
www.it-ebooks.info

http://www.it-ebooks.info/

Jason Myers and Rick Copeland

SECOND EDITION

Essential SQLAlchemy

www.it-ebooks.info

http://www.it-ebooks.info/

Essential SQLAlchemy, Second Edition
by Jason Myers and Rick Copeland

Copyright © 2010 Jason Myers. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Dawn Schanafelt and Meghan Blanchette
Production Editor: FIX ME!
Copyeditor: FIX ME!
Proofreader: FIX ME!

Indexer: FIX ME!
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

December 2015: Second Edition

Revision History for the Second Edition:

2015-07-07: Early release revision 1

See http://oreilly.com/catalog/errata.csp?isbn=9781491916469 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. !!FILL THIS IN!! and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-491-91646-9

[?]

www.it-ebooks.info

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491916469
http://www.it-ebooks.info/

Table of Contents

Preface. v

1. Introduction to SQLAlchemy. 1
Why Use SQLAlchemy? 1

SQLAlchemy Core and the SQL Expression Language 2
ORM 2

Choosing between SQLAlchemy Core and ORM 2
Installing SQLAlchemy and Connecting to a Database 3

Installing Database Drivers 3
Connecting to a database 4

Part I. SQLAlchemy Core

2. Schema and Types. 9
Types 9
Metadata 11
Tables 12

Columns 12
Keys and Constraints 14
Indexes 15
Relationships and ForeignKeyConstraints 15

Persisting the Tables 17

3. Working with Data via SQLAlchemy Core. 21
Inserting Data 21
Querying Data 25

ResultProxy 26
Controlling the Columns in the Query 27
Ordering 28

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Limiting 29
Builtin SQL Functions and Labels 30
Filtering 31
ClauseElements 32
Operators 33
Boolean Operators 34
Conjunctions 34

Updating Data 35
Deleting Data 36
Joins 38
Aliases 39
Grouping 40
Chaining 41
Raw Queries 42

4. Exceptions and Transactions. 45
Exceptions 45

AttributeError 46
IntegrityError 48
Handling Errors 49

Transactions 50

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

We are surrounded by data everywhere, and your ability to store, update, and report on
that data is critical to every application you build. It doesn’t matter if you are developing
for the web, the desktop or other applications, they all need fast and secure access to
data. Relational databases are still one of the most common places to put that data.

SQL is a powerful language for querying and manipulating data in a database, but
sometimes it’s tough to integrate it with the rest of your application. You may have used
string manipulation to generate queries to run over an ODBC interface, or used a DB
API as a Python programmer. While those can be effective ways to handle data it can
make security and database changes very difficult.

This book is about a very powerful and flexible Python library named SQLAlchemy that
bridges the gap between relational databases and traditional programming. While
SQLAlchemy allows you to “drop down” into raw SQL to execute your queries, it en‐
courages higher-level thinking through a more “pythonic” and friendly approach to
database queries and updates. It supplies the tools that let you map your application’s
classes and objects onto database tables once and then to “forget about it,” or to return
to your model again and again to fine-tune performance.

SQLAlchemy is powerful and flexible, but it can also be a little daunting. SQLAlchemy
tutorials expose only a fraction of what’s available in this excellent library, and though
the online documentation is extensive, it is often better as a reference than as a way to
learn the library initially. This book is meant as a learning tool and a handy reference
for when you’re in “implementation mode” and need an answer fast.

This book focus the 1.0 release of SQLAlchemy; however, much of what will cover has
been available for many of the previous versions. It certainly works from 0.8 forward
with minor tweaking, and most of it from 0.5.

This book has been written in three majors sections: SQLAlchemy Core, SQLAlchemy
ORM, and a Cookbook section. The first two sections are meant to mirror each other
as closely as possible. We have taken care to perform the same examples in each section

v

www.it-ebooks.info

http://www.it-ebooks.info/

so that you can compare and contrast the two main ways of using SQLAlchemy. The
book is also written so that you can read both the SQLAlchemy Core and ORM sections
or just the one suits your needs at the moment.

Who This Book is For
This book is intended for those who want to learn more about how to use relational
databases in their Python programs, or have heard about SQLAlchemy and want more
information on it. To get the most out of this book, the reader should have intermediate
Python skills and at least moderate exposure to SQL databases. While we have worked
hard to make the material accessible if you are just getting started with Python, I would
recommend reading Introducing Python by Bill Lubanovic or watching the Introduction
to Python videos by Jessica McKellar as they are both fantastic resources. If you are new
to SQL and databases check out Learning SQL by Alan Beaulieu. These will fill in any
missing gaps as you work through this book.

How to Use the Examples
Most of the examples in this book are built to be run in a REPL (read, eval, print loop).
You can use the builtin python REPL by typing python at the command prompt. The
examples also work well in an ipython notebook. There are a few parts of the book such
as [Chapter to Come], that will direct you to create and use files instead of a REPL. The
supplied example code is provided in ipython notebooks for most examples, and python
files for the chapters that specify to use them. You can learn more about ipython at its
(website).

Assumptions This Book Makes
This book assumes basic knowledge about Python syntax and semantics, particularly
versions 2.7 and later. In particular, the reader should be familiar with iteration and
working with objects in Python, as these are used frequently through out the book. The
second section of the book deals extensively with object-oriented programming and the
SQLAlchemy ORM. The reader should also know basic SQL syntax and relational theo‐
ry, as this book assumes familiarity with the SQL concepts of defining schema and tables
along with creating SELECT, INSERT, UPDATE, and DELETE statements.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, file names, and file extensions.

vi | Preface

www.it-ebooks.info

http://ipython.org/
http://www.it-ebooks.info/

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/title_title.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

Preface | vii

www.it-ebooks.info

https://github.com/oreillymedia/title_title
http://www.it-ebooks.info/

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Book Title by Some Author (O’Reilly).
Copyright 2012 Some Copyright Holder, 978-1-4919-1646-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/
0636920035800.

viii | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://www.oreilly.com/catalog/0636920035800
http://www.oreilly.com/catalog/0636920035800
http://www.it-ebooks.info/

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com. For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many thanks go to Patrick Altman, Eric Floehr, and Alex Gronholm for their critical
pre-publication feedback, without whom this book would have undoubtedly had many
technical issues and been much harder to read.

My appreciation goes out to Mike Bayer, whose recommendation led to this book being
written in the first place. I’m grateful to Meghan Blanchette for pushing me to complete
the book, making me a better writer, and putting up with me. I also would like to thank
Brian Dailey for reading some of the roughest cuts of the book, providing great feedback,
and laughing with me about it.

I wanna thank the Nashville development community for supporting me especially Cal
Evans, Jacques Woodcock, Luke Stokes, and William Golden.

Thanks to my employer, Cisco Systems, for allowing me the time and providing support
to finish the book.

Most importantly I wanna thank my wife for putting up with me reading aloud to myself,
disappearing to go write, and being my constant source of support and hope. I love you,
Denise.

Preface | ix

www.it-ebooks.info

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introduction to SQLAlchemy

SQLAlchemy is a library used to interact with a wide variety of databases. It enables you
to create data models and queries in a manner that feels like normal Python classes and
statements. Created by Mike Bayer in 2005, SQLAlchemy is used by many companies
great and small, and is considered by many to be the de facto way of working with
relational databases in Python.

It can be used to connect to most common databases such as Postgres, MySQL, SQLite,
Oracle, and many others. It also provides a way to add support for other relational
databases as well. Amazon Redshift, which uses a custom dialect of PostgreSQL, is a
great example of database support added by the community.

In this chapter, we’ll explore why we need SQLAlchemy, learn about its two major
modes, and get connected to a database.

Why Use SQLAlchemy?
The top reason to use SQLAlchemy is to abstract your code away from the underlying
database and its associated SQL peculiarities. SQLAlchemy leverages powerful common
statements and types to ensure its SQL statements are crafted efficiently and properly
for each database type and vendor without you having to think about it. This makes it
easy to migrate logic from Oracle to PostgreSQL or from an application database to a
data warehouse. It also helps ensure that database input is sanitized and properly escaped
prior to being submitted to the database. This prevents common issues like SQL Injec‐
tion attacks.

SQLAlchemy also provides a lot of flexibility by supplying two major modes of usage:
SQL Expression Language (commonly referred to as Core) and ORM. These modes can
be used seperately or together depends on your preference and the needs of your ap‐
plication.

1

www.it-ebooks.info

http://www.it-ebooks.info/

SQLAlchemy Core and the SQL Expression Language
The SQL Expression Language is a Pythonic way of representing common SQL state‐
ments and expressions, and is only a mild abstraction from the typical SQL language.
It is focused on the actual database schema; however, it is standardized in such a way
that is provides a consistent language across a large number of backend databases. The
SQL Expression Language also acts as the foundation for the SQLAlchemy ORM.

ORM
The SQLAlchemy ORM is similar to many other ORMs you may have encountered in
other languages. It is focused around the domain model of the application and leverages
the unit of work pattern to maintain object state. It also provides a high level abstraction
on top of the SQL Expression Language that enables the user to work in a more idiomatic
way. You can mix and match use of the ORM with the SQL Expression Language to
create very powerful applications. The ORM leverages a declarative system that is similar
to the active-record systems used by many other ORMs such as the one found in Ruby
on Rails.

While the ORM is extremely useful, you must keep in mind that there is a different
between the way classes can be related, and how the underlying database relationships
work. We’ll explore more of how this can affect you in [Chapter to Come].

Choosing between SQLAlchemy Core and ORM
Before you begin building applications with SQLAlchemy, you will need to decide of
you are going to primarly use the ORM or Core. The decision between choosing to
using SQLAlchemy Core vs ORM as the dominate data access layer for an application
often comes down to a few factors and personal preference.

The two modes use slightly different syntax, but the biggest difference between Core
and ORM is the view of data as schema or business objects. SQLAlchemy Core has a
schema-centric view, which like traditional SQL is focused around tables, keys, and
index structures. SQLAlchemy Core really shines in Data Warehouse, Reporting, Anal‐
ysis, and other points where being able to tightly control the query or operating on
unmodeled data is useful. Having the strong database connection pool and ResultSet
optimizations are perfectly suited to dealing with large amounts of data even in multiple
databases.

However, if you wanted to focus more on a domain driven design, the ORM will en‐
capsulate much of the underlying schema and structure in metadata and business ob‐
jects. This encapsulation can make it easy to make database interactions feel more like
normal python code. Most common applications lend themselves to being modeled in
this way. It can also be a highly effective way to inject domain driven design into a legacy
application or one with raw SQL statements sprinkled throughout. Micro services also

2 | Chapter 1: Introduction to SQLAlchemy

www.it-ebooks.info

http://www.it-ebooks.info/

benefit from it’s abstraction from the underlying database allowing the developer to
focus on just the process being implemented.

However, since the ORM is built on top of SQLAlchemy Core, you can use its ability to
work with services like Oracle Data Warehousing and Amazon Redshift in the same
manner that it interoperates with MySQL. This makes it a wonderful compliment to the
ORM when you need to combine business objects and warehoused data.

• If you are working with a framework that already has an ORM built in, but want to
add more powerful reporting, use Core.

• If not do you want to take a view of your data in a more schema-centric view like
used in SQL, use Core.

• Do you have data for which business objects are not needed, use Core.
• Do you view your data as business objects, use ORM.
• Are you building a quick prototype, use ORM.
• Do you have a combination of needs that really could leverage both business objects

and other data unrelated to the problem domain, use both!

Now that you know how SQLAlchemy is structured and the difference between Core
and ORM, we are ready to install and start using SQLAlchemy to connect to a database.

Installing SQLAlchemy and Connecting to a Database
SQLAlchemy can be used with Python 2.6, Python 3.3, and Pypy 2.1 or greater. I rec‐
ommend using pip to perform the install, and it can be done with a pip install
sqlalchemy. It’s worth noting that it can also be installed with easy_install and distutils
as well; however, pip is the more straight forward method. During the install SQLAl‐
chemy will attempt to build some C extensions, which are leveraged to make working
with result sets fast and more memory efficient. If you need to disable these extensions
due to lack of a compiler on the system you are installing you, you can use --global-
option=--without-cextensions. Note that using SQLAlchemy without C extensions
will adversely affect performance, and you should test your code on a system with the
C extensions prior to optimizing it.

Installing Database Drivers
By default, SQLAlchemy will support SQLite3 with no additional driver; however, an
additional database driver that uses the standard python DBAPI (PEP-249) specification
is needed to connect to others databases. These DBAPIs provide the basis for the dialect
each database server speaks, and often enable the unique features seen in different da‐
tabase servers and versions. While there are multiple DBAPIs available for many of the

Installing SQLAlchemy and Connecting to a Database | 3

www.it-ebooks.info

http://www.it-ebooks.info/

databases, the instructions below focus on the most common for PostgreSQL and
MySQL.

PostgreSQL
(Psycopg2) provides wide support for PostgreSQL versions and features and can be
installed with pip install psycopg2.

MySQL
PyMySQL is my preferred python library for connecting to a MySQL database server.
It can be installed with a pip install pymysql. MySQL support in SQLAlchemy re‐
quires MySQL version 4.1 and higher due to the way passwords worked prior to that
version. Also if a particular statement type is only available in a certain version of
MySQL, SQLAlchemy does not provide a method to use those statements on versions
of MySQL where the statement isn’t available. It’s important to review the MySQL doc‐
umentation if a particular component or function in SQLAlchemy does not seem to
work in your environment.

Others
SQLAlchemy can also be used in conjunction with Drizzle, Firebird, Oracle, Sybase,
and Microsoft SQL Server. The community has also supplied External dialects for many
other databases like IBM DB2, Informix, Amazon Redshift, EXASolution, SAP SQL
Anywhere, Monet, and many others. Creating an additional dialect is well supported
by SQLAlchemy, and Chapter 8: Custom Dialects will examine the process of doing just
that.

Now that we have SQLAlchemy and a DBAPI installed let’s actually build an engine to
connect to a database.

Connecting to a database
To connect to a database, we need to create a SQLAlchemy engine. The SQLAlchemy
Engine creates a common interface to the database to execute SQL statements. It does
this by wrapping a pool of database connections and a dialect in a way that they can
work together to provide uniform access to the backend database. This enables our
Python code not to worry about the differences between databases or DBAPIs. SQLAl‐
chemy provides a function to create an engine for us given a connection string and
optionally some additional keyword arguments. A connection string is a specially for‐
matted string that provides:

• Database type (Postgres, MySQL, etc.)
• Dialect if the default for the database type (Psycopg2, PyMySQL, etc.)
• Optional authentication details (username and password)

4 | Chapter 1: Introduction to SQLAlchemy

www.it-ebooks.info

http://initd.org/psycopg/
http://www.it-ebooks.info/

• Location of the database (file or hostname of the database server)
• Optional database server port
• Optional database name

SQLite database connections strings have us represent a specific file or a storage location.
Example 1-1 contains a line that defines a SQLite database file named cookies.db stored
in the current directory via a relative path in the second line, an in memory database
on the third line, and a full path to the file on the fourth (Unix) and fifth (Windows)
lines. On Windows that connection string would look like engine4 and that the \\ are
required for proper string escaping unless you use a raw string (r'').

Example 1-1. Creating an engine for a SQLite Database
from sqlalchemy import create_engine
engine = create_engine('sqlite:///cookies.db')
engine2 = create_engine('sqlite:///:memory:')
engine3 = create_engine('sqlite:////home/cookiemonster/cookies.db')
engine3 = create_engine('sqlite:///c:\\Users\\cookiemonster\\cookies.db')

The create_engine function returns an instance of an engine, how‐
ever, it does not actually open a connection until an action is called
that would require a connection such as a query.

So lets create an engine for a local PostgreSQL database named mydb. We’ll start by
importing the create_engine function from the base sqlalchemy package. Next we’ll use
that function to construct an engine instance for us. In Example 1-2, you’ll notice that
I tend to use postgresql+psycopg2 as the engine and dialect components of the con‐
nection string when just postgres will do. This is because I prefer to be explicit instead
of implicit as mentioned in the (Zen of Python).

Example 1-2. Creating an engine for a local PostgreSQL Database
from sqlalchemy import create_engine
engine = create_engine('postgresql+psycopg2://username:password@localhost:' \
 '5432/mydb')

Now lets look at a MySQL database on a remote server. You’ll notice, in Example 1-3,
after the connection string we have a keyword parameter, pool_recycle to define how
often to recycle the connections.

Example 1-3. Creating an engine for a remote MySQL Database
from sqlalchemy import create_engine
engine = create_engine('mysql+pymysql://cookiemonster:chocolatechip'
 '@mysql01.monster.internal/cookies', pool_recycle=3600)

Installing SQLAlchemy and Connecting to a Database | 5

www.it-ebooks.info

https://www.python.org/dev/peps/pep-0020/
http://www.it-ebooks.info/

By default, MySQL closes connections idle for more than 8 hours.
To work around this issue, use pool_recycle=3600 when creating
an engine as shown above.

Some optional keywords for the create_engine function are:

echo: This will log the actions processed by the engine such as SQL statements and their
parameters. It defaults to False.

encoding: This defines the string encoding used by SQLAlchemy. It defaults to utf-8,
and most DBAPIs support this encoding by default. This is not define the encoding type
used by the backend database itself.

isolation_level: This instructs SQLAlchemy to use a specific isolation level. For ex‐
ample with PostgreSQL with psycopg2 has READ COMMITTED, READ UNCOMMITTED, RE
PEATABLE READ, SERIALIZABLE, and AUTOCOMMIT available with a default of READ
COMMITTED. PyMySQL has the same options with a default of REPEATABLE READ for
InnoDB databases.

Using the isolation_level keyword argument will set the isolation
level for any given DBAPI and is the same as doing it via a key-
value pair in the connection string for those that support that such as
psycopg2.

pool_recycle: This recycles or times out the database connections every so many sec‐
onds. This is important for MySQL due to the connection timeouts we mentioned in
the MySQL section above. It defaults to -1 which means there is no timeout.

Once we have an engine initialized, we are ready to actually open a connection to the
database. That is done by calling the connect() method on the engine as shown here.

from sqlalchemy import create_engine
engine = create_engine('mysql+pymysql://cookiemonster:chocolatechip' \
 '@mysql01.monster.internal/cookies', pool_recycle=3600)
connection = engine.connect()

Now that we have a database connection, we can start using either SQLAlchemy Core
or the ORM. In the next section, we will begin exploring SQLAlchemy Core and learning
how to define and query your database.

6 | Chapter 1: Introduction to SQLAlchemy

www.it-ebooks.info

http://www.it-ebooks.info/

PART I

SQLAlchemy Core

Now that we can connect to databases, let’s begin looking at how to use SQLAlchemy
Core to provide database services to our applications. SQLAlchemy Core is a Pythonic
way of representing elements of both SQL commands and data structures called SQL
Expression Language. Due to the nature of the way SQLAlchemy Core works it can be
used with the Django or the SQLAlchemy ORM in addition to its usage as a standalone
solution.

The first thing we must do is define what data our tables hold, how that data is interre‐
lated and any constraints on that data.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Schema and Types

In order to provide access to the underlying database, SQLAlchemy has to have a rep‐
resentation of the tables that should be present in the database. We can do this in one
of three ways:

• Using user defined Table objects
• Using declarative classes that represent your tables
• Inferring them from the database

This chapter will focus on the first of these as that one and the third one are used with
SQLAlchemy Core, and we’ll cover the other two in later chapters after we have a grasp
of the fundamentals. The Table objects contain a list of typed columns and their at‐
tributes, which are associated with a common metadata container. We’ll begin our ex‐
ploration of schema definitions by taking a look at the Types that are available to build
tables with in SQLAlchemy.

Types
There are four categories of types we can use inside of SQLAlchemy:

• Generic
• SQL standard
• Vendor Specific
• User Defined

SQLAlchemy defines a large number of generic types that are abstracted away from the
actual SQL types supported by each backend database. These types are all available in

9

www.it-ebooks.info

http://www.it-ebooks.info/

the sqlalchemy.types module, and for convenience they are also available in the
sqlalchemy module as well. So let’s think about how these generic types are useful.

The Boolean generic type typically uses the BOOLEAN SQL Type, and on the Python side
deals in True or False; however, it also uses SMALLINT on backend databases that don’t
support a BOOLEAN type. Thanks to SQLAlchemy this minor details is hidden from you,
and you can trust that the any queries or statements you build will operate properly
against fields of that type regardless of the database type being used. You will only have
to deal with True or False in your python code. This kind of behavior makes the generic
types very powerful, and useful during database transitions or split backend systems
where the data warehouse is one database type and the transactional is another. The
generic types and their associated type representations in both Python and SQL can be
seen in the table below.

Table 2-1. Generic Type Representations
SQLAlchemy Python SQL

BigInteger int BIGINT

Boolean bool BOOLEAN or SMALLINT

Date datetime.date Date (SQLite: String)

DateTime datetime.datetime DATETIME (SQLite: String)

Enum str ENUM or VARCHAR

Float float or Decimal FLOAT or REAL

Integer int Integer

Interval datetime.timedelta INTERVAL or DATE from epoch

LargeBinary byte BLOB or BYTEA

Numeric decimal.Decimal NUMERIC or DECIMAL

Unicode unicode UNICODE or VARCHAR

Text str CLOB or TEXT

Time datetime.time DATETIME

It is important to learn these generic types, as you will need to use
and define them regularly.

In addition to the generic types listed above, both SQL standard and vendor specific
types are available and are often used when a generic type will not operate as needed
within the database schema due to its type or the specific type specified in an existing
schema.. A few good illustrations of this are the CHAR and NVARCHAR types, which
benefit from using the proper SQL type instead of just generic type. If we are working

10 | Chapter 2: Schema and Types

www.it-ebooks.info

http://www.it-ebooks.info/

with a database schema that was defined prior to using SQLAlchemy, we would want
to match types exactly. It’s important to keep in mind that SQL standard type behavior
and availability can vary from database to database. The SQL standard types are available
within the sqlalchemy.types module. To help make a distinction between them and
the generic types, the standard types are in all capital letters.

Vendor specific types are useful in the same ways that SQL standard types are; however
they are only available in specific backend databases. You can determine was is available
via the chosen dialect’s documentation or SQLALchemy’s website. They are available in
the sqlalchemy.dialects module and there are submodules for each database dialect.
Again, the types are in all capital letters for distinction from the generic types. We might
want to take advantage of the powerful JSON field from PostgreSQL which we can do
with the following statement:

from sqlalchemy.dialects.postgresql import JSON

Now we can define JSON fields that we can later use with the many PostgreSQL specific
JSON functions, such as array_to_json, within our application.

You can also define custom types that cause the data to be stored in a manner of your
choosing. An example of this might be prepending characters onto text stored in a
VARCHAR column when put into the database record, and stripping it off when re‐
trieving that field from the record. This can be useful when working with legacy data
still used by existing systems that preform this type of prefixing that isn’t useful or
important in your new application.

Now that we’ve seen the four variations of types we can use to construct tables, let’s take
a look at how the database structure is held together by Metadata.

Metadata
MetaData is used to tie together the database structure so it can be quickly accessed
inside SQLAlchemy. It’s often useful to think of Metadata as a kind of catalog of Table
objects with optional information about the engine and the connection. Those tables
can be accessed via a dictionary, MetaData.tables. Read operations are thread-safe;
however, table construction is not completely thread-safe. Metadata needs to be im‐
ported and initialized before objects can be tied to it. Let’s initialize an instance of the
Metadata objects that we can use through out the rest of the examples in this chapter
to hold our information catalog.

from sqlalchemy import MetaData
metadata = MetaData()

Once we have a way hold the database structure, we’re ready to start defining tables.

Metadata | 11

www.it-ebooks.info

http://www.it-ebooks.info/

Tables
Table objects are initialized in SQLAlchemy Core in a supplied MetaData object by
calling the Table constructor with the table name, metadata, and any additional argu‐
ments are assumed to be column objects. There are also some additional keyword ar‐
guments that enable features that we will discuss later. Column objects represent each
field in the table. The columns are constructed by calling Column with a name, type, and
then arguments that represent any additional SQL constructs and constraints. Through
out the rest of this chapter, we are going to be building up a set of tables that we’ll use
through out the entire SQLAlchemy Core section. In Example 2-1 below, we create a
table that could be used as a way to store the cookie inventory for our online cookie
delivery service.

Example 2-1. Instantiating Table objects and columns
from sqlalchemy import Table, Column, Integer, Numeric, String, ForeignKey

cookies = Table('cookies', metadata,
 Column('cookie_id', Integer(), primary_key=True),
 Column('cookie_name', String(50), index=True),
 Column('cookie_recipe_url', String(255)),
 Column('cookie_sku', String(55)),
 Column('quantity', Integer()),
 Column('unit_cost', Numeric(12, 2))
)

Notice the way we marked this column as the table’s primary key. More on this
in a second
We’re making an index of cookie names to speed up queries on this column.
This is a column who takes multiple arguments length and precision, such as
11.20

Before we get too far into tables, we need to understand their fundamental building
blocks: columns.

Columns
Columns define the fields that exists in our tables, and they provide the primary means
by which we define other constraints through their keyword arguments. Different type
columns have different primary arguments. For example, String type columns have
length as their primary argument, while numbers with a fractional component will have
precision and length. Most other types have no primary arguments.

12 | Chapter 2: Schema and Types

www.it-ebooks.info

http://www.it-ebooks.info/

Sometimes you will see examples that just show String columns
without a length, which is the primary argument. Not all database
backends, include MySQL, support this behavior.

Columns can also have some additional keyword arguments that help shape their be‐
havior even further. We can mark columns as required and/or force them to be unique.
We can also set default initial values and change values when the record is updated. A
common use case for this is fields that indicated when a record was created or updated
for logging or auditing purposes. Let’s take a look at these keyword arguments in action
in the example below.

Example 2-2. Another Table with more Column Options
from datetime import datetime
from sqlalchemy import DateTime

users = Table('users', metadata,
 Column('user_id', Integer(), primary_key=True),
 Column('username', String(15), nullable=False, unique=True),
 Column('email_address', String(255), nullable=False),
 Column('phone', String(20), nullable=False),
 Column('password', String(25), nullable=False),
 Column('created_on', DateTime(), default=datetime.now),
 Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now)
)

Here we are making this column required (nullable=False) and to have a
unique value.
The default sets this column to the current time if a date isn’t specified.
Using onupdate here will reset this column to the current time every time any
part of the record is updated.

You’ll notice that we set the default and onupdate to the callable
datetime.now instead of the function call itself, datetime.now(). If
we had used the function call itself, it would have set the default to
the time when the table was first instantiated. By using the callable,
we get the time that each individual record is instantiated and up‐
dated.

We’ve been using column keyword arguments to define table constructs and constraints;
however, it is also possible to declare them outside of a Column object. This is critical
when you are working with an existing database, as you must tell SQLAlchemy the
schema, constructs and constraints present inside the database. For example, if you have

Tables | 13

www.it-ebooks.info

http://www.it-ebooks.info/

an existing index in the database that doesn’t match the default index naming schema
that SQLAlchemy uses, then you must manually define this index. The following two
sections show you how to do just that.

All of the commands in the Keys and Constraints and Index Sec‐
tions are included as part of the Table constructor or added to the
table via special methods. They will persisted or attached to the met‐
adata as standalone statements.

Keys and Constraints
Keys and constraints are used as a way to ensure that our data meets certain requirements
prior to being stored in the database. The objects that represent keys and constraints
can be found inside the base SQLAlchemy module, and three of the more common ones
can be imported as shown here.

from sqlalchemy import PrimaryKeyConstraint, UniqueConstraint, CheckConstraint

The most common key type is a primary key, which is used as the unique identifier for
each record in a database table and is used used to ensure a proper relationship between
to pieces of related data in different tables. As you can see in examples 1 and 2 above,
you can make a column a primary key just by using the primary_key keyword argument.
You can also define composite primary keys by assigning the setting primary_key to
True on multiple columns. The key will then essentially be treated like a tuple in which
the columns marked as a key will be present in the order they were defined in the table.
Primary keys can also be defined after the columns in the table constructor as shown
below. You can add multiple columns separated by commas to create a composite key.
If we wanted to explicitly define the key as shown in example 2 above, it would look like
the following.

PrimaryKeyConstraint('user_id', name='user_pk')

Another common constraint is the unique constraint, which is used to ensure that no
two values are duplicated in a given field. In our cookie shop, it would be confusing to
have two users that used the same username to log into our systems. We can also assign
unique constraints on columns as shown above on the username column or we can
define them manually as shown below.

UniqueConstraint('username', name='uix_username')

Not shown in example 2 above is the check constraint type. This type of constraint is
used to ensure that the data supplied for a column matches a set of user defined criteria.
In the example below, we are ensuring that unit_cost is never allowed to be less than
0.00 because every cookie cost something to make. Remember from high school eco‐
nomics, TINSTAFC. (There is no such thing as a free cookie!)

14 | Chapter 2: Schema and Types

www.it-ebooks.info

http://www.it-ebooks.info/

CheckConstraint('unit_cost >= 0.00', name='unit_cost_positive')

In addition to keys and constraints, we might also want to make lookups on certain
fields more efficient. This is where Indexes come in.

Indexes
Index are used to accelerate lookups for field values, and in example 1 above, we created
an index on the cookie_name column because we know we will be searching by that
often. When indexes are created as shown in that example you will have an index called
ix_cookies_cookie_name. We can also define an index using an explicit construction
type. Multiple columns can be designated by separating them by a comma. You can also
add a keyword argument of unique=True to require the index to be unique as well.
When creating indexes explicitly they are passed to the Table constructor after the col‐
umns. To mimic the index created in Example 1, we could do it explicitly as shown here.

from sqlalchemy import Index
Index('ix_cookies_cookie_name', 'cookie_name')

We can also create functional indexes that vary a bit by the backend database being used.
This lets you create index for situations where you need to often need to query based
on some unusual context. For example, what if we want to select by cookie sku and name
as a joined item, such as SKU0001 Chocolate Chip. We could define an index like the
one below to optimize that lookup.

Index('ix_test', mytable.c.cookie_sku, mytable.c.cookie_name))

Now it is time to dive the most important part of relational databases, which is table
relationships and how to define them.

Relationships and ForeignKeyConstraints
Now that we have a table with columns with all the right constraints and indexes, let’s
look at how relationships between tables are made. We need a way to track orders,
including line items that represent each cookie and quantity ordered. To help visualize
how these tables should be related, take a look at the diagram below.

Tables | 15

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-1. Chapter 3 Relationship Visualization

One way to implement a relationship is shown below in Example 3 in the line_items
table on the order_id column, this will result in ForeignKeyConstraint to define the
relationship between the two tables. In this case, we can have many line_items present
for a single order. However, if you dig deeper into the line_items table, you’ll see that
we also have a relationship with the cookies table via the cookie_id ForeignKey. This is
because line_items is actually an association table with some additional data on it be‐
tween orders and cookies. Association tables are used to enable Many-to-Many rela‐
tionships between two other tables. So a single ForeignKey on a table is typically a sign
of a One-to-many relationship; however, if there are multiple ForeignKey relationships
on a table, there is a strong possibility that this is an association table.

Example 2-3. More Tables with Relationships
from sqlalchemy import ForeignKey
orders = Table('orders', metadata,
 Column('order_id', Integer(), primary_key=True),
 Column('user_id', ForeignKey('users.user_id')),
 Column('shipped', Boolean(), default=False)

)

line_items = Table('line_items', metadata,
 Column('line_items_id', Integer(), primary_key=True),
 Column('order_id', ForeignKey('orders.order_id')),
 Column('cookie_id', ForeignKey('cookies.cookie_id')),
 Column('quantity', Integer()),

16 | Chapter 2: Schema and Types

www.it-ebooks.info

http://www.it-ebooks.info/

 Column('extended_cost', Numeric(12, 2))
)

Notice that we used a string instead of an actual reference to the column

Using strings instead of an actual column allows us to separate the table definitions
across multiple modules and/or not have to worry about order in which our tables are
loaded. This is because it will only perform the resolution of that string to a table name
and column the first time it is accessed. If we used hard references, such as cook
ies.c.cookie_id, in our ForeignKey definitions it would perform that resolution dur‐
ing module initialization and could fail depending on the order in which the tables
where loaded.

You can define a ForeignKeyConstraint explicitly as well, which can be useful if trying
to match an existing database schema so it can be used with SQLAlchemy. This is just
like the way we talked about create keys, constraints, and indexes above to matching
name schemes etc. You will need to import the ForeignKeyConstraint from the sqlal
chemy module prior to defining one in your table definition. The code below shows how
to create the ForeignKeyConstraint for the order_id field between the line_items and
orders table.

ForeignKeyConstraint(['order_id'], ['orders.order_id'])

Everything prior to now has shown you how to define tables in such a way that SQLAl‐
chemy can understand them. If your database already exists and has the schema already
built, you are ready to being writing queries. However, if you need to create the full
schema or added a table, we’ll want to know how to persist them in the database for
permanent storage.

Persisting the Tables
All of our tables and additional schema definitions are associated with a instance of
Metadata. Persisting the schema to the database is simply a matter of calling the cre
ate_all() method on our metadata instance with the engine where it should create
those tables.

metadata.create_all(engine)

By default the create_all will not attempt to recreate tables that already exist in the
database, and is safe to run multiple times. It’s wiser to use a database migration tool
like Alembic to handle any changes to existing tables or additional schema than to try
to hand code changes directly in your application code. We’ll explore this more in a later
chapter. Well now that we have persisted the tables in the database, let’s see the full
example of the work we’ve done in chapter 2.

Persisting the Tables | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Example 2-4. Full In Memory SQLite Example
from datetime import datetime

from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String,
 DateTime, ForeignKey, create_engine)
metadata = MetaData()

cookies = Table('cookies', metadata,
 Column('cookie_id', Integer(), primary_key=True),
 Column('cookie_name', String(50), index=True),
 Column('cookie_recipe_url', String(255)),
 Column('cookie_sku', String(55)),
 Column('quantity', Integer()),
 Column('unit_cost', Numeric(12, 2))
)

users = Table('users', metadata,
 Column('user_id', Integer(), primary_key=True),
 Column('customer_number', Integer(), autoincrement=True),
 Column('username', String(15), nullable=False, unique=True),
 Column('email_address', String(255), nullable=False),
 Column('phone', String(20), nullable=False),
 Column('password', String(25), nullable=False),
 Column('created_on', DateTime(), default=datetime.now),
 Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now)
)

orders = Table('orders', metadata,
 Column('order_id', Integer(), primary_key=True),
 Column('user_id', ForeignKey('users.user_id'))
)

line_items = Table('line_items', metadata,
 Column('line_items_id', Integer(), primary_key=True),
 Column('order_id', ForeignKey('orders.order_id')),
 Column('cookie_id', ForeignKey('cookies.cookie_id')),
 Column('quantity', Integer()),
 Column('extended_cost', Numeric(12, 2))
)

engine = create_engine('sqlite:///:memory:')
metadata.create_all(engine)

In this chapter, we took a look at how metadata is used as a catalog by SQLAlchemy to
store tables schemas along with other miscellaneous data. We also can define a table
with multiple columns and constraints. We explored the types of constraints and how
to explicitly construct them outside of a column object to match and existing schema
or naming scheme. Then we covered how to set default values and onupdate values for
auditing. Finally, we now know how to persist or save our schema into the database for

18 | Chapter 2: Schema and Types

www.it-ebooks.info

http://www.it-ebooks.info/

reuse. The next step is to learn to how work with data within our schema via the SQL
Expression Language.

Persisting the Tables | 19

www.it-ebooks.info

http://www.it-ebooks.info/

20 | Chapter 2:

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Working with Data via SQLAlchemy Core

Now that we have tables in our database, let’s start working with data inside of those
tables. We’ll look at how to insert, retrieve, and delete data, and follow that with learning
how to sort, group, and use relationships in our data. We’ll be using the SQL Expression
Language (SEL) provided by SQLAlchemy Core. We’re going to continue to use the
tables we created in Chapter 3 for our examples in this chapter. Let’s start by learning
how to insert data.

Inserting Data
First, we’ll build an insert statement to put my favorite kind of cookie (chocolate chip)
into the cookies table. To do this we can call the insert() method on the cookies table,
and then use the values() statement with keyword arguments for each column that we
are filling with data. In Example 1 below are going to do just that.

Example 3-1. Single Insert as a method
ins = cookies.insert().values(
 cookie_name="chocolate chip",
 cookie_recipe_url="http://some.aweso.me/cookie/recipe.html",
 cookie_sku="CC01",
 quantity="12",
 unit_cost="0.50"
)
print(str(ins))

This shows us the actual SQL statement that will be executed.

INSERT INTO cookies
 (cookie_name, cookie_recipe_url, cookie_sku, quantity, unit_cost)
VALUES
 (:cookie_name, :cookie_recipe_url, :cookie_sku, :quantity, :unit_cost)

Inserting Data | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Our supplied values have been replaced with :column_name in the SQL statement above,
which is how SQLAlchemy represents parameters displayed via the str() function.
Parameters are used to help ensure that our data has been properly escaped, which
mitigate security issues such as SQL injection attacks. It is still possible to view the
parameters by looking at the compiled version of our insert statement because each
database backend can handle the parameters in a slightly different manner which is
controlled by the dialect. The compile() method on the ins object returns a SQLCom‐
piler object that gives us access to the actual parameters that will be sent with the query
via the params attribute.

ins.compile().params

This compiles the statement via our dialect but does not execute it, and we access
the params attribute of that statement.

Results in:

{
 'cookie_name': 'chocolate chip',
 'cookie_recipe_url': 'http://some.aweso.me/cookie/recipe.html',
 'cookie_sku': 'CC01',
 'quantity': '12',
 'unit_cost': '0.50'
}

Now we have a complete picture of the insert statement and understand what is going
to be inserted into the table, we can use the execute() method on our connection to
send the statement to the database which will insert the record into the table.

Example 3-2. Executing the Insert Statement
result = connection.execute(ins)

We can also get the ID of the record we just inserted as well by accessing the inser
ted_primary_key attribute.

result.inserted_primary_key

[1]

Let’s take a quick aside here and talk about what happens when we call the execute()
method at a high level. When we are building a SQL Expression Language statement
like the insert statement we’ve been using so far, it is actually creating a tree like structure
that can be quickly traversed in a descending manner. When we call the execute method,
it uses the statement and any other parameters passed to compile the statement with
the proper database dialect’s compiler. That compiler builds a normal parameterized
SQL statement by walking down that tree. That statement is returned to the exe
cute() method, which sends the SQL statement to the database via the connection on

22 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

which the method was called. The database server then executes the statement and
returns the results of the operation.

In addition to having insert as an instance method off a table object, it is also available
as a top-level function for those times that you want to build a statement “generatively”
(a step at a time) or the table may not be initially known. For example, maybe we run
two divisions of the company that have separate inventory tables. Using the insert func‐
tion as shown below in Example 3-3 would allow us to use one statement and just swap
the tables.

Example 3-3. Insert Function
from sqlalchemy import insert
ins = insert(cookies).values(
 cookie_name="chocolate chip",
 cookie_recipe_url="http://some.aweso.me/cookie/recipe.html",
 cookie_sku="CC01",
 quantity="12",
 unit_cost="0.50"
)

Notice the table is now the argument to the insert function.

While insert works equally well as both methods of table object and
the more generative standalone function, I prefer the generative ap‐
proach because it more closely mirrors the SQL statements most
people are accustom to seeing.

The execute() method of the connection object can take more than just statements. It
is also possible to provide the values as keyword arguments to the execute() method
after our statement. When the statement is compiled, it will add each one of the keyword
argument keys to the columns list, and it adds each one of their values to the VALUES
part of the SQL statement.

Example 3-4. Values in Execute Statement
ins = cookies.insert()
result = connection.execute(
 ins,
 cookie_name='dark chocolate chip',
 cookie_recipe_url='http://some.aweso.me/cookie/recipe_dark.html',
 cookie_sku='CC02',
 quantity='1',
 unit_cost='0.75'
)
result.inserted_primary_key

Inserting Data | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Our insert statement is the first argument to the execute function just like before.
We add our values as keyword arguments to the execute() function.

This results in:

[2]

While this isn’t used often in practice for single inserts, it does provide a good illustration
of how a statement is compiled and assembled prior to being sent to the database server.
We can insert multiple records at once by using a list of dictionaries with data we are
going to submit. Let’s use the knowledge to insert two types of cookies into the cookies
table.

Example 3-5. Multiple Inserts
inventory_list = [
 {
 'cookie_name': 'peanut butter',
 'cookie_recipe_url': 'http://some.aweso.me/cookie/peanut.html',
 'cookie_sku': 'PB01',
 'quantity': '24',
 'unit_cost': '0.25'
 },
 {
 'cookie_name': 'oatmeal raisin',
 'cookie_recipe_url': 'http://some.okay.me/cookie/raisin.html',
 'cookie_sku': 'EWW01',
 'quantity': '100',
 'unit_cost': '1.00'
 }
]
result = connection.execute(ins, inventory_list)

Build our list of cookies.
Use the list as the second parameter to execute.

The dictionaries in the list must have the exact same keys. As it will
compile the statement against the first dictionary in the list and the
statement will fail if subsequent dictionaries are different since the
statement was already built with the prior columns.

Now that we have some data in our cookies table, let’s learn how to query the tables and
retrieve that data.

24 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Data
To begin building a query, we start by using the select() function that is very analogous
to the standard SQL SELECT statement. Initially, let’s select all the records in our cookies
table.

Example 3-6. Simple Select function
from sqlalchemy.sql import select
s = select([cookies])
rp = connection.execute(s)
results = rp.fetchall()

Remember we can str(s) to look at the SQL statement the database will see, which
in this case is SELECT cookies.cookie_id, cookies.cookie_name, cook
ies.cookie_recipe_url, cookies.cookie_sku, cookies.quantity, cook

ies.unit_cost FROM cookies

This tells rp, the ResultProxy, to return all the rows.

The results variable now contains a list representing all the records in our cookies
table.

[(1, u'chocolate chip', u'http://some.aweso.me/cookie/recipe.html', u'CC01',
 12, Decimal('0.50')),
 (2, u'dark chocolate chip', u'http://some.aweso.me/cookie/recipe_dark.html',
 u'CC02', 1, Decimal('0.75')),
 (3, u'peanut butter', u'http://some.aweso.me/cookie/peanut.html', u'PB01',
 24, Decimal('0.25')),
 (4, u'oatmeal raisin', u'http://some.okay.me/cookie/raisin.html', u'EWW01',
 100, Decimal('1.00'))]

In the above example, I passed a list containing the cookies table. The select method
expects a list of columns to select; however, for convenience it also accepts table objects
and select all the columns on the table. It is also possible to use the select() method
on the table object to do this as shown below in Example 3-7. Again, I prefer seeing it
written more like Example 3-6 above.

Example 3-7. Simple Select method
from sqlalchemy.sql import select
s = cookies.select()
rp = connection.execute(s)
results = rp.fetchall()

Before we go digging any further into queries, we need to know a bit more about Re‐
sultProxy objects.

Querying Data | 25

www.it-ebooks.info

http://www.it-ebooks.info/

ResultProxy
A ResultProxy is a wrapper around a DB-API cursor object, and it’s main goal is to make
dealing with the results of a statement easier to use manipulate. For example, it makes
handling query results easier by allowing access using an index, name, or Column object.
Example 3-8 will demonstrate all three of these methods. It’s very important to become
comfortable using each of these ways to get to the desired columns data.

Example 3-8. Handling Rows with a result proxy
first_row = results[0]
first_row[1]
first_row.cookie_name
first_row[cookies.c.cookie_name]

Get the first row of the ResultProxy from Example 3-7
Access column by index
Access column by column name
Access column by Column object

These all result in u’chocolate chip' and are all reference the exact same data element
in the first record of our results variable. This flexibility in access is only part of the
power of the ResultProxy. We can also leverage the ResultProxy as an iterable, and
perform an action on each record returned without creating another variable to hold
the results. For example, we might want to print the name of each cookie in our database.

Example 3-9. Iterating over a ResultProxy
rp = connection.execute(s)
for record in rp:
 print(record.cookie_name)

We are reusing the same select statement from earlier

Returns:

chocolate chip
dark chocolate chip
peanut butter
oatmeal raisin

In addition to using the ResultProxy as an interable or calling the fetchall() method,
many other ways of accessing data via the ResultProxy are available. In fact, all the
result variables in that section on inserting data where actually ResultProxys. Both the
rowcount() and inserted_primary_key() methods we used in that section are just a
few of the other ways to get information from a ResultProxy. You can use the following
methods as well to fetch results:

26 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

• first() - returns the first record if there is one and close the connection
• fetchone() - returns one row, and leaves the cursor open for you to make additional

fetch calls
• scalar() - returns a single value if a query results in a single record with one column

If you want to see the columns that are available in a result set you can use the keys()
method to get a list of the column names. We’ll be using the first, scalar, fetchone
and fetchall methods as well as the ResultProxy as an iterable through-out the re‐
mainder of this chapter.

In Production Code
When I am writing production code, I use the following guidelines:

• Use the first method for getting a single record over both the fetchone and scalar
methods, because it is clearer to our fellow coders.

• Use the iterable version of the ResultProxy over the fetchall and fetchone meth‐
ods. It is more memory efficient and we tend to operate on the data one record at
a time.

• Avoid the fetchone method, as it leaves connections open if you are not careful
• Use the scalar method sparingly as it raises errors if query ever returns more than

one row with one column, which often gets missed during testing.

Every time we queried the database in the examples above, all the columns were returned
for every record. Often we only need a portion of those columns to perform our work.
If the data in these extra columns is large, it can cause our applications to slow down
and consume far more memory than it should. SQLAlchemy does not add a bunch of
overhead onto the queries or ResultProxys; however, accounting the data you get back
from a query is often the first place to look if a query is consuming to much memory.
Let’s look at how to limit the columns returned in a query.

Controlling the Columns in the Query
To limit the fields that are returned from a query, we need to pass in the columns we
want in the select() method constructor as a list. For example, I might only want to
get the name and quantity of cookies in a query as shown in Example 3-10.

Example 3-10. Select only cookie_name and quantity
s = select([cookies.c.cookie_name, cookies.c.quantity])
rp = connection.execute(s)

Querying Data | 27

www.it-ebooks.info

http://www.it-ebooks.info/

print(rp.keys())
result = rp.first()

Returns the list of columns, which is [u’cookie_name', u’quantity'] in this
example. (Used only for demonstration, not needed for results)
Notice this only returns the first result.

Result:

(u'chocolate chip', 12),

Now that we can build a simple select statement, we’re going to look at other things we
can do to alter how the results are returned in a select statement. We’re going to start
with changing the order in which the results are returned.

Ordering
If you were to look at all the results from Example 10 instead of the just first record, you
would see that the data is not really in any particular order. However, if we want get the
list back in order by the quantity we have on hand, we can chain an order_by() state‐
ment onto our select as shown in Example 3-11.

Example 3-11. Order by Quanity Asscending
s = select([cookies.c.cookie_name, cookies.c.quantity])
s = s.order_by(cookies.c.quantity)
rp = connection.execute(s)
for cookie in rp:
 print('{} - {}'.format(cookie.quantity, cookie.cookie_name))

Results in:

1 - dark chocolate chip
12 - chocolate chip
24 - peanut butter
100 - oatmeal raisin

I saved the select statement into the s variable, and then used that s variable and added
the order_by statement onto it then reassigned that to the s variable. This is an example
of how to compose statements in a generative or step by step fashion. This is the same
as combining the select and the order_by all into one line as shown here:

s = select([...]).order_by(...)

However, when we have the full list of columns in the select and the order columns in
the order_by statement, it would exceed Python’s 79 character per line limit expressed
in PEP8. By using the generative type statement, it gets me in under that limit. We’ll see
a few examples through out the book were this generative style can introduce a more
useful benefits such as conditionally adding things to the statement. For now try to break

28 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

your statements along those 79 character limits, and it will help make the code more
readable.

If I wanted to get these sorted in reverse or descending order, I would need to the use
the desc() statement. The desc() function wraps the specific column I want to sort in
a descending manner as shown in Example 3-12.

Example 3-12. Order by Quantity Descending
from sqlalchemy import desc
s = select([cookies.c.cookie_name, cookies.c.quantity])
s = s.order_by(desc(cookies.c.quantity))

Notice we are wrapping the cookies.c.quantity column in the desc()
function.

The desc() can also be used as a method on a column object, such
as cookies.c.quantity.desc(). However, I find that a bit more con‐
fusing to read in long statements, and always use desc() as a function.

It’s also possible to limit the number of results returned if we only need a certain number
of them for our application.

Limiting
In prior examples, we used the first() or fetchone() methods to get just a single row
back. While our ResultProxy gave us the one row we asked for, the actually query ran
over and accessed all the results not just the single record. If we want to limit the query,
we can use the limit() function to actually issue a limit statement as part of our query.
For example, I only have time to make two batches of cookies today, and I want to know
which two cookies I should make. I can use our ordered query from earlier and add a
limit statement to get just two the two types of cookies I should make.

Example 3-13. Two fewest cookie inventories
s = select([cookies.c.cookie_name, cookies.c.quantity])
s = s.order_by(cookies.c.quantity)
s = s.limit(2)
rp = connection.execute(s)
print([result.cookie_name for result in rp])

Here I am using the interable capabilities of the ResultsProxy in a list
comprehension.

Results in:

Querying Data | 29

www.it-ebooks.info

http://www.it-ebooks.info/

[u'dark chocolate chip', u'chocolate chip']

Now that I know what kind of cookies I need to be baking, I’m starting to get curious
about how many cookies I have in my inventory now. Many databases include SQL
functions designed to make certain operations available directly on the database server
such as SUM, let’s explore how to use these functions next.

Builtin SQL Functions and Labels
SQLAlchemy can also leverage SQL functions found in the backend database. Two very
commonly used database functions are SUM() and COUNT(). To use these function we
need to import the sqlalchemy.sql.func module where they are found. These func‐
tions are wrapped around the column or columns on which they are operating. So to
get a total count of cookies, I would do something like Example 3-14.

Example 3-14. Summing our cookies
from sqlalchemy.sql import func
s = select([func.sum(cookies.c.quantity)])
rp = connection.execute(s)
print(rp.scalar())

Notice use of scalar, which will return only the left most column in the first
record

Results in:

137

I tend to always import the func module as importing sum directly
can cause problems and confusion with Python’s built in sum function

Now let’s use the count function to see how many cookie inventory records we have in
our cookies table.

Example 3-15. Counting our inventory records
s = select([func.count(cookies.c.cookie_name)])
rp = connection.execute(s)
record = rp.first()
print(record.keys())
print(record.count_1)

This will show us the columns in the result proxy

30 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

The column name is auto generated and is commonly
<func_name>_<position>.

Results in:

[u'count_1']
4

This column name is annoying and cumbersome. Also, if we have several counts in a
query we’d have to know the occurrence number in the statement, and incorporate that
into the column name so the fourth count() function would be count_4. This simply
is not as explicit and clear as I like to be in my naming, especially when surrounded with
other Python code. Thankfully, SQLAlchemy provides a way to fix this via the la
bel() function. Example 3-16, performs the same query as Example 3-15; however, it
uses label to give us a more useful name to access that column.

Example 3-16. Renaming our count column
s = select([func.count(cookies.c.cookie_name).label('inventory_count')])
rp = connection.execute(s)
record = rp.first()
print(record.keys())
print(record.inventory_count)

Notice that I just use the label() function on the column object I want to change

Results in:

[u'inventory_count']
4

We’ve seen examples of how to restrict the columns or the number of rows returned
from the database, so now it’s time to learn about queries that filter data based on criteria
we specify.

Filtering
Filtering queries is done by adding where() statements just like in SQL. A typical
where() clause has a column, an operator, and a value or column. It is possible to chain
multiple where() clauses together, and they will act like ANDs in traditional SQL state‐
ments. In Example 3-17, we’ll find a cookie named chocolate chip.

Example 3-17. Filtering by Cookie name
s = select([cookies]).where(cookies.c.cookie_name == 'chocolate chip')
rp = connection.execute(s)
record = rp.first()
print(record.items())

Querying Data | 31

www.it-ebooks.info

http://www.it-ebooks.info/

Here I’m calling the items() method on the row object that will give me a list of
columns and values.

Results in:

[
 (u'cookie_id', 1),
 (u'cookie_name', u'chocolate chip'),
 (u'cookie_recipe_url', u'http://some.aweso.me/cookie/recipe.html'),
 (u'cookie_sku', u'CC01'),
 (u'quantity', 12),
 (u'unit_cost', Decimal('0.50'))
]

We can also use a where statement to find all the cookie names that contain the word
chocolate.

Example 3-18. Finding names with chocolate in them
s = select([cookies]).where(cookies.c.cookie_name.like('%chocolate%'))
rp = connection.execute(s)
for record in rp.fetchall():
 print(record.cookie_name)

Results in:

chocolate chip
dark chocolate chip

In the .where() statement of Example 3-18 we are using the cookies.c.cookie_name
column inside of a where statement as a type of ClauseElement to filter our results. We
should take a brief moment and talk more about ClauseElements and the additional
capabilities they provide.

ClauseElements
ClauseElements are just an entity we use in a clause, and they are typically columns in
a table; however, unlike columns, ClauseElements come with many additional capabil‐
ities. In Example 3-18, we are taking advantage of the like() method that is available
on ClauseElements. There are many other methods available, which are listed in
Table 3-1 below. Each of these methods are analogous to a standard SQL statement
construct. You’ll find various examples of these used throughout the book.

Table 3-1. ClauseElement Methods
Method Purpose

between(cleft, cright) Find where the column is between cleft and cright

concat(column_two) Concatenate column with column_two

distinct() Find only unique values for column

32 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

Method Purpose

in_([list]) Find where the column is in the list

is_(None) Find where the column is None (commonly used for Null checks with None)

contains(string) Find where the column has string in it (Case-sensitive)

endswith(string) Find where the column ends with string (Case-sensitive)

like(string) Find where the column is like string (Case-sensitive)

startswith(string) Find where the column begins with string (Case-sensitive)

ilike(string) Find where the column is like string (NOT Case-sensitive)

There are also negative versions of these methods such as notlike and notin_(). The
only exception to the not<method> naming convention is the isnot() method which
drops the underscore.

If we don’t use a one of the above methods, then we will have an operator in our where
clauses. Most of the operators work as you might expect; however, we want to talk about
operators in a bit more detail as there are a few differences.

Operators
So far, we have only explored where a column was equal to a value or used one of the
ClauseElement methods such as like(); however, we can also use many other common
operators to filter data. SQLAlchemy provides overloading for most of the standard
Python operators. This includes all the standard comparison operators (==, !=, <, >, �,
>=), which act exactly like you would expect in a Python statement. The == operator also
gets an additional overload when compared to None which converts it to a IS NULL
statement. Arithmetic operators (\+, -, *, /, and %) are also supported with additional
capabilities for database independent string concatenation as shown in Example 3-19.

Example 3-19. String concatenation with \+
s = select([cookies.c.cookie_name, 'SKU-' + cookies.c.cookie_sku])
for row in connection.execute(s):
 print(row)

Results in

(u'chocolate chip', u'SKU-CC01')
(u'dark chocolate chip', u'SKU-CC02')
(u'peanut butter', u'SKU-PB01')
(u'oatmeal raisin', u'SKU-EWW01')

Another common thing to usage of operators is to compute values from multiple col‐
umns. You’ll often do this is applications and reports dealing with financial and statistic
data. In Example 3-20, we are looking at a common inventory value calculation.

Querying Data | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-20. Inventory Value by Cookie
from sqlalchemy import cast
s = select([cookies.c.cookie_name,
 cast((cookies.c.quantity * cookies.c.unit_cost),
 Numeric(12,2)).label('inv_cost')])
for row in connection.execute(s):
 print('{} - {}'.format(row.cookie_name, row.inv_cost))

Cast is another function that allows us to convert types, in this case we will be
getting back results like 6.0000000000. So by casting it, we can make it look like
currency. It is also possible to accomplish the same task in python as well with
print('{} - {:.2f}'.format(row.cookie_name, row.inv_cost)).
Notice we are again using the label() function to rename the column, without
this rename the column would be named anon_1 since the operation doesn’t
result in a name.

Results in:

chocolate chip - 6.00
dark chocolate chip - 0.75
peanut butter - 6.00
oatmeal raisin - 100.00

Boolean Operators
SQLAlchemy also provides for use of the SQL boolean operators AND, OR, and NOT
via the bitwise logical operators (&, |, and ~). Special care must be taken when using the
AND, OR, and NOT overloads because of the Python operator precedence rules. For
instance, & binds more closely than <, so when you write A < B & C < D, what you are
actually writing is A < (B&C) < D, when you probably intended to get (A < B) & (C
< D). Please use conjunctions instead of these overloads, as they will make your code
more expressive.

Often we want to chain multiple where clauses together in inclusionary and exclusion‐
ary manners this should be done via conjunctions.

Conjunctions
While it is possible to chain multiple where() clauses together, it’s often more readable
and functional to use conjunctions to accomplish the desired affect. The conjunctions
in SQLAlchemy are and_(), or_(), and not_(). So if we wanted to get a list of cookies
with a cost of less than an amount and above a certain quantity we could do the following.

34 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-21. Using the and() conjunction
from sqlalchemy import and_, or_, not_
s = select([cookies]).where(
 and_(
 cookies.c.quantity > 23,
 cookies.c.unit_cost < 0.40
)
)
for row in connection.execute(s):
 print(row.cookie_name)

The or_() function works as the opposite of and_() and includes results that match
either one of the supplied clauses. If we wanted to find cookies that we have between 10
and 50 of in inventory or that the name contains chip, we could do the following:

Example 3-22. Using the or() conjunction
from sqlalchemy import and_, or_, not_
s = select([cookies]).where(
 or_(
 cookies.c.quantity.between(10, 50),
 cookies.c.cookie_name.contains('chip')
)
)
for row in connection.execute(s):
 print(row.cookie_name)

Results in:

chocolate chip
dark chocolate chip
peanut butter

The not_() function works in a similar fashion to other conjunctions, and it simple is
used to select records where a record do not match the supplied clause. Now that we
can comfortably query data, we are ready to move on to updating existing data.

Updating Data
Much like the insert method we used earlier, there is also an update method with syntax
almost identical to inserts, except that they can specify a “where” clause that indicates
which rows to update. Like insert statements, update statements can be created by either
the update() function or the update() method on the table being updated. You can
update all rows in a table by leaving off the where clause. I finally finished baking those
chocolate chip cookies that we needed for our inventory. In Example 3-23, we are going
to add them to our existing inventory with an update query, and then check to see how
many we have currently in inventory.

Updating Data | 35

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-23. Updating Data
from sqlalchemy import update
u = update(cookies).where(cookies.c.cookie_name == "chocolate chip")
u = u.values(quantity=(cookies.c.quantity + 120))
result = connection.execute(u)
print(result.rowcount)
s = select([cookies]).where(cookies.c.cookie_name == "chocolate chip")
result = connection.execute(s).first()
for key in result.keys():
 print('{:>20}: {}'.format(key, result[key]))

Using the generative method of building our statement
Printing how many rows where updated

Returns:

1
 cookie_id: 1
 cookie_name: chocolate chip
 cookie_recipe_url: http://some.aweso.me/cookie/recipe.html
 cookie_sku: CC01
 quantity: 132
 unit_cost: 0.50

In addition to updating data, at some point we will want to remove data from our tables.

Deleting Data
To create a delete statement, you can use either the delete() function or the de
lete() method on the table from which you are deleting data. Unlike insert() and
update(), delete() takes no values parameter, only an optional where clause (omitting
the where clause will delete all rows from the table).

Example 3-24. Deleting Data
from sqlalchemy import delete
u = delete(cookies).where(cookies.c.cookie_name == "dark chocolate chip")
result = connection.execute(u)
print(result.rowcount)

s = select([cookies]).where(cookies.c.cookie_name == "dark chocolate chip")
result = connection.execute(s).fetchall()
print(len(result))

Returns:

1
0

36 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

Okay, let’s take a break from all the learning, and load up some data using what we
already learned for the users, orders, and line_items tables. You can copy my code below;
however, consider taking this moment to play with different ways of inserting the data.

customer_list = [
 {
 'username': 'cookiemon',
 'email_address': 'mon@cookie.com',
 'phone': '111-111-1111',
 'password': 'password'
 },
 {
 'username': 'cakeeater',
 'email_address': 'cakeeater@cake.com',
 'phone': '222-222-2222',
 'password': 'password'
 },
 {
 'username': 'pieguy',
 'email_address': 'guy@pie.com',
 'phone': '333-333-3333',
 'password': 'password'
 }
]
ins = users.insert()
result = connection.execute(ins, customer_list)

Now that we have customers, we can start to enter their orders and line_items into the
system as well.

ins = insert(orders).values(user_id=1, order_id=1)
result = connection.execute(ins)
ins = insert(line_items)
order_items = [
 {
 'order_id': 1,
 'cookie_id': 1,
 'quantity': 2,
 'extended_cost': 1.00
 },
 {
 'order_id': 1,
 'cookie_id': 3,
 'quantity': 12,
 'extended_cost': 3.00
 }
]
result = connection.execute(ins, order_items)
ins = insert(orders).values(user_id=2, order_id=2)
result = connection.execute(ins)
ins = insert(line_items)
order_items = [

Deleting Data | 37

www.it-ebooks.info

http://www.it-ebooks.info/

 {
 'order_id': 2,
 'cookie_id': 1,
 'quantity': 24,
 'extended_cost': 12.00
 },
 {
 'order_id': 2,
 'cookie_id': 4,
 'quantity': 6,
 'extended_cost': 6.00
 }
]
result = connection.execute(ins, order_items)

In SQLAlchemy Core, we learned how to define ForeignKeys and relationships; how‐
ever, we’ve not used them yet to perform any queries up to this point. Let’s take a look
at relationships next.

Joins
Now let’s use the join() and outerjoin() methods to take a look at how to query related
data. For example, it’s useful to know how many of what kind of cookies are ordered by
the cookiemon user in order to fulfill its order. This requires you to use a total of three
joins to get all the way down to the name of the cookies. It’s also worth noting that
depending on how the joins are used in a relationship, you might want to rearrange the
from part of a statement, one way to do that in SQLAlchemy is via the select_from()
clause. With select_from(), we can replace the entire from clause that SQLAlchemy
would generate with one we specify.

Example 3-25. Using Join to Select from Multiple Tables
columns = [orders.c.order_id, users.c.username, users.c.phone,
 cookies.c.cookie_name, line_items.c.quantity,
 line_items.c.extended_cost]
cookiemon_orders = select(columns)
cookiemon_orders = cookiemon_orders.select_from(orders.join(users).join(
 line_items).join(cookies)).where(users.c.username ==
 'cookiemon')
result = connection.execute(cookiemon_orders).fetchall()
for row in result:
 print(row)

Notice we are telling SQLAlchemy to use the relationship joins as the from clause

Results in:

(u'wlk001', u'cookiemon', u'111-111-1111', u'chocolate chip', 2, Decimal('1.00'))
(u'wlk001', u'cookiemon', u'111-111-1111', u'peanut butter', 12, Decimal('3.00'))

38 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

The SQL looks like:

SELECT orders.order_id, users.username, users.phone, cookies.cookie_name,
line_items.quantity, line_items.extended_cost FROM users JOIN orders ON
users.user_id = orders.user_id JOIN line_items ON orders.order_id =
line_items.order_id JOIN cookies ON cookies.cookie_id = line_items.cookie_id
WHERE users.username = :username_1

It is also useful to get a count of orders by user for all users, not just those with current
orders. In order to do this, we have to use the outerjoin() method, and it requires a
bit more care in the ordering of the join since the table we use the outerjoin() method
on will be the one from which all results are returned.

Example 3-26. Using Outerjoin to Select from Multiple Tables
columns = [users.c.username, func.count(orders.c.order_id)]
all_orders = select(columns)
all_orders = all_orders.select_from(users.outerjoin(orders))
all_orders = all_orders.group_by(users.c.username)
result = connection.execute(all_orders).fetchall()
for row in result:
 print(row)

SQLAlchemy knows how to join the users and orders tables because of the
foreign key defined in the orders table.

Results in:

(u'cakeeater', 1)
(u'cookiemon', 1)
(u'pieguy', 0)

Up to now, we have been using and joining different tables in our queries. However,
what if we have a self-referential table like a table of employees and their bosses? In
order to make this easy to read and understand SQLAlchemy uses aliases.

Aliases
When using joins, it is often necessary to refer to a table more than once. In SQL, this
is accomplished by using aliases in the query. For instance, suppose we have the fol‐
lowing (partial) schema that tracks the reporting structure within an organization:

employee_table = Table(
 'employee', metadata,
 Column('id', Integer, primary_key=True),
 Column('manager', None, ForeignKey('employee.id')),
 Column('name', String(255)))

Now, suppose we want to select all the employees managed by an employee named Fred.
In SQL, we might write the following:

Aliases | 39

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT employee.name
FROM employee, employee AS manager
WHERE employee.manager_id = manager.id
 AND manager.name = 'Fred'

SQLAlchemy also allows the use of aliasing selectables in this type of situation via the
alias() function or method:

>>> manager = employee_table.alias('mgr')
>>> stmt = select([employee_table.c.name],
... and_(employee_table.c.manager_id==manager.c.id,
... manager.c.name=='Fred'))
>>> print(stmt)
SELECT employee.name
FROM employee, employee AS mgr
WHERE employee.manager_id = mgr.id AND mgr.name = ?

SQLAlchemy can also choose the alias name automatically, which is useful for guaran‐
teeing that there are no name collisions:

>>> manager = employee_table.alias()
>>> stmt = select([employee_table.c.name],
... and_(employee_table.c.manager_id==manager.c.id,
... manager.c.name=='Fred'))
>>> print(stmt)
SELECT employee.name
FROM employee, employee AS employee_1
WHERE employee.manager_id = employee_1.id AND employee_1.name = ?

It’s also useful to be able to group data when we are looking to report on data, so let’s
look into that next.

Grouping
When using grouping, you need one or more columns to group on and one or more
columns that it makes sense to aggregate with counts, sums, etc. as you would in normal
SQL. Let’s get an order count by customer.

Example 3-27. Grouping Data
columns = [users.c.username, func.count(orders.c.order_id)]
all_orders = select(columns)
all_orders = all_orders.select_from(users.outerjoin(orders))
all_orders = all_orders.group_by(users.c.username)
result = connection.execute(all_orders).fetchall()
for row in result:
 print(row)

Aggregation via count
Grouping by the non aggregated included column

40 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

Results in:

(u'cakeeater', 1)
(u'cookiemon', 1)
(u'pieguy', 0)

We’ve shown the generative building of statements through-out the previous examples,
but I want to focus on that specifically for a moment.

Chaining
We’ve used chaining several times through out this chapter, and just didn’t acknowledge
it directly. Where query chaining is particularly useful is when you are applying logic
when building up a query. So if we wanted to have a function that got a list of orders for
us it might look like Example 3-28 below.

Example 3-28. Chaining
def get_orders_by_customer(cust_name):
 columns = [orders.c.order_id, users.c.username, users.c.phone,
 cookies.c.cookie_name, line_items.c.quantity,
 line_items.c.extended_cost]
 cust_orders = select(columns)
 cust_orders = cust_orders.select_from(users.join(orders).join(line_items).join(cookies))
 cust_orders = cust_orders.where(users.c.username == cust_name)
 result = connection.execute(cust_orders).fetchall()
 return result

get_orders_by_customer('cakeeater')

Results in:

[(u'ol001', u'cakeeater', u'222-222-2222', u'chocolate chip', 24, Decimal('12.00')),
 (u'ol001', u'cakeeater', u'222-222-2222', u'oatmeal raisin', 6, Decimal('6.00'))]

However what if we wanted to get only the orders that have shipped or haven’t shipped
yet? We’d have to write additional function to support those additional desired filter
options, or we can use conditionals to build up query chains. Another option we might
want is whether or not to include details. This ability to chain queries and clauses to‐
gether enables quite powerful reporting and complex query building.

Example 3-29. Conditional Chaining
def get_orders_by_customer(cust_name, shipped=None, details=False):
 columns = [orders.c.order_id, users.c.username, users.c.phone]
 joins = users.join(orders)
 if details:
 columns.extend([cookies.c.cookie_name, line_items.c.quantity,
 line_items.c.extended_cost])
 joins = joins.join(line_items).join(cookies)
 cust_orders = select(columns)

Chaining | 41

www.it-ebooks.info

http://www.it-ebooks.info/

 cust_orders = cust_orders.select_from(joins)
 cust_orders = cust_orders.where(users.c.username == cust_name)
 if shipped is not None:
 cust_orders = cust_orders.where(orders.c.shipped == shipped)
 result = connection.execute(cust_orders).fetchall()
 return result

get_orders_by_customer('cakeeater')

get_orders_by_customer('cakeeater', details=True)

get_order_by_customer('cakeeater', shipped=True)

get_orders_by_customer('cakeeater', shipped=False)

get_order_by_customer('cakeeater', shipped=False, details=True)

All Orders
All Orders with details
Shipped Orders Only
Orders that haven’t shipped yet
Orders that haven’t shipped yet with details

Results in:

[(u'ol001', u'cakeeater', u'222-222-2222')]

[(u'ol001', u'cakeeater', u'222-222-2222', u'chocolate chip', 24, Decimal('12.00')),
 (u'ol001', u'cakeeater', u'222-222-2222', u'oatmeal raisin', 6, Decimal('6.00'))]

[]

[(u'ol001', u'cakeeater', u'222-222-2222')]

[(u'ol001', u'cakeeater', u'222-222-2222', u'chocolate chip', 24, Decimal('12.00')),
 (u'ol001', u'cakeeater', u'222-222-2222', u'oatmeal raisin', 6, Decimal('6.00'))]

So far in this chapter, we’ve used the SQL Expression Language for all the examples,
however, you might be wondering if you can execute standard SQL statements as well.

Raw Queries
It is also possible to send execute raw SQL statements or use raw SQL in part of a
SQLAlchemy Core query. It still returns a result proxy, and you can continue to interact
with it just as you would a query build using the SQL Expression syntax of SQLAlchemy
Core. I encourage you to only use raw queries and text when you must, as it can lead to

42 | Chapter 3: Working with Data via SQLAlchemy Core

www.it-ebooks.info

http://www.it-ebooks.info/

unforeseen results and security vulnerabilities. First, we’ll want to execute a simple select
statement.

Example 3-30. Full Raw Queries
result = connection.execute("select * from orders").fetchall()
print(result)

Results in:

[(1, 1, 0), (2, 2, 0)]

While I rarely use a full raw SQL statement, I will often use small TEXT snippets to help
make a query clearer. Here is an example of a raw SQL where clause using the text()
function.

Example 3-31. Partial Text Query
from sqlalchemy import text
stmt = select([users]).where(text("username='cookiemon'"))
print(connection.execute(stmt).fetchall())

Results in:

[(1, None, u'cookiemon', u'mon@cookie.com', u'111-111-1111', u'password',
 datetime.datetime(2015, 3, 30, 13, 48, 25, 536450),
 datetime.datetime(2015, 3, 30, 13, 48, 25, 536457))
]

Now you should have an understanding of how to use the SQL Expression Language to
work with data in SQLAlchemy. We explored how to create, update, read, and delete
operations. This a good point to stop and explore a bit on your own. Try to create more
cookies, orders, and line items, and use query chains to group them by order and user.
Now that you’ve explored a bit more and hopefully broken something, let’s investigate
how to react to exceptions raised in SQLAlchemy, and how to use transactions to group
statements that must succeed or fail as a group.

Raw Queries | 43

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Exceptions and Transactions

In the last chapter we did a lot of work with data in single statements, and we avoided
doing anything that could result in an error. In this chapter, we are going to purposely
perform some actions incorrectly so that we can see the types of errors that occur and
how we should respond to them. We’re going to conclude the chapter with learning how
to group statements that need to succeed together into transactions so that we can ensure
that either the group executes properly or is cleaned up correctly. Let’s start by blowing
things up!

Exceptions
There are numerous exceptions that can occur in SQLAlchemy; however, I want to focus
on the ones that are the most common: AttributeErrors and IntegrityErrors. By learning
how to handle these common exceptions, you’ll be able to understand how to deal with
the ones that occur less frequently.

To follow along with this chapter, make sure you start a new Python shell and load the
tables that we built in SQLAlchemy Core into your shell. Example 4-1 contains those
tables and connection again for reference.

Example 4-1. Setting up our shell environment
from datetime import datetime

from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String,
 DateTime, ForeignKey, Boolean, create_engine,
 CheckConstraint)
metadata = MetaData()

cookies = Table('cookies', metadata,
 Column('cookie_id', Integer(), primary_key=True),
 Column('cookie_name', String(50), index=True),
 Column('cookie_recipe_url', String(255)),

45

www.it-ebooks.info

http://www.it-ebooks.info/

 Column('cookie_sku', String(55)),
 Column('quantity', Integer()),
 Column('unit_cost', Numeric(12, 2)),
 CheckConstraint('quantity > 0', name='quantity_positive')
)

users = Table('users', metadata,
 Column('user_id', Integer(), primary_key=True),
 Column('username', String(15), nullable=False, unique=True),
 Column('email_address', String(255), nullable=False),
 Column('phone', String(20), nullable=False),
 Column('password', String(25), nullable=False),
 Column('created_on', DateTime(), default=datetime.now),
 Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now)
)

orders = Table('orders', metadata,
 Column('order_id', Integer()),
 Column('user_id', ForeignKey('users.user_id')),
 Column('shipped', Boolean(), default=False)
)

line_items = Table('line_items', metadata,
 Column('line_items_id', Integer(), primary_key=True),
 Column('order_id', ForeignKey('orders.order_id')),
 Column('cookie_id', ForeignKey('cookies.cookie_id')),
 Column('quantity', Integer()),
 Column('extended_cost', Numeric(12, 2))
)

engine = create_engine('sqlite:///:memory:')
metadata.create_all(engine)
connection = engine.connect()

The first error we are going to learn about is the AttributeError, and is the most com‐
monly encountered error I see in code I’m debugging.

AttributeError
We will start with an AttributeError that occurs when you attempt to access a attribute
that doesn’t exist. The often occurs when you are attempting to access a column on a
ResultProxy that isn’t present. AttributeErrors occur when you try to access an attribute
of an object that isn’t not present on that object. You’ve probably run into this in normal
python code. I’m singling it out because it’s very easy to cause this error in SQLAlchemy
and miss the reason why it is occuring. To demonstrate this error, let’s insert a record
into our users table and run a query against it. Then we’ll try to access a column on that
table that we didn’t select in the query.

46 | Chapter 4: Exceptions and Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

Example 4-2. Causing an AttributeError
from sqlalchemy import select, insert
ins = insert(users).values(
 username="cookiemon",
 email_address="mon@cookie.com",
 phone="111-111-1111",
 password="password"
)
result = connection.execute(ins)

s = select([users.c.username])
results = connection.execute(s)
for result in results:
 print(result.username)
 print(result.password)

Inserting a test record
Password doesn’t exist since we only queried the username column

The code above in Example 4-2 causes a Python to throw an AttributeError and stops
the execution of our program. Let’s look at the error output, and learn how to interpret
what happened.

Example 4-3. Error Output from Example 4-2
cookiemon

AttributeError Traceback (most recent call last)
<ipython-input-37-c4520631a10a> in <module>()
 3 for result in results:
 4 print(result.username)
----> 5 print(result.password)

AttributeError: Could not locate column in row for column 'password'

This shows us the type of error and that a traceback is present
This is the actual line where the error occurred
This is the interesting part we need to focus on

In Example 4-3, we have the typical format for an AttributeError in Python. It starts the
line that says the type of error. Next there is a traceback showing us where the error
occurred. Since we tried to access the column in our code it shows us the actual line that
failed. The final block of lines is where the important details can be found. It again
specifies the type of error, and right after it shows you why this occurred. In this case it
is because our row from the ResultProxy does not have a password column. We only
queried for the username. While this is a common Python error that we can cause
through a bug in our use of SQLAlchemy objects, there are also SQLAlchemy specific

Exceptions | 47

www.it-ebooks.info

http://www.it-ebooks.info/

errors that reference bugs we cause with SQLAlchemy statements themselves. Let’s look
at one example: the IntegrityError.

IntegrityError
Another common SQLAlchemy error is the IntegrityError, which occurs when we
are doing something that would violate the constraints configured on a Column or
Table. It is easy to encounter this type of error when you require something to be unique
such as the username in our users table, and attempt to create two users with the same
username. Example 4-4 shows some code that will cause such an error.

Example 4-4. Causing an IntegrityError
s = select([users.c.username])
connection.execute(s).fetchall()

[(u'cookiemon',)]

ins = insert(users).values(
 username="cookiemon",
 email_address="damon@cookie.com",
 phone="111-111-1111",
 password="password"
)
result = connection.execute(ins)

View the current records in the users table.
Attempt to insert the second record, which will result in the error

The code in Example 4-4 causes SQLAlchemy to create an IntegrityError. Let’s look at
the error output, and learn how to interpret what happened.

Example 4-5. IntegrityError Output
IntegrityError Traceback (most recent call last)
<ipython-input-7-6ecafb68a8ab> in <module>()
 5 password="password"
 6)
----> 7 result = connection.execute(ins)

...

IntegrityError: (sqlite3.IntegrityError) UNIQUE constraint failed:
users.username [SQL: u'INSERT INTO users (username, email_address, phone,
password, created_on, updated_on) VALUES (?, ?, ?, ?, ?, ?)'] [parameters:
('cookiemon', 'damon@cookie.com', '111-111-1111', 'password',
'2015-04-26 10:52:24.275082', '2015-04-26 10:52:24.275099')]

This is the line that triggered the error

48 | Chapter 4: Exceptions and Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

There is a long traceback here that I omitted
This is the interesting part we need to focus on

Example 4-5 shows the typical format for an IntegrityError output in SQLAlchemy. It
starts with the line that says the type of error. Next it includes the traceback details
however, this is normal only our execute statement and internal SQLAlchemy code.
Typically, the traceback can be ignored for the IntegrityError type. The final block of
lines is where the important details are found. It again specifies the type of error, and
tells you what caused it. In this case it shows:

UNIQUE constraint failed: users.username

This points us to the fact that there is a unique constrain on the username column in
the users table that we tried to violate. It then provides us with the details of the SQL
statement and it’s compiled parameters like we looked at in Chapter 3. The new data we
tried to insert into the table was not inserted due to the error. This error also stops our
program from executing.

While there many other kinds of errors, the two we covered are the most common. The
output for all the errors in SQLAlchemy will follow the same format as the two above.
The SQLAlchemy documentation contains information on the other types of errors.

In order for our programs not to crash whenever they encounter an error, we need to
learn how to handle errors properly.

Handling Errors
To prevent an error form crashing or stopping our program, we need to handle errors
cleanly. This is done with the same way it is done for any Python error with a try/except
block. For example, we can use a try/except block to catch the error and print an error
message then carry on with the rest of our program; Example 4-6 has the details..

Example 4-6. Catching An Exception
from sqlalchemy.exc import IntegrityError
ins = insert(users).values(
 username="cookiemon",
 email_address="damon@cookie.com",
 phone="111-111-1111",
 password="password"
)
try:
 result = connection.execute(ins)
except IntegrityError as error:
 print(error.orig.message, error.params)

All the SQLAlchemy exceptions are available in the sqlalchemy.exc module

Exceptions | 49

www.it-ebooks.info

http://www.it-ebooks.info/

Catching the IntegrityError exception as error so we can access properties of
the exception.

In Example 4-6, we are running the same statement as Example 4-4, but wrapping the
statement execution in a try/except block that catches an IntegrityError and prints a
message with the error message and statement parameters. While this example demon‐
strated how to print an error message, we can write any python code we like in the
exception clause. This can be useful to return an error message to the our application
user informing them that their operation failed. By handling the error with a try/except
block, our application continues to execute and run.

While Example 4-6 shows an IntegrityError, this method of handling errors will work
for any type of error generated by SQLAlchemy. For more information on other SQLAl‐
chemy Exceptions see the SQLAlchemy documentation at http://
docs.sqlalchemy.org/en/latest/core/exceptions.html.

Remember it is best practice to wrap as little code as possible in a try/
except block and only catch specific errors. This prevents catching
unexpected errors that really should have a different behavior than
the catch for the specific error you’re watching for.

While we were able to handle the exceptions from a single statement using traditional
python tools, that method alone won’t work if we have multiple database statements
that are dependent on one another to be completely successful. In such cases, we need
to wrap those statements in a database transaction, and SQLAlchemy provides a simple
to use wrapper for that purpose built into the connection object: transactions.

Transactions
Rather than learning the deep database theory behind transactions, just think of trans‐
actions as a way to ensure that multiple database statements succeed or fail as a group.
When we start a transaction we record the current state of our database, then we can
execute multiple SQL statements. If all the SQL statements in the transaction succeed,
the database continues on normally and we discard the prior database state. Figure 4-1
shows the normal transaction workflow.

50 | Chapter 4: Exceptions and Transactions

www.it-ebooks.info

http://docs.sqlalchemy.org/en/latest/core/exceptions.html
http://docs.sqlalchemy.org/en/latest/core/exceptions.html
http://www.it-ebooks.info/

Figure 4-1. Successful Transaction Flow

However, if one or more of those statements fail we can catch that error and use the
prior state to rollback back any statements that succeeded. Figure 4-2 shows an errored
transaction workflow.

Transactions | 51

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-2. Failed Transaction Flow

A good example of when we might want to do this is actually present in our existing
database. After a customer has ordered cookies from us, we will need to ship those
cookies to the customer and remove them from our inventory. However, what if we do
not have enough of the right cookies to fulfill an order? We will need to detect that and
not ship that order. We’re gonna solve this with transactions.

We’ll need a fresh python shell with the tables from Chapter 3; however, we need to add
a CheckConstraint to the quantity column to ensure it can not go below 0, because we
can’t have negative cookies in inventory. Next recreate the cookiemon user as well as

52 | Chapter 4: Exceptions and Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

the chocolate chip and dark chocolate chip cookie records. Set the quantity of chocolate
chip cookies to 12 and the dark chocolate chip cookies to 1. Example 4-7 shows how I
setup the tables with the CheckConstraint, added the cookiemon user, and added the
cookies.

Example 4-7. Setting up the transactions environment
from datetime import datetime

from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String,
 DateTime, ForeignKey, Boolean, create_engine,
 CheckConstraint)
metadata = MetaData()

cookies = Table('cookies', metadata,
 Column('cookie_id', Integer(), primary_key=True),
 Column('cookie_name', String(50), index=True),
 Column('cookie_recipe_url', String(255)),
 Column('cookie_sku', String(55)),
 Column('quantity', Integer()),
 Column('unit_cost', Numeric(12, 2)),
 CheckConstraint('quantity >= 0', name='quantity_positive')
)

users = Table('users', metadata,
 Column('user_id', Integer(), primary_key=True),
 Column('username', String(15), nullable=False, unique=True),
 Column('email_address', String(255), nullable=False),
 Column('phone', String(20), nullable=False),
 Column('password', String(25), nullable=False),
 Column('created_on', DateTime(), default=datetime.now),
 Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now)
)

orders = Table('orders', metadata,
 Column('order_id', Integer()),
 Column('user_id', ForeignKey('users.user_id')),
 Column('shipped', Boolean(), default=False)
)

line_items = Table('line_items', metadata,
 Column('line_items_id', Integer(), primary_key=True),
 Column('order_id', ForeignKey('orders.order_id')),
 Column('cookie_id', ForeignKey('cookies.cookie_id')),
 Column('quantity', Integer()),
 Column('extended_cost', Numeric(12, 2))
)

engine = create_engine('sqlite:///:memory:')
metadata.create_all(engine)
connection = engine.connect()
from sqlalchemy import select, insert, update

Transactions | 53

www.it-ebooks.info

http://www.it-ebooks.info/

ins = insert(users).values(
 username="cookiemon",
 email_address="mon@cookie.com",
 phone="111-111-1111",
 password="password"
)
result = connection.execute(ins)
ins = cookies.insert()
inventory_list = [
 {
 'cookie_name': 'chocolate chip',
 'cookie_recipe_url': 'http://some.aweso.me/cookie/recipe.html',
 'cookie_sku': 'CC01',
 'quantity': '12',
 'unit_cost': '0.50'
 },
 {
 'cookie_name': 'dark chocolate chip',
 'cookie_recipe_url': 'http://some.aweso.me/cookie/recipe_dark.html',
 'cookie_sku': 'CC02',
 'quantity': '1',
 'unit_cost': '0.75'
 }
]
result = connection.execute(ins, inventory_list)

We’re now going to define two orders for the cookiemon user. The first order will be
for nine chocolate chip cookies, and the second order will be for one dark chocolate
chip cookie and four regular chocolate chip cookies. We’ll do this using the insert state‐
ments we learned in the previous chapter. Example 4-8 has the details.

Example 4-8. Adding the Orders
ins = insert(orders).values(user_id=1, order_id='1')
result = connection.execute(ins)
ins = insert(line_items)
order_items = [
 {
 'order_id': 1,
 'cookie_id': 1,
 'quantity': 9,
 'extended_cost': 4.50
 }
]
result = connection.execute(ins, order_items)

ins = insert(orders).values(user_id=1, order_id='2')
result = connection.execute(ins)
ins = insert(line_items)
order_items = [
 {
 'order_id': 2,

54 | Chapter 4: Exceptions and Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

 'cookie_id': 1,
 'quantity': 2,
 'extended_cost': 1.50
 },
 {
 'order_id': 2,
 'cookie_id': 1,
 'quantity': 9,
 'extended_cost': 4.50
 }
]
result = connection.execute(ins, order_items)

Adding the chocolate chip cookie order
Adding the dark chocolate chip cookie order

That will give us all the order data we need to explore how transactions work, and now
we need to define a function called ship_it. Our ship_it function will accept an order_id
and remove the cookies from inventory and mark the order as shipped. Example 4-9
shows how this works.

Example 4-9. Defining the ship_it function
def ship_it(order_id):

 s = select([line_items.c.cookie_id, line_items.c.quantity])
 s = s.where(line_items.c.order_id == order_id)
 cookies_to_ship = connection.execute(s)
 for cookie in cookies_to_ship:
 u = update(cookies).where(cookies.c.cookie_id==cookie.cookie_id)
 u = u.values(quantity = cookies.c.quantity - cookie.quantity)
 result = connection.execute(u)
 u = update(orders).where(orders.c.order_id == order_id)
 u = u.values(shipped=True)
 result = connection.execute(u)
 print("Shipped order ID: {}".format(order_id))

For each cookie type we find in the order, we remove the quantity ordered for
it from the cookies table quantity so we know how many cookies we have left.
We update the order to mark it as shipped.

The ship_it function will perform all the actions required when we ship an order. Let’s
run it on our first order and then query the cookies table to make sure it reduced the
cookie count correctly. Example 4-10 shows how to do that.

Transactions | 55

www.it-ebooks.info

http://www.it-ebooks.info/

Example 4-10. Running ship_it on the first order
ship_it(1)
s = select([cookies.c.cookie_name, cookies.c.quantity])
connection.execute(s).fetchall()

Run ship on the first order_id
Look at our cookie inventory

Running the code in Example 4-10 results in:

[(u'chocolate chip', 3), (u'dark chocolate chip', 1)]

Excellent, it worked. We can see that we don’t have enough cookies in our inventory to
fulfill the second order; however, in our fast paced warehouse, these orders might be
processed at the same time. Now try shipping our second order with the ship it function,
and watch what happens (as shown in Example 4-11).

Example 4-11. Running ship_it on the second order
ship_it(2)

That command gives us this result:

IntegrityError Traceback (most recent call last)
<ipython-input-9-47771be6653b> in <module>()
----> 1 ship_it(2)

<ipython-input-6-301c0ed7c4a1> in ship_it(order_id)
 7 u = update(cookies).where(cookies.c.cookie_id == cookie.cookie_id)
 8 u = u.values(quantity = cookies.c.quantity-cookie.quantity)
----> 9 result = connection.execute(u)
 10 u = update(orders).where(orders.c.order_id == order_id)
 11 u = u.values(shipped=True)

...

IntegrityError: (sqlite3.IntegrityError) CHECK constraint failed: quantity_positive
[SQL: u'UPDATE cookies SET quantity=(cookies.quantity - ?) WHERE
cookies.cookie_id = ?'] [parameters: (4, 1)]

We got an IntegrityError because we didn’t have enough chocolate chip cookies to ship
the order. However, let’s see what happened to our cookies table using the last two lines
of Example 4-10.

[(u'chocolate chip', 3), (u'dark chocolate chip', 0)]

It didn’t remove the chocolate chip cookies because of the IntegrityError, but it did
remove the dark chocolate chip cookies. This isn’t good! We only wanna ship whole
orders to our customers. Using what you learned about try/except “Handling Errors”
on page 49 earlier, you could devise a complicated except method that would revert the

56 | Chapter 4: Exceptions and Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

partial shipment. However, transactions provide us a better way to handle just this type
of event.

Transactions are initiated by calling the begin() method on the connection object. The
result of this call is a transaction object that we can use to control the result of all our
statements. If all our statements are successful, we commit the transaction by calling
the commit() method on the transaction object. If not we call the rollback() method
on that same object. Let’s rewrite the ship it function to use transaction to safely execute
our statements; Example 4-12 shows what to do.

Example 4-12. Transactional ship_it
from sqlalchemy.exc import IntegrityError
def ship_it(order_id):
 s = select([line_items.c.cookie_id, line_items.c.quantity])
 s = s.where(line_items.c.order_id == order_id)
 transaction = connection.begin()
 cookies_to_ship = connection.execute(s).fetchall()

 try:
 for cookie in cookies_to_ship:
 u = update(cookies).where(cookies.c.cookie_id == cookie.cookie_id)
 u = u.values(quantity = cookies.c.quantity-cookie.quantity)
 result = connection.execute(u)
 u = update(orders).where(orders.c.order_id == order_id)
 u = u.values(shipped=True)
 result = connection.execute(u)
 print("Shipped order ID: {}".format(order_id))
 transaction.commit()
 except IntegrityError as error:
 transaction.rollback()
 print(error)

Importing the IntegrityError so we can handle its exception
Starting the transaction
Fetching all the results just to make it easier to follow what is happening
Commiting the transaction if no errors occur
Rolling back the transaction if an error occurs

Now let’s reset the dark chocolate chip cookies quantity back to 1.

u = update(cookies).where(cookies.c.cookie_name == "dark chocolate chip")
u = u.values(quantity = 1)
result = connection.execute(u)

We need to rerun our transaction based ship_it on the second order. The program
doesn’t get stopped by the error, and prints us the error message without the traceback.

Transactions | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s check the inventory like we did in Example 4-10 to make sure that it didn’t mess
up our inventory with a partial shipment.

[(u'chocolate chip', 3), (u'dark chocolate chip', 1)]

Excellent, our transactional function didn’t mess up our inventory and didn’t crash our
application. We also didn’t have to do a lot of coding to manually rollback the statements
that did succeed. As you can see, transactions can be really useful in situations like this,
and can save you a lot of manual coding.

In this chapter we saw how to handle exceptions in both single statements and groups
of statements. By using a normal try/except block on a single statement, we can stop
our application from crashing just because of a database statement error. We also looked
at how transactions can help us avoid inconsistent databases, and application crashes
in groups of statements. Now, we need to learn how to test our code to ensure it behaves
the way we expect, and we’ll do that in the next chapter.

58 | Chapter 0: Exceptions and Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book is For
	How to Use the Examples
	Assumptions This Book Makes
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to SQLAlchemy
	Why Use SQLAlchemy?
	SQLAlchemy Core and the SQL Expression Language
	ORM

	Choosing between SQLAlchemy Core and ORM
	Installing SQLAlchemy and Connecting to a Database
	Installing Database Drivers
	Connecting to a database

	Part I. SQLAlchemy Core
	Chapter 2. Schema and Types
	Types
	Metadata
	Tables
	Columns
	Keys and Constraints
	Indexes
	Relationships and ForeignKeyConstraints

	Persisting the Tables

	Chapter 3. Working with Data via SQLAlchemy Core
	Inserting Data
	Querying Data
	ResultProxy
	Controlling the Columns in the Query
	Ordering
	Limiting
	Builtin SQL Functions and Labels
	Filtering
	ClauseElements
	Operators
	Boolean Operators
	Conjunctions

	Updating Data
	Deleting Data
	Joins
	Aliases
	Grouping
	Chaining
	Raw Queries

	Chapter 4. Exceptions and Transactions
	Exceptions
	AttributeError
	IntegrityError
	Handling Errors

	Transactions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

