
 
The development  of the Crystal Clear Electronics curriculum was supported  by  the  European 

Commission in the framework of the Erasmus + programme in connection with the “Developing an 

innovative electronics curriculum for school education” project under “2018-1-HU01-KA201-047718” 

project number. 

 
The project was implemented by an international partnership of the following 5 institutions: 

•  Xtalin Engineering Ltd. – Budapest 

•  ELTE Bolyai János Practice Primary and Secondary Grammar School – Szombathely 

•  Bolyai Farkas High School – Târgu Mureș 

•  Selye János High School – Komárno 

•  Pro Ratio Foundation working in cooperation with Madách Imre High School – Šamorín 

 

 

 

 

Copyrights 

This curriculum is the intellectual property of the partnership led by Xtalin Engineering Ltd., as the 

coordinator. The materials are designed for educational use and are therefore free to use for this 

purpose;  however,  their  content  cannot  be  modified  or  further  developed  without  the  written 

permission  of  Xtalin  Engineering  Ltd.  Re-publication  of  the  materials  in  an  unchanged  content  is 

possible only with a clear indication of the authors of the curriculum and the source of the original 

curriculum, only with the written permission of Xtalin Engineering Ltd. 

Contact  http://crystalclearelectronics.eu/en/ 

info@kristalytisztaelektronika.hu  

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

16 - Accurate Timing - Timers 
Written by László Treszkai 

English translation by Xtalin Engineering Ltd. and László Treszkai 

Revised by Gábor Proksa 

In this chapter of the curriculum, you can learn about the basics of timer peripheral programming 

that will benefit your electrical engineer or software developer career. 

INTRODUCTION 

In this chapter we will write the software for a digital clock in two ways: first without using the timer 

peripheral and then with it. Throughout the examples we did not provide complete code snippets, and 

we left some questions unanswered. Although you can find the complete working code examples on 

the website of the curriculum, we suggest that you try to write the missing parts yourself and think 

about the questions, in order to learn the most. (Which is why you are reading this curriculum in the 

first place, right?) We can pick up a cookbook and select a good-looking recipe, but just by reading 

them one cannot learn to cook.  

Let’s start in the Stone Age first: we have a processor and we want to build a digital clock that looks 

good for the next part of Back to the Future. 

WHAT DOES A DIGITAL CLOCK SOFTWARE LOOK LIKE WITHOUT USING 

THE TIMER PERIPHERAL? 

WHAT DOES THE SIMPLEST DIGITAL CLOCK DO? 
Mine shows 17:23:42 right now. Oops, already 17:23:43, what’s going on? You could say that a clock 

continuously displays the time in seconds from when it was turned on. In practice, this means that the 

value of a counter is increased every second, starting from 0 at midnight, and returning to 0 after 

86,400 seconds (we say that the counter overflows). The value of this counter is displayed on the clock, 

usually in the “hour: minute: second” format. 

On a “binary” clock, LEDs indicate the hours, minutes, and seconds as binary digits. For example, in 

Figure 1, the LEDs in the bottom row indicate the seconds: LEDs for 32, 8, and 2 are lit, which translates 

to 32 + 8 + 2 = 42 seconds. Can you tell the time from the display? 

 
Figure 1 – Binary clock example 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

HOW CAN A DIGITAL CLOCK TELL THE TIME? 
Usually it can’t. It simply starts counting from 0:00:00 when you turn it on, and the time needs to be 

set manually.  In  the  example  code,  we  will  solve  this  in  the  simplest  possible way:  one  button  to 

increase the minute counter and another to increase the hour value. This solution is far from perfect: 

it’s  instructive  to  think  about  how  to  make  it  easy  to  use,  not  easy  to  develop.  Examine  the  user 

interface of the items around you, how do they solve similar problems? 

WHAT SHOULD OUR GADGET LOOK LIKE? 
The LEDs, used as a light source, can be connected between the microcontroller pin and ground – i.e. 

the negative supply voltage – via a resistor connected in series. So if you want an LED to light up, you 

need to set the output of the microcontroller to high. 

By default, the inputs are pulled up by the microcontroller’s internal pull-up resistor and the push 

buttons will pull them down to the ground when pressed. Thus, pressing a button can be detected in 

software by reading a low value on the input. 

 

 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

 

 
Figure 2 – Schematic and assembly of our clock 

You have to decide what kind of LED and resistor to choose. These two questions are related, because 

increasing the value of the resistance causes the current of the LED to decrease, thus decreasing its 

brightness. The brightness of an LED increases proportionally with the current flowing through it. 

In general, we would like a light source to be as brightly as possible, but the maximal current of both 

the LED and the microcontroller outputs is limited. The former can be read from the LED datasheet, 

but most of the LEDs will endure up to 20 mA. The current limit of the outputs is in the 

microcontroller’s datasheet in section 27.2, under the “DC Characteristics” table. The outputs of port 

A can be loaded with a total of 100 mA, and the outputs of ports B and C altogether can be loaded 

with a total of 100 mA in case of PDIP package. 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

Port B has 5 LEDs and Port C has 1 LED; if the same current flows through these 6 LEDs, it means a 

maximum of 16 mA per output. We get the same numbers for port A as well. 

We need the current and the voltage in order to determine the value of the resistance. The voltage 

on it depends on the voltage drop on the LED, which depends on the colour of the LED and the current 

flowing through it. On the red and green LEDs like the one supplied in the component package, there 

is a voltage drop of about 2 V at a current of 16 mA, so if our supply voltage is 5 V, then 3 V can be 

measured on the resistor connected in series. (The exact voltage-current characteristic depends on 

the type of LED, so a graph in the datasheet of that LED describes the current as a function of voltage.) 

The resistance value can finally be calculated using Ohm’s Law:   𝑅 =𝑈𝐼 =  3 [V]16 [mA] ≈ 0.19 [kΩ] = 190 [Ω]  
The higher the resistance value, the less current flows through the LED, so the value of our resistance 

should be at least this high. (Because of the tolerance of resistors, it is not worth to calculate it with 

more precision than two decimals.) 

WHAT SHOULD OUR PROGRAM LOOK LIKE? 
After the initialization at the beginning, we perform three tasks in an infinite loop: first we scan the 

state of the push buttons, then update the display, and finally wait a second until the next update. 

Something like this: 

int main(void) 
{ 
    uint32_t time = 0; 
    IoInit(); 
    while (1) 
    { 
        time = SetTime(time); 
        UpdateDisplay(time); 
        WaitSecond(); 
        time++; 
        if (time >= 86400) 
        { 
            time = 0; 
        } 
    } 
    return 0; 
} 

The IoInit() function initializes the I/O ports, which is described in section 12.2.1 of the datasheet. 

The bits of the DDRx registers describe whether the corresponding pin is used as input or output 

(where x is the port identifier, i.e. A, B, C or D). For example, if bits 0 and 2 of DDRB are 1 (i.e., the 

register value is 0000 01012 = 4 + 1 = 5), then PB0 and PB2 will be outputs, and the other PBn pins 

will be inputs. If a pin is used as an input, then the internal pull-up resistor can be switched on by 

setting  the  corresponding  bit  of  the PORTx  register  to  1.  Based  on  these,  you  can  write  the 

IoInit() function alone. I trust you will succeed! :) 

The SetTime() function reads the state of the push buttons, adds 60 or 3600 to the time variable 

depending on which button was pushed, and returns with the new value of time. The state of the 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

PD2 input is contained in bit 2 of the PIND register. (Where the numbering of bits, of course, starts 

from 0, starting with the least significant bit.) Remember that when the push button is pressed, a low 

value can be read on the input. 

With the UpdateDisplay() function, we only handle digital outputs using the knowledge we have 

acquired  in  the  previous  chapters  of  the  curriculum.  The  only  challenge  is  calculating  the  hours, 

minutes, and seconds from the time variable, which contains the seconds. To do this, it is a good 

start to try to calculate the digits for each digit of a decimal number. For example, if the input of our 

function is 527, the following will be true: 527 % 10  =   7 527 / 10  =  52 52 % 10  =   2 52 / 10  =   5 
(The % percent symbol denotes calculating the remainder after integer division.) Based on these, write 

the UpdateDisplay() function. There will be a slight difference between your solution and the 

above example because while the digits of a decimal number are always less than 10, the seconds and 

minutes need only be less than 60, and the hours less than 24. Managing the outputs will be very 

simple if the hours, minutes, and seconds are indicated by consecutive bits of each port. For example, 

if the minutes variable contains the value of minutes, then the 

PORTA = minutes; 

statement sets all the minute outputs at the same time. 

The purpose of the WaitSecond() function is to wait for a second while spending time on counting. 

Well, not really counting, but increasing the value of a local variable. 

#define SECOND_COUNTER_MAX 1000000 
  
void WaitSecond(void) 
{ 
    volatile uint32_t i; 
 
    /* This for loop has no effect outside of the WaitSecond() function, and the compiler 
also knows this. But the compiler does not know that time is elapsing while this loop 
is running, although that's exactly what we want to exploit. If i was not a volatile 
variable, then the entire for loop might be deleted by the compiler during optimization. 
*/ 
    for (i = 0; i < SECOND_COUNTER_MAX; i++) 
    { 
        /* Intentionally empty loop body. The waiting is achieved by increasing the 
index variable i one by one. */ 
    } 
} 

On the website of the curriculum there is a version of the example code that is yet to be completed. 

Fill  in  the  missing  parts  marked  with  “TODO”,  upload  the  program  to  the  microcontroller,  fix  any 

possible bugs and admire your cool gadget! 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

Tracking changes in our software 

When  we  constantly  modify  the  software  during  development,  it  may  happen  that  some  of  the 

changes don’t work, so we would like to return to an earlier version. An obvious solution is to make a 

copy of the source code before making major changes – but it will soon lead to clutter, which makes 

it easy to lose track of which version followed which, or what the change was. A version control system 

stores all the changes together with our comments in a database that can be easily searched later. I 

used the free Git system and the TortoiseGit program to develop the example code on the website; 

you can view my edit history with them and keep track of yours. 

WHAT ASSUMPTIONS WERE MADE DURING SOFTWARE DEVELOPMENT? WHAT DID WE HAVE 

TO MEASURE OR EXPERIMENT WITH? WHAT PROBLEMS DID WE FACE? 
First, we need to know how long it takes to execute a for loop. This can be calculated knowing the 

clock  frequency  and  the  type  of  microcontroller,  but  that  would  be  difficult:  chapter  30  of  the 

microcontroller datasheet describes how many clock cycles each machine instruction takes. It is easier 

to measure how fast the clock goes with some arbitrary value of the SECOND_COUNTER_MAX macro 

and adjust the counter value accordingly. For example, if you see that your clock is five times faster 

than it should be, then reduce the value of the macro to one-fifth, and then perform the measurement 

again to make a finer adjustment. I leave you to do this measurement: in the example program, that 

macro contains only an approximate value, with which our clock will not tick at the right pace. Perform 

the SECOND_COUNTER_MAX  macro  calibration  as  described  above.  (Note:  We  could  use  the 

_delay_ms() macro provided by Atmel in the WaitSecond() function, but that wouldn’t solve 

all of our problems.) 

Measurement Technology 

If  we  have  the  same  absolute  error  in  two measurements,  the  result will  be more  accurate  if the 

measured value is higher.  

For example, we want to measure the rate of an unknown clock using an accurate clock. This can be 

done by measuring with the accurate clock how much time it takes for the clock to be measured to 

advance by 1 minute. This measurement will have a fixed error, say, 0.2 seconds due to the manual 

handling of the stopwatch. 

If we measure the time it takes to advance by an hour instead of a minute, its error will still be 0.2 

seconds. But note that in the latter case the error is the (0.2 / 3600) = 0.0055% of the measured value, 

while in the former case (0.2 / 60) = 0.33%, which is 24 · 60 · 0.33% = 4.7 minutes of slip every day! 

That’s the difference between a useless clock and a barely useful one. 

Second, we assumed that the execution time of our functions is the same in each cycle. This is not 

true, for example, if there is an if-else branch where the if and else branches are not the same length. 

If we used interrupts (which will be discussed in a later chapter of the curriculum), then it would be 

very difficult to calculate their runtime. 

Third,  we  assumed  during  the  development  phase  that  the  execution  time  of  the while  loop  is 

constant. However, if you change the program or the compiler optimization settings, the while loop 

will no longer take exactly as long, so you need to re-calibrate the SECOND_COUNTER_MAX constant. 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

Finally, while the WaitSecond() function is running, the microcontroller cannot execute any other 

task. (For example, to control the clock buttons or backlight.) Trying to do this would cause our clock 

to be delayed. 

All these problems are solved by using the timer peripheral. 

WHAT IS THE TIMER PERIPHERAL GOOD FOR? 

A microcontroller is much more than a processor: in addition to the operation-executing core (CPU), 

it includes additional circuits called peripherals to facilitate communication with the environment. 

The main function of the timer/counter peripheral is to count the edges of square waves. These are 

usually the edges of an internal clock signal (which arrive at a fixed rate, so they are a good indication 

of the elapsed time, hence the term timer), but the peripheral can also count the edges of external 

square waves,  

for example, the rotation of the axis of a washing machine or an internal combustion engine (which 

arrive not necessarily at a fixed rate, therefore the name counter). 

The  burden  of  measuring  time  is  lifted  from  the main  function’s  shoulder  by  the  timer,  so  the 

software developer has less work to do, and yet they have a more reliable time source. While the core 

of the microcontroller deals with the execution of instructions, the timer continuously increases the 

value of a counter in the background. 

With the help of the timer, we can, among other things, simply ask how much time has elapsed since 

the start of our microcontroller (this is called uptime), measure delays of milliseconds or 

microseconds, or execute certain tasks periodically (for example, to read analog signals a thousand 

times in a second, or to turn the heater on/off once per hour). 

This peripheral is also capable of generating PWM signals, which is discussed in another chapter. 

HOW DOES THE TIMER WORK? 

There are three timer peripherals in the ATmega16A microcontroller that are named Timer/Counter0, 

1, 2.  Of  these,  Timer/Counter0  is  the  simplest,  which  has  an 8-bit  wide  counter  and  is capable  of 

generating a PWM signal. Timer/Counter1 is 16-bit wide and is capable of generating two PWM signals 

in parallel, while recording the time of an external event. Timer/Counter2 is only 8-bit wide, but it has 

its own oscillator, so it can count at a frequency independent of the system clock. 

In  section 14.2 of  the  datasheet  you  can  see  the  structure of Timer/Counter0  peripheral,  and  the 

following figure shows us the parts that are relevant for us: 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

 
Figure 3 - The internal structure of Timer/Counter0 

The TCNTn* register is the counter controlled by the timer control logic according to the settings in 

the TCCRn  register.  (Here  n  is  the  number  of  the  counter,  i.e.,  in  case  of  Timer/Counter0,  the 

corresponding registers are TCNT0, TCCR0, etc.) These settings in case of Timer0 affect the following: 

● whether the source of the input signal should be an external signal or an internal clock through 

the so-called prescaler (CS0 bits); 

● whether the maximum value of the counter is 0xFF or the value of the OCR0 register (WGM0 

bits); 

● other settings related to PWM signal generation (COM0 bits). 

The frequency of counting is determined by the settings of the clock source and the prescaler, which 

will be described on the following pages. 

WHAT IS THE PRESCALER? 

If the microcontroller uses a 16 MHz clock for the maximum performance, and if the counter value is 

increased by one for each rising edge of the clock, then the 8-bit counter reaches its maximum value 

of 255 in 16 μs. Although it is possible to measure longer times with such a fast counter,  a slower 

counter is often more practical. This is solved by the prescaler, which divides the frequency of the 

clock source at its input by an integer, for example, dividing the frequency of the 16 MHz clock  by 

eight, so its output will be a 2 MHz clock. This is also required to generate hardware PWM signals of 

longer periods that would not be possible without a prescaler with an 8-bit counter and a fast clock. 

Figure 14-9 of the datasheet shows the timer signals when the prescaler is in use. (In contrast, in figure 

14-8, the prescaler is not used.) The prescaler will be used in our program. 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

 
Figure 4 - The internal structure of the prescaler 

WHAT KIND OF CONFIGURATION OPTIONS DOES THE TIMER PERIPHERAL 

HAVE? 

One of the two most important configuration options defines the mode of operation of the counter. 

In Normal mode, the counter starts from 0 and the counter value is increased by one until it reaches 

the maximum value of its data type (i.e. 255 for an 8-bit counter, 65535 for a 16-bit counter). Then 

the counter overflows and continues counting from 0. This overflow event is indicated by the TOVn 

bit, which is named after the term “timer overflow”. This mode can be selected for Timer/Counter0 

by setting the WGM0[1:0] bits of the TCCR0 register to 0 (see Table 14-2. of the datasheet). (The 

bits of a variable are usually denoted by the numbers in square brackets after the name of the variable, 

where 0 denotes the least significant bit. The expression TCNT1[15:8] denotes the bits from 15 to 

8 of TCNT1 variable.) 

In clear timer on compare match (CTC) mode, the counter starts from 0, and is also increased one by 

one. As soon as the counter value would be greater than the number set in the OCRn (Output Compare 

Register) register, the counter is reset and resumes counting from 0. At the same time, the Output 

Compare Flag (OCFn) bit is set to 1 until it is reset to zero by our program. (See figure 14-11 in the 

datasheet.) 

Another important setting is the clock source, which can be selected using the CS0[2:0] bits of the 

TCCR0 register (see table 14-6 in the datasheet). We have the opportunity of stopping the timer, 

using the main clock of the microcontroller, counting the prescaled version of the main clock, or the 

signal on the T0 pin. The external clock signal arriving at the T0 pin can be used to count impulses from 

outside the microcontroller: for example, an output signal of a sensor that is on the wheel of a car 

near to a cogwheel. The output of such a sensor is a digital signal, that is, it can take two values: in its 

initial state it usually indicates a high value (i.e. a voltage close to the supply voltage), and it indicates 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

a low value if it is close to a cog. The microcontroller detects how many edge changes happen in a unit 

time, and from this the speed of the wheel can be calculated. 

 
Figure 5 – Angular velocity measurement using a cogwheel sensor 

WHAT KIND OF OPPORTUNITIES DO WE HAVE IF WE WANT ACCURATE 

TIMING? 

Chapter 8 of the datasheet describes what kind of clock sources can be used with this microcontroller; 

these are summarized in the table below. 

 Frequency Price Accuracy Start-up time 

External high 

frequency crystal 
max. 16 MHz $0.10…$1.50 10…100 ppm 16k clock periods 

External resonator max. 8 MHz $0.50 0,1…0,5% 1k clock periods 

External low 

frequency crystal 
32 kHz $0.10…$0.50 10…100 ppm 

1k / 32k clock 

periods 

External RC-

oscillator 
max. 12 MHz $0.02…$0.10 5…10% 6-18 clock periods 

Internal RC-

oscillator 
1 / 2 / 4 / 8 MHz $0.00 1…3% 6 clock periods 

External clock 

source 
max. 16 MHz ? ? 6 clock periods 

Cost is an important design aspect, which means not only the price of the components, but also the 

design  engineer’s  time.  In  terms  of  both  price  and  simplicity,  the  microcontroller’s  internal  RC 

oscillator wins, but it is orders of magnitude less accurate than an external crystal. 

If we need accurate and fast timing, an external crystal is usually the best solution. 

An external clock setting is required when there are multiple microcontrollers in a circuit, and they 

need to operate at exactly the same frequency. 

 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

What Are the Costs? 

It is obvious why the cost of the components is important: if you need to make 1000 pieces of a circuit, 

you save $200.00 with a component which is cheaper  by $0.20 each. However, our invested time 

should never be disregarded! 

Life is very short, and on whatever we spend time on, the less we have left for other, perhaps more 

important or more enjoyable things.  

Engineering salaries are high, so it is in their employer’s interest to make them work as quickly and 

efficiently as possible. 

It is often necessary to work on tight deadlines to reach a fixed date (for example, the Christmas gift 

should be wrapped up by 24 December) or to be faster than the competition (for example, our next-

generation mobile phone should come out sooner than theirs). 

The  sooner  we  complete  a  project,  the  sooner  we  can  enjoy  its  benefits  (for  example,  the  joy  of 

Christmas lights or the proceeds from a sale). 

If we add up all of these, saving $200.00 is not always worth it. 

HOW TO USE THE TIMER FOR OUR DIGITAL CLOCK? 

HOW ACCURATE SHOULD OUR CLOCK BE? 
Clock precision is measured by much the clock is allowed to deviate in a given timeframe, e.g. in 100 

seconds.  For  example,  a  10  MHz  oscillator  with  a  frequency  tolerance  of  ±0.5%  delivers  between 

9,950,000 and 10,050,000 pulses in 1 second. For more accurate devices, tolerance is given in ppm 

(part per million), equivalent to 0.0001% (one millionth of the nominal frequency). 

I expect my watch not to slip more than half a minute in a month: this means one second a day. This 

is rounded down to 1/(24 · 60 · 60) = 11 ppm. 

It Matters Whether It’s a Little Bit Too Accurate or a Little Bit Too Inaccurate 

Why did I round down when the result was 11.57 ppm? 

Because my requirement is that it should be at least this precise: if my watch was delayed by 12 ppm, 

it would no longer fulfil my requirements. You should always pay attention to the sign of the tolerance: 

the teacher does not care if you are early in the class, but they care much more if you are late! If the 

car’s braking distance is half a meter shorter than necessary, we are happy, but if it’s half a meter 

longer… 

It is impossible to make an RC-oscillator with such precision, and it would be difficult to find such a 

ceramic oscillator, if there is even any. In fact, with this 11 ppm we have set the bar high enough: 

when writing this chapter of the curriculum, the most accurate quartz that’s easily available offers 10 

ppm. Only 1% accuracy is guaranteed for the calibrated internal oscillator, which could cause a delay 

of quarter of an hour per day. That wouldn’t be very practical. 

 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

Calibration of Prototypes 

Actually, only the circuits in mass production require the clock signal to be accurate; if only few pieces 

are produced, it is enough if the clock signal is stable. If only one piece is produced, we should only 

take into account how much the oscillator frequency varies over time and at different temperatures. 

The initial error can be corrected in the software, which is called calibration. 

So, we need to have a quartz in the clock to be sufficiently accurate. (It is no coincidence that the term 

“quartz watch” is used.) Even so, we have two options: the quartz can be used either as the main clock 

of the microcontroller, or only for the input of the Timer/Counter2 external clock (then the main clock 

could  be  the  internal  RC  oscillator).  The  advantage  of  the  former  solution  is  that  the  power 

consumption is lower if a slow crystal is used as the main clock instead of the minimum 1 MHz RC 

oscillator. The advantage of the second solution is that the higher operating frequency allows more 

operations per unit time (for example, more complex display management), and we don’t need to 

worry about fuse settings. I chose the second solution for the example program, so we will use the 

Timer/Counter2 peripheral. 

The properly modified circuit diagram is shown in Figure 6. Although the use of an external crystal 

usually  requires  the  use  of  two  capacitors  between  the  two  legs  of  the  crystal  and  the  ground, 

according to section 8.9 of the datasheet, it is not required in this case. 

 
Figure 6 – Schematic of the clock using an external crystal 

 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

 
Figure 7 – The assembled circuit 

WHAT SHOULD THE NEW SOFTWARE LOOK LIKE? 
The concept of the new software is the following: at start-up, we set up and start the timer peripheral, 

then we execute three tasks in an infinite loop: scan the state of the buttons, update the display, and 

wait until one second has elapsed. Like this: 

int main(void) 
{ 
    uint32_t time_seconds = 0; 
  
    IoInit(); 
    SetupTimer(); 
  
    while (1) 
    { 
        time_seconds = SetTime(time_seconds); 
  
        UpdateDisplay(time_seconds); 
  
        while (CheckIfSecondElapsed() == false) 
        { 
            // intentionally empty loop core 
        } 
  
        time_seconds++; 
        if (time_seconds >= 86400) 
        { 
            time_seconds = 0; 
        } 
    } 
  
    return 0; 
} 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

WHAT IS HAPPENING HERE? 
Let’s start with the SetupTimer() function. This function configures the Timer/Counter2 

peripheral by following these steps: 

1) It configures the timer to use the 32 768 Hz oscillator between the TOSC[1:2] pins as input, by 

setting the AS2 bit in the ASSR register. 

2) It configures the prescaler to divide the above 32 768 Hz clock signal by 1024. Thus, the control logic 

of the counter will have a 32 Hz clock. 

3) Set the timer to Clear Timer on Compare Match (CTC) mode. In this mode, the counter counts 

between 0 and OCR2 and at every overflow the OCF2 bit is set to 1 (see figure 17-11 of the datasheet). 

4) Sets OCR2, i.e. the upper limit of counting to 31, so the counter will count between 0 and 31, which 

means that an overflow will be generated at every 32 nd beat. The 32 Hz internal clock signal causes 

the  timer  peripheral  to  set  the OCF2  bit  to  1  once  per  second.  This  flag  will  then  be  periodically 

restored to 0 by our program. 

5) It starts the timer. 

The prescaler setting in the ATmega16A microcontroller also starts the timer (see table 17-6 in the 

datasheet). Accordingly, combining points 2 and 5, the implementation of the function may look like 

this: 

void SetupTimer( void ) 
{ 
    // TODO: 1. Setting the timer input to TOSC[1:2] pins 
    // TODO: 2. Setting the Timer Mode to CTC mode 
    // TODO: 3. Setting OCR2 
    // TODO: 4. Setting the prescaler, which will divide 1024 
} 

It is worth to mention that I write the program in the same order as you read it in this section: first, I 

design the high level concept in my head and try to write it (currently only the main function), then 

the functions (SetupTimer, CheckIfSecondElapsed) and data structures (if there is one in the 

program),  and  finally  I  look  through  the  datasheet,  searching  for  details  such  as  which  register 

configures the prescaler. If the program is more complicated, or if I get stuck in a thought, then I’m 

not ashamed to pick up paper and pencil to clarify my thoughts on drawings or diagrams. 

It also helps a lot if you explain how the program works to a competent friend or colleague: we often 

notice during the explanation that our program has errors or is unnecessarily complicated. The best 

programmers I know regularly ask for the opinion of their colleagues, and not only when their software 

doesn’t work. (This activity is known as “code review”.) The best time to review our code is right after 

the compilation of our program: the compiler has already found the most trivial mistakes, but we have 

not yet spent time on uploading and debugging faulty code. 

How Can Our Dog Help in Software Development? 

It is interesting that the recipient of our explanations does not necessarily need to be a competent 

expert, or even a living person. The essence of “rubber duck debugging” is explaining our program line 

by line to a rubber duck. By putting it into words what our program does and what we want it to do, 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

any difference will be much more obvious. The best programmers are considered as mad geniuses 

regardless, so a conversation with a rubber toy will not change this opinion. 

Well, let’s get back to the program! The CheckIfSecondElapsed() function also deals with the 

timer: this function must return true if the timer has reached the set maximum value (i.e. if another 

second has elapsed) or false if it has not. 

The advantage of using a timer peripheral is that this function is very simple: the peripheral works in 

the  background  regardless  of  what  operation  the microcontroller  is  executing.  The  moment  a  full 

second  elapses,  the  hardware  will  set  the OCF2  flag  in  the TIFR  register  (Timer  Interrupt  Flag 

Register), and this flag will remain in this state until the software sets it back to 0. This is shown in the 

figure 17-11 of the datasheet and the OCF2 bit description in section 17.11.6. The value of the TIFR 

register can be changed in a strange way: the value of a bit can be reset by writing 1 into it; if you write 

0, it does not change the bit value. 

bool CheckIfSecondElapsed(void) 
{ 
    bool second_elapsed_b; 
  
    if (0 != (TIFR & (1 << OCF2))) 
    { 
        // Resetting the OCF2 bit  
        TIFR = (1 << OCF2); 
  
        second_elapsed_b = true; 
    } 
    else 
    { 
        second_elapsed_b = false; 
    } 
  
    return second_elapsed_b; 
} 

WHY IS IT BETTER THAT I USED  THE  SECOND_ELAPSED_B VARIABLE, INSTEAD  OF USING 2 

RETURN STATEMENTS IN THE FUNCTION? 
Although the above simple function would have been understandable anyway, in general it is easier 

to understand, debug and maintain a function that has only one exit point. When you have completed 

your own projects, notice that there is a lot of time in troubleshooting and fixing errors during software 

development. 

WHAT DOES THE “_B” MEAN AT THE END OF THE SECOND_ELAPSED_B VARIABLE? 
We save ourselves (and those who later want to understand our program) from headaches beyond 

measure if we write the unit of measurement in the variables’ names. Boolean variables are often 

denoted by the “_b” suffix: from this it is visible at a glance that the second_elapsed_b variable 

has values true or false, depending on whether a second has elapsed or not. It is interesting, that 

NASA’s  space  probe,  the  Mars  Climate  Orbiter,  was  lost  due  to  a  preventable  error.  There,  one 

software  module  returned  the  engine-generated  momentum  in  imperial  units,  as  opposed  to  the 

required metric units. That’s how the result of a $193 million development burned up in the Mars 

atmosphere. 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.



Crystal Clear Electronics 

   
 

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.  
Responsibility for the information and views expressed therein lies entirely with the author(s). 

The UpdateDisplay()  function  is  the  same  as  it  was  in  the  previous  program,  because  the 

function was written to be independent of the timing. On the other hand, if you later want to use a 7-

segment display instead of the LEDs, or write the time to a serial port in text format, you will only need 

to make few changes in the software. If you want to use the same function in another project, it will 

be easy to move large sections of the program. (Provided that they are well documented: we humans 

tend to overestimate our memory and believe that we will remember our design decisions correctly 

after many years have passed. This is often not the case, so we make things easier for our future self 

or for our colleagues by describing our tricky decisions and explaining what we did and why.) 

The curriculum  website  has  a  version of the  example  code  that  is yet  to  be  completed.  Fill  in  the 

missing  parts  marked  with  “TODO”,  upload  the  program  to  the  microcontroller,  fix  any  bugs  and 

admire your much cooler gadget! 

SUMMARY 

In this chapter of the curriculum you have learned about the following: 

● what difficulties we face with timing without using the timer peripheral, 

● how to use the timer peripheral, 

● how to make software development easier, 

● what are the qualities of a good engineer: able to formulate problems and solve them, and 

able to admit their own mistakes. 

The timer peripheral was used in this section in timer mode. In another chapter it is discussed how 

you can apply them to generate PWM signals. 

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17

