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21  -  Immediate  Events  in  the  Software, 
Interrupts 
Written by Péter Farkas, Csaba Apró 

English translation by Xtalin Engineering Ltd. 

Revised by Szabolcs Veréb 

 

Better an interrupt today, than an operating system tomorrow :) 

INTRODUCTION 

The electronic devices and systems that surround us usually don’t work on their own, but they respond 

to events in the outside world. The systems and their inputs can be relatively simple, such as a remote 

and its buttons, or complicated such as the autopilot  of an aircraft. Even though an aircraft autopilot 

sounds very exciting, we will stick to a simpler example to understand one of the key systems inside a 

microcontroller and how to use it. 

DEMO CIRCUIT 

In this chapter we will write a program which can count between 0 and 7 and increases or decreases the 

counter by one on button press. The current counter value is displayed in binary with three LEDs. 

On the demo circuit to buttons are connected to two pins of the ATmega16A microcontroller, one to PD2, 

and one to PD3. These buttons will act as the up and down counter input buttons respectively. The three 

LEDs are connected to PA0, PA1, and PA2. You can see the schematic in the figure below. 

 
Figure 1 – Schematic of the demo circuit 
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Figure 2 – Assembled demo circuit on breadboard 

As you can see, there is a pull-up resistor between the buttons and the power supply. 
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Debouncing 

A capacitor is connected to the input pin of the microcontroller and ground to filter the effect of switch 

bounce.  

An ideal push button would immediately close the circuit the moment it is pressed and open it when 

released. In reality, before the circuit is closed the two contacts touch and come apart multiple times 

rapidly, similar to how a ball is bouncing up and down when thrown. This happens every time we turn on 

the lights, but our eyes can’t see it. However, a microcontroller is much faster than our eyes, so it can 

detect these changes and you will see multiple button presses in software. The connected capacitor filters 

these fast changes. In the figure below you can see the waveforms on the microcontroller input while 

pressing a button. The first pictures contain the signal without filtering, and in the second you can see the 

effect of the filtering. 

 

Figure 3 – Bounce of button 

 

Figure 4 – Debounce using hardware 

You can see that the filter capacitor gets rid of the bouncing effect, so we don’t have to do anything special 

in software, the microcontroller will only see one input change. Of course, there are options to debounce 

in software too, but let’s start at the beginning. 

HOW TO DETECT A BUTTON PRESS? 

One solution is to enter an infinite loop in the main part of our program and read the input which has the 

button connected to it continuously. If the input is 1, someone pressed the button, and we can do the 

counter increase or decrease. 

In our example there is a small difference, since the button input has a logic high (1) value when the button 

is not pressed. If you look at the schematic from before you can see that if the button is not active (not 

pressed) the pull-up resistors connect the input to the supply voltage, making it logic high level. When the 
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button  is  pressed,  the  input  gets  connected  to  ground  via  the  button.  This  is  called  an  “active  low” 

connection. It also means that the button press can be detected in software with reading a “0” from the 

PD2 or PD3 input. 

The program begins with IO initialization as usual; we configure the ports as input and output the same 

way we have learned before in io.c. The main program code looks like the following: 

#include "../Headers/main.h" 
volatile uint8_t cntr = 0; 
int main(void) 
{ 
    //IO initialization 
    IOInit(); 
    //Endless cycle 
    while (1) 
    { 
          //If we push the button that is connected to the PD2 pin AND 
          // the counter hasn’t reached the maximum yet 
          if (!(PIND & 0x04) && (cntr < 7)) 
          { 
                 cntr++; 
          } 
          //If we push the button that is connected to the PD3 pin AND 
          // the counter hasn’t reached the minimum yet 
          else if (!(PIND &  0x08) && (cntr > 0)) 
          { 
                 cntr--; 
          } 
          //Lighting up the LEDs accordingly to the counter 
          PORTA = cntr; 
    } 
  
    return (0); 
} 

After  initialization at the  beginning  of main  (IOInit())  the  software  increments or  decrements the 

value of a counter if one of the buttons is pressed, while taking into account the maximum and minimum 

values of the counter. At the end of the loop we set the output according to the counter. 

The exclamation mark in the if conditions is the logical negation (not) operator, so the value of !(PIND 
& 0x04) is true if the PD2 pin has a logical low value (the third bit from the right in the PIND register is 

zero), which is exactly when the button is pressed. 

What do we see when running the program? At the moment we press either button, all LEDs turn on or 

off. 

That’s not exactly what we intended, but what causes the weird behaviour? Think about how long an 

average button press is. No matter how fast you press and release the button, you’ll surely keep it pressed 

for a few hundred milliseconds. What is the clock speed of the microcontroller? Completing one iteration 

of the infinite loop takes a lot more than one clock cycles, but with the microcontroller running at 8 MHz 
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it still only takes a few milliseconds (or less). So, while our super-quick button press seems very fast to us, 

the microcontroller has time to examine the input a few hundred times while the button is pressed. As 

the input is always 0 during that time, it increases the counter until it reaches the limit (0 or 7). This all 

happens so fast that the individual counting of the LEDs cannot be perceived by our eyes, we only see the 

end result of no LEDs or all LEDs lighting up. 

How can we solve this problem? We could try and save the current state of the button (0 or 1), and only 

increase or decrease the counter if the previous button state was 0 (pressed), and the current button 

state is 1 (released). This means we wouldn’t wait for the button state, but for the moment the button is 

released (0->1 transition, rising edge of the signal), and only change the counter then. 

There is an issue with this solution as well, that we are not seeing in this simple example. In a real-world 

application the microcontroller has many tasks that it needs to do in every iteration, and that usually takes 

time. To illustrate the problem, add a for loop inside our main loop that does nothing useful, but count 

to X. It could seem that this has no purpose, but we only need something that runs for a while to emulate 

a microcontroller busy with real-world tasks. 

//Create a big enough variable outside the main function 
uint32_t i; 
  
//Imitating a task which requires a lot of time somewhere within the while(1) 
for (i=0; i<500000; i++) 
{ 
} 

When running the altered code two things can happen after you press a button. Either nothing happens, 

if you have pressed the button at the wrong time, or did not hold it down long enough, or the software 

works, and it counts up and down one-by-one. 

Think  about  why this  happens!  For  the  better  part of  the main  loop  our  microcontroller  is  busy  with 

counting to X, so it can only look at the buttons for a short amount of time before going back to counting 

again. If the button is pressed when the microcontroller is not looking, it will miss the event, and nothing 

happens. This is obviously not a reliable operation. 

There should be a way of detecting a rising edge in the signal (button release) while doing something else. 

Luckily, others have ran into the same problem before, and came up with the solution called… 
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THE INTERRUPT 

The name interrupt really speaks for itself.  

We can use dedicated inputs of the microcontroller, where if a pulse or a logic level change occurs the 

microcontroller  interrupts  whatever  it  was  doing  and  executes  a  special  function,  we  can  specify  the 

contents  of.    In  the  function  we  can  react  to  the  event  and  after  that  the  microcontroller  continues 

execution from where it left off. 

This function is called external interrupt indicating that the microcontroller enters an interrupted state 

because of an external event of one of its digital inputs. We call this function interrupt handler.   

Now  we  can  see  that  this  will  provide  solution  for  the  above-mentioned  problems,  however  more 

questions might arise. 

- What other types of interrupts exist? 

- How does the microcontroller recognize the change of the input while it is running the main loop?  

- What happens when new (one or more) interrupt events occur while the interrupt routine is still 

running? 

- Will we be able to notice this? 

- Will this end the running interrupt routine? 

These questions will be answered if we understand how this part of the microcontroller works. 

We can set interrupts for several peripherals of the controller, such as the digital input, timers, ADCs, 

communication  peripherals.  Each  peripheral  hardware  operates  according  to  the  values  set  in  their 

respective configuration registers and they change values in the output registers during their operation. 

In  the  simplest  case,  the  microcontroller  pin  works  as  a  digital  input  because  the  configuration  bits 

associated to the controller has been set for this purpose. When digital inputs are configured as interrupts, 

also  means  that  the  interrupt  bits  (a  bit  of  a  hardware  register)  of  a  certain  pin  sets  to  1  during  the 

interrupt event. The technical term for this is “to set the interrupt flag to 1”.  The key is that this will allow 

the hardware to set the interrupt while the programme is still running.  

We can set interrupts for several peripherals of the microcontroller too (for example: digital input, timer, 

ADC, communicational peripherals). Each periphery and hardware work accordingly to the set values in 

the  belonging  configuration  registers  during  their  operation  they  change  the  values  of  the  output 

registers. In the simplest case the given leg of the microcontroller works as a digital input because we set 

its belonging bits accordingly to our desired operation. If we configure a digital input as an interrupt input, 

then we also achieve that if an interrupt event happens then the belonging interrupt bit of the given leg 

will be set to 1 (a bit of a hardware register). (The technical term for this is the following: it set the interrupt 

flag to 1) The main essence is that it can happen with a hardware at the same time while the program 

runs. 
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Datasheet of the ATmega16A contains a table called interrupt vector table (IVT) which summarises all the 

possible interrupt inputs: 

 
Figure 5 – Interrupt vectors in the datasheet 

Reading on the datasheet, it also shows that in case there are multiple interrupt flags set to 1 at a given 

time, the handler with the smaller interrupt vector number will run first. For instance, in case of INT1 and 

INT0 pins, INT0 will have priority. 

The  ATmega16A  microcontroller  has  a  level  1  interrupt  controller,  meaning  that  the  running  of  the 

interrupt handler cannot be interrupted by another handler. The interrupt flag might get set however it 

can be handled only after the interrupt handler routine has completed its course. 

Multiple Interrupts 

In case of complex microcontrollers, we can set the priority of multiple interrupts, we can even set priority 

levels as well. This is called as Multi-level Interrupt Controller. In a system like this, an interrupt can only 

be  interrupted  by  a  higher-level  handler  that  has  higher  priority.  However,  if  there  are  two  interrupt 

requests at the same time, the one with the higher priority will run first. So, if a new interrupt is detected 

the system stops the execution, it runs a new interrupt then goes back to the original interrupt and when 

it is finished with that, it returns to the main program.   

Sticking with a similarly simple example as Atmel, the PIC18F series has two user-selectable priority levels. 

During the configuration of the peripheral interrupt you can assign the interrupt source to either high or 

low  priority.  This  way,  during  the  execution  the  higher  priority  interrupt  can  disable  the  low-level 

interrupt, however the ones with same priority cannot disable each other. 
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Now we can see when new and different types of interrupts arrive while the interrupt handler runs then 

the corresponding flags will be set however, the occurrence of the same type of interrupt (for example 

INT1 input) will not be registered by the hardware. 

So, the interrupt is a very effective tool, but you have to know how to use it. But be careful, the interrupt 

handler name might be confusing! It is possible, although not recommended to implement all the event 

handling code in the handler. Always try to implement the bare minimum what is necessary inside the 

handler (such as saving some data specific to the interrupt – button pushed, critical temperature above 

100 °C, etc.). Everything else should be done in the main program when we really need the result (for 

example we turn on the fan). This way we can decrease the chance we miss another interrupt. 

SETTING UP AN INTERRUPT 

In order to use this function of the microcontroller, we need to enable the interrupt request of the given 

peripheral and the global interrupt of the microcontroller. This decision can be implemented by setting 

the corresponding bit (with the sbi()macro) of the peripheral register and setting the global interrupt 

enable bit to 1. 

Sometimes we do not want the main program to be interrupted at a certain point (time and, or safety-

critical task) by one or even all the peripheral interrupts.  

We are able to achieve this by setting the corresponding bits to 0 (by using the cbi() and/or cli() 

macros). 

This way the interrupts that come in during the process will only be handled after the re-enablement. 

Enable or Disable Global Interrupts 

While running the interrupt routine, the controller automatically modifies some of the bits. After entry, it 

blocks  the  interrupts  and deletes  the  flags  belonging  to  these  interrupts,  at the  end  of  the  handler  it 

enables the interrupts again (as an effect of the RETI instruction automatically embedded by the compiler. 

The technical terms used in this case are ‘to enable (Cli command, cli() ) and disable (Sei command, 

sei() ) global interrupt flags. 
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SOLUTION OF THE COUNTER PROBLEM 

After getting to know the interrupts in detail, let’s get back to our counter task. 

From now on, we will handle the buttons with interrupts, and we will increase or decrease the counter 

value in the handler. We have to  complete the previously used output/input function, IOInit() by 

setting and enabling interrupts. This will be implemented in the following program lines:  

     //INT0 at rising edge, i.e. ISC00=ISC01=1 page 66 
 sbi(MCUCR, ISC00); 
 sbi(MCUCR, ISC01); 
 //INTR1 at rising edge, i.e. ISC10=ISC11=1 page 67 
 sbi(MCUCR, ISC10); 
 sbi(MCUCR, ISC11); 
 //External interrupt enable page 68 
 sbi(GICR, INTF0); 
 sbi(GICR, INTF1); 
 //Global interrupt enable page 9 
 sbi(SREG, 7); 

We have to modify the content of the demo project main.c file for the following: 

#include "../Headers/main.h" 
volatile uint8_t cntr = 0; 
  
// + button interrupt 
ISR(INT0_vect) 
{ 
    //If the counter hasn’t reached the maximum yet, then increase it 
    if (cntr < 7) 
    { 
          cntr++; 
    } 
} 
  
// - button interrupt 
ISR(INT1_vect) 
{ 
    //If the counter hasn’t reached the minimum yet, then decrease it 
    if (cntr > 0) 
    { 
          cntr--; 
    } 
} 
  
int main(void) 
{ 
    //IO initialization 
    IOInit(); 
  
    //Infinite loop 
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    while (1) 
    { 
          //Lighting up the LEDs accordingly to the counter 
          PORTA = cntr; 
    } 
  
    return (0); 
} 

Let’s see how it works in detail: when calling the IOInit() function, following the setup of the direction 

of the digital pins, the sbi(reg, n) macros are used to set the bits of the microcontroller registers to 

1. The first four sbi(reg, n)  instructions setup the external interrupts, the following two enables 

them and the last one enables the global interrupts. The global enablement and disablement of interrupts 

can be also done by the sei() and cli()  parameterless macros, which makes our program more 

readable.  

In the file main.c. you can find new types of functions, called ISR (Interrupt Service Routine, also called 

Interrupt  Handler)  functions  that  have  the  parameter xxx_vect.  These  are  the  interrupt  handler 

functions  that  were  mentioned  earlier,  they  are  only  executed  when  an  interrupt  happens.  Their 

parameters start with a name corresponding to the interrupt vector (found on page 44 of the datasheet 

under Interrupt Vector section) and ends with the suffix _vect. 

In our code, we increment or decrement the counter while paying attention to the limits in our interrupt 

handlers.  

Within the infinite loop of the main function the only thing left to do is set port A to the value of the 

counter, lighting up the LEDs. 

Because the button is debounced with a (filter) capacitor and we configure the external interrupt to detect 

a rising edge, nothing will happen if we push either of the buttons until we release them. Then a 0->1 

transition will occur on the input pin which generates an interrupt, and the control goes to the appropriate 

handler. 

ISR Functions 

The ISR functions are not the typical functions we are used to, because ISR() is just a macro which lets 

the compiler know that the content is an interrupt handler. 

The compiler automatically puts the RETI instruction at the end of the generated assembly for this block, 

which re-enables the global interrupts disabled by hardware at the start of the interrupt handler. This way 

we don’t have to put an enable interrupts instruction at the end of our handler. 

It is also worth to mention that we cannot call interrupt handlers explicitly like other normal functions we 

define from our code. 
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TIMERS AND INTERRUPTS 

If it hasn’t been clear by now, we would like to emphasise again: interrupts are a very important element 

of embedded software development. The reason for this is that in microcontrollers most peripherals are 

capable of generating interrupts. An interrupt can not only come from an external pin of the controller, 

but it can also be generated by an internal peripheral such as the analogue-digital converter signalling 

that the conversion is complete (more about this in the next chapter), or if any communication peripheral 

receives a message it can fire an interrupt to let us know. 

From the title of this section you might have already guessed that usually we can get an interrupt if a timer 

peripheral has “expired”.  

In a previous chapter we have already talked about timers but then we did not use interrupts. Let’s have 

a look at an example where we utilize a timer with interrupts. 

In the previous example we have solved the bouncing button problem with hardware debouncing in the 

form of two filter capacitors. Let’s remove these now and implement software debouncing instead. 

After removing the capacitors try to slowly press and release the button. In most cases the counter will 

count more than once in its direction. This is because of the button bounce we have already talked about, 

and it is very visible with this software. 

To avoid it we do the following: in the interrupt handler of the buttons we disable any interrupts coming 

from the same source and start a timer which we have set up previously to have close to a 100 ms period. 

When the timer “expires” another interrupt handler will get called, where we re-enable the interrupts 

coming from the button. 

This solution makes the system only detect the first rising edge, because the other edges that are caused 

by the bounce will get ignored as the interrupt is disabled. The approximate 100 ms set in the timer is 

enough  time  for  the  button  to  stop  bouncing,  but  it  is  small  enough  to  almost  always  detect  two 

consecutive intentional button presses. 

Create a new source file called “timer.c” in which – according the above – configure the TIMER1 peripheral 

with a prescaler of 8. The contents of the TimerInit() function are the following: 

//prescaler of 8, according to page 108 
cbi(TCCR1B, CS12); 
sbi(TCCR1B, CS11); 
cbi(TCCR1B, CS10); 

Because the clock frequency of our controller is 8 MHz, the clock signal of the timer will be one-eighth of 

that. Because the timer has a 16-bit counter it will overflow in: 8 [MHz]8 ∙ 216 ≈ 15.26 [Hz] ⟹ 115.26 [Hz] = 65.536 [ms]  

We will use this time to debounce the buttons. 

The contents of “io.c” can remain the same, as at startup we want the button interrupts to be active. 
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In the “main.c” file, both external interrupt handlers have to be  amended with a reset timer and the 

overflow interrupt enable which is accomplished with the following lines: 

//Timer1 counter reset 
TCNT1 = 0; 
//Timer1 overflow interrupt enable 
sbi(TIMSK, TOIE1); 

Furthermore, the external interrupts have to disabled so the microcontroller won’t recognize the rising 

edges coming from the bounce. 

 

//INTR0 interrupt disable 
cbi(GICR, INTF0); 

Then a new interrupt hander has to be created for the timer overflow, in which we re-enable external 

interrupts, clear all interrupt flags that might have been set before the timer expired, and disable the 

interrupt of the timer. 

//Timer1 overflow interrupt 
ISR(TIMER1_OVF_vect) 
{ 

//External interrupts enable, page 67 
sbi(GICR, INTF0); 
sbi(GICR, INTF1); 

   
//External interrupt flags clear, page 68 
cbi(GIFR, INTF0); 
cbi(GIFR, INTF1); 

   
//Timer1 overflow interrupt disable 

    cbi(TIMSK, TOIE1); 
} 

Finally we have to call TimerInit() and IOInit() in main, and set the LEDs by assigning the counter 

value to PORTA. 

Try to put the counter loop in main that keeps the controller busy and see what happens! 

//Imitating a time-consuming task somewhere within the while(1) 
for (i=0; i<500000; i++) 
{ 
} 

While not always immediately, but all button presses are correctly  registered, and the LED counter is 

updated.  The  processor  spends  most  of  its  time  counting  up  in  the  for  loop,  then  updating  the  LEDs 

according to the counter, and getting back to the for loop again. But interrupts are fired at each button 

press, the value of the counter is updated “in the background”. 
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Exact timing 

In our example it is not really important whether we wait for exactly a 100 ms or for around 65 ms after 

each button press, so we were using the timer mode which was simpler to implement. 

If you need to wait exactly a 100 ms, we have to use the timer in Output Compare mode. Here, the timer 

generates an interrupt when the counter reaches an exact pre-programmed value contained in OCR1AH 

and OCR1AL and/or OCR1BH and OCR1BL registers. 

It may very well be that the 65 ms turns out to be too short (it depends on the push button itself, and how 

fast are you pressing it) and we need to leave more time to debounce. 

To overcome that problem, we can use the timer in Output Compare mode as mentioned earlier, or we 

can choose a bigger prescaler, making it run slower. However, by implementing any of these we leave a 

greater  window  where  the  external  interrupts  are  disabled,  so  we  can  increment  or  decrement  the 

counter slower. The optimal solution is always application-specific, and depends on many factors such as 

how long does our button bounce, is there a free timer available, how fast impulses we need to detect, 

etc. 

FINAL WORDS 

We have reached our goal set at the beginning of the chapter; we have learned about interrupts and their 

quite  important  role  in  embedded  systems.  We  have  seen  one  example  for  internal  and  external 

interrupts each, which I hope will be useful for you in the rest of the curriculum, and in hobby projects or 

later studies. 
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