
Cracking, The Anti

Dorian Bugeja
Department of Computer Science

and Artificial Intelligence
University of Malta

Email: dbug0009@um.edu.mt

Abstract

This paper will describe some techniques used
to protect an application from being reversed and
cracked. It will contain information and tricks about
algorithms mostly used in the security industry. It is
very important to have some kind of custom protec-
tion add-on to an off-the shelf protector to prevent
generic unpacking, therefore we will discuss some
anti-debugging, anti-disassembling and anti-dumping
tricks and methods such as nanomites and special
APIs offered by the Operating System. When looking to
many protectors, we will notice that there are mainly
three steps it will undergo to protect the executable
file, therefore to understand those procedure, various
known packers/protectors will be discussed during this
paper, describing their capability to get the general
idea. We will take a look at win32 protectors which
includes but not limited to the Yoda Protector and
Armadillo. We will see how these protectors uses
particular functions available by the OS and how
executable files work within the system to construct
new algorithms. Therefore the reader should have a
basic knowledge of the Portable Executable (PE) and
what threads are. Assembly language will be used
throughout the paper to describe the algorithm of the
technique being discussed. Last but not least, we will
take a look at the main application used in the cracking
scene such as OllyDbg and Imprec. This will give us
a lot of information on how to disable/fool them, since
we will be able to understand how they work.

Index Terms

Software Protection, Anti Cracking, Protectors,
Win32 PE, Unpacking

1. Introduction

Software cracking is defined as the modification
of binary files to remove protection. This means that
firstly, the cracker has to locate the part where the
software decide the mode it is operating - trial or
full - and than, being able to modify and store the
executable file containing the new bytes that were
modified. In this paper, we will be going thought
many techniques used into today’s software protection
industry.

When constructing an Anti-Cracking solution,
the best way is to design a system keeping in
mind the step a cracker will undergo to defeat the
protection. The tools chosen by the cracker will
play a major role as some algorithm will work on
one software, but won’t on another. Firstly, we will
take a look at the largely used tools in this community.

It is important that the software coder gives away
the minimum amount of information. Procedure names
should never have a real meaning. Names like IsValid-
Serial and IsRegistered should be avoided. Such names
could be easily searched using a binary string. Specific
functions should not be used when writing a protection
scheme, since such procedure can just be disabled and
changed to return a true value, without going through
the actual procedure. Another important thing to avoid
is to use null-terminating strings to notify the user that
he successfully registered the product, especially when
using MessageBoxA from the Windows API.

1.1. How is Software cracked?

Software, as explained above, is cracked by modi-
fying particular piece of code. The best way to under-
stand what cracking involves is using an example.

Let’s take this code as an example

if (a == 4)
b = 1

else
b = 0

endif

This code is converted into this

0040105D CMP EBX,4 ;
Compare a with 4
00401060 JNZ SHORT 0040106E ;
Jump if not zero
00401062 MOV DWORD PTR DS:[4030E4],1 ;
Set a to 2
0040106C JMP SHORT 00401078 ;
Skip next instuction
0040106E MOV DWORD PTR DS:[4030E4],0 ;
Set a to 0

If a is 4, then b is true, else b is false. Just a
small change at address 00401060, from JNZ to JZ
(Jump is zero), will always return b as true unless
a is 4. If a is our serial number, we will be able to
register our product with every serial number, unless
the serial number is correct. A simple algorithm for
an anti-cracking solution is to hide this procedure as
much as possible. Checking its integrity to detect any
modifications will follow next.

1.2. Self Modification

Self modification algorithms are used to encrypt,
and therefore hides the procedure from debuggers and
disassemblers. Usually, a XOR algorithm will be used
twice on the same data. When XOR is applied on a
value, X, using Y as the other variable, stored in Z,
the function will return X when Z is XORed with Y.

1.3. Checksum

Checksum are really important to detect any kind
of modification. A checksum is an algorithm that adds
data into a variable, and usually comparing them to
hard coded values. Even the easiest checksum that
adds up bytes in series can be effective, and it’s easily
implemented.

2. Anti-Debugging

2.1. Introduction

The most precious thing for a cracker is the de-
bugger. There are mainly 2 types of debugger used,
SoftICE, which is a ring0 debugger and mainly used

in kernel-level debugging and OllyDbg, a ring3 de-
bugger used in user-level applications. Checking for
those tools at irregular intervals does help a lot, since
the cracker will get annoyed by unexpected crashes.
After all, software protection is all about annoying the
cracker, since every piece of software can be cracked
in a timely fashion.

2.2. SoftICE

SoftICE can be detected in various ways. Being a
kernel-mode debugger, the easiest way is to open the
driver installed by debugger. This can be done by open-
ing the driver named SICE using CreateFileA from
Windows API. We can detect any type of debugger
that acts as a driver using the code below, as long as
we know its name.

hFile = CreateFile("\\\\.\\SICE",
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ |
FILE_SHARE_WRITE, NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);

Instead of SICE, we can use different names such
as SIWVID. Those drivers are installed on a Win9x
system. To detect SoftICE on WinNT, NTICE should
be used. Another way to detect is by using a back-door
inside SoftICE. By sending an INT 3, with ’BCHK’
into register EBP and value 4 into AX, if the debugger
is present, 4 should be the return value inside AL.

MOV EBP,4243484B
MOV EAX,00000004
INT 3

2.3. Driver Based

The first method described in Detecting SoftICE,
can be used to identify other special debugger like
Filemon and Regmon. Such debugger are used to
sniff and logs file operations and registry operations
respectively from every running process. Therefore,
such tools could identify the location the specific
process is accessing (serial number). Most driver
based debugger used has

SICE
SIWVID
NTICE
REGSYS
REGVXG
FILEVXG
FILEM

TRW
ICEEXT

2.4. OllyDbg

OllyDbg, being a user-mode debugger, can be de-
tected by getting a list of running processes and com-
pare the process name with ollydbg.exe. FindWindow,
using OLLYDBG as a parameter is an alternative way
to identify OllyDbg. Reading a number of bytes at
a specific location - usually from the Code Segment
(CS) - from every process and comparing them to
previously store values could be a tougher task for the
cracker to identify, since no strings are being used.
Strings are always easy to find.

hWindow = FindWindow(0,"OLLYDBG");

A vulnerably found in the way OllyDbg handles
string from OutputDebugString could lead to a crash
from OllyDbg. By passing a multiple number of ’%s’
to OllyDbg, the message passed is showned into Olly-
Dbg’s status bar, which will lead to an invalid memory
error. Such exploit will allowing remote execution.

OutputDebugString("%s%s%s%s%s%s%s%s
%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s
%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s
%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s
%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s")

2.5. Special API

The Windows API comes with a set of function that
are able to detect if an application is being debugged
or not.

1) IsDebuggerPresent() returns true if the applica-
tion is being debugged. The problem with such
method is that the function is easily traceable and
by changing the return value to 0, such protection
will be bypassed. So we could re-create this
function into our program. All this function does
is accessing the Process Environment Block (
PEB), and check byte 2 of the block. In such
a way, we got ride of the IsDebuggerPresent
import, with same results.

mov eax,dword ptr fs:[30]
cmp byte ptr ds:[eax+2],1
je debuggerActive

2) NtQueryInformationProcess() has the same
capability. At class 7, a dword pointer will
contain a non-zero value if a ring3 debugger
is active. More functions are available by the
operating system to detect debugger which we
will not go through them due to the limit space
on this paper. However, one should do some
research on CheckRemoteDebuggerPresent and
NtQueryObject

3) OutputDebugStringA() When a debugger is
active, some functions change their behaviour.
As described above, OutputDebugStringA will
output a string to a debugger. If the debugger
is present, and the string is caught by the
debugger, the return value will be a non-zero
value. One could check the return value of
GetLastError, which should give back an error
in case a debugger does not catch the string.

push f
call OutputDebugStringA
call GetLastError
test eax, eax
je activeDebugger
f : db "1",0

2.6. CloseHandle

The same concept can be used for CloseHandle.
If an invalid handle is given as a parameter and a
debugger is present, an exception (08h) will occur.
Such expection could be detected using a handler such
as Structured Exception Handler (SEH). In such a sce-
nario, where the debugger is present, the CloseHandle
will not return an error, since the exception was caught
by the debugger.

2.7. GetTickCount

Another trick widely implements makes use of the
GetTickCount function. By calling such a function
twice at regular internals, the debugger will be detected
if the cracker is going through the code using single
step since the difference in time passed from one
execution of the GetTickCount function to the other
one is greater, compared to the result of a normal
running process.

call GetTickCount
xchg ebx, eax
call GetTickCount

sub eax, ebx
cmp eax, 1
jnb activeDebugger

2.8. SuspendThread

If a process is found to be the son of another process
which is not ”’Explorer.exe”’, some can conclude that
the process is attached to another software, probably
a debugger. This isn’t always the case. Some packers
such as Yoda’s Protector Suspends the main thread of
the parent process (the Debugger). This is a very
affective function in ring3 debuggers such as OllyDbg.

2.9. SetInformationThread

”Windows 2000 introduced an explicitly anti-
debugging API extension, in the form of an informa-
tion class called HideThreadFromDebugger. It can be
applied on a perthread basis, using the ntdll SetInfor-
mationThread() function.

push 0
push 0
;HideThreadFromDebugger
push 11h
push -2 ;GetCurrentThread()
call NtSetInformationThread

When the function is called, the thread will continue
to run but a debugger will no longer receive any events
related to that thread. Among the missing events are
that the process has terminated, if the main thread is
the hidden one.”

2.10. TLS-callback

This anti-debug trick was not so well-known a few
years ago. The first protector using it was ExeCryptor.
Code found in the TLS entry is executed before the
instructions found at the entrypoint. The TLS entry
can then perform anti-debug checks in a stealthy way.
Old debugger like OllyDbg are note aware of TLS-
callbacks, therefore they are not detected by them.

3. Breakpoints

When debugging, breakpoints can be very handy.
They are divided into 2, hardware and software break-
points. Both of them can be neutralized.

3.1. Hardware Breakpoints

Such breakpoints are tougher to detect than software
breakpoints. A hardware breakpoint can be seen as
a fault by a hardware. All information about those
breakpoints can be found inside the Debug Regis-
ter. So, by generating an exception, and telling the
KiUserExceptionDispatcher the address at which the
exception should be handle, we can reset every value
inside the Debug Register. To return the breakpoint
address, one should get the values inside DR0-DR3
instead of resetting their values. Only 4 Hardware
breakpoints can be registered inside the register. To
overcome this limitation, software breakpoints are used
when debugging.

3.2. Software Breakpoints

Those breakpoints uses special opcode that the
debugger will track when executed. For example, the
opcode 0xCC (INT3) is used in OllyDbg and many
other debuggers. The execution of the program will
stop as soon as that opcode is executed. This means
the such opcode must be inserted in the program code.
Therefore, by checking the integrity of the code, we
can detect software breakpoints.

Many anti-cracking solution continuously check for
API breakpoints. By getting the address location of
the function, the first byte is compared with 0xCC. If
true, it can be concluded that a breakpoint is present.
Such method will only work if the breakpoint is
toggled at the beginning of the function.

We can use WriteProcessMemory to remove
breakpoints. By overwriting a specific section of the
code using predefined data, any modifications done
on the original code is changed back to normal.
Therefore, the INT3 command is removed from that
specific location.

Another way to check for breakpoints is the check-
sum method described above. Such procedure could
be used to detect breakpoints while debugging, and to
detect any code manipulation.

4. Anti-Dumping

4.1. Introduction

Anti-cracking solutions does more than detecting an
active debugger. In this section, we will be looking
at special techniques used by the packers to protect

the original code, but mostly, to deny any kind of
modifications to the executable file. The packer will
usually compress and encrypt all the executable file,
and creates a new executable file with the algorithms
needed to de-encrypt into memory. The working EXE
is never stored onto the hard disk, therefore, the cracker
must read data directly from the main memory and
store the working executable onto the hard disk. Such
process is called Dumping. We will be looking mainly
at algorithms used by Armadillo and ASProtect.

4.2. Code Splicing

Code Splicing copy some of the code from the
original executable file, but are not de-encrypted into
the code section of the original software. Instead, the
packer will create a new memory block, and place
the code into this area. When in need to access this
data, the packer will jump to the start address of the
allocated memory. Dumping software such as LordPE
does not get data outside the memory location allo-
cated by the PE loader. Another feature added to this
function makes it harder to predicate the location of the
allocated data since the starting block vary from one
execution to another. This technique was introduced in
ASProtect, usually referring to it as Stolen Bytes.

4.3. Debug-Blocker

In Armadillo, we find another feature called Debug-
Blocker. Armadillo creates 2 processes, referred to
them as father (or parent) and child. The father pro-
cess acts as a debugger, trying to protect the child from
other debuggers. 2 Ring3 debugger cannot debug one
process, therefore, the debugger used by the cracker
cannot be attached to the running process. Such pro-
cess was easily defeated by the crackers, by attaching
their own debugger and closing the father process at
the right time. Therefore, the next step for Armadillo
was to introduce for the first time nanomites.

4.4. Nanomites

Such function was introduced so that the father
process will be of some importance. While generating
the packed EXE, Armadillo will scan for conditional
jumps through the original executable. A table is
generated and stored into the father’s process. The
jumps effecting the table are changed to an INT3
instruction (which acts as a software breakpoint). So
now, some important instructions are not even located
into the child process, but they are stored inside the
father process. At every INT3 that occurs, the father

process will look inside the generated table to retrieve
the original code.

4.5. CopyMem

Guard Pages were introduced in Shrinker. Armadillo
had integrated a variation of such algorithm which
is referred to Copymem II. By using this function,
the code is never uncompressed completely inside the
memory. Instead, data is uncompressed in pages. This
will decrease loading time since the code is not de-
encrypted as soon as the program is executed, but only
when the required page is needed.

4.6. Import Address Table

Almost every packer tries to hide the Import Address
Table (IAT). Import function reveals a lot about
the application. For example, if no RegQueryValue is
found inside the IAT, the cracker can conclude that
such program does not use the Windows Registry.
Therefore, the serial or information about the trial
period is stored into a file. Windows API provides
enough functions to dynamically load the DLL and
retrieve the starting address of the function required.
LoadLibrary and GetProcAddress will load the DLL
and gets the function starting address at runtime.

4.7. Original Entrypoint

Another common procedure is to hide the Original
Entrypoint (OEP). The Entrypoint (EP) of the
packed executable differs from the OEP. If the OEP
is not found, the dump process will not work, since
some code is bypass or some from another function
is executed before starting, usually resulting into an
illegal instruction.

5. Conclusion

As we shown during this paper, there are many
different types of anti-unpacking techniques. We saw
that new methods are being discovered over and over
again. In a near future, we will be dealing with dongles.
It is impossible to describe every protection used by
every packer. This paper has tried to explain some anti-
cracking algorithms, giving a beginner guide during the
first section and ending into a more advance protect
scheme.

6. References

ANTI-UNPACKER TRICKS by Peter Ferrie
http://pferrie.tripod.com/papers/unpackers.pdf

Windows Anti-Debug Reference by Nicolas Falliere
http://www.securityfocus.com/infocus/1893

Armadillo, Nanomites and vectored
exception-handling by Greg Jenkin
http://www.ring3circus.com/rce/armadillo-nanomites-
and-vectored-exception-handling/

A catalog of NTDLL kernel mode to user mode
callbacks, part 2: KiUserExceptionDispatcher
http://www.nynaeve.net/?p=201

Debugger Breakpoints by Cristian L. Vlasceanu
http://www.zerobugs.org/debuggerbreakpoints

http://arteam.accessroot.com/ - General Reverse
Engeneering Group

http://www.woodmann.com/crackz/ - General Reverse
Engeneering Forums

http://www.tuts4you.com/ - General Reverse
Engeneering Tutorials

