

The development of the Crystal Clear Electronics curriculum was supported by the European Commission

in the framework of the Erasmus + programme in connection with the “Developing an innovative

electronics curriculum for school education” project under “2018-1-HU01-KA201-047718” project

number.

The project was implemented by an international partnership of the following 5 institutions:

• Xtalin Engineering Ltd. – Budapest

• ELTE Bolyai János Practice Primary and Secondary Grammar School – Szombathely

• Bolyai Farkas High School – Târgu Mureș

• Selye János High School – Komárno

• Pro Ratio Foundation working in cooperation with Madách Imre High School – Šamorín

Copyrights

This curriculum is the intellectual property of the partnership led by Xtalin Engineering Ltd., as the

coordinator. The materials are designed for educational use and are therefore free to use for this purpose;

however, their content cannot be modified or further developed without the written permission of Xtalin

Engineering Ltd. Re-publication of the materials in an unchanged content is possible only with a clear

indication of the authors of the curriculum and the source of the original curriculum, only with the written

permission of Xtalin Engineering Ltd.

Contact http://crystalclearelectronics.eu/en/

info@kristalytisztaelektronika.hu

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

21 - Immediate Events in the Software,
Interrupts
Written by Péter Farkas, Csaba Apró

English translation by Xtalin Engineering Ltd.

Revised by Szabolcs Veréb

Better an interrupt today, than an operating system tomorrow :)

INTRODUCTION

The electronic devices and systems that surround us usually don’t work on their own, but they respond

to events in the outside world. The systems and their inputs can be relatively simple, such as a remote

and its buttons, or complicated such as the autopilot of an aircraft. Even though an aircraft autopilot

sounds very exciting, we will stick to a simpler example to understand one of the key systems inside a

microcontroller and how to use it.

DEMO CIRCUIT

In this chapter we will write a program which can count between 0 and 7 and increases or decreases the

counter by one on button press. The current counter value is displayed in binary with three LEDs.

On the demo circuit to buttons are connected to two pins of the ATmega16A microcontroller, one to PD2,

and one to PD3. These buttons will act as the up and down counter input buttons respectively. The three

LEDs are connected to PA0, PA1, and PA2. You can see the schematic in the figure below.

Figure 1 – Schematic of the demo circuit

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Figure 2 – Assembled demo circuit on breadboard

As you can see, there is a pull-up resistor between the buttons and the power supply.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Debouncing

A capacitor is connected to the input pin of the microcontroller and ground to filter the effect of switch

bounce.

An ideal push button would immediately close the circuit the moment it is pressed and open it when

released. In reality, before the circuit is closed the two contacts touch and come apart multiple times

rapidly, similar to how a ball is bouncing up and down when thrown. This happens every time we turn on

the lights, but our eyes can’t see it. However, a microcontroller is much faster than our eyes, so it can

detect these changes and you will see multiple button presses in software. The connected capacitor filters

these fast changes. In the figure below you can see the waveforms on the microcontroller input while

pressing a button. The first pictures contain the signal without filtering, and in the second you can see the

effect of the filtering.

Figure 3 – Bounce of button

Figure 4 – Debounce using hardware

You can see that the filter capacitor gets rid of the bouncing effect, so we don’t have to do anything special

in software, the microcontroller will only see one input change. Of course, there are options to debounce

in software too, but let’s start at the beginning.

HOW TO DETECT A BUTTON PRESS?

One solution is to enter an infinite loop in the main part of our program and read the input which has the

button connected to it continuously. If the input is 1, someone pressed the button, and we can do the

counter increase or decrease.

In our example there is a small difference, since the button input has a logic high (1) value when the button

is not pressed. If you look at the schematic from before you can see that if the button is not active (not

pressed) the pull-up resistors connect the input to the supply voltage, making it logic high level. When the

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

button is pressed, the input gets connected to ground via the button. This is called an “active low”

connection. It also means that the button press can be detected in software with reading a “0” from the

PD2 or PD3 input.

The program begins with IO initialization as usual; we configure the ports as input and output the same

way we have learned before in io.c. The main program code looks like the following:

#include "../Headers/main.h"
volatile uint8_t cntr = 0;
int main(void)
{
 //IO initialization
 IOInit();
 //Endless cycle
 while (1)
 {
 //If we push the button that is connected to the PD2 pin AND
 // the counter hasn’t reached the maximum yet
 if (!(PIND & 0x04) && (cntr < 7))
 {
 cntr++;
 }
 //If we push the button that is connected to the PD3 pin AND
 // the counter hasn’t reached the minimum yet
 else if (!(PIND & 0x08) && (cntr > 0))
 {
 cntr--;
 }
 //Lighting up the LEDs accordingly to the counter
 PORTA = cntr;
 }

 return (0);
}

After initialization at the beginning of main (IOInit()) the software increments or decrements the

value of a counter if one of the buttons is pressed, while taking into account the maximum and minimum

values of the counter. At the end of the loop we set the output according to the counter.

The exclamation mark in the if conditions is the logical negation (not) operator, so the value of !(PIND
& 0x04) is true if the PD2 pin has a logical low value (the third bit from the right in the PIND register is

zero), which is exactly when the button is pressed.

What do we see when running the program? At the moment we press either button, all LEDs turn on or

off.

That’s not exactly what we intended, but what causes the weird behaviour? Think about how long an

average button press is. No matter how fast you press and release the button, you’ll surely keep it pressed

for a few hundred milliseconds. What is the clock speed of the microcontroller? Completing one iteration

of the infinite loop takes a lot more than one clock cycles, but with the microcontroller running at 8 MHz

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

it still only takes a few milliseconds (or less). So, while our super-quick button press seems very fast to us,

the microcontroller has time to examine the input a few hundred times while the button is pressed. As

the input is always 0 during that time, it increases the counter until it reaches the limit (0 or 7). This all

happens so fast that the individual counting of the LEDs cannot be perceived by our eyes, we only see the

end result of no LEDs or all LEDs lighting up.

How can we solve this problem? We could try and save the current state of the button (0 or 1), and only

increase or decrease the counter if the previous button state was 0 (pressed), and the current button

state is 1 (released). This means we wouldn’t wait for the button state, but for the moment the button is

released (0->1 transition, rising edge of the signal), and only change the counter then.

There is an issue with this solution as well, that we are not seeing in this simple example. In a real-world

application the microcontroller has many tasks that it needs to do in every iteration, and that usually takes

time. To illustrate the problem, add a for loop inside our main loop that does nothing useful, but count

to X. It could seem that this has no purpose, but we only need something that runs for a while to emulate

a microcontroller busy with real-world tasks.

//Create a big enough variable outside the main function
uint32_t i;

//Imitating a task which requires a lot of time somewhere within the while(1)
for (i=0; i<500000; i++)
{
}

When running the altered code two things can happen after you press a button. Either nothing happens,

if you have pressed the button at the wrong time, or did not hold it down long enough, or the software

works, and it counts up and down one-by-one.

Think about why this happens! For the better part of the main loop our microcontroller is busy with

counting to X, so it can only look at the buttons for a short amount of time before going back to counting

again. If the button is pressed when the microcontroller is not looking, it will miss the event, and nothing

happens. This is obviously not a reliable operation.

There should be a way of detecting a rising edge in the signal (button release) while doing something else.

Luckily, others have ran into the same problem before, and came up with the solution called…

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

THE INTERRUPT

The name interrupt really speaks for itself.

We can use dedicated inputs of the microcontroller, where if a pulse or a logic level change occurs the

microcontroller interrupts whatever it was doing and executes a special function, we can specify the

contents of. In the function we can react to the event and after that the microcontroller continues

execution from where it left off.

This function is called external interrupt indicating that the microcontroller enters an interrupted state

because of an external event of one of its digital inputs. We call this function interrupt handler.

Now we can see that this will provide solution for the above-mentioned problems, however more

questions might arise.

- What other types of interrupts exist?

- How does the microcontroller recognize the change of the input while it is running the main loop?

- What happens when new (one or more) interrupt events occur while the interrupt routine is still

running?

- Will we be able to notice this?

- Will this end the running interrupt routine?

These questions will be answered if we understand how this part of the microcontroller works.

We can set interrupts for several peripherals of the controller, such as the digital input, timers, ADCs,

communication peripherals. Each peripheral hardware operates according to the values set in their

respective configuration registers and they change values in the output registers during their operation.

In the simplest case, the microcontroller pin works as a digital input because the configuration bits

associated to the controller has been set for this purpose. When digital inputs are configured as interrupts,

also means that the interrupt bits (a bit of a hardware register) of a certain pin sets to 1 during the

interrupt event. The technical term for this is “to set the interrupt flag to 1”. The key is that this will allow

the hardware to set the interrupt while the programme is still running.

We can set interrupts for several peripherals of the microcontroller too (for example: digital input, timer,

ADC, communicational peripherals). Each periphery and hardware work accordingly to the set values in

the belonging configuration registers during their operation they change the values of the output

registers. In the simplest case the given leg of the microcontroller works as a digital input because we set

its belonging bits accordingly to our desired operation. If we configure a digital input as an interrupt input,

then we also achieve that if an interrupt event happens then the belonging interrupt bit of the given leg

will be set to 1 (a bit of a hardware register). (The technical term for this is the following: it set the interrupt

flag to 1) The main essence is that it can happen with a hardware at the same time while the program

runs.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Datasheet of the ATmega16A contains a table called interrupt vector table (IVT) which summarises all the

possible interrupt inputs:

Figure 5 – Interrupt vectors in the datasheet

Reading on the datasheet, it also shows that in case there are multiple interrupt flags set to 1 at a given

time, the handler with the smaller interrupt vector number will run first. For instance, in case of INT1 and

INT0 pins, INT0 will have priority.

The ATmega16A microcontroller has a level 1 interrupt controller, meaning that the running of the

interrupt handler cannot be interrupted by another handler. The interrupt flag might get set however it

can be handled only after the interrupt handler routine has completed its course.

Multiple Interrupts

In case of complex microcontrollers, we can set the priority of multiple interrupts, we can even set priority

levels as well. This is called as Multi-level Interrupt Controller. In a system like this, an interrupt can only

be interrupted by a higher-level handler that has higher priority. However, if there are two interrupt

requests at the same time, the one with the higher priority will run first. So, if a new interrupt is detected

the system stops the execution, it runs a new interrupt then goes back to the original interrupt and when

it is finished with that, it returns to the main program.

Sticking with a similarly simple example as Atmel, the PIC18F series has two user-selectable priority levels.

During the configuration of the peripheral interrupt you can assign the interrupt source to either high or

low priority. This way, during the execution the higher priority interrupt can disable the low-level

interrupt, however the ones with same priority cannot disable each other.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Now we can see when new and different types of interrupts arrive while the interrupt handler runs then

the corresponding flags will be set however, the occurrence of the same type of interrupt (for example

INT1 input) will not be registered by the hardware.

So, the interrupt is a very effective tool, but you have to know how to use it. But be careful, the interrupt

handler name might be confusing! It is possible, although not recommended to implement all the event

handling code in the handler. Always try to implement the bare minimum what is necessary inside the

handler (such as saving some data specific to the interrupt – button pushed, critical temperature above

100 °C, etc.). Everything else should be done in the main program when we really need the result (for

example we turn on the fan). This way we can decrease the chance we miss another interrupt.

SETTING UP AN INTERRUPT

In order to use this function of the microcontroller, we need to enable the interrupt request of the given

peripheral and the global interrupt of the microcontroller. This decision can be implemented by setting

the corresponding bit (with the sbi()macro) of the peripheral register and setting the global interrupt

enable bit to 1.

Sometimes we do not want the main program to be interrupted at a certain point (time and, or safety-

critical task) by one or even all the peripheral interrupts.

We are able to achieve this by setting the corresponding bits to 0 (by using the cbi() and/or cli()

macros).

This way the interrupts that come in during the process will only be handled after the re-enablement.

Enable or Disable Global Interrupts

While running the interrupt routine, the controller automatically modifies some of the bits. After entry, it

blocks the interrupts and deletes the flags belonging to these interrupts, at the end of the handler it

enables the interrupts again (as an effect of the RETI instruction automatically embedded by the compiler.

The technical terms used in this case are ‘to enable (Cli command, cli()) and disable (Sei command,

sei()) global interrupt flags.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

SOLUTION OF THE COUNTER PROBLEM

After getting to know the interrupts in detail, let’s get back to our counter task.

From now on, we will handle the buttons with interrupts, and we will increase or decrease the counter

value in the handler. We have to complete the previously used output/input function, IOInit() by

setting and enabling interrupts. This will be implemented in the following program lines:

 //INT0 at rising edge, i.e. ISC00=ISC01=1 page 66
 sbi(MCUCR, ISC00);
 sbi(MCUCR, ISC01);
 //INTR1 at rising edge, i.e. ISC10=ISC11=1 page 67
 sbi(MCUCR, ISC10);
 sbi(MCUCR, ISC11);
 //External interrupt enable page 68
 sbi(GICR, INTF0);
 sbi(GICR, INTF1);
 //Global interrupt enable page 9
 sbi(SREG, 7);

We have to modify the content of the demo project main.c file for the following:

#include "../Headers/main.h"
volatile uint8_t cntr = 0;

// + button interrupt
ISR(INT0_vect)
{
 //If the counter hasn’t reached the maximum yet, then increase it
 if (cntr < 7)
 {
 cntr++;
 }
}

// - button interrupt
ISR(INT1_vect)
{
 //If the counter hasn’t reached the minimum yet, then decrease it
 if (cntr > 0)
 {
 cntr--;
 }
}

int main(void)
{
 //IO initialization
 IOInit();

 //Infinite loop

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

 while (1)
 {
 //Lighting up the LEDs accordingly to the counter
 PORTA = cntr;
 }

 return (0);
}

Let’s see how it works in detail: when calling the IOInit() function, following the setup of the direction

of the digital pins, the sbi(reg, n) macros are used to set the bits of the microcontroller registers to

1. The first four sbi(reg, n) instructions setup the external interrupts, the following two enables

them and the last one enables the global interrupts. The global enablement and disablement of interrupts

can be also done by the sei() and cli() parameterless macros, which makes our program more

readable.

In the file main.c. you can find new types of functions, called ISR (Interrupt Service Routine, also called

Interrupt Handler) functions that have the parameter xxx_vect. These are the interrupt handler

functions that were mentioned earlier, they are only executed when an interrupt happens. Their

parameters start with a name corresponding to the interrupt vector (found on page 44 of the datasheet

under Interrupt Vector section) and ends with the suffix _vect.

In our code, we increment or decrement the counter while paying attention to the limits in our interrupt

handlers.

Within the infinite loop of the main function the only thing left to do is set port A to the value of the

counter, lighting up the LEDs.

Because the button is debounced with a (filter) capacitor and we configure the external interrupt to detect

a rising edge, nothing will happen if we push either of the buttons until we release them. Then a 0->1

transition will occur on the input pin which generates an interrupt, and the control goes to the appropriate

handler.

ISR Functions

The ISR functions are not the typical functions we are used to, because ISR() is just a macro which lets

the compiler know that the content is an interrupt handler.

The compiler automatically puts the RETI instruction at the end of the generated assembly for this block,

which re-enables the global interrupts disabled by hardware at the start of the interrupt handler. This way

we don’t have to put an enable interrupts instruction at the end of our handler.

It is also worth to mention that we cannot call interrupt handlers explicitly like other normal functions we

define from our code.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

TIMERS AND INTERRUPTS

If it hasn’t been clear by now, we would like to emphasise again: interrupts are a very important element

of embedded software development. The reason for this is that in microcontrollers most peripherals are

capable of generating interrupts. An interrupt can not only come from an external pin of the controller,

but it can also be generated by an internal peripheral such as the analogue-digital converter signalling

that the conversion is complete (more about this in the next chapter), or if any communication peripheral

receives a message it can fire an interrupt to let us know.

From the title of this section you might have already guessed that usually we can get an interrupt if a timer

peripheral has “expired”.

In a previous chapter we have already talked about timers but then we did not use interrupts. Let’s have

a look at an example where we utilize a timer with interrupts.

In the previous example we have solved the bouncing button problem with hardware debouncing in the

form of two filter capacitors. Let’s remove these now and implement software debouncing instead.

After removing the capacitors try to slowly press and release the button. In most cases the counter will

count more than once in its direction. This is because of the button bounce we have already talked about,

and it is very visible with this software.

To avoid it we do the following: in the interrupt handler of the buttons we disable any interrupts coming

from the same source and start a timer which we have set up previously to have close to a 100 ms period.

When the timer “expires” another interrupt handler will get called, where we re-enable the interrupts

coming from the button.

This solution makes the system only detect the first rising edge, because the other edges that are caused

by the bounce will get ignored as the interrupt is disabled. The approximate 100 ms set in the timer is

enough time for the button to stop bouncing, but it is small enough to almost always detect two

consecutive intentional button presses.

Create a new source file called “timer.c” in which – according the above – configure the TIMER1 peripheral

with a prescaler of 8. The contents of the TimerInit() function are the following:

//prescaler of 8, according to page 108
cbi(TCCR1B, CS12);
sbi(TCCR1B, CS11);
cbi(TCCR1B, CS10);

Because the clock frequency of our controller is 8 MHz, the clock signal of the timer will be one-eighth of

that. Because the timer has a 16-bit counter it will overflow in: 8 [MHz]8 ∙ 216 ≈ 15.26 [Hz] ⟹ 115.26 [Hz] = 65.536 [ms]

We will use this time to debounce the buttons.

The contents of “io.c” can remain the same, as at startup we want the button interrupts to be active.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

In the “main.c” file, both external interrupt handlers have to be amended with a reset timer and the

overflow interrupt enable which is accomplished with the following lines:

//Timer1 counter reset
TCNT1 = 0;
//Timer1 overflow interrupt enable
sbi(TIMSK, TOIE1);

Furthermore, the external interrupts have to disabled so the microcontroller won’t recognize the rising

edges coming from the bounce.

//INTR0 interrupt disable
cbi(GICR, INTF0);

Then a new interrupt hander has to be created for the timer overflow, in which we re-enable external

interrupts, clear all interrupt flags that might have been set before the timer expired, and disable the

interrupt of the timer.

//Timer1 overflow interrupt
ISR(TIMER1_OVF_vect)
{

//External interrupts enable, page 67
sbi(GICR, INTF0);
sbi(GICR, INTF1);

//External interrupt flags clear, page 68
cbi(GIFR, INTF0);
cbi(GIFR, INTF1);

//Timer1 overflow interrupt disable

 cbi(TIMSK, TOIE1);
}

Finally we have to call TimerInit() and IOInit() in main, and set the LEDs by assigning the counter

value to PORTA.

Try to put the counter loop in main that keeps the controller busy and see what happens!

//Imitating a time-consuming task somewhere within the while(1)
for (i=0; i<500000; i++)
{
}

While not always immediately, but all button presses are correctly registered, and the LED counter is

updated. The processor spends most of its time counting up in the for loop, then updating the LEDs

according to the counter, and getting back to the for loop again. But interrupts are fired at each button

press, the value of the counter is updated “in the background”.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Exact timing

In our example it is not really important whether we wait for exactly a 100 ms or for around 65 ms after

each button press, so we were using the timer mode which was simpler to implement.

If you need to wait exactly a 100 ms, we have to use the timer in Output Compare mode. Here, the timer

generates an interrupt when the counter reaches an exact pre-programmed value contained in OCR1AH

and OCR1AL and/or OCR1BH and OCR1BL registers.

It may very well be that the 65 ms turns out to be too short (it depends on the push button itself, and how

fast are you pressing it) and we need to leave more time to debounce.

To overcome that problem, we can use the timer in Output Compare mode as mentioned earlier, or we

can choose a bigger prescaler, making it run slower. However, by implementing any of these we leave a

greater window where the external interrupts are disabled, so we can increment or decrement the

counter slower. The optimal solution is always application-specific, and depends on many factors such as

how long does our button bounce, is there a free timer available, how fast impulses we need to detect,

etc.

FINAL WORDS

We have reached our goal set at the beginning of the chapter; we have learned about interrupts and their

quite important role in embedded systems. We have seen one example for internal and external

interrupts each, which I hope will be useful for you in the rest of the curriculum, and in hobby projects or

later studies.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14

