 2009 as described in Section 4.7.3, they used two

principles to guide their investigation [125]:

1. The compromised botnet should be operated so that any harm and/or

damage to victims and targets of attacks would be minimised.

2. The compromised botnet should collect enough information to enable

notification and remediation of affected parties.

4.10 Summary and Discussion

Factors Centralised (IRC,HTTP) Hybrid DDNS Peer-to-Peer P2P
Detection Easy Medium Hard
Resilience Low Fairly High Very High

Latency Low Medium Fairly Hard
Traceback Fairly Hard Hard Very Hard

Complexity Easy High Medium
Experience Very High None Medium

Table 4.2: Comparison of Botnet C&C Architectures

In this chapter, the evolution of botnet design culminating in Peer-to-Peer

architectures was introduced. Table 4.2 presents a summary of the various

C&C botnet architectures available and the corresponding difficulties

associated with each of the considerations in a botnet developer’s design

decisions [138].

Ultimately, the P2P botnet topology is a desirable option to choose for

botmasters, as it affords them an additional level of anonymity when

conducting their crimes. The ideal design for a P2P botnet is one that is

completely decentralised, utilises unique encryption methods and operates on

a bespoke network protocol for communication. Investigation of such a botnet

may prove particularly difficult. However, a combination of research, network

monitoring, deep packet inspection and network crawling should result in

successful, albeit more labour intensive, investigations. The fundamental

requirement for any newly infected node (or a node coming online) to have
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a starting point to bootstrap onto the P2P network and discover other active

nodes will always leave an avenue of investigation open for the digital

investigator.
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CHAPTER

FIVE

UNIVERSAL P2P NETWORK

INVESTIGATION FRAMEWORK

5.1 Introduction

As outlined in Chapters 3 and 4, P2P networks are widely used as a

low-overhead, efficient, self-maintaining, distributed alternative to the

traditional client/server models, across a broad range of areas. As a result

of these desirable attributes, the technology also lends itself well to being

utilised for malicious purposes, due to the minimal setup and maintenance

costs involved. However, the investigation of these networks is often a

cumbersome process with significant duplication of efforts from investigative

bodies.

Since P2P networking has become mainstream, the technology has been

deployed across a broad range of systems and services. While the level of

variation in topologies is significant, all P2P networks must share a number of

common features:

1. The capability to bootstrap onto the network – When a new node

attempts to join the network, it must be able to contact at least one

other active node in the network. Depending on the network design,

this may take the form of a hardcoded list of active nodes (typical in a
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Figure 5.1: A Comparison of Centralised (left) and Decentralised (right) P2P
Network Architectures.

decentralised topology) or a list of bootstrapping servers (typical in a

centralised topology) [155].

2. Maintenance of a Live Record of Active Nodes – In a decentralised

network, the peers themselves must all contribute to the recording of

active nodes on the network. No single peer has the entire list, with each

peer contributing to a collective distributed database, typically a DHT.

In a centralised design, this duty falls on the controlling server. As each

new node comes online, it announces its presence to the centralised list

and requests a list of other active peers to begin working.

3. Query/Instruction/File Propagation – In order for a P2P network to fulfil

whatever the purpose it was designed for, intra-peer communication

is requisite. As a result of this necessity, each peer must be able to

receive requests or commands and pass these communications onto

other known peers.

4. Software Maintenance – The P2P enabled software itself can quickly

become outdated. The upgrade process must be simple to perform,

while maintaining node uptime. While newer versions of the application

might have additional functionality, it must also ensure backwards

compatibility otherwise the network as a whole may suffer.

In this chapter, a framework is introduced which enables forensic investigators

and researchers to fast-track the investigation of any P2P network. The

91



framework exploits many of the common attributes of these networks, as

outlined above. As it can be seen in Figure 5.1, each node on a P2P network

has two main functions:

1. The first function involves fulfilling the objective of the P2P network, e.g.,

file sharing, query/command routing, etc.

2. The second involves participating in the maintenance of the network

itself – it is aware of a number of other nodes, and is in communication

with a subset of the overall network population.

This framework can aid in the discovery of P2P communication and

attempts to identify common communications, e.g., peer discovery,

query/command/file propagation, etc. Even within the same P2P application,

different versions may result in different traffic patterns. As the usage of

UP2PNIF increases, the database of identifiable traffic patterns and the value

of using the framework will become larger.

Irrespective of what P2P network is being investigated, there is a similar

methodology for its investigation. Due to the commonalities in the design of

every P2P network design, a common forensic investigative process can be

created. Each node requires some method of joining the network, discovering

active peers, receiving commands/queries and some procedure defined for

query/command execution. The proposed solution described in Section 5.6

outlines a five step investigative process.

5.2 Technical and Legal Framework Requirements

The design of any digital forensic investigation and evidence acquisition

framework, such as that described as part of this thesis, must include

consideration of a number of technical and legal requirements. These

requirements include:
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• Verifiability – All evidence collected using the system must be a true and

verifiable representation if the original source. The framework must

interact with the network and potential evidence in a forensically sound

manner. All evidence interactions must be controllable, recordable and

reproducible in order to ensure its admissibility to court, i.e., compliant

with the Daubert Test, as outlined in Section 2.8.

• Compatibility – The framework should be capable of working on a

variety of computer systems built on many types of different categories

of hardware, e.g., servers, workstations, laptops, netbooks, etc. The

manufacturer of the computer system should have no influence over

the compatibility or the output of the system. The framework should

have the ability to aid in the identification and investigation of any P2P

network – documented or undocumented, centralised or decentralised,

irrespective of size or counter-forensic features. Minimal customisation

should be required for the system to operate on bespoke P2P network

investigation devices.

• Cost efficiency – The cost of implementing the system for researchers,

law enforcement agencies or private digital investigators should not

be prohibitive. Current network investigation tools and software can

be prohibitively expensive to implement, e.g., a bespoke network

investigation tool might take thousands of man hours to produce or

the significant costs involved in investing in deep packet inspection

hardware devices. Due to the above compatibility requirement, the cost

of conducting an investigation should merely amount to the bandwidth

used during the investigation’s lifetime.

• Usability – Any client application built on top of the framework should

not be overly complicated to use. The target user groups and their

technical knowledge, i.e., mainly law enforcement officers, should be

considered when designing the system. Any tools designed should

require minimal training to use. The creation of a new network signature
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should be intuitive for the user to include in the reference database.

• Scalability – The framework should be able to scale up to any required

size. The use of a globally maintained network signature database

should merely be used as a centralised reference repository. Concurrent

investigations should be possible using a distributed network of

investigation servers. Moore’s Law has been commonly used to predict

the progression of computer equipment since 1965 [156], and can be

empirically used to predict the increasing prevalence and computational

power of P2P systems, e.g. botnets. Computer processing power, storage

capabilities and network speeds will all vastly increase in the future. The

framework should be built in such a manner that it is capable of taking

advantage of this predictable performance advancement.

• Extensibility – The system must have the ability to be updated with new

extensions, such as conforming to a specific digital forensic evidence

storage format as outlined in 2.5. The framework should allow for

the investigation of any P2P networks through the integration of a

formal definition of each network’s characteristics and communication

protocols. The system should have the ability to be used to investigate

multiple networks simultaneously. This means that the system must be

capable of collecting evidence from numerous geographically separated

sources simultaneously.

• Reliability – The system must be reliable. Should an individual instance of

the tool go offline, the workload should be capable of being redistributed

to another instance. If the network goes down for any individual node,

the system should fail cleanly, i.e., existing gathered evidence should be

saved to disk before entering a “sleep” state until network connectivity

returns.

• Security – As with any Internet enabled application, the system

should be secure. Scheduling and distribution of jobs should be

conducted through secure, verified channels ensuring protection against
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a “man-in-the-middle” attack.

• Maintainability – Functional components of the system may periodically

require maintenance or updates to confirm to new requirements/specifications

as the system evolves over time. The system should be implemented in

such a manner that easy updating can occur with minimal downtime.

5.3 Architecture

Figure 5.2: UP2PNIF architecture with the regular P2P activity on the top and
the modules of UP2PNIF on the bottom.
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5.3.1 Traffic Collection Module

The UP2PNIF architecture is designed to significantly reduce the time

required to commence a P2P network investigation. Traditionally, in order

to investigate a network, an entirely new network specific crawler has to be

developed from scratch. Exploiting the commonality between different P2P

networks, as outlined in Section 5.1, allows for a more efficient, less costly (in

terms of both time and money) investigations.

This module monitors the network traffic of a specific machine, or a group of

machines. The packet sniffing is conducted using “libpcap” (or its windows

alternative, “winpcap”) [157]. This module is also responsible for packaging

the collected data streams and associated metadata into a custom P2P digital

evidence bag (as outlined in Section 5.5) and, if necessary, securely transferring

the evidence to an external storage device or network/cloud based storage.

5.3.2 Traffic Pattern Database

This component stores the patterns of known networks. The types of metadata

stored for each network include common hostnames and IP addresses, peer

discovery methods and frequency of updates, common commands, update

methods, etc. This database is used for referencing by the analysis module to

aid in the identification of discovered unknown network traffic.

5.3.3 Traffic Analysis Module

The module analyses the collected network packets from the traffic collection

module. The frequency, content/pattern and destination of the packets

contribute to the identification of the specific P2P traffic. In order for a P2P

network to function, each peer must regularly check-in with a centralised

server or with other active peers at specific intervals. Each suspected packet

can be compared to the above database of known network usage patterns.

This is particularly useful in the identification of botnets as each specific
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botnet software system can be used by multiple botmasters in the creation of

many separate networks.

5.3.4 Client Emulation Module

An intelligent client application is capable of performing various different

forensic investigations. Depending on the specific network, it is possible to

conduct each of the following investigations as required by the case at hand:

1. Network Enumeration – This investigation concentrates on attempting to

enumerate the population of the entire network, as well as the combined

bandwidth and computational power. Gathering the population of

a network is traditionally a non-trivial task, as the number of nodes

simultaneously connecting to any one node generally only accounts for

a small subsection of the entire network. The client emulation module

overcomes this limitation by intelligently amplifying regular client

usage.

2. Network Usage – This investigation is focused on finding out what the

network is being used for. In the case of P2P file-sharing, this type of

investigation would be targeted towards the identification of the content

being distributed and the logging of infringing IP addresses. In the case

of a P2P botnet, the investigation might be targeted at finding out what

commands each node receives, i.e., what is the crime the botmaster has

chosen to exploit his botnet for?

3. Network Anatomy/Modelling – This investigation is focused on

attempting to understand the design and structure of the network and

client software. Based on the gathered evidence, it should be possible

to extrapolate the network’s topology. The results obtained can help

in determining whether the network is centralised, decentralised or a

hybrid, the frequency of intra-peer communication, the contribution of
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each node to the maintenance of a DHT, the attack vector utilised by the

malware, etc.

Through the emulation and amplification of regular P2P client usage, the

machine conducting the investigation appears to each individual peers as

though it is any other regular peer using the network. Through not overly

querying any single node on the network, the chances of the investigation

being discovered by the network as a whole are low.

5.3.5 Results Processing Module

The results processor is responsible for processing the generated evidence bags

into a NoSQL database. To perform this processing, each gathered IP address

is geolocated. The identification of each IP address is recorded as being active

at an individual crawl level, content/file level, investigation level (potentially

involving multiple pieces of content) and at an ISP level. This facilitates the

results and analysis outlined in Chapter 6. This module is also responsible

for producing some of the graphical representations created to summarise the

investigation, as seen in Appendix A.

5.4 Modular P2P Network Signature

As stated above, the benefit of the proposed framework is to facilitate the

investigation of any P2P network through the exploitation of the common

characteristics of each of the networks. In order for the framework to function

as part of a target network, the network signature must be defined. This

signature consists of two separate pieces of network specific information: both

a network settings configuration and a protocol definition, as outlined in the

following subsections:
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5.4.1 Network Configuration

In order for the system to be capable of investigating any given P2P network,

the bespoke protocol characteristics and communication methods need to be

recorded in an understanding format. In order for a specific P2P network to be

compatible with the UP2PNIF system, the following information is required:

1. File-sharing (boolean) – If the network is a P2P file-sharing network,

its primary purpose is the distribution of files. As a result, a range of

specific investigation types should be enabled for this network in the

framework, such as those required for copyright infringement detection,

the downloading of content from a peer, etc.

2. Botnet (boolean) – If the network is a P2P botnet, the investigation can

attempt to enumerate the network or record and identify the commands

that the botmaster is issuing.

3. Centralised (boolean) – If the network has a centralised component, it is

not sufficient to assume that a network with the “centralised” flag set to

true would automatically have the proceeding “decentralised” flag set to

false. Hybrid networks (such as BitTorrent) have both a centralised and

a decentralised component and as a result would have both flags set to

true.

4. Decentralised (boolean) – Networks having a decentralised component

would generally employ a distributed hash table for maintaining the list

of active nodes.

5. Configuration File (boolean) – This flag lets the system know whether

to expect a network configuration file, e.g., a “*.torrent” file on the

BitTorrent network or a “*.bin” file for the Zeus botnet. The file itself and

the location of the file are stored in the signature database.

6. Encrypted (boolean) – If the network is encrypted, the system would

need the key to be supplied before the investigation can commence.
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Table 5.1: BitTorrent Network Communication Format
Feature Value

httpFormat %httpURL%?info hash=%fileID%&peer id=%peerID%
&port=6881&numwant=200&compact=1&uploaded=0
&downloaded=0&left=0

pexFormat %peerIP%:%peerPort%?param&param
dhtFormat %dhtIP%?param&param

Traditional malware reverse engineering techniques might be employed

by the investigator to extract this required information from the memory

of an infected machine.

7. HTTP Peer Discovery (boolean) – In the case of a centralised network,

commonly the centralised server will serve a list of known active peers

responding to a HTTP request. As part of the response or as part of

the client’s configuration, there will likely be an option outlining the

allowable frequency of this request to reduce server load.

8. Peer Exchange (boolean) – When queries/orders/files are passed from

peer to peer, often the networks facilitate the communicating peers

to exchange their local lists of other active nodes. In this manner, the

regular operation of the network helps to ensure that each active node

has an up-to-date list of other active nodes. Similarly to the preceding

configuration option, there will generally be an associated allowable

update frequency for this exchange.

9. Distributed Hash Table (String) – This value will outline the type of

DHT involved. The system should include an implementation for

communicating with each of the known DHT variants such as Kademlia,

Pastry, Chord, etc.
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5.5 P2P Digital Evidence Bag

The collection and handling of court admissible evidence is a fundamental

component of any digital forensic investigation. The procedures for handling

digital evidence take much of their influence from the established policies for

the collection of physical evidence. However, due to the obvious differences in

dealing with non-physical evidence, a number of extra policies and procedures

are required.

When dealing with physical forensic evidence, the commonly used handling

procedure is the “chain of custody” [28]. The chain of custody commences at

the crime scene where the evidence is collected. Here, the investigator collects

any evidence he finds and places it into an evidence bag. This evidence bag

will be sealed to avoid any contamination from external sources and signed by

the officer who will detail some facts about the evidence, e.g., description of

evidence, location it was found, date and time found, etc. The chain of custody

will then be updated again when the evidence is checked into the evidence

store in the forensic laboratory. When it comes to analysing the evidence, it

will be checked out to the forensic analyst’s custody, and any modification to

the evidence required to facilitate the investigation, e.g., taking a sample from

a collected fibre to determine its origin or identification, etc., will be logged

and documented.

The procedures outlined above for physical evidence need to be extended

for digital evidence acquisition and analysis. Due to the fact that digital

evidence is generally analysed on forensic workstations, most of the above

sequences can be automated into concise logging of all interactions. During a

digital investigation, there is no requirement to modify the existing evidence

in any way. This is because all analysis is conducted on an image of the

original source, and any discovered evidence can be extracted from this

image, documented and stored separately to both the original source and

the copied image. It is imperative when dealing with all types of evidence

that all procedures used are reliable, reproducible and verifiable. In order for
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evidence to be court admissible, it must pass the legal criteria for the locality

in which the court case is being heard, as outlined in greater detail in Section

2.8.

A new P2P focused digital evidence bag is proposed to specifically deal

with evidence gathered from any tools built upon the UP2PNIF framework.

This bag incorporates the bit-by-bit network stream captured during the

investigation and on-the-fly metadata result generation to aid in expedited

identification and analysis of captured evidence. The precise format of this

metadata result file is outlined in Section 5.5.3.

Evidence collection from the framework will fall into two main categories; a

bit-by-bit copy of all network traffic and processed evidence resulting from

participating in, or crawling the network, as outlined in Sections 5.5.2 and

5.5.3.

5.5.1 Forensic Integrity

Due to the sensitive nature of digital evidence collection, it is imperative that

the data collected by any forensic tool is completely verifiable and identical to

the original source. This integrity is ensured in the UP2PNIF system through

the implementation of a new P2P focused digital evidence bag. This evidence

bag is capable of storing all relevant information, e.g., IP addresses, packets,

running processes, etc. Once a network traffic is collected, each packet is

time-stamped and logged. The time-stamping facilitates real-time event

reconstruction packet by packet, emulating the original traffic.

Forensic integrity is insured in the UP2PNIF system through the implementation

of regular hash checking on the data being collected using SHA-512, a 512-bit

secure hashing algorithm. The system collects a stream of information,

the stream itself is hashed and both are stored on the external drive or

can be uploaded to secure cloud storage. During the transmission process,

the integrity of each of the segments being transferred is maintained due

to a SHA-512 hash being computed as the segment is being transmitted.
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Server-side, once the transmission is completed, a SHA-512 hash is taken on

the segment and verified against the original. If these hashes do not match,

i.e., the integrity of that segment has been compromised in transmission, a

failure notification is sent to the client, which queues that segment up again

for retransmission.

5.5.2 Network Packet Evidence Storage

The “raw” data storage format outlined in Section 2.5.2 was chosen as the

storage format for all network evidence collected using the UP2PNIF system.

This format was chosen for a number of reasons:

1. The raw format for storing data is the de facto standard for all digital

evidence acquisition tools, whether they operate on physical storage

media or network traffic [24]. While some tools may have their own

proprietary standards, every tool has an option to capture data using the

raw format.

2. All digital/network evidence analysis tools are capable of reading and

analysing the evidence contained in a raw format file.

3. Due to the fact that the raw format is an exact bit-by-bit copy of the

original evidence, it lends itself well to being split into small segment

sizes, as required for transmission of the collected evidence in a live

forensic capture scenario.

4. Acquiring a network traffic copy using the raw format requires the

least amount of processing power from the client’s side. This can be

particularly advantageous when collecting evidence from low-powered

computers, e.g., older computers, netbooks, etc.

The UP2PNIF system also stores some metadata alongside the evidence

collected such as disk information (unique disk identifier, size, partition
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information, hash sum), number of segments used to transfer the image and

associated hash sums and time stamps of transmission.

5.5.3 Common UP2PNIF Result Storage Format

The output from any P2P network investigation is a common UP2PNIF XML

evidence storage format. Due to the commonality of features across P2P

networks, a standardised evidence results file is produced as the output from

the system. This XML will include some investigation specific information,

e.g., investigation ID number, start time, end time, network investigated,

number of peers, etc., alongside the precise results of the investigation such

as the content investigated (in the case of a copyright infringement focused

investigation), each individual discovered peer’s specific information, etc.

This common result storage format is verifiable against the corresponding

network byte stream captured during the investigation process. With respect

to delivering court-admissible evidence, any incriminating results gathered

from the UP2PNIF system are capable of being reproduced by a forensic

expert. Figure 5.4 displays a truncated version of this common storage format.
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Figure 5.3: Common UP2PNIF XML Evidence Format. This example shows a
truncated example XML file produced from an enumeration investigation of a
BitTorrent swarm.
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5.5.4 P2P Bag for Known Network Identification

In the scenario of attempting to investigate an existing, known network, the

simplest form of the UP2PNIF evidence bag will contain the network traffic

byte stream and an on-the-fly generated clustering metadata file highlighting

similar packets and recording their frequencies in an attempt to aid in the

identification of the various communication components. As a result of the

network communication patterns, it is possible the network traffic can be

correlated to a specific network. It is possible that the automated network

identification can occur for clear cut cases. For uncertain identification cases, a

network forensic specialist will be able to verify the collected, indexed traffic

against known P2P network patterns. Once the network is identified, the

investigation procedure can begin.

5.5.5 P2P Bag for Unknown Network Discovery

In the scenario of attempting to investigate a new, unknown network,

similarly to that for the known network outlined above, this simple form of

the UP2PNIF evidence bag will contain the network traffic byte stream and

the corresponding metadata file. Ultimately, it will still require the expertise

of a network forensic specialist to reverse engineer the protocol and deduce

its characteristics. However, once the network is reverse engineered and the

corresponding signature is created, as outlined in Section ??, the investigation

of the network can commence instantaneously.

5.5.6 Evidence Handling

The data collected using the UP2PNIF system is acquired directly from

the network and recorded in a “raw” format for analysis. The recording

and on-the-fly analysis requiring to expedite the investigation process is

conducted without interfering with the original communication. This ensures

that the origin of a particular packet cannot be compromised by any of the
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operations of the UP2PNIF system. The captured data is stored directly

to an external hard drive or can be sent to a remote/cloud server in an

uncompressed format. This ensures that no potentially relevant evidence is

lost. Due to the potentially large size of the data transmission, the evidence is

sent from the client in segments and these segments are then recombined at

the server side to produce the complete image of the original communication

stream. As the captured data is treated as binary content during the splitting

and recombination processes, the chance of either process compromising the

integrity of the data is eliminated. This is proven at the server when the

data is recombined and the hash sum of the final image is compared to the

untouched hash sum of the original source.

5.5.7 Comparison to Existing Evidence Bags

Existing evidence bags and storage formats, outlined in detail in Section

2.5 are primarily focused on the storage of digital evidence collected from

physical storage media. The evidence bag outlined above is focused on

network forensics and is capable of fast-tracking the network identification

and traffic analysis process for both existing and newly identified networks.

5.6 Investigation Methodology

The UP2PNIF framework is designed to aid the forensic investigator to

conduct a broad range of P2P network investigations and, if necessary, in the

expedited development of a P2P network investigation tool. Depending on

whether the network is already known or not will result in a slightly different

methodology being required, as outlined below.

The framework can help or entirely eliminate each of the “traditional”

forensic P2P network investigation tool development steps required for the

investigation of a new network. These steps and how the framework can aid

in each step is outlined below:
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1. Assess – Discover as much as possible about the network to be

investigated. This can be achieved through the network sniffing of an

active node in the network, e.g. deployed as part of a honeypot. The

framework can record the network stream of an infected node and group

together common network patterns. The number and frequency of each

packet type facilitates with the identification of the communication

methods. Although the amount known at the end of this step will be

network dependent, an ideal discovery scenario would result in the

following characteristics being known:

• Topology of the network – This will include identifying characteristics

such as whether the network is centralised/decentralised, node

discovery methods, e.g., peer exchange, centralised server, DHT,

etc.

• Communication methods employed – This includes the protocol,

the port ranges along with any required information to partake in

the network such as maximum request frequencies, etc.

• Common commands and queries available – This will incorporate

a list of each type of communication required for the regular

operation of the network, e.g., get peers, request command/file,

forward command, etc.

• Method of encryption (if any) – If the network traffic is capable

of being reverse engineered and understood without needing to

reverse engineer the P2P client itself; it will lead to a much quicker

investigation. If encryption is employed in the network, then the

P2P client will need to be reverse engineered to extract the required

encryption/decryption procedure.

• Bootstrapping methods – Each time a new node attempts to connect

to the network, it must have a method of bootstrapping onto the

network. In order for the system to aid in the investigation of any

particular network, it too must be capable of bootstrapping onto the

network using the same method as a regular client.
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The required characteristics of each newly discovered network will

be added to a centralised identification database. This will vastly

decrease the time required for further investigation of the same network.

Assuming that the network to be investigated exists in the database, the

development step (step 2 as outlined below) would be skipped.

2. Develop – Traditionally, this step includes the development of a P2P

client emulator for the specific network being investigated. This client

must have the ability to bootstrap onto the network while appearing as

a regular node to every other active node on the network. Regular client

operations must also be available, including peer discovery and peer

communication. Using UP2PNIF will facilitate fast investigation of any

network. Once the network signature is determined, the investigation

process can commence immediately.

3. Monitor – Depending on the desired investigation outcome, monitoring

of the network over a specified time period will record the number of

active peers, the network churn rate, the network reliability and uptime,

the resource size available and the commands and queries received.

4. Analyse – Finally, the collected evidence gathered from the monitoring

step can be analysed to determine the following:

• The types of cybercrimes the network is being used for.

• Any inherent weaknesses in the network, such as a single point

of failure or the possibility of issuing imitation commands to the

network.

• Encryption methods employed.

• If it is possible to identify the source of the commands. This will

include the identification of ”super peers”, i.e., nodes responsible

for distributing the commands across the network and the possible

identification of the controlling machine or bot master. The time

required to complete this step will be greatly reduced using the
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UP2PNIF evidence bag, as the gathered metadata will facilitate the

collation of much of the above information.

5. Results – The results from this investigation will enable law enforcement

agents to investigate crimes on the Internet that may be otherwise flying

below their radar. Any reporting on the investigation should clearly

explain the complete methodology of the investigation, should the

results need to be reproducible during court proceedings.

Due to the ability of the UP2PNIF system being capable of emulating and

amplifying normal P2P client usage creates the possibility of on-the-fly

processing and real-time result delivery. Partaking in the network itself helps

to reduce the volume of network traffic recorded, focusing the investigation

at an early stage on only the relevant evidence. This helps to negating some

of the legal concerns resulting from the blanket collection of network traffic,

discussed earlier in Section 2.9.

5.7 Verifying Data Integrity

The verification of the collected data against the original source is fundamental

to the successful operation of the UP2PNIF system. The data integrity is

insured in the UP2PNIF system through the implementation of regular hash

checking on the network evidence being collected using SHA-512, a 512-bit

secure hashing algorithm. Once a network capturing tool using UP2PNIF is

deployed, a hash is taken periodically of the total network traffic collected.

If the data collected is to be transferred to remote storage, the integrity of each

of the traffic segments being transferred is maintained due to a SHA-512 hash

being computed as the segment is being transmitted. At the server side, once

the transmission is complete, a SHA-512 hash is taken on the segment and

verified against the original. If these hashes do not match, i.e. the integrity of

that segment has been compromised in transmission, a failure notification is

sent to the client, which queues that segment up again for retransmission.
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5.7.1 Overhead for Ensuring Data Integrity

The requirement for any digital forensic evidence capturing tool to ensure

integrity is paramount. While one of the primary objectives of UP2PNIF is

to verify the integrity of the evidence, it is also important that any additional

computational overhead is minimised. This is achieved by overlapping the

computational tasks with data transmission.

When the first segment is transmitted completely to the server, the client

immediately starts sending the second segment. When the server receives

the first segment and its corresponding SHA-512 fingerprint (computed

client-side), it then calculates a SHA-512 hash on the segment received

and compares it to the client-side hash. If these hash values match, an

acknowledgement is sent to the client to signify a successful transmission.

This process is then repeated for the third and all subsequent segments. Due

to the computational/transmission overlap, the additional cost of forensically

verifying the evidence captured as part of the UP2PNIF system amounts to

the time taken to compute the SHA-512 hash server-side of the last segment

and compare this to the hash value taken client-side.

5.7.2 Hashing and Evidence Transmission Module

The hashing and evidence transmission module is the segment of the

framework responsible for the external or remote copying of captured

evidence. This module executes the file transmission and monitors the

evidence copying process.

5.8 Resilience Against Detection

Through the emulation of regular client usage, the investigating machine

appears to any neighbouring node as any other regular node on the network.

This is achieved through emulating the behaviours of each peer on the
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Figure 5.4: Overview of UP2PNIF evidence transmission architecture. This
diagram shows the remote transmission from the UP2PNIF framework X =
number of segments to transfer entire network stream.

network, i.e., obeying communication frequencies, forwarding commands,

requesting files, exchanging peer neighbourhood information with others,

etc. As a result, the possibility of any individual node becoming “suspicious”

and blocking communication or alerting others to malicious activity is

extremely low. While some networks have evolved to include a global

blacklisting mechanism, any such mechanism is vulnerable to the utilisation

of a distributed proxy or routing tool, such as Tor [90].

5.9 Results Processing

The processing of P2P network related results and evidence is largely similar

for a variety of potential investigation types. The UP2PNIF system consists of

a number of common result processing capabilities:

1. Geolocation – Determining the geographic location of the nodes

identified during an investigation is of the utmost importance in

deciding the subsequent course of action (if any) regarding attempting

to pursue and prosecute the individual(s) involved. Due to the
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cross-jurisdiction legal challenges involved, it may be infeasible to

advance investigations with specific local authorities. The geolocation

of the peers is conducted at an early stage in the investigation can aid in

focusing resources towards the desired target of the investigation.

2. Internet Service Provider (ISP) Identification – Each identified IP address

is automatically related to its corresponding ISP. This information can be

useful to law enforcement in demanding the identification of the users

behind any IP address of interest identified during the investigation.

3. Enumeration – The enumeration of the nodes involved in a given

network is a common result parameter for most investigations. In

combination with the geolocation and ISP level lookup of discovered IP

addresses, the largest offending countries, regions and ISPs can be easily

computed.

4. Results Correlation – This capability can aid in the correlation of results

between different investigations or different snapshots in time. For

example, in a copyright infringement investigation, determining that a

given peer is appearing across multiple infringements might prioritise

that specific case.

5. Evidence Verification – Capturing and identifying evidence is an

important aspect of any forensic investigation. This capability aids the

investigator in the recording and organisation of the gathered evidence.

6. Churn Rate Computation – In order to get an understanding of the

number of peers involved in a particular network, any single snapshot

is insufficient to determine how many peers have gone through the

network in a given timeframe. The churn rate can help calculate/predict

the number of peers connecting to each network. For example, if the

entire network was enumerated once every ten minutes, the percentage

difference between individual snapshots can help to predict the churn

rate in the future.
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5.10 Advantages over Existing Tools

Existing tools are all entirely bespoke applications focused on the investigation

of a single P2P network. As a result, any potential elimination of the

significant, duplicated development efforts is not possible resulting in the

significant redundancy of efforts. At the time of writing this thesis, there are no

other universal P2P network investigation tools. With sufficient propagation

of the use of the framework outlined in this thesis, it is envisioned that much of

the redundancy and effort required to build and maintain a bespoke network

investigation tool will be eliminated. The processing of gathered evidence

from the operation of the tool will also be reproducible irrespective of the

network being investigated. The deployment of a universal P2P network

investigation framework will also enable interesting cross-network results to

be achieved, e.g., how many compromised machines participating in botnet A

are also compromised by botnet B?

5.11 Potential Limitations

As with any P2P network investigation, there are a number of limitations when

it comes to correlating results over any significant period of time. A number

of potential limitations and solutions are outlined below:

1. DHCP – Due to a typical lease from an Internet service provider lasting

in the order of 1-7 days, dynamic reallocation of the same IP address may

result in two or more peers participating in the network appearing as a

single peer.

2. Proxy servers – Similar to the issue caused by DHCP, any nodes that

access the Internet through the same transparent or anonymous proxy

server will also appear as a single node to the outside world.

3. Identification of peers using anonymous Internet services – This

facilitates the identification of services such as Tor (The Onion Router)
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and I2P (Invisible Internet Project). By comparing the IP addresses

discovered during the investigation with a list of known Internet traffic

proxy or pass-through services, the quality of the results collected can

be greatly improved. One such proxy services identification list is

maintained by MaxMind Inc. [158].

4. Network Address Translation – Numerous machines behind a shared

router may appear to the outside world as a single machine, as they share

a single external IP address.

5. Encrypted Communication – Should the network employ encrypted

communication, the only method available for investigation is to attempt

to reverse engineer the client software. The decryption/encryption

methods and any associated keys for any incoming/outgoing

communications must be stored within the P2P client.

6. Difficulty in Take Down – In order to take down a P2P network, it is often

a matter of discovering a vulnerability in its design. Traditionally this has

meant attempting to take down its centralised server [145]. However,

with the popularity of employing a fully decentralised network design,

the ability to take down such a network has been made considerably

more difficult. Should the client be reverse engineered, it is possible that

the network could be disturbed or have even “imploded”, e.g., through

the issuing of an uninstall command to each infected node in a botnet.

7. Network Transfer Speed – The time taken to transfer the gathered

evidence over the Internet will take longer than the time required if the

investigator had physical access to specialised forensic hardware in a

forensic laboratory. Where UP2PNIF can improve on this time required

for traditional hard drive image acquisition is when the time wasted by

the investigation in travelling, transportation and storage of the suspect

computer is taken into consideration. While high-speed broadband

Internet access is becoming more and more common place on both

residential and commercial levels, it would be unrealistic to assume
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that every suspected computer would have an Internet connection

with a favourable upload speed, i.e., many asymmetric broadband

connections are significantly weighted towards download speeds. This

limitation could again be overcome through the use of a mobile Internet

connection.

The limitations outlined above with respect to accurately enumerating unique

peers can be overcome on P2P networks that employ a unique ID number,

such as the Torpig botnet [144], the BitTorrent DHT [6], etc. Other heuristic

metadata, such as client version information, detected data speeds/latency

and the list of available files (in the case of file-sharing networks) can each

contribute to unique identification. UP2PNIF is designed to partake in the

network as any regular client. While this means that the network must be fully

understood or reverse engineered, any encrypted communication methods

would also be employed by the resultant investigative tool. By being a part

of the network and appearing as any other node, any issues traditionally

involved in attempting to decrypt captured network packets are rendered

irrelevant.

5.12 The Case for Collaboration

In the ever-evolving space of botnet technology, reducing the time lag between

discovering a newly developed or updated botnet and gaining the ability

to mitigate against it is paramount. Often, numerous separate investigative

bodies, such as law enforcement agencies and security firms, duplicate their

efforts in creating bespoke tools to combat particular threats. The framework

outlined in this thesis is capable of fast tracking the investigative process

through collaboration between key stakeholders.
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Figure 5.5: Steps Involved in a Typical P2P Botnet Investigation

5.12.1 Advantages

Implementing a universal collaborative framework quickly and easily

facilitates different investigative bodies conducting similar investigations

worldwide. Some of the main advantages of such a collaborative system are

outlined below:

1. Compatibility – Having a centralised framework facilitates the

integration with numerous other network forensic tools as required.

Expandability is also ensured through the modularisation of the

components and specification of the individual networks.

2. Cost – The cost savings for participating in such a collaborative

framework are significant. Eliminating the redundancy due to the

duplicated development of bespoke tools will greatly reduce the

resources required.

3. Automated Identification – With a sufficiently large database of known

networks established, automated identification of known networks from

the capturing network traffic should be possible. This will greatly aid the

forensic investigator in expediting the investigative process.

4. Cross-border cooperation – Different network focuses across different

countries should be advantageous to the system overall. For example, if

a predominantly European targeted botnet evolved to target machines in

the United States, the US led investigation should be greatly expedited

through reusing the work conducted by European agencies. Differing

bodies developing the signatures required for their own national

operational requirements will result in a more complete robust database
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of signatures.

5. Speed – The regular P2P botnet investigation process is shown in Figure

5.5. Using the framework described, the entire investigation process is

fast-tracked as far as step 4 for each contributing body (assuming the

network is already documented). The final analysis phase can also be

expedited through common evidence processing procedures.

5.12.2 Potential Issues

As with any system designed with a requirement for collaboration between

differing global bodies and organisations, there are a number of potential

issues:

• Key Stakeholder Buy-in – Without a sufficient contribution towards

the framework (both the core functionality and the botnet signatures),

the system can rapidly become outdated in comparison with the quick

progression in botnet technologies.

• Access Maintenance and Control – A framework that potentially has the

ability to infiltrate and take control over any reverse engineered botnet is

something that would be highly valuable if it got into the wrong hands.

Controlling access to such a framework is paramount to its reliability

and usefulness to law enforcement and forensic investigators. One

solution to this issue would be for the framework to require server-side

authentication/update before any investigation can commence.

• Corporate Participation – While having collaboration from private

corporations would be advantageous to the system as a whole, from a

corporate perspective having exclusivity on the solution to any problem

is fundamental to many business models. As a result, it is envisioned

that the system will primarily be contributed to and used primarily by

law enforcement and research institutions.
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5.13 Summary

This chapter introduced the Universal Peer-to-Peer Network Investigation

Framework, its modular components and its architecture. As a result of

partaking in the target P2P network of an investigation, a novel method for

creating and storing metadata alongside the resulting evidence gathered.

As the usage of the framework increases over time, the benefit will become

increasingly apparent. Currently, much time is wasted on redundant

efforts between different law enforcement agencies and digital investigation

specialists globally in the design and development of similar investigative

software. It is envisioned that the use of a centralised, accessible system,

such as UP2PNIF, will greatly improve the productivity of future P2P

investigations and aid in the ever-evolving fight against malicious P2P

activity on the Internet.
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CHAPTER

SIX

FORENSIC INVESTIGATION OF

BITTORRENT

This chapter outlines a prototype developed to test the design of the

system outlined in Chapter 5. In the upcoming sections, three BitTorrent

investigations of varying focus and duration are presented. The first two

investigations, described in Sections 6.5 and 6.6, track the unauthorised

activity across two separate content types. The third investigation, discussed

in Section 6.7, outlines a significantly larger investigation, monitoring and

tracking the top 100 most popular pieces of content shared on the BitTorrent

network over a week long period.

6.1 Development

An investigation framework and BitTorrent crawling application was

developed that is capable of executing various types of P2P network based

investigations, as outlined in greater detail in Chapter 5. This framework

was built to emulate and amplify regular client usage. This emulation

has the advantage of negating some of the legal concerns raised earlier in

Section 2.9. A customised Ubuntu Server Linux image was created with

the crawling application, configured for high I/O operations and with the

security credentials required for processing the data and storing it in the

120



results database.

The results database was built using the NoSQL database management

system, MongoDB, due to its performance benifits over its relational

counterparts [159]. This database facilitated powerful cross-crawl and

cross-investigation comparisons, as discussed in Sections 6.5, 6.6 and 6.7.

6.2 Investigation Methodology

1. Assess – Discover as much as possible about the network to be

investigated. This can be achieved through the sniffing of an active

node in the network, e.g., deployed as part of a honeypot. Although the

amount known at the end of this step will be network dependent, an

ideal scenario would result in the following characteristics being known:

• Topology of the network

• Protocols employed

• Method of encryption (if any)

• Common commands and queries available

• Peer discovery methods

2. Develop – This includes the development of a P2P client emulator for the

specific network being investigated. This client must have the ability to

bootstrap onto the network, while appearing as a regular node to every

other active node on the network. Regular client operations must also be

available, including peer discovery and peer communication.

3. Monitor – The monitoring of the network over a given time period will

record the number of active peers, the network churn rate, the network

reliability and uptime, the resource size available and the commands and

queries received.

4. Analyse – The data gathered from the monitoring step must be analysed

to determine the following:
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Table 6.1: BitTorrent Network Profile
Feature Value

fileSharing true
botnet false

centralised true
decentralised true

configFile true
encrypted false

httpPeerDisc true
httpFreq 0

peerExchange true
peerExchangeFreq 600

dht true
dhtFreq 0

• The types of cybercrimes the network is being used for.

• Any inherent weaknesses in the network such as a single point of

failure or the possibility of issuing commands to the network.

• Encryption methods employed

• If it is possible to identify the source of the commands. This will

include the identification of “super peers”, i.e., nodes responsible

for distributing the commands across the network and the possible

identification of the controlling machine or bot master.

5. Results Visualisation – The visualisation of the results from any

investigation will enable law enforcement to quickly identify the key

focus targets of their investigation. Any reporting on the investigation

should clearly explain the complete methodology of the investigation as

these results should be verifiable if required for court proceedings.

To start, the basic profile for BitTorrent was recorded in the network database,

as shown in Table 6.1. Alongside this identifying information, the format

of the communication methods are also stored, as displayed in Table
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5.1. A hierarchical object oriented approach to network investigation was

implemented for each of the BitTorrent peer communication methods. In

testing the crawler, it was found that employing a hierarchical approach aided

in the distribution of scheduled jobs and in the efficient processing of the

gathered data.

6.3 Experimentation Setup

In order to conduct a crawl of a P2P network using the system developed, a

number of different options were considered. While running the investigation

locally on a workstation or server in a forensic laboratory is possible, the

multi-threaded application is limited by the processing power and physical

network performance. In order to scale the system up to be capable of

handling any investigation size, running the application from the cloud

become a necessity. The specifications of the infrastructure used are outlined

below:

6.3.1 Infrastructure

The experiments outlined below were executed on Amazon Web Services

Elastic Compute Cloud (EC2). An “Extra Large” High-CPU instance was

chosen for the investigation due to the high I/O required of any P2P network

focused investigation. The extra large high-CPU instance consists of the

following specifications:

• 64-bit Platform

• 7GB Memory

• 20 EC2 Compute Units (One EC2 Compute Unit provides the equivalent

CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor)

• 1690GB Local Instance Storage
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Running the application on such a system resulted in optimum performance.

Testing on more powerful EC2 instances did not result in any performance

benefits over the extra large instance when investigating a single piece of

content. Investigating multiple pieces of content simultaneously is better

served with multiple EC2 instances, as opposed to more powerful instance

types. This is due to the network bandwidth allocation limits per instance.

6.4 Assumptions and Accuracy

The country, city and ISP level geolocation database used is maintained by

MaxMind Inc. and is the most accurate database currently available [160].

In May 2013, MaxMind stated that their geolocation databases were 99.8%

accurate at a country level, 100% accurate at the ISP level and 81% accurate

at a US city level within a 40 kilometre radius (other countries ranging from

50% to 96%, e.g., in the Philippines and Cote D’Ivoire respectively) [158].

There are a number of assumptions that have to be made for the purposes of

the geolocation of the IP addresses and for the enumeration of the total number

of P2P users involved in the networks investigated:

1. For any investigation taking place over a significant time period (12+

hours), each IP address found to be participating in the network

investigated is assumed to only ever be allocated to one end user.

Due to a typical DHCP lease from an Internet service provider lasting

somewhere in the order of 2-7 days, dynamic IP address allocation may

result in the reallocation of the same IP address to two or more end

users during the investigation. Should this have occurred during the

investigation, it is ignored for the interpretation of the results outlined

below. It is deemed technically infeasible to identify precisely when this

may occur on a global level within the scope of this work.

2. No anonymous proxy servers or Internet anonymity services, e.g., I2P

[91], Tor [90], etc., are used by the IP addresses discovered. While
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anonymous proxy detection methods exist, they are generally focused

on detecting their use from a server-side perspective, as discussed in

[161] and [162].

3. It is practically infeasible for users on dial-up Internet connections to

download the very large files that typically justify distribution via the

BitTorrent protocol. For the purposes of the analysis presented in Section

6.7, it was assumed that a negligible amount of dial-up users participate

in the BitTorrent swarms. The average content size for the swarms

investigated as part of the investigation outlined in Section 6.7 was

1.62GB, which would take a typical 56kbps dial-up user over 69.5 hours

to download, assuming no bandwidth competition from other Internet

traffic and that the connection was achieving the maximum theoretical

dial-up connection speed.

4. Mobile cellular/WiMax based connections, without cooperating with the

provider, are only capable of being resolved to the exchange or hub used

by the provider. As a result, the city level accuracy for these connection

types is much larger than for fixed line broadband services.

6.5 Album Piracy

For this investigation, the most popular music album was selected (as

identified on The Pirate Bay’s most popular music listing), “Random Access

Memories” by Daft Punk. When the investigation commenced, the swarm

was just over two days in existence and the torrent’s creation date was before

the official release date of the album, i.e., it was an early leaked copy of the

album. The investigation monitored the activity of the swarm for a period of

24 hours.
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Figure 6.1: Daft Punk Torrent Information (Truncated Piece Hash Values)
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Hour Active IPs Churn Rate Hour Active IPs Churn Rate
0 5,538 1.41 12 6,195 1.58
1 5,229 1.33 13 6,073 1.55
2 5,079 1.30 14 5,976 1.52
3 4,981 1.27 15 5,959 1.52
4 4,944 1.26 16 6,078 1.55
5 4,749 1.21 17 6,179 1.58
6 4,619 1.18 18 6,223 1.59
7 4,633 1.18 19 6,323 1.61
8 4,879 1.24 20 7,005 1.79
9 5,345 1.36 21 6,938 1.77

10 5,823 1.49 22 6,557 1.67
11 6,096 1.55 23 6,188 1.58

Table 6.2: Daft Punk: Active Peers Discovered Per Hour (GMT)

6.5.1 Content Overview

The information contained within the “.torrent” file for the album is displayed

in Figure 6.1. The content’s file size was 171MB (or 179,584,713 bytes), which is

split into 686 separate 256Kb (262144 byte) pieces. The torrent was originally

registered with the four specified trackers, although the torrent was also aided

by numerous additional trackers. Additional trackers can get added to the

torrent whenever it gets uploaded onto BitTorrent indexing sites.

6.5.2 Churn Rate

The minimum number of active peers detected in the swarm over the 24

hour window was 2,244 and the maximum number was 3,921. The swarm

expansion/contraction over the timeline of the investigation is shown in

Figure A.1. If this content was investigated once per day, the number of

peers actively sharing the content may appear to be 3,921 at most. In order to

calculate the churn rate of the swarm, 2,098 separate consecutive crawls were

conducted, taking an average of 41.2 seconds to complete. Over the 24 hour

window of the investigation, 45,588 distinct IP addresses were detected. Based

on the maximum swarm size, the churn rate of this swarm can be calculated

to be 11.6 times per day.
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Position Country Number Position Country Number
1 United States 10419 11 Poland 721
2 United Kingdom 5278 12 Portugal 695
3 Australia 4325 13 Spain 685
4 France 3263 14 India 608
5 Canada 2909 15 Philippines 582
6 Netherlands 1970 16 Ireland 576
7 Italy 1176 17 Argentina 401
8 Mexico 1001 18 Sweden 384
9 Brazil 977 19 Denmark 378
10 Belgium 919 20 Turkey 375

Table 6.3: Daft Punk: Top 20 Countries

After the initial crawl to set a baseline, the number of new peers discovered

between crawls ranged from 0 to 117 new peers. These numbers show the

importance of frequent crawling to get a true picture of the number of peers

involved in the downloading of any particular piece of content. Figure A.2

shows the number of new peers found per crawl.

6.5.3 Peer Connection Time

The average number of crawls that each peer appeared in was 117.5 crawls.

Taking the average crawl time of 41.2 seconds, the average peer connection

time was just over 1 hour and 20 minutes over the 24 hour window of the

investigation. This cannot be considered the average download time due

to the default behaviour of most BitTorrent clients. Most clients seed the

content while both actively downloading other pieces, and when the content

is complete. Figures A.3 and A.4 show the number of discovered IP addresses

and the corresponding number of crawls each IP address appeared in. Over

87% of peers were connected for less than 200 crawls (or 137 minutes). 18.8%

of peers were connected to the swarm for less than 6.5 minutes over the 24

hour window.
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ISP Country Count of IP Addresses
Comcast Cable United States 2505
Road Runner United States 1716

Telstra Internet Australia 1389
Virgin Media United Kingdom 1120

SBC Internet Services United States 1115
British Telecommunications United Kingdom 1076

Free SAS France 1050
Verizon Internet Services United States 1018

France Telecom France 979
Sky Broadband United Kingdom 745

Optus Internet - Retail Australia 740
Shaw Communications Canada 693

Telewest Broadband United Kingdom 655
Cox Communications United States 630

Neuf Cegetel France 617
TPG Internet Pty Ltd. Australia 574

Rogers Cable Canada 523
Uninet S.A. de C.V. Mexico 463

Opal Telecom United Kingdom 441
Telecom Italia Italy 439

Table 6.4: Daft Punk: Top 20 IP Addresses Detected per ISP

6.5.4 Geolocation

As shown in Table 6.3, the United States was the country with the highest

number of active IP addresses in the swarm, followed by the United Kingdom

and Australia. Figure A.5 shows the activity of the top ten countries over the

24 hour period. Given the timezone differences, peak activity can generally

be seen rising throughout the day to its highest point in the evenings. Most

countries also show a peak in activity in the mid-afternoon which may

indicate increased Internet usages by minors outside of regular school hours.

The global city level, European city level and globel country level geolocated

results can be seen in Figures A.6, A.7 and A.8 respectively. The top 20 ISPs

detected are outlined in Table 6.4.
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6.6 TV Show Piracy

To investigate the level of piracy in the TV show category, the most popular

weekly TV show was selected according to The Pirate Bay, “Game of

Thrones” (GOT). The two most recent episodes were selected from the

third season, episodes seven and eight (generally stylised across BitTorrent

indexing websites as “S03E07” and “S03E08”). Both of these episodes were

investigated during the same 24-hour window to identify the differences

between a week-old torrent and a new torrent (less than 5 hours old when the

investigation commenced).

6.6.1 Content Overview

The file sizes of the MP4 video files shared in these swarms were 443Mb and

358Mb for episode seven and eight respectively. These files were split into

numerous chunks of 512kb and 256kb, as decided by the torrent creator. It is

worthy noting that the TV show was scheduled to play on the United States

television network HBO at 9pm EST (2am GMT). Quickly after the time of

the show finishing (approximately 10pm EST/3am GMT) the posters of the

content removed the ads from the recording and encoded it into a suitable

compressed web format. According to the torrent files, the episodes were

available online at 3:15am and 3:03am respectively, as shown in Figure 6.2.

6.6.2 Enumeration

The swarm size of the week-old torrent (S03E07) varied between 16,306

and 28,211 IP addresses with 204,451 IP addresses identified in total. In

comparison, the swarm size of the 5 hour old torrent (S03E08) varied between

52,793 and 65,080 with 759,521 IP addresses identified over the same 24 hour

window, as can be seen in A.9. The drop off in the swarm size of S03E07

(outlined in blue in the Figure) can be attributed to a “competing” torrent

of the same episode from another release group. In total, there were 882,105
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Figure 6.2: Game of Thrones S03E07/S03E08 Torrent Information (Truncated
Piece Hash Values)
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unique IP addresses detected churning through these two swarms.

6.6.3 Churn Rate

The churn of the swarms investigated was over 8.1 times over the 24 hour

window and the average churn rate for the swarms was over 1.8 times per

hour. These churn rates show that due to the larger content file size each peer

generally needs to remain connected for a longer period of time (in comparison

to the album investigation discussed above). Many peers did not complete

the download in one continuous connection; disconnecting and rejoining the

swarm at a later time.

6.6.4 Geolocation

Due to the time lag between the episodes airing in the US and the episodes

airing on other networks worldwide (generally in the order of days or weeks,

if at all), it might be expected that other predominantly English speaking

countries would appear highly in the list of top countries. While they do

appear highly in the list, the most popular country is the United States

claiming over 10.8% of the overall activity, as shown in Figure A.10. The

glboal city level distribution for S03E07 and S03E08 can be seen in Figures

A.12 and A.15. European city level distribution can be seen in Figures A.11

and A.14, for each episode respectively. The global country level heatmaps for

each episode can be seen in Figures A.13 and A.16.

6.6.5 Detection Overlap Between Weekly Episodes

The overlap between the two investigations was 79,867 IP addresses. This

figure represents that over 10.5% of those involved in the most recent episode’s

(S03E08) swarm were also involved in the previous episode’s swarm. The

continuous monitoring of the weekly overlap between TV show swarms

calculated in this manner could be useful for ISPs in predicting their network
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bandwidth allocations across their infrastructure at specific locations. Figure

A.17 shows the overlap between the IP addresses discovered in mainland

Europe.

133



6.7 BitTorrent Landscape Investigation

In order to get a broader sample of the activity across a range of torrents,

a larger investigation was conducted. This investigation shows the activity

over a week-long investigation of the top 100 most popular torrents. The steps

involved in the execution of this investigation were:

1. Connect to The Pirate Bay and download the “.torrent” metadata files for

the top 100 torrents.

2. Connect to each swarm sequentially and identify each of the IP addresses

currently active in the swarm until no new IPs are found.

3. Once the active IPs are found for the entire 100 torrent swarms, the

process is repeated for the next 24 hours.

4. After 24 hours, the process was restarted again at step 1.

The investigation was conducted using a single dedicated server, which

sequentially monitored each torrent swarm until all the IPs in the swarm were

found. Over the course of the seven-day investigation, a total of 163 different

torrents were investigated. None of the content appearing in these torrents

was found to be distributed legally; each torrent swarm was distributing

copyrighted material without the need for any documented authorisation.

6.7.1 Content Analysis

From the analysis of the daily top 100 swarms, video content was found to

be the most popular category of content being distributed over BitTorrent.

Movie and television content amounted to over 94.5% of the total, as shown

in Figure 6.3. Music, games and software accounted for 1.8%, 2.5% and 1.2%

respectively. One highly probable explanation for the popularity of television

content is due to the lag between popular US produced television shows airing

in the US and the rest of the world.
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Figure 6.3: Category distribution of the top 100 torrents on The Pirate Bay

6.7.2 Geolocation and Visualisation

For each IP address detected during the investigation, the geolocation is

obtained using MaxMind’s GeoIP database [158]. This database helped

produce location information such as city, region, state, country, latitude,

longitude, ISP, etc. This information is then gathered and plotted as a heatmap

to display the distribution of the peers involved in copyright infringement on

a world map, as shown in Figure A.18. The most popular content tends to

be content produced for the English speaking population, which is reflected

in the heatmap, i.e., countries with a high proportion of English speaking

population are highlighted in the results.

6.7.3 Results

Over the week long investigation, the total number of unique IP addresses

discovered was 8,489,287. On average, each IP address detected was active

in 1.75 swarms, or, almost three out of every four IP addresses were active
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in at least two of the top 100 swarms during the week. The largest swarm

detected peaked at 93,963 active peers and the smallest swarm shrunk to just

1,102 peers. The time taken to capture a snapshot of 100 swarms investigated

varies due to the increase and decrease in the overall size of the swarms. The

average time to collect all the peers’ information for each swarm is 3.4 seconds.

The United States was the most popular country detected with over 1.1

million unique IP addresses, which accounted for 13.15% of all the IP

addresses found. While accounting for the largest portion of the results

obtained in this investigation, this relatively low percentage suggests that

BitTorrent has a much more globally dispersed user base in comparison to

other large P2P networks. For example, a 10-day investigation conducted

on the Gnutella network in 2009, found that “56.19% of all [worldwide]

respondents to queries for content that is copyright protected came from the

United States” [78]. When the IP addresses detected during this investigation

were geolocated and graphed onto a map, the population centres can be easily

identified, as shown in Figure A.21. The state of California accounted for

13.7% of the US IPs found, with the states of Florida and New York accounting

for 7.2% and 6.8% respectively. Similar maps are shown for Ireland and

United Kingdom in Figures A.19 and A.20.

The objective of this investigation was to identify the scale of the unauthorised

distribution of copyrighted material worldwide using the BitTorrent protocol.

2.43% of the broadband subscriber base was detected over the course of

one week in the 163 torrents monitored. This number is far greater than the

number of subscribers that could possibly be prosecuted for their actions. The

number of end users involved in illegal downloading is undoubtedly much

higher than this, due to the relatively small scale of this investigation. Some

network factors will also have a negative effect on the results achieved, such

as two or more end-users appearing as a single Internet IP address through

Internet connection sharing, proxy services, etc. [163].
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6.8 Results Summary

As it can be seen from the investigations conducted above, P2P piracy is

indeed a significant problem for the content producing industry. The results

obtained show the proliferation of P2P piracy that exists in modern society.

The framework prototyped to conduct the above investigation proves the

viability of such a system outlined in Chapter 5.
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CHAPTER

SEVEN

CONCLUSION AND DISCUSSION

Currently a need exists with law enforcement for a universal P2P investigative

tool capable of identifying the crimes and the criminals behind some of

the world’s largest P2P networks. This thesis proposes a solution to this

problem incorporating the individual investigative techniques required and

a methodology for completing them. A proof of concept tool was developed

and tested on BitTorrent, the world’s largest documented P2P network.

The future plan for expansion upon this work is to produce an intelligent

P2P monitoring tool. Such a collaborative, investigative tool would be of

significant benefit to law enforcement in investigating cybercrimes that utilise

P2P communications.

In total, over 4TB of evidence was gathered using the prototyped system. This

consisted of evidence specific to a number of peers in the order of tens of

millions. A precise number is unattainable due to resource contraints for data

storage throughout the project. The latest prototype of the system processes

the results into a NoSQL database (based on MongoDB) capable of quickly

performing cross-swarm and cross-investigation queries.

7.1 Analysis of Outlined Approach

The approach discussed in Chapter 5 outlines a novel modular universal

P2P network investigation framework. As of the date of this thesis, no other
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collaborative P2P network investigation system exists. The primary benefit of

this collaborative approach is that it can be easily expanded upon and updated

to create a leading tool in the arsenal of the forensic investigator. Through

shared resources and expertise, many wasted man hours could be reallocated

to the analysis of the evidence and the prosecution of those responsible for

P2P based cybercrimes. It is envisioned that this framework will be made

available for collaboration to law enforcement. This should help to eliminate

some of the redundancy of efforts by local law enforcement agencies in an

attempt to combat P2P based cybercrimes.

7.1.1 Enhancements

Due to the aforementioned commonality in design and implementation of P2P

networks, it is envisioned that the proof-of-concept P2P network investigation

framework should be expanded to handle any P2P network.

Given the gathered network traffic from any active node of a new P2P

network, the system should be enhanced to automatically determine the

networks topology, protocols and available commands. This would greatly

speed up the first two steps, as shown in Figure 5.5, and enable the monitoring

procedures to commence as early as possible in the investigation.

7.2 Further Ideas

While the objectives of the research outlined in this thesis were met, there are

some ideas and features which could be added to (or used in conjunction with

the existing system) to improve the overall level of functionality. Potential

modifications to the current system include implementing automated P2P

network traffic pattern recognition, creation of a comprehensive database of

P2P network signatures and automated result processing.

The framework developed was designed and prototyped in such a manner as
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to easily facilitate the expansion of the tool to deal with any P2P network. It is

hoped that in the future, numerous botnet investigation bodies will contribute

to the maintenance and development of the framework.

7.2.1 Bespoke Hardware Device

A specific hardware device could be created to piggyback between an

infected machine and its Internet connection. When in operation, this device

would automatically acquire network evidence from the suspect computer’s

communication. This device could subsequently perform on-the-fly network

identification and processing of the live communications.

7.2.2 P2P Audio/Video Reconstruction

With P2P technology being increasingly utilised for VOIP communication, the

reconstruction of captured audio or video content could be crucial to forensic

event reconstruction activities. Through the analysis of captured UDP packets,

the voice/video call should be capable of being reconstructed. Using pattern

analysis, collected evidence could be reconstructed to potentially better quality

than the original call, i.e., patching collected packets together in the correct

order.

With the popularity of P2P based file-sharing, this reconstruction could also be

used the verification of suspected content as being a true copy of the original.

In this scenario, a partial sample of the entire content could be used to verify

the infringement of copyright.

7.2.3 Usability Test

As outlined as part of the technical requirements of the UP2PNIF system in

Section 5.2, the framework should be relatively easy to use for regular law

enforcement officers and should require minimal training. In order to measure
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this requirement, a usability test should be conducted. This test should invite

law enforcement officers and digital forensic investigators to take part. The

groups should be randomly divided into two teams, each given the same task

of collecting digital evidence from known P2P networks. The two teams would

be divided as follows:

1. One team would not be given any instruction on how to use the

framework.

2. The second team would be given a short introduction to using the

framework, how it operates and the best practices while using the tool.

Should both teams achieve their task in a similar time frame, the ease of use

of the tool would be proven. This result would also prove the reduced level

required of digital forensic expertise to use the tool. Feedback received from

the usability testing could be useful in building upon the current system.

7.2.4 NIST Computer Forensics Tool Testing

Computer Forensics Tool Testing (CFTT) is a standardised set of tests

procedures, criteria and hardware compatibility checking performed by NIST

to validate computer forensic tools for use by law enforcement. When a

sufficient number of P2P networks are added to the system, the tool should be

sent for independent, third-party verification.

7.3 Future Vision

7.3.1 P2P in the Cloud

With many everyday services being pushed to the cloud in recent years, one

could assume that P2P networks themselves might become redundant in the

future. However, alongside the push for cloud based services and storage,
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there has also been a significant rise in P2P anonymity services and P2P-aided,

cloud driven services, e.g., P2P based streaming services such as Spotify and

BitTorrent Live. Controlling a botnet from the cloud could easily facilitate

criminals in adding an additional, often temporary, layer of removal from the

botnet itself. This potentially could aid the botmaster in avoiding detection

completely.

7.3.2 Mobile P2P

The vast majority of botnets existing today are developed to be executed on

desktop computers worldwide. However, in the future, it is envisioned that

mobile botnets will become commonplace. Smartphones and 3G-enabled

tablets are an ideal “next target” device for botnet developers as they are

difficult to trace solely based on the data connection. The mobile devices

themselves are becoming more powerful with each device having its own

always-on Internet connection [164].

7.4 Conclusion

The phenomenon of the ever increasing number of crimes being aided by

P2P networks is set to continue into the future due to the level of anonymity

provided to cybercriminals. As a result of this inevitable increase in P2P

based cybercrimes, digital forensic investigators’ workload is set to drastically

increase. Any saving of the investigators’ time that can be allocated to

performing the analysis of captured evidence will help to aid the turn around

time for investigations.

This thesis proposed and validated the viability of a forensically sound, P2P

evidence acquisition framework. This framework processes the network

evidence into an “investigation-ready” state for the forensic laboratory as

early into the investigative process as possible. The existing model for P2P

network evidence acquisition generally requires a digital investigator to first
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develop a bespoke tool capable of deciphering the captured packets from

a compromised machine. The use of the UP2PNIF system can significantly

improve on this traditional model by fast-tracking the investigation.
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APPENDIX

A

GRAPHICAL RESULTS

Figure A.1: Daft Punk: Active Swarm Size over 24 Hours
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Figure A.2: Daft Punk: Newly Discovered Peers Identified per Crawl
(Excluding the Initial Crawl)

Figure A.3: Daft Punk: Overall Average Peer Crawl Count

145



Figure A.4: Daft Punk: Average Peer Connection Time for 0-200 Crawl Count

Figure A.5: Daft Punk: Top 10 Countries Hourly Activity (GMT)
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Figure A.7: Daft Punk: Geolocation for Mainland Europe
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Figure A.9: Game of Thrones S03E07/S03E08: Swarm Sizes over 24 hours

Figure A.10: Game of Thrones: Top 30 Countries
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Figure A.11: Game of Thrones S03E07: Mainland Europe Activity
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Figure A.14: Game of Thrones S03E08: Mainland Europe Activity
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Figure A.17: Game of Thrones: Collated Results for S03E07 (Red) and S03E08
(Green) in Mainland Europe
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Figure A.19: Top 100 Swarms: Geolocation of the peers found across Ireland
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Figure A.20: Top 100 Swarms: Geolocation of the peers found across the
United Kingdom
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