

®

Oracle Database
11g PL/SQL
Programming

http://dx.doi.org/10.1036/0071494456

This page intentionally left blank

®

Oracle Database
11g PL/SQL
Programming

Michael McLaughlin

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071494456

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except
as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-164356-7

The material in this eBook also appears in the print version of this title: 0-07-149445-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right
to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTH-
ERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licen-
sors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or
omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071494456

http://dx.doi.org/10.1036/0071494456

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0071494456

To Lisa, my eternal companion, inspiration, wife, and best friend; and to
Sarah, Joseph, Elise, Ian, Ariel, Callie, Nathan, Spencer, and Christianne—

our terrifi c heaven-sent children. Thank you for your constant support,
patience, and sacrifi ce that made writing yet another book possible.

About the Author
Michael McLaughlin is a professor at BYU—Idaho in the Computer Information
Technology Department of the Business and Communication College. He is also
the founder of Techtinker.com.

Michael worked at Oracle Corporation for over eight years in consulting,
development, and support. He is the inventor of the ATOMS transaction
architecture (U.S. Patents #7,206,805 and #7,290,056). The patents are
assigned to Oracle Corporation.

Prior to his tenure at Oracle Corporation, Michael worked as an Oracle
developer, systems and business analyst, and DBA beginning with Oracle 6. He
is the author of Oracle Database 10g Express Edition PHP Web Programming.
He is also the co-author of Oracle Database AJAX & PHP Web Application
Development, Oracle Database 10g PL/SQL Programming, and Expert
Oracle PL/SQL.

About the Technical Editor
A. Scott Mikolaitis is an Applications Architect at Oracle Corporation and has
worked at Oracle for over ten years. He works on prototyping and standards
development for the SOA technology in Oracle Fusion.

Scott also enjoys working with web services in Java as well as Jabber for
human and system interaction patterns. He spends his spare time on DIY home
improvement and gas-fueled RC cars.

Contents at a Glance

PART I

PL/SQL Fundamentals
 1 Oracle PL/SQL Overview . 3

 2 PL/SQL Basics . 25

 3 Language Fundamentals . 45

 4 Control Structures . 91

 5 Error Management . 131

PART II

PL/SQL Programming
 6 Functions and Procedures . 163

 7 Collections . 207

 8 Large Objects . 265

 9 Packages . 313

 10 Triggers . 343

PART III

PL/SQL Advanced Programming
 11 Dynamic SQL . 381

 12 Intersession Communication . 417

 13 External Procedures . 445

 14 Object Types . 475

 15 Java Libraries . 505

 16 Web Application Development . 533

vii

viii Oracle Database 11g PL/SQL Programming

PART IV

Appendixes
 A Oracle Database Administration Primer . 571

 B Oracle Database SQL Primer . 599

 C PHP Primer . 629

 D Oracle Database Java Primer . 685

 E Regular Expression Primer . 729

 F Wrapping PL/SQL Code Primer . 747

 G PL/SQL Hierarchical Profiler Primer . 753

 H PL/Scope . 765

 I PL/SQL Reserved Words and Keywords . 769

 J PL/SQL Built-in Functions . 777

 Index . 821

Contents

Acknowledgments . xix
Introduction . xxi

PART I

PL/SQL Fundamentals
 1 Oracle PL/SQL Overview . 3

History and Background . 4
Architecture . 6
Basic Block Structures . 8
Oracle 10g New Features . 11

Built-in Packages . 11
Compile-Time Warnings . 11
Conditional Compilation . 12
Number Datatype Behavior . 13
Optimized PL/SQL Compiler . 13
Regular Expressions . 14
Quoting Alternative . 14
Set Operators . 14
Stack Tracing Errors . 14
Wrapping PL/SQL Stored Programs . 16

Oracle 11g New Features . 17
Automatic Subprogram Inlining . 17
Continue Statement . 18
Cross-Session PL/SQL Function Result Cache . 18
Dynamic SQL Enhancements . 19
Mixed Name and Position Notation Calls . 19
Multiprocess Connection Pool . 21
PL/SQL Hierarchical Profiler . 23
PL/SQL Native Compiler Generates Native Code . 23
PL/Scope . 24
Regular Expression Enhancement . 24
SIMPLE_INTEGER Datatype . 24
Direct Sequence Calls in SQL Statements . 24

Summary . 24

ix

For more information about this title, click here

http://dx.doi.org/10.1036/0071494456

x Oracle Database 11g PL/SQL Programming

 2 PL/SQL Basics . 25
Oracle PL/SQL Block Structure . 26
Variables, Assignments, and Operators . 29
Control Structures . 31

Conditional Structures . 31
Iterative Structures . 33

Stored Functions, Procedures, and Packages . 36
Stored Functions . 37
Procedures . 38
Packages . 40

Transaction Scope . 40
Single Transaction Scope . 41
Multiple Transaction Scopes . 41

Database Triggers . 42
Summary . 43

 3 Language Fundamentals . 45
Character and Lexical Units . 46

Delimiters . 46
Identifiers . 51
Literals . 52
Comments . 54

Block Structures . 55
Variable Types . 60

Scalar Datatypes . 63
Large Objects (LOBs) . 79
Composite Datatypes . 82
System Reference Cursors . 87

Variable Scope . 89
Summary . 90

 4 Control Structures . 91
Conditional Statements . 92

IF Statements . 98
CASE Statements . 101
Conditional Compilation Statements . 104

Iterative Statements . 105
Simple Loop Statements . 106
FOR Loop Statements . 109
WHILE Loop Statements . 111

Cursor Structures . 113
Implicit Cursors . 113
Explicit Cursors . 116

Bulk Statements . 122
BULK COLLECT INTO Statements . 123
FORALL Statements . 127

Summary . 129

 5 Error Management . 131
Exception Types and Scope . 132

Compilation Errors . 133
Run-Time Errors . 136

Contents xi

Exception Management Built-in Functions . 141
User-Defined Exceptions . 143

Declaring User-Defined Exceptions . 144
Dynamic User-Defined Exceptions . 145

Exception Stack Functions . 146
Exception Stack Management . 146
Error Stack Formatting . 150

Database Trigger Exception Management . 152
Critical Error Database Triggers . 153
Non-Critical Error Database Triggers . 158

Summary . 160

PART II

PL/SQL Programming
 6 Functions and Procedures . 163

Function and Procedure Architecture . 165
Transaction Scope . 172
Calling Subroutines . 172

Positional Notation . 173
Named Notation . 173
Mixed Notation . 173
Exclusionary Notation . 173
SQL Call Notation . 174

Functions . 174
Creation Options . 176
Pass-by-Value Functions . 186
Pass-by-Reference Functions . 192

Procedures . 194
Pass-by-Value Procedures . 195
Pass-by-Reference Procedures . 200

Summary . 206

 7 Collections . 207
Collection Types . 210

Varrays . 212
Nested Tables . 225
Associative Arrays . 238

Collection Set Operators . 245
CARDINALITY Operator . 248
EMPTY Operator . 248
MEMBER OF Operator . 248
MULTISET EXCEPT Operator . 249
MULTISET INTERSECT Operator . 249
MULTISET UNION Operator . 249
SET Operator . 250
SUBMULTISET Operator . 251

Collection API . 252
COUNT Method . 255
DELETE Method . 255
EXISTS Method . 256

xii Oracle Database 11g PL/SQL Programming

EXTEND Method . 258
FIRST Method . 259
LAST Method . 260
LIMIT Method . 260
NEXT Method . 261
PRIOR Method . 261
TRIM Method . 262

Summary . 263

 8 Large Objects . 265
Character Large Objects: CLOB and NCLOB Datatypes . 266

PL/SQL Reading Files and Writing CLOB or NCLOB Columns 271
Uploading CLOBs to the Database . 274

Binary Large Objects: BLOB Datatype . 275
PL/SQL Reading Files and Writing BLOB Columns . 277
Uploading BLOBs to the Database . 280

SecureFiles . 280
Binary Files: BFILE Datatype . 282

Creating and Using Virtual Directories . 282
Reading Canonical Path Names and Filenames . 290

DBMS_LOB Package . 298
Package Constants . 298
Package Exceptions . 300
Opening and Closing Methods . 300
Manipulation Methods . 302
Introspection Methods . 306
BFILE Methods . 309
Temporary LOB Methods . 310

Summary . 311

 9 Packages . 313
Package Architecture . 315

Forward Referencing . 315
Overloading . 318

Package Specification . 319
Variables . 322
Types . 324
Components: Functions and Procedures . 327

Package Body . 328
Variables . 330
Types . 331
Components: Functions and Procedures . 332

Definer vs. Invoker Rights . 335
Grants and Synonyms . 336
Remote Calls . 337

Managing Packages in the Database Catalog . 338
Finding, Validating, and Describing Packages . 338
Checking Dependencies . 339
Comparing Validation Methods: Timestamp vs. Signature 340

Summary . 341

Contents xiii

 10 Triggers . 343
Introduction to Triggers . 344
Database Trigger Architecture . 346
Data Definition Language Triggers . 348

Event Attribute Functions . 349
Building DDL Triggers . 358

Data Manipulation Language Triggers . 360
Statement-Level Triggers . 361
Row-Level Triggers . 362

Compound Triggers . 365
Instead-of Triggers . 370
System or Database Event Triggers . 374
Trigger Restrictions . 375

Maximum Trigger Size . 375
SQL Statements . 375
LONG and LONG RAW Datatypes . 376
Mutating Tables . 376
System Triggers . 377

Summary . 378

PART III

PL/SQL Advanced Programming
 11 Dynamic SQL . 381

Dynamic SQL Architecture . 382
Native Dynamic SQL (NDS) . 383

Dynamic Statements . 383
Dynamic Statements with Inputs . 386
Dynamic Statements with Inputs and Outputs . 388
Dynamic Statements with an Unknown Number of Inputs 391

DBMS_SQL Package . 393
Dynamic Statements . 394
Dynamic Statements with Input Variables . 398
Dynamic Statements with Input and Output Variables 400
DBMS_SQL Package Definition . 403

Summary . 415

 12 Intersession Communication . 417
Introducing Intersession Communication . 418

Requiring Permanent or Semipermanent Structures . 418
Not Requiring Permanent or Semipermanent Structures 418
Comparing Intersession Communication Approaches . 419

The DBMS_PIPE Built-in Package . 420
Introducing the DBMS_PIPE Package . 420
Defining the DBMS_PIPE Package . 422
Working with the DBMS_PIPE Package . 426

DBMS_ALERT Built-in Package . 436
Introducing the DBMS_ALERT Package . 436
Defining the DBMS_ALERT Package . 437
Working with the DBMS_ALERT Package . 439

Summary . 443

xiv Oracle Database 11g PL/SQL Programming

 13 External Procedures . 445
Introducing External Procedures . 446
Working with External Procedures . 447

Defining the extproc Architecture . 447
Defining extproc Oracle Net Services Configuration . 449
Defining the Multithreaded External Procedure Agent 456
Working with a C Shared Library . 459
Working with a Java Shared Library . 465

Troubleshooting the Shared Library . 470
Configuration of the Listener or Environment . 470
Configuration of the Shared Library or PL/SQL Library Wrapper 473

Summary . 474

 14 Object Types . 475
Objects Basics . 478

Declaring Objects . 479
Implementing Object Bodies . 481
Getters and Setters . 483
Static Member Methods . 485
Comparing Objects . 487

Inheritance and Polymorphism . 494
Declaring Subclasses . 495
Implementing Subclasses . 497
Type Evolution . 500

Implementing Collection Object Bodies . 500
Declaring Object Type Collections . 500
Implementing Object Type Collections . 501

Summary . 504

 15 Java Libraries . 505
Oracle 11g JVM New Features . 506
Java Architecture . 507

Java Execution Control . 509
Java Resource Storage . 509
Java Class Names . 509
Java Resolvers . 510
Java Security and Permissions . 510
Java Threading . 510

Oracle Java Connection Types . 510
The Client-Side Driver, or JDBC Thin Driver . 510
The Oracle Call Interface Driver, or Middle-Tier Thick Driver 511
The Oracle Server-Side Internal Driver, or Server-Tier Thick Driver 511

Building Java Class Libraries in Oracle . 512
Building Internal Server Java Functions . 513
Building Internal Server Java Procedures . 518
Building Internal Server Java Objects . 521
Troubleshooting Java Class Libraries . 526

Mapping Oracle Types . 530
Summary . 532

Contents xv

 16 Web Application Development . 533
PL/SQL Web Server Architecture . 535

Oracle HTTP Server Architecture . 536
Oracle XML Database Server Architecture . 537

Configuring the Standalone Oracle HTTP Server . 539
Describing mod_plsql Cartridge . 540
Configuring the Oracle HTTP Server . 541

Configuring the XML DB Server . 543
Configuring Static Authentication . 546
Configuring Dynamic Authentication . 547
Configuring Anonymous Authentication . 548

Comparing Web-Enabled PL/SQL Procedures and PSPs . 550
Creating Web-Enabled PL/SQL Stored Procedures . 550

Developing Procedures Without Formal Parameters . 553
Developing Procedures with Formal Parameters . 553
Understanding Advantages and Limitations . 559

Building and Accessing PL/SQL Server Pages (PSPs) . 559
Developing and Running No Formal Parameter PSP Procedures 562
Developing Formal Parameter PSP Procedures . 564
Understanding Advantages and Limitations . 567

Summary . 568

PART IV

Appendixes

 A Oracle Database Administration Primer . 571
Oracle Database Architecture . 572
Starting and Stopping the Oracle Database . 578

Unix or Linux Operations . 578
Microsoft Windows Operations . 582

Starting and Stopping the Oracle Listener . 585
Oracle Roles and Privileges . 590
Accessing and Using the SQL*Plus Interface . 590

SQL Command-Line Interface . 592
Bind Variables . 597

Summary . 598

 B Oracle Database SQL Primer . 599
Oracle SQL*Plus Datatypes . 601
Data Definition Language (DDL) . 604

Managing Tables and Constraints . 605
Managing Views . 609
Managing Stored Programs . 612
Managing Sequences . 612
Managing User-Defined Types . 616

Data Query Language (DQL) . 617
Queries . 618

Data Manipulation Language (DML) . 624
INSERT Statements . 624

xvi Oracle Database 11g PL/SQL Programming

UPDATE Statements . 626
DELETE Statements . 627

Data Control Language (DCL) . 628
Summary . 628

 C PHP Primer . 629
History and Background . 631

What Is PHP? . 631
What Is Zend? . 631

Developing Web Programming Solutions . 632
What Goes Where and Why? . 632
What Does Oracle Contribute to PHP? . 633
Why Is PHP 5 Important? . 633
How to Use PHP . 633
How to Use PHP and OCI8 to Access the Oracle Database 658

Summary . 684

 D Oracle Database Java Primer . 685
Java and JDBC Architecture . 686
Configuring the Oracle Java Environment . 687
Java Programming Language Primer . 689

Java Basics . 689
Java Assignment Operators . 692
Java Conditional and Iterative Structures . 693
Java Method Definitions . 695
Java try-catch Blocks . 696

Testing a Client-Side or Thin-Driver JDBC Connection . 697
Accessing Scalar Variables . 702
Writing and Accessing Large Objects . 709

Writing and Accessing a CLOB Column . 710
Accessing a BFILE Column . 718

Summary . 727

 E Regular Expression Primer . 729
Introduction to Regular Expressions . 730

Character Classes . 730
Collation Classes . 732
Metacharacters . 732
Metasequences . 734
Literals . 735

Oracle 11g Regular Expression Implementation . 736
REGEXP_COUNT Function . 736
REGEXP_INSTR Function . 737
REGEXP_LIKE Function . 739
REGEXP_REPLACE Function . 740
REGEXP_SUBSTR Function . 740

Using Regular Expressions . 741
REGEXP_COUNT Function . 742
REGEXP_INSTR Function . 743
REGEXP_LIKE Function . 744
REGEXP_REPLACE Function . 744

Contents xvii

REGEXP_SUBSTR Function . 745
Summary . 746

 F Wrapping PL/SQL Code Primer . 747
Limitations of Wrapping PL/SQL . 748

Limitations of the PL/SQL Wrap Utility . 748
Limitations of the DBMS_DDL.WRAP Function . 749

Using the Wrap Command-Line Utility . 749
Using the DBMS_DDL Command-Line Utility . 749

The WRAP Function . 749
The CREATE_WRAPPED Procedure . 751

Summary . 752

 G PL/SQL Hierarchical Profiler Primer . 753
Configuring the Schema . 754
Collecting Profiler Data . 756
Understanding Profiler Data . 758

Reading the Raw Output . 759
Defining the PL/SQL Profiler Tables . 760
Querying the Analyzed Data . 762

Using the plshprof Command-Line Utility . 763
Summary . 764

 H PL/Scope . 765
Configuring PL/Scope Data Collection . 766
Viewing PL/Scope Collected Data . 766
Summary . 768

 I PL/SQL Reserved Words and Keywords . 769
Summary . 775

 J PL/SQL Built-in Functions . 777
Character Functions . 778

ASCII Function . 778
ASCIISTR Function . 779
CHR Function . 779
CONCAT Function . 779
INITCAP Function . 780
INSTR Function . 780
LENGTH Function . 781
LOWER Function . 782
LPAD Function . 782
LTRIM Function . 782
REPLACE Function . 783
RPAD Function . 783
RTRIM Function . 784
UPPER Function . 784

Datatype Conversion . 785
CAST Function . 785
CONVERT Function . 787
TO_CHAR Function . 788
TO_CLOB Function . 790

xviii Oracle Database 11g PL/SQL Programming

TO_DATE Function . 790
TO_LOB Function . 791
TO_NCHAR Function . 792
TO_NCLOB Function . 792
TO_NUMBER Function . 793
TO_TIMESTAMP Function . 794

Error Reporting . 794
SQLCODE Function . 795
SQLERRM Function . 795

Miscellaneous . 797
BFILENAME Function . 797
COALESCE Function . 799
DECODE Function . 800
DUMP Function . 801
EMPTY_BLOB Function . 801
EMPTY_CLOB Function . 804
GREATEST Function . 805
LEAST Function . 806
NANVL Function . 808
NULLIF Function . 809
NVL Function . 809
SYS_CONTEXT Function . 810
USERENV Function . 813
VSIZE Function . 814

Number . 815
CEIL Function . 815
FLOOR Function . 815
MOD Function . 816
POWER Function . 816
REMAINDER Function . 818

Summary . 819

 Index . 821

Acknowledgments

any thanks go to Lisa McClain and Mandy Canales at McGraw-Hill for their
tireless work on this project; Carolyn Welch who heroically moved the text
through copyedit and production; Robert Campbell for his thoroughness
and attention to detail; and A. Scott Mikolaitis for his patience and good
humor working through drafts and redrafts, concepts, and ideas.

Special thanks go to Ian McLaughlin, who proofread for me. Thanks to Joseph
McLaughlin for experimenting with presentation ideas and coding samples.
Acknowledgment and thanks for ideas from Michael Farmer, an Oracle DBA,
Developer, Data Warehouse Designer, and friend.

Thanks to the Computer Information Technology Department faculty at BYU,
especially R. Kent Jackson for reading and commenting on the text; Lee Barney for
brainstorming ideas and concepts notwithstanding his MySQL bias; Art Ericson for
reading segments as a nonprogrammer; and Rex Barzee for helping me talk through
concepts and presentation ideas about illustrating functions and procedures. Grateful
thanks to the students who wanted to read and extend their knowledge as manuscript
proceeded to book: Craig Hokanson, Brittany Mullen, Gallus Runyeta, Christina
Robinson, and Sergey Zasukha.

Finally, no acknowledgment would be complete without thanking the production
department for their conscientious attention to detail and hard work in putting all the
pieces together.

T

xix

This page intentionally left blank

Introduction

his book is designed to be read from beginning to end by those new to
PL/SQL. Part I covers PL/SQL fundamentals. Part II covers the backbone
of the programming language, which consists of functions, procedures,
packages, triggers, and large objects. Part III dives into some advanced
topics that should help you immediately with your development projects.

The appendixes in Part IV provide primers on Oracle DBA tasks, SQL programming,
PHP scripting, Java development, regular expressions, and wrapping PL/SQL. Introductory
primers are provided to help you learn about the PL/SQL Hierarchical Profiler and PL/Scope.
There is also an appendix that reviews reserved words and built-in functions that support
your programming tasks.

Part I: PL/SQL Fundamentals
Part I introduces you to recent Oracle Database 10g Release 2 features and Oracle
Database 11g new features. It provides a quick start guide to the language and coverage
of language semantics, types, control structures, and error management.

Chapter 1: PL/SQL Overview explains the basis of PL/SQL. It also covers Oracle
10g Release 2 features and Oracle 11g new features.

Chapter 2: PL/SQL Basics provides a quick tour of writing PL/SQL. It is designed
as a jump-start introduction to the language.

Chapter 3: Language Fundamentals teaches you about PL/SQL language
semantics. This chapter covers lexical units, block structures, variable types,
and variable scope.

Chapter 4: Control Structures explains the conditional and iterative structures
of PL/SQL. It also covers cursors (including system reference cursors) and bulk
operations in the language.

Chapter 5: Error Management explains how error management works in PL/SQL.
It teaches you how to handle exceptions, define your custom exceptions, and
manage error stacks.

■

■

■

■

■

T

xxi

xxii Oracle Database 11g PL/SQL Programming

Part II: PL/SQL Programming
Part II introduces you to functions, procedures, packages, and triggers. It also covers Oracle LOBs.
These are tools to build robust database applications.

Chapter 6: Functions and Procedures explains how to create functions and procedures.
It provides examples for pass-by-value and pass-by-reference models, and shows you
how to build deterministic, parallel enabled, pipelined, and result cache functions. It
also covers call semantics, such as positional, named, and mixed notation, as well as
autonomous program units.

Chapter 7: Collections explains VARRAYs, nested tables, and associative arrays (known
previously as PL/SQL tables). It also covers the collection API and collection set operators.
Examples in this chapter include working with numeric and string indexes for associative
arrays.

Chapter 8: Large Objects explains large objects and demonstrates how to work with
them. Examples show you how to read them from the file system and write them to the
database. You also learn how to read and write them in your PL/SQL or web-enabled
applications, and upload them through web pages and PHP scripts.

Chapter 9: Packages teaches you how to create libraries of related functions and
procedures. You learn how to leverage serially a non-serially reusable package, and how
to implement definer and invoker rights models. There is also a section in this chapter
that shows you how to find, validate, and describe packages in the data catalog. You
learn how to check dependencies and compare and contrast timestamp versus signature
validation methods.

Chapter 10: Triggers explains how you implement database triggers. Examples include
DDL triggers, DML triggers, compound triggers (new in Oracle Database 11g), instead-of
triggers, and system or database event triggers. This chapter also contains a complete set
of examples for using the event attribute functions that support database triggers.

Part III: PL/SQL Advanced Programming
Part III introduces you to dynamic SQL, intersession communications, external procedures, object
types, Java libraries, and web application development.

Chapter 11: Dynamic SQL explains how to use Native Dynamic SQL (NDS) and the
older DBMS_SQL package. Examples in this chapter illustrate calling programs with
dynamically built statements, vetted by the new DBMS_ASSERT package. You will also
see examples using placeholders or bind variables, including an example of creating a
dynamic list of placeholders.

Chapter 12: Intersession Communication shows you how to use DBMS_ALERT and
DBMS_PIPE to communicate between two concurrent sessions.

Chapter 13: External Procedures explains how to use external procedures, and shows you
how to build them in external C and Java libraries. This chapter also covers the Oracle
Heterogeneous Server and how to configure the listener.ora file to support external
procedures.

Chapter 14: Object Types explains how you define and use transient object types, which
is an alternative approach to using packages. You will learn how to create object types

■

■

■

■

■

■

■

■

■

and implement object bodies, as well as how to build subtypes. This chapter also shows
you how to query and access object type columns in your database tables.

Chapter 15: Java Libraries shows you how to create and deploy Java libraries inside the
database. It explains why and how PL/SQL wrappers work as an interface to your Java
class methods. You will also learn the new method for communicating with the database
in Oracle 11g.

Chapter 16: Web Application Development teaches you how to write web-enabled
PL/SQL procedures and PL/SQL Server Pages (PSPs). This chapter covers how to configure
and deploy these PL/SQL only web solutions using the standalone Oracle HTTP Server
and Oracle XML Database.

Part IV: Appendixes
Part IV contains a series of primers to help jump-start those new to Oracle or related
technologies, including Oracle DBA tasks, SQL programming, PHP scripting, Java development,
regular expressions, and wrapping PL/SQL. It also covers PL/SQL Hierarchical Profiler, PL/Scope,
reserved words, and a series of key built-in functions.

Appendix A: Oracle Database Administration Primer explains how to use the SQL*Plus
interface, start up and shut down the database, and start up or shut down the Oracle listener.

Appendix B: Oracle Database SQL Primer begins by covering Oracle’s implementation
of SQL, starting with Oracle SQL*Plus datatypes, and then covers the SQL language
commands needed to build database applications: Data Definition Language (DDL),
Data Manipulation Language (DML), Data Query Language (DQL), and Data Control
Language (DCL).

Appendix C: PHP Primer covers the fundamentals of PHP, the implementation of Zend
Core for Oracle, and how to write PHP web pages against the Oracle 11g database.

Appendix D: Oracle Database Java Primer covers the fundamentals of the Java programming
language, and discusses the Oracle JDBC connection for Oracle 11g. It also demonstrates
how to build standalone Java applications that work with the database, including LOBs.

Appendix E: Regular Expression Primer explains the implementation and use of regular
expressions in the Oracle 11g database.

Appendix F: Wrapping PL/SQL Code Primer explains how you can wrap PL/SQL stored
programs to protect their logic from prying eyes.

Appendix G: PL/SQL Hierarchical Profiler Primer explains how the hierarchical profiler
works and provides a demonstration of how to use it.

Appendix H: PL/Scope explains how it works and provides a quick concept analysis.

Appendix I: PL/SQL Reserved Words and Keywords explains reserved words and
keywords and shows you how to find them in the data catalog.

Appendix J: PL/SQL Built-in Functions covers a large number of the most useful built-in
functions. It provides key examples to use these functions, which are also referenced by
other chapters in the book.

■

■

■

■

■

■

■

■

■

■

■

■

Introduction xxiii

xxiv Oracle Database 11g PL/SQL Programming

Video Store Example
Most of the examples in this book use or leverage the Video Store model, which you can download
from the publisher’s web site. You can create the plsql user referenced in the book by running the
create_user.sql script. You build the model with the create_store.sql script. The latter
script also seeds the model with basic data to support examples in the book.

The following illustration provides an ERD of the model.

PART
I

PL/SQL Fundamentals

This page intentionally left blank

CHAPTER
1

Oracle PL/SQL Overview

3

4 Oracle Database 11g PL/SQL Programming

his chapter introduces you to the Procedure Language/Structured Query Language
(PL/SQL). It explains the history, architecture, and block structure of PL/SQL, reviews
Oracle 10g new features, and discusses Oracle 11g new features. The chapter is
divided into the following sections:

History and background

Architecture

Basic block structures

Oracle 10g new features

Oracle 11g new features

History and Background
The PL/SQL was developed by Oracle in the late 1980s. Originally, PL/SQL had limited capabilities,
but that changed in the early 1990s. PL/SQL provides the Oracle database with a built-in interpreted
and operating system–independent programming environment. SQL statements are natively
integrated in the PL/SQL language. You can also call PL/SQL directly from the command-line
SQL*Plus interface. Similar direct calls can be made in your external programming language
calls to the database, as illustrated in Appendices C and D.

The Oracle 8 Database introduced object types into the database. It moved the Oracle
database from a purely relational model into an object-relational (or extended relational) model.
These types were of limited value as collections of scalar variables until they became instantiable
in Oracle 9i, Release 2. The ability to instantiate SQL object types made internal Oracle objects
compatible with C++, Java, or C# object types. SQL object types are implemented in PL/SQL and
are covered in Chapter 15.

PL/SQL evolved with the advent of full object-oriented programming capabilities delivered in
Oracle 9i, Release 2. PL/SQL is no longer a purely procedural language. It is now both a procedural
and object-oriented programming language.

The Oracle 11g Database also evolved PL/SQL from an interpreted language to a natively
compiled language. You may ask: “Doesn’t that eliminate the benefit of an operating system–
independent language?” The answer to that question is not at all. Now you can write PL/SQL
once in an operating system–independent form. Then, you can deploy it and let Oracle manage
its native compilation. Oracle 11g automates the process for you on supported platforms.

■

■

■

■

■

T

PL/SQL Versions
Initial PL/SQL versions were not sequenced with the version of the database. For example,
PL/SQL 1.0 shipped with the Oracle 6 Database. PL/SQL 2.x shipped with the Oracle 7.x
Databases. Beginning with Oracle 8, PL/SQL versions correspond to the database release
numbers, like PL/SQL 11.1 in the Oracle 11g Release 1 Database.

Chapter 1: Oracle PL/SQL Overview 5

As well as being callable from external programs, PL/SQL is also the primary gateway to
external libraries. The external library label is deceiving, since Java libraries can also be stored
inside the database. Oracle calls external libraries external procedures through PL/SQL regardless
of where they are stored. PL/SQL programs serve as wrappers to external libraries. Wrappers are
interfaces that mask type conversion between the database and external programs.

You can extend the functionality of the Oracle 11g Database when you build stored functions
and procedures in PL/SQL, C, C++, or Java. Java programs can be directly stored inside the
Oracle 11g Database in all releases except the Oracle Express Edition. Chapter 12 demonstrates
how to build and run external procedures. Chapter 14 covers how you build and deploy Java
libraries inside the database.

PL/SQL continues to evolve and become more robust. This is great for those skilled in PL/SQL,
just as the evolution between Java releases is great for skilled Java programmers. PL/SQL
programming presents challenges to those new to the language because it serves so many masters
in the Oracle database. As you develop skills in the language, you will learn how to use PL/SQL
to solve ever more complex problems.

Is PL/SQL Programming a Black Art?
Early on PL/SQL 1.0 was little more than a reporting tool. Now the CASE statement in SQL
delivers most of that original functionality. In the mid-nineties, developers described PL/SQL
2.x programming as a Black Art. This label was appropriate then. There was little written
about the language, and the availability of code samples on the web was limited because
the web didn’t really exist as you know it today.

Today, there are still some who see PL/SQL as a Black Art. They also are passionate about
writing database-neutral code in Java or other languages. This is politically correct speak for
avoiding PL/SQL solutions notwithstanding their advantages. Why is Oracle PL/SQL still a
Black Art to many, when there are so many PL/SQL books published today?

You might say that it’s the cursors, but the cursors exist in any programs connecting
through the Oracle Call Interface (OCI) or Java Database Connectivity (JDBC). If not
cursors, you might venture it’s the syntax, user-defined types, or nuances of functions and
procedures. Are those really that much different than in other programming languages?
If you answer no to this question, you’ve been initiated into the world of PL/SQL. If you
answer yes to this or think there’s some other magic to the language, you haven’t been
initiated.

How do you become initiated? The cute answer is to read this book. The real answer
is to disambiguate the Oracle jargon that shrouds the PL/SQL language. For example,
a variable is always a variable of some type, and a function or procedure is always a
subroutine that manages formal parameters by reference or value that may or may not
return a result as a right operand. These types of simple rules hold true for every component
in the language.

6 Oracle Database 11g PL/SQL Programming

Architecture
The PL/SQL language is a robust tool with many options. PL/SQL lets you write code once and
deploy it in the database nearest the data. PL/SQL can simplify application development, optimize
execution, and improve resource utilization in the database.

The language is a case-insensitive programming language, like SQL. This has led to numerous
formatting best practice directions. Rather than repeat those arguments for one style or another,
it seems best to recommend you find a style consistent with your organization’s standards and
consistently apply it. The PL/SQL code in this book uses uppercase for command words and
lowercase for variables, column names, and stored program calls.

PL/SQL was developed by modeling concepts of structured programming, static data typing,
modularity, exception management, and parallel (concurrent) processing found in the Ada
programming language. The Ada programming language, developed for the United States
Department of Defense, was designed to support military real-time and safety-critical embedded
systems, such as those in airplanes and missiles. The Ada programming language borrowed
significant syntax from the Pascal programming language, including the assignment and comparison
operators and the single-quote delimiters.

These choices also enabled the direct inclusion of SQL statements in PL/SQL code blocks.
They were important because SQL adopted the same Pascal operators, string delimiters, and
declarative scalar datatypes. Both Pascal and Ada have declarative scalar datatypes. Declarative
datatypes do not change at run time and are known as strong datatypes. Strong datatypes are
critical to tightly integrating the Oracle SQL and PL/SQL languages. PL/SQL supports dynamic
datatypes by mapping them at run time against types defined in the Oracle 11g Database catalog.
Matching operators and string delimiters means simplified parsing because SQL statements are
natively embedded in PL/SQL programming units.

NOTE
Primitives in the Java programming language describe scalar variables,
which hold only one thing at a time.

The original PL/SQL development team made these choices carefully. The Oracle database
has been rewarded over the years because of those choices. One choice that stands out as an
awesome decision is letting you link PL/SQL variables to the database catalog. This is a form of
run-time type inheritance. You use the %TYPE and %ROWTYPE pseudotypes to inherit from the
strongly typed variables defined in the database catalog (covered in Chapters 3 and 9).

Anchoring PL/SQL variables to database catalog objects is an effective form of structural
coupling. It can minimize the number of changes you need to make to your PL/SQL programs.
At least, it limits how often you recode as a result of changes between base types, like changing
a VARCHAR2 to DATE. It also eliminates the need to redefine variable sizes. For example, you
don’t need to modify your code when a table changes the size of a variable-length string column.

Oracle also made another strategic decision when it limited the number of SQL base types
and began subtyping them in the database catalog. Subtyping the base types let Oracle develop
a multiple-hierarchy object tree, which continues to grow and mature. The object-oriented
approach to design contributed and continues to contribute to how Oracle evolves the relational
model into an object-relational model (also known as the extended-relational model). PL/SQL
takes full advantage of the subtyping SQL variable types.

The PL/SQL run-time engine exists as a resource inside the SQL*Plus environment. The SQL*Plus
environment is both interactive and callable. Every time you connect to the Oracle 11g Database,

Chapter 1: Oracle PL/SQL Overview 7

the database creates a new session. In that session, you can run SQL or PL/SQL statements from the
SQL*Plus environment. PL/SQL program units can then run SQL statements or external procedures
as shown in Figure 1-1. SQL statements may also call PL/SQL stored functions or procedures. SQL
statements interact directly with the actual data.

Calls directly to PL/SQL can be made through the Oracle Call Interface (OCI) or Java Database
Connectivity (JDBC). This lets you leverage PL/SQL directly in your database applications. This is
important because it lets you manage transaction scope in your stored PL/SQL program units. This
tremendously simplifies the myriad tasks often placed in the data abstraction layer of applications.

PL/SQL also supports building SQL statements at run time. Run-time SQL statements are
dynamic SQL. You can use two approaches for dynamic SQL: one is Native Dynamic SQL (NDS)
and the other is the DBMS_SQL package. The Oracle 11g Database delivers new NDS features
and improves execution speed. With this release, you only need to use the DBMS_SQL package
when you don’t know the number of columns that your dynamic SQL call requires. Chapter 11
demonstrates dynamic SQL and covers both NDS and the DBMS_SQL package.

You now have a high-level view of the PL/SQL language. The next section will provide a brief
overview of PL/SQL block structures.

FIGURE 1-1 Database processing architecture

8 Oracle Database 11g PL/SQL Programming

Basic Block Structures
PL/SQL is a blocked programming language. Program units can be named or unnamed blocks.
Unnamed blocks are known as anonymous blocks and are labeled so throughout the book. The
PL/SQL coding style differs from that of the C, C++, and Java programming languages. For example,
curly braces do not delimit blocks in PL/SQL.

Anonymous-block programs are effective in some situations. You typically use anonymous
blocks when building scripts to seed data or perform one-time processing activities. They are also
effective when you want to nest activity in another PL/SQL block’s execution section. The basic
anonymous-block structure must contain an execution section. You can also put optional declaration
and exception sections in anonymous blocks. The following illustrates an anonymous-block
prototype:

[DECLARE]
declaration_statements

BEGIN
execution_statements

[EXCEPTION]
exception_handling_statements

END;
/

The declaration block lets you define datatypes, structures, and variables. Defining a variable
means that you give it a name and a datatype. You can also declare a variable by giving it a
name, a datatype, and a value. You both define and assign a value when declaring a variable.

Some object types cannot be defined as locally scoped variables but must be defined as types
in the database catalog, as discussed in Chapter 14. Structures are compound variables, like
collections, record structures, or system reference cursors. Structures can also be locally named
functions, procedures, or cursors. Cursors act like little functions. Cursors have names, signatures
and a return type—the output columns from a query or SELECT statement. The DECLARE
reserved word begins the declaration block, and the BEGIN reserved word ends it.

The execution block lets you process data. The execution block can contain variable
assignments, comparisons, conditional operations, and iterations. Also, the execution block is
where you access cursors and other named program units. Functions, procedures, and some
object types are named program units. You can also nest anonymous-block programs inside
the execution block. The BEGIN reserved word starts the exception block, and the optional
EXCEPTION or required END reserved word ends it. You must have at least one statement inside an
execution block. The following minimum anonymous-block statement includes a NULL statement:

BEGIN
 NULL;
END;
/

This does nothing except let the compilation phase complete without an error. Compilation in any
language includes a syntax parsing. The lack of a statement in the block raises a parsing error as
covered in Chapter 5.

Chapter 1: Oracle PL/SQL Overview 9

The exception handling block lets you manage exceptions. You can both catch and manage
them there. The exception block allows for alternative processing; in many ways it acts like
combination of a catch and finally block in the Java programming language (see Appendix D
for more information on Java). The EXCEPTION reserved word starts the section, and the END
reserved word ends it.

TIP
You have the same rule requiring a minimum of one statement for any
blocks in a conditional statement block (like an IF statement), and
loops.

Named-block programs have a slightly different block structure because they are stored in
the database. They also have a declaration section, which is known as a header. The name, list
of formal parameters, and any return type of named PL/SQL blocks are defined by the header. The
name and list of formal parameters are known as the signature of a subroutine. The area between
the header and execution blocks acts as the declaration block for a named block. This same rule
holds true for object type bodies covered in Chapter 14.

The following illustrates a named-block function prototype:

FUNCTION function_name
[(parameter1 [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 , parameter2 [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 , parameter(n+1) [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type)]

RETURN [sql_data_type | plsql_data_type]
 [AUTHID {DEFINER | CURRENT_USER}]
 [DETERMINISTIC | PARALLEL_ENABLED]
 [PIPELINED]
 [RESULT_CACHE [RELIES ON table_name]] IS
 declaration_statements
BEGIN
 execution_statements
 [EXCEPTION]

exception_handling_statements
END;
/

Chapter 6 discusses the rules governing functions. Functions can behave as pass-by-value or
pass-by-reference subroutines. Pass-by-value subroutines define formal parameters using an IN mode
only. This means that the variable passed in cannot change during execution of the subroutine.
Pass-by-reference subroutines define formal parameters using IN and OUT, or OUT-only modes.

Oracle 11g continues passing copies of variables instead of references to variables, unless you
designate a NOCOPY hint. Oracle implements pass-by-reference behaviors this way to guarantee
the integrity of IN OUT mode variables. This model guarantees variables are unchanged unless a
subprogram call completes successfully. You can override this default behavior by using a NOCOPY
hint. Oracle recommends against using the NOCOPY hint because using it can result in partial
changes to your actual parameter values. Ultimately, the database chooses whether to act on a
hint and send a reference.

Alan
线条

Alan
线条

10 Oracle Database 11g PL/SQL Programming

Functions can query data using SELECT statements but cannot perform DML statements, such
as INSERT, UPDATE, or DELETE. All other rules apply to stored functions the same as those that
apply to anonymous blocks. Functions that define formal parameters or return types that use PL/
SQL datatypes cannot be called from the SQL command line. However, you can call functions
that use SQL datatypes from the SQL command line.

The AUTHID default value is DEFINER, which is known as definer rights. Definer rights means
that any one with privileges to execute the stored program runs it with the same privileges as the user
account that defined it. The CURRENT_USER alternative lets those with execute privileges call the
stored program and run it against only their user/schema data. This is known as invoker rights, and it
describes the process of calling a common source program against individual accounts and data.

You should avoid using the DETERMINISTIC clause when functions depend on the states of
session-level variables. DETERMINISTIC clauses are best suited to function-based indexes and
materialized views.

The PARALLEL_ENABLE clause should be enabled for functions that you plan to call from
SQL statements that may use parallel query capabilities. You should look closely at this clause for
data warehousing uses.

The PIPELINED clause provides improved performance when functions return collections,
like nested tables or VARRAYs. You’ll also note performance improvements when returning system
reference cursors by using the PIPELINED clause.

The RESULT_CACHE clause indicates a function is cached only once in the SGA and
available across sessions. It is new in the Oracle 11g Database. Cross-session functions only
work with IN mode formal parameters.

Chapter 6 contains the implementation details about these clauses. It also provides examples
that demonstrate how to use them.

The following illustrates a named-block procedure prototype:

PROCEDURE procedure_name
(parameter1 [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
, parameter2 [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
, parameter(n+1) [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type)
[AUTHID {DEFINER | CURRENT_USER}]

declaration_statements
BEGIN

execution_statements
[EXCEPTION]

exception_handling_statements
END;
/

Chapter 6 discusses the rules governing procedures. They act like functions in many ways but
cannot return a datatype. This means that you can’t use them as right operands. Unlike functions,
procedures must be called by PL/SQL blocks. Procedures can both query the data and manipulate
the data. Procedures are also the foundation subroutines for passing values from and to external
languages such as C, C++, Java, and PHP.

This section has presented and discussed the basics structure of PL/SQL program units. The
next sections will review recent features in the Oracle 10g Database, and new features in the
Oracle 11g Database.

Chapter 1: Oracle PL/SQL Overview 11

Oracle 10g New Features
Several changes were introduced in the Oracle 10g Database. Not all were available when the
preceding edition was written because they didn’t ship until the second release of the database.

New PL/SQL features introduced in Oracle 11g include

Built-in packages

Compile-time warnings

Conditional compilation

Number datatype behaviors

An optimized PL/SQL compiler

Regular expressions

Quoting alternatives

Set operators

Stack tracing errors

Wrapping PL/SQL stored programs

The subsections cover recent features introduced in Oracle 10g. They also cross-reference
Oracle 11g Database–related features, which are covered later in this chapter.

Built-in Packages
Beginning with Oracle 10g Release 2, you can gain access to several new or improved built-in
packages. Three that merit mention here are

DBMS_SCHEDULER Replaces the DBMS_JOB built in and provides new functionality to
schedule and execute batch jobs.

DBMS_CRYPTO Now includes the ability to encrypt and decrypt large objects, and to
support globalization across multiple character sets.

DBMS_MONITOR Delivers an API supporting tracing and statistic gathering by sessions.

Compile-Time Warnings
Beginning with Oracle 10g Release 1, you can gain insight into the performance of your PL/SQL
programs by enabling the PLSQL_WARNINGS parameter in your development instances. You can
set this for a session or the database. The former is the recommended practices because of the
overhead imposed on the database. You set this parameter by using the following command:

ALTER SESSION SET plsql_warnings = 'enable:all';

■

■

■

■

■

■

■

■

■

■

■

■

■

12 Oracle Database 11g PL/SQL Programming

Conditional Compilation
Beginning with Oracle 10g Release 2, you can use conditional compilation. Conditional
compilation lets you include debugging logic or special-purpose logic that runs only when
session-level variables are set. The following command sets a PL/SQL compile-time variable
DEBUG equal to 1:

ALTER SESSION SET PLSQL_CCFLAGS = 'debug:1';

This command sets a PL/SQL compile-time variable DEBUG equal to 1. You should note that
the compile-time flag is case insensitive. You can also set compile-time variables to true or false
so that they act like Boolean variables. When you want to set more than one conditional
compilation flag, you need to use the following syntax:

ALTER SESSION SET PLSQL_CCFLAGS = 'name1:value1 [, name(n+1):value(n+1)]';

The conditional compilation parameters are stored as name and value pairs in the
PLSQL_CCFLAG database parameter. The following program uses the $IF, $THEN, $ELSE,
$ELSIF, $ERROR, and $END directives that create a conditional compilation code block:

BEGIN
 $IF $$DEBUG = 1 $THEN
 dbms_output.put_line('Debug Level 1 Enabled.');
 $END
END;
/

Conditional code blocks differ from normal if-then-else code blocks. Most notably, the $END
directive closes the block instead of an END IF and semicolon as covered in Chapter 4. You
should also note that the $$ symbol denotes a PL/SQL conditional compilation-time variable.

The rules governing conditional compilation are set by the SQL parser. You cannot use
conditional compilation in SQL object types. This limitation also applies to nested tables and
VARRAYs (scalar tables). Conditional compilation differs in functions and procedures. The
behavior changes whether the function or procedure has a formal parameter list. You can use
conditional compilation after the opening parenthesis of a formal parameter list, like

CREATE OR REPLACE FUNCTION conditional_type
(magic_number $IF $$DEBUG = 1 $THEN SIMPLE_NUMBER $ELSE NUMBER $END)
RETURN NUMBER IS
BEGIN
 RETURN magic_number;
END;
/

Alternatively, you can use them after the AS or IS keyword in parameterless functions or procedures.
They can also be used both inside the formal parameter list and after the AS or IS in parameter
functions or procedures.

Conditional compilation can only occur after the BEGIN keyword in triggers and anonymous-
block program units. Please note that you cannot encapsulate a placeholder or a bind variable
inside a conditional compilation block.

Chapter 4 contains examples using conditional compilation techniques.

Chapter 1: Oracle PL/SQL Overview 13

Number Datatype Behavior
Beginning with Oracle 10g Release 1, the database now uses machine arithmetic for BINARY_
INTEGER, INTEGER, INT, NATURAL, NATURALN, PLS_INTEGER, POSTIVE, POSITIVEN, and
SIGNTYPE. This means that they now use the same resolution as the BINARY_INTEGER datatype.
In prior versions of the database these worked like the NUMBER datatype, and they used the same
C math library as the NUMBER datatype. The new versions of these datatypes can be compared
against infinity or NaN (not a number).

A downside of this change is that they now use numeric precision, not decimal precision.
Financial applications should continue to use the NUMBER datatype for that reason.

A single-precision BINARY_FLOAT and a double-precision BINARY_DOUBLE are also provided
in the Oracle 10g Database. They are ideal for mathematical or scientific computations.

Optimized PL/SQL Compiler
Beginning with Oracle 10g Release 1, the database now optimizes your PL/SQL compilation.
This is set by default and applies to both interpreted p-code and natively compiled PL/SQL code.
You unset or modify the optimizer’s aggressiveness by resetting the PLSQL_OPTIMIZE_LEVEL
parameter. Table 1-1 qualifies the three possible values for the parameter.

You can disable session optimization by using

ALTER SESSION SET plsql_optimize_level = 0;

You can also set the level of optimization for a procedure. The prototype is

ALTER PROCEDURE some_procedure COMPILE plsql_optimize_level = 1;

After you’ve set the optimization level, you can use the REUSE SETTINGS clause to reuse
the prior setting, like

ALTER PROCEDURE some_procedure COMPILE REUSE SETTINGS;

While this is informative, you should generally leave it at the default. Optimized code always
runs faster than non-optimized code.

NOTE
The PLSQL_OPTIMIZE_LEVEL must be set at 2 or higher for
automatic subprogram inlining to occur in the Oracle 10g or 11g
Database.

Optimization Level Optimization Meaning

0 No optimization.

1 Moderate optimization, may eliminate unused code or exceptions.

2 (default) Aggressive optimization, may rearrange source code flow.

TABLE 1-1 Available PLSQL_OPTIMIZE_LEVEL Values

14 Oracle Database 11g PL/SQL Programming

Regular Expressions
Beginning with Oracle 10g Release 1, the database now supports a set of regular expression
functions. You can access them equally in SQL statements or PL/SQL program units. They are

REGEXP_LIKE This searches a string for a regular expression pattern match.

REGEXP_INSTR This searches for the beginning position of a regular expression
pattern match.

REGEXP_SUBSTR This searches for a substring using a regular expression pattern match.

REGEXP_REPLACE This replaces a substring using a regular expression pattern match.

These are powerful functions. Appendix E discusses, reviews, and demonstrates regular
expressions using the Oracle 11g Database regular expression functions.

Quoting Alternative
Beginning with Oracle 10g Release 1, the database now lets you replace the familiar single quote
with another quoting symbol. This is helpful when you’ve got a bunch of apostrophes in a string
that would individually require back-quoting with another single quote. The old way would be
like the following:

SELECT 'It''s a bird, no plane, no it can''t be ice cream!' AS phrase
FROM dual;

The new way is

SELECT q'(It's a bird, no plane, no it can't be ice cream!)' AS phrase
FROM dual;

Both of these produce the following output:

PHRASE
--
It's a bird, no plane, no it can't be ice cream!

There are opportunities to use the newer syntax and save time, but the old way also continues
to work. The old way is more widely understood and portable.

Set Operators
Beginning with Oracle 10g, Release 1, the database now supports set operators for nested tables.
These include the MULTISET EXCEPT, MULTISET INTERSECT, MULTISET UNION, and
MULTISET UNION DISTINCT operators. MULTISET UNION performs like the familiar UNION
ALL operator. It returns two copies of everything in the intersection between two sets and one
copy of the relative complements. MULTISET UNION DISTINCT works like the UNION operator.
It returns one copy of everything by performing an incremental sort operation. Chapter 7 covers
these operators as it discusses collections.

Stack Tracing Errors
Beginning with Oracle 10g Release 1, you can finally format stack traces. Stack traces
produce a list of errors from the initial call to the place where the error is thrown. You use
the DBMS_UTILITY.FORMAT_ERROR_BACKTRACE function to produce a stack trace. You

■

■

■

■

Chapter 1: Oracle PL/SQL Overview 15

can also call the FORMAT_CALL_STACK or FORMAT_ERROR_STACK from the same package
to work with thrown exceptions.

The following is a simple example:

DECLARE
 local_exception EXCEPTION;
 FUNCTION nested_local_function
 RETURN BOOLEAN IS
 retval BOOLEAN := FALSE;
 BEGIN
 RAISE local_exception;
 RETURN retval;
 END;
BEGIN
 IF nested_local_function THEN
 dbms_output.put_line('No raised exception');
 END IF;
EXCEPTION
 WHEN others THEN
 dbms_output.put_line('DBMS_UTILITY.FORMAT_CALL_STACK');
 dbms_output.put_line('------------------------------');
 dbms_output.put_line(dbms_utility.format_call_stack);
 dbms_output.put_line('DBMS_UTILITY.FORMAT_ERROR_BACKTRACE');
 dbms_output.put_line('-----------------------------------');
 dbms_output.put_line(dbms_utility.format_error_backtrace);
 dbms_output.put_line('DBMS_UTILITY.FORMAT_ERROR_STACK');
 dbms_output.put_line('-------------------------------');
 dbms_output.put_line(dbms_utility.format_error_stack);
END;
/

This script produces the following output:

DBMS_UTILITY.FORMAT_CALL_STACK

----- PL/SQL Call Stack -----
 object line object
 handle number
name
20909240 18 anonymous block

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE

ORA-06512: at line 7
ORA-06512: at line 11

DBMS_UTILITY.FORMAT_ERROR_STACK

ORA-06510: PL/SQL: unhandled user-defined exception

You will likely find the FORMAT_ERROR_BACKTRACE the most helpful. It captures the line
where the first error occurs at the top, and then moves backward through calls until it arrives at

16 Oracle Database 11g PL/SQL Programming

the initial call. Line numbers and program names are displayed together when named blocks are
involved in an event stack. Chapter 5 contains more on error management.

Wrapping PL/SQL Stored Programs
Beginning with Oracle 10g Release 2, the database now supports the ability to wrap, or obfuscate,
your PL/SQL stored programs. This is done by using the DBMS_DDL package CREATE_WRAPPED
procedure. You use it as follows:

BEGIN
dbms_ddl.create_wrapped(

 'CREATE OR REPLACE FUNCTION hello_world RETURN STRING AS '
 ||'BEGIN '
 ||' RETURN ''Hello World!''; '
 ||'END;');
END;
/

After creating the function, you can query it by using the following SQL*Plus column
formatting and query:

SQL> COLUMN message FORMAT A20 HEADING "Message"
SQL> SELECT hello_world AS message FROM dual;

Message

Hello World!

You can describe the function to inspect its signature and return type:

SQL> DESCRIBE hello_world
FUNCTION hello_world RETURNS VARCHAR2

Any attempt to inspect its detailed operations will yield an obfuscated result. You can test this
by querying stored function implementation in the TEXT column of the USER_SOURCE table, like
the following:

SQL> COLUMN text FORMAT A80 HEADING "Source Text"
SQL> SET PAGESIZE 49999
SQL> SELECT text FROM user_source WHERE name = 'HELLO_WORLD';

The following output is returned:

FUNCTION hello_world wrapped
a000000
369
abcd
. . . et cetera . . .

This is a very useful utility to hide the implementation details from prying eyes. We will revisit
this in Appendix F.

Chapter 1: Oracle PL/SQL Overview 17

Oracle 11g New Features
New PL/SQL features introduced in Oracle 11g include

Automatic subprogram inlining

A continue statement

A cross-session PL/SQL function result cache

Dynamic SQL enhancements

Mixed, named, and positional notation SQL calls

A multiprocess connection pool

A PL/SQL Hierarchical Profiler

That the PL/SQL Native Compiler now generates native code

PL/Scope

Regular expression enhancements

A SIMPLE_INTEGER datatype

Direct sequence calls in SQL statements

These enhancements are briefly reviewed in the following subsections. Chapter 3 covers the
SIMPLE_INTEGER datatype. Chapter 4 covers the continue statement. Chapter 6 demonstrates
the cross-session PL/SQL function result cache, and both mixed, named, and positional notation
calls. Automatic subprogram inlining and the PL/SQL Native Compiler are covered in Chapter 9.
Chapter 16 covers web application development and the multiprocess connection pool. You will
also find more information about the Regular Expression, PL/SQL Hierarchical Profiler, and PL/Scope
in Appendixes E, G, and H, respectively.

Automatic Subprogram Inlining
Inlining a subprogram replaces the call to the external subprogram with a copy of the subprogram.
This almost always improves program performance. You could instruct the compiler to inline
subprograms by using the PRAGMA INLINE compiler directive in PL/SQL starting with the
Oracle 11g Database. You must set the PRAGMA when you have the PLSQL_OPTIMIZE_LEVEL
parameter set to 2.

Let’s say you have an ADD_NUMBERS stored function in a schema; you can then instruct a
PL/SQL program unit to inline the call to the ADD_NUMBERS function. This would be very useful
when you call the ADD_NUMBERS function in a loop, as in this example:

CREATE OR REPLACE PROCEDURE inline_demo
 (a NUMBER
, b NUMBER) IS

PRAGMA INLINE(add_numbers,'YES');
BEGIN
 FOR i IN 1..10000 LOOP

■

■

■

■

■

■

■

■

■

■

■

■

18 Oracle Database 11g PL/SQL Programming

 dbms_output.put_line(add_function(8,3));
 END LOOP;
END;
/

The database automates inlining choices when you set the PLSQL_OPTIMIZE_LEVEL
parameter to 3. This generally frees you from identifying when it is appropriate to inline function
calls. However, these are only recommendations to the compiler. It is recommended that you let
the engine optimize your code during compilation.

Continue Statement
The CONTINUE statement has finally been added to the PL/SQL language. Some may have mixed
emotions. There are opinions that the continue statement leads to less-than-optimal programming,
but generally it simplifies loop structures.

The CONTINUE statement signals an immediate end to a loop iteration and returns to the first
statement in the loop. The following anonymous block illustrates using a continue statement when
the loop index is an even number:

BEGIN
 FOR i IN 1..5 LOOP
 dbms_output.put_line('First statement, index is ['||i||'].');
 IF MOD(i,2) = 0 THEN

CONTINUE;
 END IF;
 dbms_output.put_line('Second statement, index is ['||i||'].');
 END LOOP;
END;
/

The MOD function returns a zero when dividing any even number, so the second line is never
printed, because the CONTINUE statement aborts the rest of the loop. More on using this command
is in Chapter 4. Appendix J covers the MOD function.

Cross-Session PL/SQL Function Result Cache
The cross-session PL/SQL function result cache is a mechanism to share frequently accessed
functions in the SGA between sessions. Prior to the Oracle 11g Database, each call to a function
with the same actual parameters, or run-time values, was cached once per session. The only
work-around to that functionality required you to code the access methods.

You designate either of the following to cache results:

RESULT_CACHE clause

or

RESULT_CACHE RELIES_ON(table_name)

The RELIES_ON clause places a limitation on the cached result. Any change to the referenced
table invalidates the function, as well as any functions, procedures, or views that depend on the
function.

The overhead when calling the function for the first time is no different than that from calling
a non-cached result. Likewise, the cache will age out of the SGA when it is no longer actively
called by sessions.

Chapter 1: Oracle PL/SQL Overview 19

Dynamic SQL Enhancements
Dynamic SQL still has two varieties in the Oracle 11g Database. You have Native Dynamic SQL,
also known as NDS, and the DBMS_SQL built-in package. Both have been improved in this release.

Native Dynamic SQL
In Oracle 11g, native dynamic SQL now supports dynamic statements larger than 32KB by
accepting CLOB. You access it them in lieu of a SQL statement by using the following syntax:

OPEN cursor_name FOR dynamic_string;

The dynamic string can be a CHAR, VARCHAR2, or CLOB. It cannot be a Unicode NCHAR or
NVARCHAR2. This removes the prior restriction that limited the size of dynamically built strings.

The DBMS_SQL Built-in Package
Several changes have improved the utility of the DBMS_SQL package. Starting with Oracle 11g,
you can now use all NDS-supported datatypes. Also, you can now use the PARSE procedure to
work with statements larger than 32KB. This is done by using a CLOB datatype. The CLOB replaces
the prior work-around that used a table of VARCHAR2 datatypes (typically VARCHAR2A or
VARCHAR2S). Fortunately, the DBMS_SQL package continues to support the work-around, but
you should consider moving forward to the better solution.

DBMS_SQL has added two new functions: the TO_REFCURSOR and TO_CURSOR_NUMBER
functions. They let you transfer reference cursors to cursors and vice versa. There naturally are
some words of wisdom on using these. You must open either the cursor or system reference cursor
before using them, and after running them you cannot access their old structures. Basically, the
code reassigns the interactive reference from the cursor to system reference cursor or from the
system reference cursor to the cursor.

Last but certainly not least, you can now perform bulk binding operations against user-defined
collection types. Collection types can be scalar arrays. You were previously restricted to the types
defined by the DBMS_SQL package specification.

Mixed Name and Position Notation Calls
The Oracle 11g Database brings changes in how name and positional notation work in both SQL
and PL/SQL. They actually now work the same way in both SQL and PL/SQL. This fixes a long-
standing quirk in the Oracle database.

PL/SQL Calls
Previously, you had two choices. You could list all the parameters in their positional order or
address some to all parameters by named reference. You can now use positional reference,
named reference, or a mix of both.

The following function will let you experiment with the different approaches. The function
accepts three optional parameters and returns the sum of three numbers.

CREATE OR REPLACE FUNCTION add_three_numbers
 (a NUMBER := 0, b NUMBER := 0, c NUMBER := 0) RETURN NUMBER IS
BEGIN
 RETURN a + b + c;
END;
/

20 Oracle Database 11g PL/SQL Programming

The first three subsections show how you call using positional, named, and mixed notation.
In these you provide actual parameters for each of the formal parameters defined by the function
signature.

You can also exclude one or more values because all formal parameters are defined as
optional, which means they have default values. This is done in the subsection “Exclusionary
Notation.”

Positional Notation
You call the function using positional notation by

BEGIN
 dbms_output.put_line(add_three_numbers(3,4,5));
END;
/

Named Notation
You call the function using named notation by

BEGIN
 dbms_output.put_line(add_three_numbers(c => 4,b => 5,c => 3));
END;
/

Mixed Notation
You call the function using a mix of both positional and named notation by

BEGIN
 dbms_output.put_line(add_three_numbers(3,c => 4,b => 5));
END;
/

There is a restriction on mixed notation. All positional notation actual parameters must occur
first and in the same order as they are defined by the function signature. You cannot provide a
position value after a named value.

Exclusionary Notation
As mentioned, you can also exclude one or more of the actual parameters when the formal
parameters are defined as optional. All parameters in the ADD_THREE_NUMBERS function are
optional. The following example passes a value to the first parameter by positional reference,
and the third parameter by named reference:

BEGIN
 dbms_output.put_line(add_three_numbers(3,c => 4));
END;
/

When you opt to not provide an actual parameter, it acts as if you’re passing a null value. This
is known as exclusionary notation. This has been the recommendation for years to list the optional
variables last in function and procedure signatures. Now, you can exclude one or a couple but
not all optional parameters. This is a great improvement, but be careful how you exploit it.

Chapter 1: Oracle PL/SQL Overview 21

SQL Call Notation
Previously, you had only one choice. You had to list all the parameters in their positional order
because you couldn’t use named reference in SQL. This is fixed in Oracle 11g; now you can call
them just as you do from a PL/SQL block. The following demonstrates mixed notation in a SQL call:

SELECT add_three_numbers(3,c => 4,b => 5) FROM dual;

As in earlier releases you can only call functions that have IN mode–only variables from SQL
statements. You cannot call a function from SQL when any of its formal parameters are defined as
IN OUT or OUT mode–only variables. This is because you must pass a variable reference when a
parameter has an OUT mode. Functions return a reference to OUT mode variables passed as actual
parameters.

Multiprocess Connection Pool
Enterprise JavaBeans (EJBs) just got better with the release of multiprocess connection pooling
in the Oracle 11g Database. It is officially Database Resident Connection Pooling (DRCP). This
feature lets you manage a more scalable server-side connection pool. Prior to this release you
would leverage shared server processes or a multithreaded Java Servlet.

The multiprocess connection pool significantly reduces the memory footprint on the database
tier, and it boosts the scalability of both the middle and database tiers. A standard database
connection requires 4.4MB of real memory; 4MB is allotted for the physical connection and
400KB for the user session. Therefore, 500 dedicated concurrent connections would require
approximately 2.2GB of real memory. A shared-server model is more scalable and requires only
600MB of real memory for the same number of concurrent users. Eighty percent of that memory
would be managed in Oracle’s Shared Global Area (SGA). Database Resident Connection Pooling
scales better and would require only 400MB of real memory. Clearly for web-based applications
DRCP is the preferred solution, especially when using OCI8 persistent connections.

The behaviors of these models dictate their respective scalability. Figure 1-2 graphically
depicts memory use for the three models from 500 to 2,000 concurrent users.

FIGURE 1-2 Connection scalability

22 Oracle Database 11g PL/SQL Programming

The new feature is delivered by the new DBMS_CONNECTION_POOL built-in package. This
package lets you start, stop, and configure connection pooling parameters such as size and time
limit. You start the connection pool as the SYS user by using the following command:

SQL> EXECUTE DBMS_CONNECTION_POOL.START_POOL();

You must enable your tnsnames.ora file to support the connection to the shared pool. The
following enables a shared pool connect descriptor, provided you substitute a correct hostname,
domain, and Oracle listener port number:

ORCLCP =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)
 (HOST = hostname.domain)
 (PORT = port_number)
)
 (CONNECT_DATA = (SERVER = POOLED)
 (SERVICE_NAME = orcl)
)
)

The SERVER key in the connect descriptor directs connections to the connection pooling
service. You can only use the connection pool when you have a supported Oracle 11g Database
or Oracle 11g Client, though this feature could be subsequently backported. The following error
is raised when attempting to connect with an older release client or server library:

ERROR:
ORA-56606: DRCP: Client version does not support the feature

The message is signaled from the server when it fails to create an appropriate socket; it indicates
that it is dropping the remote connection pool request.

Table 1-2 lists the data dictionary views for auditing connection pools. You can use these to
monitor connections or performance characteristics.

You stop the connection pool as the SYS user by using the following command:

SQL> EXECUTE DBMS_CONNECTION_POOL.STOP_POOL();

View Description
DBA_CPOOL_INFO The status, maximum and minimum connections, and idle

timeouts are available in this view for each connection pool.
V$CPOOL_STAT The number of session requests, the number of times a session that

matches a request is found in the pool, and the total wait time per
session request are available in this view.

V$CPOOL_CC_STATS The connection class level statistics for each instance of the
connection pool.

TABLE 1-2 Connection Pooling Data Dictionary Views

Chapter 1: Oracle PL/SQL Overview 23

It appears that the initial release will only support a single connection pool. The connection
pool name is SYS_DEFAULT_CONNECTION_POOL. You also have three other procedures in the
DBMS_CONNECTION_POOL package to manage the connection pool: the ALTER_PARAM(),
CONFIGURE_POOL(), and RESTORE_DEFAULTS() procedures. You change a single connection
pool parameter with the ALTER_PARAM() procedure. When you want to change more than one
to all parameters, you use the CONFIGURE_POOL() procedure. The RESTORE_DEFAULTS()
procedure resets all connection pool parameters to their defaults.

This new Oracle 11g Database feature certainly improves the scalability of web applications.
It is a critical feature that empowers the persistent connection feature introduced in the OCI8
libraries in the Oracle 10g Release 2 database.

PL/SQL Hierarchical Profiler
The hierarchical profiler delivered in the Oracle 11g Database lets you see how all components in
an application perform. This differs from a non-hierarchical (flat) profiler that simply records the
time spent in each module. Hierarchical profilers follow the execution cycle from the containing
program down to the lowest subprogram.

The PL/SQL Hierarchical Profiler does the following:

It reports the dynamic execution profile of your PL/SQL program, which is organized by
subprogram calls.

It divides SQL and PL/SQL execution times and reports them separately.

It requires no special source or compile-time preparation, like the PRAGMA required for
recommending inlining.

It stores results in a set of database tables, which you can use to develop reporting tools
or alternatively use the plshprof command-line tool to generate simple HTML reports.

The subprogram-level summary includes information about the number of subprogram calls,
time spent in subprograms or their subtrees, and detailed information between modules.
Appendix G covers how to read and use the PL/SQL Hierarchical Profiler.

PL/SQL Native Compiler Generates Native Code
PL/SQL Native compilation changes in the Oracle 11g Database. Unlike prior versions where
the PL/SQL was translated first into C code and then compiled, you can now compile directly.
Execution speed of the final code in some cases is twice as fast or an order of magnitude greater.

Oracle recommends that you run all PL/SQL in either NATIVE or INTERPRETED mode.
INTERPRETED mode is the database default, and PL/SQL modules are stored as clear text or
wrapped text. You can view stored programs by querying the ALL_SOURCE, DBA_SOURCE, or
USER_SOURCE data dictionary tables. NATIVE-mode code is compiled into an intermediate form
before being reduced to machine-specific code. A copy of the code is also stored in the data
dictionary, while the library is positioned in an external directory. You map the physical directory
to the virtual directory defined by the PLSQL_NATIVE_LIBRARY_DIR database parameter.

Natively compiled code is advantageous when the PL/SQL code run time is slow. This can
happen with compute-intensive code, but generally performance delays are caused by SQL
statement processing. You should use the new PL/SQL Hierarchical Profiler to determine if there is
a significant advantage to support your conversion effort.

■

■

■

■

24 Oracle Database 11g PL/SQL Programming

PL/Scope
The PL/Scope is a compiler-driven tool that lets you examine identifiers and their respective
behaviors in the Oracle 11g Database. It is disabled by default. You can enable it for the database
or session. You should consider enabling it for the session, not the database. You enable it by
using the following command:

ALTER SESSION SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL';

The PL/Scope utility does not collect statistics until you enable it. The statistics let you
examine how your programs use identifiers. It should be added to your arsenal of tuning tools.
Appendix H gives you a brief introduction to this new feature.

Regular Expression Enhancement
Oracle 11g Release 1 enhances the functionality of the REGEXP_LIKE and REGEXP_INSTR
functions and introduces the REGEXP_COUNT function. Appendix E discusses, reviews, and
demonstrates regular expressions using the Oracle 11g Database regular expression functions.

SIMPLE_INTEGER Datatype
The Oracle 11g Database introduces the SIMPLE_INTEGER. It is a derived subtype of BINARY_
INTEGER, and it has the same range of values. Unlike BINARY_INTEGER, SIMPLE_INTEGER
excludes the null value and overflow is truncated. Also, the truncation from overflow does not
raise an error. You should use the SIMPLE_INTEGER type if you opt to natively compile your
code because it provides significant performance improvements in compiled code.

This section has reviewed the Oracle 11g Database new features, or it has referred you to
other areas of the book for more information. Clearly, the new features make upgrading very
appealing.

Direct Sequence Calls in SQL Statements
Oracle 11g finally lets you call a sequence with the .nextval or .currval inside SQL
commands, which means you can dispense with this:

SELECT some_sequence.nextval
INTO some_local_variable
FROM dual;

This book uses the old and new style. The new style is simpler and easier to use.

Summary
This chapter has reviewed the history, utility, coding basics, and recent features added to the
PL/SQL programming language. It has also explained the importance of PL/SQL, and how it can
leverage your investment in the Oracle 11g database. You should now see that a combination of
SQL and PL/SQL can simplify your external application development projects in languages like
Java and PHP.

CHAPTER
2

PL/SQL Basics

25

26 Oracle Database 11g PL/SQL Programming

common beginning place is a summary of language components. This chapter tours
PL/SQL features. Subsequent chapters develop details that explain why the PL/SQL
language is a robust tool with many options.

As an introduction to PL/SQL basics, this chapter introduces and briefly discusses

Oracle PL/SQL block structure

Variables, assignments, and operators

Control structures

Conditional structures

Iterative structures

Stored functions, procedures, and packages

Transaction scope

Database triggers

PL/SQL is a case-insensitive programming language, like SQL. While the language is case
insensitive, there are many conventions applied to how people write their code. Most choose
combinations of uppercase, lowercase, title case, or mixed case. Among these opinions there is
no standard approach to follow.

■

■

■

■

■

■

■

■

A

PL/SQL Standard Usage for This Book
The PL/SQL code in this book uses uppercase for command words and lowercase for
variables, column names, and stored program calls.

Oracle PL/SQL Block Structure
PL/SQL was developed by modeling concepts of structured programming, static data typing,
modularity, and exception management. It extends the ADA programming language. ADA
extended the Pascal programming language, including the assignment and comparison operators
and single-quote string delimiters.

PL/SQL supports two types of programs: one is an anonymous-block program, and the other
is a named-block program. Both types of programs have declaration, execution, and exception
handling sections or blocks. Anonymous blocks support batch scripting, and named blocks
deliver stored programming units.

The basic prototype for an anonymous-block PL/SQL programs is

[DECLARE]
declaration_statements

BEGIN
execution_statements

[EXCEPTION]
exception_handling_statements

END;
/

Alan
线条

Chapter 2: PL/SQL Basics 27

As shown in the prototype, PL/SQL requires only the execution section for an anonymous-block
program. The execution section starts with a BEGIN statement and stops at the beginning of the
optional EXCEPTION block or the END statement of the program. A semicolon ends the anonymous
PL/SQL block, and the forward slash executes the block.

Declaration sections can contain variable definitions and declarations, user-defined PL/SQL
type definitions, cursor definitions, reference cursor definitions, and local function or procedure
definitions. Execution sections can contain variable assignments, object initializations, conditional
structures, iterative structures, nested anonymous PL/SQL blocks, or calls to local or stored named
PL/SQL blocks. Exception sections can contain error handling phrases that can use all of the same
items as the execution section.

The simplest PL/SQL block does nothing. You must have a minimum of one statement inside
any execution block, even if it’s a NULL statement. The forward slash executes an anonymous
PL/SQL block. The following illustrates the most basic anonymous-block program:

BEGIN
 NULL;
END;
/

You must enable the SQL*Plus SERVEROUTPUT variable to print content to the console. The
hello_world.sql print a message to the console:

-- This is found in hello_world.sql on the publisher's web site.
SET SERVEROUTPUT ON SIZE 1000000
BEGIN
 dbms_output.put_line('Hello World.');
END;
/

The SQL*Plus SERVEROUTPUT environment variable opens an output buffer, and the DBMS_
OUTPUT.PUT_LINE() function prints a line of output. All declarations, statements, and blocks
are terminated by a semicolon.

NOTE
Every PL/SQL block must contain something, at least a NULL;
statement, or it will fail run-time compilation, also known as parsing.

SQL*Plus supports the use of substitution variables in the interactive console, which are
prefaced by an ampersand, &. Substitution variables are variable-length strings or numbers.
You should never assign dynamic values in the declaration block, like substitution variables.

The following program defines a variable and assigns it a value:

-- This is found in substitution.sql on the publisher's web site.
DECLARE
 my_var VARCHAR2(30);
BEGIN
 my_var := '&input';
 dbms_output.put_line('Hello '|| my_var);
END;
/

28 Oracle Database 11g PL/SQL Programming

The assignment operator in PL/SQL is a colon plus an equal sign (:=). PL/SQL string literals
are delimited by single quotes. Date, numeric, and string literals are covered in Chapter 3.

You run anonymous blocks by calling them from Oracle SQL*Plus. The @ symbol in Oracle
SQL*Plus loads and executes a script file. The default file extension is .sql, but you can override
it with another extension. This means you can call a filename without its .sql extension.

The following demonstrates calling the substitution.sql file:

SQL> @substitution.sql
Enter value for input: Henry Wadsworth Longfellow
old 3: my_var VARCHAR2(30) := '&input';
new 3: my_var VARCHAR2(30) := 'Henry Wadsworth Longfellow';
Hello Henry Wadsworth Longfellow
PL/SQL procedure successfully completed.

The line starting with old designates where your program accepts a substitution, and new
designates the run-time substitution. Assigning a string literal that is too large for the variable
fires an exception. Exception blocks manage raised errors. A generic exception handler manages
any raised error. You use a WHEN block to catch every raised exception with the generic error
handler—OTHERS.

TIP
You can suppress echoing the substitution by setting SQL*Plus
VERIFY off.

The following exception.sql program demonstrates how an exception block manages an
error when the string is too long for the variable:

-- This is found in exception.sql on the publisher's web site.
DECLARE
 my_var VARCHAR2(10);
BEGIN
 my_var := '&input';
 dbms_output.put_line('Hello '|| my_var);
EXCEPTION
 WHEN others THEN
 dbms_output.put_line(SQLERRM);
END;
/

The anonymous block changed the definition of the string from 30 characters to 10 characters.
The poet’s name is now too long to fit in the target variable. Assigning the variable raises an
exception. The console output shows the handled and raised exception:

SQL> @exception.sql
Enter value for input: Henry Wadsworth Longfellow
old 4: my_var := '&input';
new 4: my_var := 'Henry Wadsworth Longfellow';
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
PL/SQL procedure successfully completed.

Chapter 2: PL/SQL Basics 29

You can also have: (a) nested anonymous-block programs in the execution section of an
anonymous block; (b) named-block programs in the declaration section that can in turn contain
the same type of nested programs; and (c) calls to stored named-block programs.

The outermost programming block controls the total program flow, while nested programming
blocks control their subordinate programming flow. Each anonymous- or named-block
programming unit can contain an exception section. When a local exception handler fails
to manage an exception, it throws the exception to a containing block until it reaches the
SQL*Plus environment.

Error stack management is the same whether errors are thrown from called local or named
PL/SQL blocks. Error are raised and put in a first-in, last-out queue, which is also known as a stack.

You have explored the basic structure of PL/SQL block programs and error stack management.
The block structure is foundational knowledge to work in PL/SQL.

Variables, Assignments, and Operators
Datatypes in PL/SQL include all SQL datatypes and subtypes qualified in Table B-2 of Appendix B.
Chapter 3 covers PL/SQL-specific datatypes. PL/SQL also supports scalar and composite variables.
Scalar variables hold only one thing, while composite variables hold more than one thing. The
preceding programs have demonstrated how you declare and assign values to scalar variables.

Variable names begin with letters and can contain alphabetical characters, ordinal numbers
(0 to 9), the $, _, and # symbols. Variables have local scope only. This means they’re available
only in the scope of a given PL/SQL block. The exceptions to that rule are nested anonymous
blocks. Nested anonymous blocks operate inside the defining block. They can thereby access
variables from the containing block. That is, unless you’ve declared the same variable name as
something else inside the nested anonymous block.

A declaration of a number variable without an explicit assignment makes its initial value null.
The prototype shows that you can assign a value later in the execution block:

DECLARE
variable_name NUMBER;

BEGIN
variable_name := 1;

END;
/

An explicit assignment declares a variable with a not-null value. You can use the default
value or assign a new value in the execution block. Both are demonstrated next. You can use
an assignment operator or the DEFAULT reserved word interchangeably to assign initial values.
The following shows a prototype:

DECLARE
variable_name NUMBER [:= | DEFAULT] 1;

BEGIN
variable_name := 1;

END;
/

30 Oracle Database 11g PL/SQL Programming

Oracle 11g performs many implicit casting operations. They fail to follow the common rule
of programming: implicitly cast when there is no loss of precision. This means you can assign a
complex number like 4.67 to an integer and lose the 0.67 portion of the number. Likewise, there
are a series of functions to let you explicitly cast when there is greater risk of losing precision.
You should choose carefully when you explicitly downcast variables. Appendix J covers explicit
casting functions.

There are also several product-specific datatypes. They support various component products
in Oracle 11g. You can find these datatypes in the Oracle Database PL/SQL Packages and Type
Reference.

The assignment operator is not the lone operator in the PL/SQL programming language.
Chapter 3 covers all the comparison, concatenation, logical, and mathematical operators. In
short, you use

The equal (=) symbol to check matching values

The standard greater or less than with or without an equal component (>, >=, <, or <=) as
comparison operators to check for inequalities

The negation (<>, !=, ~= or ^=) comparison operators to check for non-matching values

You define CURSOR statements in the declaration section. CURSOR statements let you bring
data from tables and views into your PL/SQL programs. A CURSOR statement can have zero or
many formal parameters. CURSOR parameters are pass-by-value, or IN mode–only variables.
Chapter 4 covers CURSOR statements.

You have now reviewed variables, assignments, and operators. You have also been exposed to
PL/SQL-specific user-defined types.

■

■

■

The Assignment Model and Language
All programming languages assign values to variables. They typically assign a value to a
variable on the left.

The prototype for generic assignment in any programming language is

left_operand assignment_operator right_operand statement_terminator

This assigns the right operand to the left operand, as shown here:

You implement it in PL/SQL as follows:

left_operand := right_operand;

The left operand must always be a variable. The right operand can be a value, variable, or
function. Functions must return a value when they’re right operands. This is convenient in
PL/SQL because all functions return values. Functions in this context are also known as
expressions.

The trick is that only functions returning a SQL datatype can be called in SQL
statements. Functions returning a PL/SQL datatype only work inside PL/SQL blocks.

Chapter 2: PL/SQL Basics 31

Control Structures
Control structures do two things. They check a logical condition and branch program execution,
or they iterate over a condition until it is met or they are instructed to exit. The conditional
structures section covers if, elsif, else, and case statements. The later section “Iterative Structures”
covers looping with for and while structures.

Conditional Structures
Conditional statements check whether a value meets a condition before taking action. There are
two types of conditional structures in PL/SQL. One is the IF statement, and the other is the CASE
statement. The IF statement that has two subtypes, if-then-else and if-then-elsif-then-else. The elsif
is not a typo but the correct reserved word in PL/SQL. This is another legacy from Pascal and ADA.

IF Statement
All IF statements are blocks in PL/SQL and end with the END IF phrase. CASE statements are
also blocks that end with END CASE phrase. Semicolons follow the ending phrases and terminate
all blocks in PL/SQL. The following is the basic prototype for an if-then-else PL/SQL block:

IF [NOT] left_operand1 = right_operand1 [[AND|OR]
 [NOT] left_operand2 = right_operand2 [[AND|OR]
 [NOT] boolean_operand]] THEN
 NULL;
ELSE
 NULL;
END IF;

The foregoing if-then-else block prototype uses an equality comparison, but you can substitute
any of the comparison operators for the equal symbol. You can also evaluate one or more conditions
by using AND or OR to join statements. Boolean outcomes then apply to the combination of
expressions. You can negate single or combined outcomes with the NOT operator.

Logical operators support conjoining and including operations. A conjoining operator, AND,
means that both statements must evaluate as true or false. An include operator, OR, means that
one or the other must be true. Include operators stop processing when one statement evaluates
as true. Conjoining operators check that all statements evaluate as true.

BOOLEAN variables are comparisons in and of themselves. Other operands can be any valid
datatype that works with the appropriate comparison operator, but remember variables must be
initialized. Problems occur when you fail to initialize or handle non-initialized variables in
statements.

TIP
You can check if a BOOLEAN value is true by using a comparison
operator and constant (like some_boolean = TRUE), but it isn’t
the best way to use a Boolean variable in a comparison operation.

For example, when you use an IF statement to evaluate a non-initialized BOOLEAN as true, it
fails and processes the ELSE block; however, when you use an IF NOT statement to evaluate a
non-initialized BOOLEAN as false, it also fails and processes the ELSE block. This happens because
a non-initialized BOOLEAN variable isn’t true or false.

32 Oracle Database 11g PL/SQL Programming

The solution to this problem is to use the SQL NVL() function. It lets you substitute a value
for any null value variables. The NVL() function takes two parameters: the first is a variable, and
the second is a literal, which can be a numeric, string, or constant value. The two parameters
must share the same datatype. You can access all the standard SQL functions natively in your
PL/SQL programs. The following program demonstrates how you use the NVL() against a non-
initialized BOOLEAN variable:

-- This is found in if_then.sql on the publisher's web site.
DECLARE
 -- Define a Boolean variable.
 my_var BOOLEAN;
BEGIN
 -- Use an NVL function to substitute a value for evaluation.

IF NOT NVL(my_var,FALSE) THEN
 dbms_output.put_line('This should happen!');
 ELSE
 dbms_output.put_line('This can''t happen!');
 END IF;
END;
/

The IF NOT statement would return false when the BOOLEAN variable isn’t initialized. The
preceding program finds the NVL() function value to be false, or NOT true, and it prints the
following message:

This should happen!

NOTE
The ELSE block contains a backquoted string. The single quote mark
is a reserved character for delimiting strings. You backquote an
apostrophe by using another apostrophe, or a single quote, inside
a delimited string. You can also substitute another backquoting
character, as covered in the Oracle 10g recent features section.

The if-then-elsif-then-else statement works like the if-then-else statement but lets you perform
multiple conditional evaluations in the same IF statement. The following is the basic prototype
for an if-then-elsif-then-else PL/SQL block:

IF [NOT] left_operand1 > right_operand2 [AND|OR]
 NULL;
ELSIF [NOT] left_operand1 = right_operand1 [[AND|OR]
 [NOT] left_operand2 = right_operand2 [[AND|OR]
 [NOT] boolean_operand]] THEN
 NULL;
ELSE
 NULL;
END IF;

CASE Statement
The other conditional statement is a CASE statement. A CASE statement works like the if-then-
elsif-then-else process. There are two types of CASE statements: one is a simple CASE, and the

Alan
线条

Alan
线条

Chapter 2: PL/SQL Basics 33

other is a searched CASE. A simple CASE statement takes a scalar variable as an expression and
then evaluates it against a list of like scalar results. A searched CASE statement takes a BOOLEAN
variable as an expression and then compares the Boolean state of the WHEN clause results as an
expression.

The following is the generic prototype of the CASE statement:

CASE [TRUE | [selector_variable]]
 WHEN [criterion1 | expression1] THEN

criterion1_statements;
 WHEN [criterion2 | expression2] THEN

criterion2_statements;
 WHEN [criterion(n+1) | expression(n+1)] THEN

criterion(n+1)_statements;
 ELSE

block_statements;
END CASE;

The next program demonstrates a searched CASE statement:

BEGIN
 CASE TRUE
 WHEN (1 > 3) THEN
 dbms_output.put_line('One is greater than three.');
 WHEN (3 < 5) THEN
 dbms_output.put_line('Three is less than five.');
 WHEN (1 = 2) THEN
 dbms_output.put_line('One equals two.');
 ELSE
 dbms_output.put_line('Nothing worked.');
 END CASE;
END;
/

TIP
You can leave TRUE out (because it is the default selector), but don’t.
Putting it in adds clarity.

The program evaluates WHEN clause results as expressions, finding that 3 is less than 5. It then
prints

Three is less than five.

You can find out more about CASE statements in Chapter 4. This subsection has demonstrated
the conditional expressions available to you in PL/SQL. It has also suggested an alternative to
non-initialized variables.

Iterative Structures
PL/SQL supports FOR, SIMPLE, and WHILE loops. There’s no syntax for a repeat until loop block,
but you can still perform one. Loops typically work in conjunction with cursors but can work to
solve other problems, like searching or managing Oracle collections.

34 Oracle Database 11g PL/SQL Programming

FOR Loops
PL/SQL supports numeric and cursor FOR loops. The numeric FOR loop iterates across a defined
range, while the cursor FOR loop iterates across rows returned by a SELECT statement cursor.
FOR loops manage how they begin and end implicitly. You can override the implicit END LOOP
phrase by using an explicit CONTINUE or EXIT statement to respectively skip an iteration or force
a premature exit from the loop.

Numeric FOR loops take two implicit actions. They automatically declare and manager their
own loop index, and they create and manage their exit from the loop. A numeric FOR loop has
the following prototype:

FOR i IN starting_number..ending_number LOOP
statement;

END LOOP;

The starting_number and ending_number must be integers. The loop index is the i variable,
and the loop index scope is limited to the FOR loop. The index variable is a PLS_INTEGER
datatype number. When you have previously defined or declared a variable i, the numeric loop
will ignore the externally scoped variable and create a new locally scoped variable.

The following sample program prints index values from 1 to 10:

BEGIN
 FOR i IN 1..10 LOOP
 dbms_output.put_line('The index value is ['||i||']');
 END LOOP;
END;
/

The cursor FOR loop requires a locally defined CURSOR. You cannot use a cursor FOR loop to
iterate across a reference cursor (REF CURSOR) because reference cursors can only be traversed
by using explicit loop structures, like simple and while loops. The cursor FOR loop can also use a
SELECT statement in lieu of a locally defined CURSOR, and has the following prototype:

FOR i IN {cursor_name[(parameter1,parameter(n+1))] | (sql_statement)} LOOP
 statement;
END LOOP;

The cursor_name can have an optional parameter list, which is enclosed in parentheses. A
cursor_name without optional parameters does not require parentheses. You are using an explicit
cursor when you call a cursor_name and an implicit cursor when you provide a SELECT statement.

The following demonstrates how you write an explicit cursor in a FOR loop and use the data
seeded by the downloadable scripts:

DECLARE
 CURSOR c IS SELECT item_title FROM item;
BEGIN
 FOR i IN c LOOP
 dbms_output.put_line('The title is ['||i.item_title||']');
 END LOOP;
END;
/

The following demonstrates how you write an implicit cursor in a FOR loop and use the data
seeded by the downloadable scripts:

Chapter 2: PL/SQL Basics 35

BEGIN
 FOR i IN (SELECT item_title FROM item) LOOP
 dbms_output.put_line('The title is ['||i.item_title||']');
 END LOOP;
END;
/

The index variable is not a PLS_INTEGER number in a cursor FOR loop. It is a reference to
the record structure returned by the cursor. You combine the cursor index variable and column
name with a dot, also known as the component selector. In this case, the cursor index is the
component. The component selector lets you select a column from the row returned by the cursor.

The statement must be a valid SELECT statement, but you can dynamically reference locally
scoped variable names without any special syntax in all clauses except the FROM clause. Unless
you override the exit criteria, the cursor FOR loop will run through all rows returned by the cursor
or statement.

Simple Loops
Simple loops are explicit structures. They require that you manage both loop index and exit
criteria. Typically, simple loops are used in conjunction with locally defined cursor statements
and reference cursors (REF CURSOR).

Oracle provides six cursor attributes that help you manage activities in loops. The four cursor
attributes are: %FOUND, %NOTFOUND, %ISOPEN, and %ROWCOUNT. Two others support bulk
operations. They are all covered in Chapter 4.

The simple loops have a variety of uses. The following is the prototype for a simple loop,
using an explicit CURSOR:

OPEN cursor_name [(parameter1,parameter(n+1))];
LOOP
 FETCH cursor_name
 INTO row_structure_variable | column_variable1 [,column_variable(n+1)];
 EXIT WHEN cursor_name%NOTFOUND;

statement;
END LOOP;
CLOSE cursor_name;

The prototype demonstrates that you OPEN a CURSOR before starting the simple loop, and
then you FETCH a row. While rows are returned you process them, but when a FETCH fails to
return a row, you exit the loop. Place the EXIT WHEN statement as the last statement in the loop
when you want the behavior of a repeat until loop. Repeat until loops typically process statements
in a loop at least once regardless of whether the CURSOR returns records.

The following mimics the cursor FOR loop against the ITEM table:

DECLARE
 title item.item_title%TYPE;

CURSOR c IS SELECT item_title FROM item;
BEGIN

OPEN c;
 LOOP

FETCH c INTO title;
 EXIT WHEN c%NOTFOUND;
 dbms_output.put_line('The title is ['||title||']');

36 Oracle Database 11g PL/SQL Programming

 END LOOP;
CLOSE c;

END;
/

WHILE Loops
The WHILE loop differs from the simple loop because it guards entry to the loop, not exit. It sets
the entry guard as a precondition expression. The loop is only entered when the guard condition
is met. The basic syntax is

OPEN cursor_name [(parameter1,parameter(n+1))];
WHILE condition LOOP
 FETCH cursor_name
 INTO row_structure_variable | column_variable1 [,column_variable(n+1)];
 EXIT WHEN cursor_name%NOTFOUND;

statement;
END LOOP;
CLOSE cursor_name;

When the condition checks for an opened CURSOR, then the WHILE condition would be
cursor_name%ISOPEN. There are many other possible condition values that you can use in
WHILE loops. The following code demonstrates how you can use a cursor %ISOPEN attribute as
the guard on entry condition:

DECLARE
 title item.item_title%TYPE;
 CURSOR c IS SELECT item_title FROM item;
BEGIN
 OPEN c;

WHILE c%ISOPEN LOOP
 FETCH c INTO title;
 IF c%NOTFOUND THEN
 CLOSE c;
 END IF;
 dbms_output.put_line('The title is ['||title||']');
 END LOOP;
END;
/

The WHILE condition is true only until the IF statement closes the cursor inside the loop. You
should note that repeating instructions come after the IF statement.

This section has demonstrated how you can use implicit and explicit looping structures. It
has also introduced you to the management of the CURSOR statement in the execution section
of PL/SQL programs. Chapter 4 covers the CONTINUE and GOTO statements.

Stored Functions, Procedures, and Packages
PL/SQL stored programming units are typically functions, procedures, packages, and triggers. You
can also store object types, but that discussion is in Chapter 14.

Chapter 2: PL/SQL Basics 37

Oracle maintains a unique list of stored object names for tables, views, sequences, stored
programs, and types. This list is known as a namespace. Functions, procedures, packages, and
objects are in this namespace. Another namespace stores triggers.

Stored functions, procedures, and packages provide a way to hide implementation details in
a program unit. They also let you wrap the implementation from prying eyes on the server tier.

Stored Functions
Stored functions are convenient structures because you can call them directly from SQL
statements or PL/SQL programs. All stored functions must return a value. You can also use them as
right operands because they return a value. Functions are defined in local declaration blocks or
the database. You frequently implement them inside stored packages.

The prototype for a stored function is

FUNCTION function_name
[(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
[, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
[, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)]]]
RETURN [sql_data_type | plsql_data_type]
[AUTHID [DEFINER | CURRENT_USER]]
[DETERMINISTIC | PARALLEL_ENABLED]
[PIPELINED]
[RESULT_CACHE [RELIES ON table_name]] IS

declaration_statements
BEGIN

execution_statements
 RETURN variable;
[EXCEPTION]

exception_handling_statements
END [function_name];
/

Functions can be used as right operands in PL/SQL assignments. You can also call them
directly from SQL statements, provided they return a SQL datatype. Procedures cannot be right
operands. Nor can you call them from SQL statements.

You can query a function that returns a SQL datatype by using the following prototype from
the pseudotable DUAL:

SELECT some_function[(actual_parameter1, actual_parameter2)]
FROM dual;

You are no longer limited to passing actual parameters by positional order in SQL statements.
This means that you can used PL/SQL named notation in SQL. Chapter 6 covers how named,
positional, and mixed notation work.

The following is a named notation prototype for the same query of a PL/SQL function from the
pseudotable DUAL:

SELECT some_function[(formal_parameter => actual_parameter2)]
FROM dual;

38 Oracle Database 11g PL/SQL Programming

Named positional calls work best when default values exist for other parameters. There isn’t
much purpose in calling only some of the parameters when the call would fail. Formal parameters
are optional parameters. Named positional calls work best with functions or procedures that have
optional parameters.

You can also use the CALL statement to capture a return value from a function into a bind
variable. The prototype for the CALL statement follows:

CALL some_function[(actual_parameter1, actual_parameter2)]
INTO some_session_bind_variable;

The following is a small sample case that concatenates two strings into one:

-- This is found in join_strings.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION join_strings
(string1 VARCHAR2
, string2 VARCHAR2) RETURN VARCHAR2 IS
BEGIN
 RETURN string1 ||' '|| string2||'.';
END;
/

You can now query the function from SQL:

SELECT join_strings('Hello','World') FROM dual;

Likewise, you can define a session-level bind variable and then use the CALL statement to put
a variable into a session-level bind variable:

VARIABLE session_var VARCHAR2(30)
CALL join_strings('Hello','World') INTO :session_var;

The CALL statement uses an INTO clause when working with stored functions. You dispense with
the INTO clause when working with stored procedures.

Selecting the bind variable from the pseudo–DUAL table, like this

SELECT :session_var FROM dual;

you’ll see

Hello World.

Functions offer a great deal of power to database developers. They are callable in both SQL
statements and PL/SQL blocks.

Procedures
Procedures cannot be right operands. Nor can you use them in SQL statements. You move data
into and out of PL/SQL stored procedures through their formal parameter list. As with stored
functions, you can also define local named-block programs in the declaration section of procedures.

The prototype for a stored procedure is

PROCEDURE procedure_name
[(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
[, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype

Chapter 2: PL/SQL Basics 39

[, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)]]]
[AUTHID DEFINER | CURRENT_USER] IS

declaration_statements
BEGIN

execution_statements
[EXCEPTION]

exception_handling_statements
END [procedure_name];
/

You can define procedures with or without formal parameters. Formal parameters in procedures
can be either pass-by-value or pass-by-reference variables in stored procedures. Pass-by-reference
variables have both and IN and OUT modes. As in the case of functions, when you don’t provide
a parameter mode, the procedure creation assumes you want the mode to be a pass-by-value.

Procedures can’t be used as right operands in PL/SQL assignments, nor called directly from
SQL statements. The following implements a stored procedure that uses a pass-by-reference
semantic to enclose a string in square brackets:

-- This is found in format_string.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE format_string
(string_in IN OUT VARCHAR2) IS
BEGIN
 string_in := '['||string_in||']';
END;
/

You can also use the CALL statement to call and pass variables into and out of a procedure.
Like the earlier function example, this example uses the CALL statement and bind variable:

VARIABLE session_var VARCHAR2(30)
CALL join_strings('Hello','World') INTO :session_var;
CALL format_string(:session_var);

The first CALL statement calls the previously introduced function and populates the :session_var
variable. You should note that the second CALL statement does not use an INTO clause when
passing a variable into and out of a stored procedure. This differs from how it works with stored
functions.

You also can use the EXECUTE statement with stored procedures. The following works exactly
like the CALL statement:

EXECUTE format_string(:session_var);

When you select the bind variable from the pseudo–DUAL table,

SELECT :session_var FROM dual;

you’ll see

[Hello World.]

unless you ran both examples, which means you’ll see double brackets:

[[Hello World.]]

40 Oracle Database 11g PL/SQL Programming

Procedures offer you the ability to use pass-by-value or pass-by-reference formal parameters.
As you’ll see in Chapters 6 and 16, stored procedures let you exchange values with external
applications.

Packages
Packages are the backbone of stored programs in Oracle 11g. They act like libraries and are
composed of functions and procedures. Unlike standalone functions and procedures, packages let
you create overloaded functions and procedures. Chapter 9 covers these features of packages.

Packages have a published specification. The specification avoids single parser limitations
because all functions and procedures are published. Publishing acts like forward referencing for
local functions and procedures. Package bodies contain the hidden details of the functions and
procedures rather than their defined signature.

Package bodies must mirror the function and procedure signatures provided in the package
specifications. Package bodies may also contain locally defined types, functions, and procedures.
These structures are only available inside the package body. They mimic the concept of private
access variables in other modern programming languages, like C++ and Java.

Transaction Scope
Transaction scope is a thread of execution—a process. You establish a session when you connect
to the Oracle 11g database. The session lets you set environment variables, like SERVEROUTPUT,
which lets you print from your PL/SQL programs. What you do during your session is visible only
to you until you commit the work. After you commit the changes, other sessions can see the changes
you’ve made.

During a session, you can run one or more PL/SQL programs. They execute serially, or in
sequence. The first program can alter the data or environment before the second runs, and so on.
This is true because your session is the main transaction. All activities potentially depend on all
the prior activities. You can commit work, making all changes permanent, or roll back to reject
work, repudiating all or some changes.

The power to control the session rests with three commands. They were once called
transaction control language (TCL) commands. Some documentation now speaks of them as data
control language (DCL) commands. The book uses DCL to represent these three commands. The
problem is trying to disambiguate this group of commands from Berkeley’s Tcl. The commands are

The COMMIT statement Commits all DML changes made from the beginning of the
session or since the last ROLLBACK statement.

The SAVEPOINT statement Divides two epochs. An epoch is defined by the
transactions between two relative points of time. A SAVEPOINT delimits two epochs.

The ROLLBACK statement Undoes all changes from now to an epoch or named
SAVEPOINT, or now to the beginning of a SQL*Plus session.

These commands let you control what happens in your session and program routines. The
beginning of a session is both the beginning of an epoch and an implicit SAVEPOINT statement.
Likewise, the ending of a session is the ending of an epoch and implicit COMMIT statement.

How you manage transaction scope differs between a single transaction scope and multiple
transaction scopes. You create multiple transaction scopes when a function or procedure is
designated as an autonomous stored program unit.

■

■

■

Chapter 2: PL/SQL Basics 41

Single Transaction Scope
A common business problem involves guaranteeing the sequential behavior of two or more DML
statements. The idea is that they all must either succeed or fail. Partial success is not an option. DCL
commands let you guarantee the behavior of sequential activities in a single transaction scope.

The following program uses DCL commands to guarantee both INSERT statements succeed
or fail:

-- This is found in transaction_scope.sql on the publisher's web site.
BEGIN
 -- Set savepoint.

SAVEPOINT new_member;
 -- First insert.
 INSERT INTO member VALUES
 (member_s1.nextval, 1005,'D921-71998','4444-3333-3333-4444', 1006
 , 2, SYSDATE, 2, SYSDATE);

 -- Second insert.
 INSERT INTO contact VALUES
 (contact_s1.nextval, member_s1.currval + 1, 1003
 ,'Bodwin','Jordan',''
 , 2, SYSDATE, 2, SYSDATE);
 -- Print success message and commit records.
 dbms_output.put_line('Both succeeded.');

COMMIT;
EXCEPTION
 WHEN others THEN
 -- Roll back to savepoint, and raise exception message.

ROLLBACK TO new_member;
 dbms_output.put_line(SQLERRM);
END;
/

The second INSERT statement fails because the foreign key constraint on member_id in
the member table isn’t met. The failure triggers an Oracle exception and shifts control to the
exception block. The first thing the exception block does is roll back to the initial SAVEPOINT
statement set by the anonymous-block program.

Multiple Transaction Scopes
Some business problems require that programs work independently. Independent programs run
in discrete transaction scopes. When you call an autonomous program unit, it runs in another
transaction scope.

You can build autonomous programs with the AUTONOMOUS_TRANSACTION precomplier
instruction. A precompiler instruction is a PRAGMA and sets a specific behavior, like independent
transaction scope. Only the following types of programs can be designated as autonomous routines:

Top-level (not nested) anonymous blocks

Local, standalone, package subroutines—functions and procedures

Methods of the SQL object type

Database triggers

■

■

■

■

42 Oracle Database 11g PL/SQL Programming

The beginning transaction scope is known as the main routine. It calls an autonomous
routine, which then spawns its own transaction scope. A failure in the main routine after calling
an autonomous program can only roll back changes made in the main transaction scope. The
autonomous transaction scope can succeed or fail independently of the main routine. However,
the main routine can also fail when an exception is raised in an autonomous transaction.

Chapter 5 includes an example of this type of parallel activity. The primary INSERT statement
fails because of activities in an autonomous database trigger. When the event fires the autonomous
trigger, it writes the attempt to an error table, commits the write, and then raises an exception. The
trigger exception causes the original INSERT statement to fail.

Multiple transaction scope programs are complex. You should be sure the benefits outweigh
the risk when using multiple transaction scope solutions.

Database Triggers
Database triggers are specialized stored programs that are triggered by events in the database.
They run between when you issue a command and when you perform the database management
system action. Because they come in between, you cannot use SQL Data Control Language in
triggers: SAVEPOINT, ROLLBACK, or COMMIT. You can define five types of triggers in the Oracle
Database 11g family of products:

Data Definition Language (DDL) triggers These triggers fire when you create, alter,
rename, or drop objects in a database schema. They are useful to monitor poor
programming practices, such as when programs create and drop temporary tables
rather than use Oracle collections effectively in memory. Temporary tables can fragment
disk space and over time degrade the database performance.

Data Manipulation Language (DML) or row-level triggers These triggers fire when you
insert, update, or delete data from a table. You can use these types of triggers to audit,
check, save, and replace values before they are changed. Automatic numbering of
pseudonumeric primary keys is frequently done by using a DML trigger.

Compound triggers These triggers act as both statement- and row-level triggers when
you insert, update, or delete data from a table. These triggers let you capture information
at four timing points: (a) before the firing statement; (b) before each row change from
the firing statement; (c) after each row change from the firing statement; and (d) after the
firing statement. You can use these types of triggers to audit, check, save, and replace
values before they are changed when you need to take action at both the statement and
row event levels.

Instead of triggers These triggers enable you to stop performance of a DML statement
and redirect the DML statement. INSTEAD OF triggers are often used to manage how
you write to views that disable a direct write because they’re not updatable views. The
INSTEAD OF triggers apply business rules and directly insert, update, or delete rows in
appropriate tables related to these updatable views.

■

■

■

■

Chapter 2: PL/SQL Basics 43

System or database event triggers These triggers fire when a system activity occurs in
the database, like the logon and logoff event triggers used in Chapter 13. These triggers
enable you to track system events and map them to users.

We will cover all five trigger types in Chapter 10.

Summary
This chapter has reviewed the Procedural Language/Structured Query Language (PL/SQL) basics
and explained how to jump-start your PL/SQL skills. The coverage should serve to whet your
appetite for more.

■

This page intentionally left blank

CHAPTER
3

Language Fundamentals

45

46 Oracle Database 11g PL/SQL Programming

his chapter builds on the discussion of PL/SQL architecture in Chapter 1. It explains
the building blocks of the language, and how you define and declare variables. It
describes how you assign values to variables and demonstrates datatype concepts.
The chapter is divided into the following sections:

Character and lexical units

Block structures

Variable types

 Scalar datatypes

 Large objects

 Composite datatypes

 System reference cursors

Variable scope

Character and Lexical Units
Lexical units are the basic building blocks in programming languages. They build PL/SQL programs.
You develop lexical units by combining valid characters and symbols. Lexical units can be
delimiters, identifiers, literals, or comments. Identifiers include reserved words and keywords
as well as both subroutine and variable names.

Delimiters
Lexical delimiters are symbols or symbol sets. They can act as delimiters or provide other
functions in programming languages. Other functions provided by lexical delimiters are
assignment, association, concatenation, comparison, math, and statement controls.

The most common example of a delimiter is the character string delimiter. In PL/SQL, you
delimit string literals by using a set of apostrophes or single quotes. Table 3-1 covers the full
set of delimiters and it provides some examples of how to use delimiters in the language. The
examples include coding techniques and concepts explained in more detail later in this book.

■

■

■

■

■

■

■

■

T

Symbol Type Description

:= Assignment The assignment operator is a colon immediately followed by an equal symbol. It is
the only assignment operator in the language. You assign a right operand to a left
operand, like
a := b + c;
This adds the numbers in variables b and c, and then assigns the result to variable
a. The addition occurs before the assignment due to operator precedence, which is
covered later in this chapter.

TABLE 3-1 PL/SQL Delimiters

Chapter 3: Language Fundamentals 47

Symbol Type Description

: Association The host variable indicator precedes a valid identifier name, and designates that
identifier as a session-level variable. Session-level variables are also known as bind
variables. You use SQL*Plus to define a session-level variable. Only the CHAR,
CLOB, NCHAR, NCLOB, NUMBER, NVARCHAR2, REFCURSOR, and VARCHAR2
datatypes are available for session variables. You can define a session variable by
using a prototype like:
VARIABLE variable_name datatype_name
This implements the prototype by creating a session-level variable-length string:
SQL> VARIABLE my_string VARCHAR2(30)
Then, you can assign a value using an anonymous-block PL/SQL program, like
BEGIN
 :my_string := 'A string literal.';
END;
/
You can then query the result from the DUAL pseudotable:
SELECT :my_string FROM dual;
Alternatively, you can reuse the variable in another PL/SQL block program because
the variable enjoys a session-level scope. A subsequent anonymous-block program
in a script could then print the value in the session variable:
BEGIN
 dbms_output.put_line(:my_string);
END;
/
This is a flexible way to exchange variables between multiple statements and PL/SQL
blocks in a single script file. You also use the host variable indicator as a placeholder in
dynamic SQL statements. Chapter 11 contains full details on how you use placeholders.

& Association The substitution indicator lets you pass actual parameters into anonymous-block
PL/SQL programs. You should never assign substitution variables inside declaration
blocks because assignment errors don’t raise an error that you can catch in
your exception block. You should make substitution variable assignments in the
execution block. The following demonstrates the assignment of a string substitution
variable to a local variable in an execution block:
a := '&string_in';

% Association The attribute indicator lets you link a database catalog column, row, or cursor
attribute. You are anchoring a variable datatype when you link a variable to a
catalog object, like a table or column. The section “Variable Types” later in the
chapter examines how to anchor variables to database catalog items with this
operator. Chapter 4 shows how to leverage cursor attributes. Chapter 9 covers the
use of %TYPE and %ROWTYPE attributes.

=> Association The association operator is a combination of an equal sign and a greater-than
symbol. It is used in name notation function and procedure calls. Chapter 6 covers
how you use the association operator.

TABLE 3-1 PL/SQL Delimiters (continued)

48 Oracle Database 11g PL/SQL Programming

Symbol Type Description

. Association The component selector is a period, and it glues references together, for example, a
schema and a table, a package and a function, or an object and a member method.
Component selectors are also used to link cursors and cursor attributes (columns).
The following are some prototype examples:
schema_name.table_name
package_name.function_name
object_name.member_method_name
cursor_name.cursor_attribute
object_name.nested_object_name.object_attribute
These are referenced in subsequent chapters throughout this book.

@ Association The remote access indicator lets you access a remote database through database links.

|| Concatenation The concatenation operator is formed by combining two perpendicular vertical
lines. You use it to glue strings together, as shown:
a := 'Glued'||' '||'together. ';

= Comparison The equal symbol is the comparison operator. It tests for equality of value and
implicitly does type conversion where possible. (A chart showing implicit
conversions is shown in the section “Variable Types” later in this chapter.) There
is no identity comparison operator because PL/SQL is a strongly typed language.
PL/SQL comparison operations are equivalent to identity comparisons because you
can only compare like typed values.

- Comparison The negation operator symbol is a minus sign. It changes a number from its positive
to negative value and vice versa.

<>
!=
^=

Comparison There are three not-equal comparison operators. They all perform exactly the same
behaviors. You can use whichever suits your organizational needs.

> Comparison The greater-than operator is an inequality comparison operator. It compares
whether the left operand is greater than the right operand.

< Comparison The less-than operator is an inequality comparison operator. It compares whether
the left operand is smaller than the right operand.

>= Comparison The greater-than or equal comparison operator is an inequality comparison operator.
It compares whether the left operand is greater than or equal to the right operand.

<= Comparison The less-than or equal comparison operator is an inequality comparison operator.
It compares whether the left operand is greater than or equal to the right operand.

TABLE 3-1 PL/SQL Delimiters (continued)

Chapter 3: Language Fundamentals 49

Symbol Type Description

' Delimiter The character string delimiter is a single quote. It lets you define a string literal
value. You can assign a string literal to a variable by
a := 'A string literal.';
This creates a string literal from the set of characters between the character string
delimiters and assigns it to the variable a.

(Delimiter The opening expression or list delimiter is an opening parenthesis symbol. You can
place a list of comma-delimited numeric or string literals, or identifiers, inside a
set of parentheses. You use parentheses to enclose formal and actual parameters to
subroutines or to produce lists for comparative evaluations. You can also override
order of precedence by enclosing operations in parentheses. Enclosing operations
in parentheses lets you override the natural order of precedence in the language.

) Delimiter The closing expression or list delimiter is a closing parenthesis symbol. See the
opening expression or list delimiter entry for more information.

, Delimiter The item separator is a comma and delimits items in lists.

<< Delimiter The opening guillemet (a French word pronounced geeuh mey) is the opening
delimiter for labels in PL/SQL. Labels are any valid identifiers in the programming
language. Perl and PHP programmers should know these don’t work as HERE
document tags. Chapter 4 discusses labels.

>> Delimiter The closing guillemet (a French word pronounced geeuh mey) is the closing
delimiter for labels in PL/SQL. Labels are any valid identifiers in the programming
language. Perl and PHP programmers should know these don’t work as HERE
document tags. Chapter 4 discusses labels.

-- Delimiter Two adjoining dashes are a single comment operator. Everything to the right of
the single comment operator is treated as text and not parsed as part of a PL/SQL
program. An example of a single-line comment is:
-- This is a single line comment.

/* Delimiter This is the opening multiple-line comment delimiter. It instructs the parser to ignore
everything until the closing multiple-line comment delimiter as text. An example of
a multiple-line comment is:
/* This is line one.
 This is line two. */
There are many suggestions on how to use multiple-line comments. You should
pick one way of doing it that suits your organization’s purposes and stick with it.

*/ Delimiter This is the closing multiple-line comment delimiter. It instructs the parser that the
text comment is complete, and everything after it should be parsed as part of the
program unit. See the opening multiple-line comment entry for more information.

TABLE 3-1 PL/SQL Delimiters (continued)

50 Oracle Database 11g PL/SQL Programming

Symbol Type Description

" Delimiter The quoted identifier delimiter is a double quote. It lets you access tables created
in case-sensitive fashion from the database catalog. This is required when you have
created database catalog objects in case-sensitive fashion. You can do this from
Oracle 10g forward.
For example, you create a case-sensitive table or column by using quoted identifier
delimiters:
CREATE TABLE "Demo"
("Demo_ID" NUMBER
, demo_value VARCHAR2(10));
You insert a row by using the following quote-delimited syntax:
INSERT INTO "Demo1" VALUES
(1,'One Line ONLY.');
Like the SQL syntax, PL/SQL requires you to use the quoted identifier delimiter to
find the database catalog object, like
BEGIN
 FOR i IN (SELECT "Demo_ID", demo_value
FROM "Demo") LOOP
 dbms_output.put_line(i."Demo_ID");
 dbms_output.put_line(i.demo_value);
 END LOOP;
END;
/
Beyond the quoted identifier in embedded SQL statements, you must refer to any
column names by using quote-delimited syntax. This is done in the first output
line, where the loop index (i) is followed by the component selector (.) and then
a quote-delimited identifier ("Demo_ID"). You should note that no quotes are
required to access the case-insensitive column. If you forget to enclose a case-
sensitive column name (identifier), your program returns a PLS-00302 error that
says the identifier is not declared.
You can also use the quoted identifier delimiter to build identifiers that include
reserved symbols, like an "X+Y" identifier.

+ Math The addition operator lets you add left and right operands and returns a result.

/ Math The division operator lets you divide a left operand by a right operand and returns
a result.

TABLE 3-1 PL/SQL Delimiters (continued)

Chapter 3: Language Fundamentals 51

Symbol Type Description

** Math The exponential operator raises a left operand to the power designated by a right
operand. The operator enjoys the highest precedence for math operators in the
language. As a result of that, a fractional exponent must be enclosed in parentheses
(also known as expression or list delimiters) to designate order of operation.
Without parentheses, the left operand is raised to the power of the numerator
and the result divided by the denominator of a fractional exponent.
You raise 3 to the third power and assign the result of 27 to variable a by using the
following syntax:
a := 3**3;
You raise 8 to the fractional power of 1/3 and assign the result of 2 to variable a
by using the following syntax:
a := 8**(1/3);
The parentheses ensures that the division operation occurs first. Exponential
operations take precedence on other mathematical operations without
parenthetical grouping.

* Math The multiplication operator lets you multiply a left operand by a right operand and
returns a result.

- Math The subtraction operator lets you subtract the right operand from the left operand
and returns a result.

; Statement The statement terminator is a semicolon. You must close any statement or block
unit with a statement terminator.

TABLE 3-1 PL/SQL Delimiters (continued)

Identifiers
Identifiers are words. They can be reserved words, predefined identifiers, quoted identifiers,
user-defined variables, subroutines, or user-defined types. You can find reserved and key words
in Appendix I, and built-in functions in Appendix J.

Reserved Words and Keywords
Both reserved words and keywords are lexical units that provide basic tools for building programs.
For example, you use the NOT reserved word as a negation in comparison operations, and the
NULL to represent a null value or statement. You cannot use these words when defining your own
programs and datatypes.

52 Oracle Database 11g PL/SQL Programming

Predefined Identifiers
Oracle 11g provides a STANDARD package, and it globally grants access to the package through
a public grant. The STANDARD package defines the built-in functions found in Appendix J. It also
contains the definitions for standard datatypes and errors.

You should be careful to not override any predefined identifiers by creating user-defined
identifiers with the same names. This happens any time you define a variable that duplicates a
component from the STANDARD package, just as you can define a variable in a nested PL/SQL
block that overrides the containing block variable name.

Quoted Identifiers
Oracle 11g provides you the ability to use quoted identifier delimiters to build identifiers that
would otherwise be disallowed because of symbol reuse. Quoted identifiers can include any
printable characters, including spaces. However, you cannot embed double quotes inside
identifiers. The maximum size of a quoted identifier is 30 characters.

You can also use quoted identifiers to leverage reserved words and keywords. This is allowed
but strongly discouraged by Oracle. For example, the following program creates a quoted identifier
“End,” which is a case-insensitive reserved word:

DECLARE
 "End" NUMBER := 1;
BEGIN
 dbms_output.put_line('A quoted identifier End ['||"End"||']');
END;
/

Again, while this is possible, you should avoid it.

User-Defined Variables, Subroutines, and Datatypes
You create identifiers when you define program components. User-defined datatypes can be
defined in SQL as schema-level datatypes, or in PL/SQL blocks. User-defined identifiers must be
less than 30 characters and start with a letter; they can include a $, # or _. They cannot contain
punctuation, spaces, or hyphens.

Anonymous-block identifiers are only accessible inside a block or nested block. When you
define identifiers in functions and procedures, they are likewise only accessible inside named
blocks. Package specifications let you define package-level datatypes that are available in your
schema. They are also available in other schemas when you grant execute privilege on them to
other scheme. You reference them by using the component selector to connect the package and
datatype names. Chapter 9 discusses PL/SQL packages.

Literals
A literal is an explicit character, string, number or Boolean value. Literal values are not represented
by identifiers. String literals can also represent date or time literals.

Character Literals
Character literals are defined by enclosing any character in a set of apostrophes or single quotes.
The literal values are case sensitive, while the programming language is case insensitive. This mirrors
the behavior of SQL and data stored in the database as character or string data (the VARCHAR2
datatype is the most commonly used type).

Chapter 3: Language Fundamentals 53

You assign a character literal to a variable using the following syntax:

a := 'a';

String Literals
String literals are defined like character literals, using single quotes. String literals can contain any
number of characters up to the maximum value for the datatype. You typically use the VARCHAR2
datatype, or one of its subtypes.

You assign a string literal to a variable using the following syntax:

a := 'some string';

You can also assign a string literal with double quotes inside it by using the following syntax:

a := 'some "quoted" string';

The double quotes are treated as normal characters when embedded in single quotes.

NOTE
Behavior of a VARCHAR2 datatype differs between SQL and PL/SQL.
The maximum size of a VARCHAR2 column in a table is 4,000 bytes.
The maximum size in PL/SQL is 32,767 bytes. This does not guarantee
32,767 characters because some Unicode character sets use multibyte
character sets. You may only be able to store half or a third as many
characters using a multibyte character set.

Numeric Literals
Numeric literals are defined like numbers in most programming languages. The generic numeric
literal assignment is done by using the following syntax:

a := 2525;

You have the ability to assign a large number with the following exponent syntax:

n := 2525E8; -- This assigns 252,500,000,000 to the variable.

You may attempt to assign a number beyond the range of a datatype. The numeric overflow or
underflow exception is raised when the number is outside the datatype’s range.

You also can assign a float or a double by using the respective syntax:

d := 2.0d; -- This assigns a double of 2.
f := 2.0f; -- This assigns a float of 2

These assignments only work with their respective type. A d works with a BINARY_DOUBLE,
while an f works with a BINARY_FLOAT.

Boolean Literals
Boolean Literals can be TRUE, FALSE, or NULL. This three-valued state of Boolean variables
makes it possible that your program can incorrectly handle a not true or not false condition any
time the variable is NULL. Chapter 4 covers how to manage conditional statements to secure
expected results.

54 Oracle Database 11g PL/SQL Programming

You can make any of the following assignments to a previously declared BOOLEAN variable:

b := TRUE; -- This assigns a true state.
b := FALSE; -- This assigns a false state.
b := NULL; -- This assigns a null or default state.

TIP
It is a good practice to assign an initial value of TRUE or FALSE to all
Boolean variables, which means always explicitly define their initial
state. You should also consider declaring Boolean columns as not null
constrained.

Date and Time Literals
Date literals have an implicit conversion from a string literal that maps to the default format mask.
The default format masks for dates are DD-MON-RR or DD-MON-YYYY. The DD represents a two-
digit day, the MON represents a three-character month, the RR represents a two-digit relative year,
and the YYYY represents a four-digit absolute year. Relative years are calculated by counting 50
years forward or backward from the current system clock. You assign a relative or absolute date
as follows to previously declared DATE datatype variables:

relative_date := '01-JUN-07'; -- This assigns 01-JUN-2007.
absolute_date := '01-JUN-1907'; -- This assigns 01-JUN-1907.

Implicit assignment fails when you attempt other format masks, like MON-DD-YYYY. You can
explicitly assign date literals by using the TO_DATE() or CAST() functions. Only the Oracle
proprietary TO_DATE() function lets you use apply a format mask other than the default. The
syntax variations for the TO_DATE() function are

date_1 := TO_DATE('01-JUN-07'); -- Default format mask.
date_2 := TO_DATE('JUN-01-07','MON-DD-YY'); -- Override format mask.

The CAST() function can use either of the default format masks discussed earlier, as shown:

date_1 := CAST('01-JUN-07' AS DATE); -- Relative format mask.
date_2 := CAST('01-JUN-2007' AS DATE); -- Absolute format mask.

You can use the TO_CHAR(date_variable, ‘MON-DD-YYYY’) function to view the fully
qualified date. These behaviors in PL/SQL mirror the behaviors in Oracle SQL.

Comments
You can enter single- or multiple-line comments in PL/SQL. You use two dashes to enter a single-
line comment, and the /* and */ delimiters to enter a multiple-line comment. A single-line
comment is

-- This is a single-line comment.

A multiple-line comment is

/* This is a multiple-line comment.
 Style and indentation should follow your company standards. */

Planned comments are straightforward, but you can introduce errors when you comment out
code to test or debug your programs. The biggest problem occurs when you comment out all
executable statements from a code block. This will raise various parsing errors because every

Chapter 3: Language Fundamentals 55

coding block must have at a minimum one statement, as discussed in the next section, “Block
Structures.” The other problem frequently introduced with single-line comments arises from
placing them before either a statement terminator (a semicolon) or an ending block keyword.
This also raises a parsing error when you try to run or compile the program unit.

NOTE
Compilation in PL/SQL programs can mean attempting to run an
anonymous-block program or creating a stored program unit. In both
cases, you are parsing the program into PL/SQL p-code. PL/SQL runs
the p-code.

This section has presented the valid characters and symbols in the language. It has also
explained that delimiters, identifiers, literals, or comments are lexical units.

Block Structures
PL/SQL is a blocked programming language. Program units can be named or unnamed blocks.
Unnamed blocks are known as anonymous blocks and are so labeled throughout the book. The
PL/SQL coding style differs from the C, C++, and Java programming languages. For example,
curly braces do not delimit blocks in PL/SQL.

Anonymous-block programs are effective in some situations. You typically use anonymous
blocks when building scripts to seed data or perform one-time processing activities. They are
also effective when you want to nest activity in another PL/SQL block’s execution section. The
basic anonymous-block structure must contain an execution section. You can also put optional
declaration and exception sections in anonymous blocks. Figure 3-1 illustrates both anonymous-
and named-block prototypes.

The declaration block lets you declare datatypes, structures, and variables. Declaring a variable
means that you give it a name and a datatype. You can also define a variable by giving it a name,
a datatype, and a value. You both declare and assign a value when defining a variable. Figure 3-2
demonstrates the concept of assigning a single value to a variable. Scalar variables hold only one
thing at a time.

FIGURE 3-1 PL/SQL block structure

56 Oracle Database 11g PL/SQL Programming

You define a variable by declaring the variable (providing a variable name and a datatype)
and initializing it by assigning a value, like a date, string, or numeric literal. The general definition
prototype is

variable_name datatype_name := literal_value;

Some object types cannot be declared as locally scoped variables and must be declared as
types in the database catalog, as discussed in Chapter 14. Structures are compound variables, like
collections, record structures, or system reference cursors. Structures can also be locally named
functions, procedures, or cursors.

Cursors act like little functions. Cursors have names, signatures, and a return type. The signature
is the list of formal parameters accepted by the cursor. The output columns from a query or SELECT
statement create a cursor structure as the return type.

Composite variables, like scalar variables, follow similar definition rules. The difference is that
you’re assigning multiple values to one variable. Figure 3-3 illustrates the idea of populating an
array of values by loading a set of similar values. Composite assignments are a bit more complex
than the generic prototype for scalar variables, which are described in the section “Composite
Datatypes” later in this chapter.

Some composite variables are structures that contain different things, like the element of
an address book. A structure is like a row in a database table. Figure 3-4 illustrates the idea
of populating a structure—a set of different variables.

FIGURE 3-2 Scalar variable assignment

FIGURE 3-3 Composite variable assignment: collections

Chapter 3: Language Fundamentals 57

You use the DECLARE reserved word to begin a declaration block and the BEGIN reserved
word to end an anonymous block. The header of named blocks begins the declaration block for
stored programming units. Like anonymous-block programs, the BEGIN reserved word ends the
declaration section for named blocks. The declaration block is where you declare and initialize
variables; it can include local named blocks.

The execution block lets you process data. The execution block can contain variable
assignments, comparisons, conditional operations, and iterations. Also, the execution block is
where you access cursors and other named program units. Functions, procedures, and some
object types are named program units. You can also nest anonymous-block programs inside the
execution block. The BEGIN reserved word starts the exception block, and the optional
EXCEPTION or required END reserved word ends it. The semicolon ends the block.

TIP
You must have at least one statement inside an execution block or it
fails compilation.

The following minimum anonymous-block statement includes a NULL statement:

BEGIN
 NULL;
END;
/

FIGURE 3-4 Composite variable assignment: structures

Scalar and Compound Variables
Scalar variables hold only one thing at a time and are frequently labeled as primitives;
these include numbers, strings, and timestamps. Oracle timestamps are dates precise to
one thousandth of a second. You can also define compound variables that are alternatively
labeled as composite variables. There’s not much difference in the words, but Oracle 11g
documentation uses composite variables. So, this book uses composite variables to describe
arrays, structures, and objects. Composite variables are variables built from primitives in a
programming language.

58 Oracle Database 11g PL/SQL Programming

This does nothing except let the compilation phase complete without an error. Compilation in any
language includes a syntax parsing. The lack of a statement in the block raises a parsing error as
covered in Chapter 5. You should note the forward slash (/), which dispatches the PL/SQL program
for execution.

The exception handling block lets you manage exceptions. You can both catch and manage
them there. The exception block allows for alternative processing and in many ways acts like
combination of a catch block and a finally block in the Java programming language (see Appendix D
for more information on Java). The EXCEPTION reserved word starts the section, and the END
reserved word ends it.

TIP
You have the same rule requiring a minimum of one statement for any
blocks in a conditional statement block (like an IF statement) and for
loops.

Named-block programs have a slightly different block structure because they are stored in
the database. They also have a declaration section, which is known as the header. The name, the
signature, and any return type of named PL/SQL blocks are defined by the header. The area between
the header and execution blocks acts as the declaration block for a named block. This same rule
holds true for object type bodies covered in Chapter 14.

The following illustrates a named-block function prototype:

FUNCTION function_name
[(parameter1 [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 , parameter2 [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type
 , parameter(n+1) [IN][OUT] [NOCOPY] sql_data_type | plsql_data_type)]

RETURN [sql_data_type | plsql_data_type]
 [AUTHID {DEFINER | CURRENT_USER}]
 [DETERMINISTIC | PARALLEL_ENABLED]
 [PIPELINED]
 [RESULT_CACHE [RELIES ON table_name]] IS
declaration_statements

BEGIN
 execution_statements
 [EXCEPTION]
 exception_handling_statements
END;
/

Chapter 6 discusses the rules governing functions. Functions can behave as pass-by-value or
pass-by-reference subroutines. Pass-by-value subroutines define formal parameters using an IN
mode only. This means that the variable passed in cannot change during execution of the subroutine.
Pass-by-reference subroutines define formal parameters using IN and OUT, or OUT-only modes.

Oracle 11g continues passing copies of variables instead of references to variables, unless you
designate a NOCOPY hint. Oracle implements pass-by-reference behaviors this way to guarantee
the integrity of IN OUT mode variables. This model guarantees variables are unchanged unless a
subprogram call completes successfully. You can override this default behavior by using a NOCOPY

Chapter 3: Language Fundamentals 59

hint. Oracle recommends against using the NOCOPY hint because using it can result in partial
changes to your actual parameter values. Ultimately, the database reserves the right to act on or
ignore your NOCOPY hint.

Functions can query data using SELECT statements and can perform DML statements, such
as INSERT, UPDATE, or DELETE. All other rules apply to stored functions the same as those that
apply to anonymous blocks. Functions that define formal parameters or return types that use PL/SQL
datatypes cannot be called from the SQL command line. However, you can call functions that use
SQL datatypes from the SQL command line.

The AUTHID default value is DEFINER, which provides what are known as definer rights.
Definer rights means that any one with privileges to execute the stored program runs it with the
same privileges as the user account that defined it. The CURRENT_USER alternative lets those
with execute privileges call the stored program and run it against only their user/schema data.
This is known as invoker rights, and it describes the process of calling a common source program
against individual accounts and data.

You should avoid using the DETERMINISTIC clause when functions depend on the states of
session-level variables. DETERMINISTIC clauses are best suited to function-based indexes and
materialized views.

The PARALLEL_ENABLE clause should be enabled for functions that you plan to call from
SQL statements that may use parallel query capabilities. You should look closely at this clause for
data warehousing uses.

The PIPELINED clause provides improved performance when functions return collections,
like nested tables or VARRAYs. You’ll also note performance improvements when returning system
reference cursors by using the PIPELINED clause.

The RESULT_CACHE clause indicates a function is cached only once in the SGA and
available across sessions. It is new in the Oracle 11g Database. Cross-session functions only work
with IN mode formal parameters.

The following illustrates a named-block procedure prototype:

PROCEDURE procedure_name
[(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 , parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 , parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)]
[AUTHID {DEFINER | CURRENT_USER}] IS
 declaration_statements
BEGIN
 execution_statements
[EXCEPTION]
 exception_handling_statements
END;
/

Chapter 6 discusses the rules governing procedures. They act like functions in many ways but
cannot return a datatype. This means that you can’t use them as right operands. Unlike functions,
procedures must be called by PL/SQL blocks. Procedures can both query the data and manipulate
the data. Procedures are also the foundation subroutines for passing values from and to external
languages like C, C++, Java, PHP, and so on.

This section has presented and discussed the basics structure of PL/SQL program units. The
next section discusses how you can define and use variables.

60 Oracle Database 11g PL/SQL Programming

Variable Types
PL/SQL supports two principal variable datatypes: scalar and composite variables. Scalar variables
contain only one thing, like a character, date, or number. There’s not much difference in the words,
but this book uses composite variables to describe arrays, structures, and objects. Composite
variables are variables built from primitives or base types in a programming language. Composite
variables in Oracle are records (structures), arrays, reference cursors, and object types.

PL/SQL uses all Oracle SQL datatypes. PL/SQL also introduces a Boolean datatype and several
subtypes derived from the SQL datatypes. Subtypes inherit the behavior of a datatype but also
typically have constrained behaviors. An unconstrained subtype doesn’t change a base type’s
behavior. Unconstrained types are also called as aliases. You can also call any base datatype a
supertype because it is the model for subtypes. Unconstrained subtypes are interchangeable with
their base types, while only qualified values can be assigned to constrained subtypes from base
types. You can extend these types by building your own subtypes as discussed and demonstrated
in several sections later in this chapter.

Like other programming languages, PL/SQL lets you both define types and declare variables.
You label a datatype and designate how to manage the datatype in memory when you define a
type. You define a variable by both declaring the variable and assigning it a value. A variable
name is mapped to a known datatype and then added to the program’s namespace as an identifier
when you declare a variable. In some programming languages no value is assigned to a declared
variable. PL/SQL automatically assigns most declared variables a null value. This means that
variables are generally defined in the language.

You declare variables by assigning them a type or anchoring their type to a database catalog
column. The prototypes for both declarations are

variable_name variable_type; -- An explicit datatype.
variable_name column_name%TYPE; -- An anchored datatype.

Anchoring a variable using the %TYPE means that your program automatically adjusts as the
column datatype changes. This is true when only the size changes but not necessarily true when
the base type changes. For example, some logic, assignments, and comparisons may fail when the
base type began as a string but mutated to a date, because implicit conversions may not meet all
logical conditions.

TIP
Altering the column datatype does not raise an error but invalidates
any stored procedures that misuse the new variable type.

Implicit conversions are determined by the PL/SQL engine. Unlike some programming
languages, PL/SQL allows implicit conversions that result in loss of precision (or details). If you
assign a BINARY_FLOAT variable to a BINARY_INTEGER, any digits to the right of the decimal
place are discarded implicitly. Explicit conversions require you to convert the data, like calling
the TO_CHAR() built-in function to display the timestamp of a DATE variable. A list of implicit
conversions is shown in the following chart.

Chapter 3: Language Fundamentals 61

There is one pseudo-exception to the variable declaration rule. Weakly typed system reference
cursors are not defined until run time. A weakly typed system reference cursor takes an assigned
cursor number and adopts the record structure of a row assigned to the cursor. Record structures
can only be assigned to composite variables. You can also anchor a strongly typed system
reference cursor to a catalog table or view. This works much like how you anchor variables
to columns. The prototypes for declaring composite variables are

composite_variable_name record_type; -- An explicit datatype.
composite_variable_name catalog_object%ROWTYPE; -- An anchored datatype.

You anchor a composite variable by using the %ROWTYPE attribute. It updates your program
to reflect any changes in the row definition of the catalog object. This type of anchoring ensures
that you know the datatype always matches the catalog object. You should also anchor any other
dependent variable datatypes too.

Variable datatypes can be defined in SQL or PL/SQL. You can use SQL datatypes in both
SQL statements and PL/SQL statements. You can only use PL/SQL datatypes inside your PL/SQL
program units.

62 Oracle Database 11g PL/SQL Programming

The PL/SQL Buffer and Outputting to the Console
As shown in earlier Figure 1-1, there is an output buffer between the SQL*Plus and PL/SQL
engines. You can open the buffer in SQL*Plus by enabling the SERVEROUTPUT
environment variable, like

 SQL> SET SERVEROUTPUT ON SIZE 1000000

Once you enable this SQL*Plus environment variable, the output generated by the
PUT(), PUT_LINE(), and NEW_LINE() procedures of the DBMS_OUTPUT package will
be displayed in your SQL*Plus environment. It is possible that you may get more output
than you expect the first time you run a program after enabling the environment variable.
This can happen when you run a program in PL/SQL that enables the buffer from PL/SQL
without enabling the environment variable first.

You enable the buffer in PL/SQL by using the following command:

dbms_output.enable(1000000);

The first write to the buffer after enabling the environment variable will flush all
contents to the SQL*Plus environment. You clear the prior contents by disabling any open
buffer before enabling it using the following two procedures sequentially:

dbms_output.disable;
dbms_output.enable(1000000);

The DISABLE procedure is recommended to ensure that you don’t capture some
undesired prior output when running your program. You output to the console using either
the PUT() or PUT_LINE() procedure. The PUT() procedure outputs a string to the buffer
without a line return, while the PUT_LINE() procedure outputs a string and newline
character to the buffer. You use the NEW_LINE() procedure after one or more PUT()
procedure calls to write a line return.

The following demonstrates how to output information from your PL/SQL program to
the SQL*Plus environment:

BEGIN
 dbms_output.put('Line ');
 dbms_output.put('one.');
 dbms_output.new_line;
 dbms_output.put_line('Line two.');
END;
/

This anonymous-block program outputs

Line one.
Line two.

This is the technique that you’ll use to get output to the console for debugging or to file
for reporting. You can also combine the SQL*Plus SPOOL command to split standard output
to both the console and a file (like the Unix tee command). This technique lets you
generate text files for reporting.

Chapter 3: Language Fundamentals 63

TIP
SQL*Plus environment variable settings are lost when you change
schemas. Don’t forget to reset the SERVEROUTPUT variable if you
change schemas, because the output buffer is effectively closed the
minute you change schemas.

The first subsection covers scalar datatypes, the second large objects, the third composite
datatypes, and fourth reference types. Items are organized for reference and flow. The scalar
datatypes are the primitives of the language and therefore the building blocks for the composite
datatypes. The next section covers these primitive building blocks.

Scalar Datatypes
The primitives are grouped into alphabetical sections. Each section describes the datatype,
demonstrates how to define and/or declare the type or variables of the type, and shows how
to assign it values. Figure 3-5 qualifies the four major types of scalar variables and their
implementation base types and subtypes.

Scalar datatypes use the following prototype inside the declaration block of your programs:

variable_name datatype [NOT NULL] [:= literal_value];

Some datatypes require that you provide a precision when defining a variable. The precision
defines the maximum size in bytes or characters for a datatype. You also have the scale for
NUMBER datatypes. The scale defines the number of decimal places to the right of the decimal
point. These mirror the conventions found in SQL for these datatypes.

Boolean
The BOOLEAN datatype has three possible values: TRUE, FALSE, and NULL. This three-valued
state of Boolean variables makes it possible that your program can incorrectly handle a not true
or not false condition any time the variable is NULL. Chapter 4 covers how to manage conditional
statements to secure expected results.

The following is the prototype for declaring a BOOLEAN datatype:

BOOLEAN [NOT NULL]

You can define Boolean variables by implicit null assignment or by explicit assignment of a
TRUE or FALSE value. The following syntax belongs in the declaration block:

var1 BOOLEAN; -- Implicitly assigned a null value.
var2 BOOLEAN NOT NULL := TRUE; -- Explicitly assigned a TRUE value.
var3 BOOLEAN NOT NULL := FALSE; -- Explicitly assigned a FALSE value.

You should always initialize Boolean variables explicitly in your program units. This practice
avoids unexpected behaviors in programs. Using the NOT NULL clause during declaration
guarantees Boolean variables are never null.

There is little need to subtype a BOOLEAN datatype, but you can do it. The subtyping syntax is

SUBTYPE booked IS BOOLEAN;

This creates a subtype BOOKED that is an unconstrained BOOLEAN datatype. You may find this
useful when you need a second name for a BOOLEAN datatype, but generally subtyping a Boolean
is not very useful.

64 Oracle Database 11g PL/SQL Programming

As shown in the earlier subsection “Boolean Literals,” you assign a Boolean variable a literal
value inside the execution block by using the following syntax:

var1 := TRUE;

Unlike strings, the TRUE, FALSE, or NULL values are not delimited by single quotes. All three
words are PL/SQL reserved words.

FIGURE 3-5 Scalar types

Chapter 3: Language Fundamentals 65

Characters and Strings
Characters and strings work more like the String class in the Java programming language. Strings
are known as single-dimensional character arrays in the C and C++ programming languages.
Character datatypes store a fixed-length string. You size the string by stating the number of bytes
or characters allowed inside the string. Any attempt to store more than the maximum number of
bytes or characters throws an exception.

The following program illustrates the memory allocation differences between the CHAR and
VARCHAR2 datatypes:

DECLARE
 c CHAR(32767) := ' ';
 v VARCHAR2(32767) := ' ';
BEGIN
 dbms_output.put_line('c is ['||LENGTH(c)||']');
 dbms_output.put_line('v is ['||LENGTH(v)||']');
 v := v || ' ';
 dbms_output.put_line('v is ['||LENGTH(v)||']'); END;
/

The program defines two variables, prints their length (see the PL/SQL Built-in Functions
in Appendix J), and then concatenates another whitespace value to VARCHAR2 to demonstrate
memory allocation. Provided you have enabled the SQL*Plus buffer (setting SERVEROUTPUT
on), this will output the following to the console:

c is [32767]
v is [1]
v is [2]

The output shows that a CHAR variable sets the allocated memory size when defined. The
allocated memory can exceed what is required to manage the value in the variable. The output
also shows that the VARCHAR2 variable dynamically allocates only the required memory to host
its value.

CHAR and CHARACTER Datatypes The CHAR datatype is a base datatype for fixed-length strings.
You can size a CHAR datatype up to 32,767 bytes in length, but its default length is 1 byte.
Unfortunately, a PL/SQL CHAR is larger than the 4,000-byte maximum allowed in a SQL CHAR
column. You can store character strings larger than 4,000 bytes in CLOB or LONG columns. Oracle
recommends you use the CLOB datatype because the LONG and LONG RAW datatypes are only
supported for backward compatibility purposes.

The following is the prototype for defining a CHAR datatype:

CHAR[(maximum_size [BYTE | CHAR])] [NOT NULL]

The four ways to declare a variable using the CHAR datatype and a default null value are

var1 CHAR; -- Implicitly sized at 1 byte.
var2 CHAR(1); -- Explicitly sized at 1 byte.
var3 CHAR(1 BYTE); -- Explicitly sized at 1 byte.
var4 CHAR(1 CHAR); -- Explicitly sized at 1 character.

66 Oracle Database 11g PL/SQL Programming

When you use character space allocation, the maximum size changes, depending on the
character set of your database. Some character sets use 2 or 3 bytes to store characters. You
divide 32,767 by the number of bytes required per character, which means the maximum for a
CHAR is 16,383 for a 2-byte character set and 10,922 for a 3-byte character set.

You can use the NOT NULL clause to ensure a value is assigned to a CHAR variable. The
general practice is to not restrict CHAR variables without other compelling business rationale.

The CHARACTER datatype is a subtype of the CHAR datatype. The CHARACTER datatype has
the same value range as its base type. It is effectively an alias datatype and was formally known as
an unconstrained subtype. Assignment between variables of CHAR and CHARACTER datatypes are
implicitly converted, provided the variables have the same size.

The size for characters has two factors: the number of units allotted and the type of units
allotted. A string of three characters (derived from the character set) cannot fit in a string of three
bytes, and more naturally a string of three characters cannot fit in a string of two characters. Any
attempt to make that type of assignment raises an ORA-06502, which means a character string
buffer is too small to hold a value.

You can declare a CHAR subtype by using the following prototype:

 SUBTYPE subtype_name IS base_type[(maximum_size [BYTE | CHAR])] [NOT NULL];

The following example creates and uses a constrained subtype CODE:

DECLARE
 SUBTYPE code IS CHAR(1 CHAR);
 c CHAR(1 CHAR) := 'A';
 d CODE;
BEGIN
 d := c;
END;
/

Characters and strings cannot specify character ranges. They can only set the maximum size.
This differs from the subtyping behaviors of numbers because they can restrict ranges.

Globalization raises a host of issues with how you use variable-length strings. You should
consider using NCHAR datatypes when managing multiple character sets or Unicode.

LONG and LONG RAW Datatypes The LONG and LONG RAW datatypes are only provided for
backward compatibility. You should use the CLOB or NCLOB where you would use a LONG and
the BLOB or BFILE instead of a LONG RAW. The LONG datatype stores character streams, and the
LONG RAW stores binary strings.

The LONG and LONG RAW datatypes stores variable-length character strings up to 32,760
bytes in your PL/SQL programs. This limitation is much smaller than the 2 gigabytes that you can
store in LONG or LONG RAW database columns. The LONG and LONG RAW datatype maximum
size is actually smaller than the maximum for the CHAR, NCHAR, VARCHAR2, and NVARCHAR2
datatypes, and it is dwarfed by the 8 to 128 terabytes of the LOB datatypes.

The following are the prototypes for declaring the LONG and LONG RAW datatypes:

LONG [NOT NULL]
LONG RAW [NOT NULL]

Chapter 3: Language Fundamentals 67

You can use the NOT NULL clause to ensure a value is assigned to LONG and LONG RAW
variables. The general practice is to not restrict these datatypes without some other compelling
business rationale.

The LONG and LONG RAW datatypes can be declared with a default null value by

var1 LONG; -- Implicitly sized at 0 byte.
var2 LONG RAW; -- Implicitly sized at 0 byte.

You can define variables of these types and assign values by using the following syntax:

var1 LONG := 'CAR';
var2 LONG RAW := HEXTORAW('43'||'41'||'52'); -- CAR assigned in Hexadecimal.

While the LONG datatype is easy to use, it is tiny by comparison to the CLOB and NCLOB
datatypes. The CHAR or VARCHAR2 datatypes also store seven bytes more character data than the
LONG datatype.

TIP
You should consider using variable datatypes that map to your column
datatypes because over time it is simpler (cheaper) for maintenance
programmers to support. It is advisable that you migrate LONG column
datatypes to LOBs.

You should note that the HEXTORAW() function is required to convert hexadecimal streams
into raw streams before assignment to LONG RAW datatypes. An attempt to assign an unconverted
character stream raises an ORA-06502 as a hexadecimal-to-raw conversion error. Also, you
should note that the LONG RAW data stream is not interpreted by PL/SQL.

ROWID and UROWID Datatypes The ROWID datatype maps to the pseudocolumn ROWID in any
Oracle database table. You can convert it from a ROWID to an 18-character string by using the
ROWIDTOCHAR() function, or back from a character string using the CHARTOROWID() function.
Appendix J covers these two built-in functions. An invalid conversion between a string and a
ROWID raises a SYS_INVALID_ROWID error.

NOTE
The ROWID datatype is now only provided for backward compatibility,
and it is recommended that you use the universal rowid (UROWID)
data type.

The UROWID datatype is the universal rowid. It works with logical ROWID identifiers stored by
an indexed-organized table, whereas the ROWID datatype doesn’t. You should use the UROWID
value for all Oracle ROWID management in PL/SQL programs, and when you are working with
non-Oracle ROWID values.

The following are the prototypes for declaring the ROWID and UROWID datatypes:

ROWID
UROWID

Implicit conversion works well for both ROWID and UROWID types. There is seldom any need
to use either the ROWIDTOCHAR()or CHARTOROWID() function.

68 Oracle Database 11g PL/SQL Programming

VARCHAR2 Datatype The VARCHAR2 datatype is a base datatype for variable-length strings. You
can size a VARCHAR2 datatype up to 32,767 bytes in length. Unfortunately, a PL/SQL VARCHAR2
datatype can be larger than the 4,000-byte maximum stored in a SQL VARCHAR2 column. You
can store character strings larger than 4,000 bytes in CLOB or LONG columns. Oracle recommends
you use the CLOB datatype because the LONG datatype is only supported for backward
compatibility purposes.

The following is the prototype for declaring a VARCHAR2 datatype:

VARCHAR2(maximum_size [BYTE | CHAR]) [NOT NULL]

You can use the NOT NULL clause to ensure a value is assigned to a VARCHAR2 variable. The
general practice is to not restrict variable-length strings without some other compelling business
rationale. You should consider creating a subtype that enforces the constraint.

You may notice that the physical size is required for VARCHAR2 datatypes, whereas it is
optional for the CHAR datatype and its subtypes. Physical size is required because the database
needs to know how much space to allocate for a variable using this datatype. When you size a
VARCHAR2 variable with 2,000 or more bytes of space, the PL/SQL engine only allocates enough
space to manage the physical data value. This typically optimizes your program run time.

TIP
Oracle 11g allocates 1,999 bytes when you declare a VARCHAR2
variable of 1,999 bytes regardless of the physical size of your data.
Large variable-length strings should always be defined to be 2,000
bytes or greater.

There are three ways to define a VARCHAR2 variable with a default null value:

var1 VARCHAR2(100); -- Explicitly sized at 100 byte.
var2 VARCHAR2(100 BYTE); -- Explicitly sized at 100 byte.
var3 VARCHAR2(100 CHAR); -- Explicitly sized at 100 character.

When you use character space allocation, the maximum size changes, depending on the
character set of your database. Some character sets use two or three bytes to store characters.
You divide 32,767 by the number of bytes required per character, which means the maximum
for a VARCHAR2 is 16,383 for a two-byte character set and 10,922 for a three-byte character set.

The STRING and VARCHAR datatypes are subtypes of the VARCHAR2 datatype. They both
have the same value range as the VARCHAR2 base type. They are effectively aliases and formally
known as unconstrained subtypes. Assignments between variables of these subtypes are implicitly
converted, provided the variables have the same size.

The size for strings has two factors: the number of units allotted and the type of units allotted.
A string of three characters (derived from the character set) cannot fit in a string of three bytes,
and more naturally a string of three characters cannot fit in a string of two characters. Any attempt
to make that type of assignment raises an ORA-06502, which means a character string buffer is
too small to hold a value.

You can declare a VARCHAR2 subtype by using the following prototype:

SUBTYPE subtype_name IS base_type(maximum_size [BYTE | CHAR]) [NOT NULL];

The following example creates a constrained subtype DB_STRING:

Chapter 3: Language Fundamentals 69

DECLARE
 SUBTYPE db_string IS VARCHAR2(4000 BYTE);
 c VARCHAR2(1 CHAR) := 'A';
 d DB_STRING;
BEGIN
 d := c;
END;
/

The example creates a subtype that cannot exceed the physical limit for a VARCHAR2 column. It
works uniformly regardless of the database character set. This can be useful when you want to
ensure compliance to physical database limits in PL/SQL code blocks.

Strings cannot specify character ranges the way that number subtypes can specify number
ranges. They can only set the maximum size, which can be overridden by declaring the subtype
with a new maximum size less than or equal to 32,767 bytes.

Globalization raises a host of issues with how you use variable-length strings. You should
consider using NVARCHAR2 datatypes when managing multiple character sets or Unicode.

Dates, Times, and Intervals
The DATE datatype is the base type for dates, times, and intervals. There are two subtypes to
manage intervals and three to manage timestamps. The next three subsections cover date,
intervals, and timestamps.

DATE Datatype The DATE datatype in Oracle contains an actual timestamp of activity. The
valid range is any date from January 1, 4712 BCE (Before Common Era) to December 31, 9999
CE (Common Era). The most common way to capture a timestamp is to assign the SYSDATE or
SYSTIMESTAMP built-in function. They both return fully qualified dates and contain all field
elements of a DATE variable or column. The field index for a DATE datatype are in Table 3-2.

Field Name Valid Range Valid Internal Values
YEAR –4712 to 9999 (excluding year 0) Any nonzero integer
MONTH 01 to 12 0 to 11
DAY 01 to 31 (limited by calendar rules) Any nonzero integer
HOUR 00 to 23 0 to 23
MINUTE 00 to 59 0 to 59
SECOND 00 to 59 0 to 59.9 (where tenths are the

fractional interval second)
TIMEZONE_HOUR –12 to 14 (range adjusts for

daylight saving time changes)
Not applicable

TIMEZONE_
MINUTE

00 to 59 Not applicable

TIMEZONE_
REGION

Value in V$TIMEZONE_NAMES Not applicable

TIMEZONE_ABBR Value in V$TIMEZONE_NAMES Not applicable

TABLE 3-2 DATE Datatype Field Index

70 Oracle Database 11g PL/SQL Programming

The following is the prototype for declaring a DATE datatype:

DATE [NOT NULL]

You can use the NOT NULL clause to ensure a value is assigned to a DATE variable. There are
many cases where you will want to restrict DATE variables. If you don’t restrict them, then you’ll
need to wrap them in NVL() built-in functions to support logical comparisons.

You can define a DATE variable with a default null or initialized value, as shown:

var1 DATE; -- Implicitly assigns a null value.
var2 DATE := SYSDATE; -- Explicitly assigns current server timestamp.
var3 DATE := SYSDATE + 1; -- Explicitly assigns tomorrow server timestamp.
var4 DATE := '29-FEB-08'; -- Explicitly assigns leap year day for 2008.

The TO_DATE() function can also convert non-conforming date formats into valid DATE
values. Alternatively, the CAST() function also works with the default format mask. The default
format masks for dates are DD-MON-RR or DD-MON-YYYY.

Use the TRUNC(date_variable) when you want to extract a date from a timestamp. This
is useful when you want to find all transactions that occurred on a particular day. By default the
TRUNC() built-in function shaves off the time, making a date with 00 hours, 00 minutes, and 00
seconds. The following program demonstrates the concept:

DECLARE
 d DATE := SYSDATE;
BEGIN
 dbms_output.put_line(TO_CHAR(TRUNC(d),'DD-MON-YY HH24:MI:SS'));
END;
/

Running this script produces this:

31-JUL-07 00:00:00

The EXTRACT() built-in function also lets you capture the numeric month, year, or day from
a DATE value. Appendix J lists other functions that let you manipulate DATE datatypes.

You can declare a DATE subtype by using the following prototype:

SUBTYPE subtype_name IS base_type [NOT NULL];

You should note that as when using the character subtypes, you cannot set a date range.
Creating a DATE subtype that requires a value is possible. Using DATEN for a null required DATE
follows the convention used by the NATURALN and POSITVEN subtypes.

Interval Subtypes You have two DATE subtypes that let you manage intervals: INTERVAL DAY
TO SECOND and INTERVAL YEAR TO MONTH. Their prototypes are

INTERVAL DAY[(leading_precision)] TO SECOND[(fractional_second_precision)]
INTERVAL YEAR[(precision)] TO MONTH

The default value for the day’s leading precision is 2, and the second’s fractional second precision
is 6. The default value for the year’s precision is 2.

Chapter 3: Language Fundamentals 71

You can define an INTERVAL DATE TO SECOND variable with a default null or initialized
value, as shown:

var1 INTERVAL DAY TO SECOND; -- Implicitly accept default precisions.
var2 INTERVAL DAY(3) TO SECOND; -- Explicitly set day precision.
var3 INTERVAL DAY(3) TO SECOND(9); -- Explicitly set day and second precision.

You assign a variable value by using the following prototype for an INTERVAL DAY TO
SECOND datatype, where D stands for day and HH:MI:SS stands for hours, minutes, and seconds
respectively:

variable_name := 'D HH:MI:SS';

An actual assignment to the same type would look like

var1 := '5 08:21:20'; -- Implicit conversion from the string.

You can declare an INTERVAL YEAR TO MONTH variable with a default null or initialized
value, as shown:

var1 INTERVAL YEAR TO MONTH; -- Implicitly accept default precisions.
var2 INTERVAL YEAR(3) TO MONTH; -- Explicitly set year precision.

There are four assignments methods. The following program demonstrates an assignment
to var2:

 DECLARE
 var2 INTERVAL YEAR(3) TO MONTH;
 BEGIN
 -- Shorthand for a 101 year and 3 month interval.
 var2 := '101-3';
 var2 := INTERVAL '101-3' YEAR TO MONTH;
 var2 := INTERVAL '101' YEAR;
 var2 := INTERVAL '3' MONTH;
END;
/

This would output the following values, respectively:

+101-03
+101-03
+101-00
+000-03

Arithmetic operations between the DATE datatype and interval subtypes follow the rules in
Table 3-3. The classic operation is an interval calculation, like subtracting one timestamp from
another to get the number of days between dates.

The intervals simplify advanced comparisons but do require a bit of work to master. More
information on this SQL and PL/SQL datatype is in the Oracle Database SQL Language Reference
and the Oracle Database Advanced Application Developer’s Guide.

72 Oracle Database 11g PL/SQL Programming

TIMESTAMP Subtypes The TIMESTAMP subtype extends the DATE base type by providing a
more precise time. You’ll get the same results if the TIMESTAMP variable is populated by calling
the SYSDATE built in. The SYSTIMESTAMP provides a more precise time dependent on platform.

The following is the prototype for declaring a TIMESTAMP datatype:

TIMESTAMP[(precision)] [NOT NULL]

You can use the NOT NULL clause to ensure a value is assigned to a TIMESTAMP variable.
There are many cases where you will want to restrict TIMESTAMP variables. If you don’t restrict
them, then you’ll need to wrap them in NVL() built-in functions to support logical comparisons.

You can define a TIMESTAMP variable with a default null or initialized value, as shown:

var1 TIMESTAMP; -- Implicitly assigns a null value.
var2 TIMESTAMP := SYSTIMESTAMP; -- Explicitly assigns a value.
var3 TIMESTAMP(3); -- Explicitly sets precision for null value.
var4 TIMESTAMP(3) := SYSTIMESTAMP; -- Explicitly sets precision and value.

The following program demonstrates the difference between the DATE and TIMESTAMP
datatypes:

DECLARE
 d DATE := SYSTIMESTAMP;
 t TIMESTAMP(3) := SYSTIMESTAMP;
BEGIN
 dbms_output.put_line('DATE ['||d||']');
 dbms_output.put_line('TO_CHAR ['||TO_CHAR(d,'DD-MON-YY HH24:MI:SS')||']');
 dbms_output.put_line('TIMESTAMP ['||t||']');
END;
/

The anonymous block returns

Operand 1 Type Operator Operand 2 Type Result Type

Timestamp + Interval Timestamp

Timestamp - Interval Timestamp

Interval + Timestamp Timestamp

Timestamp - Interval Interval

Interval + Interval Interval

Interval - Interval Interval

Interval * Numeric Interval

Numeric * Interval Interval

Interval / Numeric Interval

TABLE 3-3 Timestamp and Interval Arithmetic

Chapter 3: Language Fundamentals 73

DATE [31-JUL-07]
TO_CHAR [31-JUL-07 21:27:36]
TIMESTAMP [31-JUL-07 09.27.36.004 PM]

The other two timestamp subtypes demonstrate similar behaviors. Their prototypes are

TIMESTAMP[(precision)] WITH TIME ZONE
TIMESTAMP[(precision)] WITH LOCAL TIME ZONE

You can declare a TIMESTAMP WITH TIME ZONE variable with a default null or initialized
value, as shown:

var1 TIMESTAMP WITH LOCAL TIME ZONE;
var2 TIMESTAMP WITH LOCAL TIME ZONE := SYSTIMESTAMP;
var3 TIMESTAMP(3) WITH LOCAL TIME ZONE;
var4 TIMESTAMP(3) WITH LOCAL TIME ZONE := SYSTIMESTAMP;

The difference between these timestamps is that those with time zones append the time zone
to the timestamp. The time zone qualifier returns the standard time and an indicator whether the
time zone is using daylight saving time. The local time zone qualifier returns the difference
between the local time and Greenwich Mean Time (GMT).

Unicode Characters and Strings
Unicode characters and strings exist to support globalization. Globalization is accomplished by
using character encoding that supports multiple character sets. AL16UTF16 or UTF8 encoding
are provided by the Oracle database. AL16UTF16 encoding stores all characters in two physical
bytes, while UTF8 encoding stores all characters in three physical bytes.

The NCHAR datatype is a Unicode equivalent to the CHAR datatype, and the NVARCHAR2
datatype is a Unicode equivalent to the VARCHAR2 datatype. You should use these datatypes
when building applications that will support multiple character sets in the same database.

NCHAR Datatype The NCHAR datatype is a base datatype for variable Unicode strings. The
NCHAR datatype shares the 32,767 bytes maximum length for other character and string
datatypes. You can store a maximum length of 16,383 (32,767 divided by 2) characters using
AL16UTF16 encoding or 10,922 (32,767 divided by 3) characters using UTF8 encoding.

Like the CHAR datatype, the NCHAR datatype is also a fixed-length string datatype. A fixed-
length string sets the physical size of the variable in memory notwithstanding the actual size of
the value inside the variable.

The PL/SQL NCHAR datatype can be larger than the 4,000-byte maximum stored in a SQL
NCHAR column. You should store Unicode character strings larger than 4,000 bytes in NCLOB
columns.

The following is the prototype for declaring a NCHAR datatype:

NCHAR[(maximum_size)] [NOT NULL]

You may notice that the physical size for NCHAR datatype differs from that of the CHAR and
VARCHAR2 datatypes. There is no option to specify bytes or characters when declaring the space
allocation for NCHAR variables. Unicode space is always allocated in characters by a numeric
literal.

74 Oracle Database 11g PL/SQL Programming

You can use the NOT NULL clause to ensure a value is assigned to a NCHAR variable.
The general practice is to not restrict string variables without some other compelling business
rationale.

There is only one way to define a NCHAR variable with a default null value:

var1 NCHAR; -- Implicitly sized at 1 character.

var1 NCHAR(100); -- Explicitly sized at 100 character.

You can declare a NCHAR subtype by using the following prototype:

SUBTYPE subtype_name IS base_type(maximum_size) [NOT NULL];

The maximum size changes are dependent on the Unicode character encoding. As mentioned,
the maximum is 16,383 characters using AL16UTF16 encoding or 10,922 characters using UTF8
encoding. Any attempt to specify a maximum size with a BYTE keyword raises an error disallowing
the byte semantic, which is a PLS-00639 error code.

Globalization is best suited to NCHAR or NVARCHAR2 datatypes. You should use these types
when the database supports Unicode or may support it in the future.

NVARCHAR2 Datatype The NVARCHAR2 datatype is a base datatype for variable Unicode
strings. NVARCHAR2 datatypes share the 32,767 bytes maximum length for other character and
string datatypes. You can store a maximum length of 16,383 (32,767 divided by 2) characters
using AL16UTF16 encoding or 10,922 (32,767 divided by 3) characters using UTF8 encoding.

Like other character types, the PL/SQL NVARCHAR2 datatype can be larger than the 4,000-
byte maximum stored in a SQL NVARCHAR2 column. You should store Unicode character strings
larger than 4,000 bytes in NCLOB columns.

The following is the prototype for declaring a NVARCHAR2 datatype:

NVARCHAR2(maximum_size) [NOT NULL]

You may notice that the physical size for NVARCHAR2 datatype differs from that of the CHAR
and VARCHAR2 datatypes. There is no option to specify bytes or characters when declaring the
space allocation for NVARCHAR2 variables. Unicode space is always allocated in characters by
a numeric literal.

You can use the NOT NULL clause to ensure a value is assigned to a NVARCHAR2 variable.
The general practice is to not restrict string variables without some other compelling business
rationale. You should consider creating a subtype that enforces the constraint.

There is only one way to define a NVARCHAR2 variable with a default null value:

var1 NVARCHAR2(100); -- Explicitly sized at 100 character.

You can define a NVARCHAR2 subtype by using the following prototype:

SUBTYPE subtype_name IS base_type(maximum_size) [NOT NULL];

The maximum size changes are dependent on the Unicode character encoding. As mentioned,
the maximum is 16,383 characters using AL16UTF16 encoding or 10,922 characters using UTF8
encoding. Any attempt to specify a maximum size with a BYTE keyword raises an error disallowing
the byte semantic, which is a PLS-00639 error code.

Globalization is best suited to NCHAR or NVARCHAR2 datatypes. You should use these types
when the database supports Unicode or may support it in the future.

Chapter 3: Language Fundamentals 75

Numbers
There are four principal number datatypes. The datatypes are the BINARY_INTEGER, IEEE 754-
format (BINARY_DOUBLE and BINARY_FLOAT), NUMBER, and PLS_INTEGER. The BINARY_
INTEGER and PLS_INTEGER datatypes are identical, and they both use the native operating
system math libraries. Oracle uses PLS_INTEGER to describe both BINARY_INTEGER and PLS_
INTEGER as interchangeable, and so does this book.

IEEE 754–format numbers both provide single- and double-precision numbers to support
scientific computing. The NUMBER datatype uses a custom library provided as part of the Oracle
11g Database. It can store very large fixed-point or floating-point numbers.

BINARY_INTEGER Datatype The BINARY_INTEGER datatype is identical to PLS_INTEGER
and stores integer numbers from –2,147,483,648 to 2,147,483,647 as 32 bits or 4 bytes. Like the
PLS_INTEGER type, it computes more efficiently within its number range and takes much less
space than a NUMBER datatype in memory. Math operations using two BINARY_INTEGER variables
that yield a result outside of the datatype range will raise an ORA-01426 numeric overflow error.

The following is the prototype for declaring a BINARY_INTEGER datatype:

BINARY_INTEGER

You can define a BINARY_INTEGER variable with null value or initialized during declaration.
The syntax for both follows:

var1 BINARY_INTEGER;
var2 BINARY_INTEGER := 21;

The BINARY_INTEGER uses native math libraries, and as such the declaration statement does
not allocate memory to store the variable until a value is assigned.

You can define a BINARY_INTEGER subtype by using the following prototype:

SUBTYPE subtype_name IS base_type [RANGE low_number..high_number] [NOT NULL];

There are several predefined subtypes of the BINARY_INTEGER type. The NATURAL and
POSITIVE subtypes restrict their use to only positive integer values. The NATURALN and
POSITIVEN subtypes restrict null assignments. A PLS-00218 error is raised when you attempt to
declare a NATURALN or POSITIVEN without initializing the value. They both enforce a not-null
constraint on the datatype.

The newest subtype is the SIMPLE_INTEGER datatype introduced in Oracle 11g. It truncates
overflow and suppresses the raising of any error related to overflow. The performance of the
SIMPLE_INTEGER type is dependent on the value of the plsql_code_type database
parameter. The performance is superior when plsql_code_type is set to NATIVE because
arithmetic operations are performed with the operating system libraries and both overflow and
null value checking are disabled. Performance is slower when the plsql_code_type is set
to INTERPRETED because it prevents overload and performs null value checking.

NOTE
Overloading behavior of base types and subtypes in PL/SQL packages
is typically disallowed, but the same name or positional formal
parameter can be overloaded by using PLS_INTEGER or BINARY_
INTEGER in one signature and SIMPLE_INTEGER in another.

76 Oracle Database 11g PL/SQL Programming

You should also know that a casting operation from a PLS_INTEGER or BINARY_INTEGER
to a SIMPLE_INTEGER does no conversion unless the value is null. A run-time error is thrown
when casting a null value to a SIMPLE_INTEGER variable.

IEEE 754–Format Datatype IEEE 754–format single-precision and double-precision numbers are
provided to support scientific computing. They bring with them traditional overflow and infinities
problems as part of their definition and implementation.

Both the SQL and PL/SQL environments define the BINARY_FLOAT_NAN and BINARY_
FLOAT_INFINITY constants. The PL/SQL environment also defines four other constants. All
six are found with their values in Table 3-4.

NOTE
Oracle 11g Database documentation does not list these constants in
the reserved word or keyword lists. They can be found by printing
them from a PL/SQL program or querying the V$RESERVED_WORDS
table.

The following is the prototype for declaring IEE-754 datatypes:

BINARY_DOUBLE
BINARY_FLOAT

You can define variables of these types with null values or initialize them during declaration.
The syntax for both follows:

var1 BINARY_DOUBLE;
var2 BINARY_DOUBLE := 21d;
var3 BINARY_FLOAT;
var4 BINARY_FLOAT := 21f;

Constant Name Environment Value
BINARY_FLOAT_NAN SQL &

PL/SQL
It contains Nan, but comparison
operations treat it as a case-
insensitive string. NaN in scientific
notation means Not a Number.

BINARY_FLOAT_INFINITY SQL &
PL/SQL

It contains Inf, but comparison
operations treat it as a case-
insensitive string.

BINARY_FLOAT_MIN_NORMAL PL/SQL It contains 1.17549435E-038.
BINARY_FLOAT_MAX_NORMAL PL/SQL It contains 3.40282347E+038.
BINARY_FLOAT_MIN_SUBNORMAL PL/SQL It contains 1.40129846E-045.
BINARY_FLOAT_MAX_SUBNORMAL PL/SQL It contains 1.17549421E-038.

TABLE 3-4 IEEE-754 Constants

Chapter 3: Language Fundamentals 77

You must always use a d for numeric literals assigned to a BINARY_DOUBLE and an f for
numeric literals assigned to a BINARY_FLOAT. The Oracle 11g Database overloads subroutines
that leverage the processing speed of these IEEE-754 datatypes.

You can also define a BINARY_DOUBLE or BINARY_FLOAT subtype by using the following
prototype:

SUBTYPE subtype_name IS base_type [NOT NULL];

You should note that unlike other number datatypes, these cannot be range constrained. The
only constraint that you can impose is that the subtypes disallow null value assignments.

NUMBER Datatype The NUMBER datatype uses a custom library provided as part of the Oracle
11g Database. It can store numbers in the range of 1.0E-130 (1 times 10 raised to the negative
130th power) to 1.0E126 (1 times 10 raised to the 126th power). Oracle recommends using the
NUMBER datatype only when the use or computation result falls in the range of possible values.
The NUMBER datatype does not raise a NaN (not a number) or infinity error when a literal or
computational value is outside the datatype range. These exceptions have the following outcomes:

A literal value below the minimum range value stores a zero in a NUMBER variable.

A literal value above the maximum range value raises a compilation error.

A computational outcome above the maximum range value raises a compilation error.

The NUMBER datatype supports fixed-point and floating-point numbers. Fixed-point numbers
are defined by specifying the number of digits (known as the precision) and the number of digits
to the right of the decimal point (known as the scale). The decimal point is not physically stored
in the variable because it is calculated by the relationship between the precision and the scale.

The following is the prototype for declaring a fixed-point NUMBER datatype:

NUMBER[(precision, [scale])] [NOT NULL]

Both precision and scale are optional values when you declare a NUMBER variable. The
NUMBER datatype default size, number of digits, or precision is 38. You can declare a NUMBER
variable with only the precision, but you must specify the precision to define the scale.

You can declare fixed-point NUMBER variables with null values or define them during
declaration. The syntax for NUMBER datatype declarations with null values is

var1 NUMBER; -- A null number with 38 digits.
var2 NUMBER(15); -- A null number with 15 digits.
var3 NUMBER(15,2); -- A null number with 15 digits and 2 decimals.

The syntax for NUMBER datatype declarations with initialized values is

var1 NUMBER := 15; -- A number with 38 digits.
var2 NUMBER(15) := 15; -- A number with 15 digits.
var3 NUMBER(15,2) := 15.22; -- A number with 15 digits and 2 decimals.

You can also declare fixed-point numbers by using the DEC, DECIMAL, and NUMERIC
subtypes. Alternatively, you can declare integers using the INTEGER, INT, and SMALLINT
subtypes. They all have the same maximum precision of 38.

■

■

■

78 Oracle Database 11g PL/SQL Programming

The following are prototypes for declaring a floating-point NUMBER datatype, known as
DOUBLE PRECISION or FLOAT subtypes:

DOUBLE PRECISION[(precision)]
FLOAT[(precision)]

Defining the precision of DOUBLE PRECISION or FLOAT variables is optional. You risk losing
the natural precision of a floating-point number when you constrain the precision. Both of these
variables have a default size, number of digits, or precision of 126. You can define the precision
of a FLOAT variable, but not the scale. Any attempt to define the scale of either of these subtypes
raises a PLS-00510 error because they cannot have a fixed number of digits to the right of the
decimal point.

The syntax for DOUBLE PRECISION or FLOAT declarations with null values is

var1 DOUBLE PRECISION; -- A null number with 126 digits.
var2 FLOAT; -- A null number with 15 digits.
var3 DOUBLE PRECISION; -- A null number with 126 digits.
var4 FLOAT(15); -- A null number with 15 digits.

The syntax for DOUBLE PRECISION or FLOAT declarations with initialized values is

var1 DOUBLE PRECISION := 15; -- A number with 126 digits.
var2 FLOAT := 15; -- A number with 126 digits.
var3 DOUBLE PRECISION(15) := 15; -- A number with 15 digits.
var4 FLOAT(15) := 15; -- A number with 15 digits.

You also have the REAL subtype of NUMBER that stores floating-point numbers but only uses
a precision of 63 digits. The REAL subtype provides 18-digit precision to the right of the decimal
point.

PLS_INTEGER Datatype The PLS_INTEGER and BINARY_INTEGER datatypes are identical and
use operating system–specific arithmetic for calculations. They can store integer numbers from –
2,147,483,648 to 2,147,483,647 as 32 bits or 4 bytes. The PLS_INTEGER takes much less space
than a NUMBER datatype to store in memory. It also computes more efficiently, provided the
numbers and result of the math operation are within its number range. You should note that any
math operation that yields a result outside of the range will raise an ORA-01426 numeric overflow
error. The error is raised even when you assign the result of the mathematical operation to a
NUMBER datatype.

The following is the prototype for defining a NVARCHAR2 datatype:

PLS_INTEGER

You can declare a PLS_INTEGER variable with a null value or initialized during declaration.
The syntax for both follows:

var1 PLS_INTEGER; -- A null value requires no space.
var2 PLS_INTEGER := 11; -- An integer requires space for each character.

The PLS_INTEGER uses native math libraries, and as such, the declaration statement doesn’t
allocate memory to store the variable until a value is assigned. You can test this by using the
LENGTH() built-in function.

Chapter 3: Language Fundamentals 79

You can declare a PLS_INTEGER subtype by using the following prototype:

SUBTYPE subtype_name IS base_type [RANGE low_number..high_number] [NOT NULL];

NOTE
Don’t confuse a PLS_INTEGER with an INTEGER. The former uses
operating system mathematics libraries, while the latter is a subtype of
the NUMBER base type.

Large Objects (LOBs)
Large objects (LOBs) provide you with four datatypes – BFILE, BLOB, CLOB, and NCLOB. The
BFILE is a datatype that points to an external file, which limits its maximum size to 4 gigabytes.
The BLOB, CLOB and NCLOB are internally managed types, and their maximum size is 8 to 128
terabytes, depending on the db_block_size parameter value.

LOB columns contain a locator that points to where the actual data is stored. You must access
a LOB value in the scope of a transaction. You essentially use the locator as a route to read data
from or write data to the LOB column. Chapter 8 provides details of how you access LOB columns
and work with LOB datatypes, including the DBMS_LOB built-in package.

BFILE Datatype
The BFILE datatype is a read-only datatype except for setting the virtual directory and file name
for the external file. You use the built-in BFILENAME() function to set locator information for a
BFILE column. Before you use the BFILENAME() function, there are several setup steps. You
must create a physical directory on the server, store the file in the directory, create a virtual
directory that points to the physical directory, and grant read permissions on the directory to
the schema that owns the table or the stored program that accesses the BFILE column.

You retrieve the descriptor (the column name), alias (a virtual directory to the physical
directory location), and filename by using the FILEGETNAME() procedure from the DBMS_LOB
package. The database session_max_open_files parameter sets the maximum number of
open BFILE columns. Chapter 8 assembles how these pieces fit together and provides you with
some stored program units to simplify the process.

The following is the prototype for declaring a BFILE datatype:

BFILE

There is one way to define a BFILE variable, and it always contains a null reference by default:

var1 BFILE; -- Declare a null reference to a BFILE.

The LENGTH() Built-in Function
This behavior is consistent with what you’ll see writing C or C++ programs. When a value
is assigned, the LENGTH() built-in function returns the number of characters, not the
number of bytes required for storage. This means that a PLS_INTEGER with five or six
numbers would appear to have a character length of 5 or 6 respectively but actually only
takes four bytes of space in both cases. This result appears linked to how the NUMBER
datatype works, where NUMBER column values are stored as C single-dimensional character
arrays. The LENGTH() function appears to count the positions in all number datatypes.

80 Oracle Database 11g PL/SQL Programming

A BFILE cannot be defined with a reference unless you write a wrapper to the DBMS_LOB.
FILEGETNAME() procedure. Chapter 8 provides a wrapper function and explanation of the
limitations that require the wrapper function.

BLOB Datatype
The BLOB column is a read-write binary large datatype. BLOB datatypes participate in transactions
and are recoverable. You can only read and write between BLOB variables and database columns
in a transaction scope. BLOB datatypes are objects and treated differently than scalar variables.
They have three possible states: null, empty and populated (not empty). They require initialization
by the empty_blob() function to move from a null reference to an empty state, or a direct
hexadecimal assignment to become populated.

BLOBs can store binary files between 8 and 32 terabytes. Unfortunately, you can only access
BLOB columns by using the DBMS_LOB package to read and write values after the initial assignment
of a value.

PL/SQL lets you declare local BLOB variables in your anonymous and named blocks. However,
you must establish an active link between your program and the stored BLOB column to insert,
append, or read the column value. Generally, you’ll want to only read or store chunks of large
BLOB values, or you may exhaust your system resources.

The following is the prototype for declaring a BLOB datatype:

BLOB

There is one way to declare a BLOB variable with a default null reference:

var1 BLOB; -- Declare a null reference to a BLOB.

There are two ways to define an empty and populated BLOB variable:

var1 BLOB := empty_blob(); -- Declare an empty BLOB.
var2 BLOB := '43'||'41'||'52'; -- Declare a hexadecimal BLOB for CAR.

BLOB datatypes are especially useful when you want to store large image files, movies, or other
binary files. Their utility depends a great deal on how well you write the interface. Chapter 8
discusses ways to handle interactions between BLOB columns and PL/SQL variables.

CLOB Datatype
The CLOB column is a read-write character large datatype. CLOB datatypes participate in
transactions and are recoverable. You can only read and write between CLOB variables and
database columns in a transaction scope. CLOB datatypes are objects like the BLOB and are
treated differently than scalar variables. They also have three possible states: they can be null,
empty, or populated (not empty). CLOBs require initialization by the empty_clob() function to
move from a null reference to an empty state, or from a direct character assignment to becoming
populated.

CLOBs can store character files between 8 and 32 terabytes. CLOBs also suffer from the same
limitation as non-Unicode variable types. Space allocation is in bytes, while the Unicode encoding
is done in characters defined by 2 or 3 bytes each. As with BLOBs, you can only access CLOB
columns by using the DBMS_LOB package to read and write values after the initial assignment
of a value.

PL/SQL lets you declare local CLOB variables in your anonymous and named blocks. As with
BLOBs, you must establish an active link between your program and the stored CLOB column to

Chapter 3: Language Fundamentals 81

insert, append, or read the column value. Generally, you’ll want to only read or store chunks of
large CLOB values, or you may exhaust your system resources.

The following is the prototype for declaring a CLOB datatype:

CLOB

There is one way to define a CLOB variable with a default null reference:

var1 CLOB; -- Declare a null reference to a CLOB.

There are two ways to define an empty CLOB variable and a populated one:

var1 CLOB := empty_clob(); -- Declare an empty CLOB.
var2 CLOB := 'CAR'; -- Declare a CLOB for CAR.

CLOB datatypes are especially useful when you want to store large text files. Examples of
large text files are customer notes that support transactions, refunds, or other activities. Large text
elements are suited to reading and writing only small chunks at a time. Otherwise, you’ll exhaust
your system resources. Chapter 8 discusses ways to handle interactions between CLOB columns
and PL/SQL variables.

NCLOB Datatype
The NCLOB column is a read-write Unicode character large datatype. NCLOB datatypes participate
in transactions and are recoverable. You can only read and write between NCLOB variables and
database columns in a transaction scope. NCLOB datatypes are objects like the BLOB and CLOB
and are treated differently than scalar variables. They also have three possible states. They can be
null, empty, or populated (not empty). NCLOBs require initialization by the same empty_clob()
function used to initialize a CLOB variable or column. The empty_clob() function changes the
null reference to an empty state. Alternatively, you can make a direct character string assignment
to populate the variable.

NCLOBs can store Unicode character files between 8 and 32 terabytes. Unicode character
string limitations set the maximum size relative to the database character set. Some character
sets use 2 or 3 bytes to store characters. You divide the maximum size (8 to 32 gigabytes) by
the number of bytes required per character, which means the maximum for a NCLOB is 4 to 16
gigabyte for a 2-byte character set (AL16UTF16), and 2.67 to 8.66 gigabyte for a 3-byte character
set (UTF8). As with BLOBs and CLOBs, you can only access NCLOB columns by using the DBMS_
LOB package to read and write values after the initial assignment of a value.

PL/SQL lets you declare local NCLOB variables in your anonymous and named blocks. As
with BLOBs and CLOBs, you must establish an active link between your program and the stored
NCLOB column to insert, append, or read the column value. Generally, you’ll want to only read or
store chunks of large NCLOB values, or you may exhaust your system resources.

The following is the prototype for declaring a NCLOB datatype:

NCLOB

There is one way to define a NCLOB variable with a default null reference:

var1 NCLOB; -- Declare a null reference to a NCLOB.

There are two ways to define an empty and populated NCLOB variable:

var1 NCLOB := empty_clob(); -- Declare an empty NCLOB.
var2 NCLOB := 'CAR'; -- Declare a NCLOB for CAR.

82 Oracle Database 11g PL/SQL Programming

NCLOB datatypes are especially useful when you want to store large text files. Examples of
large text files are customer notes that support transactions, refunds, or other activities. Large text
elements are suited to reading and writing only small chunks at a time. Otherwise, you’ll exhaust
your system resources. Chapter 8 discusses ways to interact between NCLOB columns and PL/SQL
variables.

Composite Datatypes
There are two composite generalized datatypes: records and collections. A record, also known
as a structure, typically contains a collection of related elements like a normalized database table.
Collections are sets of like things. The things can be scalar variables, large objects, user-defined
objects (see Chapter 8), or records.

The next two subsections describe the declaration of records and collections. The book
implements records throughout the book. While records are not primitives, they are essential
structures in the language. Chapter 7 covers collections in detail.

Records
A record datatype is a structure. A structure is a composite variable that contains a list of variables
that typically have names and different datatypes. You define a record datatype either implicitly or
explicitly. There are restrictions on the use of implicitly built records. You cannot use an implicitly
built record in an array. The %ROWTYPE enables you to define an implicitly anchored record type.
When you want to build a record and use it in another record or array, you must build the record
explicitly.

The following is the prototype for explicitly defining a record datatype:

TYPE type_name IS RECORD
(element1 sql_datatype | plsql_datatype [NOT NULL][[DEFAULT | :=] literal]
, element2 sql_datatype | plsql_datatype [NOT NULL][[DEFAULT | :=] literal]
, element(n+1) sql_datatype | plsql_datatype [NOT NULL][[DEFAULT | :=] literal]
);

The sql_datatype of an element in the explicitly defined record type can use an implicitly
anchored column. You anchor the column using %TYPE attribute. The plsql_datatype of an
element in the explicitly defined record type can use an implicitly anchored record type (using
the %ROWTYPE). After you define the record type, it is available as a local datatype. You can
declare a variable using the record datatype in both anonymous- and named-block programs.

The following demonstrates declaration of an initialized structure:

DECLARE
 TYPE demo_record_type IS RECORD
 (id NUMBER DEFAULT 1
 , value VARCHAR2(10) := 'One');
 demo DEMO_RECORD_TYPE;
BEGIN
 dbms_output.put_line('['||demo.id||']['||demo.value||']');
END;
/

The execution block prints the contents of the record by using dot notation. The dot is the
component selector from earlier Table 3-1. The component selector separates the variable and
element names. This is also called attribute chaining in some Oracle documentation.

Chapter 3: Language Fundamentals 83

It is also possible to nest records. You access the names of the nested records by using another
component selector, or period, as shown:

DECLARE
 TYPE full_name IS RECORD
 (first VARCHAR2(10 CHAR) := 'John'
 , last VARCHAR2(10 CHAR) := 'Taylor');
 TYPE demo_record_type IS RECORD
 (id NUMBER DEFAULT 1
 , contact FULL_NAME);
 demo DEMO_RECORD_TYPE;
BEGIN
 dbms_output.put_line('['||demo.id||']');
 dbms_output.put_line('['||demo.contact.first||']['||demo.contact.last||']
END;
/

Records are extremely useful when working with cursors and collections. Chapter 4 covers
cursors because you need to understand iterative control structures to work with them. The next
section, “Collections,” shows how to build collections of records.

Records are exclusively available inside your PL/SQL execution scope. You can define a stored
function to returning a record type, but that limits how you can use the function. SQL can only
access stored functions when they return SQL datatypes. The alternative to returning a record type
is a SQL object type. Chapter 14 covers object types, but you should note they are not available
in Oracle 11g Express Edition. You can also return a record type by using a pipelined function that
converts it into a single row aggregate table. Chapter 6 demonstrates how to implement pipelined
functions.

Collections
Collections are arrays and lists. Arrays differ from lists in that they use a sequentially numbered
index, while lists use a non-sequential numeric or unique string index. Arrays are densely populated
lists because they have sequentially numbered indexes. While lists can have densely populated
numeric indexes, they can also be sparsely populated. Sparsely populated means there are gaps
in a sequence or they are not sequential.

Oracle supports three types of collections. Two are both SQL and PL/SQL datatypes, depending
on how you define them: VARRAY and nested table. The third collection type is a PL/SQL-only
datatype, called an associative array. The associative array is also known as a PL/SQL table or an
index-by table. The subsections demonstrate how to declare collections of VARRAY, nested table,
and associative array types. Chapter 7 covers collections in detail.

VARRAY Datatype The VARRAY datatype is the most like a traditional array. Elements are of
the same type and use a sequential numeric index. This means the index of VARRAY variables
is densely populated. You opt to use a VARRAY when you know the number of items that will go
in the collection before declaring the variable. Like arrays in other programming languages, the
VARRAY cannot grow in size after it is declared. You should use a nested table or associative array
when you aren’t sure whether you know the maximum number values in advance.

There are two prototypes for a VARRAY because you can define it in SQL or PL/SQL. Also,
you should note that the datatype is defined, not declared. This difference occurs because the
VARRAY is an object type. Objects require explicit construction. Chapter 14 on object types
explains more about how you construct objects.

84 Oracle Database 11g PL/SQL Programming

A VARRAY has three states: defined, initialized, or allocated. You define a VARRAY by
assigning it a name and a type. You initialize a VARRAY by calling a constructor, which is always
the same name as the defined VARRAY datatype. You allocate space implicitly or by calling the
EXTEND() method found in the collection API found in Chapter 7.

The following is the SQL prototype to define a VARRAY of scalar variables:

CREATE OR REPLACE TYPE varray_name AS VARRAY(maximum_size)
 OF sql_datatype [NOT NULL];
/

The following prototype defines a VARRAY of any datatype in a PL/SQL block:

TYPE varray_name IS VARRAY(maximum_size) OF [sql_datatype | plsql_datatype]
 [NOT NULL];

Both type definitions specify a fixed size. The maximum size limits the number of elements
that you can store in a VARRAY. You can also define VARRAY variables that use SQL user-defined
objects or PL/SQL record types. Chapter 14 shows you how to build VARRAY variables with user-
defined object types. Chapter 7 shows you how to leverage PL/SQL record types in VARRAY
variables.

There is one prototype for declaring a VARRAY collection, and there are two prototypes for
defining a VARRAY collection. You can define a VARRAY collection as an initialized collection
without allocating any memory, or as an initialized collection with allocated memory. You
allocate memory by using a constructor that puts data into the collection.

The following are the aforementioned prototypes that you would use in a PL/SQL block:

var1 varray_name;
var2 varray_name := varray_name();
var3 varray_name := varray_name(value1, value2, .. ., value9, value10);

Calling the variable name of the VARRAY type without any arguments creates an empty but
initialized variable. A like call of the variable name with arguments creates and allocates values
to the VARRAY. Unless you have specified the not-null constraint, you can allocate space by
assigning null values.

The following code demonstrates declaring a VARRAY of scalar variable:

 DECLARE
 TYPE number_varray IS VARRAY(10) OF NUMBER;
 list NUMBER_VARRAY := number_varray(1,2,3,4,5,6,7,8,NULL,NULL);
 BEGIN
 FOR i IN 1..list.LIMIT LOOP
 dbms_output.put('['||list(i)||']');
 END LOOP;
 dbms_output.new_line;
END;
/

The program prints the following to the console:

[1][2][3][4][5][6][7][8][][]

It initializes the first eight elements with values and last two with nulls. The declaration allocates
space for ten elements by setting all elements to a value, which can include a null. The LIMIT()

Chapter 3: Language Fundamentals 85

method returns the maximum size; it is part of the Oracle Collection API and only applies
to VARRAY variables. You cannot use the DELETE method to remove an element after it is
defined. VARRAY indexes are always densely populated.

Nested Table Datatype The nested table datatype is the more like a numerically indexed list or
Java class. As in the VARRAY, elements are of the same type and use a sequential numeric index.
This means the index of nested table variables is densely populated. You should use a nested table
when you don’t know the number of items that will go in the collection before declaring the
variable. Like lists in other programming languages, the nested table can grow in size after it
is declared.

There are two prototypes for a nested table because you can define it in SQL or PL/SQL. Also,
you should note that the datatype is defined, not declared. This difference occurs because the
nested table is an object type. Objects require an explicit construction. Chapter 14 on object
types explains more about object construction.

A nested table has three states: defined, initialized, or allocated. You define a nested table by
assigning it a name and a type. You initialize a nested table by calling a constructor, which always
has the same name as the defined nested table datatype. You allocate space implicitly or by calling
the EXTEND method found in the collection API described in Chapter 7.

The following is the SQL prototype to define a nested table of scalar variables:

CREATE OR REPLACE TYPE table_name AS TABLE
 OF sql_datatype [NOT NULL];
/

The following prototype defines a nested table of any defined datatype in a PL/SQL block:

TYPE table_name IS TABLE OF [sql_datatype | plsql_datatype]
 [NOT NULL];

Neither type definition sets a maximum size because there is no limit on how many elements
you can store in a nested table. You can also define nested table variables that use SQL user-
defined objects or PL/SQL record types. Chapter 14 shows you how to build nested table
variables with user-defined object types. Chapter 7 shows you how to leverage PL/SQL record
types in nested table variables.

NOTE
Your DBA has set the limit, and when you violate your PGA space
allocation, you’ll raise an exception.

There is one prototype for declaring a nested table collection, and there are two prototypes
for defining a nested table collection. You can define a nested table collection as an initialized
collection without allocating any memory, or as an initialized collection with allocated memory.
You allocate memory by using a constructor that puts data into the collection.

The following are the aforementioned prototypes that you would use in a PL/SQL block:

var1 varray_name;
var2 varray_name := varray_name();
var3 varray_name := varray_name(value1, value2, .. ., value9, value10);

Calling the variable name of the nested table type without any arguments creates an empty
but initialized variable. A like call of the variable name with arguments creates and allocates

86 Oracle Database 11g PL/SQL Programming

values to the nested table. Unless you have specified the not-null constraint, you can also allocate
space by assigning null values.

The following code demonstrates how you declare a nested table of a scalar variable:

DECLARE
 TYPE number_table IS TABLE OF NUMBER;
 list NUMBER_TABLE := number_table(1,2,3,4,5,6,7,8);
BEGIN

list.DELETE(2);
 FOR i IN 1..list.COUNT LOOP
 IF list.EXISTS(i) THEN
 dbms_output.put('['||list(i)||']');
 END IF;
 END LOOP;
 dbms_output.new_line;
END;
/

The program prints the following to the console:

[1][3][4][5][6][7][8]

It initializes the first eight elements with values and last two with nulls. The declaration
allocates space for eight elements. Then, the DELETE method removes the second element from
the list, but it does not remove the allocated space. The deletion makes the index non-sequential.
You can reinsert a new value but only when you reuse the deleted index value. This behavior
differs from a VARRAY, where you cannot remove an element once it is allocated in memory.

The COUNT method returns the number of allocated space elements in any collection type. In
this case, it still returns 7, while only six elements have values. The if-block avoids referencing the
deleted item because the index 2 no longer exists. Chapter 7 demonstrates another work-around
for navigating sparsely populated indexes.

Associative Array Datatype The associative array datatype is the most like a traditional C/C++
linked list. You can index an associative array with numbers or unique strings. If you choose
numbers, they do not have to be sequential. This means the index of an associative array is
sparsely populated. Like a nested table, an associative array is ideal when you don’t know the
number of items that will go in the collection before declaring it. Like lists in other programming
languages, the nested table can grow in size after it is declared. Also, memory is implicitly
allocated during assignment to an associative array.

There is one prototype for an associative array because you can only declare it in PL/SQL. An
associative array is declared like scalar variables because is not an object type, which means it
doesn’t require construction. Unlike scalar variables, you cannot define an associative array
because assignments are made one element at a time.

The following prototype defines an associative array of any datatype and uses a numeric index:

TYPE table_name IS TABLE OF [sql_datatype | plsql_datatype]
 INDEX BY PLS_INTEGER [NOT NULL];

The type definition is very similar to a nested table definition. It has one key difference: it
specifies how the index is kept. An alternative prototype for associative arrays uses a variable-
length string as an index:

Chapter 3: Language Fundamentals 87

TYPE table_name IS TABLE OF [sql_datatype | plsql_datatype]
 INDEX BY VARCHAR2(10) [NOT NULL];

Neither type definitions sets a maximum size because there is no limit on how many elements
you can store in an associative array. The actual limit governs your PGA space allocation.

You can also define associative array variables that use SQL user-defined objects or PL/SQL
record types. Chapter 14 shows you how to build associative array variables with user-defined
object types. Chapter 7 shows you how to leverage PL/SQL record types in associative array
variables.

The following is the prototype that you would use in a PL/SQL block:

var1 assoc_array_name;

The following code demonstrates declaring an associative array of a scalar variable:

 DECLARE
 TYPE number_table IS TABLE OF NUMBER
 INDEX BY PLS_INTEGER;
 list NUMBER_TABLE;
 BEGIN
 FOR i IN 1..6 LOOP

list(i) := i; -- Explicit assignment required for associative arrays.
 END LOOP;

list.DELETE(2);
 FOR i IN 1..list.COUNT LOOP
 IF list.EXISTS THEN
 dbms_output.put('['||set(i)||']');
 END IF;
 END LOOP;
 dbms_output.new_line;
END;
/

The program prints the following to the console:

[1][3][4][5][6]

It initializes the six elements with values inside the execution block. The elements are
populated by direct assignment to indexed elements of the associative array. Then, the DELETE
method removes the second element from the list. Unlike in the VARRAY and nested table,
deleting an element from an associative array also removes the allocated space. The deletion
makes the index non-sequential. You can reinsert a new value with the deleted index value or
a new index value not used. This mirrors the nested table behavior.

The COUNT method returns the number of allocated space elements in any collection type.
The if-block avoids referencing the deleted item because the index 2 no longer exists. Chapter 7
demonstrates another work-around for navigating sparsely populated indexes.

System Reference Cursors
System reference cursors are pointers to result sets in query work areas. A query work area is a
memory region (known as a context area) in the Oracle 11g Database Process Global Area (PGA).
The query work area holds information on the query. You’ll find the rows returned by a query, the

88 Oracle Database 11g PL/SQL Programming

number of rows processed by the query, and a pointer to the parsed query in the query work area.
The query work area resides in the Oracle Shared Pool (see Appendix A).

NOTE
All cursors share the same behaviors whether they are defined as PL/
SQL reference cursor datatypes or ordinary cursors. In fact, every SQL
statement is a cursor processed and tracked in a PGA context area.

You use reference cursors when you want to query data in one program and process it in
another, especially when the two programs are in different programming languages. You have
the option of implementing a reference cursor in two ways: one is strongly typed and the other is
weakly typed. Reference cursors are a PL/SQL only datatype. You can define them in anonymous
or named blocks. They are most useful when you define them in package specifications because
your programs can share them.

There is one prototype but how you choose to implement the cursor defines whether it is
strongly or weakly typed. The prototype is

TYPE reference_cursor_name IS REF CURSOR
 [RETURN catalog_object_name%ROWTYPE];

You create a weakly typed reference cursor by defining it without a return type. A strongly
typed reference cursor has a defined return type. As a rule of thumb, you should use strongly
typed reference cursors when you need to anchor a reference cursor to a catalog object. Weakly
typed reference cursors are ideal when the query returns something other than a catalog object. A
generic weakly typed reference cursor is already defined as SYS_REFCURSOR, and it is available
anywhere in your PL/SQL programming environment.

The power of a reference cursor becomes more significant when you use them inside stored
program units. You can also use reference cursors in anonymous-block programs and assign them
to a SQL*Plus reference environment variable.

You define a SQL*Plus reference cursor environment variable by defining a variable and
pressing ENTER. SQL*Plus statements do not require a semicolon or forward slash to run. The
following creates a weakly typed SQL*Plus reference cursor:

SQL> VARIABLE refcur REFCURSOR

The following program defines and declares a reference cursor before explicitly opening it
and assigning its values to an external session-level variable:

DECLARE
TYPE weakly_typed IS REF CURSOR;
quick WEAKLY_TYPED;
BEGIN
 OPEN quick FOR
 SELECT item_title
 , COUNT(*)
 FROM item
 HAVING (COUNT(*) > 2)
 GROUP BY item_title;

:refcur := quick;
END;
/

Chapter 3: Language Fundamentals 89

The SYS_REFCURSOR generic reference cursor can replace the locally defined reference
cursor type. You can query the session-level variable to see the contents of the reference cursor
with the following:

 SELECT :refcur
 FROM dual;

The query returns the following, provided you’ve run the seeding scripts found in the book’s
introduction:

:REFCUR

CURSOR STATEMENT : 1
CURSOR STATEMENT : 1
ITEM_TITLE COUNT(*)
-- ----------
Harry Potter and the Chamber of Secrets 3
Harry Potter: Goblet of Fire 3
Die Another Day 3
The Lord of the Rings - Two Towers 3
The Lord of the Rings - Fellowship of the Ring 3
Chronicles of Narnia - The Lion, the Witch and the Wardrobe 5
Harry Potter and the Goblet of Fire 3
Pirates of the Caribbean - The Curse of the Black Pearl 3
Pirates of the Caribbean 4
The Lord of the Rings - The Return of the King 3

10 rows selected.

Chapter 6 demonstrates how to use a reference cursor inside functions and procedures.
Reference cursors are extremely useful datatypes when you want to pass a query work area
pointer to an external program. You can pass to an external program by using the Oracle Call
Interface 8 (OCI8) libraries.

Variable Scope
As discussed, PL/SQL is a blocked programming language. Program units can be named or unnamed
blocks. Each programming block establishes its own program scope. Program scope includes a list
of variables (identifiers) that can contain data. A program includes variables defined both in the
header (only applies for named program units) and in the declaration block. They are considering
local to the programming block.

Nested anonymous blocks are the exception to the scope rule. They have access to their
containing PL/SQL block identifiers. This is true whether the containing block is anonymous
or named. Figure 3-6 demonstrates the scope access of nested anonymous-block programs.

You can inadvertently override your scope access to containing blocks by reusing an identifier
in a nested block. This behavior is demonstrated by the following program:

DECLARE
 current_block VARCHAR2(10) := 'Outer';
 outer_block VARCHAR2(10) := 'Outer';
BEGIN
 dbms_output.put_line('[current_block]['||current_block||']');
 DECLARE

90 Oracle Database 11g PL/SQL Programming

 current_block VARCHAR2(10) := 'Inner';
 BEGIN
 dbms_output.put_line('[current_block]['||current_block||']');
 dbms_output.put_line('[outer_block]['||outer_block||']');
 END;
 dbms_output.put_line('[current_block]['||current_block||']');
END;
/

The current_block and outer_block identifiers (local variables) are declared in the
outer anonymous-block program with the value of outer. The current_block identifier is
declared in the nested or inner block with a value of inner, while the outer_block identifier
is not declared in the nested block.

The program renders the following output:

[current_block][Outer]
[current_block][Inner]
[outer_block] [Outer]
[current_block][Outer]

The nested block overrides the scope of the containing block by defining the same identifier.
The containing block has no visibility to the internally declared current_block identifier. This
is the one nuance of scope that can be tricky in PL/SQL.

Another aspect of scope is passing values from one program to a named block. This is done
through the formal parameter list that constitutes the signature of functions and procedures.
Chapter 6 explains how these named blocks receive values as actual parameters and return values.

Summary
This chapter has explained delimiters; how you define, access, and assign values to variables;
anonymous-block and named-block program units, variable types, and how variable scope works
in PL/SQL programs.

FIGURE 3-6 PL/SQL scope reference diagram

CHAPTER
4

Control Structures

91

92 Oracle Database 11g PL/SQL Programming

his chapter examines the control structures in PL/SQL. Control structures let you
make conditional choices, repeat operations, and access data. The IF and CASE
statements let you branch program execution according to one or more conditions.
Loop statements let you repeat behavior until conditions are met. Cursors let you
access data one row or one set of rows at a time.

The chapter is divided into the following sections:

Conditional statements

 IF statements

 CASE statements

 Conditional compilation statements

Iterative statements

 Simple loop statements

 While loop statements

 FOR loop statements

Cursor structures

 Implicit cursors

 Explicit cursors

Bulk statements

 COLLECT BULK statements

 FORALL loop statements

Conditional Statements
There are three types of conditional statements in programming languages: single branching
statements, multiple branching statements without fall-through, and multiple branching statements
with fall-through. To fall through means to process all subsequent conditions after finding a
matching CASE statement. Single branching statements are if-then-else statements. Multiple
branching statements without fall-through are if-then-elsif-then-else statements, and with
fall-through they are case statements. Figure 4-1 demonstrates the logical flow of the first two
conditional statements. The third is not displayed because PL/SQL does not support fall-through,
and PL/SQL implements the case statement like an if-then-elsif-then-else statement.

NOTE
PL/SQL uses the ELSIF reserved word in lieu of two separate
words—else if. This is a legacy from the Pascal and Ada programming
languages.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

T

Chapter 4: Control Structures 93

The diamonds in Figure 4-1 are decision trees. Decision trees represent code branching that
happens because of comparison operations. Comparison operations are frequently called comparison
expressions or expressions because they return a true or false value. True or false comparisons are
straightforward. Not true or not false comparisons are tricky. A not true expression is met when
the value is false or null. A not false expression is met when the value is true or null. When it is
possible an expression may return a null value, you should enclose the expression in an NVL()
built-in and provide an explicit default Boolean value.

PL/SQL supports lexical symbols, symbol sets, and identifiers as valid comparison operators.
Table 4-1 contains a list and definition for symbol comparison operators. Table 4-1 expands the
comparison operator list by providing the comparison operators that are identifiers. Identifiers like
these are reserved words or keywords.

FIGURE 4-1 Branching statement logical flows

AND Comparison The AND operator allows you to combine two comparisons into one. This operator
makes the combination statement true only when both individual statements are true.
You also use the AND operator with the BETWEEN operator to glue the lower- and
upper-range values.
BEGIN
 IF 1 = 1 AND 2 = 2 THEN
 dbms_output.put_line('True.');
 END IF;
END;
/
This returns:
True.

TABLE 4-1 Comparison Operators

94 Oracle Database 11g PL/SQL Programming

BETWEEN Comparison The BETWEEN operator allows you to check whether a variable value is between two
values of the same datatype. The BETWEEN operator is also an inclusive operator.
Inclusive means that a match may include either of the boundary values.
BEGIN
 IF 1 BETWEEN 1 AND 3 THEN
 dbms_output.put_line('In the range.');
 END IF;
END;
/
This returns the following output:
In the range.

IN Comparison The IN operator allows you to check whether a variable value is in a set of comma-
delimited values.
BEGIN
 IF 1 IN (1,2,3) THEN
 dbms_output.put_line(‘In the set.’);
 END IF;
END;
/
This returns the following output:
In the set.

IS EMPTY Comparison The IS EMPTY operator allows you to check whether a VARRAY or NESTED TABLE
collection variable is empty. Empty means that the collection was constructed without
any default elements. This means no space was allocated to the SGA for elements in
the collection. When no element space is allocated, the IS EMPTY comparison returns
true, and it returns false when at least one element is allocated. You raise a PLS-00306
exception when the collection has not been initialized through explicit construction.
Chapter 12 explains how you construct collections. You should note that this only works
with collections of scalar SQL datatypes.
DECLARE
 TYPE list IS TABLE OF INTEGER;
 a LIST := list();
BEGIN
 IF a IS EMPTY THEN
 dbms_output.put_line('"a" is empty.');
 END IF;
END;
/
This returns the following output:
"a" is empty.

IS NULL Comparison The IS NULL operator allows you to check whether a variable value is null. The
NVL() built-in can enable you to assign any Boolean or expression an explicit true
or false value.
DECLARE
 var BOOLEAN;
BEGIN
 IF var IS NULL THEN
 dbms_output.put_line('It is null.');
 END IF;
END;
/
This returns the following output:
It is null.

TABLE 4-1 Comparison Operators (continued)

Chapter 4: Control Structures 95

IS A SET Comparison The IS A SET operator allows you to check whether a variable is a VARRAY or
NESTED TABLE collection variable, provided an instance of the variable has been
constructed. It returns true when the variable datatype is a VARRAY or NESTED
TABLE and the variable has been constructed. Constructed means that an instance of
the collection has been created with or without members. Chapter 14 contains more
on the concept of constructing a variable.
The IS A SET comparison operator returns false when the variable datatype is either
a VARRAY or NESTED TABLE and the variable is not constructed. An associative array
(another type of collection) is not a collection object and when you attempt to check
if it is a set, you raise a PLS-00306 exception. Likewise, other variable types raise the
same PLS-00306 exception. Chapter 7 explains how you construct collections. This
comparison operator only works with collections that use scalar SQL datatypes.
If you forget the “A” in the IS A SET operator, it raises a malformed identifier
PLS-00103 exception.
DECLARE
 TYPE list IS TABLE OF INTEGER;
 a LIST := list();
BEGIN
 IF a IS A SET THEN
 dbms_output.put_line('"a" is a set.');
 END IF;
END;
/
This returns the following output:
"a" is a set.

LIKE Comparison The LIKE operator allows you to check whether a variable value is part of another
value. The comparison can be made with the SQL lexical underscore for a single-
character wildcard, or % for a multiple-character wildcard. The % lexical value inside a
string is not equivalent to its use as an attribute indicator in PL/SQL.
BEGIN
 IF 'Str%' LIKE 'String' THEN
dbms_output.put_line('Match');
 END IF;
END;
/
This returns the following output:
Match.

MEMBER OF Comparison The MEMBER OF is a logical comparison operator. It lets you find
out whether an element is a member of a collection. It only works
with collections of scalar SQL datatypes. It returns true when the
element exists in the collection and false when it doesn’t.
DECLARE
 TYPE list IS TABLE OF NUMBER;
 n VARCHAR2(10) := 'One';
 a LIST := list('One', 'Two', 'Three');
BEGIN
 IF n MEMBER OF a THEN
 dbms_output.put_line('"n" is member.');
 END IF;
END;
/
When the left operand element is null, the operator returns false. This means that you
should always check for a value before using this comparison operator. It prints the
following:
"n" is member.

TABLE 4-1 Comparison Operators (continued)

96 Oracle Database 11g PL/SQL Programming

You also need to know the order of operation for comparison operators. Table 4-2 lists their
order of operation. You can override the order of operation by enclosing subordinate expressions
in parentheses. PL/SQL compares any expression inside parentheses as a whole result. PL/SQL
applies any remaining comparison operators in an expression by their order of operation.

Single comparison expressions return a true, false, or null. Both false and null are not true
when you evaluate whether an expression is true. Likewise, both true and null are not false when

NOT Comparison The NOT is a logical negation operator and allows you to check for the opposite of a
Boolean state of an expression, provided it isn’t null.
BEGIN
 IF NOT FALSE THEN
dbms_output.put_line('True.');
 END IF;
END;
/
When the expression or value is null, the NOT changes nothing. There is no opposite
of null, and a logical negation of null is also a null. This returns the following output
because FALSE is a Boolean literal and because TRUE is the only thing not false when
you exclude null values:
True.

OR Comparison The OR operator allows you to combine two comparisons into one. This operator
makes the combination statement true when one or the other statement is true. PL/
SQL uses short-circuit evaluation, which means it stops evaluating a combination
comparison when any one value is false.
BEGIN
 IF 1 = 1 OR 1 = 2 THEN
dbms_output.put_line('True.');
 END IF;
END;
/
This returns the following output because of one of the two statements is true:
True.

SUBMULTISET Comparison The SUBMULTISET operator lets you to check whether a VARRAY or NESTED TABLE
collection is a subset of a mirrored datatype. It returns true if some to all elements in
the left set are found in the right set. You should note that this operator does not check
for a proper subset, which is one item less than the full set or identity set.
DECLARE
 TYPE list IS TABLE OF INTEGER;
 a LIST := list(1,2,3);
 b LIST := list(1,2,3,4);
BEGIN
 IF a SUBMULTISET b THEN
 dbms_output.put_line('Subset.');
 END IF;
END;
/
This returns the following output:
Valid subset.

TABLE 4-1 Comparison Operators (continued)

Chapter 4: Control Structures 97

Order Operator Definition

1 ** Exponentiation (see Table 3-1)

2 +, - Identity and negation

3 *, / Multiplication and Division

4 +, -, || Addition, subtraction, and concatenation

5 = =, <, >, <=, >=, <>, !=, ~=, ^=,
BETWEEN, IN, IS NULL, LIKE

Comparison

6 AND Conjunction

7 NOT Logical negation

8 OR Inclusion

TABLE 4-2 Order of Operations

X Value Expression Result Negation Expression Result

TRUE X is TRUE TRUE X is NOT TRUE FALSE
FALSE X is TRUE FALSE X is NOT TRUE TRUE
NULL X is TRUE NULL X is NOT TRUE TRUE

TABLE 4-3 Single-Variable Truth Table

you evaluate an expression as false. A null expression is never true or false. Table 4-3 maps the
possible outcomes in a truth table.

Multiple comparison expressions require two-sided truth tables: one table for the conjunction
operator, AND, and another for the inclusion operator, OR. The conjunction operator creates
expressions where you resolve the combination of two expressions, where both are true. The
whole statement is not true when one is false or null. Table 4-4 maps the possible outcomes of
conjunctive truth—when X and Y expressions are true, false or null.

Multiple comparison expressions also require a two-sided truth table to examine how the
inclusion operator works. Inclusion is where two things are true when one or the other is true,
but because of null expressions the whole statement can be true, false, or null. Table 4-5 maps
the possible outcomes of inclusive truth—when X or Y expressions are true, false or null.

98 Oracle Database 11g PL/SQL Programming

The truth tables should help you plan how you will develop your branching logic in IF and
CASE statements. The same logical outcomes extend to three or more expressions, but they don’t
render in two-dimensional tables.

This section has provided detail to support the branching subsections. Subsections examine
single-branching and multiple-branching statements that use IF statements, and multiple-branching
statements that use simple and searched case statements. The subsections are grouped by the IF
and CASE statements.

IF Statements
The IF statement supports single-branching and multiple-branching statements. IF statements are
blocks. They start with a beginning identifier, or reserved word, and end with an ending identifier
and a semicolon. All statement blocks require at least one statement just as anonymous or named
blocks do.

IF statements evaluate a condition. The condition can be any comparison expression, or set
of comparison expressions that evaluates to a logical true or false. You can compare two literals
or variables of the same type. The variables can actually have different datatypes, as long as they
implicitly or you explicitly convert one of the two types to match the other. A Boolean variable
can replace a comparison operation. You also can compare the results of two function calls as
you would two variables or a variable and a single function call, provided it returns a Boolean
variable. The valid comparison operators are in Table 3-1 in the preceding chapter, as well as
in earlier Table 4-1.

X and Y Y is TRUE Y is FALSE Y is NULL

X is TRUE TRUE FALSE NULL
X is FALSE FALSE FALSE FALSE
X is NULL NULL FALSE NULL

TABLE 4-4 X and Y are TRUE, FALSE or NULL

X or Y Y is TRUE Y is FALSE Y is NULL

X is TRUE TRUE TRUE TRUE
X is FALSE TRUE FALSE NULL
X is NULL TRUE NULL NULL

TABLE 4-5 X or Y are TRUE, FALSE, or NULL

Chapter 4: Control Structures 99

If-then-else Statements
The if-then-else statement is a single branching statement. It evaluates a condition and then runs
the code immediately after the condition when the condition is met. The prototype for an if-then-
else statement is

IF [NOT] {comparison_expression | boolean_value} [[AND | OR]
 {comparison_expression | boolean_value}] THEN

true_execution_block;
[ELSE

false_execution_block;]
END IF;

You use the optional NOT (the logical negation operator) to check for a false comparison
result. While there is only one [AND | OR] clause in the IF statement prototype, there is no
limit to how many conditions you evaluate. The ELSE block is optional. IF statements without
an ELSE block only execute code when a condition is met.

Function Calls as Expressions
When you call a function, you provide values or variables and return a result. If the function
returns a variable length string, you can call it a string expression because it yields a string
as a result. The result is like a string literal (covered in Chapter 3). Alternatively, function
definitions can return any other scalar variable datatypes and they become expressions that
yield values of those datatypes.

The following example compares a single variable and expression (or function call):

DECLARE
 one_thing VARCHAR2(5) := 'Three';
 FUNCTION ordinal (n NUMBER) RETURN VARCHAR2 IS
 TYPE ordinal_type IS TABLE OF VARCHAR2(5);
 ordinal ORDINAL_TYPE := ordinal_type('One','Two','Three','Four');
 BEGIN
 RETURN ordinal(n);
 END;
BEGIN
 IF one_thing = ordinal(3) THEN
 dbms_output.put_line('['||ordinal(3)||']');
 END IF;
END;
/

The sample program compares a variable value and function call return, or literal
value and expression. They are found equal. The program prints the following provided
the SQL*Plus SERVEROUTPUT is set on:

Three

The return value of a function call is an expression or a runtime value that can be
compared against the content of a variable, literal value, or another function call.

100 Oracle Database 11g PL/SQL Programming

In its simplest form this is an if-then statement. The following demonstrates an if-then
statement comparing two numeric literals:

BEGIN
 IF 1 = 1 THEN
 dbms_output.put_line('Condition met!');
 END IF;
END;
/

You should note that parentheses around the comparison statement aren’t required. This is a
convenience compared to some other programming languages where they are required, like PHP.
The equivalent logic using a Boolean variable instead of the comparison operation is

DECLARE
 equal BOOLEAN NOT NULL := TRUE;
BEGIN
 IF equal THEN
 dbms_output.put_line('Condition met!');
 END IF;
END;
/

When you evaluate a Boolean variable or expression that returns a null value, the IF statement
returns a false value. You should anticipate run-time behaviors that may result in a null value and
use the NVL() built-in where possible to avoid unexpected outcomes. The default behavior is
fine, provided you want your program to treat a null value as false.

Provided you set SERVEROUTPUT ON in SQL*Plus, either of these anonymous blocks
resolves the comparison as true and prints

Condition met!

Branching out, you can build an if-then-else statement like

BEGIN
 IF 1 = 2 THEN
 dbms_output.put_line('Condition met!');
 ELSE
 dbms_output.put_line('Condition not met!');
 END IF;
END;
/

The anonymous block resolves the comparison as false and prints the else block statement:

Condition not met!

You can support variables for the literals in these examples or function calls that return
matching or convertible datatypes for comparison. A single function that returns a BOOLEAN
datatype also works in lieu of the Boolean example.

Chapter 4: Control Structures 101

If-then-elsif-then-else Statements
The if-then-elsif-then-else statement is a multiple branching statement. It evaluates a series of
conditions and then it runs the code immediately after the first successfully met condition. It exits
the block after processing the block and ignores any subsequently successful evaluations. The
prototype for an if-then-elsif-then-else statement is

 IF [NOT] {comparison_expression | boolean_value} [[AND | OR]
 {comparison_expression | boolean_value}] THEN

true_if_execution_block;
[ELSIF [NOT] {comparison_expression | boolean_value} [[AND | OR]
 {comparison_expression | boolean_value}] THEN

true_elsif_execution_block;
[ELSE

all_false_execution_block;]
 END IF;

You use the optional NOT operator to check for false comparisons. While there is only one
[AND | OR] clause in the IF and ELSIF statements, there is no limit to how many conditions
you evaluate. The ELSE block is optional. An if-then-elsif-then-else statement without an ELSE
block only executes code when a condition is met.

The following demonstrates an if-then-elsif-then-else statement where the first two
comparisons are true and the third false:

DECLARE
 equal BOOLEAN NOT NULL := TRUE;
BEGIN
 IF 1 = 1 THEN
 dbms_output.put_line('Condition one met!');
 ELSIF equal THEN
 dbms_output.put_line('Condition two met!');
 ELSIF 1 = 2 THEN
 dbms_output.put_line('Condition three met!');
 END IF;
END;
/

The anonymous block resolves the first comparison as true and prints

Condition one met!

As mentioned, the if-then-elsif-then-else statement exits after the first comparison is found
true. The default ELSE condition runs only when none of the conditions are met.

CASE Statements
There are two types of CASE statements in PL/SQL. Both define a selector. A selector is a variable,
function, or expression that the CASE statement attempts to match in WHEN blocks. The selector
immediately follows the reserved word CASE. If you don’t provide a selector, PL/SQL adds a
Boolean true as the selector. You can use any PL/SQL datatype as a selector except a BLOB,
BFILE, or composite type. Chapter 3 qualifies composite types as records, collections, and
user-defined object types.

102 Oracle Database 11g PL/SQL Programming

The generic CASE statement prototype is

CASE [TRUE | [selector_variable]]
 WHEN [criterion1 | expression1] THEN

criterion1_statements;
 WHEN [criterion2 | expression2] THEN

criterion2_statements;
 WHEN [criterion(n+1) | expression(n+1)] THEN

criterion(n+1)_statements;
 ELSE

block_statements;
END CASE;

Simple CASE statement selectors are variables that use or functions that return valid datatypes
other than Boolean types. Searched CASE statement selectors are Boolean variables or functions
that return a Boolean variable. The default selector is a Boolean true. A searched CASE statement
can omit the selector when seeking a true expression.

Like the IF statement, CASE statements have an ELSE clause. The ELSE clause works as it
does in the IF statement with one twist. You can’t leave the ELSE block out, or you will raise a
CASE_NOT_FOUND or PLS-06592 error when the selector is not found. PL/SQL includes this
default ELSE condition when you fail to provide one and a run-time execution fails to match a
WHEN block.

CASE statements are blocks. They start with a beginning identifier, or reserved word, and end
with an ending identifier and a semicolon. All statement blocks require at least one statement just
as anonymous or named blocks do. CASE statements require at least one statement in each WHEN
block and the ELSE block.

Like the if-then-elsif-then-else statement, CASE statements evaluate WHEN blocks by sequentially
checking for a match against the selector. The first WHEN block that matches the selector runs and
exits the CASE block. There is no fall-through behavior available in PL/SQL. The ELSE block runs
only when no WHEN block matches the selector.

Simple CASE Statements
The simple CASE statement sets a selector that is any PL/SQL datatype except a BLOB, BFILE, or
composite type. The prototype for a simple CASE statement is

CASE selector_variable
 WHEN criterion1 THEN

criterion1_statements;
 WHEN criterion2 THEN

criterion2_statements;
 WHEN criterion(n+1) THEN

criterion(n+1)_statements;
 ELSE

block_statements;
END CASE;

Simple CASE statements require that you provide a selector. You can add many more WHEN
blocks than shown, but the more numerous the possibilities, the less effective is this type of solution.
This is a manageable solution when you typically have ten or fewer choices. Maintainability
declines as the list of WHEN blocks grows.

Chapter 4: Control Structures 103

The following example uses a NUMBER datatype as the selector:

DECLARE
selector NUMBER := 0;

BEGIN
 CASE selector
 WHEN 0 THEN
 dbms_output.put_line('Case 0!');
 WHEN 1 THEN
 dbms_output.put_line('Case 1!');
 ELSE
 dbms_output.put_line('No match!');
 END CASE;
END;
/

The anonymous block resolves the first comparison as true because the selector contains a
value of 0. It then prints

Case 0!

Therefore, the first WHEN block matches the selector value. The CASE statement ceases
evaluation and runs the matching WHEN block before exiting the statement. You can substitute
other PL/SQL datatypes for the selector value. The CHAR, NCHAR, and VARCHAR2 types are some
possible choices.

Searched CASE Statements
The selector is implicitly set for a searched CASE statement unless you want to search for a false
condition. You must explicitly provide a false selector. Sometimes a searched CASE selector value
is dynamic based on some run-time logic. When that’s the case, you can substitute a function
returning a Boolean variable, provided you dynamically set the selector. The searched CASE
statement only uses a Boolean selector or comparison expression.

The prototype for a searched CASE statement is

CASE [{TRUE | FALSE}]
 WHEN [criterion1 | expression1] THEN

criterion1_statements;
 WHEN [criterion1 | expression1] THEN

criterion2_statements;
 WHEN [criterion(n+1) | expression(n+1)] THEN

criterion(n+1)_statements;
 ELSE

block_statements;
END CASE;

As with the simple CASE statement, you can add many more WHEN blocks than shown, but
the more numerous the possibilities, the less effective this type of solution is. The following searched
CASE statement examines comparison expressions:

BEGIN
 CASE
 WHEN 1 = 2 THEN

104 Oracle Database 11g PL/SQL Programming

 dbms_output.put_line('Case [1 = 2]');
 WHEN 2 = 2 THEN
 dbms_output.put_line('Case [2 = 2]');
 ELSE
 dbms_output.put_line('No match');
 END CASE;
END;
/

The anonymous block resolves the second comparison as true because the selector’s default
value is true and so is the comparison of twos. It then prints

Case [2 = 2}

If the CASE statement searched for a false condition, the selector would match the first WHEN
block and print that 1 equals 2. You can also use a comparison expression as the selector.

Conditional Compilation Statements
Beginning with Oracle 10g Release 2, you can use conditional compilation. Conditional
compilation lets you include debugging logic or special-purpose logic that runs only when
session-level variables are set. The following command sets a PL/SQL compile time variable
DEBUG equal to 1:

ALTER SESSION SET PLSQL_CCFLAGS = 'debug:1';

This command sets a PL/SQL compile time variable DEBUG equal to 1. You should note that
the compile-time flag is case insensitive. You can also set compile-time variables to true or false
so that they act like Boolean variables. When you want to set more than one conditional compilation
flag, you need to use the following syntax:

ALTER SESSION SET PLSQL_CCFLAGS = 'name1:value1 [, name(n+1):value(n+1)]';

The conditional compilation parameters are stored as name and value pairs in the
PLSQL_CCFLAG database parameter. The following program uses the $IF, $THEN, $ELSE,
$ELSIF, $ERROR, and $END directives that create a conditional compilation code block:

BEGIN
 $IF $$DEBUG = 1 $THEN
 dbms_output.put_line('Debug Level 1 Enabled.');
 $END
END;
/

Conditional code blocks differs from a normal if-then-else code blocks. Most notably, the
$END directive closes the block instead of an END IF and semicolon. The $END directive ends a
conditional statement. An END IF closes an IF code block. The syntax rules require that closing
blocks end with a semicolon or statement terminator. Statement terminators are not conditional
lexical units, and their occurrence without a preceding code statement triggers a compile-time error.

The $$ symbol denotes a PL/SQL conditional compile-time variable. The ALTER SESSION
statement lets you set conditional compile-time variables. You set them in the PLSQL_CCFLAGS
session variable. One or many variables are set in PLSQL_CCFLAGS. All variables are constants

Chapter 4: Control Structures 105

until the session ends or they are replaced. You replace these variables by reusing the ALTER
SESSION statement. All previous conditional compile-time variables cease to exist when you
reset the PLSQL_CCFLAGS session variable.

The rules governing conditional compilation are set by the SQL parser. You cannot use
conditional compilation in SQL object types. This limitation also applies to nested tables and
VARRAYs (scalar tables). Conditional compilation differs in functions and procedures. The
behavior changes whether the function or procedure has a formal parameter list. You can
use conditional compilation after the opening parenthesis of a formal parameter list, like

CREATE OR REPLACE FUNCTION conditional_type
(magic_number $IF $$DEBUG = 1 $THEN SIMPLE_NUMBER $ELSE NUMBER $END)
RETURN NUMBER IS
BEGIN
 RETURN magic_number;
END;
/

Alternatively, you can use them after the AS or IS keyword in no-parameter functions or
procedures. They can also be used both inside the formal parameter list and after the AS or IS
in parameter functions or procedures.

Conditional compilation can only occur after the BEGIN keyword in triggers and anonymous-
block program units. Please note that you cannot encapsulate a placeholder, or bind variable,
inside a conditional compilation block.

Iterative Statements
Iterative statements are blocks that let you repeat a statement or set of statements. There are two
types of iterative statements. One guards entry into the loop before running repeatable statements.
The other guards exit. An iterative statement that only guards exit guarantees that its code block is
always run once and is known as a repeat until loop block. Figure 4-2 shows the execution logic
for these two iteration statement types.

FIGURE 4-2 Iterative statement logic flows

106 Oracle Database 11g PL/SQL Programming

The PL/SQL language supports simple, FOR, FORALL, and WHILE loops. It does not formally
support a repeat until loop block. You can use the simple loop statement to mimic the behavior of
a repeat until loop. Loops often work with cursors. Cursors are row-by-row or batch queries from
the database, and they are covered in the section immediately after iterative statements.

Simple Loop Statements
Simple loops are explicit block structures. A simple loop starts and ends with the LOOP reserved
word. They require that you manage both loop index and exit criteria. Typically, simple loops are
used where easy solutions don’t quite fit. Easy solutions are typically the popular FOR loop
statement because it manages the loop index and exit criteria for you.

There are two prototypes for a simple loop. They differ in that one exits at the top of the loop
and the other at the end of the loop. Exits are necessary unless you want an infinite loop, which is
not too often. Loop exits are comparative expressions. A guard on entry loop has a branching
statement first. The loop exits when the expression is no longer met. A guard on exit loop also has
a branching statement, but it is the last step in the loop block. A guard on exit loop exits when the
exit criteria are met. The EXIT statement immediately stops code execution and exits the loop
statement. The following examples demonstrate this technique for the guard on entry and exit
loops:

Guard on Entry Loop Guard on Exit Loop
LOOP
 [counter_management_statements;]
 IF NOT entry_condition THEN
 EXIT;
 END IF;

repeating_statements;
END LOOP;

LOOP
[counter_management_statements;]
repeating_statements;

 IF exit_condition THEN
 EXIT;
 END IF;
END LOOP;

PL/SQL simplifies writing an exit statement by providing the EXIT WHEN statement. The
EXIT WHEN statement eliminates the need to write an IF statement around the EXIT statement.
The following examples demonstrate this technique for the guard on entry and exit loops:

Guard on Entry Loop Guard on Exit Loop
LOOP
[counter_management_statements;]
 EXIT WHEN NOT entry_condition;

repeating_statements;
END LOOP;

LOOP
 [counter_management_statements;]
repeating statements;

 EXIT WHEN exit_condition;
END LOOP;

The CONTINUE statement in Oracle 11g makes it imperative that you put loop index statements
at the top of the loop. A CONTINUE statement stops execution in a loop iteration and returns
control to the top of the loop. It is now possible that you could create an infinite loop cycling
between the top of the loop and the CONTINUE statement. This can happen because the CONTINUE
statement would bypass your incrementing or decrementing logic unless it is at the top of the
loop. The same is true for the CONTINUE WHEN statement.

Figure 4-3 demonstrates an approach to managing the loop index. It makes some assumptions.
The first assumption is that you may want to cut and paste the logic into different code components.
The second assumption is that you may forget to initialize the necessary variables. All you need to
do is implement two variables with consistent names to reuse this approach.

Chapter 4: Control Structures 107

The following anonymous block demonstrates a guard on entry simple loop and implements
the counter management logic from Figure 4-3:

DECLARE
 counter NUMBER;
 first BOOLEAN;
BEGIN
 LOOP
 -- Loop index management.
 IF NVL(counter,1) >= 1 THEN
 IF NOT NVL(first,TRUE) THEN
 counter := counter + 1;
 ELSE
 counter := 1;
 first := FALSE;
 END IF;
 END IF;
 -- Exit management.
 EXIT WHEN NOT counter < 3;
 dbms_output.put_line('Iteration ['||counter||']');
 END LOOP;
END;
/

FIGURE 4-3 Counter management logic

108 Oracle Database 11g PL/SQL Programming

This simple loop generates the following output because it guards entry after running twice:

Iteration [1]
Iteration [2]

The guard on exit simple loop is a repeat until loop. It always runs once before it checks the
criteria. Leaving the guard condition at a counter value of three, you will notice that the results
differ between a guard on entry loop and guard on exit loop.

An anonymous block demonstrates a guard on exit simple loop:

DECLARE
 counter NUMBER;
 first BOOLEAN;
BEGIN
 LOOP
 -- Loop index management.
 IF NVL(counter,1) >= 1 THEN
 IF NOT NVL(first,TRUE) THEN
 counter := counter + 1;
 ELSE
 counter := 1;
 first := FALSE;
 END IF;
 END IF;
 dbms_output.put_line('Iteration ['||counter||']');
 -- Exit management.
 EXIT WHEN NOT counter < 3;
 END LOOP;
END;
/

This program does generate three lines of output because it guards the exit after three
executions:

Iteration [1]
Iteration [2]
Iteration [3]

The output confirms what you know, that no entry check is made before performing the
repeating statements. You can alter the incrementing value of the loop index in a simple loop
statement by changing the literal value of 1. Both the simple and WHILE loops also afford you
control over the increment interval. They also let you decrement loop indexes.

You cannot decrement index values using FOR and FORALL loops. FOR and FORALL loops
also don’t task you with managing the loop index because the loop index is done implicitly and
outside of your accessible programming scope.

Skipping an index value is possible in Oracle 11g by using the new CONTINUE statement. The
CONTINUE statement signals an immediate end to a loop iteration and returns to the first statement
in the loop.

NOTE
The CONTINUE and CONTINUE WHEN statements are new Oracle 11g
features.

Chapter 4: Control Structures 109

The following anonymous block illustrates how to implement a CONTINUE statement in a
simple loop:

DECLARE
 counter NUMBER;
 first BOOLEAN;
BEGIN
 LOOP
 -- Loop index management.
 IF NVL(counter,1) >= 1 THEN
 IF NOT NVL(first,TRUE) THEN
 counter := counter + 1;
 ELSE
 counter := 1;
 first := FALSE;
 END IF;
 END IF;
 -- Exit management.
 EXIT WHEN NOT counter < 3;
 IF counter = 2 THEN

CONTINUE;
 ELSE
 dbms_output.put_line('Index ['||counter||'].');
 END IF;
 END LOOP;
END;
/

This version of the program only prints the first index value before the program exits. The
program prints the initial index 1, increments the loop index to 2, skips the printing statement,
increments the loop index to 3, and then exits the loop, failing to meet the guard on entry condition.
You can simplify your code by replacing the combination of an IF block and CONTINUE statement
with the CONTINUE WHEN statement. The following shows how you would replace it:

CONTINUE WHEN counter = 2;
dbms_output.put_line('Index ['||counter||'].');

The print statement was previously in the ELSE block. The CONTINUE WHEN eliminates the need
for the IF block.

Either program prints this to the console after two passes through the loop:

Iteration [1]

The simple loop becomes much more robust when combined with cursor attributes. That
discussion is in the section “Cursor Structures” later in the chapter.

FOR Loop Statements
The FOR loop is a favorite of many developers because it is powerful and simple to use. A FOR
loop manages the loop index and exit for you because it is part of the statement definition.

There are two types of FOR loop statements. One is a range FOR loop statement, and the other
is a cursor FOR loop statement.

110 Oracle Database 11g PL/SQL Programming

Range FOR Loop Statements
A range FOR loop statement is ideal when you know the starting and ending points and the range
can be represented in integers. You can also use a FOR loop statement to navigate the contents of
an associative array by traversing the number of elements in it. An example of navigating an
associative array using a string index is provided in Chapter 7.

The prototype for a range FOR loop statement is

FOR range_index IN range_bottom..range_top LOOP
repeating_statements;

END LOOP;

The range index can be any identifier that you prefer. As when writing for loops in other
languages, many developers use i as a variable name. Then, they use j, k, l, and so forth as
variable names when nesting loops. The range index for a range FOR loop is a PLS_INTEGER.
You set the starting value when you set the bottom of the range, and the ending value when you
set the top of the range. It increments by 1, and you cannot change that.

The following anonymous-block program demonstrates a FOR loop statement:

BEGIN
 FOR i IN 1..3 LOOP
 dbms_output.put_line('Iteration ['||i||']');
 END LOOP;
END;
/

This code prints

Iteration [1]
Iteration [2]
Iteration [3]

The range index variable value is printed in the square brackets. You should note that the range
limits are inclusive, not exclusive. An exclusive range would have excluded 1 and 3.

There is no exit statement in the example because one isn’t required. The exit statement is
implicitly placed at the top of the loop. The conditional logic checks whether the range index
is less than the top of the range, and it exits when that condition is not met. This means if you
reverse the bottom and top of the range, the loop would exit before processing any statement
because it would find 3 is not less than 1. Therefore, a range FOR loop statement is a guard on
entry loop statement.

Cursor FOR Loop Statements
A cursor FOR loop statement is ideal when you query a database table or view. You don’t usually
know how many rows it will return.

This section uses an implicit cursor and the later section “Cursor Structures” demonstrates
cursor FOR loops with explicit cursors. An implicit cursor is a SELECT statement defined as part
of the cursor FOR loop statement. An explicit cursor is defined in the declaration block.

The prototype for a cursor FOR loop statement is

FOR cursor_index IN {cursor_name[(actual_parameters)] | (select_statement)} LOOP
repeating_statements;

END LOOP;

Chapter 4: Control Structures 111

The cursor index can be any identifier that you prefer. As when writing for loops in other
languages, many developers use i as a variable name. Then, they use j, k, l, and so forth as
variable names they you nest loops. The cursor index for a cursor FOR loop is a pointer to a result
set in a query work area. A query work area is a memory region (known as a context area) in the
Oracle 11g Database Process Global Area (PGA). The query work area holds information on the
query. You’ll find the rows returned by a query, the number of rows processed by the query, and
a pointer to the parsed query in the query work area. The query work area resides in the Oracle
Shared Pool (see Appendix A).

The example code shows how to implement an implicit cursor FOR loop. It depends on your
having already run the seeding code discussed in the Introduction, and returns the names of Harry
Potter films in the video rental store sample database. The Introduction has instructions for creating
and seeding the video rental store database. The example follows:

BEGIN
 FOR i IN (SELECT COUNT(*) AS on_hand
 , item_title
 , item_rating
 FROM item
 WHERE item_title LIKE 'Harry Potter%'
 AND item_rating_agency = 'MPAA'
 GROUP BY item_title
 , item_rating) LOOP
 dbms_output.put('('||i.on_hand||') ');
 dbms_output.put(i.item_title||' ');
 dbms_output.put_line('['||i.item_rating||']');
 END LOOP;
END;
/

The cursor index points to the row, and the component selector (period) links the row pointer to
the column name or alias assigned by the implicit cursor. This prints the following from inventory:

Harry Potter and the Sorcerer's Stone [PG]
(3) Harry Potter and the Goblet of Fire [PG-13]
(3) Harry Potter and the Chamber of Secrets [PG]
(2) Harry Potter and the Prisoner of Azkaban [PG]
(1) Harry Potter and the Order of the Phoenix [PG-13]

There is also no exit statement in the example, because one isn’t required. The exit statement
is implicitly placed at the top of the loop. The exit condition checks whether all rows have been
read. It exits when there are no more rows to read.

Explicit cursors have some obvious differences and some subtle ones. The later section
“Cursor Structures” covers explicit cursors in cursor FOR loop statements.

WHILE Loop Statements
WHILE loops are explicit block structures like the simple loops. A WHILE loop starts and ends with
the LOOP reserved word. Like simple loops, WHILE loops require that you manage both loop
index and exit criteria. The WHILE loop is a guard on entry loop and may exclude a loop index
because the entry condition explicitly checks another expression or Boolean variable.

112 Oracle Database 11g PL/SQL Programming

The prototype for the WHILE loop is

WHILE entry_condition LOOP
[counter_management_statements;]
repeating_statements;

END LOOP;

The following example implements a WHILE loop. The WHILE loop uses a loop index value
as its gate on entry criterion:

DECLARE
counter NUMBER := 1;

BEGIN
 WHILE (counter < 3) LOOP
 dbms_output.put_line('Index ['||counter||'].');
 IF counter >= 1 THEN
 counter := counter + 1;
 END IF;
 END LOOP;
END;
/

It prints the following:

Index [1].
Index [2].

Two things differ between a simple and WHILE loop. The gate on entry counter variable must
be initialized or you cannot enter the loop. This change eliminates checking for an initialized
counter variable. The second difference is that you no longer check for the first versus subsequent
iterations through the loop. This is eliminated because you no longer need to guarantee initialization
of a counter variable.

You should note that the loop index management is the last statement in a WHILE loop. It is
last because the exit criterion is the first thing evaluated at the top of the loop. This poses a logical
challenge to using a CONTINUE statement in a WHILE loop because it can skip over the incrementing
or decrementing index logic and create an infinite loop. A GOTO statement and a block label are
actually the best solution to this problem presented by the CONTINUE statement.

The following shows you how to use sequential control with the GOTO statement and a block
label:

DECLARE
 counter NUMBER := 1;
BEGIN
 WHILE (counter < 3) LOOP
 IF counter = 2 THEN

GOTO loopindex;
 ELSE
 dbms_output.put_line('Index ['||counter||'].');
 END IF;

<< loopindex >>
 IF counter >= 1 THEN

Chapter 4: Control Structures 113

 counter := counter + 1;
 END IF;
 END LOOP;
END;
/

The GOTO statement skips execution to the block label for the incrementing or decrementing
logic. After running the loop index logic, control shifts to the top of the loop. This work-around
guarantees that each iteration through a WHILE loop increments or decrements the loop index.
It also avoids creating a short-circuiting infinite loop.

As you’ve seen, the WHILE loop is useful when you want to gate entry to a loop. On a downside,
the WHILE loop limits how you skip logic when using a CONTINUE statement and loop index
management block. The GOTO statement and block labels allow you to do the same thing.

Cursor Structures
Cursor structures are the return results from SQL SELECT statements. In PL/SQL, you can process
SELECT statements row-by-row or as bulk statements. This section covers how you work with
row-by-row statement processing cursors.

There are two types of cursors: implicit and explicit. You create an explicit cursor when you
define a cursor inside a declaration block. DML statements inside any execution or exception
block are implicit cursors. These include INSERT, UPDATE, and DELETE statements. You also
create implicit cursors whenever you use a SELECT statement with INTO or BULK COLLECT
INTO clauses, or you embed a SELECT statement inside a cursor FOR loop statement.

The balance of this section discusses implicit and explicit cursors separately. Implicit cursors
come first, followed by explicit cursors. Bulk processing is covered in the next section.

Implicit Cursors
Every SQL statement in a PL/SQL block is actual an implicit cursor. You can see how many rows
are changed by any statement using the %ROWCOUNT attribute after a Data Manipulation Language
(DML) statement. INSERT, UPDATE, and DELETE statements are DML statements. You can also
count the number of rows returned by a SELECT statement or query.

The following example demonstrates the %ROWCOUNT cursor attribute by using a single-row
implicit cursor based on the DUAL pseudotable:

DECLARE
 n NUMBER;
BEGIN
 SELECT 1 INTO n FROM dual;
 dbms_output.put_line('Selected ['||SQL%ROWCOUNT||']');
END;
/

The reserved word SQL before the %ROWCOUNT cursor attribute stands for any implicit cursor.
It also applies to bulk processing cursors when matched with a bulk cursor attribute. PL/SQL
manages implicit cursors and limits your access to their attributes. Table 4-6 lists the available
implicit cursor attributes.

You have three types of implicit cursors. One is an implicit bulk collection cursor, which is
covered in the section “Bulk Statements” later in the chapter. The other two implicit cursors are

114 Oracle Database 11g PL/SQL Programming

the subject of this section. They are single-row and multiple-row implicit cursors that use SELECT
statements.

Single-Row Implicit Cursors
The SELECT INTO statement is present in all implicit cursors that query data. It works only when
a single row is returned by a select statement. You can select a column or list of columns in the
SELECT clause and assign the row columns to individual variables or collectively to a record
datatype.

The prototype for a single-row implicit cursor minus standard SQL WHERE, HAVING, GROUP
BY, and ORDER BY clauses is

SELECT column1 [, column2 [, column(n+1)]]
INTO variable1 [, variable2 [, variable(n+1)]]
FROM table_name;

Both example programs use the ITEM table that is seeded in the downloadable code for the
book. The first example program assigns column values to scalar variables on a one-to-one basis:

DECLARE
 id item.item_id%TYPE;
 title item.item_title%TYPE;
 subtitle item.item_subtitle%TYPE;
BEGIN
 SELECT item_id, item_title, item_subtitle
 INTO id, title, subtitle
 FROM item
 WHERE ROWNUM < 2;
 dbms_output.put_line('Selected ['||title||']');
END;
/

The example program anchors all variables to the target table and limits the query to one row
by using the Oracle SQL ROWNUM pseudocolumn. It prints one row:

Selected [Around the World in 80 Days]

Attribute Definition
%FOUND This attribute returns TRUE when a DML statement has

changed a row, or DQL has accessed one.
%ISOPEN This attribute always returns a FALSE for any implicit cursor.
%NOTFOUND This attribute returns TRUE when a DML statement has

changed a row, or DQL can’t access another.
%ROWCOUNT This attribute returns the number of rows changed by a DML

statement or the number of rows returned by a SELECT
INTO statement.

TABLE 4-6 Implicit Cursor Attributes

Chapter 4: Control Structures 115

One-to-one assignments get very tiresome to type after a while. They also make your code
more expensive to maintain over time. The more common convention is to assign the columns as
a group to record datatypes.

The second example assigns the columns to a record datatype:

DECLARE
 TYPE item_record IS RECORD
 (id item.item_id%TYPE
 , title item.item_title%TYPE
 , subtitle item.item_subtitle%TYPE);
 dataset ITEM_RECORD;
BEGIN
 SELECT item_id, item_title, item_subtitle
 INTO dataset
 FROM item
 WHERE rownum < 2;
 dbms_output.put_line('Selected ['||dataset.title||']');
END;
/

While record datatypes require an explicit construction, columns within the structure can be
anchored to column datatypes. You should also note that the component selector, or period, glues
the record variable to the element name.

Single-row implicit cursors are great quick fixes, but they have a weakness. It is a weakness
that many developers attempt to exploit by using it to raise exceptions when cursors return more
than one row. They do this because single-row implicit cursors raise an “exact fetch returned too
many rows” error (ORA-01422) when returning more than one row. Better solutions are available
to detect errors before fetching the data. You should explore alternatives when developing your
code and where possible explicitly handle errors. Explicit cursors are typically better solutions
every time.

Multiple-Row Implicit Cursors
There are two ways you can create multiple-row implicit cursors. The first is done by writing any
DML statement in a PL/SQL block. DML statements are considered multiple-row implicit cursors,
even though you can limit them to a single row. The second is to write an embedded query in a
cursor FOR loop rather than defined in a declaration block.

The following query demonstrates an implicit cursor created by a DML statement:

BEGIN
 UPDATE system_user
 SET last_update_date = SYSDATE;
 IF SQL%FOUND THEN
 dbms_output.put_line('Updated ['||SQL%ROWCOUNT||']');
 ELSE
 dbms_output.put_line('Nothing updated!');
 END IF;
END;
/

116 Oracle Database 11g PL/SQL Programming

As shown in Table 4-6, the %FOUND cursor attribute for implicit cursors only returns a
Boolean true value when rows are updated. This statement should update five rows and print
the SQL%ROWCOUNT result:

Updated [5]

You can also define multiple-row implicit cursors inside cursor FOR loop statements. These
are select statements that have a marvelous feature: all the variables are implicitly provided in
the scope of the cursor FOR loop.

The following demonstrates a multiple-row implicit cursor in a cursor FOR loop:

BEGIN
 FOR i IN (SELECT item_id, item_title FROM item) LOOP
 dbms_output.put_line('Item #['||i.item_id||']['||i.item_title||']');
 END LOOP;
END;
/

This implicit cursor is available in the scope of the cursor FOR loop index. The cursor index
for a cursor FOR loop is a pointer to result set in a query work area. A query work area is a memory
region (known as a context area) in the Oracle 11g Database Process Global Area (PGA).

NOTE
The SQL%ROWCOUNT attribute returns a null value for this type of
implicit cursor.

Explicit Cursors
As discussed earlier in this section, you create an explicit cursor when you define it inside a
declaration block. Explicit cursors can be static or dynamic SELECT statements. Static SELECT
statements return the same query each time with potentially different results. The results change
as the data changes in the tables or views. Dynamic SELECT statements act like parameterized
subroutines. They run different queries each time, depending on the actual parameters provided
when they’re opened.

You open static and dynamic explicit cursors differently, provided they are defined with
formal parameters. When they do not have formal parameters, you open them with the same
syntax. The actual parameters are then mapped by local variable substitution.

Explicit cursors require you to open, fetch, and close them whether you’re using simple or
WHILE loops or cursor FOR loop statements. You use the OPEN statement to open cursors, the
FETCH statement to fetch records from cursors, and the CLOSE statement to close and release
resources of cursors. These statements work with both dynamic and static cursors inside or
outside of a looping structure. Cursor FOR loop statements implicitly open, fetch, and close
cursors for you. The OPEN, FETCH, and CLOSE statements are key elements in the “Static Explicit
Cursors” and “Dynamic Explicit Cursors” subsections where the examples use simple loops.

The prototype for the OPEN statement is

OPEN cursor_name [(parameter1 [, parameter2 [, parameter(n+1)]])];

There are two prototypes for the FETCH statement. One assigns individual columns to variables,
and the other assigns a row to a record structure.

The prototype for assigning individual columns to matching variables is

FETCH cursor_name
INTO variable1 [, variable2 [, variable(n+1)]];

Chapter 4: Control Structures 117

The prototype for assigning rows to record structure variables is

FETCH cursor_name
INTO record_variable;

The prototype for the CLOSE statement is

CLOSE cursor_name;

While Table 4-6 lists the implicit cursor attributes, Table 4-7 lists the explicit cursor attributes.
The attributes work the same way whether an explicit cursor is dynamic or static but differently
than the limited set that work with implicit cursors. The explicit cursor attributes return different
results, depending on where they are called in reference to the OPEN, FETCH, and CLOSE
statements.

The %FOUND cursor attribute signals that rows are available to retrieve from the cursor and
the %NOTFOUND attribute signals that all rows have been retrieved from the cursor. The %ISOPEN
attribute lets you know that the cursor is already open, and is something you should consider
running before attempting to open a cursor. Like implicit cursors, the %ROWCOUNT attribute tells
you how many rows you’ve fetched at any given point. Only the %ISOPEN cursor attribute works
anytime without an error. The other three raise errors when the cursor isn’t open. The Table 4-7
matrix captures these changing behaviors.

The examples use simple loop statements, but you can also use explicit cursors in WHILE
loop statements or nested inside range and cursor FOR loops. Static and dynamic cursors are
covered in different subsections to organize the examples and highlight differences.

Static Explicit Cursors
A static explicit cursor is a SQL SELECT statement that doesn’t change its behavior. An explicit
cursor has four components: you define, open, fetch from, and close a cursor. The example
program defines a cursor as a SELECT statement that queries the ITEM table. The table and
seeded data are delivered in the downloadable code.

Statement State %FOUND %NOTFOUND %ISOPEN %ROWCOUNT

OPEN Before Exception Exception FALSE Exception

After NULL NULL TRUE 0

1st FETCH Before NULL NULL TRUE 0

After TRUE FALSE TRUE 1

Next FETCH Before TRUE FALSE TRUE 1

After TRUE FALSE TRUE n + 1

Last FETCH Before TRUE FALSE TRUE n + 1

After FALSE TRUE TRUE n + 1

CLOSE Before FALSE TRUE TRUE n + 1

After Exception Exception FALSE Exception

TABLE 4-7 Explicit Cursor Attributes

118 Oracle Database 11g PL/SQL Programming

The following program defines, opens, fetches from, and closes a static cursor into a series
of scalar variables:

DECLARE
 id item.item_id%TYPE;
 title VARCHAR2(60);
 CURSOR c IS
 SELECT item_id
 , item_title
 FROM item;
BEGIN
 OPEN c;
 LOOP
 FETCH c
 INTO id, title;
 EXIT WHEN c%NOTFOUND;
 dbms_output.put_line('Title ['||title||']');
 END LOOP;
 CLOSE c;
END;
/

The program uses the fetch of columns to variables that match their data type. One of the
variables is anchored to the table and the other is literally defined. You should really choose one
or the other style, but this example wanted to display both. The program exits when there are no
more records to fetch and it has printed the titles to the console.

The same program can be written using a cursor FOR loop statement. The FOR loop implicitly
creates variables that you can access through the cursor index. This eliminate the need for you to
create them as required by the simple or WHILE loop statements. The cursor FOR loop statement
also implicitly opens, fetches, and closes the cursor, like this:

DECLARE
 CURSOR c IS
 SELECT item_id AS id
 , item_title AS title
 FROM item;
BEGIN
 FOR i IN c LOOP
 dbms_output.put_line('Title ['||i.title||']');
 END LOOP;
END;
/

By comparison the cursor FOR loop is much simpler to use with a static cursor than a simple
or WHILE loop statement. The implicitly declared variables inside the cursor FOR loop have no
context outside of the FOR loop statement. This limitation restricts how you can use the return
values from a cursor FOR loop. Simple or WHILE loop statements are more effective solutions
when you want to assign return values to variables that are exchanged with other program units.
Chapter 6 discusses some of these advantages while covering stored functions and procedures.

The alternative FETCH statement syntax of assigning a row of data to a record datatype is
illustrated in the next program. Everything else remains the same.

Chapter 4: Control Structures 119

The following program defines, opens, fetches from, and closes a static cursor into a record
structure:

DECLARE
 TYPE item_record IS RECORD
 (id NUMBER
 , title VARCHAR2(60));
 item ITEM_RECORD;
 CURSOR c IS
 SELECT item_id
 , item_title
 FROM item;
BEGIN
 OPEN c;
 LOOP

FETCH c INTO item;
 EXIT WHEN c%NOTFOUND;
 dbms_output.put_line('Title ['||item.title||']');
 END LOOP;
END;
/

You should note that a cursor FOR loop statement does not support direct assignment of any
type of variable, but you can assign values inside the FOR loop statement by using the cursor
index. You can assign a record structure or an element of the record structure.

The following demonstrates assigning a record structure from the cursor index:

DECLARE
 TYPE item_record IS RECORD
 (id NUMBER
 , title VARCHAR2(60));
 explicit_item ITEM_RECORD;
 CURSOR c IS
 SELECT item_id AS id
 , item_title AS title
 FROM item;
BEGIN
 FOR i IN c LOOP
 explicit_item := i;
 dbms_output.put_line('Title ['||explicit_item.title||']');
 END LOOP;
END;
/

In both of these examples, it is possible that the cursor may not find any records. When an
implicit or explicit cursor runs and no data is found, no error is raised. You need to manually
determine if any records are found. This can be done by using an IF statement and the %NOTFOUND
and %ROWCOUNT cursor attributes.

The following program prints a no data found message when the cursor fails to find any
records by using a negative ITEM_ID value that shouldn’t be in the data:

DECLARE
 TYPE item_record IS RECORD
 (id NUMBER

120 Oracle Database 11g PL/SQL Programming

 , title VARCHAR2(60));
 item ITEM_RECORD;
 CURSOR c IS
 SELECT item_id
 , item_title
 FROM item
 WHERE item_id = -1;
BEGIN
 OPEN c;
 LOOP
 FETCH c INTO item;
 IF c%NOTFOUND THEN
 IF c%ROWCOUNT = 0 THEN
 dbms_output.put_line('No Data Found');
 END IF;
 EXIT;
 ELSE
 dbms_output.put_line('Title ['||item.title||']');
 END IF;
 END LOOP;
END;
/

The program demonstrates a conditional exit. The exit is reachable only when all records are
read. A special message is printed only when the %ROWCOUNT returns a 0 value. This can only
happen when no rows are returned by the cursor. You cannot replicate this logic inside a cursor
FOR loop statement.

Dynamic Explicit Cursors
Dynamic explicit cursors are very much like static explicit cursors. They use a SQL SELECT
statement. Only the SELECT statement uses variables that change the query behavior. The
variables take the place of what would otherwise be literal values.

Dynamic explicit cursors have the same four components as static cursors: you define, open,
fetch from, and close a dynamic cursor. The example program defines a cursor as a SELECT
statement that queries the ITEM table for a range of values. Both variables are declared as local
variables and assigned numeric literal values. The names of the local variables must differ from
column names, or the column name values are substituted in place of the variable values.

The following program uses two local variables inside the cursor’s SELECT statement:

DECLARE
 lowend NUMBER := 1010;
 highend NUMBER := 1020;
 TYPE item_record IS RECORD
 (id NUMBER
 , title VARCHAR2(60));
 item ITEM_RECORD;
 CURSOR c IS
 SELECT item_id
 , item_title
 FROM item
 WHERE item_id BETWEEN lowend AND highend;

Chapter 4: Control Structures 121

BEGIN
 OPEN c;
 LOOP
 FETCH c INTO item;
 EXIT WHEN c%NOTFOUND;
 dbms_output.put_line('Title ['||item.title||']');
 END LOOP;
END;
/

The values for the lowend and highend variables are substituted when you open the cursor.
This also works in cursor FOR and WHILE loops because the variables are substituted while
opening the cursor. While this acts more or less as a static query because the variables are static
constants in the program scope, you can change the program to use input parameters as follows:

DECLARE
… same as earlier example …
BEGIN
 lowend := TO_NUMBER(NVL(&1,1005));
 highend := TO_NUMBER(NVL(&2,1021));
 OPEN c;
 LOOP
 FETCH c INTO item;
 EXIT WHEN c%NOTFOUND;
 dbms_output.put_line('Title ['||item.title||']');
 END LOOP;
END;
/

You can rely on local variables, but it can be confusing and more difficult to support the code.
Cursors should be defined to accept formal parameters. The next example replaces the prior by
altering the cursor definition and the call to the OPEN statement, as

DECLARE
 lowend NUMBER;
 highend NUMBER;
 item_id number := 1012;
 TYPE item_record IS RECORD
 (id NUMBER
 , title VARCHAR2(60));
 item ITEM_RECORD;
 CURSOR c
 (low_id NUMBER
 , high_id NUMBER) IS
 SELECT item_id
 , item_title
 FROM item
 WHERE item_id BETWEEN low_id AND high_id;
BEGIN
 lowend := TO_NUMBER(NVL(&1,1005));
 highend := TO_NUMBER(NVL(&2,1021));
 OPEN c (lowend,highend);

122 Oracle Database 11g PL/SQL Programming

 LOOP
 FETCH c INTO item;
 EXIT WHEN c%NOTFOUND;
 dbms_output.put_line('Title ['||item.title||']');
 END LOOP;
END;
/

The range variables in the SELECT statement are no longer local variable names. They are
local variables to the cursor, defined by the formal parameter in the cursor definition. You should
note that these variables have no physical size, because that is derived at run time.

When you run the program, the input values &1 and &2 are assigned to local variables
lowend and highend respectively. The local variables become actual parameters passed to
open the cursor. The actual parameters are then assigned to the low_id and high_id cursor-
scoped variables.

The same logic works when you substitute a cursor FOR loop statement. The following loop
structure is equivalent to the one in the simple loop statement:

FOR i IN c (lowend,highend) LOOP
 item := i;
 dbms_output.put_line('Title ['||item.title||']');
END LOOP;

This section has explained how to use implicit and explicit cursors in your program units.
You’ve learned that some implicit behaviors are outside of your control. You’ve also learned that
explicit structures provide you with more control.

Bulk Statements
Bulk statements let you select, insert, update, or delete large data sets from tables or views. You
use the BULK COLLECT statement with SELECT statements and the FORALL statement to insert,
update, or delete large data sets.

Table 4-8 lists descriptions of the two bulk cursor attributes. The subsection “INSERT Statement”
subsection under the section “FORALL Statements” illustrates how to use the %BULK_ROWCOUNT
attribute. Chapter 5 covers how you use the %BULK_EXCEPTION attribute.

Bulk Attributes Definitions
%BULK_EXCEPTIONS(i) The %BULK_EXCEPTION(index) attribute lets you see

whether or not a row encountered an error during a bulk
INSERT, UPDATE, or DELETE statement. You access these
statistics by putting them in range FOR loop statements.

%BULK_ROWCOUNT(i) The %BULK_ROWCOUNT(index) attribute lets you see whether
or not an element is altered by a bulk INSERT, UPDATE, or
DELETE statement. You access these statistics by putting them
in range FOR loop statements.

TABLE 4-8 Bulk Cursor Attributes

Chapter 4: Control Structures 123

This section explains how to use the BULK COLLECT INTO and FORALL statements. The
subsection “BULK COLLECT INTO Statement” discusses the uses of and differences between
parallel scalar and record collections. The subsection “FORALL Statements” has independent
sections on how you can use bulk INSERT, UPDATE, and DELETE statements.

BULK COLLECT INTO Statements
The BULK COLLECT INTO statement lets you select a column of data and insert it into Oracle
collection datatypes. You can use a bulk collect inside a SQL statement or as part of a FETCH
statement. A SQL statement bulk collection uses an implicit cursor, while a FETCH statement
works with an explicit cursor. You cannot limit the number of rows returned when performing
bulk collection in an implicit cursor. The FETCH statement lets you append the LIMIT statement
to set the maximum number of rows read from the cursor at a time. You can use any standard or
user-defined PL/SQL datatype as the target of an implicit cursor statement.

The following is a basic prototype of an implicit bulk collection statement:

 SELECT column1 [, column2 [, column(n+1)]]
 COLLECT BULK INTO collection1 [, collection2 [, collection(n+1)]]
 FROM table_name
[WHERE where_clause_statements];

Bulk collections performed as part of a FETCH statement use an explicit cursor. They have the
following prototype:

 FETCH cursor_name [(parameter1 [, parameter2 [, parameter(n+1)]])]
 BULK COLLECT INTO collection1 [, collection2 [, collection(n+1)]]
[LIMIT rows_to_return];

The number of columns returned by the explicit cursor determines the number of scalar
collection targets, or the structure of a record collection target. The SELECT statement defines
the number and type of columns returned by a cursor.

You can use BULK COLLECT INTO statements to insert a series of targets or a single target. A
series of targets is a set of collection variables separated by commas. The target comma-delimited
collections are known as parallel collections because you generally manage them in parallel. A
single target is a collection of a record structure. You cannot insert some of the columns into a
collection of a record structure and others into scalar collections in the same statement call. Any
attempt to do so raises a PLS-00494 error that disallows coercion into multiple record targets.

The BULK COLLECT INTO statement is much faster than a standard cursor because it has
one parse, execute, and fetch cycle. Ordinary implicit INTO statement cursors or explicit cursors
have more parses, executes, and fetches. Bulk operations scale better as the number or rows
increase, but very large operations require database configurations to support them.

The sections “Parallel Collection Targets” and “Record Collection Targets” demonstrate bulk
collections using implicit cursors. Explicit cursors are demonstrated in the last subsection along
with the LIMIT statement. The LIMIT statement lets you constrain the size of bulk selections, but
you can only use it with explicit cursors. The last subsection on limited collection targets
demonstrates how you can work within your database operating constraints, like the PGA.

Parallel Collection Targets
Scalar collections are the only supported SQL collection datatypes. When you want to share data
with external programs or web applications, you should return your bulk selections into a series of

124 Oracle Database 11g PL/SQL Programming

parallel collections. You can exchange these datatypes with external programs and web applications,
using the Oracle Call Interface (OCI).

The example program uses an implicit BULK COLLECT INTO statement cursor, and it
performs a bulk selection into a set of parallel scalar collections:

DECLARE
 TYPE title_collection IS TABLE OF VARCHAR2(60);
 TYPE subtitle_collection IS TABLE OF VARCHAR2(60);
 title TITLE_COLLECTION;
 subtitle SUBTITLE_COLLECTION;
BEGIN
 SELECT item_title
 , item_subtitle
 BULK COLLECT INTO title, subtitle
 FROM item;
 -- Print one element of one of the parallel collections.
 FOR i IN 1..title.COUNT LOOP
 dbms_output.put_line('Title ['||title(i)||']');
 END LOOP;
END;
/

The program demonstrates how you pass a set of values into scalar collections. After you
change the natural row structure to a parallel collection of column values, you should ensure the
discrete collections remain synchronized. Creating and maintaining synchronized collections is
difficult and tedious. You should only choose this direction when you have a critical business need
to move data around using SQL datatypes.

The typical reason to opt for parallel collections is to move the data from PL/SQL to external
programming languages or web applications. You should reconvert the parallel collections into
a multiple dimensional collections after transferring the data. Multiple dimension collections are
typically collections of record types.

Record Collection Targets
Current limitations on building SQL collections limits collections of records to PL/SQL-only
structures. This means that you can only use them inside programs that run exclusively in the
PL/SQL environment.

You can use a collection of PL/SQL record types as a datatype for a parameter in a stored
function or procedure when you define the datatype in a PL/SQL package specification form. This
limitation means that you cannot exchange the datatype with external programs. You must use
parallel collections when you want to exchange them with external programs and web applications.

The example program uses an implicit BULK COLLECT INTO statement cursor, and it performs
a bulk selection into a collection of a local record structure:

DECLARE
 TYPE title_record IS RECORD
 (title VARCHAR2(60)
 , subtitle VARCHAR2(60));
 TYPE collection IS TABLE OF TITLE_RECORD;
 full_title COLLECTION;
BEGIN
 SELECT item_title

Chapter 4: Control Structures 125

 , item_subtitle
BULK COLLECT INTO full_title

 FROM item;
 -- Print one element of a structure.
 FOR i IN 1..full_title.COUNT LOOP
 dbms_output.put_line('Title ['||full_title(i).title||']');
 END LOOP;
END;
/

You will find the mechanics for creating and accessing datatypes defined in package
specifications in Chapter 9. At some future time Oracle may let you create SQL collections of
record types, but currently you are limited to scalar and user-defined object types. Access to
these structures may first come from the Oracle Call Interface (OCI), since it began letting you
access PL/SQL associative arrays and reference cursors in the Oracle 10g Database, Release 2.

LIMIT Constrained Collection Targets
The LIMIT statement lets you set the maximum number or rows returned by a bulk collection.
It constrains the bulk collection. You can only constrain the number of rows returned by explicit
cursors in a FETCH statement.

The downside to this approach is tied to how interactive applications work. Interactive
applications generally require all or nothing, not just some of the records. Batch processing
programs that manage large transaction processing steps are the best candidates for leveraging
this approach.

Explicit cursors can return one to many columns of data from the internal SELECT statement.
You choose to place those column values inside a series of scalar collection targets or a single
record collection target. The next two subsections demonstrate both techniques.

Parallel Collection Targets Parallel collection targets are scalar collection variables. Parallel
collections may differ in datatype but each have the same number of rows and matching index
values. You need scalar collection variables for each column returned by the explicit cursor.

The following program demonstrates how to manage a bulk collection ten rows at a time:

DECLARE
 -- Define scalar datatypes.
 TYPE title_collection IS TABLE OF VARCHAR2(60);
 TYPE subtitle_collection IS TABLE OF VARCHAR2(60);
 -- Define local variables.
 title TITLE_COLLECTION;
 subtitle SUBTITLE_COLLECTION;
 -- Define a static cursor.
 CURSOR c IS
 SELECT item_title
 , item_subtitle
 FROM item;
BEGIN
 OPEN c;
 LOOP
 FETCH c BULK COLLECT INTO title, subtitle LIMIT 10;
 EXIT WHEN title.COUNT = 0;
 FOR i IN 1..title.COUNT LOOP

126 Oracle Database 11g PL/SQL Programming

 dbms_output.put_line('Title ['||title(i)||']');
 END LOOP;
 END LOOP;
END;
/

All iterations through the loop fetch all available rows or up to ten rows of data from the open
cursor. This means that the processing logic must manage all returned rows before fetching the
next set of rows. The exit condition uses the Oracle Collection API COUNT() method to determine
when no rows have been fetched by the cursor. This is equivalent logic to the following statement
for an ordinary cursor:

EXIT WHEN c%NOTFOUND;

While ten is a small number, the idea is to limit consumed memory and minimize the number
of parses, executes, and fetches. This solution support exchanges with external programs and web
applications that are otherwise limited by the OCI8 library.

Record Collection Targets Record collection targets are record collection variables. A target
record collection must map exactly to the return structure of the cursor’s SELECT statement. You
can only use record collections inside the PL/SQL environment.

The following program demonstrates how to manage a bulk collection ten rows at a time:

DECLARE
 TYPE title_record IS RECORD
 (title VARCHAR2(60)
 , subtitle VARCHAR2(60));
 TYPE collection IS TABLE OF TITLE_RECORD;
 full_title COLLECTION;
 CURSOR c IS
 SELECT item_title
 , item_subtitle
 FROM item;
BEGIN
 OPEN c;
 LOOP
 FETCH c BULK COLLECT INTO full_title LIMIT 10;
 EXIT WHEN full_title.COUNT = 0;
 FOR i IN 1..full_title.COUNT LOOP
 dbms_output.put_line('Title ['||full_title(i).title||']');
 END LOOP;
 END LOOP;
END;
/

The program logic is a mirror to the sample program demonstrating parallel collections except
that it returns a row of data into a record collection. All iterations through the loop fetch all
available rows or up to ten rows of data from the open cursor. This means that the processing
logic must manage all returned rows before fetching the next set of rows. The exit condition
uses the Oracle Collection API COUNT() method to determine when no rows have been fetched
by the cursor. This is equivalent logic to the following statement for an ordinary cursor:

EXIT WHEN c%NOTFOUND;

Chapter 4: Control Structures 127

While ten is a small number, the idea is to limit consumed memory and minimize the number
of parses, executes, and fetches. This solution doesn’t support exchanges with external programs
or web applications because of OCI8 limitations.

FORALL Statements
The FORALL loop is designed to work with Oracle collections. It lets you insert, update, or delete
bulk data. This section focuses on how to use the FORALL statement and forward reference
collections, which Chapter 7 covers in depth.

The examples build on the bulk collection examples. They also depend on an ITEM_TEMP
target table. You should create the table by using the following syntax:

CREATE TABLE ITEM_TEMP
(item_id NUMBER
, item_title VARCHAR2(62)
, item_subtitle VARCHAR2(60));

The subsections are ordered to support the example code. You insert, update, and delete the
data using FORALL statements. Then, you can drop the ITEM_TEMP table.

INSERT Statement
Bulk inserts require that you use scalar collections inside the VALUES clause. You raise an
ORA-00947 not enough values error when you attempt to insert a record collection.

The following example code uses scalar collections to perform a bulk insert:

DECLARE
 TYPE id_collection IS TABLE OF NUMBER;
 TYPE title_collection IS TABLE OF VARCHAR2(60);
 TYPE subtitle_collection IS TABLE OF VARCHAR2(60);
 id ID_COLLECTION;
 title TITLE_COLLECTION;
 subtitle SUBTITLE_COLLECTION;
 CURSOR c IS
 SELECT item_id
 , item_title
 , item_subtitle
 FROM item;
BEGIN
 OPEN c;
 LOOP
 FETCH c BULK COLLECT INTO id, title, subtitle LIMIT 10;
 EXIT WHEN title.COUNT = 0;

FORALL i IN id.FIRST..id.LAST
 INSERT INTO item_temp VALUES (id(i),title(i),subtitle(i));
 END LOOP;

FOR i IN id.FIRST..id.LAST LOOP
 dbms_output.put('Inserted ['||id(i)||']');
 dbms_output.put_line('['||SQL%BULK_ROWCOUNT(i)||']');

END LOOP;
END;
/

128 Oracle Database 11g PL/SQL Programming

The FORALL statement reads the index of the first scalar array but could easily read the
others. They should all be exactly the same. Nested tables use a 1-based integer index. In this
example the low range is always 1 and the high range value is always 10. You place the scalar
collection variables in the right position and index them with a subscript value. This essentially
acts like an insert from another SELECT statement.

The second range FOR loop captures the ITEM_ID value and whether or not it was inserted
into the table. It prints 1 when successful and 0 when unsuccessful. This illustrates how you can
use the %BULK_ROWCOUNT attribute.

The real performance advantage comes by placing the COMMIT statement after the end of the
loop. Otherwise, you commit for each batch of inserts. There are occasions when the size of data
inserted makes it more advantageous to put the COMMIT statement as the last statement in the
loop. You should examine the size factors and discuss them with your DBA.

UPDATE Statement
Bulk updates require that you use scalar collections inside the SET clause and any WHERE clause.
Like the INSERT statement, you raise an ORA-00947 not enough values error when you attempt
to insert a record collection.

The following example code uses scalar collections to perform a bulk update:

DECLARE
 TYPE id_collection IS TABLE OF NUMBER;
 TYPE title_collection IS TABLE OF VARCHAR2(60);
 id ID_COLLECTION;
 title TITLE_COLLECTION;
 CURSOR c IS
 SELECT item_id
 , item_title
 FROM item;
BEGIN
 OPEN c;
 LOOP
 FETCH c BULK COLLECT INTO id, title LIMIT 10;
 EXIT WHEN title.COUNT = 0;
 FORALL i IN id.FIRST..id.LAST
 UPDATE item_temp
 SET title = title(i)||': '
 WHERE id = id(i);
 END LOOP;
END;
/

The FORALL statement reads the index of the first scalar array but could easily read the other
collection index. All the index values should all be exactly the same. In this example the low
range is always 1 and the high range value is always 10 because nested table indexes are 1-based
numbers. You place the scalar collection variables in the SET clause or WHERE clause and index
them with a subscript value. This essentially acts like a correlated update statement.

As with the INSERT statement, you should judge where the COMMIT statement belongs when
updating bulk records. After the loop is better when the data chunks are small, and the penultimate
loop statement is best when the chunks are large. In both cases, you should examine the size factors
and discuss them with your DBA.

Chapter 4: Control Structures 129

DELETE Statement
Bulk deletes require that you use scalar collections inside the WHERE clause. As with the INSERT
or UPDATE statements, you can’t use record collections.

The following example code uses scalar collections to perform a bulk delete:

DECLARE
 TYPE id_collection IS TABLE OF NUMBER;
 TYPE title_collection IS TABLE OF VARCHAR2(60);
 id ID_COLLECTION;
 title TITLE_COLLECTION;
 CURSOR c IS
 SELECT item_id
 , item_title
 FROM item;
BEGIN
 OPEN c;
 LOOP
 FETCH c BULK COLLECT INTO id, title LIMIT 10;
 EXIT WHEN title.COUNT = 0;
 FORALL i IN id.FIRST..id.LAST
 DELETE
 FROM item_temp
 WHERE subtitle IS NULL
 AND id = id(i);
 END LOOP;
END;
/

The FORALL statement reads the index of the first scalar array but could easily read the other
collection index. All the index values should be exactly the same. In this example the low range
is always 1 and the high range value is always 10 because nested table indexes are 1-based
numbers. You place the scalar collection variables in the WHERE clause and index them with
a subscript value. This essentially acts like a correlated update statement.

As with the INSERT and UPDATE statements, you should judge where the COMMIT statement
belongs when deleting bulk records. After the loop is better when the data chunks are small, and
the penultimate loop statement is best when the chunks are large. In both cases, you should examine
the size factors and discuss them with your DBA.

This section has demonstrated how to use bulk collections and the FORALL statement. These
commands offer you performance improvements over the traditional row-by-row cursor approach.
You should look for opportunities to use them to improve your application throughput.

Summary
This chapter has examined the control structures in PL/SQL. You should understand how to
effectively use conditional statements and iterative statements. You should also understand how
to build and manage cursors in your PL/SQL programs.

This page intentionally left blank

CHAPTER
5

Error Management

131

132 Oracle Database 11g PL/SQL Programming

his chapter covers PL/SQL error management. PL/SQL handles errors in the exception
block. You’ll find two types of errors in PL/SQL: compilation errors and run-time
errors. You discover compilation errors when you run an anonymous block program
or attempt to build a stored program unit—a function, procedure, or user-defined
object type. Run-time errors are more complex because they have two potential

scenarios. Run-time errors raise manageable errors in the execution or exception blocks, but you
can’t catch run-time errors raised in the declaration block.

You will learn about both types of errors and how to manage them in this chapter. Sections in
the chapter are

Exception types and scope

 Compilation errors

 Run-time errors

Exception management built-in functions

User-defined exceptions

 Declaring user-defined exceptions

 Dynamic user-defined exceptions

Exception stack trace functions

 Exception stack management

 Exception stack formatting

Database trigger exception management

This chapter is designed to be read sequentially. If you want to quickly reference something,
you should consider browsing the chapter first, before targeting a specific section.

Exception Types and Scope
You have two types of errors: compilation errors and run-time errors. Compilation errors occur
when you make an error typing the program or defining the program. The typing errors include
forgetting a reserved word, keyword, or semicolon. These lexical errors are caught when the plain
text file is parsed during compilation. Parsing is the process of reading a text file to ensure that it
meets the lexical usage rules of a programming language. Run-time errors occur when actual data
fails to meet the rules defined by your program unit.

Chapter 3 explains variable scope and displays how it moves from the outermost block to
the innermost. While variable scope begins at the outside and narrows as we nest program units,
exception handling works in the opposite direction. Exceptions in the innermost blocks are
handled locally or thrown to the containing block in sequence until they arrive at the originating
session. Figure 5-1 shows this exception management process.

Compilation errors are often seen quickly because they fail during the parsing phase. Some
deferred errors go unhandled until you run the programs with data values that trigger the error.

■

■

■

■

■

■

■

■

■

■

■

T

Chapter 5: Error Management 133

You create deferred compilation errors when actual data values don’t fit during assignment
because they are too large or the wrong datatype. All compilation errors are thrown back to the
session and cannot be handled by your local exception handler, but you can catch them in a
wrapper (containing outer) block.

Run-time execution errors can always be caught and processed by the local or external
exception block. Run-time errors in exception blocks can only be caught by an outer block
exception handler. You can also opt not to catch errors and have them thrown back to the
originating SQL*Plus session.

The next two subsections cover compilation and run-time errors.

Compilation Errors
Compilation errors are generally typing errors. The parsing of your PL/SQL text file into a set of
interpreted instructions, known as p-code, finds lexical errors. Lexical errors occur when you
misuse a delimiter, identifier, literal, or comment. You can misuse lexical units by

Forgetting a semicolon (the statement terminator)

Using only one delimiter when you should use two, as by failing to enclose a string literal

Misspelling an identifier (reserved words and keywords)

Commenting out a lexical value required by the parsing rules

■

■

■

■

FIGURE 5-1 Exception scope and routing

134 Oracle Database 11g PL/SQL Programming

There are three general patterns for error messages: prior line, current line, and declaration
errors. The prior line error points to an error on the prior statement line, which is generally a
missing statement terminator. Current line errors point to the column of the error or one column
after the error. The difference generally means that the parser is looking for a missing lexical unit.
Declaration errors point to any failure in the declaration block and generally have the actual error
line as the last line of the error message.

The following program should only print a hello world message, but it fails to compile
because it is missing the statement terminator on line 2:

SQL> BEGIN
 2 dbms_output.put_line('Hello World.')
 3 END;
 4 /

This raises the following error message:

END;
*
ERROR at line 3:
ORA-06550: line 3, column 1:
PLS-00103: Encountered the symbol "END" when expecting one of the following:
:= . (% ;
The symbol ";" was substituted for "END" to continue.

This error message may look undecipherable, but it is actually quite informative when you
know how to read it. The first line of the error message provides either the line where the error
occurred or the line after the error. The second line places an asterisk immediately below the error
location or on the first column of the line. The PLS-00103 error message raised by the example
says that a lexical unit is missing immediately before the END reserved word. This typically means
the error occurred one statement line before the echoed error message line. The error message
also provides five possible lexical values for a missing symbol. The parser suggests using a
semicolon. In this case the semicolon or statement terminator is the missing lexical unit.
The semicolon should end the statement on line 2.

The next example shows a compilation error where the error occurs on the same line:

SQL> DECLARE
 2 a NUMBER := 0;
 3 b NUMBER;
 4 c NUMBER;
 5 BEGIN
 6 c := a b;
 7 dbms_output.put_line('['||c||']');
 8 END;
 9 /

The error message displayed is

 c := a b;
 *
ERROR at line 6:
ORA-06550: line 6, column 11:

Chapter 5: Error Management 135

PLS-00103: Encountered the symbol "B" when expecting one of the following:
. (* @ % & = - + ; < / > at in is mod remainder not rem
<an exponent (**)> <> or != or ~= >= <= <> and or like LIKE2_
LIKE4_ LIKEC_ between || multiset member SUBMULTISET_
The symbol "." was substituted for "B" to continue.

The PLS-00103 error message says that a lexical unit is missing immediately before the
variable b. The asterisk on the second line below the variable b tells you that the error occurs
immediately before the variable. You can fix this program by placing any arithmetic operator in
between the a and b variables.

A variation on the prior error message places the asterisk immediately below where the error
occurs in a statement line. The following program raises this type of error message:

SQL> DECLARE
 2 a NUMBER;
 3 BEGIN
 4 a = 1;
 5 END;
 6 /

The error message displayed is

 a = 1;
 *
ERROR at line 4:
ORA-06550: line 4, column 5:
PLS-00103: Encountered the symbol "=" when expecting one of the following:
:= . (@ % ;
The symbol ":= was inserted before "=" to continue.

This type of error message points to the use of a comparison operator where an assignment
operator should appear. This is the easiest type of error message to read and understand.

You receive a less obvious error message when you trigger an error in the declaration block.
The following example tries to assign a two-character string to a one-character variable in the
declaration block:

SQL> DECLARE
 2 a CHAR := 'AB';
 3 BEGIN
 4 dbms_output.put_line('['||a||']');
 5 END;
 6 /

The program raises the following error message, which provides very little information if you
were trying to apply the previously discussed rules:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 2

136 Oracle Database 11g PL/SQL Programming

The error points to line 1. Unlike the earlier errors, this does not point to a problem before
the DECLARE statement. It tells you that the error occurs in the declaration block, and the last
statement in the error message points to the specific line number. The last line is actually the
first error written to the exception stack trace. The ORA-06512 error on the last line of the error
message points to line 2 in the program. The error occurs when the program tries to assign a
string literal 'AB' into a single character-sized variable.

This section has shown you how to read and interpret compilation errors. You should now
know that there are three general types of compilation messages. One type points to the first
column of a statement line when the error occurs on the prior statement line. Another type points
to a column where the error occurs or one column past where the error occurs on the same line.
A third points to a declaration block error and provides a line number for the actual error at the
bottom of the message. You should be able to increase your speed diagnosing errors if you apply
the right one of these three rules.

Run-Time Errors
Run-time errors can happen in declaration, execution, and exception PL/SQL blocks. The easiest
to catch and handle are those errors thrown from an execution block because they are caught first
by any local exception block and next by any containing block. On the other hand, only an
external exception block can catch errors thrown from an exception block. This means that you
can only handle exception block errors when they come from a nested PL/SQL program unit. That
leaves errors thrown from declaration blocks. Declaration errors can’t be caught or handled by a
local exception block.

Exception blocks contain WHEN blocks. WHEN blocks catch specific errors or general errors.
The prototype for the WHEN block is

WHEN {predefined_exception | user_defined_exception | OTHERS} THEN
exception_handling_statement;

[RETURN | EXIT];

The WHEN block can take an Oracle-predefined exception name, like those listed later in
Table 5-2. These are specific errors. Predefined errors are known error numbers that map to names.
They are defined in the SYS.STANDARD package. Alternatively, you can define your own
exceptions by assigning the EXCEPTION datatype. User-defined errors are also specific errors.
The section “User-Defined Errors” later in this chapter covers the process of defining these. You
use the OTHERS reserved word when you want a WHEN clause to catch any exception.

You also have two built-in functions: SQLCODE and SQLERRM. Table 5-1 covers these two
functions because they are used in subsequent example programs. Appendix J also covers these
functions in more depth.

The subsections cover execution and exception block errors first and then declaration block
errors. They’re ordered that way because you need to see how the basic mechanics work before
you see how they fail.

Execution and Exception Block Errors
Errors raised in the execution block are thrown to the local exception block where they are caught
and managed. Exception handler is another name for the exception block in PL/SQL. When the
local exception block fails to catch the exception and the block was called by another PL/SQL
program, the exception signals to the calling program. The calling program manages the thrown
exception, provided it catches and manages that type of exception. This process continues until

Chapter 5: Error Management 137

an exception block catches and manages the thrown error, or an unhandled exception is returned
to the SQL*Plus environment.

The following demonstrates handling an assignment error raised by trying to put a two-
character string into a one-character variable:

DECLARE
 a VARCHAR2(1);
 b VARCHAR2(2) := 'AB';
BEGIN
 a := b;
EXCEPTION
 WHEN value_error THEN
 dbms_output.put_line('You can''t put ['||b||'] in a one character string.');
END;
/

Running this program, you generate the following output message when you’ve enabled
SERVEROUTPUT in your session:

You can't put [AB] in a one character string.

Function Oracle-Predefined Errors User-Defined Errors
SQLCODE Returns a negative number that maps

to the Oracle predefined exceptions
but for one special case: the NO_
DATA_FOUND exception returns a
positive 100.

Returns a positive 1 if there is
no EXCEPTION_INIT PRAGMA
defined. If an EXCEPTION_INIT
PRAGMA is defined, it returns a valid
number in the range of negative
20001 to negative 20999.

SQLERRM Is overloaded (a concept covered in
Chapter 9) and performs as qualified:
Returns the defined error code and
message for a raised exception if no
number is passed to it.
Returns the actual number parameter
as a negative integer and a non-
Oracle exception message if a positive
number is passed to it or a negative
number that is not a predefined Oracle
exception.
Returns the actual number parameter
as a negative integer and the Oracle-
defined message if a negative number
for an Oracle-predefined exception is
passed.

Returns a 1 and a “User-Defined
Exception” message if triggered
by the RAISE command. Returns
a valid integer in the range of
negative 20001 to negative 20999
and a text message set by the
RAISE_APPLICATION_INFO
function.

TABLE 5-1 Oracle Exception Management Built-in Functions

138 Oracle Database 11g PL/SQL Programming

The preceding example demonstrates how a local error is caught and managed by a local
exception block. The exception block only manages that exception; any other exception would
be ignored and thrown to the SQL*Plus session.

The following raises a NO_DATA_FOUND error inside the inner block that isn’t caught until the
outer block exception handler:

DECLARE
 a NUMBER;
BEGIN
 DECLARE
 b VARCHAR2(2);
 BEGIN
 SELECT 1
 INTO b
 FROM dual
 WHERE 1 = 2;
 a := b;
 EXCEPTION
 WHEN value_error THEN
 dbms_output.put_line('You can''t put ['||b||'] in a one character string.');
 END;
EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Caught in outer block ['||SQLERRM||'].');
END;
/

The raised error is an NO_DATA_FOUND exception. The inner block only checks for a
VALUE_ERROR exception because it is a specific catch block. The program then throws the
error to the containing block, where the general OTHERS exception catches it. The actual
message prints the SQLERRM message:

Caught in outer block [ORA-01403: no data found].

You can manually raise a user-defined exception without encountering one. This technique
lets you see what happens when an error is raised inside an exception block.

DECLARE
 a NUMBER;

e EXCEPTION;
BEGIN
 DECLARE
 b VARCHAR2(2) := 'AB';
 BEGIN

RAISE e;
 EXCEPTION
 WHEN others THEN

a := b;
 dbms_output.put_line('Does not reach this line.');
 END;
EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Caught in outer block ['||SQLCODE||'].');
END;
/

Chapter 5: Error Management 139

The RAISE statement passes control to the local exception handler. Inside the WHEN block it
attempts to assign a multiple-character literal to a one-character string, which raises a VALUE_ERROR
exception. An error raised inside an exception block is passed to the calling block or the SQL*Plus
environment. The program generates the SQLCODE output from the outer block exception handler:

Caught in outer block [-6502].

This section has demonstrated the basics of run-time exception management. You should note
that when you raise an error in the execution block, it is handled locally where possible. When
the local exception block doesn’t manage the error, it is sent to an outer block or the SQL*Plus
environment. PL/SQL throws exceptions raised in an exception block to an outer block or the
SQL*Plus environment.

Declaration Block Errors
The declaration block is susceptible to run-time errors. These errors occur when you make
dynamic assignments in the declaration block. As a good coding practice, you should only
make literal assignments inside the declaration section. You should make dynamic assignments
inside the execution block because exception block errors are caught and managed by the local
exception block. Runtime assignment errors in the declaration block are not captured by the local
exception block.

The following anonymous-block program uses a dynamic assignment through a substitution
variable:

DECLARE
 a varchar2(1) := '&1';
BEGIN
 dbms_output.put_line('Substituted variable value ['||a||']');
EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Local exception caught.');
END;
/

The substitution of a two-character string raises the following exception:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 2

This error message indicates that a dynamic sizing error ignores a local exception block. You can
catch the error when you enclose the declaration as an inner block in another PL/SQL block. This
shifts the dynamic assignment from an outer to inner block.

The following program demonstrates enclosing the declaration error in another PL/SQL block:

BEGIN
 DECLARE
 a varchar2(1) := '&1';
 BEGIN
 dbms_output.put_line('Substituted variable value ['||a||']');
 EXCEPTION

140 Oracle Database 11g PL/SQL Programming

 WHEN others THEN
 dbms_output.put_line('Local exception caught.');
 END;
EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Outer exception caught.');
END;
/

When you assign a two-character string, the error is caught by the outer exception block,
as shown:

Outer exception caught.

This same behavior exists in stored program units, like functions and procedures. While procedures
require wrapping their calls, functions don’t. If you call a function directly from SQL, it can raise
an unhandled exception.

NOTE
You can call stored functions from SQL when they return a native SQL
datatype.

The following function replicates the dynamic assignment problem in a stored programming
unit:

CREATE OR REPLACE FUNCTION runtime_error
(variable_in VARCHAR2) RETURN VARCHAR2 IS
 a VARCHAR2(1) := variable_in;
BEGIN
 RETURN NULL;
EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Function error.');
END;
/

You can call this function in SQL using a statement that queries it from the pseudotable DUAL:

SELECT runtime_error ('AB') FROM dual;

It generates the following unhandled exception:

SELECT runtime_error ('AB') FROM dual;
 *
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at "PLSQL.RUNTIME_ERROR", line 3

This section has demonstrated that you should make dynamic assignments in execution
blocks because PL/SQL doesn’t catch dynamic assignment errors in local exception handlers.
You’ve also seen that you can wrap dynamic assignments inside an outer block to catch errors.

TIP
Good PL/SQL coding practices avoid dynamic assignments in
declaration blocks.

Chapter 5: Error Management 141

Exception Management Built-in Functions
Oracle provides a series of predefined exceptions in the STANDARD package. These are useful tools
in your debugging of Oracle PL/SQL programs. Most errors raise a negative number as their error
number. An ORA-01001 maps to the INVALID_CURSOR predefined exception. You find error
codes by using the SQLCODE built-in function. The predefined exceptions are noted in Table 5-2.

TABLE 5-2 Predefined Exceptions in the Standard Package

Exception Error When Raised
ACCESS_INTO_NULL ORA-06530 You encounter this when attempting to

access an uninitialized object.
CASE_NOT_FOUND ORA-06592 You encounter this when you have

defined a CASE statement without an
ELSE clause and none of the CASE
statements meet the run-time condition.

COLLECTION_IS_NULL ORA-06531 You encounter this when attempting to
access an uninitialized NESTED TABLE
or VARRAY.

CURSOR_ALREADY_OPEN ORA-06511 You encounter this when attempting to
open a cursor that is already open.

DUP_VAL_ON_INDEX ORA-00001 You encounter this when attempting to
insert a duplicate value to a table’s column
when there is a unique index on it.

INVALID_CURSOR ORA-01001 You encounter this when attempting a
disallowed operation on a cursor, like
closing a closed cursor.

INVALID_NUMBER ORA-01722 You encounter this when attempting to
assign something other than a number to
a number or when the LIMIT clause of a
bulk fetch returns a non-positive number.

LOGIN_DENIED ORA-01017 You encounter this when attempting
to log in with a program to an invalid
username or password.

NO_DATA_FOUND ORA-01403 You encounter this when attempting to
use the SELECT-INTO structure and
the statement returns a null value, when
you attempt to access a deleted element
in a nested table, or when you attempt
to access an uninitialized element in an
index-by table (called an associative array
since Oracle 10g).

NO_DATA_NEEDED ORA-06548 You raise this error when a caller to a
PIPELINED function signals no need for
further rows.

142 Oracle Database 11g PL/SQL Programming

Exception Error When Raised
NOT_LOGGED_ON ORA-01012 You encounter this when a program issues

a database call and is not connected,
which is typically after the instance has
disconnected your session.

PROGRAM_ERROR ORA-06501 You encounter this all too often when
an error occurs that Oracle has not yet
formally trapped. This happens with a
number of the Object features of the
database.

ROWTYPE_MISMATCH ORA-06504 You encounter this when your cursor
structure fails to agree with your PL/SQL
cursor variable, or an actual cursor
parameter differs from a formal cursor
parameter.

SELF_IS_NULL ORA-30625 You encounter this error when you try
to call an object type non-static member
method in which an instance of the
object type has not been initialized.

STORAGE_ERROR ORA-06500 You encounter this error when the SGA
has run out of memory or been corrupted.

SUBSCRIPT_BEYOND_COUNT ORA-06533 You encounter this error when the
space allocated to a NESTED TABLE
or VARRAY is smaller than the subscript
value used.

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 You encounter this error when you use an
illegal index value to access a NESTED
TABLE or VARRAY, which means a non-
positive integer.

SYS_INVALID_ROWID ORA-01410 You encounter this error when you try to
convert a string into an invalid ROWID
value.

TIMEOUT_ON_RESOURCE ORA-00051 You encounter this error when the database
is unable to secure a lock to a resource.

TOO_MANY_ROWS ORA-01422 You encounter this when using the
SELECT-INTO and the query returns more
than one row. It is also possible for you
to get this error when a subquery returns
more than one row and the comparison
operator is an equality operator.

TABLE 5-2 Predefined Exceptions in the Standard Package (continued)

Chapter 5: Error Management 143

These are very handy tools for writing exception handlers. You should use these when they
meet your needs. When they don’t meet your needs, you should create user-defined exceptions.

User-Defined Exceptions
User-defined exceptions can be declared two ways: you can declare an EXCEPTION variable in
the declaration block, or you can build a dynamic exception in your execution block.

There are two options when you declare an EXCEPTION variable. The simplest implementation
lets you declare a variable and raise it by name. The alternate implementation lets you declare
the variable and map it to a valid Oracle error code. The former requires that you catch your
user-defined errors using the general catch OTHERS exception. The latter lets you build specific
WHEN blocks for individual errors.

You can build dynamic exceptions by calling the RAISE_APPLICATION_ERROR function.
You can use a range between –20,000 and –20,999 when you raise dynamic exceptions. You
assign error messages at run time when using dynamic exceptions. They also don’t require you to
declare EXCEPTION variables beforehand. You improve the usefulness of dynamic exceptions by
declaring exception variables. Together they enhance how you catch exceptions.

NOTE
The Oracle E-Business Suite and other software applications already
use numbers in this range for their exceptions, and you should try to
avoid conflicts.

The subsections are divided into declaring user-defined exceptions and raising dynamic user-
defined exceptions. They should be read sequentially because the second topic depends on your
understanding how to declare EXCEPTION variables.

Exception Error When Raised
USERENV_COMMITSCN_ERROR ORA-01725 You can only use the function

USERENV('COMMMITSCN') as a top-
level expression in a VALUES clause of an
INSERT statement or as a right operand in
the SET clause of an UPDATE statement.

VALUE_ERROR ORA-06502 You encounter this when you try to assign
a variable into another variable that is too
small to hold it.

ZERO_DIVIDE ORA-01476 You encounter this when you try to divide
a number by zero.

TABLE 5-2 Predefined Exceptions in the Standard Package (continued)

144 Oracle Database 11g PL/SQL Programming

Declaring User-Defined Exceptions
You declare an exception like any other variable in PL/SQL. After declaring it, you can raise the
exception but you have no way to catch it in the exception handler. The purpose behind your
user-defined exception dictates which way you declare it.

The following program declares and raises an exception:

DECLARE
 e EXCEPTION;
BEGIN
 RAISE e;
 dbms_output.put_line('Can''t get here.');
EXCEPTION
 WHEN OTHERS THEN
 IF SQLCODE = 1 THEN
 dbms_output.put_line('This is a ['||SQLERRM||'].');
 END IF;
END;
/

This program raises the exception and prints

This is a [User-Defined Exception].

By default all user-defined exceptions have a SQLCODE value of 1. The IF block lets you
catch user-defined errors separately inside a general WHEN block.

A two-step declaration process lets you declare an exception and map it to a number. The first
step was declaring the EXCEPTION variable. The second step declares a PRAGMA. A PRAGMA is
a compiler directive. You use a PRAGMA to direct the compiler to perform something differently.
PL/SQL supports a number of PRAGMA directives. You use the EXCEPTION_INIT directive to
map an exception to an error code. The first parameter of an EXCEPTION_INIT call is a user-
defined EXCEPTION variable, and the second is a valid error number.

TIP
You should avoid mapping a user-defined exception to an error code
that is already a predefined exception, as qualified in earlier Table 5-2.

The example program defines an EXCEPTION variable and maps the exception to an error
number:

DECLARE
 a VARCHAR2(20);
 invalid_userenv_parameter EXCEPTION;

PRAGMA EXCEPTION_INIT(invalid_userenv_parameter,-2003);
BEGIN
 a := SYS_CONTEXT('USERENV','PROXY_PUSHER');
EXCEPTION
 WHEN invalid_userenv_parameter THEN
 dbms_output.put_line(SQLERRM);
END;
/

Chapter 5: Error Management 145

The ORA-02003 is a real error code, assigned in the implementation of the STANDARD package.
The choice of INVALID_USERENV_PARAMETER also mirrors its actual definition in the
STANDARD package body.

The code prints the standard Oracle error message:

ORA-02003: invalid USERENV parameter

Dynamic User-Defined Exceptions
Dynamic user-defined exceptions let you raise an exception, assign it a number, and manage
whether or not you add the new error to a list of errors (known as an error stack). The following
is the prototype for the dynamic exception function:

RAISE_APPLICATION_ERROR(error_number, error_message [, keep_errors])

The first formal parameter takes an error number in the range of –20,000 to –20,999. You
raise an ORA-21000 error when you provide any other value. The second formal parameter is
an error message. The last formal parameter is optional and has a default value of FALSE. You
instruct that the error should be added to any existing error stack when you provide an optional
TRUE value.

The following demonstrates raising a dynamic exception without previously declaring a user-
defined EXCEPTION variable:

BEGIN
 RAISE_APPLICATION_ERROR(-20001,'A not too original message.');
EXCEPTION
 WHEN others THEN
 dbms_output.put_line(SQLERRM);
END;
/

This catches the error using the OTHERS reserved word and prints

ORA-20001: A not too original message.

The next program combines declaring an EXCEPTION variable, mapping a user-defined error
code to an EXCEPTION variable, and then setting the message dynamically. This demonstrates
how all three can work together to provide you with control throughout your program, as shown:

DECLARE
 e EXCEPTION;
 PRAGMA EXCEPTION_INIT(e,-20001);
BEGIN

RAISE_APPLICATION_ERROR(-20001,'A less than original message.');
EXCEPTION
 WHEN e THEN
 dbms_output.put_line(SQLERRM);
END;
/

This prints the dynamic error message from the RAISE_APPLICATION_ERROR() function:

ORA-20001: A less than original message.

146 Oracle Database 11g PL/SQL Programming

Unlike the message files for standard Oracle errors, this message is dynamic to your PL/SQL
program units. The SQLERRM built-in does not look the message up but simply substitutes the
string literal provided to the RAISE_APPLICATION_ERROR function.

This section has demonstrated how to declare exceptions and use them. You have seen how
to map existing Oracle errors and error message definitions to user-defined exceptions. You have
also seen how to provide your own error messages dynamically.

Exception Stack Functions
The exception stack is the sequencing of errors from the triggering event to the calling block of
code. PL/SQL throws an exception in the execution block when a failure occurs and runs the
code in its local exception block. If the failure is in a nested or referenced PL/SQL block, it first
runs a local exception handler before running the calling program unit’s exception handler. It then
continues running available exception blocks or returning errors to the error stack until it returns
control to the outermost PL/SQL block.

When PL/SQL does not contain exception blocks, you get a propagation of line number and
error codes. Beginning in Oracle 10g, you can use an exception block and the DBMS_UTILITY
package to get line number and error codes.

There are two approaches to managing errors in PL/SQL; the choice of which to use depends
on the application transaction control requirements. If you encounter an error that’s fatal to the
business logic of your application, you need to raise an exception. The exception should stop the
business process and roll back the transaction to a state where the data is safe and consistent.

When the error is not fatal to your application business logic, you may choose to log the
error in a table and allow the transaction to complete. The section “Database Trigger Exception
Management” shows you how to log this type of error. While the example demonstrates how you
log a non-fatal error, it does not cover defining the recovery mechanism. You must analyze what
the transaction is doing to plan how you can recover the information.

The next two sections highlight management of the error stack in named PL/SQL blocks. First,
you’ll learn how to manage error stacks within anonymous- and named-block PL/SQL units. Then,
you’ll learn how to use the FORMAT_ERROR_BACKTRACE function.

Exception Stack Management
This section shows how to format error stacks without using the DBMS_UTILITY package
functions—a necessary skill when you’re working in Oracle 9i or some earlier release. The
section also forward-references concepts covered in Chapters 6 and 7 on both stored functions
and procedures, as well as collections. You’ll learn how to build a standard error event management
procedure, and how to test it with a set of related procedures.

Whether errors are thrown from called local or named PL/SQL blocks, the stack management
process is the same. Error are raised and put in a last_in, first_out (LIFO) queue, which is known
as a stack. As raised errors are placed on the stack, they are passed to calling program units until
they reach the outermost program. The outermost program reports the error stack to the end user.
The end user can be a physical person, a SQL statement, or a batch processing script external to
the database.

The script creates a simple procedure that you will call from an exception block in each of
the named PL/SQL stored functions and procedures later in this section:

-- This is found in exception1.sql on the publisher's web site.

CREATE OR REPLACE PROCEDURE handle_errors

Chapter 5: Error Management 147

(object_name IN VARCHAR2
, module_name IN VARCHAR2 := NULL
, table_name IN VARCHAR2 := NULL
, sql_error_code IN NUMBER := NULL
, sql_error_message IN VARCHAR2 := NULL
, user_error_message IN VARCHAR2 := NULL) IS

 -- Define a local exception.
 raised_error EXCEPTION;

 -- Define a collection type and initialize it.
 TYPE error_stack IS TABLE OF VARCHAR2(80);
 errors ERROR_STACK := error_stack();

 -- Define a local function to verify object type.
 FUNCTION object_type
 (object_name_in IN VARCHAR2)
 RETURN VARCHAR2 IS
 return_type VARCHAR2(12) := 'Unidentified';
 BEGIN
 FOR i IN (SELECT object_type
 FROM user_objects
 WHERE object_name = object_name_in) LOOP
 return_type := i.object_type;
 END LOOP;
 RETURN return_type;
 END object_type;
BEGIN
 -- Allot space and assign a value to collection.
 errors.EXTEND;
 errors(errors.COUNT) := object_type(object_name)||' ['||object_name||']';

 -- Substitute actual parameters for default values.
 IF module_name IS NOT NULL THEN
 errors.EXTEND;
 errors(errors.COUNT) := 'Module Name: ['||module_name||']';
 END IF;
 IF table_name IS NOT NULL THEN
 errors.EXTEND;
 errors(errors.COUNT) := 'Table Name: ['||table_name||']';
 END IF;
 IF sql_error_code IS NOT NULL THEN
 errors.EXTEND;
 errors(errors.COUNT) := 'SQLCODE Value: ['||sql_error_code||']';
 END IF;
 IF sql_error_message IS NOT NULL THEN
 errors.EXTEND;
 errors(errors.COUNT) := 'SQLERRM Value: ['||sql_error_message||']';
 END IF;
 IF user_error_message IS NOT NULL THEN
 errors.EXTEND;
 errors(errors.COUNT) := user_error_message;

148 Oracle Database 11g PL/SQL Programming

 END IF;

 errors.EXTEND;
 errors(errors.COUNT) := '--';
 RAISE raised_error;
EXCEPTION
 WHEN raised_error THEN
 FOR i IN 1..errors.COUNT LOOP
 dbms_output.put_line(errors(i));
 END LOOP;
 RETURN;
END;
/

The stored procedure signature includes optional formal parameters. This makes the
handle_errors procedure more flexible. There is a local function that captures and verifies
object source definitions. The procedure tests for not-null values before processing actual values
passed through formal parameters. The EXTEND() method creates space before assigning values
to lists. The method is part of the Oracle 11g Collection API and is covered in Chapter 7.

The following three procedures are built in descending order because of their dependencies.
The error_level1 procedure calls the error_level2 procedure, which then calls the
error_level3 procedure. You can build these with the following script:

-- This is found in exception2.sql on the publisher's web site.

CREATE OR REPLACE PROCEDURE error_level3 IS
 one_character VARCHAR2(1);
 two_character VARCHAR2(2) := 'AB';
 local_object VARCHAR2(30) := 'ERROR_LEVEL3';
 local_module VARCHAR2(30) := 'MAIN';
 local_table VARCHAR2(30) := NULL;
 local_user_message VARCHAR2(80) := NULL;
BEGIN
 one_character := two_character;
EXCEPTION
 WHEN others THEN
 handle_errors(object_name => local_object
 , module_name => local_module
 , sql_error_code => SQLCODE
 , sql_error_message => SQLERRM);
 RAISE;
END error_level3;
/
CREATE OR REPLACE PROCEDURE error_level2 IS
 local_object VARCHAR2(30) := 'ERROR_LEVEL2';
 local_module VARCHAR2(30) := 'MAIN';
 local_table VARCHAR2(30) := NULL;
 local_user_message VARCHAR2(80) := NULL;
BEGIN
 error_level3();
EXCEPTION
 WHEN others THEN

Chapter 5: Error Management 149

 handle_errors(object_name => local_object
 , module_name => local_module
 , sql_error_code => SQLCODE
 , sql_error_message => SQLERRM);
 RAISE;
END error_level2;
/
CREATE OR REPLACE PROCEDURE error_level1 IS
 local_object VARCHAR2(30) := 'ERROR_LEVEL1';
 local_module VARCHAR2(30) := 'MAIN';
 local_table VARCHAR2(30) := NULL;
 local_user_message VARCHAR2(80) := NULL;
BEGIN
 error_level2();
EXCEPTION
 WHEN others THEN
 handle_errors(object_name => local_object
 , module_name => local_module
 , sql_error_code => SQLCODE
 , sql_error_message => SQLERRM);
 RAISE;
END error_level1;
/

The script builds three stored procedures. They call each other in reverse sequence until the
innermost raises an exception. You can test the propagation and format an error stack by running
the following test program:

BEGIN
 error_level1;
END;
/

You’ll get the following formatted error stack:

PROCEDURE [ERROR_LEVEL3]
Module Name: [MAIN]
SQLCODE Value: [-6502]
SQLERRM Value: [ORA-06502: PL/SQL: numeric or value error: character ...
--
PROCEDURE [ERROR_LEVEL2]
Module Name: [MAIN]
SQLCODE Value: [-6502]
SQLERRM Value: [ORA-06502: PL/SQL: numeric or value error: character ...
--
PROCEDURE [ERROR_LEVEL1]
Module Name: [MAIN]
SQLCODE Value: [-6502]
SQLERRM Value: [ORA-06502: PL/SQL: numeric or value error: character ...
--
begin
*
ERROR at line 1:

150 Oracle Database 11g PL/SQL Programming

ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at "PLSQL.ERROR_LEVEL1", line 14
ORA-06512: at line 2

You have now covered how to format your error stack in PL/SQL to demonstrate an exception
stack trace through named procedures. The method does require a bit of effort but clearly
illustrates how you find the propagation path to trace, diagnose, and fix problems in the data
or application code.

Error Stack Formatting
This section shows how to format error stack management with the functions in the DBMS_UTILITY
package. There was a user_error_message formal parameter in the handle_errors
procedure that went unused. You will use it to manage the output from the DBMS_UTILITY
package’s FORMAT_ERROR_BACKTRACE function.

The handle_errors procedure remains the same in the following discussion. However, the
three procedures illustrating exception propagation have changed slightly, as noted next:

-- This is found in exception3.sql on the publisher's web site.

CREATE OR REPLACE PROCEDURE error_level3 IS
 one_character VARCHAR2(1);
 two_character VARCHAR2(2) := 'AB';
 local_object VARCHAR2(30) := 'ERROR_LEVEL3';
 local_module VARCHAR2(30) := 'MAIN';
 local_table VARCHAR2(30) := NULL;
 local_user_message VARCHAR2(80) := NULL;
BEGIN
 one_character := two_character;
EXCEPTION
 WHEN others THEN
 handle_errors(object_name => local_object
 ,module_name => local_module
 ,sql_error_code => SQLCODE
 ,sql_error_message => SQLERRM
 ,user_error_message => DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);
 RAISE;
END error_level3;
/
CREATE OR REPLACE PROCEDURE error_level2 IS
 local_object VARCHAR2(30) := 'ERROR_LEVEL2';
 local_module VARCHAR2(30) := 'MAIN';
 local_table VARCHAR2(30) := NULL;
 local_user_message VARCHAR2(200) := NULL;
BEGIN
 error_level3();
EXCEPTION
 WHEN others THEN
 handle_errors(object_name => local_object
 ,module_name => local_module
 ,sql_error_code => SQLCODE
 ,sql_error_message => SQLERRM

Chapter 5: Error Management 151

 ,user_error_message => DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);
 RAISE;
END error_level2;
/
CREATE OR REPLACE PROCEDURE error_level1 IS
 local_object VARCHAR2(30) := 'ERROR_LEVEL1';
 local_module VARCHAR2(30) := 'MAIN';
 local_table VARCHAR2(30) := NULL;
 local_user_message VARCHAR2(200) := NULL;
BEGIN
 error_level2();
EXCEPTION
 WHEN others THEN
 handle_errors(object_name => local_object
 ,module_name => local_module
 ,sql_error_code => SQLCODE
 ,sql_error_message => SQLERRM
 ,user_error_message => DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);
 RAISE;
END error_level1;
/

Like the prior example, the script builds three stored procedures. They call each other in reverse
sequence until the innermost raises an exception. You can test the propagation and format an error
stack by running the following test program:

BEGIN
 error_level1;
END;
/

You’ll get the following formatted error stack:

PROCEDURE [ERROR_LEVEL3]
Module Name: [MAIN]
SQLCODE Value: [-6502]
SQLERRM Value: [ORA-06502: PL/SQL: numeric or value error: character ...
ORA-06512: at "PLSQL.ERROR_LEVEL3", line 9
--
PROCEDURE [ERROR_LEVEL2]
Module Name: [MAIN]
SQLCODE Value: [-6502]
SQLERRM Value: [ORA-06502: PL/SQL: numeric or value error: character ...
ORA-06512: at "PLSQL.ERROR_LEVEL3", line 17
ORA-06512: at "PLSQL.ERROR_LEVEL2", line 7
--
PROCEDURE [ERROR_LEVEL1]
Module Name: [MAIN]
SQLCODE Value: [-6502]
SQLERRM Value: [ORA-06502: PL/SQL: numeric or value error: character ...
ORA-06512: at "PLSQL.ERROR_LEVEL2", line 15
ORA-06512: at "PLSQL.ERROR_LEVEL1", line 7
--

152 Oracle Database 11g PL/SQL Programming

BEGIN
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at "PLSQL.ERROR_LEVEL1", line 15
ORA-06512: at line 2

The DBMS_UTILITY.FORMAT_ERROR_BACKTRACE package function provides you with a
more effective tool to trace, diagnose, and fix problems. The only tedious part is matching the line
numbers of the exceptions to the line numbers of the stored programs. You can do this by leveraging
the data dictionary.

For example, if you would like to find the source error that occurred at line 12 in the
error_level3 procedure, the following query finds the responsible line of code:

COL line FORMAT 999
COL text FORMAT A60

SELECT line
, text
FROM user_source
WHERE name = 'ERROR_LEVEL3'
AND line = 9;

The output shows the following:

LINE TEXT
----- ---------------------------------
 9 one_character := two_character;

The FORMAT_ERROR_BACKTRACE function in the DBMS_UTILITY package lets you quickly
identify an error’s location. You now know how to manage error stacks with or without the
FORMAT_ERROR_BACKTRACE function.

Database Trigger Exception Management
Database triggers are event-driven programs. If you’re unfamiliar with database triggers, see
Chapter 10. Triggers are activated when a transactional program unit calls a database object, like
a table or view. Database triggers may sometimes call other stored functions, procedures, and
packages. When triggers call other stored objects, those program units cannot contain any
transaction control language (TCL) commands, like SAVEPOINT, ROLLBACK, and COMMIT.

Database triggers solve two types of problems: how to handle critical errors and non-critical
errors. You raise an exception and stop processing when encountering critical errors. You raise
and record exceptions but allow processing to continue for non-critical errors.

The next two subsections cover how you manage critical and non-critical exceptions in database
triggers. The sample programs are Data Manipulation Language (DML) triggers. They show concepts
that also apply to other trigger types. The examples use the code and data found in the introduction.
You can download it from the publisher’s web site.

Chapter 5: Error Management 153

Critical Error Database Triggers
Database triggers stop execution by raising critical errors when you can’t allow processing to
continue. Business rules dictate what is critical or non-critical. They decide whether a transaction
can harm the data. Any transaction that harms the data is a critical error and must be stopped
before it can complete.

Database constraints are terrific for guaranteeing integrity of a data model. The sample data
model supports a foreign key constraint on all foreign keys. This means any insert to a table that
violates the foreign key constraint raises an exception. The processing load of foreign key constraints
generally makes them too expensive to implement in real applications. The alternative to using
foreign key constraints involves building the logic into the application programs. Sometimes you
may elect to put this protective logic in database triggers.

Database constraints are also limited as to what they can constrain. You can’t use a database
constraint to guarantee there are only two authorized signers on an account. The foreign key
constraints control relationship values, while check and unique constraints control range values.
A foreign key constraint guarantees a value is found in a list of values from a column defined with
a primary key constraint. A check constraint limits a value to a range of values but does not limit
the recurrence of repeating values in multiple rows. A unique constraint makes sure that only one
row contains any given value, like a specific foreign key value. Therefore, database constraints
can only constrain data to meet certain conditions and value ranges in tables or views.

Database triggers let you define complex business rules that aren’t supported by database
constraints. Business rules are sometimes very complex. For example, there is no database constraint
that works when a business rule defines that there can only be two authorized signers. This
business rule says that for every row in the member table there can only be two related rows in
the contact table. Only a database triggers can let you audit and enforce this type of relationship
constraint between two tables.

NOTE
A data model communicates this limitation by limiting the maximum
cardinality in a relationship to 2. This would appear as 0..2 on a
UML drawing.

Database Trigger Order of Precedence
There is no order of precedence when you have multiple triggers registered against the
same object, like a table or view. If you have several things that should happen in some
sequence, then you should write them in one or more stored program units and call them
sequentially in a single event trigger.

When you have mutually exclusive things that must occur, you’ll need to disable the
other trigger or delete it before enabling or creating the other. In a production system, you
should write dynamic SQL to disable one trigger and enable the other before running the
code. Chapter 11 covers dynamic SQL. Dropping and creating triggers can nominally
fragment the database. Likewise, you should clean up after the transaction, leaving the
default trigger enabled.

154 Oracle Database 11g PL/SQL Programming

Raised Exceptions for Critical Errors
You build a DML trigger to enforce this type of relationship between the member and contact
tables. The trigger can use a cursor that identifies when more than one row exists to trigger a
dynamic user-defined exception. The trigger lets you insert one or two rows in the contact
table but disallows a third. The following script implements the trigger for this logic:

-- This is found in create_contact_t1.sql on the publisher's web site.

CREATE OR REPLACE TRIGGER contact_t1
BEFORE INSERT ON contact
FOR EACH ROW
DECLARE
 CURSOR c (member_id_in NUMBER) IS
 SELECT null
 FROM contact c
 , member m
 WHERE c.member_id = m.member_id
 AND c.member_id = member_id_in
 HAVING COUNT(*) > 1;
BEGIN
 FOR i IN c (:new.member_id) LOOP
 RAISE_APPLICATION_ERROR(-20001,'Already two signers.');
 END LOOP;
END;
/

The cursor retrieves no value from the tables but retrieves a one-row cursor containing a null
value. This opens the FOR loop statement and raises the dynamic user-defined exception when an
insert tries to add a third dependent row to the contact table.

This insert statement violates the constraint provided both seeding scripts have run:

INSERT INTO contact
VALUES
(contact_s1.nextval
, 1002
,(SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_table = 'CONTACT'
 AND common_lookup_column = 'CONTACT_TYPE'
 AND common_lookup_type = 'CUSTOMER')
,'Sweeney','Irving','M'
, 2, SYSDATE, 2, SYSDATE);

It raises the following exception from the contact_t1 trigger:

(contact_s1.nextval
 *
ERROR at line 2:
ORA-20001: Already two signers.
ORA-06512: at "PLSQL.CONTACT_T1", line 11
ORA-04088: error during execution of trigger 'PLSQL.CONTACT_T1'

Chapter 5: Error Management 155

The exception provides your dynamic exception message. It also returns two system-generated
exception messages. The system-generated messages tell you what raised the error message. This
approach immediately communicates to the end user that he or she has violated a business rule.

The downside to this type of trigger is that you haven’t captured the end-user error. Businesses
often want to both prevent errors and capture employee actions. Many video stores let parents
restrict what their children can rent, for instance, not allowing them to rent MPAA R-rated movies
or ESRB M-rated games. Sometimes children may attempt to rent materials that are disallowed by
their parents. A raised exception like that shown previously prevents the rental but does not let the
video store collect a record of the attempted rental.

Raised and Recorded Exceptions for Critical Errors
Autonomous triggers can both capture events and raise critical exceptions to stop activities.
You use another PRAGMA (precomplier instruction) to define a trigger as autonomous. The
AUTONOMOUS_TRANSACTION directive says that the trigger should run in a separate transaction
scope. This allows the trigger to commit an action to the database while also repudiating the DML
statement that fired the trigger.

You need a place to store the information from the attempt. Use the following script to build
the nc_error table for that purpose:

-- This is found in create_nc_error.sql on the publisher's web site.

CREATE TABLE nc_error
(error_id NUMBER CONSTRAINT pk_nce PRIMARY KEY
, module_name VARCHAR2(30) CONSTRAINT nn_nce_1 NOT NULL
, table_name VARCHAR2(30)
, class_name VARCHAR2(30)
, error_code VARCHAR2(9)
, sqlerror_message VARCHAR2(2000)
, user_error_message VARCHAR2(2000)
, last_update_date DATE CONSTRAINT nn_nce_2 NOT NULL
, last_updated_by NUMBER CONSTRAINT nn_nce_3 NOT NULL
, creation_date DATE CONSTRAINT nn_nce_4 NOT NULL
, created_by NUMBER CONSTRAINT nn_nce_5 NOT NULL);

After building a repository for attempted activities, you should write a stored procedure to
process the insert statement. This is important for two reasons. First, the logic is easy to wrap or
protect from prying eyes. Second, the logic won’t clutter your database trigger.

The following record_errors procedure writes data to the non-critical error repository:

-- This is found in create_record_errors.sql on the publisher's web site.

CREATE OR REPLACE PROCEDURE record_errors
(module_name IN VARCHAR2
, table_name IN VARCHAR2 := NULL
, class_name IN VARCHAR2 := NULL
, sqlerror_code IN VARCHAR2 := NULL
, sqlerror_message IN VARCHAR2 := NULL
, user_error_message IN VARCHAR2 := NULL) IS

 -- Declare anchored record variable.

156 Oracle Database 11g PL/SQL Programming

 nc_error_record NC_ERROR%ROWTYPE;

BEGIN

 -- Substitute actual parameters for default values.
 IF module_name IS NOT NULL THEN
 nc_error_record.module_name := module_name;
 END IF;
 IF table_name IS NOT NULL THEN
 nc_error_record.table_name := module_name;
 END IF;
 IF sqlerror_code IS NOT NULL THEN
 nc_error_record.sqlerror_code := sqlerror_code;
 END IF;
 IF sqlerror_message IS NOT NULL THEN
 nc_error_record.sqlerror_message := sqlerror_message;
 END IF;
 IF user_error_message IS NOT NULL THEN
 nc_error_record.user_error_message := user_error_message;
 END IF;

 -- Insert non-critical error record.
 INSERT INTO nc_error
 VALUES
 (nc_error_s1.nextval
 , nc_error_record.module_name
 , nc_error_record.table_name
 , nc_error_record.class_name
 , nc_error_record.sqlerror_code
 , nc_error_record.sqlerror_message
 , nc_error_record.user_error_message
 , 2
 , SYSDATE
 , 2
 , SYSDATE);
EXCEPTION
 WHEN others THEN
 RETURN;
END;
/

The stored procedure signature includes optional formal parameters. This makes the
record_errors procedure more flexible. There is a local function that captures and
verifies object source definitions.

You can make a few changes to the contact_t1 trigger, and define a new trigger that
guarantees writing the attempt while disallowing the DML action. The contact_t2 trigger
contains these changes, and its definition is

CREATE OR REPLACE TRIGGER contact_t2
BEFORE INSERT ON contact

Chapter 5: Error Management 157

FOR EACH ROW
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 CURSOR c (member_id_in NUMBER) IS
 SELECT null
 FROM contact c
 , member m
 WHERE c.member_id = m.member_id
 AND c.member_id = member_id_in
 HAVING COUNT(*) > 1;
BEGIN
 FOR i IN c (:new.member_id) LOOP
 record_errors(module_name => 'CREATE_CONTACT_T2'
 , table_name => 'MEMBER'
 , class_name => 'MEMBER_ID ['||:new.contact_id||']'
 , sqlerror_code => 'ORA-20001'
 , user_error_message => 'Too many contacts per account.');
 END LOOP;
 COMMIT;
 RAISE_APPLICATION_ERROR(-20001,'Already two signers.');
END;
/

The program adds the AUTONONMOUS_TRANSACTION PRAGMA, a call to the record_errors
stored procedure, and a COMMIT statement; it then raises a user-defined exception message. The
commit comes after the loop, which is nothing more than a convenient structure to implicitly
open and close a cursor for each row. The commit only affects the call to the record_errors
procedure. After the commit, a raised exception stops the transaction that fired the trigger.

This familiar insert statement violates the business rule imposed by the trigger:

INSERT INTO contact
VALUES
(contact_s1.nextval
, 1002
,(SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_table = 'CONTACT'
 AND common_lookup_column = 'CONTACT_TYPE'
 AND common_lookup_type = 'CUSTOMER')
,'Sweeney','Irving','M'
, 2, SYSDATE, 2, SYSDATE);

It raises the following exception from the contact_t2 trigger:

INSERT INTO contact
*
ERROR at line 1:
ORA-20001: Already two signers.
ORA-06512: at "PLSQL.CONTACT_T2", line 19
ORA-04088: error during execution of trigger 'PLSQL.CONTACT_T2'

158 Oracle Database 11g PL/SQL Programming

When you query the nc_error table, you find that the attempt has been captured. The
following formatting and query lets you check the data:

COL module_name FORMAT A17
COL user_error_message FORMAT A30

SELECT error_id
, module_name
, user_error_message
FROM nc_error;

You should see the following output:

 ERROR_ID MODULE_NAME USER_ERROR_MESSAGE
---------- ----------------- ------------------------------
 28 CREATE_CONTACT_T3 Too many contacts per account.

These examples have shown you how to build triggers to stop processing. One stops the
insertion of data and raises an error, while the other does that and captures the attempt to insert the
data as well. You implement these types of triggers when it is critical to not violate a business rule.

Non-Critical Error Database Triggers
Database triggers work differently with non-critical errors. They raise and record exceptions but
allow processing to continue for non-critical errors. This requires that you provide a database
table to record non-critical errors.

In the last section, you built the nc_error table. If you skipped that section, you can use the
following the create_nc_error.sql script to build the table. The same table can store attempts
for critical and non-critical errors. The table definition is

Name Null? Type
--- -------- --------------
ERROR_ID NOT NULL NUMBER
MODULE_NAME NOT NULL VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
CLASS_NAME VARCHAR2(30)
SQLERROR_CODE VARCHAR2(9)
SQLERROR_MESSAGE VARCHAR2(2000)
USER_ERROR_MESSAGE VARCHAR2(2000)
LAST_UPDATED_BY NOT NULL NUMBER
LAST_UPDATE_DATE NOT NULL DATE
CREATED_BY NOT NULL NUMBER
CREATION_DATE NOT NULL DATE

The same record_errors procedure defined to manage critical error attempts works with
both critical and non-critical event triggers. This is no accident. There is no COMMIT statement in
the record_errors procedure, and so you can call it in autonomous or dependent transaction
scope triggers. The procedure definition is

PROCEDURE record_errors
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 MODULE_NAME VARCHAR2 IN
 TABLE_NAME VARCHAR2 IN DEFAULT

Chapter 5: Error Management 159

 CLASS_NAME VARCHAR2 IN DEFAULT
 SQLERROR_CODE VARCHAR2 IN DEFAULT
 SQLERROR_MESSAGE VARCHAR2 IN DEFAULT
 USER_ERROR_MESSAGE VARCHAR2 IN DEFAULT

The stored procedure signature includes optional formal parameters. This makes the
record_errors procedure more flexible. There is a local function that captures and
verifies object source definitions.

After creating the new procedure, you can run the script that builds the contact_t3 trigger.
The stored procedure lets you wrap or protect from prying eyes how non-critical errors are handled,
and it doesn’t clutter your database trigger. Appendix F shows you how to wrap your PL/SQL code.

The create_contact_t3.sql script automatically deletes the contact_t1 and/or
contact_t2 triggers when they exist. The reason for this precaution is that you can’t guarantee
which trigger fires first when there’s more than one. You want to guarantee what you’re testing. In
this case, you’re testing a non-critical error handling trigger.

The trigger creation script follows:

-- This is found in create_contact_t3.sql on the publisher's web site.

CREATE OR REPLACE TRIGGER contact_t3
BEFORE INSERT ON contact
FOR EACH ROW
DECLARE
 CURSOR c (member_id_in NUMBER) IS
 SELECT null
 FROM contact c
 , member m
 WHERE c.member_id = m.member_id
 AND c.member_id = member_id_in
 HAVING COUNT(*) > 1;
BEGIN
 FOR i IN c (:new.member_id) LOOP

record_errors(module_name => 'CREATE_CONTACT_T2'
 , table_name => 'MEMBER'
 , class_name => 'MEMBER_ID ['||:new.contact_id||']'
 , sqlerror_code => 'ORA-20001'
 , user_error_message => 'Too many contacts per account.');
 END LOOP;
END;
/

The trigger calls the record_errors procedure, which inserts the data into your target
table. There is no commit in the record_errors procedure because it is designed to work only
with a trigger or other PL/SQL block that manages transaction scope and issues a COMMIT
statement.

You can now reuse the familiar INSERT statement to the contact table:

INSERT INTO contact
VALUES
(contact_s1.nextval
, 1002
,(SELECT common_lookup_id

160 Oracle Database 11g PL/SQL Programming

 FROM common_lookup
 WHERE common_lookup_table = 'CONTACT'
 AND common_lookup_column = 'CONTACT_TYPE'
 AND common_lookup_type = 'CUSTOMER')
,'Sweeney','Irving','M'
, 2, SYSDATE, 2, SYSDATE);

This time, the trigger does not raise any exception. It adds a third row and violates the non-
critical business rule. The INSERT statement did fire the trigger, and the trigger calls the procedure
and wrote the error data. At least, all that happened when you committed the data after the INSERT
statement. The non-critical error was managed as a dependent transaction inside the transaction
scope of the original insert into the contact table.

These sections have demonstrated how you can manage critical and non-critical errors with
database triggers. You’ve been exposed to a number of parts, like procedures and triggers, and
they are covered in more detail in Chapters 6 and 10, respectively.

Summary
This chapter has explained how you work with PL/SQL error management. It has described the
differences between compilation errors and run-time errors. You have also learned about the
unhandled behavior of run-time errors that occur in declaration blocks, and how to handle raised
errors in both the execution and exception blocks.

PART
II

PL/SQL Programming

This page intentionally left blank

CHAPTER
6

Functions and Procedures

163

164 Oracle Database 11g PL/SQL Programming

s you’ve seen in previous chapters, there are two types of subroutines: functions and
procedures. You use these to build database tier libraries to encapsulate application
functionality, which is then co-located on the database tier for efficiency.

This chapter covers these areas:

Function and procedure architecture

Transaction scope

Calling subroutines

Functions

 Creation options

 Pass-by-value functions

 Pass-by-reference functions

Procedures

 Pass-by-value procedures

 Pass-by-reference functions

Oracle 11g supports subroutines that are stored as functions and procedures in the database.
They are named PL/SQL blocks. You can deploy them as standalone subroutines or as components
in packages. Packages and object types can contain both functions and procedures. Anonymous
blocks can also have local functions and procedures defined in their declaration blocks. You can
also nest functions and procedures inside other functions and procedures.

You publish functions and procedures as standalone units or within packages and object types.
This means that they are defined in the package specification or object type, not the package body
or object type body. They’re local subroutines when you define functions or procedures inside
package bodies or object type bodies. Local subroutines aren’t published subroutines. Likewise,
subroutines defined in the declaration block of anonymous block programs are local subroutines.

You deploy collections of related functions and procedures in packages and object types.
Packages and object types serve as library containers in the database. Packages act as primary
library containers because you don’t have to create instances to use them, whereas some
subroutines in object types require you to create instances to use them. Packages also let
you overload functions and procedures. Chapter 9 covers packages.

User-defined object types are SQL datatypes. Inside Object types, functions and procedures
can be defined as class- or instance-level subroutines. Class functions and procedures are static
subroutines, and you can access them the same way you use functions and procedures in packages.
Instance-level subroutines are only accessible when you create an instance of an object type.
Chapter 14 covers object types.

The sections work sequentially to build a foundation of concepts. If you wish to skip ahead,
browsing from the beginning may provide clarity to later sections.

■

■

■

■

■

■

■

■

■

■

A

Chapter 6: Functions and Procedures 165

Function and Procedure Architecture
As described in Chapter 3, functions and procedures are named PL/SQL blocks. You can also call
them subroutines or subprograms. They have headers in place of the DECLARE statement. The
header defines the function or procedure name, a list of formal parameters, and a return datatype
for functions. Formal parameters define variables that you can send to subroutines when you call
them. You use both formal parameters and local variables inside functions and procedures. While
functions return a datatype, procedures don’t. At least, procedures don’t formally list a return
datatype, because they return a void. The void is explicitly defined in other programming
languages, like C, C#, Java, and C++. Procedures can return values through their formal
parameter list variables when they are passed by reference.

There are four types of generic subroutines in programming languages. The four types are
defined by two behaviors, whether they return a formal value or not and whether their parameter
lists are passed by value or reference.

You set formal parameters when you define subroutines. You call subroutines with actual
parameters. Formal parameters define the list of possible variables, and their positions and
datatypes. Formal parameters do not assign values other than a default value, which makes a
parameter optional. Actual parameters are the values you provide to subroutines when calling
them. You can call subroutines without an actual parameter when the formal parameter has a
default value. Subroutines may be called without actual parameters if all their formal parameters
are defined as optional.

Subroutines are black boxes. They’re called that because black boxes hide their implementation
details and only publish what you can send into them or receive from them. Table 6-1 describes
and illustrates these subroutines.

Subroutines are functions when they return output and procedures when they don’t. Functions
return output as values represented as SQL or PL/SQL datatypes. Chapter 3 describes the characteristics
of PL/SQL datatypes, and Appendix B discusses SQL datatypes. Pass-by-value functions are sometimes
called expressions because you submit values that are returned as a result. When the return datatype is
a SQL type, you can call the function inside a SQL statement.

The “Black Box”
The black box (the term comes from the engineering lexicon) is part of verification and
validation. Verification is a process that examines whether you built something right. Validation
checks whether you built the right thing. For example, you validate that the manufacturing
line is producing iPod nanos, and then you verify that they’re making them to the new
specification.

Integration testing validates whether components work as a part. You can’t see how the
product works. You only know what it should do when you provide input, like a function
that should add two numbers. If one plus one equals two, then the function appears to work
against expectations. This is black box testing.

Black box testing is the process of validation. Verification requires peering into the
black box to inspect how it behaves. This type of testing is white box testing because you
can see how things actually work—step by step. Unit testing verifies that your function or
procedure builds the thing right. An example would be verifying that you’re using the right
formula to calculate the future value of money using compounding interest.

166 Oracle Database 11g PL/SQL Programming

Subroutine Description Subroutine Illustration

Pass-by-value functions:
They receive copies of values when they
are called. These functions return a single
output variable upon completion. The
output variable can be a scalar or compound
variable. They can also perform external
operations, like SQL statements to the
database.

Pass-by-reference functions:
They receive references to variables when
they are called. The references are actual
parameters to the function. Like other
functions, they return a single output
value, which can be a scalar or compound
variable. Unlike functions that work with
values, this type of function can also change
the values of actual parameters. They return
their actual parameter references upon
completion to the calling program. They
can also perform external operations, like
SQL statements to the database.

Pass-by-value procedures:
They receive copies of values when they
are called. Procedures do not return an
output variable. They only perform internal
operations on local variables or external
operations, like SQL statements to the
database.

Pass-by-reference procedures:
They receive references to variables when
they are called. Procedures do not return
an output variable. Like pass-by-reference
functions, they can change the value of
actual parameters. They return their actual
parameter references upon completion to
the calling program. They can also perform
external operations, like SQL statements to
the database.

TABLE 6-1 List of Subroutine Types

Chapter 6: Functions and Procedures 167

NOTE
Datatypes are defined in the database catalog two ways. They can be
defined as native or user-defined SQL types, or as user-defined PL/SQL
types inside package specifications.

You can use functions as right operands in assignments because their result is a value of a
datatype defined in the database catalog. Both pass-by-value and pass-by-reference functions fill
this role equally inside PL/SQL blocks. You can use pass-by-reference functions in SQL statements
only when you manage the actual parameters before and after the function call. You can also use
the CALL statement with the INTO clause to return SQL datatypes from functions.

NOTE
Technically, you only need to handle SQL session bind variables
before the SQL call to a pass-by-reference function.

Figure 6-1 shows how you can assign the return value from a function in a PL/SQL block. SQL
statements typically use pass-by-value functions because they don’t manage reference output. Most
SQL function calls submit columns or literals as actual parameters and expect a scalar return value.
A SQL function call mimics a SQL expression, which is a SQL query that returns only one column
and one row.

What Are PL/SQL Expressions?
Expressions are values, like character, date, numeric, and string literals. Beyond literal
values, expressions are variable assignments or function return values. The following UML
illustration shows several types of expressions.

Although the term “expression” can be confusing, it generally refers to the return value
from a function call in PL/SQL. In SQL, you may encounter a SQL expression, which is
another label for a scalar subquery. Scalar subqueries return one row with a single column
value. The simple rule is that an expression always means a value or something that has a
value or returns a value.

168 Oracle Database 11g PL/SQL Programming

Procedures can’t serve as right operands. Procedures also must have run-time scope set inside
a calling PL/SQL block. You cannot call procedures in SQL statements. However, you can use the
CALL or EXECUTE statements to run procedures in SQL*Plus. Procedures are also self-contained
units, whereas functions can only run as part of an assignment, comparative evaluation, or SQL
statement.

PL/SQL functions or procedures can also run SQL statements inside their black boxes. These
actions are not represented in the previous diagrams. Figure 6-2 shows a modified pass-by-value
function that actually updates the database. This gets more complex for pass-by-reference functions
because they have an output, reference output, and database action as outcomes of a single
function. There are also restrictions on how you can use functions that perform DML statements.
For example, you can’t use a function that performs a DML statement inside a query, or you raise
an ORA-14551 error.

FIGURE 6-1 Assignment of a function result

FIGURE 6-2 Pass-by-value functions with read-write to the database

Chapter 6: Functions and Procedures 169

NOTE
You can include SQL statements in functions.

As a rule, many developers use procedures to perform database actions but limit functions to
queries or calculations. They do this more or less because procedures were once the only way
to write changes to the database. Oracle 10g forward supports autonomous transactions, which
have changed the rules. You should now only call a procedure when you can guarantee that it
doesn’t run autonomously, isn’t called across the OCI, or doesn’t act as a distributed transaction.
Otherwise, you are assuming that the procedure worked when all you know is that it was called,
which is optimistic processing. If you call a function to perform database changes and it returns
a Boolean value signaling success or failure, you are using pessimistic processing.

Figure 6-3 demonstrates how to call a function to verify completion. This is the general
transaction pattern for many external applications. You should strongly consider implementing
it as a standard for both server-side wrappers (the pass-by-value version also works with Java
code, as shown in Chapter 15).

PL/SQL qualifies functions and procedures as pass-by-value or pass-by-reference subroutines
by the mode of their formal parameter lists. PL/SQL supports three modes: read-only, write-only,
and read-write. The IN mode is the default and designates a formal parameter as read-only. OUT
mode designates a write-only parameter, and IN OUT mode designates a read-write parameter
mode. Table 6-2 presents the details of these available parameter modes.

By default Oracle 11g programs send copies of all parameters to subroutines when they call
them. This may seems strange because it is contrary to the concept of pass-by-reference subroutines.
However, it is exactly what you’d expect for a pass-by-value subroutine.

When subroutines complete successfully, they copy OUT or IN OUT mode parameters back
into external variables. This approach guarantees the contents of an external variable are unchanged
before a subroutine completes successfully. This eliminates the possibility of writing partial result
sets because an error terminates a subroutine. When an exception is thrown by a subroutine, you
have an opportunity to attempt recovery or write variables to log files.

FIGURE 6-3 Pessimistic functions guarantee outcomes of SQL statements.

170 Oracle Database 11g PL/SQL Programming

Mode Description
IN The IN mode is the default mode. It means a formal parameter is read-only.

When you set a formal parameter as read-only, you can’t alter it during the
execution of the subroutine. You can assign a default value to a parameter,
making the parameter optional. You use the IN mode for all formal
parameters when you want to define a pass-by-value subroutine.

OUT The OUT mode means a formal parameter is write-only. When you set a
formal parameter as write-only, there is no initial physical size allocated
to the variable. You allocate the physical size and value inside your
subroutine. You can’t assign a default value, which would make an OUT
mode formal parameter optional. If you attempt that, you raise a PLS-
00230 error. The error says that an OUT or IN OUT mode variable cannot
have a default value. Likewise, you cannot pass a literal as an actual
parameter to an OUT mode variable because that would block writing the
output variable. If you attempt sending a literal, you’ll raise an ORA-06577
error with a call from SQL*Plus, and a PLS-00363 error inside a PL/SQL
block. The SQL*Plus error message states the output parameter is not a bind
variable, which is a SQL*Plus session variable. The PL/SQL error tells you
that the expression (or more clearly literal) cannot be an assignment target.
You use an OUT mode with one or more formal parameters when you want
a write-only pass-by-reference subroutine.

IN OUT The IN OUT mode means a formal parameter is read-write. When you
set a formal parameter as read-write, the actual parameter provides the
physical size of the actual parameter. While you can change the contents
of the variable inside the subroutine, you can’t change or exceed the actual
parameter’s allocated size. You can’t assign a default value making an IN
OUT mode parameter optional. If you attempt that, you raise a PLS-00230
error. The error says that an OUT or IN OUT mode variable cannot have
a default value. Likewise, you cannot pass a literal as an actual parameter
to an OUT mode variable because that would block writing the output
variable. If you attempt sending a literal, you’ll raise an ORA-06577 error
with a call from SQL*Plus, and a PLS-00363 error inside a PL/SQL block.
The SQL*Plus error message states the output parameter is not a bind
variable, which is a SQL*Plus session variable. The PL/SQL error tells you
that the expression (or more clearly literal) cannot be an assignment target.
You use an IN OUT mode with one or more formal parameters when you
want a read-write pass-by-reference subroutine.

TABLE 6-2 Subroutine Parameter Modes

Chapter 6: Functions and Procedures 171

You can override the default behavior of passing copies of variables when calling functions
and procedures for local transactions. This means you use fewer resources and actually pass a
reference, not a copy of data. You cannot override that default behavior when calling the program
unit via a database link or external procedure call. You override the copy behavior by using the
NOCOPY hint.

The NOCOPY hint doesn’t override the copy rule when

An actual parameter is an element of an associative array. The NOCOPY hint works when
you pass a complete associative array but not a single element.

An actual parameter is NOT NULL constrained.

An actual parameter is constrained by scale.

An actual parameter is an implicitly defined record structure, which means you used
either the %ROWTYPE or %TYPE anchor.

An actual parameter is an implicitly defined record structure from a FOR loop, which fails
because the native index has restricted scope to the loop structure.

An actual parameter requires implicit type casting.

The examples in this chapter and the book use the definer rights model. It is the more common
solution, but you’ll find a complete comparative analysis of both models in Chapter 4 of Expert
Oracle PL/SQL. Chapter 9 discusses the design implications of using the definer and invoker
rights models.

The Oracle 11g Database brings changes in how name and positional notation work in both
SQL and PL/SQL. They actually now work the same way in both SQL and PL/SQL. This fixes a
long-standing quirk in the database.

■

■

■

■

■

■

What Is Local Data?
Oracle classifies local data as materialized views, synonyms, tables, or views. Tables and
materialized views are physically stored data. Views are run-time queries drawn from
tables, materialized views, and other views. Synonyms to data are pointers to materialized
views, synonyms, tables, or views.

You can write to a local materialized view, table, view, or synonym from a stored
subprogram collocated in the same schema. Synonyms can point to objects in the same
schema or another schema. When the object is defined in another schema, you must have
privileges to read or write to them for a synonym to translate correctly to the object. A local
synonym can resolve a schema, component selector (the period or dot), and object name
into a local schema name.

172 Oracle Database 11g PL/SQL Programming

Transaction Scope
As discussed in Chapter 2, transaction scope is a thread of execution—a process. You establish a
session when you connect to the database. What you do during your session is visible only to you
until commit any changes to the database. After you commit the changes, other sessions can see
the changes you’ve made.

During a session, you can run one or more PL/SQL programs. They execute serially, or in
sequence. The first program can alter the data or environment before the second runs, and so on.
This is true because your session is the main transaction. All activities depend on one or more
prior activities. You can commit work, making all changes permanent, or reject work, repudiating
all or some changes.

Transaction scope is fairly straightforward when working with process-centric workflows but
a bit more complex when you rely on functions and procedures. Functions and procedures have
one of two types of scope. They are dependently scoped by default, which means that they run in
the transaction scope of the main process—the calling program. However, you can set functions
or procedures to run in their own scope by defining them as autonomous transactions.

Autonomous transactions can commit their local work independently of the calling program.
This makes all changes permanent, notwithstanding the main program control rules.

Autonomous transactions are great when you want something to happen notwithstanding the
success or failure of something else. They’re useful when you want to write data in a trigger before
raising an exception that causes the main program’s failure. However, they’re dangerous for the
same reason. You can inadvertently write data states when you don’t want them written.

You should note that transaction scope is controlled by using the SAVEPOINT, ROLLBACK,
and COMMIT commands. Both the later sections “Functions” and “Procedures” demonstrate
autonomous subroutines.

Calling Subroutines
Prior to Oracle 11g, you were able to use both positional and named notation when calling
subroutines in PL/SQL program units, but unable to use named notation in SQL calls to functions.
Oracle 11g has fixed that shortfall and introduced mixed notation calls too.

Positional notation means that you provide a value for each variable in the formal parameter
list. The values must be in sequential order and must also match the datatype. Named notation
means that you pass actual parameters by using their formal parameter name, the association
operator (=>), and the value. Named notation lets you only pass values to required parameters,
which means you accept the default values for any optional parameters.

The new mixed notation means that you can now call subroutines by a combination of
positional and named notation. This becomes very handy when parameter lists are defined with
all mandatory parameters first, and optional parameters next. It lets you name or avoid naming
the mandatory parameters, and it lets you skip optional parameters where their default values
work. It does not solve exclusionary notation problems. Exclusionary problems occur with
positional notation when optional parameters are interspersed with mandatory parameters,
and when you call some but not all optional parameters.

The following function lets you experiment with these different approaches. The function
accepts three optional parameters and returns the sum of three numbers:

 CREATE OR REPLACE FUNCTION add_three_numbers
 (a NUMBER := 0, b NUMBER := 0, c NUMBER := 0) RETURN NUMBER IS

Chapter 6: Functions and Procedures 173

 BEGIN
 RETURN a + b + c;
 END;
 /

The first three subsections show you how to make positional, named, and mixed notation
function calls. The last one demonstrates how to make exclusionary notation calls.

Positional Notation
You use positional notation to call the function as follows:

BEGIN
 dbms_output.put_line(add_three_numbers(3,4,5));
END;
/

Named Notation
You call the function using named notation by

BEGIN
 dbms_output.put_line(add_three_numbers(c => 4,b => 5,c => 3));
END;
/

Mixed Notation
You call the function by a mix of both positional and named notation by

BEGIN
 dbms_output.put_line(add_three_numbers(3,c => 4,b => 5));
END;
/

There is a restriction on mixed notation. All positional notation actual parameters must occur
first and in the same order as they are defined by the function signature. You cannot provide a
position value after a named value without raising an exception.

Exclusionary Notation
As mentioned, you can also exclude one or more of the actual parameters when the formal
parameters are defined as optional. All parameters in the add_three_numbers function are
optional. The following example passes a value to the first parameter by positional reference,
and the third parameter by named reference:

BEGIN
 dbms_output.put_line(add_three_numbers(3,c => 4));
END;
/

When you opt to not provide an actual parameter, it acts as if you’re passing a null value.
This is known as exclusionary notation. Oracle has recommended for years that you should list

174 Oracle Database 11g PL/SQL Programming

optional parameters last in function and procedure signatures. They’ve also recommended that
you sequence optional variables so that you never have to skip an optional parameter in the list.
These recommendations exist to circumvent errors when making positional notation calls.

You can’t really skip an optional parameter in a positional notation call. This is true because
all positional calls are in sequence by datatype, but you can provide a comma-delimited null
value when you want to skip an optional parameter in the list. However, Oracle 11g now lets
you use mixed notation calls. You can now use positional notation for your list of mandatory
parameters, and named notation for optional parameters. This lets you skip optional parameters
without naming all parameters explicitly.

SQL Call Notation
Previously, you had only one choice. You had to list all the parameters in their positional order
because you couldn’t use named reference in SQL. This is fixed in Oracle 11g; now you can call
them just as you do from a PL/SQL block. The following demonstrates mixed notation in a SQL call:

SELECT add_three_numbers(3,c => 4,b => 5) FROM dual;

As when using earlier releases, you can only call functions that have IN mode–only variables
from SQL statements. You cannot call a function from SQL when any of its formal parameters are
defined as IN OUT or OUT mode–only variables without handling the actual parameter in SQL*Plus
as a session bind variable. This is true because you must pass a variable reference when a parameter
has an OUT mode.

Functions
As mentioned, you have pass-by-value and pass-by-reference functions in PL/SQL. Both types of
functions return output values. Function output values can be any SQL or PL/SQL datatype. You
can use functions that return SQL datatypes inside SQL statements. Functions returning PL/SQL
datatypes only work inside PL/SQL blocks.

One exception to these general rules is that you cannot call a stored function that contains
a DML operation from inside a SQL query. If you do, it raises an ORA-14551 error saying that
it can’t perform a DML inside a query. However, you can call a function that performs a DML
operation inside inserts, updates, and deletes.

Functions can also contain nested named blocks, which are local functions and procedures.
You define named blocks in the declaration block of the function. You can likewise nest
anonymous blocks in the execution block.

The following illustrates a named block function prototype:

FUNCTION function_name
[(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)]

RETURN { sql_data_type | plsql_data_type }
[AUTHID [DEFINER | CURRENT_USER]]
[DETERMINISTIC | PARALLEL_ENABLED]
[PIPELINED]
[RESULT_CACHE [RELIES_ON table_name]] IS

declaration_statements

Chapter 6: Functions and Procedures 175

BEGIN
execution_statements

 RETURN variable;
[EXCEPTION]

exception_handling_statements
END [function_name];
/

You call functions by providing any required parameters as a list of arguments inside opening
and closing parentheses. No parentheses are required when functions aren’t defined with required
parameters. This differs from most other programming languages. Calls in other languages require
an empty set of opening and closing parentheses.

The prototype for a function call with actual parameters from SQL*Plus is

CALL function_name(parameter1, parameter2, parameter(n+1))
INTO target_variable_name;

When there aren’t any mandatory formal parameters, the prototype differs, as shown:

CALL function_name INTO target_variable_name;

Assignments inside PL/SQL blocks with mandatory parameters look like

target_variable_name := function_name(parameter1, parameter2, parameter(n+1));

The assignment prototype drops the parentheses when unnecessary:

target_variable_name := function_name;

You can also return a function value as an expression, and then use it as an actual parameter
to another function. This is done by using the following prototype:

external_function_name(function_name(parameter1, parameter2, parameter(n+1)));

There are several optional configurations you can use when creating functions. The default
model of operation is definer rights. You can define a function to support an invoker rights model
by including the AUTHID as CURRENT_USER. The definer rights model runs with the privileges of
the owning schema and is best suited for a centralized computing model. The invoker rights model
requires you to maintain multiple copies of tables or views in different schemas or databases.
The invoker rights model best supports distributed computing models. Chapter 9 discusses definer
and invoker rights models.

You can also guarantee the behavior of a function, which make it possible to use them in SQL
statements, function-based indexes, and materialized views. You can also configure functions to
return pipelined tables and, in Oracle 11g, shared result sets from the cache in the SGA.

As discussed, you can define formal parameters in one of three modes. They are IN mode for
read-only parameters, OUT mode for write-only parameters, and IN OUT mode for read-write
parameters. You build a pass-by-value function when you define all parameters as IN mode, and
a pass-by-reference function when you defined one or more as OUT or IN OUT mode parameters.

The next three sections discuss how you can create functions. The first section examines the
optional clauses that let you create functions for various purposes. The second section examines
pass-by-value functions, and the third discusses pass-by-value functions.

176 Oracle Database 11g PL/SQL Programming

Creation Options
You create functions for SQL statements, function-based indexes, and materialized views by
using the DETERMINISTIC or PARALLEL_ENABLED clauses. The DETERMINISTIC and
PARALLEL_ENABLED clauses replace the older RESTRICT_REFERENCES precompiler
instructions that limited what functions could do when they were in packages. The new clauses
let you assign the same restrictions to functions in packages, and they also let you assign them
to standalone stored functions.

Backward Compatibility Issues for Functions
Functions were restricted subroutines before Oracle 8i (8.1.6). You had to define them with a
guarantee of performance, which was known as their level of purity. The guarantees limited
whether functions could read or write to package variables or to the database.

These limits can still be imposed on functions inside packages by using the
RESTRICT_REFERENCES PRAGMA options listed in Table 6-3. A PRAGMA is a precompiler
instruction. Any attempt to use a RESTRICT_REFERENCES PRAGMA inside a standalone
function raises an PLS-00708 error.

You must define PRAGMA restrictions in package specifications, not in package bodies.
There should only be one PRAGMA per function. You can include multiple options in any
RESTRICT_REFERENCES precompiler instruction. The TRUST option can be added to restricting
PRAGMA instructions when you want to enable a restricted function to call other unrestricted
functions. The TRUST option disables auditing whether called functions adhere to the calling
program unit’s restrictions—sharing the same level of purity, or guarantee of performance.

NOTE
You should consider replacing these restricting precompiler
instructions in older package specifications with a DETERMINISTIC
or PARALLEL_ENABLED clause.

Backward compatibility is nice but seldom lasts forever. You should replace these old
precompiler instructions by defining functions with the new syntax. This means making functions
DETERMINISTIC when they are used by function-based indexes. Likewise, you should define
functions as PARALLEL_ENABLED when they may run in parallelized operations.

The PIPELINED clause lets you build functions that return pipelined tables. Pipelined tables act
like pseudo–reference cursors and are built using modified PL/SQL collection types. They let you
work with PL/SQL collections of record structures without defining them as instantiable user-defined
object types. You can also read the collections in SQL statements as you would an inline view.

Oracle 11g introduces the cross-session result cache. You implement this feature by defining
functions with the RESULT_CACHE clause. The cross-session result cache stores the actual
parameters and result for each call to these functions. A second call to the function with the same
actual parameters finds the result in the cross-session cache and thereby avoids rerunning the
code. The result is stored in the SGA. When the result cache runs out of memory, it ages out the
least used function call results.

DETERMINISTIC Clause
The DETERMINISTIC clause lets you guarantee that a function always works the same way with
any inputs. This type of guarantee requires that a function doesn’t read or write data from external
sources, like packages or database tables. Only deterministic functions work in materialized views
and function-based indexes. They are also recommended solutions for user-defined functions that

Chapter 6: Functions and Procedures 177

Option Description
RNDS The RNDS option guarantees a function reads no data state. This means

you cannot include a SQL query of any type in the function. It also cannot
call any other named block that includes a SQL query. A PLS-00452
error is raised during compilation if you have a query inside the function’s
program scope that violates the PRAGMA restriction.

WNDS The WNDS option guarantees a function writes no data state. This means you
cannot include SQL statements that insert, update, or delete data. It also
cannot call any other named block that includes a SQL query. A PLS-00452
error is raised during compilation if you have a DML statement inside the
function’s program scope that violates the PRAGMA restriction.

RNPS The RNPS option guarantees a function reads no package state, which
means that it does not read any package variables. This means you cannot
access a package variable in the function. It also cannot call any other
named block reads package variables. A PLS-00452 error is raised during
compilation if you have a query inside the function’s program scope that
violates the PRAGMA restriction.

WNPS The WNPS options guarantees a function writes no data state, which
means that it does not write any values to package variables. This means
you cannot change package variables or call another named block that
changes them. A PLS-00452 error is raised during compilation if you
have a statement inside the function’s program scope that violates the
PRAGMA restriction.

TRUST The TRUST option instructs the function not to check whether called
programs enforce other RESTRICT_REFERENCES options. The benefit of
this option is that you can slowly migrate code to the new standard. The
risks include changing the behavior or performance of SQL statements.
For reference, the other options also guard conditions necessary to support
function-based indexes and parallel query operations.

TABLE 6-3 Precompiler Options for Package Functions

you plan to use in SQL statement clauses, like WHERE, ORDER BY, or GROUP BY; or SQL object
type methods, like MAP or ORDER.

Deterministic functions typically process parameters in the exact same way. This means that
no matter what values you submit, the function works the same way. They should not have internal
dependencies on package variables or data from the database. The following pv function is
deterministic and calculates the present value of an investment:

-- This is found in pv.sql on the publisher's web site.

CREATE OR REPLACE FUNCTION pv
(future_value NUMBER
, periods NUMBER
, interest NUMBER)
RETURN NUMBER DETERMINISTIC IS

178 Oracle Database 11g PL/SQL Programming

BEGIN
 RETURN future_value / ((1 + interest)**periods);
END pv;
/

Assume you want to know how much to put in a 6% investment today to have $10,000 in
five years. You can test this function by defining a bind variable, using a CALL statement to put
the value in the bind variable, and querying the result against the DUAL table, like

VARIABLE result NUMBER
CALL pv(10000,5,6) INTO :result;
COLUMN money_today FORMAT 9,999.90
SELECT :result AS money_today FROM dual;

The function call uses positional notation but could also use named notation or mixed notation.
It prints the formatted present value amount:

MONEY_TODAY

 7,472.58

You use deterministic functions inside materialized views and function-based indexes. Both
materialized views and function-based indexes must be rebuilt when you change the internal
working of deterministic functions.

PARALLEL_ENABLE Clause
PARALLEL_ENABLE lets you designate a function to support parallel query capabilities. This type
of guarantee requires that a function doesn’t read or write data from external sources, like packages
or database tables. You should consider designating functions as safe for parallel operations to
improve throughput, but the Oracle 11g optimizer may run undesignated functions when it believes
they are safe for parallel operations. Java methods and external C programs are never deemed
safe for parallel operations.

Materialized Views
Unlike a standard view in a relational database, a materialized view is a cached result set.
As a cached result set, it is stored as a concrete table.

Materialized views are more responsive to queries because they don’t demand resources
to dynamically build the view each time. The trade-off is that materialized views are often
slightly out of date because underlying data may change from when the view is cached to
when it is accessed.

You can use function-based indexes in materialized views provided they use deterministic
functions. Deterministic functions always produce the same result value when called with
any set of actual parameters. They also guarantee that they don’t modify package variables
or data in the database.

Consider using materialized views when the underlying table data changes infrequently,
and query speed is important. Materialized views are possible solutions when developing
data warehouse fact tables.

Chapter 6: Functions and Procedures 179

The following function supports parallel SQL operations and merges last name, first name, and
middle initial into a single string:

-- This is found in merge.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION merge
(last_name VARCHAR2
, first_name VARCHAR2
, middle_initial VARCHAR2)
RETURN VARCHAR2 PARALLEL_ENABLE IS
BEGIN
 RETURN last_name ||', '||first_name||' '||middle_initial;
END;
/

You can use the function safely in database queries, like

SELECT merge(last_name,first_name,middle_initial) AS full_name
FROM contact
ORDER BY last_name, first_name, middle_initial;

This query depends on the code discussed in the introduction and returns

FULL_NAME

Sweeney, Ian M
Sweeney, Irving M
Sweeney, Meaghan
Vizquel, Doreen
Vizquel, Oscar
Winn, Brian
Winn, Randi

Parallel operations do not always occur when you use the PARALLEL_ENABLE hint. Parallel
operations are more expensive with small data sets. The Oracle 11g optimizer judges when to
run operations in parallel mode. Also, sometimes the optimizer runs functions in parallel when
they’re not marked as parallel enabled. It makes this decision after checking whether the function
can support the operation. It is a good coding practice to enable functions for parallel operation
when they qualify.

PIPELINED Clause
The PIPELINED clause provides improved performance when functions return collections, like
nested tables or VARRAYs. You’ll also note performance improvements when returning system
reference cursors by using the PIPELINED clause. Pipelined functions also let you return aggregate
tables. Aggregate tables act like collections of PL/SQL record structures. They only work in SQL
statements.

This section discusses collection concepts. Chapter 6 covers collections for those new to PL/
SQL. Collections are arrays and lists of scalar and compound variables. Pipelined functions only
work with VARRAY and nested table collections. These two types of collections are indexed by
sequential numbers. You can also build collections of user-defined SQL object types, which are
treated like single-dimensional arrays of number, strings, or dates. Chapter 14 covers object types
and includes a shadow box demonstrating how to use pipelined functions.

180 Oracle Database 11g PL/SQL Programming

The easiest implementation of a pipelined function involves a collection of scalar values
defined by a SQL datatype. You define a NUMBERS datatype as a VARRAY of number by using
the following command:

CREATE OR REPLACE TYPE numbers AS VARRAY(10) OF NUMBER;
/

The 10 in parentheses after the VARRAY sets the maximum number of elements in the collection.
VARRAY datatypes are very similar to arrays. Arrays in most programming languages are
initialized with a fixed size or memory allocation.

After you create the collection datatype, you can describe it at the SQL command line:

SQL> DESCRIBE NUMBERS
 NUMBERS VARRAY(10) OF NUMBER

NOTE
When you create types in the database, the DDL command acts
like a PL/SQL block. These commands require a semicolon to end
the statement and a forward slash to execute it (or compile it into the
database).

A pipelined function depends on available SQL or PL/SQL collection datatypes. These types
are limited to VARRAY or nested table collections. You can define SQL collection types of scalar
variables or user-defined object types.

The following defines a pipelined function that returns an array of ordinal numbers:

-- This is found in create_pipelined1.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION pipelined_numbers
RETURN NUMBERS
PIPELINED IS

list NUMBERS := numbers(0,1,2,3,4,5,6,7,8,9);
BEGIN
 FOR i IN 1..list.LAST LOOP

PIPE ROW(list(i));
 END LOOP;
 RETURN;
END;
/

The function returns the NUMBERS user-defined SQL datatype from the data catalog. The function
declares a local collection of NUMBERS by initializing the collection. You initialize a collection
by calling the user-defined SQL datatype name with a list of scalar variables. Inside the FOR loop,
you assign elements from the collection to the pipe.

You can then query the results as follows:

SELECT * FROM TABLE(pipelined_numbers);

The output is a single column with the ordinal numbers from 0 to 9.
Pipelined functions can also use PL/SQL collection types, provided you implement them as

VARRAY or nested table collections. PL/SQL collection types can hold scalar variables or user-
defined object types like their SQL equivalents. They can also be collections of record structures.
This means they are similar to system reference cursors.

Chapter 6: Functions and Procedures 181

Unlike system reference cursors, they cannot be defined as SQL or PL/SQL datatypes. They can
only be defined as PL/SQL datatypes. In order to return these types in stored functions, they must
be defined inside a package specification. At the very least, you must define the record type in a
package specification even when you implement a pipelined standalone function. Chapter 9
covers packages in more detail.

The following package specification defines a record structure, a collection of the record
structure, and a function returning the collection type:

-- This is found in create_pipelined2.sql on the publisher's web site.
CREATE OR REPLACE PACKAGE pipelined IS
 -- Define a PL/SQL record type and Collection of the record type.
 TYPE account_record IS RECORD
 (account VARCHAR2(10)
 , full_name VARCHAR2(42));

TYPE account_collection IS TABLE OF account_record;

 -- Define a pipelined function.
 FUNCTION pf RETURN account_collection PIPELINED;
END pipelined;
/

The function is implemented in the package body:

-- This is found in create_pipelined2.sql on the publisher's web site.
CREATE OR REPLACE PACKAGE BODY pipelined IS
 -- Implement a pipelined function.
 FUNCTION pf
 RETURN account_collection
 PIPELINED IS
 -- Declare a collection control variable and collection variable.
 counter NUMBER := 1;

account ACCOUNT_COLLECTION := account_collection();

 -- Define a cursor.
 CURSOR c IS
 SELECT m.account_number
 , c.last_name || ', '||c.first_name full_name
 FROM member m JOIN contact c ON m.member_id = c.member_id
 ORDER BY c.last_name, c.first_name, c.middle_initial;
 BEGIN
 FOR i IN c LOOP
 account.EXTEND;
 account(counter).account := i.account_number;
 account(counter).full_name := i.full_name;
 PIPE ROW(account(counter));
 counter := counter + 1;
 END LOOP;
 RETURN;
 END pf;
END pipelined;
/

182 Oracle Database 11g PL/SQL Programming

The package body implements the pf function. Inside the function, a local variable is
declared using the account_collection PL/SQL collection type. Both VARRAY and nested
table collections are internal objects, and they require explicit construction. The constructor is the
name of the collection type without any actual parameters when you want to declare an empty
collection. Collections require you to allocate space before adding elements to a collection. The
EXTEND method allocates space for one element, and then values are assigned to components of
that indexed element. The record element is then added as a row in the PIPE.

You can call the function using the package name, component selector, and function name,
as shown:

SELECT * FROM TABLE(pipelined.pf);

This returns rows from the record structure as an aggregate table:

ACCOUNT FULL_NAME
---------- ----------------
B293-71447 Sweeney, Ian
B293-71446 Sweeney, Irving
B293-71447 Sweeney, Meaghan
B293-71446 Vizquel, Doreen
B293-71446 Vizquel, Oscar
B293-71445 Winn, Brian
B293-71445 Winn, Randi

It may appear that you’re limited to packages because that’s where the return type is located.
While PL/SQL datatypes are not available in the data dictionary, they are available to other PL/SQL
program units when they’re published in a package specification.

The standalone function definition implements the same pipelined function outside of the
package:

-- This is found in create_pipelined2.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION pf
RETURN pipelined.account_collection
PIPELINED IS
 -- Declare a collection control variable and collection variable.
 counter NUMBER := 1;

account PIPELINED.ACCOUNT_COLLECTION := pipelined.account_collection();

 -- Define a cursor.
 CURSOR c IS
 SELECT m.account_number
 , c.last_name || ', '||c.first_name full_name
 FROM member m JOIN contact c ON m.member_id = c.member_id
 ORDER BY c.last_name, c.first_name, c.middle_initial;
BEGIN
 FOR i IN c LOOP
 account.EXTEND;
 account(counter).account := i.account_number;
 account(counter).full_name := i.full_name;
 PIPE ROW(account(counter));
 counter := counter + 1;
 END LOOP;

Chapter 6: Functions and Procedures 183

 RETURN;
END pf;
/

The differences are in how you reference the PL/SQL collection type. You must use the
package name, component selector, and datatype name. However, you can call the function
by referencing only the function name, like

SELECT * FROM TABLE(pf);

Pipelined Results Are Limited to SQL Scope
There is a temptation to pass the return value from a pipelined function to another PL/SQL
module because it isn’t clear that these aggregate tables are designed only for use in SQL
statements. You receive a PLS-00653 error when you try to pass a pipelined function result
to another PL/SQL program as an actual parameter. A PLS-00653 error states that
“aggregate/table functions are not allowed in PL/SQL scope.” Pipelined table results are
only accessible in SQL scope.

The following procedure passes compilation checks because it refers to a valid PL/SQL
collection type:

-- This is found in create_pipelined2.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE read_pipe
(pipe_in pipelined.account_collection) IS
BEGIN
 FOR i IN 1..pipe_in.LAST LOOP
 dbms_output.put(pipe_in(i).account);
 dbms_output.put(pipe_in(i).full_name);
 END LOOP;
END read_pipe;
/

This seems a logical segue to control the reading of a pipelined table. The following
demonstrates how you would call the procedure, by passing the result set of a call to the
pipelined pf function:

EXECUTE read_pipe(pf);

This raises the following error message:

BEGIN read_pipe(pf); END;
 *
ERROR at line 1:
ORA-06550: line 1, column 10:
PLS-00653: aggregate/table functions are not allowed in PL/SQL scope

The error occurs because the actual datatype passed to the procedure is a pipelined
aggregate or table with equivalent values but not a PL/SQL collection datatype. Fortunately,
the error message gives you great feedback when you know that a pipelined aggregate table
isn’t a PL/SQL collection type.

184 Oracle Database 11g PL/SQL Programming

You can use pipelined functions to build views, like this:

CREATE OR REPLACE VIEW pipelined_view AS
SELECT r.account, r.full_name FROM TABLE(pf) r;

Views built by calls to pipelined functions require instead-of triggers to manage inserts, updates,
and deletes. At least, you build the instead-of trigger when you want to allow DML operations.
Chapter 10 covers how to implement an instead-of trigger.

Pipelined functions are designed to let you use collections of scalar variables or record structures.
The previously demonstrated pipelined functions convert the PL/SQL collection into an aggregate
table. You cannot reuse the pipelined table in another PL/SQL scope, but you can use it in SQL
scope queries.

You have learned how to use pipelined functions and their strengths and weaknesses. They’re
great tools when you want to get data into a query or view that requires procedural logic.

RESULT_CACHE Clause
The RESULT_CACHE clause is new in the Oracle 11g Database. It indicates that a function is cached
only once in the SGA and available across sessions. Both the actual parameters of prior calls and
results are available in the result cache. The RESULT_CACHE clause instructs the PL/SQL engine
to check the result cache for function calls with matching actual parameters. A matching function
call also stores the result, and the cache returns the result and skips re-running the function. This
means the function only runs when new parameters are sent to it.

NOTE
Cross-session functions only work with IN mode formal parameters.

The prototype for the RESULT_CACHE clause has an optional RELIES_ON clause. The
RELIES_ON clause is critical because it ensures any change to the underlying table invalidates
the result cache. This also means any DML transactions that would change result sets. The
RELIES_ON clause ensures that the cache is dynamic, representing the current result set. You
can list any number of dependent tables in the RELIES_ON clause, and they’re listed as comma-
delimited names.

The next example depends on the downloadable code from the publisher’s web site. You can
find a description of the code in the Introduction. Also, this example uses a collection, which
forward-references material in Chapter 6.

This statement lets you build a collection of VARCHAR2 values:

-- This is found in result_cache.sql on the publisher's web site.
CREATE OR REPLACE TYPE strings AS TABLE OF VARCHAR2(60);
/

This function implements a cross-session result cache with the RELIES_ON clause:

-- This is found in result_cache.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION get_title
(partial_title VARCHAR2) RETURN STRINGS
RESULT_CACHE RELIES_ON(item) IS
 -- Declare a collection control variable and collection variable.

counter NUMBER := 1;
 return_value STRINGS := strings();

 -- Define a parameterized cursor.

Chapter 6: Functions and Procedures 185

 CURSOR get_title
 (partial_title VARCHAR2) IS
 SELECT item_title
 FROM item
 WHERE UPPER(item_title) LIKE '%'||UPPER(partial_title)||'%';
BEGIN
 -- Read the data and write it to the collection in a cursor FOR loop.
 FOR i IN get_title(partial_title) LOOP
 return_value.EXTEND;
 return_value(counter) := i.item_title;
 counter := counter + 1;
 END LOOP;
 RETURN return_value;
END get_title;
/

Probably the most important detail of the foregoing get_title function is that you should
start your counter at 1, not 0. The function uses the counter as the collection index value, and
collection indexes should be positive integers. An index with a non-positive integer raises an
ORA-06532 error stating that the subscript is out of range.

NOTE
The RELIES_ON clause can accept one or a list of actual parameters.

You can test the get_title function with the following anonymous block program:

-- This is found in result_cache.sql on the publisher's web site.
DECLARE
 list STRINGS;
BEGIN
 list := get_title('Harry');
 FOR i IN 1..list.LAST LOOP
 dbms_output.put_line('list('||i||') : ['||list(i)||']');
 END LOOP;
END;
/

After calling the result caching function, you insert, delete, or update dependent data. Then,
you’ll find new result sets are displayed. This change ensures that stale data never misleads the
user. The RELIES_ON clause ensures the integrity of the result set, but it does cost you some
processing overhead.

TIP
You should consider excluding the RELIES_ON clause to improve
transactional efficiency in data warehouse implementations.

Result-cached functions also have some restrictions. Result-cached functions must meet the
following criteria:

They cannot be defined in a module that uses invoker’s rights or in an anonymous block.

They cannot be a pipelined table function.

They cannot have pass-by-reference semantics, like IN OUT or OUT mode parameters.

■

■

■

186 Oracle Database 11g PL/SQL Programming

They cannot use formal parameters with a BLOB, CLOB, NCLOB, REF CURSOR,
collection, object, or record datatype.

They cannot return a variable with a BLOB, CLOB, NCLOB, REF CURSOR, collection,
object, or record datatype.

Also, Oracle recommends that result-cached functions should not modify the database state,
modify the external state (by using the DBMS_OUTPUT package), or send email (through the
UTL_SMTP package). Likewise, the function should not depend on session-specific settings or
contexts.

These sections have covered the available options for defining functions. These skills are
assumed when discussing pass-by-value functions.

Pass-by-Value Functions
Pass-by-value functions receive copies of values when they are called. These functions return a
single output variable upon completion, and they can perform external operations. The external
operations can be physical reads and writes to the operating system or SQL statements against the
database. Refer back to Table 6-1 for an illustration of the pass-by-value function.

As discussed, you can define pass-by-value functions as deterministic or parallel-enabled when
the functions don’t alter package variables or database values. You can also define functions to
return pipelined tables that mimic SQL or PL/SQL collections. The results of pipelined functions
require that you use them in SQL scope. All functions except those created with pipelined results
support result caches.

The basic structure of a pass-by-value program takes a list of inputs, which are also known as
formal parameters. Functions return a single output variable. Output variables can be scalar values,
structures, collections, pipelined tables, or user-defined object types. This means that a single
variable can contain many things when it is a compound datatype.

Whether functions interact with the file system or database does not impact how they act
inside your PL/SQL code block. You can use a function to assign a result to a variable, or return
a variable as an expression. Earlier Figure 6-1 illustrates using a function as a right operand in an
assignment operation.

You can use a function that returns a variable as an expression when you put it inside a call to
another PL/SQL built-in function, like

EXECUTE dbms_output.put_line(TO_CHAR(pv(10000,5,6),'9,999.90'));

When SERVEROUTPUT is enabled, this outputs

7,472.58

The example uses the pv function described in the section “DETERMINISTIC Clause” section
earlier in this chapter, and it uses the TO_CHAR built-in function (see Appendix J for details). A call
to the pv function becomes an expression to the TO_CHAR function, and the result of the TO_CHAR
function then becomes an expression and actual parameter to the PUT_LINE procedure of the
DBMS_OUTPUT package. These are typical calls and uses of pass-by-value functions.

PL/SQL pass-by-value functions are defined by the following six rules:

All formal parameters must be defined as write-only variables by using the IN mode.

All formal parameters are locally scoped variables that cannot be changed during
execution inside the function.

■

■

■

■

Chapter 6: Functions and Procedures 187

Any formal parameter can use any valid SQL or PL/SQL datatype. Only functions with
parameter lists that use SQL datatypes work in SQL statements.

Any formal parameter may have a default initial value.

The formal return variable can use any valid SQL or PL/SQL datatype, but pipelined
return tables must be used in SQL statements. You can’t access pipelined table results
in another PL/SQL scope.

Any system reference cursor cast from a SQL query into a function is not writable, and
therefore it must be passed through an IN mode parameter.

System Reference Cursors
All cursor result sets are static structures stored in the Oracle SGA. Cursors variables are actually
references or handles. The handle points to an internally cached result set from a query. You
populate cursor variables by fetching records, typically by using an

OPEN cursor_name FOR select_statement;

You access cursors by using a reference or handle that lets you scroll their content. You scroll
through them by using the FETCH cursor INTO variable syntax. Once you declare an implicit or
explicit cursor structure, you can then assign its reference to a SQL cursor datatype. You can also
return these cursor variables as function return types or as IN OUT or OUT reference variables in
function and procedure signatures. The result sets are read-only structures.

The following shows how to return a cursor using a function:

-- This is found in cursor_management.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION get_full_titles
RETURN SYS_REFCURSOR IS
 titles SYS_REFCURSOR;
BEGIN

OPEN titles FOR
 SELECT item_title, item_subtitle
 FROM item;
 RETURN titles;
END;
/

The function uses the predefined SYS_REFCURSOR, which is a weakly typed system reference
cursor. A weakly typed reference cursor can assume any record structure at run time, whereas a
strongly typed reference cursor is anchored to a database catalog object.

The OPEN clause creates a reference in the SGA for the cursor. You can then pass the reference
to another PL/SQL block as a cursor variable, as shown in the following anonymous block:

-- This is found in cursor_management.sql on the publisher's web site.
DECLARE
 -- Define a type and declare a variable.
 TYPE full_title_record IS RECORD
 (item_title item.item_title%TYPE
 , item_subtitle item.item_subtitle%TYPE);
 full_title FULL_TITLE_RECORD;

■

■

■

■

188 Oracle Database 11g PL/SQL Programming

 -- Declare a system reference cursor variable.
 titles SYS_REFCURSOR;
BEGIN
 -- Assign the reference cursor function result.
 titles := get_full_titles;

 -- Print one element of one of the parallel collections.
 LOOP
 FETCH titles INTO full_title;
 EXIT WHEN titles%NOTFOUND;
 dbms_output.put_line('Title ['||full_title.item_title||']');
 END LOOP;
END;
/

NOTE
There is never an open statement before the loop when a cursor is
passed into a subroutine, because they are already open. Cursor
variables are actually references that point into a specialized cursor
work area in the SGA.

The receiving or processing block needs to know what record type is stored in the cursor.
Some use this requirement to argue that you should only use strongly typed reference cursors. In
PL/SQL-only solutions, they have a point.

The other side of the argument can be made for weakly typed reference cursors when you query
them through external programs using the OCI libraries. In these external languages you can
dynamically discover the structure of reference cursors and manage them discretely through
generic algorithms. Appendix C shows how to do so using the ReferenceCursor.php program.

Calculating the future value of a bank deposit illustrates how to write a pass-by-value function.
The following builds the fv function, which calculates an annual interest rate compounded daily:

-- This is found in fv.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION fv
(current_value NUMBER := 0
, periods NUMBER := 1
, interest NUMBER)
RETURN NUMBER DETERMINISTIC IS
BEGIN
 -- Compounded Daily Interest.
 RETURN current_value * (1 + ((1 + ((interest/100)/365))**365 -1)*periods);
END fv;
/

The function defines three formal parameters. Two are optional parameters because they have
default values. The default values are the current balance of the account and the 365 days of the
year (for non-leap years). The third parameter is mandatory because no value is provided. As
discussed, the IN mode is the default, and you do not have to specify it when defining functions.

As a general practice, mandatory parameters come before optional parameters. This is critical
when actual parameters are submitted in positional order. Oracle 11g supports positional order,
named notation order, and mixed notation.

Chapter 6: Functions and Procedures 189

After defining an output variable, you use the CALL statement to run the function using
named notation:

VARIABLE future_value NUMBER
CALL fv(current_value => 10000, periods => 5, interest => 4)
INTO :future_value
/

You can then select the future value of $10,000 after five years at 4% annual interest
compounded daily, by using

SELECT :future_value FROM dual;

Alternatively, you can format with SQL*Plus and call the function in SQL with this statement:

COLUMN future_value FORMAT 99,999.90
SELECT fv(current_value => 10000, periods => 5, interest => 4) FROM dual;

Both the CALL statement and SQL query return a result of $12,040.42. The compounding of
interest yields $40.42 more than an annual rate. There might be an extra penny or two, depending
on where the leap year falls in the five years, but the function doesn’t manage that nuance in the
calculation.

Pass-by-value functions disallow any attempt to reassign a value to a formal parameter during
run time. You raise a PLS-00363 error that tells you the expression (formal parameter) can’t be
used as an assignment target.

Functions also let you process DML statements inside them. There are some people that feel
you shouldn’t use functions to perform DML statements because, historically, procedures were used.
The only downside of embedding a DML statement inside a function is that you can’t call that
function inside a query. If you call a function that performs a DML statement from a query, you
raise an ORA-14551 error. The error message says you can’t have a DML operation inside a query.

The following function inserts a row by calling the autonomous add_user function:

-- This is found in create_add_user.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION add_user
(system_user_id NUMBER
, system_user_name VARCHAR2
, system_group_id NUMBER
, system_user_type NUMBER
, last_name VARCHAR2
, first_name VARCHAR2
, middle_initial VARCHAR2
, created_by NUMBER
, creation_date DATE
, last_updated_by NUMBER
, last_update_date DATE) RETURN BOOLEAN IS
 -- Set function to perform in its own transaction scope.
 PRAGMA AUTONOMOUS_TRANSACTION;
 -- Set default return value.
 retval BOOLEAN := FALSE;
BEGIN
 INSERT INTO system_user
 VALUES

190 Oracle Database 11g PL/SQL Programming

 (system_user_id, system_user_name, system_group_id, system_user_type
 , last_name, first_name, middle_initial
 , created_by, creation_date, last_updated_by, last_update_date);
 -- Save change inside its own transaction scope.
 COMMIT;
 -- Reset return value.
 retval := TRUE;
 RETURN retval;
END;
/

Autonomous program units perform their operations in a separate transactional scope, which
means their behavior is isolated from the calling transaction scope. This anonymous-block program
demonstrates how you use a function as an expression in an IF statement when it performs a
DML operation in an autonomous function:

-- This is found in create_add_user.sql on the publisher's web site.
BEGIN
 IF add_user(6,'Application DBA', 1, 1
 ,'Brown','Jerry',''
 , 1, SYSDATE, 1, SYSDATE) THEN
 dbms_output.put_line('Record Inserted');

ROLLBACK;
 ELSE
 dbms_output.put_line('No Record Inserted');
 END IF;
END;
/

The rollback doesn’t undo the insertion because it only applies to the current transaction
scope. The add_user function is an autonomous transaction and therefore writes changes in
an independent transaction scope. When the function returns a Boolean true value, the value
has already been written and made permanent. You can subsequently query the row, and you
will find the row is still there even when the calling scope failed or was rolled back.

TIP
You can’t pass a system reference cursor as an IN mode actual
parameter and subsequently open them, because they’re already
open.

This section has explained how to use pass-by-value functions. The next section builds on this
information and explores pass-by-reference functions.

Recursive Functions
Recursive functions are a useful tool to solve some complex problems, like advanced parsing.
A recursive function calls one or more copies of itself to resolve a problem by converging on a
result. Recursive functions look backward in time, whereas non-recursive functions look forward
in time. Recursive functions are a specialized form of pass-by-value functions.

Non-recursive programs take some parameters and begin processing, often in a loop, until
they achieve a result. This means they start with something and work with it until they find a
result by applying a set of rules or evaluations. This means non-recursive programs solve problems
moving forward in time.

Chapter 6: Functions and Procedures 191

Recursive functions have a base case and a recursive case. The base case is the anticipated
result. The recursive case applies a formula that includes one or more calls back to the same
function. One recursive call is known as a linear or straight-line recursion. Recursive cases that
make two or more recursive calls separated by an operator are non-linear. Linear recursion is
much faster than non-linear recursion, and the more recursive calls, the higher the processing
costs. Recursive functions use the recursive case only when the base case isn’t met. A result is
found when a recursive function call returns the base case value. This means recursive program
units solve problems moving backward in time, or one recursion after another.

Solving factorial results is a classic problem for linear recursion. The following function
returns the factorial value for any number:

-- This is found in recursion.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION factorial
(n BINARY_DOUBLE) RETURN BINARY_DOUBLE IS
BEGIN
 IF n <= 1 THEN
 RETURN 1;
 ELSE
 RETURN n * factorial(n - 1);
 END IF;
END factorial;
/

The base case is met when the IF statement resolves as true. The recursive case makes only
a single call to the same function. Potentially, the recursive case can call many times until it also
returns the base case value of 1. Then, it works its way back up the tree of recursive calls until an
answer is found by the first call.

Fibonacci numbers are more complex because recursion requires two calls for each
recursion. The following function demonstrates non-linear recursion:

-- This is found in recursion.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION Fibonacci
(n BINARY_DOUBLE) RETURN BINARY_DOUBLE IS
BEGIN
 IF n <= 2 THEN
 RETURN 1;
 ELSE
 RETURN fibonacci(n - 2) + fibonacci(n - 1);
 END IF;
END fibonacci;
/

The addition operator has a lower order of precedence than a function call. Therefore, the
recursive call on the left is processed first until it returns an expression. Then, the recursive call on the
right is resolved to an expression. The addition happens after both recursive calls return expressions.

This discussion has demonstrated how you can implement recursion. You should note that
recursion lends itself to pass-by-value functions because you only want the base case returned.
While you can call recursive function using pass-by-reference semantics, you shouldn’t. Recursive
parameters should not be altered during execution because that creates a mutating behavior in
the recursive case.

192 Oracle Database 11g PL/SQL Programming

You should explore recursion when you want to parse strings or you are checking for syntax
rules. Chapter 16 uses recursion to write an asymmetrical nested HTML table (naturally, you can
substitute the table tags for <div> tags). It is much more effective than trying to move forward
through the string.

Pass-by-Reference Functions
Pass-by-reference functions receive copies of values when they are called, unless you override the
default behavior by using the NOCOPY hint. The NOCOPY hint only works with certain functions
that meet restrictive criteria. These functions return a single output variable upon completion.
They also can perform external operations, like SQL statements. At run time, they can return
new values for actual parameters to calling program units. If they use the NOCOPY hint and pass
references, the function may alter any value pointed to by the reference. External operations can
be physical reads and writes to the operating system or SQL statements against the database. Refer
back to Table 6-1 for an illustration of the pass-by-reference function.

You use pass-by-reference functions when you want to perform an operation, return a value
from the function, and alter one or more actual parameters. These functions can only act inside the
scope of another program or environment. The SQL*Plus environment lets you define session-level
variables (also known as bind variables) that you can use when you call these types of functions.
You cannot pass literals (like dates, numbers, or strings) or expressions (like function return values)
into a parameter defined as OUT or IN OUT mode.

PL/SQL pass-by-reference functions are defined by the following six rules:

At least one formal parameters must be defined as a read-only or read-write variable by
using the OUT or IN OUT mode respectively.

All formal parameters are locally scoped variables that you can change during operations
inside the function.

Any formal parameter can use any valid SQL or PL/SQL datatype. Only functions with
parameter lists that use SQL datatypes work in SQL statements.

Any IN mode formal parameters can have a default initial value.

The formal return variable can use any valid SQL or PL/SQL datatype, but pipelined
return tables must be use in SQL statements. You can’t access pipelined table results in
another PL/SQL scope.

Any system reference cursor cast from a SQL query into a function is not writable and
therefore must be passed through an IN mode parameter.

The following pass-by-reference function demonstrates returning a value while altering the
input variable:

-- This is found in create_counting1.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION counting
(number_in IN OUT NUMBER) RETURN VARCHAR2 IS
 -- Declare a collection control variable and collection variable.
 TYPE numbers IS TABLE OF VARCHAR2(5);
 ordinal NUMBERS := numbers('One','Two','Three','Four','Five');
 -- Define default return value.
 retval VARCHAR2(9) := 'Not Found';

■

■

■

■

■

■

Chapter 6: Functions and Procedures 193

BEGIN
 -- Replace a null value to ensure increment.
 IF number_in IS NULL THEN
 number_in := 1;
 END IF;
 -- Increment actual parameter when within range.
 IF number_in < 4 THEN
 retval := ordinal(number_in);

number_in := number_in + 1;
 ELSE
 retval := ordinal(number_in);
 END IF;
 RETURN retval;
END;
/

The function guarantees the number_in index value isn’t null and doesn’t exceed 4. The
index value reads an ordinal number from the nested table collection. You can test the function
with the following anonymous block:

-- This is found in create_counting1.sql on the publisher's web site.
DECLARE
 counter NUMBER := 1;
BEGIN
 FOR i IN 1..5 LOOP
 dbms_output.put('Counter ['||counter||']');
 dbms_output.put_line('['||counting(counter)||']');
 END LOOP;
END;
/

The counter variable is always printed before making the call to the function. This means you
see the initial value and matching ordinal number string together. The output is

Counter [1][One]
Counter [2][Two]
Counter [3][Three]
Counter [4][Four]
Counter [4][Four]

As you can see in the output, the IN OUT mode actual parameter is only incremented until
the value is 4. The last call in the anonymous block reuses the prior unchanged index value
because the function only increments values less than four.

A read-only (OUT mode) formal parameter can’t work in this type of call because the new
value is never read. The initial IF statement sets the number_in to 1 each time you call the
program with a null actual parameter. OUT mode parameters are always null values on entry.

The counting function is recreated with an OUT mode parameter in this:

-- This is found in create_counting1.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION counting
(number_out OUT NUMBER) RETURN VARCHAR2 IS
 TYPE numbers IS TABLE OF VARCHAR2(5);
 ordinal NUMBERS := numbers('One','Two','Three','Four','Five');
 retval VARCHAR2(9) := 'Not Found';

194 Oracle Database 11g PL/SQL Programming

BEGIN
 -- Replace a null value to ensure increment.
 IF number_out IS NULL THEN
 number_out := 1;
 END IF;
 -- Increment actual parameter when within range.
 IF number_out < 4 THEN
 retval := ordinal(number_out);
 number_out := number_out + 1;
 ELSE
 retval := ordinal(number_out); -- Never run because number_out is always null.
 END IF;
 RETURN retval;
END;
/

The new counting function uses an OUT mode parameter. The parameter is renamed
appropriately to number_out. At call time, the value of number_out is always a null value.
This means it is always reset to 1, found less than 4, and reset to 2.

This familiar anonymous block lets you test the new function:

DECLARE
 counter NUMBER := 1;
BEGIN
 FOR i IN 1..5 LOOP
 dbms_output.put('Counter ['||counter||']');
 dbms_output.put_line('['||counting(counter)||']');
 END LOOP;
END;
/

The counter is initially 1, and is always returned as 2, which means you get the following
output:

Counter [1][One]
Counter [2][One]
Counter [2][One]
Counter [2][One]
Counter [2][One]

The section has covered how you define and use a pass-by-reference function. You should
recognize that there are two types of pass-by-reference parameters. One type has a value on entry
and exit: IN OUT mode variables. The other always has a null value on entry and should have a
value on exit: OUT mode parameters.

Procedures
Procedures cannot be right operands or called from SQL statements. They do support using IN,
OUT, and IN OUT mode formal parameters.

Like functions, procedures can also contain nested named blocks. Nested named blocks are
local functions and procedures that you define in the declaration block. You can likewise nest
anonymous blocks in the execution block or procedures.

The following illustrates a named block procedure prototype:

Chapter 6: Functions and Procedures 195

PROCEDURE procedure_name
[(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)]
[AUTHID DEFINER | CURRENT_USER] IS

declaration_statements
BEGIN

execution_statements
[EXCEPTION]

exception_handling_statements
END [procedure_name];
/

You can define procedures with or without formal parameters. Formal parameters in procedures
can be either pass-by-value or pass-by-reference variables in stored procedures. Pass-by-reference
variables have both and IN and OUT mode. As when working with functions, you create it as a pass-
by-value procedure when you don’t specify the parameter mode because it uses the default IN mode.

Compiling (creating or replacing) the procedure implicitly assigns the IN mode phrase when
none is provided. Like functions, formal parameters in procedures also support optional default
values for IN mode parameters.

The AUTHID clause sets the execution authority model. The default is definer rights. Definer
rights means any one with execution privileges on the procedure acts as if they are the owner
of that same schema. CURRENT_USER overrides the default and sets the execution authority to
invoker rights. Invoker rights authority means that you call procedures to act on your local data,
and it requires that you replicate data objects in any participating schema. Chapter 9 provides a
broader comparison of definer and invoker rights.

As in functions, the declaration block is between the IS and BEGIN phrases, while other
blocks mirror the structure of anonymous-block programs. Procedures require an execution
environment, which means you must call them from SQL*Plus or another program unit. The
calling program unit can be another PL/SQL block or an external program using the OCI or JDBC.

Procedures are used most frequently to perform DML statements and transaction management.
You can define procedures to act in the current transaction scope or an independent transaction
scope. As with functions, you use the PRAGMA AUTONOMOUS_TRANSACTION to set a procedure
so that it runs as an independent transaction.

Pass-by-Value Procedures
Pass-by-value procedures receive copies of values when they are called. These procedures do not
return an output variable like a function. They only perform external operations, like SQL statements
to the database or external file read or write operations. Refer back to Table 6-1 for an illustration
of the pass-by-value procedure.

As discussed, you can define pass-by-value procedures to run autonomously in a separate
transaction scope, or you can accept the default and have them run in the current transaction
scope. Pass-by-value procedures frequently run in the current transaction scope. They organize
database DML statements, like insert statements to multiple tables.

PL/SQL pass-by-value procedures are defined by the following five rules:

All formal parameters must be defined as write-only variables by using the IN mode.

All formal parameters are locally scoped variables that cannot be changed during
execution inside the procedure.

■

■

196 Oracle Database 11g PL/SQL Programming

Any formal parameter can use any valid SQL or PL/SQL datatype.

Any formal parameter may have a default initial value.

Any system reference cursor cast from a SQL query into a function is not writable and
therefore must be passed through an IN mode parameter. This includes those passed as
explicit cursor variables and those cast using the CURSOR function. As mentioned in the
section “System Reference Cursors” earlier in this chapter, cursor variables are actually
references or handles. The handles point to internally cached result sets, which are read-
only structures.

The add_contact procedure demonstrates a procedure that inserts values into one or three
tables. The procedure uses the call parameters to determine the target insert tables. As described
in the Introduction, the seeding script creates a video store. All tables inside the video store
use surrogate primary keys, along with copies of the primary key values as foreign keys. The
add_contact does not accept surrogate primary keys, but it uses them inside the procedure.
This is one of the benefits of putting related inserts into a single procedure.

The add_contact procedure shows you how to use a pass-by-value procedure to manage
multiple DML statements across a single transaction scope:

-- This is found in create_add_contact1.sql on the publisher's web site.
CREATE OR REPLACE procedure add_contact
(member_id NUMBER
, contact_type NUMBER
, last_name VARCHAR2
, first_name VARCHAR2
, middle_initial VARCHAR2 := NULL
, address_type NUMBER := NULL
, street_address VARCHAR2 := NULL
, city VARCHAR2 := NULL
, state_province VARCHAR2 := NULL
, postal_code VARCHAR2 := NULL
, created_by NUMBER
, creation_date DATE := SYSDATE
, last_updated_by NUMBER
, last_update_date DATE := SYSDATE) IS
 -- Declare surrogate key variables.
 contact_id NUMBER;
 address_id NUMBER;
 street_address_id NUMBER;

 -- Define autonomous function to secure any surrogate key values.
 FUNCTION get_sequence_value (sequence_name VARCHAR2) RETURN NUMBER IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 id_value NUMBER;
 statement VARCHAR2(2000);
 BEGIN
 -- Build and run dynamic SQL in a PL/SQL block.
 statement := 'BEGIN' ||CHR(10)
 || ' SELECT '||sequence_name||'.nextval'||CHR(10)
 || ' INTO :id_value' ||CHR(10)
 || ' FROM dual;' ||CHR(10)
 || 'END;';

■

■

■

Chapter 6: Functions and Procedures 197

 EXECUTE IMMEDIATE statement USING OUT id_value;
 RETURN id_value;
 END get_sequence_value;
BEGIN
 -- Set savepoint to guarantee all or nothing happens.

SAVEPOINT add_contact;

 -- Assign next value from sequence and insert record.
 contact_id := get_sequence_value('CONTACT_S1');
 INSERT INTO contact VALUES
 (contact_id
 , member_id
 , contact_type
 , last_name
 , first_name
 , middle_initial
 , created_by
 , creation_date
 , last_updated_by
 , last_update_date);

 -- Check before inserting data in ADDRESS table.
 IF address_type IS NOT NULL AND
 city IS NOT NULL AND
 state_province IS NOT NULL AND
 postal_code IS NOT NULL THEN
 -- Assign next value from sequence and insert record.
 address_id := get_sequence_value('ADDRESS_S1');
 INSERT INTO address VALUES
 (address_id
 , contact_id
 , address_type
 , city
 , state_province
 , postal_code
 , created_by
 , creation_date
 , last_updated_by
 , last_update_date);

 -- Check before inserting data in STREET_ADDRESS table.
 IF street_address IS NOT NULL THEN
 -- Assign next value from sequence and insert record.
 street_address_id := get_sequence_value('STREET_ADDRESS_S1');
 INSERT INTO street_address VALUES
 (street_address_id
 , address_id
 , street_address
 , created_by
 , creation_date
 , last_updated_by
 , last_update_date);

198 Oracle Database 11g PL/SQL Programming

 END IF;
 END IF;
EXCEPTION
 WHEN others THEN
 ROLLBACK TO add_contact;
 RAISE_APPLICATION_ERROR(-20001,SQLERRM);
END add_contact;
/

You submit data to the add_contact procedure, and it inserts data into one or three tables.
All formal parameters use IN mode parameters. This means that you can’t assign anything to
these variables inside the procedure. This is one reason local procedure variables manage the
primary and foreign keys.

The procedure manages all primary and foreign keys, ensuring they’re available as required
during execution of the procedure. It sets a SAVEPOINT at the beginning and rolls back any
transaction component if there is any raised error. It raises a user-defined error when an exception
occurs. The autonomous function has no impact on the transactional integrity because querying a
sequence in the same or a different transaction scope increments a sequence. Sequences are never
reset by a ROLLBACK statement.

The local get_sequence_value function uses Native Dynamic SQL (NDS) so that a single
function can access the sequences supporting primary keys. The procedure gets new primary keys
before attempting any of the INSERT statements.

You can test the procedure by calling it, as demonstrated in the following anonymous block
program:

-- This is found in create_add_contact1.sql on the publisher's web site.
DECLARE
 -- Declare surrogate key variables.
 member_id NUMBER;

 -- Declare local function to get type.
 FUNCTION get_type
 (table_name VARCHAR2
 , column_name VARCHAR2
 , type_name VARCHAR2) RETURN NUMBER IS
 retval NUMBER;
 BEGIN
 SELECT common_lookup_id
 INTO retval
 FROM common_lookup
 WHERE common_lookup_table = table_name
 AND common_lookup_column = column_name
 AND common_lookup_type = type_name;
 RETURN retval;
 END get_type;

 -- Define autonomous function to secure surrogate key values.
 FUNCTION get_member_id RETURN NUMBER IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 id_value NUMBER;

Chapter 6: Functions and Procedures 199

 BEGIN
 SELECT member_s1.nextval INTO id_value FROM dual;
 RETURN id_value;
 END;
BEGIN
 -- Set savepoint to guarantee all or nothing happens.

SAVEPOINT add_member;

 -- Declare surrogate key variables.
 member_id := get_member_id;
 INSERT INTO member VALUES
 (member_id
 ,(SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_table = 'MEMBER'
 AND common_lookup_column = 'MEMBER_TYPE'
 AND common_lookup_type = 'GROUP')
 , '4563-98-71'
 , '5555-6363-1212-4343'
 ,(SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_table = 'MEMBER'
 AND common_lookup_column = 'CREDIT_CARD_TYPE'
 AND common_lookup_type = 'VISA_CARD')
 , 3
 , SYSDATE
 , 3
 , SYSDATE);
 -- Call procedure to insert records in related tables.

add_contact(member_id => member_id
 , contact_type => get_type('CONTACT','CONTACT_TYPE','CUSTOMER')
 , last_name => 'Rodriguez'
 , first_name => 'Alex'
 , address_type => get_type('ADDRESS','ADDRESS_TYPE','HOME')
 , street_address => 'East 161st Street'
 , city => 'Bronx'
 , state_province => 'NY'
 , postal_code => '10451'
 , created_by => 3
 , last_updated_by => 3);
EXCEPTION
 WHEN others THEN
 ROLLBACK TO add_member;
 RAISE_APPLICATION_ERROR(-20002,SQLERRM);
END;
/

The anonymous block inserts a row to the member table and then calls the procedure to insert
data into the contact, address, and street_address tables. The procedure call uses named
notation calling the add_contact procedure.

200 Oracle Database 11g PL/SQL Programming

Pass-by-value procedures let you perform tasks in the database or external resources. They
also let you manage primary and foreign keys in a single program scope.

Pass-by-Reference Procedures
Pass-by-reference procedures receive references to variables when they are called. Procedures do
not return output variables. This type of procedure can change the values of actual parameters.
They return their actual parameter references upon completion to the calling program. They can
also perform external operations, like SQL statements to the database. Refer back to Table 6-1 for
an illustration of the pass-by-reference procedure.

As discussed, you can define pass-by-reference procedures to run autonomously. Then, they
execute in a separate transaction scope. You can also accept the default and run them in the current
transaction scope. They organize database DML statements to move data between the program
and the database, or they send data to external program units.

PL/SQL pass-by-reference procedures are defined by the following five rules:

At least one formal parameter must be defined as a read-only or read-write variable by
using the OUT or IN OUT mode respectively.

All formal parameters are locally scoped variables that you can change during operations
inside the procedure.

Any formal parameter can use any valid SQL or PL/SQL datatype.

Any IN mode formal parameters can have a default initial value.

Any system reference cursor cast from a SQL query into a procedure is not writable and
therefore must be passed through an IN mode parameter.

Pass-by-value programs let you put sequences of multiple DML statements into a single
transaction and program scope. You are able to share values, like primary and foreign keys, inside
of the black box when using them. As noted in the prior section, the add_contact procedure
shows how you can implement a set of conditional INSERT statements.

Sometimes you want to build smaller reusable program units. For example, each insert statement
could be put into its own stored procedure. You accomplish that by implementing pass-by-reference
procedures. These new procedures expand the parameter lists by using both primary and foreign
key parameters. The parameter list change makes the procedures capable of exchanging values
between programs.

The example re-implements the prior pass-by-value section solution as a set of pass-by-
reference procedures. The first step removes the local get_sequence_value function and
builds it as a standalone function in the database, as shown:

-- This is found in create_add_contact2.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION get_sequence_value
(sequence_name VARCHAR2) RETURN NUMBER IS
 PRAGMA AUTONOMOUS_TRANSACTION;

■

■

■

■

■

Chapter 6: Functions and Procedures 201

 id_value NUMBER;
 statement VARCHAR2(2000);
BEGIN
 -- Build dynamic SQL statement as anonymous block PL/SQL unit.
 statement := 'BEGIN' ||CHR(10)
 || ' SELECT '||sequence_name||'.nextval'||CHR(10)
 || ' INTO :id_value' ||CHR(10)
 || ' FROM dual;' ||CHR(10)
 || 'END;';

 -- Execute dynamic SQL statement.
 EXECUTE IMMEDIATE statement USING OUT id_value;
 RETURN id_value;
END get_sequence_value;
/

This version of the function uses native dynamic SQL (NDS) to build and run the SELECT
statement that gets the sequence value. Chapter 11 covers NDS.

After building the standalone function, you need to build a procedure to add a row to the
contact table. The new add_contact procedure only adds a row to the contact table. It also has
a different formal parameter list. The primary key for the table is returned as an OUT mode (write-
only) variable, which lets you reuse the primary key as a foreign key, which is what you’ll do in a
subsequent procedure. You should also note that the member_id foreign key is passed as a value.

Inlining Subroutine Calls
Inlining is a compiler behavior that copies an external subroutine into another program.
This is done to avoid the overhead of frequently calling an external subroutine. While
leaving the decision to the compiler is always an option, you can designate when you
would like to suggest an external call be copied inline.

You designate a subroutine call for inlining by using the following prototype:

PRAGMA INLINE(subroutine_name, 'YES'|'NO')

The compiler ultimately makes the decision whether to inline the subroutine because
precompiler instructions are only hints. There are other factors that make inlining some
subroutines undesirable. This pragma affects any call to the function or procedure when
it precedes the call. It also impacts every call to CASE, CONTINUE-WHEN, EXECUTE
IMMEDIATE, EXIT-WHEN, LOOP, and RETURN statements.

The behavior of the PRAGMA INLINE precompiler hint changes, depending on the
setting of the PLSQL_OPTIMIZE_LEVEL session variable. Subprograms are inlined when
PLSQL_OPTIMIZE_LEVEL is set to 2 and only given a high priority when set to 3. If the
PLSQL_OPTIMIZE_LEVEL is set to 1, subprograms are only inlined when the compiler
views it as necessary.

202 Oracle Database 11g PL/SQL Programming

The pass-by-reference add_contact procedure follows:

-- This is found in create_add_contact2.sql on the publisher's web site.
CREATE OR REPLACE procedure add_contact
(contact_id OUT NUMBER -- Primary key after insert.
, member_id IN NUMBER -- Foreign key preceding insert.
, contact_type IN NUMBER
, last_name IN VARCHAR2
, first_name IN VARCHAR2
, middle_initial IN VARCHAR2 := NULL
, created_by IN NUMBER
, creation_date IN DATE := SYSDATE
, last_updated_by IN NUMBER
, last_update_date IN DATE := SYSDATE) IS
BEGIN
 -- Set savepoint so that all or nothing happens.
 SAVEPOINT add_contact;

 -- Suggest inlining the get_sequence_value function.
PRAGMA INLINE(get_sequence_value,'YES');

 -- Assign next value from sequence and insert record.
 contact_id := get_sequence_value('CONTACT_S1');
 INSERT INTO contact VALUES
 (contact_id
 , member_id
 , contact_type
 , last_name
 , first_name
 , middle_initial
 , created_by
 , creation_date
 , last_updated_by
 , last_update_date);
EXCEPTION
 WHEN others THEN
 ROLLBACK TO add_contact;
 RAISE_APPLICATION_ERROR(-20001,SQLERRM);
END add_contact;
/

The add_contact procedure provides a PRAGMA INLINE hint to suggest that the compiler
inline the get_sequence_value function. This is something you should consider when program
units call other stored subroutines. It is not included in the subsequent examples, but you would
likely include it in production code.

The next procedure controls the insert into the address and street_address tables. It
defines the foreign key value as an IN mode (read-only) variable, just as the add_contact
procedure defined the member_id foreign key.

The add_address procedure is

Chapter 6: Functions and Procedures 203

-- This is found in create_add_contact2.sql on the publisher's web site.
CREATE OR REPLACE procedure add_address
(address_id OUT NUMBER -- Primary key after insert.
, contact_id IN NUMBER -- Foreign key preceding insert.
, address_type IN NUMBER := NULL
, street_address IN VARCHAR2 := NULL
, city IN VARCHAR2 := NULL
, state_province IN VARCHAR2 := NULL
, postal_code IN VARCHAR2 := NULL
, created_by IN NUMBER
, creation_date IN DATE := SYSDATE
, last_updated_by IN NUMBER
, last_update_date IN DATE := SYSDATE) IS

 -- Declare surrogate key variables.
 street_address_id NUMBER;
BEGIN
 -- Set savepoint so all or nothing happens.
 SAVEPOINT add_address;

 -- Check data is present for insert to ADDRESS table.
 IF address_type IS NOT NULL AND
 city IS NOT NULL AND
 state_province IS NOT NULL AND
 postal_code IS NOT NULL THEN

 -- Assign next value from sequence and insert record.
 address_id := get_sequence_value('ADDRESS_S1');
 INSERT INTO address VALUES
 (address_id
 , contact_id
 , address_type
 , city
 , state_province
 , postal_code
 , created_by
 , creation_date
 , last_updated_by
 , last_update_date);

 -- Check data is present for insert to ADDRESS table.
 IF street_address IS NOT NULL THEN
 -- Assign next value from sequence and insert record.
 street_address_id := get_sequence_value('STREET_ADDRESS_S1');
 INSERT INTO street_address VALUES
 (street_address_id
 , address_id
 , street_address
 , created_by

204 Oracle Database 11g PL/SQL Programming

 , creation_date
 , last_updated_by
 , last_update_date);
 END IF;
 END IF;
EXCEPTION
 WHEN others THEN
 ROLLBACK TO add_address;
 RAISE_APPLICATION_ERROR(-20001,SQLERRM);
END add_address;
/

After building the standalone function and two procedures, you rewrite the anonymous block
to make independent calls to the add_contact and add_address procedures. The
anonymous block follows:

-- This is found in create_add_contact2.sql on the publisher's web site.
DECLARE
 -- Declare surrogate key variables.
 member_id NUMBER;
 contact_id NUMBER;
 address_id NUMBER;

 -- Declare local function to get type.
 FUNCTION get_type
 (table_name VARCHAR2
 , column_name VARCHAR2
 , type_name VARCHAR2) RETURN NUMBER IS
 retval NUMBER;
 BEGIN
 SELECT common_lookup_id
 INTO retval
 FROM common_lookup
 WHERE common_lookup_table = table_name
 AND common_lookup_column = column_name
 AND common_lookup_type = type_name;
 RETURN retval;
 END get_type;

 -- Define autonomous function to secure surrogate key values.
 FUNCTION get_member_id RETURN NUMBER IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 id_value NUMBER;
 BEGIN
 SELECT member_s1.nextval INTO id_value FROM dual;
 RETURN id_value;
 END;
BEGIN
 -- Declare surrogate key variables.
 member_id := get_member_id;
 INSERT INTO member VALUES

Chapter 6: Functions and Procedures 205

 (member_id
 ,(SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_table = 'MEMBER'
 AND common_lookup_column = 'MEMBER_TYPE'
 AND common_lookup_type = 'GROUP')
 , '4563-98-71'
 , '5555-6363-1212-4343'
 ,(SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_table = 'MEMBER'
 AND common_lookup_column = 'CREDIT_CARD_TYPE'
 AND common_lookup_type = 'VISA_CARD')
 , 3
 , SYSDATE
 , 3
 , SYSDATE);

 -- Call procedure to insert records in related tables.
 add_contact(member_id => member_id
 , contact_id => contact_id -- This is an OUT mode variable.
 , contact_type => get_type('CONTACT','CONTACT_TYPE','CUSTOMER')
 , last_name => 'Rodriguez'
 , first_name => 'Alex'
 , created_by => 3
 , last_updated_by => 3);

 -- Call procedure to insert records in related tables.
 add_address(address_id => address_id
 , contact_id => contact_id -- This is an OUT mode variable.
 , address_type => get_type('ADDRESS','ADDRESS_TYPE','HOME')
 , street_address => 'East 161st Street'
 , city => 'Bronx'
 , state_province => 'NY'
 , postal_code => '10451'
 , created_by => 3
 , last_updated_by => 3);
END;
/

The call to the add_contact returns a value for the primary key column. The subsequent
call to the add_address procedure uses that value as a foreign key value. Whether you
implement a pass-by-value or pass-by-reference procedure depends on many factors. The
choice is often between reusability and manageability.

Smaller units, like pass-by-reference procedures, are more reusable, but they’re harder to
manage. They can exist for every table or view in your application. Lager units, like pass-by-value
procedures, let you manage complex processes in a single black box. They tend to implement
what are sometimes called workflow units. Pass-by-value procedures are generally more process-
centric than data-centric wrappers and less expensive to maintain. However, you should note that
pass-by-reference procedures are ideal for supporting stateless web-based applications.

206 Oracle Database 11g PL/SQL Programming

The best rule of thumb is probably that all procedures should focus on process-centric activities.
Then, you can choose which subroutine best suits your task on an exception basis.

You have now reviewed the four types of supported subroutines in PL/SQL. Examples have
been provided that show you how to use each. The challenge now lies in how you design your
applications.

Summary
You should now have an understanding of transaction scope and how to implement functions and
procedures. This should include appreciating when to choose a function over a procedure and
vice versa.

CHAPTER
7

Collections

207

208 Oracle Database 11g PL/SQL Programming

here are three types of collections in the Oracle Database 11g family of products.
They are the varray, nested table, and associative array datatypes. Collections are
powerful structures because they enable you to develop programs that manage
large sets of data in memory.

You can build collections of any SQL or PL/SQL datatype. Collections of SQL datatypes work
in both SQL and PL/SQL environments but collections of PL/SQL datatypes do not. They only
work in PL/SQL.

This chapter explains how to define and work with collections in PL/SQL. There is also some
coverage of using collections as database columns. It covers these topics:

Collection types

 Varrays

 Nested tables

 Associative arrays

Collection set operators

Collection API

Collections are programming structures that hold sets of like things. Collections fall into two
categories: arrays and lists. Arrays typically have a physical size allocated when you define them,
while lists have no physical limit imposed. Naturally, the memory available for processing in the
SGA curtails the maximum size of some very large lists.

These lists are often indexed by a series of sequential numbers that start with 0 or 1 and
increase one value at a time. Using sequential numeric index values ensures that you can use
the index to traverse a complete list by incrementing or decrementing one at a time in a loop.
Alternatively, lists can be indexed by non-sequential numbers or unique strings. Lists are called
associative arrays when they can be indexed by non-sequential numbers or unique strings.

Figure 7-1 illustrates a collection of strings as an inverted tree, which represents a single-
dimensional collection. It uses a sequentially numbered index and would work with any SQL
datatype or PL/SQL scalar or user-defined object type. The caveat on PL/SQL datatypes is that
they can only be used in the context of PL/SQL blocks.

The index values become the identifier to access individual elements inside of a collection
variable. As discussed in Chapter 3, variable names are identifiers, and that includes variable
names that include index values.

You can create pseudo-multidimensional collections when you use a user-defined SQL object
type as the base element of a collection. However, user-defined object types require specialized
constructors and both static and instance access methods. Chapter 14 covers object types and
demonstrates how to build collections of object types.

Multidimensional collections are not supported as SQL datatypes. You can, however, build
multidimensional collections as PL/SQL datatypes. Multidimensional collection elements are
record structures. You can access record structures inside PL/SQL, or you can build pipelined
functions to access their contents in SQL. Chapter 6 demonstrates how to use pipelined functions
to convert multidimensional collections to aggregate tables for use in SQL statements.

While Figure 7-2 shows the record elements as SQL datatypes, you can also use PL/SQL
datatypes. The PL/SQL record types can also be collections of other PL/SQL record types. The
syntax as you nest collections becomes more complex. You should consider why you require
nested collections and compare other strategies before adopting them as your solution.

■

■

■

■

■

■

T

Chapter 7: Collections 209

You can also create multiple dimension arrays, known as multilevel collections. You do this
by including collections as elements inside collections.

The sections are organized to build on concepts as you work through the chapter. If you want
to skip ahead, please browse the earlier sections to see if something might catch your eye and
help you with the subsequent material.

FIGURE 7-1 An inverted tree diagram of a single-dimensional SQL datatype collection

FIGURE 7-2 An inverted tree diagram of a multidimensional PL/SQL record type collection

210 Oracle Database 11g PL/SQL Programming

Collection Types
The VARRAY and NESTED TABLE collections can be defined as both SQL and PL/SQL datatypes.
As SQL datatypes, they are single-dimensional arrays of scalar values or object types. They can
also define user-specified column datatypes. Both the VARRAY and NESTED TABLE datatypes are
structures indexed by sequential integers (using 1-based integers). Sequentially indexed structures
disallow gaps in the index values, and are also known as densely populated structures. While the
VARRAY has a fixed number of elements when defined, the NESTED TABLE does not.

NOTE
Oracle varray and nested table collections are indexed by 1-based
numbering.

The associative array, previously known as a PL/SQL table, is only a PL/SQL datatype. Associative
array datatypes can only be referenced in a PL/SQL scope. They are typically defined in package
specifications when they are to be used externally from an anonymous or named block program.
Associative array datatypes support both numeric and string indexes. Numeric indexes for associative
arrays do not need to be sequential and are non-sequential structures. Non-sequential structures
can have gaps in index sequences and are known as sparsely populated structures. Associative
arrays are dynamically sized and, like the NESTED TABLE datatype, have no fixed size.

All three have access to the Oracle Collection API, but each uses a different set of methods.
The recent changes to OCI8 enable it to support scalar, arrays of scalar, and reference cursor
variables to external languages, like C, C++, C#, Java, and PHP. The VARRAY and NESTED
TABLE datatypes require that you use the OCI-Collection class to access them externally from
the SQL*Plus environment. OCI8 also has a new function that supports passing by reference a
PL/SQL table.

Table 7-1 provides a comparison of the collection types. You should note that while size is
dynamic, the SGA and PGA memory regions are constrained by database initialization parameters.
When you work with these collection types, you gain tremendous throughput, provided you don’t
exhaust your memory resources.

Deciding on the collection type that best meets your programming need is critical. You should
carefully consider the strengths and weaknesses of each collection type. Here is a thumbnail guide
to selecting the right collection:

Use a varray when the physical size of the collection is static and the collection may be
used in tables. Varrays are the closest thing to arrays in other programming languages,
such as Java, C, C++, or C#.

Use nested tables when the physical size is unknown due to run-time variations and
when the type may be used in tables. Nested tables are like lists and bags in other
programming languages.

Use associative arrays when the physical size is unknown due to run-time variations
and when the type will not be used in tables. Associative arrays are ideal for standard
programming solutions, such as using maps and sets.

■

■

■

Chapter 7: Collections 211

Collection Type Description Subscript Size

Associative arrays
(index-by tables)

Associative array is the name
introduced in Oracle 10g for a
familiar structure. You may have
known these as index-by tables in
Oracle 8 to Oracle 9i and possibly
as PL/SQL tables in Oracle 7. They
have mutated forward in Oracle 11g
and deserve a new name. They are
still sparsely populated arrays, which
means the numbering does not have
to be sequential, only unique. They
now support subscripts that are unique
integers or strings. This change moves
a familiar and powerful structure from
a sparsely populated pseudo-array
or array list to a standard structured
programming language datatype,
known as lists or maps.

Sequential or non-
sequential integers
or unique strings

Dynamic

NESTED TABLES NESTED TABLES were introduced
in Oracle 8. They are initially defined
as densely populated arrays but may
become sparsely populated as records
are deleted. They may be stored in
permanent tables and accessed by
SQL. They also may be dynamically
extended and act more like traditional
programming bags and sets than
arrays. Another corollary would be the
ArrayList class introduced in Java 5.
They may contain a scalar variable or
user-defined object type when they
are used as SQL datatypes. SQL scope
collections are single-dimensional
lists of valid SQL datatypes. They
may also contain a list of one or more
compound datatypes (PL/SQL record
structures) when they work exclusively
in a PL/SQL scope.

Sequential integers Dynamic

TABLE 7-1 Collection Type Comparison

212 Oracle Database 11g PL/SQL Programming

Collection Type Description Subscript Size

Varrays Varrays were introduced in Oracle 8.
They are densely populated arrays and
behave like traditional programming
arrays. They may be stored in
permanent tables and accessed by
SQL. At creation they have a fixed
size that cannot change.
Like the Nested Tables, varrays may
contain a scalar variable or user-
defined object type when they are
used as SQL datatypes. As mentioned
earlier, SQL scope collections are
single-dimensional lists of valid SQL
datatypes. Varrays may also contain
a list of one or more compound
datatypes (PL/SQL record structures)
when they work exclusively in a
PL/SQL scope.

Sequential integers Fixed

TABLE 7-1 Collection Type Comparison (continued)

While Table 7-1 introduced collections in alphabetical order, you will cover them in descending
alphabetical order. The discussion will start with varrays and end with associative arrays. Coverage
will include access methods in both SQL and PL/SQL. It is hard to imagine how you would use
them in PL/SQL without knowing how to leverage these methods in your tables.

The subsections cover the VARRAY, NESTED TABLE, and associative array datatypes, and
the Oracle Collection API. These sections are designed to be read in order but should support an
experienced developer poking around for targeted explanations.

Varrays
Varrays are single-dimensional structures of Oracle 11g SQL or PL/SQL datatypes. You can use
varrays in table, record, and object definitions, and you can then access them in SQL or PL/SQL.
They are arrays in the traditional sense of programming languages because they have a fixed size
and use a sequential numeric index. They are like arrays in Java, C, C++, and C#.

Defining and Using Varrays as PL/SQL Program Constructs
The syntax to define a varray in a PL/SQL program unit is

TYPE type_name IS {VARRAY | VARYING ARRAY} (size_limit)
 OF element_type [NOT NULL];

The type name is often a string followed by an underscore and the word varray. Many programmers
and configuration management people find it a useful pattern to improve code readability. It is
also the convention used in the chapter.

Either VARRAY or VARYING ARRAY syntax may be used, but the former is much more common.
The size limit is a required value. It is a positive integer giving the maximum number of elements

Chapter 7: Collections 213

in the varray. Element type may be any Oracle 11g datatype or a user-defined datatype. Allowing
null values in varrays is the default. If null values should be disallowed, you must exclude them
with the NOT NULL clause.

The following example program demonstrates defining, declaring, and initializing a varray of
integers in a PL/SQL program unit. An integer is a subtype of the Oracle 11g number datatype.

Subscript index values begin at 1, not 0. This is consistent with the long-standing behavior
of index-by tables in Oracle 8 to Oracle 9i and PL/SQL tables in Oracle 7. Most programming
languages, including Java, C, C++, and C#, use subscript index values that begin with 0.

–– This is in create_varray1.sql on the publisher's web site.
DECLARE
 –– Define a varray with a maximum of 3 rows.
 TYPE integer_varray IS VARRAY(3) OF INTEGER;

 –– Declare the varray with null values.
varray_integer INTEGER_VARRAY := integer_varray(NULL,NULL,NULL);

BEGIN
 -- Print initialized null values.
 dbms_output.put_line('Varray initialized as nulls.');
 dbms_output.put_line('––––––––––––––--------------');
 FOR i IN 1..3 LOOP
 dbms_output.put ('Integer Varray ['||i||'] ');
 dbms_output.put_line('['||varray_integer(i)||']');
 END LOOP;

 –– Assign values to subscripted members of the varray.
varray_integer(1) := 11;

 varray_integer(2) := 12;
 varray_integer(3) := 13;

 -- Print initialized null values.
 dbms_output.put (CHR(10)); –- Visual line break.
 dbms_output.put_line('Varray initialized as values.');
 dbms_output.put_line('––-––––––––––––--------------');
 FOR i IN 1..3 LOOP
 dbms_output.put_line('Integer Varray ['||i||'] '
 || '['||varray_integer(i)||']');
 END LOOP;
END;
/

The example program defines a local scalar collection, declares an initialized collection
variable, prints the null value collection elements, assigns values to the elements, and reprints the
collection element values. You should also see how to initialize a collection, access the contents
of a collection element, and assign a value to a collection element in the sample program.

Here is the output from the program:

Varray initialized as nulls.
––––––--------------––––––––
Integer Varray [1] []
Integer Varray [2] []
Integer Varray [3] []

214 Oracle Database 11g PL/SQL Programming

Varray initialized as values.
––––––––––––––---------------
Integer Varray [1] [11]
Integer Varray [2] [12]
Integer Varray [3] [13]

If you skip any of the steps, you will encounter exceptions. The one that most new developers
encounter is an uninitialized collection, ORA-06531. It occurs because you must at least initialize
a null element varray by calling the collection type as shown here:

varray_integer INTEGER_VARRAY := integer_varray();

This exception fails to allocate space to any elements in the varray. The example program
initializes the varray with null values because nulls are allowed. It is also possible to initialize
the variable with values. You initialize the variable by using the varray type name and parentheses
around the values. When you initialize a varray, you set the actual number of initialized rows.
Using the Collection API COUNT method returns the number of elements with allotted space. Use
of this method will be shown in the next example program.

The maximum number of elements in the varray is three. The program allocates memory and
an index value only when you initialize elements. You can test this by editing the program and
changing the initialization from three null values to two. When you run the program, you raise
an ORA-06533 exception inside the first range FOR loop. The message says that you’ve attempted
to access a subscript beyond the count of elements. The exception means that subscript 3 is
unavailable. It does not exist. While you defined the varray as three elements in size, you initialized
it as only two elements in size. Therefore, the variable has only two valid subscripts, 1 and 2.

If you encountered the error, you might check the Oracle 11g documentation. You would
find that there is a Collection API EXTEND method for collections and that it is overloaded. The
Collections API requires us to initialize a row and then assign a value.

You add a row using the Collection API EXTEND method without an actual parameter or with
a single actual parameter. If you use the single parameter, it is the number of elements to initialize.
It cannot exceed the difference between the number of possible and actual elements defined by
the varray. You will read more on using these methods in the section “Oracle 11g Collection API”
at the end of this chapter.

The following program illustrates initialization with zero rows in the declaration section.
Then, it demonstrates dynamic initialization and assignment in the execution section:

–– This is in create_varray2.sql on the publisher's web site.
DECLARE
 –– Define a varray of integer with 3 rows.
 TYPE integer_varray IS VARRAY(3) OF INTEGER;

 –– Declare an array initialized as a no-element collection.
 varray_integer INTEGER_VARRAY := integer_varray();
BEGIN
 -- Allocate space as you increment the index.
 FOR i IN 1..3 LOOP
 varray_integer.EXTEND; -- Allocates space in the collection.
 varray_integer(i) := 10 + i; -- Assigns a value to the indexed value.
 END LOOP;

 –– Print initialized array.

Chapter 7: Collections 215

 dbms_output.put_line('Varray initialized as values.');
 dbms_output.put_line('––––--------------––––––––––-');
 FOR i IN 1..3 LOOP
 dbms_output.put ('Integer Varray ['||i||'] ');
 dbms_output.put_line('['||varray_integer(i)||']');
 END LOOP;
END;
/

Like the earlier example, this program defines a local collection type. The difference is that
this program does not allocate space and populate nulls during the declaration of the variable. It
actually creates a no-element collection. You must allot space with the EXTEND method of the
Collection API before you can add an element to this type of collection. This is what’s done inside
the range FOR loop.

The output from the program is

Varray initialized as values.
--------------––––––––––––––-
Integer Varray [1] [11]
Integer Varray [2] [12]
Integer Varray [3] [13]

You now have the fundamentals to build varray structures within PL/SQL program units. The
power and management utilities of the collection methods will enhance your ability to use these.
While this section has touched on the Collection API methods to illustrate initialization issues,
they are covered in depth later in the chapter. By working through the examples there, you will be
able to see how you can apply these methods across collection types.

Defining and Using Varrays as Object Types in SQL
The syntax to define an object type of varray in the database is

CREATE OR REPLACE TYPE type_name AS {VARRAY | VARYING ARRAY} (size_limit)
OF element_type [NOT NULL];

As discussed, the type name is often a string followed by an underscore and the word varray.
Many programmers and configuration management people find this a useful pattern to improve
code readability. It is also the convention used in the chapter for PL/SQL structure and object types.

As with a PL/SQL type structure, either VARRAY or VARYING ARRAY syntax may be used.
The former is much more common. The size limit is a required value. It is a positive integer, the
maximum number of elements in the varray. The element type may be any Oracle 11g datatype
or a user-defined datatype. Allowing null values in varrays is the default. If null values should be
disallowed, you must exclude them with the NOT NULL clause.

The following creates a user-defined object type of varray with a limit of three elements:

–– This is in create_varray3.sql on the publisher's web site.
CREATE OR REPLACE TYPE integer_varray AS VARRAY(3) OF INTEGER;
/

The following anonymous-block PL/SQL program then uses the varray object type by
declaring and initializing a variable based on the SQL datatype:

–– This is in create_varray3.sql on the publisher's web site.
DECLARE

216 Oracle Database 11g PL/SQL Programming

 varray_integer INTEGER_VARRAY := integer_varray(NULL,NULL,NULL);
BEGIN
 -- Assign values to replace the null values.
 FOR i IN 1..3 LOOP
 varray_integer(i) := 10 + i;
 END LOOP;

 -- Print the initialized values.
 dbms_output.put_line('Varray initialized as values.');
 dbms_output.put_line('––––––––––––––---------------');
 FOR i IN 1..3 LOOP
 dbms_output.put ('Integer Varray ['||i||'] ');
 dbms_output.put_line('['||varray_integer(i)||']');
 END LOOP;
END;
/

The example is a mirror of the prior program except for the fact that the variable is now a SQL
user-defined collection datatype. It prints the following output:

Varray initialized as values.

Integer Varray [1] [11]
Integer Varray [2] [12]
Integer Varray [3] [13]

The benefit of defining the varray object type is that it may be referenced from any programs
that have permission to use it, whereas a PL/SQL varray type structure is limited to the program
unit. Program units may be anonymous-block programs like the example or stored procedures or
packages in the database. Only the latter enables reference by other PL/SQL programs that have
permissions to the package. Please refer to Chapter 9 for details on creating and using packages.

All the varrays to this point leverage the default behavior that allows null values. It is always
a bit clearer to start with the default behavior. After you master the basic syntax and default for
defining, declaring, and initializing varrays, there is a question that needs to be resolved: When,
why, and how do you allow or disallow null rows?

This is a good question. In the small example programs in the book, it seems that it may not
matter too much. In fact, it does matter a great deal. Varrays are the closest structure related to
standard programming language arrays. Arrays are structures that require attentive management.
As a rule of thumb, arrays should always be dense. Dense means that there should not be any
gaps in the sequencing of index values. It also means you should not have gaps in data. You
should not allow nulls when you want a varray to act like a standard array structure.

Allowing nulls in varrays ensures that you may encounter them in the data stream. Oracle 11g
does not allow you to create gaps in index values. If you do not want to write a host of error-handling
routines for arrays with missing data, you should consider overriding the default behavior. Disallow
null values in varrays to simplify data access and error handling.

You will now learn how to disallow null values in varrays. The main impact of doing so is
felt when you initialize them. For example, if you redefined the varray object type used in the
preceding program to disallow null values, the program would fail. You raise a PLS-00567
exception because you’re trying to pass a null to a not-null-constrained column.

Chapter 7: Collections 217

A problem with programming books is that concepts need to be illustrated with an economy
of space. To do so, they are limited to small, workable examples. Small workable arrays seldom
illustrate the real world and the high demands placed on these structures.

When you use varrays as arrays, it will be to do large transaction processing in memory
because the I/O costs are too high. You will define varrays that contain hundreds of elements.
Some may be dynamically defined by counting rows in a table before being built as dynamic
structures.

When you initialize varrays that contain 100 percent of the data, doing so is straightforward
because the constructor can do that. However, when you initialize varrays that contain less than
all the data, adding elements requires additional programming.

You should create a SQL collection type that disallows null values for the next example. The
following builds the required datatype:

–– This is in create_varray4.sql on the publisher's web site.
CREATE OR REPLACE TYPE integer_varray
 AS VARRAY(100) OF INTEGER NOT NULL;
/

The following example allocates the 100 possible records. It does so without initializing the
data as null values by leveraging the LIMIT method of the Collection API. You will find the
Collection API covered later in the chapter.

–– This is in create_varray4.sql on the publisher's web site.
DECLARE
 varray_integer INTEGER_VARRAY := integer_varray();
BEGIN
 FOR i IN 1..varray_integer.LIMIT LOOP
 varray_integer.EXTEND;
 END LOOP;
 dbms_output.put ('Integer Varray Initialized ');
 dbms_output.put_line('['||varray_integer.COUNT||']');
END;
/

This program creates a varray collection by allocating space without explicitly assigning null
values. However, when you read the elements in the varray they are treated as null values. It prints
the following:

Integer Varray Initialized [100]

You have developed skills with using varrray object types. The next section will use those
varray object types to define tables that use them as column datatypes.

Defining and Using Varrays as Column Datatypes in Tables
The power of varrays is not limited to procedural programming. Varrays provide Oracle 8 through
Oracle 11g with unique capabilities for representing data. This is why Oracle’s database became
known as an object relational database management system (ORDBMS). It is a standard that many
have moved to adopt.

Relational databases work on a principal of normalization. Normalization is the process of
grouping related data into sets that are unique. It relies on two basic premises. One is that data may

218 Oracle Database 11g PL/SQL Programming

be positioned by semantic evaluation into third normal form or higher. Another is that data
may be positioned by domain key normal form. For the purposes of the discussion on Oracle 11g
collections, this book advocates at a minimum that each table meets third normal form, which means

Tables should include a primary key that uniquely identifies each row.

Tables should not contain any multipart columns, like collections in comma-delimited
strings.

Tables should not contain any transitive dependencies, which means you’ve designed a
single table where you should have at least another table for each transitive dependency.

A transitive dependency means that columns of data rely on one or more columns before they
rely on the primary key. This type of dependency means that you can put two subjects (domains)
into a table and potentially create deletion anomalies. The simple rule of thumb is to design and
build tables that contain a single subject, have a unique key, and place all data in a single row.

The book uses a surrogate key as the primary key. A surrogate key is an artificial key, that is, a
key or column that it is not part of the data in the row. The alternative is a natural key, which is a
column or set of columns that uniquely identifies every row in a table. Copies of the primary key
are placed in columns of related tables as foreign key values. Joins between tables use the values
in the primary and foreign keys to match rows in SQL statements.

The benefit of using a surrogate key is that an evolving understanding of the table may change
the column or columns that uniquely define a natural key. When a natural key evolves, it changes
the owning table and any related tables that contain a natural foreign key. It also changes every
SQL statement join between that table and other tables. A surrogate key avoids this maintenance
nightmare because the only thing you’ll need to change is the table’s unique index, which should
contain the surrogate key first, followed by all columns of the natural key.

■

■

■

Multivalued Columns
Many database modeling books say you should absolutely never have any multivalued
columns. Multivalued columns contain a collection of like things. In a purely relational
model, this was true because they didn’t support collection or object types as base SQL
types. Oracle 11g does support these types, and so have prior releases.

Technically, an ID-dependent relationship requires that dependent tables hold only the
primary key of the determinant table. This means you can only have a one-to-one binary
relationship for ID-dependent tables, and not have a one-to-many binary relationship. The
work-around has been to build a composite key in the ID-dependent table by using the
inherited primary key and another column that defines uniqueness for the related rows in
the relationship. This added column creates a function dependency, which means there is a
filter when you go from the determinant table to the dependent table. The filter moving the
other way, from the data to the key, is a transitive dependency. This type of design violates
the definition of third normal form.

Defining collection columns solves this problem because the index value acts as the
filtering column, and the column’s identity is preserved inside the same row with the
determinant record. Multivalued columns are natural solutions in a relational model when
you can store them as collection types because they are one thing in the context of a row—
a collection of like things.

Chapter 7: Collections 219

The UML static class diagram in Figure 7-3 represents the data model for this chapter. UML
static class diagrams replace traditional Entity Relation Diagrams (ERDs). Most traditional ERD
diagrams use an information engineering model, colloquially called crow’s feet. An IE model
would have the crow’s foot on the addresses side of the relationship.

The drawing presents three tables that support code in this chapter but do not directly fit
within the video store example. You can download this code from the publisher’s web site as
given in the Introduction to this book.

The strings datatype is a collection of VARCHAR2 values. There are two typical alternatives
to putting the data into a collection column. You can assume that customers in the data model
will never have more than two street addresses, and then create two columns for street address,
labeled street_address1 and street_address2. This is a form of denormalization.
Alternatively, you can adhere to normalization and build a separate table for street addresses.

The ability to include the list in the base table reduces the complexity of physical implementation.
It eliminates the need to join the base table and the subordinate table. This changes because the
latter becomes a list within a row of the base table. This is actually a solid way to implement
what’s known as an ID-dependent relationship that supports a one-to-many binary relationship.

Defining Varrays in Database Tables
The create_addressbook.sql script changes the table definition to the new model. The
following varray object type definition is provided, which supports globalization by using a
Unicode standard.

–– This is in create_addressbook.sql on the publisher's web site.
CREATE OR REPLACE TYPE strings
 AS VARRAY(3) OF VARCHAR2(30 CHAR);
/

FIGURE 7-3 UML static class diagram (ERD modeling in UML)

220 Oracle Database 11g PL/SQL Programming

NOTE
If this type doesn’t replace the earlier one of the same name in
Chapter 6, you’ll raise an ORA-22913 error when you build the
addresses table. The error code means you don’t have a correct
definition for the datatype. You should drop and re-create the correct
type.

After you create the object type, the addresses table is redefined to conform to the new
UML static class diagram. As you can see, the diagram implements a varray of a known database
catalog type. The table also maintains referential integrity through database constraints. This was
also done in the base case.

–– This is in create_addressbook.sql on the publisher's web site.
CREATE TABLE individuals
(individual_id INTEGER NOT NULL
, first_name VARCHAR2(30 CHAR) NOT NULL
, middle_name VARCHAR2(30 CHAR)
, last_name VARCHAR2(30 CHAR) NOT NULL
, title VARCHAR2(10 CHAR)
, CONSTRAINT indiv_pk PRIMARY KEY(individual_id));

CREATE TABLE addresses
(address_id INTEGER NOT NULL
, individual_id INTEGER NOT NULL
, street_address STRINGS NOT NULL
, city VARCHAR2(20 CHAR) NOT NULL
, state VARCHAR2(20 CHAR) NOT NULL
, postal_code VARCHAR2(20 CHAR) NOT NULL
, country_code VARCHAR2(10 CHAR) NOT NULL
, CONSTRAINT addr_pk PRIMARY KEY(address_id)
, CONSTRAINT addr_indiv_fk FOREIGN KEY(individual_id)
 REFERENCES individuals (individual_id));

You will notice that the street_address column uses the strings collection type. The
varray is a single-dimensioned array of three variable-length strings. The variable-length strings
are defined as noted to support Unicode.

Using Varrays in Database Tables
After creating a table with a column of a varray datatype, you need to know how to use it. Using
it requires understanding data manipulation language (DML) access methods to varrays. Varrays
present no unique conditions for deleting, since deletion is at the row level. However, there are
substantive differences when it comes to using insert and update statements.

NOTE
DML access involves inserting, updating, and deleting data
from tables.

Insert statements have one type of access. It is an all-or-nothing approach to the datatype.
Insert statements allocate space necessary to the construction of the varray. For example, in the

Chapter 7: Collections 221

three-element array for street_address, it is possible to insert one to three rows of data.
When the insert is made to the row, an instance of the collection type is built with the number of
rows used.

–– This is in varray_dml1.sql on the publisher's web site.
INSERT INTO individuals VALUES
(individuals_s1.nextval, 'John', 'Sidney', 'McCain', 'Mr.');

INSERT INTO addresses VALUES
(1
, individuals_s1.currval
, strings
 ('Office of Senator McCain'
 ,'450 West Paseo Redondo'
 ,'Suite 200')
,'Tucson'
,'AZ'
,'85701'
,'USA');

The example program inserts a full set of three rows into the varray datatype. It is important to
note that in the values clause, the varray datatype name is used as the constructor name. The
constructor uses the syntax previously presented with a list of comma-delimited actual parameters
in a set of parentheses.

If you were to query the street_address column from the table, you would see a return
set of the constructor with its actual parameters. This is illustrated by running a query like the
following:

–– This is in varray_dml1.sql on the publisher's web site.
SELECT street_address
FROM addresses;

The shortened output from the query is noted.

–– This is found running varray_dml1.sql from the publisher's web site.
STREET_ADDRESS
–––––––––––––––––––––––––––––-
ADDRESS_VARRAY('Office of Senator McCain','450 West Paseo ...

This type of output is not very useful. It is also very different than what you might expect. Using
data query language (DQL) to select a result from a varray datatype requires specialized syntax.
You need to define a nested table collection structure to actually access the varray data
meaningfully. If you are unfamiliar with the concept of nested tables, you may wish to fast
forward a few pages to the “Nested Tables” section.

NOTE
DQL is a new acronym to some. Select statements were previously
classified as DML statements because they can lock rows with
optional clauses.

222 Oracle Database 11g PL/SQL Programming

The following example illustrates how you build a nested table collection for the immediate
problem at hand. Later in the chapter you will cover this in more detail when studying nested
tables. Here, it illustrates a rather unintuitive syntax for querying the data.

–– This is in varray_dml1.sql on the publisher's web site.
–– Create a PL/SQL table datatype.
CREATE OR REPLACE TYPE varray_nested_table IS TABLE OF VARCHAR2(30 CHAR);
/

–– Use SQL*Plus to format the output.
COL column_value FORMAT A30

–– Print formatted elements from aggregate table.
SELECT nested.column_value
FROM addresses a
, TABLE(CAST(a.street_address AS VARRAY_NESTED_TABLE)) nested
WHERE address_id = 1;

The TABLE keyword can be interchanged with the older THE keyword, but Oracle recommends
you use TABLE. In the example program, a nested table collection is built to mirror the element
definition for the varray. Nested tables are not upwardly bound as are varrays but can be used to
temporarily hold the contents of varrays. Using a nested table is the only way to meaningfully
display the contents of a varray using a select statement. The CAST function allows you to convert
the varray to a nested table, which can then be managed as an aggregate table.

The formatted output from the query is

–– This is found running varray_dml1.sql from the publisher's web site.
COLUMN_VALUE
–––––––––––––––
Office of Senator McCain
450 West Paseo Redondo
Suite 200

You must ensure that your varray is a mirror of your nested table structure. If they are not datatype
mirrors, you will encounter an ORA-00932 error. The error complains that the source for the
CAST is the wrong type to convert to a nested table.

You can also update varray and nested table columns as shown in this statement:

–– This is in varray_dml2.sql on the publisher's web site.
UPDATE addresses
SET street_address =
 strings('Office of Senator McCain'
 ,'2400 E. Arizona Biltmore Cir.'
 ,'Suite 1150')
WHERE address_id = 1;

The update statement assigns the value of a newly constructed strings collection type. Using
the same complex select statement to query the new data, you will see the following output:

–– This is found running varray_dml2.sql from the publisher's web site.
COLUMN_VALUE
–––––––––––––––

Chapter 7: Collections 223

Office of Senator McCain
2400 E. Arizona Biltmore Cir.
Suite 1150

You cannot update a portion of a varray column by any direct or indirect method in SQL. You
must update portions of varray collections by using PL/SQL programs. The following anonymous-
block program enables the update of first element of the varray collection:

–– This is in varray_dml3.sql on the publisher's web site.
DECLARE
 TYPE address_type IS RECORD
 (address_id INTEGER
 , individual_id INTEGER
 , street_address STRINGS
 , city VARCHAR2(20 CHAR)
 , state VARCHAR2(20 CHAR)
 , postal_code VARCHAR2(20 CHAR)
 , country_code VARCHAR2(10 CHAR));
 address ADDRESS_TYPE;

 CURSOR get_street_address
 (address_id_in INTEGER) IS
 SELECT *
 FROM addresses
 WHERE address_id = address_id_in;
BEGIN
 -- Access the cursor.
 OPEN get_street_address(1);
 FETCH get_street_address INTO address;
 CLOSE get_street_address;

 –– Reset the first element of the varray type variable.
 address.street_address(1) := 'Office of Senator John McCain';

 –– Update the entire varray column value.
 UPDATE addresses
 SET street_address = address.street_address
 WHERE address_id = 1;
END;
/

The example program reads the full row and nested varray. It then updates only the first element
of the collection, and then rewrites the collection to the same row.

You can see that it has only changed the first element of the varray collection column. This is
done using our nested table syntax, which was discussed in a prior example. The results are in the
following output file:

–– This is found running varray_dml3.sql from the publisher's web site.
COLUMN_VALUE
–––––––––––––––
Office of Senator John McCain
2400 E. Arizona Biltmore Cir.
Suite 1150

224 Oracle Database 11g PL/SQL Programming

Another update scenario remains for you to examine. This example shows how a varray
collection column may be grown from one element to two or more elements. Adding elements to
a varray collection column requires PL/SQL. This is like the case of updating a single element of
the varray collection column. You should recall from the prior discussion that an insert statement
constructs a varray collection column.

The insert statement for this example inserts only one element into the street_address
column, initializing only one element in the varray collection for the row. The following example
shows the insert statement:

–– This is in varray_dml4.sql on the publisher's web site.
INSERT INTO individuals VALUES
(individuals_s1.nextval, 'John', 'Sidney', 'McCain', 'Mr.');

INSERT INTO addresses VALUES
(2
, individuals_s1.currval
, strings('Office of Senator Kennedy')
, 'Boston'
, 'MA'
, '02203'
, 'USA');

You can use the following solution to add the missing elements to the varray collection column:

–– This is in varray_dml4.sql on the publisher's web site.
DECLARE
 TYPE address_type IS RECORD
 (address_id INTEGER
 , individual_id INTEGER
 , street_address STRINGS
 , city VARCHAR2(20 CHAR)
 , state VARCHAR2(20 CHAR)
 , postal_code VARCHAR2(20 CHAR)
 , country_code VARCHAR2(10 CHAR));
 address ADDRESS_TYPE;

 –– Define a cursor to return the %ROWTYPE value.
 CURSOR get_street_address
 (address_id_in INTEGER) IS
 SELECT *
 FROM addresses
 WHERE address_id = address_id_in;
BEGIN
 -- Access the cursor.
 OPEN get_street_address(2);
 FETCH get_street_address INTO address;
 CLOSE get_street_address;

 –– Add elements.
 address.street_address.EXTEND(2);
 address.street_address(2) := 'JFK Building';
 address.street_address(3) := 'Suite 2400';

Chapter 7: Collections 225

 –– Update the varray column value.
 UPDATE addresses
 SET street_address = address.street_address
 WHERE address_id = 2;
END;
/

The example program reads the full row and nested varray. It then updates only the second and
third elements of the nested collection.

You can see that the column now has three elements, using our nested table syntax again. The
following output file shows the results:

–– This is found running varray_dml4.sql from the publisher's web site.
COLUMN_VALUE
–––––––––––––––
Office of Senator Kennedy
JFK Building
Suite 2400

You have now covered the features of varrays in Oracle 11g. You have seen that varrays are
highly structured collection types. The advantages and disadvantages of varrays have been covered.
Moreover, you will now know when and how to use this collection type.

The discussion on varrays has set a foundation for moving to the next collection type, nested
tables. You saw in the select statements that varrays depend on nested table structures in some
cases. While varrays have a place in database design, they do present challenges that can be
avoided by using unbounded nested tables. You may conclude that varrays are better suited to
PL/SQL processing than they are to defining tables.

Nested Tables
Like varrays, nested tables are single-dimensional structures of Oracle 11g SQL or PL/SQL datatypes.
You can use them table, record, and object definitions and access them in SQL and PL/SQL. You
can also use nested tables in table, record, and object definitions. They are accessible in both
SQL and PL/SQL. Unlike varrays, they differ from traditional arrays in programming languages
such as Java, C, C++, and C#. The difference is that they have no initial maximum size and
therefore their size is unconstrained except for available memory in the SGA. The closest
corollaries to standard programming languages are bags and sets.

Defining Nested Tables as Object Types as PL/SQL Program Constructs
The syntax to define a PL/SQL nested table collection type is

TYPE type_name IS TABLE OF element_type [NOT NULL];

As discussed, the type name is often a string followed by an underscore and the word table. Some
programming traditions prefer the suffix of tab to that of table. It does not matter what you choose
to do. It does matter that you do it consistently.

The following example program demonstrates defining, declaring, and initializing a nested
table of cards in a PL/SQL program unit. The cards will be limited to a single suit. They will be
defined as variable-length strings:

–– This is in create_nestedtable1.sql on the publisher's web site.
DECLARE
 –– Define a nested table type.

226 Oracle Database 11g PL/SQL Programming

 TYPE card_table IS TABLE OF VARCHAR2(5 CHAR);

 -- Declare a nested table with null values.
 cards CARD_TABLE := card_table(NULL,NULL,NULL);
BEGIN

 -- Print initialized null values.
 dbms_output.put_line('Nested table initialized as null values.');
 dbms_output.put_line('--------------------––––––––––––––––––––');
 FOR i IN 1..3 LOOP
 dbms_output.put ('Cards Varray ['||i||'] ');
 dbms_output.put_line('['||cards(i)||']');
 END LOOP;

 –– Assign values to subscripted members of the nested table.
 cards(1) := 'Ace';
 cards(2) := 'Two';
 cards(3) := 'Three';

 –– Print initialized null values.
 dbms_output.put (CHR(10)); -- Visual line break.
 dbms_output.put_line('Nested table initialized as 11, 12 and 13.');
 dbms_output.put_line('---------------------–––––––––––––––––––––');
 FOR i IN 1..3 LOOP
 dbms_output.put_line('Cards ['||i||'] '||'['||cards(i)||']');
 END LOOP;
END;
/

The example program defines a local nested table collection, declares an initialized collection
variable, prints the null value collection elements, assigns values to the elements, and reprints the
collection element values. Here is the output from create_nestedtable1.sql program:

–– This is found running create_nestedtable1.sql from the publisher's web site.
Nested table initialized as nulls.
–––––––––––––––––
Cards Varray [1] []
Cards Varray [2] []
Cards Varray [3] []

Nested table initialized as Ace, Two and Three.
–––––––––––––––––––––––-
Cards [1] [Ace]
Cards [2] [Two]
Cards [3] [Three]

If you fail to initialize the collection, you raise an ORA-06531 exception, which tells you a
collection is not initialized. When you initialize a varray, you set the actual number of initialized
rows. You can use the Collection API COUNT method to see how many rows have been initialized
so that you don’t read past the number of elements. Nested tables act like varrays when you
attempt to access an element before allocating it space and an index value, and they raise an
ORA-06533 exception. The exception means that subscript is unavailable because it does not

Chapter 7: Collections 227

exist. When you defined the nested table as three rows in size, you set its size. Therefore, the
variable has three valid subscripts, 1, 2, and 3.

If you encountered the error, you might check the Oracle 11g documentation. You would find
that there is the Collection API EXTEND method to allocate space, and that it is overloaded. It is
also covered later in this chapter, in the section “Collection API.”

As discussed in the varrays section, use of the Collection API EXTEND(n,i) method to insert
a row beyond the subscripted range will fail. It will raise the subscript beyond count error.

You add a row using the Collection API EXTEND method without an actual parameter or with
a single actual parameter. If you use the single parameter, it is the number of rows to initialize. It
cannot exceed the difference between the number of possible and actual rows for the varray.
More information on using these methods is in the section “Collection API.”

The following program illustrates initialization with zero rows in the declaration section. Then
it demonstrates dynamic initialization and assignment in the execution section.

–– This is in create_nestedtable2.sql on the publisher's web site.
DECLARE
 –– Define a nested table.
 TYPE card_suit IS TABLE OF VARCHAR2(5 CHAR);

 –– Declare a no-element collection.
 cards CARD_SUIT := card_suit();
BEGIN
 –– Allocate space as you increment the index.
 FOR i IN 1..3 LOOP
 cards.EXTEND;
 IF i = 1 THEN
 cards(i) := 'Ace';
 ELSIF i = 2 THEN
 cards(i) := 'Two';
 ELSIF i = 3 THEN
 cards(i) := 'Three';
 END IF;
 END LOOP;

 –– Print initialized collection.
 dbms_output.put_line('Nested table initialized as Ace, Two and Three.');
 dbms_output.put_line('--------------------------––––––––––––––––––––-');
 FOR i IN 1..3 LOOP
 dbms_output.put ('Cards ['||i||'] ');
 dbms_output.put_line('['||cards(i)||']');
 END LOOP;
END;
/

The example program defines a local nested table collection and declares a no-element
collection. Inside the execution block, the program initializes and prints the element values.

The output is shown here:

–– This is found running create_nestedtable2.sql from the publisher's web site.
Nested table initialized as Ace, Two and Three.
–––––––––––––––––––––––-
Cards [1] [Ace]

228 Oracle Database 11g PL/SQL Programming

Cards [2] [Two]
Cards [3] [Three]

You now have the fundamentals to build nested table structures within PL/SQL program units. The
power and management utilities of the collection methods will enhance your ability to use these.
This section has further touched on the same Collection API methods used in the varray discussion.
They help illustrate initialization issues and are covered in depth later in the chapter. By using
these in simple examples, you will be able to see opportunities to apply the methods across
collection types.

Defining and Using Nested Tables as Object Types in PL/SQL
The syntax to define a SQL collection type of nested tables in the database is

CREATE OR REPLACE TYPE type_name
 AS TABLE OF element_type [NOT NULL];

The type name is often a string followed by an underscore and the word table. As discussed, many
programmers and configuration management people find it a useful pattern to improve code
readability. It is also the convention used in the chapter for PL/SQL structure and object types.

The element type may be any Oracle 11g SQL datatype, user-defined subtype, or object type.
Allowing null values in nested tables is the default. If null values should be disallowed, it must be
specified when they are defined.

The following example program demonstrates defining a nested table collection type. The first
step creates a SQL nested table collection type in the schema:

-- This is in create_nestedtable3.sql on the publisher's web site.
CREATE OR REPLACE TYPE card_table
 AS TABLE OF VARCHAR2(5 CHAR);
/

The anonymous-block PL/SQL program then uses it by declaring and initializing a variable.

-- This is in create_nestedtable3.sql on the publisher's web site.
DECLARE
 -- Declare a nested table with null values.
 cards CARD_TABLE := card_table(NULL,NULL,NULL);
BEGIN
 –– Print initialized null values.
 dbms_output.put_line('Nested table initialized as nulls.');
 dbms_output.put_line('--------------––––––––––––––––––––');
 FOR i IN 1..3 LOOP
 dbms_output.put ('Cards Varray ['||i||'] ');
 dbms_output.put_line('['||cards(i)||']');
 END LOOP;

 –– Assign values to subscripted members of the table.
 cards(1) := 'Ace';
 cards(2) := 'Two';
 cards(3) := 'Three';

 –– Print initialized values.
 dbms_output.put (CHR(10)); -- Visual line break.

Chapter 7: Collections 229

 dbms_output.put_line('Nested table initialized as Ace, Two and Three.');
 dbms_output.put_line('-----------------------–––––––––––––––––––––––-');
 FOR i IN 1..3 LOOP
 dbms_output.put_line('Cards ['||i||'] '||'['||cards(i)||']');
 END LOOP;
END;
/

The example program declares an initialized collection variable, prints the null value
collection elements, assigns values to the elements, and reprints the collection element values.
Here is the output from the create_nestedtable1.sql program:

–– This is found running create_nestedtable3.sql from the publisher's web site.
Nested table initialized as null values.
––––––––––––––––––––
Cards Varray [1] []
Cards Varray [2] []
Cards Varray [3] []

Nested table initialized as Ace, Two and Three.
–––––––––––––––––––––––-
Cards [1] [Ace]
Cards [2] [Two]
Cards [3] [Three]

The benefit of defining the nested table object type is that it may be referenced from any
programs that have permission to use it, whereas a PL/SQL nested table type structure is limited
to the program unit. Program units may be anonymous-block programs like the example or stored
procedures or packages in the database. Only the latter enables reference by other PL/SQL
programs that have permissions to the package. Please refer to Chapter 9 for details on creating
and using packages.

The nested table type uses the default behavior that allows null values. After you master the
basic syntax and defaults for defining, declaring, and initializing varrays, there is a question that
needs to be resolved. When, why, and how do you allow or disallow null rows?

This is a good question and one that you initially covered in the varray section. In these small
example programs, it seems that it may not matter too much, though it will matter when you
implement nested table collections. Nested tables start as dense arrays, like varrays. However, it is
possible to remove elements from nested tables. As elements are removed, nested tables become
sparse, meaning that there are gaps in the sequencing of index values.

While index sequencing has gaps, logically there should not be any data gaps. If your
application design allows nulls in nested tables, you should carefully review it. You should
consider why you want to allow nulls in a nested table, because there should never be data gaps
in nested tables.

Allowing nulls in nested tables guarantees you will encounter them in the data stream.
Combined with index sequence gaps, allowing null values will increase the amount of required
error handling. You should consider overriding the default behavior and disallowing null values
in nested tables. Essentially, nested tables and varrays are ill-suited to fill the traditional
programming role of lists or maps. If you need the functionality of a list or map, you should
use an associative array.

You will now learn how to disallow null values in nested tables. The main impact of disallowing
them comes when initializing them. This is a mirror of the issue you saw in varrays earlier. For

230 Oracle Database 11g PL/SQL Programming

example, if you redefined the nested table object type used in the previous program to disallow
null values, the program would fail. As when using the varray, you raise a PLS-00567 exception
because you’re trying to pass a null to a NOT NULL–constrained column.

When you use nested tables as bags or sets, you will define structures that contain hundreds
of rows. Some may be dynamically defined by counting rows in a table before being built as
dynamic structures.

When you initialize nested tables that contain 100 percent of the data, doing so is straightforward
because the constructor can do that. However, when you initialize nested tables that contain less
than all the data, adding rows will require some additional programming techniques. These are
more or less equivalent to what you worked through with varrays.

The following example allocates a full playing deck of cards. To do so, you will work with
varrays that contain the value sets. You will use varrays because the problem is a natural fit to
traditional structured arrays. There are thirteen cards in a suit and there are four suits. We will see
the use of these structures as in the following program along with nested loops. If you are not
comfortable with loop structures, you can review them in Chapter 4.

The first step involves creating three SQL collection types:

–– This is in create_nestedtable4.sql on the publisher's web site.
CREATE OR REPLACE TYPE card_unit_varray AS VARRAY(13) OF VARCHAR2(5 CHAR);
/
CREATE OR REPLACE TYPE card_suit_varray AS VARRAY(4) OF VARCHAR2(8 CHAR);
/
CREATE OR REPLACE TYPE card_deck_table AS TABLE OF VARCHAR2(17 CHAR);
/

Then, you can use these in the following anonymous block:

–– This is in create_nestedtable4.sql on the publisher's web site.
DECLARE
 –– Declare counter.
 counter INTEGER := 0;

 –– Declare and initialize a card suit and unit collections.
 suits CARD_SUIT_VARRAY :=
 card_suit_varray('Clubs','Diamonds','Hearts','Spades');
 units CARD_UNIT_VARRAY :=
 card_unit_varray('Ace','Two','Three','Four','Five','Six','Seven'
 ,'Eight','Nine','Ten','Jack','Queen','King');

 –– Declare and initialize a null nested table.
 deck CARD_DECK_TABLE := card_deck_table();
BEGIN
 –– Loop through the four suits, then thirteen cards.
 FOR i IN 1..suits.COUNT LOOP
 FOR j IN 1..units.COUNT LOOP
 counter := counter + 1;
 deck.EXTEND;
 deck(counter) := units(j)||' of '||suits(i);
 END LOOP;
 END LOOP;

Chapter 7: Collections 231

 –– Print initialized values.
 dbms_output.put_line('Deck of cards by suit.');
 dbms_output.put_line('–––––-----------––––––');
 FOR i IN 1..counter LOOP
 dbms_output.put_line('['||deck(i)||']');
 END LOOP;
END;
/

The example program builds two varrays, which are used to build a deck of cards. Dynamic
space allocation occurs for the nested table, while the varrays are statically allocated.

The redacted output is shown here:

–– This is found running create_nestedtable4.sql from the publisher's web site.

Deck of cards by suit.
–––––––––––
[Ace of Clubs]
[Two of Clubs]
[Three of Clubs]
...
The remainder is redacted to conserve space.
...
[Jack of Spades]
[Queen of Spades]
[King of Spades]

You have developed skills using nested table collections as object types. The next section will
use nested table collections and define tables that use them as column datatypes.

Defining and Using Nested Tables as Column Datatypes in Tables
After creating a table with a column of a nested table datatype, you need to know how to use
it. Using it requires understanding DML access methods and how they work with nested tables.
Nested tables, like varrays, present no unique conditions for deleting, since deletion is at the
row level. However, there are substantive differences when it comes to using insert and update
statements.

The differences are less than those encountered with varrays on updates. Nested tables
provide a more intuitive access set for DML. Since the ERD represents street_address as
a list, there is no need to redefine it. A varray or nested table is an implementation of a list.

While DML is more intuitive, you do lose some flexibility on database constraints. When you
worked with varrays earlier in the chapter, you were able to define a collection column and set
the constraint to disallow null values. This was a new feature in Oracle 10g. Varrays are now
stored as inline structures, enabling a NOT NULL constraint. By contrast, nested tables as column
values do not let you use a NOT NULL constraint. This is true when you define the table type with
the default or override the default to disallow nulls. When you attempt to use a table type in a
table definition and set the column constraint to NOT NULL, it will raise an ORA-02331 error.

NOTE
If you use the oerr tool to check an ORA-02331 error, it will tell you
that it applies to varrays. This is no longer true.

232 Oracle Database 11g PL/SQL Programming

You can test the limitation on database constraints easily. Create a nested table datatype like
the following:

CREATE OR REPLACE TYPE address_table AS TABLE OF VARCHAR2(30 CHAR) NOT NULL;
/

You’ll see the following error raised if you run the script inserting null values in the column:

,street_address ADDRESS_TABLE NOT NULL
 *
ERROR at line 4:
ORA-02331: cannot create constraint on column of datatype Named Table Type

The table creation fails because the nested table type disallows using the NOT NULL constraint.
Nested tables are not constrainable by definition. You should consider this when you use a nested
table. You are storing a table that is only referenced through the parent table. Placing a NOT
NULL column constraint is inconsistent with a nested table type.

A NOT NULL constraint on a nested table column is equivalent to mandating a row be inserted
in the nested table before defining it. This is impossible. A NOT NULL constraint in this case acts
like a database referential integrity constraint and is therefore disallowed. NOT NULL constraints
for nested tables become application design considerations when inserting or updating rows.

After reading this section, you want to consider why you would use a varray in table
definitions. You will see that nested tables provide a more natural access method to elements
within DML update statements.

The create_addressbook2.sql script builds the environment for this section. You should
run it before attempting to use any of the following scripts.

Like varrays covered earlier, insert statements have one type of access. It is an all-or-nothing
approach to the datatype. Insert statements allocate space necessary to the construction of the
nested table. For example, in a nested table implementation of street_address, it is possible
to insert one to any number of rows of data. When the insert is made to the row, an instance of
the collection type is constructed with the number of rows chosen. As you see, the syntax to insert
a nested table is a mirror to that used for a varray. The single exception is the name of the collection
type used in the constructor.

–– This is found in nestedtable_dml1.sql on the publisher's web site.
INSERT INTO individuals VALUES
(individuals_s1.nextval, 'John', 'Sidney', 'McCain', 'Mr.');

INSERT INTO addresses VALUES
(addresses_s1.nextval
, individuals_s1.currval
, strings
 ('Office of Senator McCain'
 ,'450 West Paseo Redondo'
 ,'Suite 200')
,'Tucson'
,'AZ'
,'85701'
,'USA');

Chapter 7: Collections 233

The example program inserts a full set of three rows into the nested table datatype. It is important
to note that in the values clause, the nested table datatype name is used as the constructor name.
The constructor uses the syntax previously presented with a list of comma-delimited actual
parameters in a set of parentheses.

If you were to query the street_address column from the table, you would see a return
set of the constructor with its actual parameters. This is illustrated by running a query like the
following:

–– This is found in nestedtable_dml1.sql on the publisher's web site.
SELECT street_address
FROM addresses;

The shortened output from the query is noted.

–– This is found running nestedtable_dml1.sql from the publisher's web site.
STREET_ADDRESS
–––––––––––––––––––––––––––––-
ADDRESS_TABLE('Office of Senator McCain', '450 West Paseo ...

This type of output is not very useful. It is also very different than what you might expect.
Using data query language (DQL) to select a result from a nested table datatype requires
specialized syntax. Fortunately, unlike when you implemented the varray by casting to a nested
table, you can directly access nested tables in DQL.

The following example formats the output with SQL*Plus. It then selects the column values
from the nested table one row at a time. A bit more intuitive than the varray DQL covered, it is
still complex.

–– This is found in nestedtable_dml1.sql on the publisher's web site.
–– Use SQL*Plus to format the output.
COL column_value FORMAT A30

–– Print formatted elements from aggregate table.
SELECT nested.column_value
FROM addresses a
, TABLE(a.street_address) nested
WHERE address_id = 1;

The TABLE keyword translates the nested table into an aggregate table like a pipelined
function. The formatted output from the query is

–– This is found running nestedtable_dml1.sql from the publisher's web site.
COLUMN_VALUE
–––––––––––––––
Office of Senator McCain
450 West Paseo Redondo
Suite 200

The DQL to access the values in a nested table returns a row set. A problem with a row set is
merging the row set with other data in SQL. Since other elements returned in a normal selection
will have one occurrence per row, representing the data is difficult. You are better served reading
these inside PL/SQL blocks.

234 Oracle Database 11g PL/SQL Programming

PL/SQL helps you ease limitations. You will build a function to return a single variable-length
string with row breaks. If you need to review the details of building stored functions, please check
Chapter 6. Likewise, you should check the Collection API later in this chapter for details on the
COUNT method.

The following function takes the row returns and creates a single variable-length string. You
will find it a useful example, especially in the case of building mailing addresses:

–– This is found in nestedtable_dml1.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION many_to_one
(street_address_in ADDRESS_TABLE) RETURN VARCHAR2 IS
 retval VARCHAR2(2000) := '';
BEGIN
 -- Read all elements in the nested table, and delimit with a line break.
 FOR i IN 1..street_address_in.COUNT LOOP
 retval := retval || street_address_in(i) || CHR(10);
 END LOOP;
 RETURN retval;
END many_to_one;
/

The function takes a nested table and translates it into a multiple-line string. Using SQL*Plus
to format the column, you can query the formatted string:

–– This is found in nestedtable_dml1.sql on the publisher's web site.
–– Use SQL*Plus to format the output.
COL address_label FORMAT A30

–– Print a mailing label.
SELECT i.first_name || ' '
|| i.middle_initial || ' '
|| i.last_name || CHR(10)
|| many_to_one(a.street_address)
|| city || ', '
|| state || ' '
|| postal_code address_label
FROM addresses a
, individuals i
WHERE a.individual_id = i.individual_id
AND i.individual_id = 1;

The formatted output from the query is

–– This is found in nestedtable_dml1.sql on the publisher's web site.
ADDRESS_LABEL
–––––––––––––––
John McCain
Office of Senator McCain
450 West Paseo Redondo
Suite 200
Tucson, AZ 85701

As you have seen earlier in the chapter, PL/SQL is the only way to update varrays unless
changing the entire content. This is not the case with nested tables. A key advantage of nested

Chapter 7: Collections 235

tables is that you can update individual row elements. These updates can be done directly in
DML update statements.

You use the following example program to replace the entire content of the street_address
nested table datatype:

–– This is found in nestedtable_dml2.sql on the publisher's web site.
UPDATE addresses
SET street_address =
 address_table('Office of Senator McCain'
 ,'2400 E. Arizona Biltmore Cir.'
 ,'Suite 1150')
WHERE address_id = 1;

The update statement assigns the value of a newly constructed address_table collection type.
It does so by constructing an instance of a nested table. This is done through a construction
process, where actual parameters are passed inside parentheses and delimited by commas.

Using the same complex select statement to query the new data, you will see the following
output:

–– This is found in nestedtable_dml2.sql on the publisher's web site.
COLUMN_VALUE
–––––––––––––––
Office of Senator McCain
2400 E. Arizona Biltmore Cir.
Suite 1150

You can update a portion of a nested table column directly in SQL. Alternatively, you may use
two approaches in PL/SQL. This is an improvement over the lack of direct update capability for
the varray column.

The following program will update the first row in the street_address nested table. It will
add the senator’s first name to the variable-length string:

–– This is found in nestedtable_dml3.sql on the publisher's web site.
UPDATE TABLE(SELECT street_address
 FROM addresses
 WHERE address_id = 1)
SET column_value = 'Office of Senator John McCain'
WHERE column_value = 'Office of Senator McCain';

The formatted output from the query is

–– This is found running nestedtable_dml3.sql from the publisher's web site.
COLUMN_VALUE
–––––––––––––––
Office of Senator John McCain
450 West Paseo Redondo
Suite 200

Alternatively, you can use PL/SQL to do the update. Two approaches you can choose from in
PL/SQL are

A direct update of a row in the nested table

An update of all the row contents for a nested table column

■

■

236 Oracle Database 11g PL/SQL Programming

The update of all row contents is a mirror to the approach used earlier for varrays. You should
check the example provided earlier in the chapter for that approach. Next you will see how to
update a row in a nested table column directly. The example uses dynamic SQL and bind variables.
Both are covered in Chapter 11.

–– This is found in nestedtable_dml3.sql on the publisher's web site.
DECLARE
 –– Define old and new values.
 new_value VARCHAR2(30 CHAR) := 'Office of Senator John McCain';
 old_value VARCHAR2(30 CHAR) := 'Office of Senator McCain';

 –– Build SQL statement to support bind variables.
 sql_statement VARCHAR2(100 CHAR)
 := 'UPDATE THE (SELECT street_address '
 || ' FROM addresses '
 || ' WHERE address_id = 21) '
 || 'SET column_value = :1 '
 || 'WHERE column_value = :2';
BEGIN
 –– Use dynamic SQL to run the update statement.
 EXECUTE IMMEDIATE sql_statement USING new_value, old_value;
END;
/

The program lets you use bind variables rather than substitution variables to create a dynamic
update statement. The USING clause supports IN, OUT, and IN OUT modes like the functions
and procedures covered in the prior chapter. The default is IN mode, which is as close as you can
come with an UPDATE statement to what you do when you want to explicitly pass parameters
into cursors.

NOTE
The bind variables are numerically numbered placeholders. Position-
specific variables or strings reference them with the USING clause.

The formatted output from the query is the same as shown in the last example. It is not
redisplayed to save space.

Updates can only be done for elements within a nested table. If you want to add an element
to a nested table column value, you must use PL/SQL. The following program shows you how to
add two rows of data.

The insert statement is the same except for the type definition to the one you used in the
varray update discussion. It inserts only one element into the street_address column,
initializing only one element in the nested table collection for the row. The following example
shows the insert statement:

–– This is found in nestedtable_dml4.sql on the publisher's web site.
INSERT INTO individuals VALUES
(individuals_s1.nextval, 'Edward', 'Moore', 'Kennedy', 'Mr.');

INSERT INTO addresses VALUES
(addresses_s1.nextval
, individuals_s1.currval
, address_table('Office of Senator Kennedy')

Chapter 7: Collections 237

, 'Boston'
, 'MA'
, '02203'
, 'USA');

You can use the following solution to add the missing elements to the nested table collection
column. You should note there is only one difference between a varray and nested table. That
difference is the datatype.

–– This is found in nestedtable_dml4.sql on the publisher's web site.
DECLARE
 TYPE address_type IS RECORD
 (address_id INTEGER
 , individual_id INTEGER
 , street_address ADDRESS_VARRAY
 , city VARCHAR2(20 CHAR)
 , state VARCHAR2(20 CHAR)
 , postal_code VARCHAR2(20 CHAR)
 , country_code VARCHAR2(10 CHAR));
 address ADDRESS_TYPE;

 –– Define a cursor to return the %ROWTYPE value.
 CURSOR get_street_address
 (address_id_in INTEGER) IS
 SELECT *
 FROM addresses
 WHERE address_id = address_id_in;
BEGIN
 -- Access the cursor.
 OPEN get_street_address(2);
 FETCH get_street_address INTO address;
 CLOSE get_street_address;

 –– Add elements.
 address.street_address.EXTEND(2);
 address.street_address(2) := 'JFK Building';
 address.street_address(3) := 'Suite 2400';

 –– Update the varray column value.
 UPDATE addresses
 SET street_address = address.street_address
 WHERE address_id = 2;
END;
/

The example program reads the full row and the nested table. It then updates only the second and
third elements of the nested collection.

The following output file shows the results:

–– This is found running nestedtable_dml4.sql from the publisher's web site.
COLUMN_VALUE
–––––––––––––––
Office of Senator Kennedy

238 Oracle Database 11g PL/SQL Programming

JFK Building
Suite 2400

You have now covered the features of nested tables in Oracle 11g. You have seen that nested
tables are structured collection types. The advantages and disadvantages of nested tables have
been covered and contrasted against varrays. Moreover, you will now know when and how to use
this collection type.

Associative Arrays
Associative arrays are single-dimensional structures of an Oracle 11g datatype or a user-defined
record/object type. As discussed at the beginning of the section, they were previously known as
PL/SQL tables. This section focuses on single-dimensional structures of the associative array.

Associative arrays cannot be used in tables. They may be used only as programming
structures. They can be accessed only in PL/SQL. They are like the other collection types and
different than arrays in the traditional sense of programming languages such as Java, C, C++, and
C#. They are close cousins to lists and maps. They do not have the capability of linked lists but
may be made to act that way through a user-defined programming interface.

It is important to note some key issues presented by associative arrays. These issues drive a
slightly different approach to illustrating their use. Associative arrays

Do not require initialization and have no constructor syntax. They do not need to
allocate space before assigning values, which eliminates using the Collection API
EXTEND method.

Can be indexed numerically up to and including Oracle 11g. In Oracle 11g, they can
also use unique variable-length strings.

Can use any integer as the index value, which means any negative, positive, or zero
whole number.

Are implicitly converted from equivalent %ROWTYPE, record type, and object type return
values to associative array structures.

Are the key to using the FORALL statement or BULK COLLECT clause, which enables
bulk transfers of records from a database table to a programming unit.

Require special treatment when using a character string as an index value in any
database using globalized settings, such as the NLS_COMP or NLS_SORT initialization
parameters.

TIP
Unique strings as indexes can encounter sorting differences when
the National Language Support (NLS) character set changes during
operation of the database.

You will start by seeing the expanded definition techniques provided in Oracle 11g. Then
examine their principal uses as PL/SQL programming structures.

Defining and Using Associative Arrays as PL/SQL Program Constructs
The syntax to define an associative array in PL/SQL has two possibilities. One is

■

■

■

■

■

■

Chapter 7: Collections 239

CREATE OR REPLACE TYPE type_name AS TABLE OF element_type [NOT NULL]
INDEX BY [PLS_INTEGER | BINARY_INTEGER | VARCHAR2(size)];

The same issues around enabling or disabling null values in nested tables apply to associative
arrays. As a rule, you should ensure that data in an array is not null. You can do that by enabling
the constraint when defining an associative array, or you can do it programmatically. It is a
decision that you will need to make on a case-by-case basis.

You can use a negative, positive, or zero number as the index value for associative arrays.
Both PLS_INTEGER and BINARY_INTEGER types are unconstrained types that map to call
specifications in C/C++, C#, and Java in Oracle 11g.

You can use variable-length strings up to four thousand characters in length as columns in
tables. The VARCHAR2 type supports the Unicode physical size for globalized implementation.
This means that you may store half or one-third of the characters depending on your Unicode
implementation. Please cross reference the NCHAR, NCLOB, and NVARCHAR2 datatypes in
Chapter 3 for more information on Unicode size management.

The other possible syntax to define an associate array is

CREATE OR REPLACE TYPE type_name AS TABLE OF element_type [NOT NULL]
INDEX BY key_type;

The key_type alternative enables you to use VARCHAR2, STRING, or LONG datatypes in addition
to PLS_INTEGER and BINARY_INTEGER datatypes. Both VARCHAR2 and STRING require a size
definition. The LONG datatype does not, because it is by definition a variable length string of
32,760 bytes.You should refer to Chapter 3 for coverage of LONG datatypes.

As discussed, associative arrays do not require initialization and do not have a constructor
syntax. This is a substantive difference from the other two collection types: varrays and nested
tables. It is a tremendous advantage to using associative arrays in PL/SQL. This is especially true
because the basic structure of associative arrays with an integer index has not changed much
since their implementation in Oracle 7, release 7.3.

If you attempt to construct an associative array, you will raise a PLS-00222 exception. The
following program attempts to construct an associative array:

–– This is found in create_assocarray1.sql on the publisher's web site.
DECLARE
 –– Define an associative array.
 TYPE card_table IS TABLE OF VARCHAR2(5 CHAR)
 INDEX BY BINARY_INTEGER;

 –– Declare and attempt to construct an associative array.
 cards CARD_TABLE := card_table('A','B','C');
BEGIN
 NULL;
END;
/

It will raise the following error messages:

–– This is found running create_assocarray1.sql from the publisher's web site.
 cards CARD_TABLE := card_table('A','B','C');
 *
ERROR at line 8:

240 Oracle Database 11g PL/SQL Programming

ORA-06550: line 8, column 23:
PLS-00222: no function with name 'CARD_TABLE' exists in
 this scope
ORA-06550: line 8, column 9:
PL/SQL: Item ignored

The failure occurs because the INDEX BY clause has built an associative array, not a nested
table. While a nested table type definition implicitly defines a constructor, an associative array
does not.

In our previous discussion, the object constructor was qualified as a function. Other collection
types, varrays and nested tables, are object types that implicitly define constructor functions. An
associative array is a structure, not an object type. Therefore, it does not have an implicitly built
constructor function and fails when you attempt to call the function.

Likewise, you cannot navigate an associative array until it contains elements. The following
example program demonstrates the failure:

–– This is found in create_assocarray2.sql on the publisher's web site.
DECLARE
 –– Define an associative array of strings.
 TYPE card_table IS TABLE OF VARCHAR2(5 CHAR)
 INDEX BY BINARY_INTEGER;

 –– Define an associative array variable.
 cards CARD_TABLE;
BEGIN
 DBMS_OUTPUT.PUT_LINE(cards(1));
END;
/

It will raise the following exception, which is quite different from those of other collection
types. As described previously, you get an uninitialized collection error from varrays and nested
tables. Associative arrays raise a no data found exception. The no data found error occurs
because associative array elements are built through direct element assignment.

–– This is found running create_assocarray2.sql from the publisher's web site.
DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 13

As a rule of thumb, you want to avoid the possibility of this error. The following program
provides a mechanism to avoid encountering the error:

–– This is found in create_assocarray3.sql on the publisher's web site.
DECLARE
 –– Define an associative array of strings.
 TYPE card_table IS TABLE OF VARCHAR2(5 CHAR)
 INDEX BY BINARY_INTEGER;

 –– Define an associative array variable.
 cards CARD_TABLE;

Chapter 7: Collections 241

BEGIN
 IF cards.COUNT <> 0 THEN
 DBMS_OUTPUT.PUT_LINE(cards(1));
 ELSE
 DBMS_OUTPUT.PUT_LINE('The cards collection is empty.');
 END IF;
END;
/

The Collection API COUNT method returns a zero value under only two conditions:

When a varray or nested table collection is initialized and no space is allocated to elements

When an associative array has no assigned elements

Since the second condition is met, the program returns the message from the else statement.
The output follows:

–– This is found running create_assocarray3.sql from the publisher's web site.
The cards collection is empty.

The Collection API EXTEND method will fail to allocate space to an associative array. The
following program illustrates the attempt:

–– This is found in create_assocarray4.sql on the publisher's web site.
DECLARE
 –– Define an associative array of strings.
 TYPE card_table IS TABLE OF VARCHAR2(5 CHAR)
 INDEX BY BINARY_INTEGER;

 –– Define an associative array variable.
 cards CARD_TABLE;
BEGIN
 IF cards.COUNT <> 0 THEN
 DBMS_OUTPUT.PUT_LINE(cards(1));
 ELSE
 cards.EXTEND;
 END IF;
END;
/

The attempt to extend an associative array raises a PLS-00306 exception. The exception
states that you’re calling it with the wrong number or types of arguments. It actually means that
the component select can’t find the method attached to the associative array. The Collection API
EXTEND method can only operate on varrays and nested tables.

You have developed an appreciation of why associative arrays cannot be constructed like
varrays and nested tables. You will now experiment with defining and initializing associative arrays.

Initializing Associative Arrays
As discussed, you can build associative arrays with a number index or a unique variable-length
string. Number indexes must be integers, which are positive, negative, and zero numbers. Unique
variable-length strings can be VARCHAR2, STRING, or LONG datatypes.

■

■

242 Oracle Database 11g PL/SQL Programming

You see how to assign elements to a numerically indexed associative array in the following
example:

–– This is found in create_assocarray5.sql on the publisher's web site.
DECLARE
 –– Define a varray of twelve strings.
 TYPE months_varray IS VARRAY(12) OF STRING(9 CHAR);

 –– Define an associative array of strings.
 TYPE calendar_table IS TABLE OF VARCHAR2(9 CHAR) INDEX BY BINARY_INTEGER;

 –– Declare and construct a varray.
 month MONTHS_VARRAY :=
 months_varray('January','February','March','April','May','June'
 ,'July','August','September','October','November','December');

 –– Declare an associative array variable.
 calendar CALENDAR_TABLE;
BEGIN
 –– Check if calendar has no elements, then add months.
 IF calendar.COUNT = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Assignment loop:');
 DBMS_OUTPUT.PUT_LINE('–--------–––––––');
 FOR i IN month.FIRST..month.LAST LOOP
 calendar(i) := '';
 DBMS_OUTPUT.PUT_LINE('Index ['||i||'] is ['||calendar(i)||']');
 calendar(i) := month(i);
 END LOOP;

 –– Print assigned element values.
 DBMS_OUTPUT.PUT(CHR(10));
 DBMS_OUTPUT.PUT_LINE('Post-assignment loop:');
 DBMS_OUTPUT.PUT_LINE('––––––––––-----------');
 FOR i IN calendar.FIRST..calendar.LAST LOOP
 DBMS_OUTPUT.PUT_LINE('Index ['||i||'] is ['||calendar(i)||']');
 END LOOP;
 END IF;
END;
/

The preceding example illustrates moving the contents of a varray to an associative array. In this
example, both structures have a numeric index value.

Its output prints a line for each month for both collection types. The following is a shortened
copy of the output:

–– This is found running create_assocarray5.sql from the publisher's web site.
Assignment loop:
––––––––
Index [1] is []
Index [2] is []
...
Index [11] is []

Chapter 7: Collections 243

Index [12] is []

Post-assignment loop:
–––––––––––
Index [1] is [January]
Index [2] is [February]
...
Index [11] is [November]
Index [12] is [December]

If you decide, in Oracle 11g, to use a variable-length string as an index value, the process
changes. The standard range FOR loop works to assign values from the varray to the associative
array. However, the same type of range FOR loop will fail to read the associative array. The
problem is the assignment inside the FOR loop. You must change the index value as

Numeric Index Assignment String Index Assignment
calendar(i) := ''; calendar(month(i)) := '';

The counter variable is i in the preceding program. A counter variable is defined as a
PLS_INTEGER. Thus, the variable-length string index value cannot be cast to an integer
because it is not an integer. Therefore, it raises an ORA-06502 conversion error. The same
example worked previously because the counter variable was cast as a VARCHAR2 when
initializing members and cast back to an INTEGER when reading the associative array.

TIP
Associative arrays do not have a navigational syntax equivalent to
their namesake in JavaScript. You cannot treat an associative array
as a cursor by using a cursor FOR-loop structure.

This presents you with a problem. A non-numeric index value requires you to know where to
start and how to increment. The Collection API FIRST and NEXT methods provide the tools. Details
of the Collection API are covered later in the chapter if you want more on these methods now.

You can use the approach demonstrated in the following example program to solve the
problem. In the second range FOR loop, the logic to traverse a unique string index is provided:

–– This is found in create_assocarray6.sql on the publisher's web site.
DECLARE
 –– Define variables to traverse a string indexed associative array.
 current VARCHAR2(9 CHAR);
 element INTEGER;

 –– Define required collection datatypes.
 TYPE months_varray IS VARRAY(12) OF STRING(9 CHAR);.
 TYPE calendar_table IS TABLE OF VARCHAR2(9 CHAR) INDEX BY VARCHAR2(9 CHAR);

 –– Declare a varray.
 month MONTHS_VARRAY :=
 months_varray('January','February','March','April','May','June'
 ,'July','August','September','October','November','December');

 –– Declare empty associative array.

244 Oracle Database 11g PL/SQL Programming

 calendar CALENDAR_TABLE;
BEGIN
 –– Check if calendar has no elements.
 IF calendar.COUNT = 0 THEN
 –– Print assignment output title.
 DBMS_OUTPUT.PUT_LINE('Assignment loop:');
 DBMS_OUTPUT.PUT_LINE('––--------––––––');
 FOR i IN month.FIRST..month.LAST LOOP
 calendar(month(i)) := TO_CHAR(i);
 DBMS_OUTPUT.PUT_LINE('Index ['||month(i)||'] is ['||i||']');
 END LOOP;

 –– Print assigned output title.
 DBMS_OUTPUT.PUT(CHR(10));
 DBMS_OUTPUT.PUT_LINE('Post-assignment loop:');
 DBMS_OUTPUT.PUT_LINE('–––––––––----------–-');
 FOR i IN 1..calendar.COUNT LOOP
 IF i = 1 THEN
 –– Assign the first character index to a variable.
 current := calendar.FIRST;
 –– Use the derived index to find the next index.
 element := calendar(current);
 ELSE
 –– Check if next index value exists.
 IF calendar.NEXT(current) IS NOT NULL THEN
 –– Assign the character index to a variable.
 current := calendar.NEXT(current);
 –– Use the derived index to find the next index.
 element := calendar(current);
 ELSE
 –– Exit loop since last index value is read.
 EXIT;
 END IF;
 END IF;

 –– Print an indexed element from the array.
 DBMS_OUTPUT.PUT_LINE('Index ['||current||'] is ['||element||']');
 END LOOP;
 END IF;
END;
/

The preceding example illustrates moving the contents of a varray with a numeric index to an
associative array with a unique string index.

The IF statement checks whether or not the range for-loop counter is equal to 1. This finds
our first record to start traversing the associative array. You use the Collection API FIRST method
to return the first unique string index value. The program assigns the unique string index value to
the current variable, and then it uses the current variable to find the data value and assign it
to the element variable. At this point, it exits the if-then-else statement and prints the values, as
described later.

On your second pass through the range FOR loop, the IF statement check will fail. It will
then go to the ELSE statement and encounter the nested if-then-else statement. The IF statement

Chapter 7: Collections 245

uses the Collection API NEXT to check whether there is another record in the associative array. If
there is another record in the associative array, it will use the current variable to find the next
index value. Then, it assigns the value to replace the value in the current variable. When there
are no more records, it exits.

It prints the indexes and values from calendar associative array with the DBMS_OUTPUT
package. The program generates the following output stream. Again, it has been edited to
conserve space:

–– This is found running create_assocarray6.sql from the publisher's web site.

Assignment loop:
––––––––
Index [January] is [1]
Index [February] is [2]

Index [November] is [11]
Index [December] is [12]

Post-assignment loop:
––––––––––-
Index [April] is [4]
Index [August] is [8]
Index [December] is [12]
Index [February] is [2]
Index [January] is [1]
Index [July] is [7]
Index [June] is [6]
Index [March] is [3]
Index [May] is [5]
Index [November] is [11]
Index [October] is [10]
Index [September] is [9]

You can see that the population sequence of the associative array differs from how it can be
traversed. The Collection API FIRST, NEXT, and PRIOR methods work from hash maps for the
unique strings. Sorting is dependent on the NLS_COMP and NLS_SORT database parameters in
globalized databases.

As a result of this sorting behavior, unique string index values present some interesting
considerations. If you need to keep track of original ordering, you will need to use a record
or object type that provides a surrogate key. The surrogate key can maintain your original
ordering sequence.

You have developed an appreciation of standard initialization methods for associative arrays.
You have also explored key issues that you should avoid. Moreover, you have learned how to
initialize and traverse associative arrays.

Collection Set Operators
Oracle 11g delivers collection set operators. They act and function like SQL set operators in select
statements. The difference is that they are used in assignments between collections of matching
signature types. They only work with varrays and nested tables because they require numeric
index values. You have to migrate associative arrays into varrays or nested tables before using set

246 Oracle Database 11g PL/SQL Programming

operators, and the collections must contain scalar SQL datatypes. You will raise a wrong number
or types of argument error, or a PLS-00306 exception, if you use set operators to compare
collections of user-defined object types. Table 7-2 describes the multiset operators.

Multiset Operator Description
CARDINALITY The CARDINALITY operator counts the number of elements in

a collection. It makes no attempt to count only unique elements,
but you can combine it with the SET operator to count unique
elements. The prototype is:
CARDINALITY(collection)

EMPTY The EMPTY operator acts as an operand, as you would check
whether a variable is null or is not null. The comparative syntax is:
variable_name IS [NOT] EMPTY

MEMBER OF The MEMBER OF operator lets you check if the left operand
is a member of the collection used as the right operand. The
comparative syntax is:
variable_name MEMBER OF collection_name

MULTISET EXCEPT The MULTISET EXCEPT operator removes one set from another.
It works like the SQL MINUS set operator. The prototype is:
collection MULTISET EXCEPT collection

MULTISET INTERSECT The MULTISET INTERSECT operator evaluates two sets and
returns one set. The return set contains elements that were found
in both original sets. It works like the SQL INTERSECT set
operator. The prototype is:
collection MULTISET INTERSECT collection

MULTISET UNION The MULTISET UNION operator evaluates two sets and returns
one set. The return set contains all elements of both sets. Where
duplicate elements are found, they are returned. It functions like
the SQL UNION ALL set operator.
You may use the DISTINCT operator to eliminate duplicates.
The DISTINCT operator follows the MULTISET UNION operator
rule. It functions like the SQL UNION operator.
The prototype is:
collection MULTISET UNION collection

SET The SET operator removes duplicates from a collection, and
thereby creates a set of unique values. It acts like a DISTINCT
operator sorting out duplicates in a SQL statement. The operator
prototype is:
SET(collection)
You can also use the SET operator as an operand, as you would
check whether a variable is null or is not null. The comparative
syntax is:
variable_name IS [NOT] A SET

TABLE 7-2 Set Operators for Collections

Chapter 7: Collections 247

Sets are displayed as comma-delimited lists of values. The following SQL nested table type
and function let you format the results of the set operators into a comma-delimited set.

–– This is found in multiset.sql on the publisher's web site.
CREATE OR REPLACE TYPE list IS TABLE OF NUMBER;
/

CREATE OR REPLACE FUNCTION format_list(set_in LIST) RETURN VARCHAR2 IS
 retval VARCHAR2(2000);
BEGIN
 IF set_in IS NULL THEN
 dbms_output.put_line('Result: <Null>');
 ELSIF set_in IS EMPTY THEN
 dbms_output.put_line('Result: <Empty>');

ELSE -- Anything not null or empty.
 FOR i IN set_in.FIRST..set_in.LAST LOOP
 IF i = set_in.FIRST THEN
 IF set_in.COUNT = 1 THEN
 retval := '('||set_in(i)||')';
 ELSE
 retval := '('||set_in(i);
 END IF;
 ELSIF i <> set_in.LAST THEN
 retval := retval||', '||set_in(i);
 ELSE
 retval := retval||', '||set_in(i)||')';
 END IF;
 END LOOP;
 END IF;
 RETURN retval;
END format_list;
/

Multiset Operator Description
SUBMULTISET The SUBMULTISET operator identifies if a set is a subset of

another set. It returns true when the left operand is a subset of the
right operand. The true can be misleading if you’re looking for a
proper subset, which contains at least one element less than the
superset. The function returns true because any set is a subset of
itself. There is no test for a proper subset without also using the
CARDINALITY operator to compare whether the element counts
of both sets are unequal.
The prototype is:
collection SUBMULTISET OF collection

TABLE 7-2 Set Operators for Collections (continued)

248 Oracle Database 11g PL/SQL Programming

The format_list function only works with numeric indexes because collection set operators
are limited to varrays and nested tables, which are only indexed by integers. The set operator
examples all use this function to format output.

CARDINALITY Operator
The CARDINALITY operator lets count the elements in a collection. If there are unique elements,
they are counted once for each copy in the collection. The following example shows you how to
exclude matching elements:

DECLARE
 a LIST := list(1,2,3,3,4,4);
BEGIN
 dbms_output.put_line(CARDINALITY(a));
END;
/

The program prints the number 6 because there are four elements in the collection. You can
count only the unique values by combining the CARDINALITY and SET operators, as shown here:

DECLARE
 a LIST := list(1,2,3,3,4,4);
BEGIN
 dbms_output.put_line(CARDINALITY(SET(a)));
END;
/

The program now prints the number 4 because there are four unique elements in the set
derived from the six-element collection. This section has demonstrated how you can use the
CARDINALITY operator to count elements in collections or sets.

EMPTY Operator
The EMPTY operator is covered in the SET subsection.

MEMBER OF Operator
The MEMBER OF operator lets you find if the left operand is a member of the collection used as
the right operand. As with other set operators, the collections must use standard scalar datatypes.
This example demonstrates how you find if an element exists in a collection:

DECLARE
 TYPE list IS TABLE OF VARCHAR2(10);
 n VARCHAR2(10) := 'One';
 a LIST := list('One','Two','Three');
BEGIN
 IF n MEMBER OF a THEN
 dbms_output.put_line('”n” is member.');
 END IF;
END;
/

The MEMBER OF operator compares and returns a Boolean true type when it finds the left
operand value in the right operand collection. The left operand datatype must match the base
datatype of the scalar collection.

Chapter 7: Collections 249

MULTISET EXCEPT Operator
The MULTISET EXCEPT operator lets you find the elements remaining from the first set after
removing any matching elements from the second set. The operator ignores any elements in the
second set not found in the first. The following example shows you how to exclude matching
elements:

DECLARE
 a LIST := list(1,2,3,4);
 b LIST := list(4,5,6,7);
BEGIN
 dbms_output.put_line(format_list(a MULTISET EXCEPT b));
END;
/

Only the element 4 exists in both sets. The operation therefore removes 4 from the first set.
The following output is generated by the block:

(1, 2, 3)

This section has demonstrated how you can use set operators to exclude elements from one
set when they are in another.

MULTISET INTERSECT Operator
The MULTISET INTERSECT operator lets you find the intersection or matching values between
two sets. The following example shows you how to create a set of the intersection between two sets:

DECLARE
 a LIST := list(1,2,3,4);
 b LIST := list(4,5,6,7);
BEGIN
 dbms_output.put_line(format_list(a MULTISET INTERSECT b));
END;
/

Only one element from both sets matches, and that’s the number 4. The following output is
generated by the block:

(1, 2, 3)

This section has demonstrated how you can use set operators to create sets of the intersection
between two sets.

MULTISET UNION Operator
The MULTISET UNION operator performs a UNION ALL operation on two collections. The
following example demonstrates how to combine the sets into one set:

DECLARE
 a LIST := list(1,2,3,4);
 b LIST := list(4,5,6,7);
BEGIN
 dbms_output.put_line(format_list(a MULTISET UNION b));
END;
/

250 Oracle Database 11g PL/SQL Programming

The operation result of the MULTISET UNION is passed as an actual parameter to the
format_list function. The function converts it into the string

(1, 2, 3, 4, 4, 5, 6, 7)

You’ll notice that both sets contain the integer 4, and the resulting set has two copies of it. You
can eliminate the duplication and mimic a UNION operator by appending the DISTINCT operator:

DECLARE
 a LIST := list(1,2,3,4);
 b LIST := list(4,5,6,7);
BEGIN
 dbms_output.put_line(format_list(a MULTISET UNION DISTINCT b));
END;
/

Alternatively, you can take the result of the MULTISET UNION DISTINCT operation and
pass it as an argument to the SET operator to eliminate duplicates.

DECLARE
 a LIST := list(1,2,3,4);
 b LIST := list(4,5,6,7);
BEGIN
 dbms_output.put_line(format_list(SET(a MULTISET UNION b)));
END;
/

Both the DISTINCT and SET operators produce the following output:

(1, 2, 3, 4, 5, 6, 7)

This section has demonstrated how you can use the set operations with collection to create
supersets of two sets with or without duplicate values.

SET Operator
The SET operator acts on a single input, which is another set. It removes any duplicates from the
set and returns a new set with unique values. The following example demonstrates how to pare a
set into unique elements:

DECLARE
 a LIST := list(1,2,3,3,4,4,5,6,6,7);
BEGIN
 dbms_output.put_line(format_list(SET(a)));
END;
/

The original set contains ten elements, but three are duplicated. The SET operator removes all
duplicates and generates a new set with seven unique elements.

(1, 2, 3, 4, 5, 6, 7)

You can also use SET as an operand in comparison statements:

Chapter 7: Collections 251

DECLARE
 a LIST := list(1,2,3,4);
 b LIST := list(1,2,3,3,4,4);
 c LIST := list();
 FUNCTION isset (set_in LIST) RETURN VARCHAR2 IS
 BEGIN
 IF set_in IS A SET THEN
 IF set_in IS NOT EMPTY THEN
 RETURN 'Yes - a unique collection.';
 ELSE
 RETURN 'Yes - an empty collection.';
 END IF;
 ELSE
 RETURN 'No - a non-unique collection.';
 END IF;
 END isset;
BEGIN
 dbms_output.put_line(isset(a));
 dbms_output.put_line(isset(b));
 dbms_output.put_line(isset(c));
END;
/

NOTE
Always remember to use empty parentheses when you build empty
collections. If you forget the parentheses because you don’t need them
to call some functions or procedures, you’ll raise an ORA-00330
error—invalid use of type name.

The program returns

Yes - a unique collection.
No - a non-unique collection.
Yes - an empty collection.

This anonymous block demonstrates that the IS A SET comparison returns true when the
collection is either unique or empty. You must use the IS EMPTY comparison to capture empty
collections, as done in the format_set function previously shown.

This section has demonstrated how you can use set operators to create sets of the intersection
between two sets.

SUBMULTISET Operator
The SUBMULTISET operator compares the left operand against the right operand to determine if
the left operand is a subset of the right operand. It returns a Boolean true when it finds all elements
in the left set are also in the right set.

The following example demonstrates how to determine if a set is a subset of another:

DECLARE
 a LIST := list(1,2,3,4);
 b LIST := list(1,2,3,3,4,5);

252 Oracle Database 11g PL/SQL Programming

 c LIST := list(1,2,3,3,4,4);
BEGIN
 IF a SUBMULTISET c THEN
 dbms_output.put_line('[a] is a subset of [c]');
 END IF;
 IF NOT b SUBMULTISET c THEN
 dbms_output.put_line('[b] is not a subset of [c]');
 END IF;
END;
/

It prints

[a] is a subset of [c]
[b] is not a subset of [c]

This demonstrates that all elements of set a are in set c and all elements in set b are not. You
should note that this function looks for subsets, not proper subsets. A proper subset differs because
it contains at least one element less than the set.

NOTE
The set operators only work when the collections are lists of scalar
variables. They return a PLS-00306 exception when you attempt to
use a user-defined object type.

Collection API
Oracle 8i introduced the Collection API. The Collection API is provided to give simplified access
to collections. These methods did simplify access before Oracle 11g. Unfortunately, they were not
critical to master. The shift from Oracle 9i index-by tables to Oracle 11g associative arrays makes
them critical for you to understand. You covered the reason working with associative arrays. The
FIRST, LAST, NEXT, and PRIOR methods are the only way to navigate unique string indexes.

The Collection API methods are really not methods in a truly object-oriented sense. They
are functions and procedures. Three, EXTEND, TRIM, and DELETE, are procedures. The rest are
functions.

Table 7-3 summarizes the Oracle 11g Collection API.

Method Description
COUNT The COUNT method returns the number of elements with allocated space in VARRAY

and NESTED TABLE datatypes. The COUNT method returns all elements in associative
arrays. The return value of the COUNT method can be smaller than the return value of
LIMIT for the VARRAY datatypes. It has the following prototype:
pls_integer COUNT

TABLE 7-3 Oracle 11g Collection API

Chapter 7: Collections 253

Method Description
DELETE The DELETE method lets you delete members from the collection. It has two formal

parameters; one is mandatory and the other is optional. Both parameters accept
PLS_INTEGER, VARCHAR2, and LONG variable types. Only one actual parameter,
n, is interpreted as the index value to delete from the collection. When you supply
two actual parameters, the function deletes everything from the parameter n to m,
inclusively. It has the following prototypes:
void DELETE(n)
void DELETE(n,m)

EXISTS The EXISTS method checks to find an element with the supplied index in a
collection. It returns true when the element is found and false otherwise. The
element may contain a value or a null value. It has one mandatory parameter, and the
parameter can be a PLS_INTEGER, VARCHAR2, or LONG type. It has the following
prototype:
boolean EXISTS(n)

EXTEND The EXTEND method allocates space for one or more new elements in a VARRAY
or NESTED TABLE collection. It has two optional parameters. It adds space for
one element by default without any actual parameter. A single optional parameter
designates how many physical spaces should be allocated, but it is constrained by
the LIMIT value for VARRAY datatypes. When two optional parameters are provided,
the first designates how many elements should be allocated space and the second
designates the index it should use to copy the value to the newly allocated space. It
has the following prototypes:
void EXTEND
void EXTEND(n)
void EXTEND(n,i)

FIRST The FIRST method returns the lowest subscript value in a collection. It can return a
PLS_INTEGER, VARCHAR2, or LONG type. It has the following prototype:
mixed FIRST

LAST The LAST method returns the highest subscript value in a collection. It can return a
PLS_INTEGER, VARCHAR2, or LONG type. It has the following prototype:
mixed LAST

LIMIT The LIMIT method returns the highest possible subscript value in a collection. It can
only return a PLS_INTEGER type and can only be used by a VARRAY datatype. It has
the following prototype:
mixed LIMIT

NEXT(n) The NEXT method returns the next higher subscript value in a collection when
successful or a false. The return value is a PLS_INTEGER, VARCHAR2, or LONG type.
It requires a valid index value as an actual parameter. It has the following prototype:
mixed NEXT(n)

TABLE 7-3 Oracle 11g Collection API (continued)

254 Oracle Database 11g PL/SQL Programming

You will examine each of the methods in alphabetical order. Some examples include multiple
Collection API methods. As in the coverage of the collection types, it is hard to treat the Collection
API methods in isolation. Where a single example fully covers multiple methods, it will be cross-
referenced; sometimes it may be forward-referenced. Under each Collection API method, you will
be referred to appropriate example code. You will examine each of the Collection API methods in
example programs. It should be noted that only the EXISTS method will fail to raise an exception
if the collection is empty.

There are five standard collection exceptions. They are described in Table 7-4.

Method Description
PRIOR(n) The PRIOR method returns the next lower subscript value in a collection when

successful or a false. The return value is a PLS_INTEGER, VARCHAR2, or LONG type.
It requires a valid index value as an actual parameter. It has the following prototype:
mixed PRIOR(n)

TRIM The TRIM method removes a subscripted value from a collection. It has one optional
parameter. Without an actual parameter, it removes the highest element form the array.
An actual parameter is interpreted as the number of elements removed from the end of
the collection. It has the following prototypes:
void TRIM
void TRIM(n)

TABLE 7-3 Oracle 11g Collection API (continued)

Collection Exception Raised By
COLLECTION_IS_NULL An attempt to use a null collection.
NO_DATA_FOUND An attempt to use a subscript that has been deleted or is a

nonexistent unique string index value in an associative array.
SUBSCRIPT_BEYOND_COUNT An attempt to use a numeric index value that is higher than

the current maximum number value. This error applies only
to varrays and nested tables. Associative arrays are not bound
by the COUNT return value when adding new elements.

SUBSCRIPT_OUTSIDE_LIMIT An attempt to use a numeric index value outside of the
LIMIT return value. This error only applies to varrays
and nested tables. The LIMIT value is defined one of two
ways. Varrays set the maximum size, which becomes their
limit value. Nested tables and associative arrays have no
fixed maximum size, so the limit value is set by the space
allocated by the EXTEND method.

VALUE_ERROR An attempt is made to use a type that cannot be converted
to a PLS_INTEGER, which is the datatype for numeric
subscripts.

TABLE 7-4 Collection Exceptions

Chapter 7: Collections 255

COUNT Method
The COUNT method is really a function. It has no formal parameter list. It returns the number of
elements in the array. The following example program illustrates that it returns a PLS_INTEGER
value:

DECLARE
 TYPE number_table IS TABLE OF INTEGER;
 number_list NUMBER_TABLE := number_table(1,2,3,4,5);
BEGIN
 DBMS_OUTPUT.PUT_LINE('How many elements? ['||number_list.COUNT||']');
END;
/

The example program defines a local scalar collection, declares a collection variable, and
uses the COUNT function to find out how many elements are in the collection. It generates the
following output:

How many elements? [5]

DELETE Method
The DELETE method is really a procedure. It is an overloaded procedure. If the concept of
overloading is new to you, please check Chapter 9.

It has one version that takes a single formal parameter. The parameter must be a valid
subscript value in the collection. This version will remove the element with that subscript.
It is illustrated in the EXISTS method example program.

The other version takes two formal parameters. Both parameters must be valid subscript
values in the collection. This version deletes a continuous, inclusive range of elements from
a collection. The following example program illustrates a range delete from a collection:

DECLARE
 TYPE number_table IS TABLE OF INTEGER;
 number_list NUMBER_TABLE;

 –– Define local procedure to check and print elements.
 PROCEDURE print_list(list_in NUMBER_TABLE) IS
 BEGIN
 -- Check whether subscripted elements are there.
 DBMS_OUTPUT.PUT_LINE('––––––---------------–––––––––');
 FOR i IN list_in.FIRST..list_in.LAST LOOP
 IF list_in.EXISTS(i) THEN
 DBMS_OUTPUT.PUT_LINE('List ['||list_in(i)||']');
 END IF;
 END LOOP;
 END print_list;
BEGIN
 -- Construct collection when one doesn't exist.
 IF NOT number_list.EXISTS(1) THEN
 number_list := number_table(1,2,3,4,5);
 END IF;

 -- Print initialized contents.

256 Oracle Database 11g PL/SQL Programming

 DBMS_OUTPUT.PUT_LINE('Nested table before a deletion');
 print_list(number_list);

 –– Delete a elements from 2, 3 and 4.
number_list.DELETE(2,4);

 –– Print revised contents.
 DBMS_OUTPUT.PUT_LINE(CHR(10)||'Nested table after a deletion');
 print_list(number_list);
END;
/

The example program defines a local scalar collection, defines an uninitialized collection
variable, initializes the collection variable, and deletes three elements from the middle of the
collection. The display portion of the program uses a local procedure to print the current content
of a collection.

TIP
The DBMS_OUTPUT.PUT_LINE procedure can’t print a line return if
you pass it a null string. You send a CHR(10), or line feed, when you
want to print a line break in your output file.

It generates the following output:

Nested table before a deletion
––––––---------------–––––––––
List [1]
List [2]
List [3]
List [4]
List [5]

Nested table after a deletion
––––––---------------–––––––––
List [1]
List [5]

EXISTS Method
The EXISTS method is really a function. It has only one formal parameter list that it supports.
It takes a subscript value. The subscript may be a number or a unique string. The latter subscript
index applies only to Oracle 11g associative arrays.

As mentioned, EXISTS is the only Collection API method that will not raise a
COLLECTION_IS_NULL exception for a null element collection. Null element collections
have two varieties: first, varrays and nested tables constructed with a null constructor, and
second, associative arrays that have zero elements initialized.

The following program illustrates the EXISTS method. A portion of the program is redacted
because it was used in a prior example program.

DECLARE
 TYPE number_table IS TABLE OF INTEGER;
 number_list NUMBER_TABLE;

Chapter 7: Collections 257

 –– Define local procedure to check and print elements.
 PROCEDURE print_list(list_in NUMBER_TABLE) IS
 BEGIN
 -- Check whether subscripted elements are there.
 DBMS_OUTPUT.PUT_LINE('––––––---------------–––––––––');
 FOR i IN list_in.FIRST..list_in.LAST LOOP
 IF list_in.EXISTS(i) THEN
 DBMS_OUTPUT.PUT_LINE('List ['||list_in(i)||']');
 END IF;
 END LOOP;
 END print_list;
BEGIN
 -- Construct collection when one doesn't exist.
 IF NOT number_list.EXISTS(1) THEN
 number_list := number_table(1,2,3,4,5);
 END IF;

 -- Print initialized contents.
 DBMS_OUTPUT.PUT_LINE('Nested table before a deletion');
 print_list(number_list);

 –– Delete element 2.
 number_list.DELETE(2);

 –– Print revised contents.
 DBMS_OUTPUT.PUT_LINE(CHR(10)||'Nested table after a deletion');
 print_list(number_list);
END;
/

The example program defines a local scalar collection, defines an uninitialized collection
variable, initializes the collection variable, and deletes the second element from the collection.
The display portion of the program uses a local procedure to print the current content of a
collection. Most importantly, the EXIST method checks whether an element exists without
raising an exception.

It generates the following output:

Nested table before a deletion
––––––---------------–––––––––
List [1]
List [2]
List [3]
List [4]
List [5]

Nested table after a deletion
––––––---------------–––––––––
List [1]
List [3]
List [4]
List [5]

258 Oracle Database 11g PL/SQL Programming

EXTEND Method
The EXTEND method is really a procedure. It is an overloaded procedure. If the concept of
overloading is new to you, please check Chapter 9 on packages or Chapter 14 on objects.

It has one version that takes no formal parameters. When used without formal parameter(s),
EXTEND allocates space for a new element in a collection. However, if you attempt to EXTEND
space beyond a LIMIT in a varray, it will raise an exception.

A second version takes a single formal parameter. The parameter must be a valid integer
value. EXTEND with a single actual parameter will allocate space for that number of elements
specified by the actual parameter. As with the version without a parameter, attempting to EXTEND
space beyond a LIMIT in a varray will raise an exception. This method is illustrated in the following
example.

The last version takes two formal parameters. Both parameters must be valid integers. The
second must also be a valid subscript value in the collection. This version allocates element space
equal to the first actual parameter. Then, it copies the contents of the referenced subscript found
in the second actual parameter.

The following program illustrates the EXTEND method with one and two formal parameters.
A portion of the program is redacted because it was used in a prior example program.

DECLARE
 TYPE number_table IS TABLE OF INTEGER;
 number_list NUMBER_TABLE;

 –– Define local procedure to check and print elements.
 PROCEDURE print_list(list_in NUMBER_TABLE) IS
 BEGIN
 -- Check whether subscripted elements are there.
 DBMS_OUTPUT.PUT_LINE('––––––---------------–––––––––');
 FOR i IN list_in.FIRST..list_in.LAST LOOP
 IF list_in.EXISTS(i) THEN
 DBMS_OUTPUT.PUT_LINE('List ['||list_in(i)||']');
 END IF;
 END LOOP;
 END print_list;
BEGIN
 -- Construct collection when one doesn't exist.
 IF NOT number_list.EXISTS(1) THEN
 number_list := number_table(1,2,3,4,5);
 END IF;

 -- Print initialized contents.
 DBMS_OUTPUT.PUT_LINE('Nested table before a deletion');
 print_list(number_list);

 –– Add two null value members at the end of the list.
 number_list.EXTEND(2);

 –– Add three members at the end of the list and copy the contents of item 4.
 number_list.EXTEND(3,4);

 –– Print revised contents.

Chapter 7: Collections 259

 DBMS_OUTPUT.PUT_LINE(CHR(10)||'Nested table after a deletion');
 print_list(number_list);
END;
/

The example program defines a local scalar collection, defines an uninitialized collection
variable, initializes the collection variable, adds two null value elements, and adds three elements
with the value from the element indexed by 4. The display portion of the program uses a local
procedure to print the current content of a collection. The EXTEND method allocates space to
nested tables and allows you to copy contents from one element to a set of elements.

It generates the following output:

Nested table before a deletion

List [1]
List [2]
List [3]
List [4]
List [5]

Nested table after a deletion

List [1]
List [2]
List [3]
List [4]
List [5]
List []
List []
List [4]
List [4]
List [4]

FIRST Method
The FIRST method is really a function. It returns the lowest subscript value used in a collection.
If it is a numeric index, it returns a PLS_INTEGER. If it is an associative array, it returns a
VARCHAR2 or LONG datatype. You cannot use the FIRST method in a range FOR loop when
the index is non-numeric.

The FIRST method is illustrated in the example program for the DELETE method. That
example uses a numeric index. The following example demonstrates the FIRST method with a
non-numeric or unique string index. As discussed, non-numeric indexes in associative arrays are
new in Oracle 11g functionality. The INDEX BY clause lets you tell the difference between a
nested table and an associative array because the clause only works with associative arrays.

DECLARE
 TYPE number_table IS TABLE OF INTEGER INDEX BY VARCHAR2(9 CHAR);
 number_list NUMBER_TABLE;
BEGIN
 –– Add elements with unique string subscripts.
 number_list('One') := 1;
 number_list('Two') := 2;
 number_list('Nine') := 9;

260 Oracle Database 11g PL/SQL Programming

 –– Print the first index and next.
 DBMS_OUTPUT.PUT_LINE('FIRST Index ['||number_list.FIRST||']');
 DBMS_OUTPUT.PUT_LINE('NEXT Index ['||number_list.NEXT(number_list.
FIRST)||']');

 –– Print the last index and prior.
 DBMS_OUTPUT.PUT_LINE(CHR(10)||'LAST Index ['||number_list.LAST||']');
 DBMS_OUTPUT.PUT_LINE('PRIOR Index ['||number_list.PRIOR(number_list.
LAST)||']');
END;
/

The example program defines a local scalar collection, defines an uninitialized collection
variable, assigns elements to the associative array, and prints the FIRST, NEXT, LAST, and
PRIOR index values. If you raised your eyebrows at the output, you did not catch this earlier.
When using a unique string as an index value, the ordering of values is based on the NLS
environment. Therefore, you generate the following output, which is ordered alphabetically:

FIRST Index [Nine]
NEXT Index [One]

LAST Index [Two]
PRIOR Index [One]

LAST Method
The LAST method is really a function. It returns the highest subscript value used in a collection. If
it is a numeric index, it returns a PLS_INTEGER. If it is an associative array, it returns a VARCHAR2
or LONG datatype. You cannot use the LAST method in a range FOR loop when the index is non-
numeric.

The LAST method is illustrated in the example program for the DELETE method. That
example uses a numeric index. The example in the FIRST method also demonstrates the LAST
method with a non-numeric or unique string index. As discussed, non-numeric indexes in
associative arrays are new in Oracle 11g functionality.

LIMIT Method
The LIMIT method is really a function. It returns the highest possible subscript value used in a
varray. It has no value for the other two collection types. It returns a PLS_INTEGER.

The example program that follows illustrates the LIMIT method:

DECLARE
 TYPE number_varray IS VARRAY(5) OF INTEGER;
 number_list NUMBER_VARRAY := number_varray(1,2,3);

 –– Define a local procedure to check and print elements.
 PROCEDURE print_list(list_in NUMBER_VARRAY) IS
 BEGIN
 -- Print all subscripted elements.
 DBMS_OUTPUT.PUT_LINE('–––––-------------––––––––-');
 FOR i IN list_in.FIRST..list_in.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE('List Index ['||i||'] '||

Chapter 7: Collections 261

 'List Value ['||list_in(i)||']');
 END LOOP;
 END print_list;
BEGIN
 -- Print initial contents.
 DBMS_OUTPUT.PUT_LINE('Varray after initialization');
 print_list(number_list);

 –– Extend with null element to the maximum limit size.
 number_list.EXTEND(number_list.LIMIT - number_list.LAST);

 –– Print revised contents.
 DBMS_OUTPUT.PUT_LINE(CHR(10));
 DBMS_OUTPUT.PUT_LINE('Varray after extension');
 print_list(number_list);
END;
/

The example program defines a local scalar collection, defines an uninitialized collection
variable, initializes the collection variable, and then extends space for as many null element
values as possible. This prints the following output:

Varray after initialization

List Index [1] List Value [1]
List Index [2] List Value [2]
List Index [3] List Value [3]

Varray after extension

List Index [1] List Value [1]
List Index [2] List Value [2]
List Index [3] List Value [3]
List Index [4] List Value []
List Index [5] List Value []

NEXT Method
The NEXT method is really a function. It returns the next subscript value used in a collection. If
there is no higher subscript value, it returns a null. If it is a numeric index, it returns a PLS_INTEGER.
If it is an associative array, it returns a VARCHAR2 or LONG datatype.

The NEXT method is illustrated in the example program for the DELETE method. That
example uses a numeric index. The example in the FIRST method also demonstrates the NEXT
method with a non-numeric or unique string index. As discussed, non-numeric indexes in
associative arrays are new in Oracle 11g functionality.

PRIOR Method
The PRIOR method is really a function. It returns the prior subscript value used in a collection. If
there is no lower subscript value, it returns a null. If it is a numeric index, it returns a PLS_INTEGER.
If it is an associative array, it returns a VARCHAR2 or LONG datatype.

262 Oracle Database 11g PL/SQL Programming

The PRIOR method is illustrated in the example program for the DELETE method. That
example uses a numeric index. The example in the FIRST method also demonstrates the PRIOR
method with a non-numeric or unique string index. As discussed, non-numeric indexes in
associative arrays are new in Oracle 11g functionality.

TRIM Method
The TRIM method is really a procedure. It is an overloaded procedure. If the concept of
overloading is new to you, please check Chapter 9.

It has one version that takes no formal parameters. When used without formal parameter(s),
TRIM deallocates space for an element in a collection. However, if you attempt to TRIM space
below zero elements, it will raise an exception.

The other version takes a single formal parameter. The parameter must be a valid integer
value. TRIM with a single actual parameter will deallocate space for the number of elements
specified by the actual parameter. As with the version without a parameter, attempting to TRIM
space below zero elements will raise an exception.

The example program that follows illustrates the TRIM method:

DECLARE
 TYPE number_varray IS VARRAY(5) OF INTEGER;
 number_list NUMBER_VARRAY := number_varray(1,2,3,4,5);

 –– Define a local procedure to check and print elements.
 PROCEDURE print_list(list_in NUMBER_VARRAY) IS
 BEGIN
 -- Print all subscripted elements.
 DBMS_OUTPUT.PUT_LINE('–––––-------------––––––––-');
 FOR i IN list_in.FIRST..list_in.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE('List Index ['||i||'] '||
 'List Value ['||list_in(i)||']');
 END LOOP;
 END print_list;
BEGIN
 –– Print initialized collection.
 DBMS_OUTPUT.PUT_LINE('Varray after initialization');
 print_list(number_list);

 –– Trim one element from the end of the collection.
 number_list.TRIM;

 –– Print collection minus last element.
 DBMS_OUTPUT.PUT(CHR(10));
 DBMS_OUTPUT.PUT_LINE('Varray after a trimming one element');
 print_list(number_list);

 –– Trim three elements from the end of the collection.
 number_list.TRIM(3);

 –– Print collection minus another three elements.
 DBMS_OUTPUT.PUT(CHR(10));

Chapter 7: Collections 263

 DBMS_OUTPUT.PUT_LINE('Varray after a trimming three elements');
 print_list(number_list);
END;
/

The example program defines a local scalar collection, declares an initialized collection
variable, prints the contents, trims the last element, prints the smaller contents, trims the last
three elements, and prints what’s left. This prints the following output:

Varray after initialization

List Index [1] List Value [1]
List Index [2] List Value [2]
List Index [3] List Value [3]
List Index [4] List Value [4]
List Index [5] List Value [5]

Varray after a trimming one element

List Index [1] List Value [1]
List Index [2] List Value [2]
List Index [3] List Value [3]
List Index [4] List Value [4]

Varray after a trimming three elements

List Index [1] List Value [1]

You have now gone through the complete Oracle 11g Collection API. It is time to summarize
what you have covered in the chapter.

Summary
You have covered the definition and use of varrays, nested tables, and associative arrays, which
are the Oracle 11g collection types. You have worked through examples in SQL DML and PL/SQL
that use Oracle 11g collections. Finally, you worked through the details of the Collections API.

This page intentionally left blank

CHAPTER
8

Large Objects

265

266 Oracle Database 11g PL/SQL Programming

arge objects (LOBs) are powerful data structures that let you store text, images,
music, and video in the database. Oracle 11g dramatically changes the LOB
landscape by reengineering how large objects work. They’re now faster and
more secure (SecureFiles). You can now define BLOB, CLOB, or NCLOB columns
as SecureFiles when you create a table or alter it.

LOBs can hold up to a maximum of 8 to 128 terabytes, depending on how you configure
your database. A call to the GET_STORAGE_LIMIT function in the DBMS_LOB package tells
you your database maximum LOB size. You can store character large objects in CLOB columns,
and binary large objects inside the database as BLOB columns or outside the database as BFILE
(binary file) columns. BFILE columns actually store a locator that points to the physical location
of an external file.

This chapter explains how to use PL/SQL to work with the different LOB datatypes. It covers
these topics:

Character large objects

 PL/SQL reading files and writing CLOB or NCLOB columns

 Uploading CLOBs to the database

Binary large objects

 PL/SQL reading files and writing BLOB columns

 Uploading BLOBs to the database

SecureFiles

External BFILEs

Creating and using virtual directories

The DBMS_LOB package

The concepts governing how you use BLOB, CLOB, and NCLOB datatypes are very similar.
CLOB and NCLOB datatypes are covered first, since they let you focus on managing transactions
with large blocks of text. The BLOB datatype comes second, because the concepts leverage those
covered for character large objects. BLOBs store binary documents, like Adobe PDF (Portable
Document Format) files, images, and movies, inside the database. Access and display of the BLOB
files is supplemented by using the PHP programming language to render images in web pages.
SecureFiles follow the ordinary and internally stored datatypes because they add features to CLOBs.

After SecureFiles, you learn how to set up, configure, read, and maintain BFILE datatypes.
They require more effort in some ways because the catalog only stores locator data, and you have
to guarantee their physical presence in the file system. The DBMS_LOB package is last because
not all the functions are necessary to show how to use large objects. Each section builds on the
one before it, but you should be able to use them individually as quick references, too.

Character Large Objects: CLOB
and NCLOB Datatypes
The CLOB and NCLOB datatypes can define a column in a table or nested table. It has a maximum
physical size between 8 and 128 terabytes. The CLOB datatype lets you store large text files. The

■

■

■

■

■

■

■

■

■

■

L

Chapter 8: Large Objects 267

text file can serve many purposes, such as a chapter in a book, a book in a library, or an XML
fragment. This section examines text as a work unit. You can refer to the Oracle XML DB Developer’s
Guide for direction on using these types to support XML.

NOTE
The size variability for CLOB datatypes is managed by the
db_block_size database initialization parameter. The default
8KB block size limits a CLOB to 8 terabytes.

CLOB columns are usually stored separately from the rest of the row in a table. Only the
descriptor or locator is physically stored in the column. The locator points to where the physical
contents of a CLOB are stored and provides a reference to a private work area in the SGA. This
work area allows us to scroll through the content and write new chunks of data. Some reference
materials use the term descriptor to refer to the BLOB, CLOB, and NCLOB locator, but they use
locator when working with external BFILEs. Oracle 11g documentation begins to consistently
label both as locators.

The CLOB datatype is an object type. As an object type, it requires implicit or explicit
construction of an object instance. You can implicitly construct a CLOB variable by direct
assignment of a number or character type. When you assign a number to a CLOB datatype, the
number is first cast to a character datatype, and then the character datatype is converted to a CLOB
datatype. Unfortunately, character conversions for CHAR, NCHAR, NVARCHAR, and VARCHAR2
datatypes are constrained by the SQL or PL/SQL environments. SQL allows you to convert
character streams up to 4,000 bytes, whereas PL/SQL lets you convert 32,767 bytes of character
data at one time.

The following examples review how you declare a CLOB variable:

 var1 CLOB; -- Declare a null reference to a CLOB.
 var1 CLOB := empty_clob(); -- Declare an empty CLOB.
 var2 CLOB := 'some_string'; -- Declare a CLOB with a string literal.

CLOB columns differ from scalar datatypes because they are not limited to NULL or NOT NULL
states. BLOBs, CLOBs, and NCLOBs are either NULL, empty, or populated as qualified in Table 8-1.

You insert an empty CLOB or NCLOB by calling the empty_clob() constructor as an
expression in the VALUES clause of an INSERT statement. The only change for BLOB datatypes
is the substitution of empty_blob() constructor. Appendix J demonstrates the basic uses of the

Initializing an Object
You declare a scalar variable by assigning a type and value. You call a function by passing
actual parameters. However, you declare an object instance by calling a specialized
function that initializes an object type. Initialized object types are objects or object
instances.

You call the initialization process: constructing an object. Construction occurs by
calling a specialized function that typically shares the name of the object type and returns
an instance of the object. This specialized function is called a constructor. Object
programming lingo uses the words initializing and constructing interchangeably. Both
words mean giving life to an object type by creating an instance of an object.

268 Oracle Database 11g PL/SQL Programming

EMPTY_BLOB and EMPTY_CLOB functions. While this section’s examples use a CLOB datatype,
you could substitute a NCLOB datatype and they would also work. More or less, CLOB and NCLOB
are interchangeable in regard to this section.

The initial assignment of an EMPTY_CLOB function call is generally the most effective in terms
of resources when the object is truly large. You’ll find the suggestion in the Oracle Database Large
Objects Developer’s Guide.

The following statement inserts an empty_clob() constructor in the item_desc column of
the item table:

-- This is found in create_store.sql on the publisher's web site.

INSERT INTO item VALUES
(item_s1.nextval
,'ASIN: B00003CXI1'
,(SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_type = 'DVD_WIDE_SCREEN')
,'Harry Potter and the Sorcer''s Stone'
,'Two-Disc Special Edition'
, empty_clob()
, NULL,'PG','MPAA','28-MAY-2002'
, 3, SYSDATE, 3, SYSDATE);

Once you’ve inserted an empty CLOB, you can update it several ways. A basic update using
SQL limits you to a string of 4,000 bytes. A SQL statement example follows:

UPDATE item
SET item_desc = 'Harry Potter is seemingly an ordinary eleven-year-old boy, '
WHERE item_title = 'Harry Potter and the Sorcerer''s Stone'
AND item_type IN
 (SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_table = 'ITEM'
 AND common_lookup_column = 'ITEM_TYPE'
 AND REGEXP_LIKE(common_lookup_type,'^(DVD|VHS)*'))

State Description

NULL The column in a table row contains a null value.

Empty The column contains a LOB locator (or descriptor) that is an
empty instance. You can verify an empty LOB by calling the
DBMS_LOB.GETLENGTH function. The function returns a
zero value for an empty BLOB, CLOB, or NCLOB column.

Populated The column contains a LOB locator, and a call to
DBMS_LOB.GETLENGTH function returns a positive
integer value for a BLOB, CLOB, or NCLOB column.

TABLE 8-1 Possible BLOB, CLOB, and NCLOB Data States

Chapter 8: Large Objects 269

This UPDATE statement set the item_desc column equal to a string less than 4,000
bytes. The subquery against the common_lookup table uses a regular expression to find all
common_lookup_type columns that start with either uppercase DVD or VHS. You can find
more on regular expressions in Appendix E.

If you transfer the UPDATE statement to the inside of a PL/SQL block, you can assign a
32,767-byte string to the CLOB column. However, you must then use the WRITEAPPEND
procedure from the DBMS_LOB package to append additional data to the column after the initial
write. This approach is probably the easiest and most widely available PL/SQL code snippet on
the web writing a CLOB column. The solution uses the DBMS_LOB package to read a file. Then,
it loads the data to the CLOB in 32,767-byte chunks through the DBMS_LOB.WRITEAPPEND
procedure. Appendix J contains a similar use of the DBMS_LOB.WRITEAPPEND procedure.

The problem with this approach is that it doesn’t leverage the RETURNING INTO clause, which
you can add to any INSERT or UPDATE DML statements. You transform INSERT or UPDATE
statements into function calls by adding this clause.

The RETURING clause declares a formal OUT mode parameter as the target of the INTO
predicate. The clause anchors a column descriptor to the OUT mode variable. The actual parameter
must be a declared CLOB or NCLOB variable. It effectively opens a stream resource into the large
object column that lets you circumvent the size limitations of SQL and PL/SQL. Figure 8-1 shows
the process of how the RETURNING INTO clause works.

You have the ability to write to the CLOB or NCLOB column from the beginning of either an
INSERT or UPDATE statement (which opens the stream) until the end of the transaction scope. A
COMMIT or ROLLBACK statement ends the transaction scope inside SQL or a PL/SQL block and
closes the large object stream. Another nuance would be the termination of an autonomous block,
which may also commit the write.

FIGURE 8-1 The implicit LOB locator function architecture

270 Oracle Database 11g PL/SQL Programming

The following INSERT and UPDATE statement prototypes demonstrate a specialized approach
to managing LOB datatypes. The RETURING keyword of the RETURNING INTO clause is awkward
at first, but it means channeling out the column reference into a local variable.

INSERT Statement
The INSERT statement initializes a CLOB column, and then it returns the locator through the
RETURNING INTO clause into a local variable. The local variable is passed by reference and has
an OUT mode of operation. You can check Chapter 6 for details on the OUT mode operation, but
essentially it disallows the submission of a value to a formal parameter in a function signature. In
the INSERT statement, the assignment inside the values clause acts as part of an IN mode operation.
The insert also starts a transaction scope. You can add to or replace the contents pointed to by the
locator during the scope of this transaction.

UPDATE Statement
The UPDATE statement sets a CLOB column value with EMPTY_CLOB function, and then it returns
the column locator through the RETURNING INTO clause into a local variable. The local variable
is passed by reference and has an OUT mode of operation. Like the INSERT statement, an update
also starts a transaction scope. You can add to or replace the contents pointed to by the locator
during the scope of this transaction.

Ultimately, reading and writing in chunks is necessary for files that are hundreds of megabytes,
gigabytes, or terabytes in size but not for files that are less than 100 megabytes. Some developers
resort to C, C++, C#, Java, or PHP to accomplish reading and writing small CLOB files. PL/SQL
supports your writing these files without relying on external files. The first subsection shows you

Chapter 8: Large Objects 271

how to read external files and write them as CLOB columns. The solution in this section uses PL/
SQL exclusively. The subsequent subsection provides a PHP example that shows you how to
upload a file, write the data stream directly to a CLOB column, and then read the column contents
into a web page.

NOTE
The examples in this section work with the item table from the
companion programs found on the publisher’s web site. The
introduction covers the code tree for this book.

The following subsections discuss methods for reading and writing CLOB or NCLOB columns
to database columns. The first one discusses a database server solution, and the second provides
you with a PL/SQL procedure to support uploading CLOB or NCLOB across the remotely.

PL/SQL Reading Files and Writing CLOB or NCLOB Columns
The DBMS_LOB package provides all the tools required to load large objects directly when they
exceed the byte stream limitations of SQL or PL/SQL. The first step requires that you define a
virtual directory. This is done for you when you run the create_user.sql script from the
publisher’s web site (found in the introduction). A virtual directory is an internal directory alias
that points to a canonical path.

In this example, you create a virtual directory that points to your local temporary directory.
You must connect as the SYSTEM user to define virtual directories. The following commands work
on your specific operating system:

Linux or Unix

CREATE DIRECTORY generic AS '/tmp';

Windows

CREATE DIRECTORY generic AS 'C:\Windows\temp';

After you create the virtual directory, you need to grant read permissions on the directory to
the plsql user. The syntax is

GRANT READ ON DIRECTORY generic TO plsql;

The next steps are reading the file and writing the data to the CLOB column. While a couple
small snippets could show concepts, a single working code example is provided. This way, you
can cut and paste it right in to your applications. The example uses NDS (Native Dynamic SQL).
You should check Chapter 11 if you’re curious about the mechanics of NDS.

The following load_clob_from_file procedure demonstrates how you do this:

-- This is found in load_clob_from_file.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE load_clob_from_file
(src_file_name IN VARCHAR2
, table_name IN VARCHAR2
, column_name IN VARCHAR2
, primary_key_name IN VARCHAR2
, primary_key_value IN VARCHAR2) IS
 -- Define local variables for DBMS_LOB.LOADCLOBFROMFILE procedure.
 des_clob CLOB;

272 Oracle Database 11g PL/SQL Programming

 src_clob BFILE := BFILENAME('GENERIC',src_file_name);
 des_offset NUMBER := 1;
 src_offset NUMBER := 1;
 ctx_lang NUMBER := dbms_lob.default_lang_ctx;
 warning NUMBER;
 -- Define a pre-reading size.
 src_clob_size NUMBER;
 -- Define local variable for Native Dynamic SQL.
 stmt VARCHAR2(2000);
BEGIN
 -- Opening source file is a mandatory operation.
 IF dbms_lob.fileexists(src_clob) = 1 AND NOT dbms_lob.isopen(src_clob) = 1 THEN
 src_clob_size := dbms_lob.getlength(src_clob);
 dbms_lob.open(src_clob,DBMS_LOB.LOB_READONLY);
 END IF;
 -- Assign dynamic string to statement.
 stmt := 'UPDATE '||table_name||' '
 || 'SET '||column_name||' = empty_clob() '
 || 'WHERE '||primary_key_name||' = '||''''||primary_key_value||''' '
 || 'RETURNING '||column_name||' INTO :locator';
 -- Run dynamic statement.
 EXECUTE IMMEDIATE stmt USING OUT des_clob;
 -- Read and write file to CLOB, close source file and commit.
 dbms_lob.loadclobfromfile(dest_lob => des_clob
 , src_bfile => src_clob
 , amount => dbms_lob.getlength(src_clob)
 , dest_offset => des_offset
 , src_offset => src_offset
 , bfile_csid => dbms_lob.default_csid
 , lang_context => ctx_lang
 , warning => warning);
 dbms_lob.close(src_clob);
 IF src_clob_size = dbms_lob.getlength(des_clob) THEN
 $IF $$DEBUG = 1 $THEN
 dbms_output.put_line('Success!');
 $END
 COMMIT;
 ELSE
 $IF $$DEBUG = 1 $THEN
 dbms_output.put_line('Failure.');
 $END
 RAISE dbms_lob.operation_failed;
 END IF;
END load_clob_from_file;
/

The procedure takes arguments that let you use it against any table that has a single CLOB
column and one column primary key. The DBMS_LOB.OPEN procedure call opens the external
file and reads it into a BFILE datatype. The BFILENAME function secures the canonical directory
path from the database catalog and appends the filename. The BFILENAME function returns a
canonical filename. The dynamic UPDATE statement sets the CLOB column to an empty_clob().
Then, the UPDATE statement returns the designated column into an output variable. The :locator
bind variable is the output variable in the NDS statement. You assign the CLOB locator to the
des_clob variable when the NDS statement runs.

Chapter 8: Large Objects 273

NOTE
An UPDATE statement that uses a RETURNING INTO changes the
target column value for all updated rows.

All the preceding actions read the source file and thread to a CLOB column locator into the
program scope. With these two resource handlers, the call to LOADCLOBFROMFILE procedure
transfers the contents of the open file to the CLOB locator. This read-and-write operation is not
subject to the 32,767-byte handling limitation of PL/SQL. It is also an approach that lets you read
large chunks of files directly into CLOB columns. The source file offset (src_offset) and
destination CLOB column offset (dest_offset) values let you parse chunks out of the file and
place them in the CLOB column. All you need to do is add the logic for a loop, since the sample
files are relatively small but larger than 4,000 bytes (which limits a direct assignment inside an
UPDATE statement).

You can test this stored procedure by running the following anonymous-block program:

-- This is found in load_clob_from_file.sql on the publisher's web site.
BEGIN
 FOR i IN (SELECT item_id
 FROM item
 WHERE item_title = 'The Lord of the Rings - Fellowship of the Ring'
 AND item_type IN
 (SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_table = 'ITEM'
 AND common_lookup_column = 'ITEM_TYPE'
 AND REGEXP_LIKE(common_lookup_type,'^(dvd|vhs)*','i')))
LOOP
 -- Call reading and writing CLOB procedure.
 load_clob_from_file(src_file_name => 'LOTRFellowship.txt'
 , table_name => 'ITEM'
 , column_name => 'ITEM_DESC'
 , primary_key_name => 'ITEM_ID'
 , primary_key_value => TO_CHAR(i.item_id));
 END LOOP;
END;
/

The call to the load_clob_from_file procedure is made for every item_id value that
meets the business rule, which is defined by the regular expression search. The regular expression
gets all DVD and VHS rows where the item_title is “The Lord of the Rings – Fellowship of the
Ring” and item_type maps to a string value starting with a DVD or VHS substring. Appendix E
explains more on how you can leverage regular expressions in your Oracle 11g PL/SQL code.

You can run the following formatting and query to confirm that the three rows now have
CLOB columns with data streams longer than 4,000 bytes.

-- Format column for output.
COL item_id FORMAT 9999
COL item_title FORMAT A50
COL size FORMAT 9,999,990

-- Query column size.

274 Oracle Database 11g PL/SQL Programming

SELECT item_id
, item_title
, dbms_lob.getlength(item_desc) AS "SIZE"
FROM item
WHERE dbms_lob.getlength(item_desc) > 0;

It yields the following three rows:

 ITEM_ID ITEM_TITLE SIZE
---------- -- ------
 1037 The Lord of the Rings - Fellowship of the Ring 5,072
 1038 The Lord of the Rings - Fellowship of the Ring 5,072
 1039 The Lord of the Rings - Fellowship of the Ring 5,072

This section has shown you how to load directly from files into CLOB columns. The same
rules apply for NCLOBs. There’s a slight difference in how you handle BLOB columns. The
difference is covered in the section “PL/SQL Reading Files and Writing BLOB Columns” later in
the chapter. You have also learned how to use the DBMS_LOB package to read external files. You
should note that there are fewer security restrictions than those required to process UTL_FILE or
external Java file I/O operations.

Uploading CLOBs to the Database
Like PL/SQL, external programming languages work with the same limitations for uploading and
writing CLOB or NCLOB columns. You must choose whether you enter small chunks (32,767
bytes) or large chunks of 1MB or beyond. This section assumes you want to upload and write
large chunks through external programs.

The following solution creates a PL/SQL procedure that can support any external web
programming language that works with the Oracle JDBC or OCI8 libraries. It allows you to reset
and add a complete CLOB column value, but you should remember truly huge files should be
written as chunks.

-- This is found in create_web_clob_loading.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE web_load_clob_from_file
(item_id_in IN NUMBER
, descriptor IN OUT CLOB) IS
BEGIN
 -- A FOR UPDATE makes this a DML transaction.
 UPDATE item
 SET item_desc = empty_clob()
 WHERE item_id = item_id_in
RETURNING item_desc INTO descriptor;

END web_load_clob_from_file;
/

This procedure lets you open a CLOB locator and access it from a remote program file. There
are three key features in this procedure. First, the formal parameter is a CLOB locator with an IN
OUT mode access. Second, the RETURNING INTO clause provides a local variable gateway into
the SET clause variable. Third, the lack of a COMMIT in the stored procedure leaves the CLOB
locked and DML transaction scope open for the external web program.

These sections have demonstrated how to read and write CLOB and NCLOB columns on the
database tier and through external programs.

Chapter 8: Large Objects 275

Binary Large Objects: BLOB Datatype
The BLOB datatype can define a column in a table or nested table. Like the CLOB datatype, it has
a maximum physical size between 8 and 128 terabytes. The BLOB datatype lets you store large
binary files, like images, music tracks, movies, or Portable Document Format (PDF) files. This
section examines how you can upload, write, and read BLOB datatypes.

NOTE
Like the CLOB datatype, the BLOB datatype has a maximum column
size set by the db_block_size database initialization parameter.
The default 8KB block size limits a BLOB to 8 terabytes.

BLOB columns are usually stored separately from the rest of the row in a table. Only the
descriptor or locator is physically stored in the column. The locator points to where the physical
contents of a BLOB are stored and provides a reference to a private work area in the SGA. This
work area allows us to read and write new chunks of data. Some refer to a BLOB handle as a
descriptor and reserve the moniker locator for when they work with external BFILEs. Either
works, but Oracle 11g documentation begins to consistently label both as locators. The book
bows to that convention and calls them locators.

Like the CLOB datatype, the BLOB datatype is an object type. It requires implicit or explicit
construction. You can implicitly construct a BLOB variable by assigning a null, an empty_blob()
constructor, or a hexadecimal string. Chapter 3 covers the initialization and assignment of values
to BLOB datatypes. You may also check the sidebar “Initializing an Object” earlier in this chapter
for more information on constructing an object.

The following examples review how you declare a BLOB variable:

 var1 BLOB; -- Declare a null reference to a BLOB.
 var1 BLOB := empty_blob(); -- Declare an empty BLOB.
 var2 BLOB := '43'||'41'||'52'; -- Declare a hexadecimal BLOB for CAR.

There are two ways to populate BLOB columns. You can load a server-side file by calling the
OPEN, LOADBLOBFROMFILE, and CLOSE procedures found in the DBMS_LOB package. You can
use an external programming language like Java or PHP. Java uses the JDBC libraries to write a
binary stream to a BLOB column, and PHP uses the OCI8 libraries to write a binary stream.

BLOB columns differ from scalar datatypes for the same reason that CLOB columns differ.
They are also not limited to NULL or NOT NULL states. BLOBs, CLOBs, and NCLOBs are either
NULL, empty, or populated as qualified earlier in Table 8-1.

As in the case of the CLOB columns, there is a problem with this approach. It doesn’t leverage
the RETURNING INTO clause, which you can add to any INSERT or UPDATE DML statements.
You transform INSERT or UPDATE statements into function calls by adding this clause.

The RETURING clause declares a formal OUT mode parameter as the target of the INTO
predicate. The clause anchors a column descriptor to the OUT mode variable. The actual parameter
must be a declared BLOB variable. It effectively opens a stream resource into the large object
column that lets you circumvent the size limitations of SQL and PL/SQL. Figure 8-1 earlier in this
chapter shows the process of how the RETURNING INTO clause works.

You have the ability to write to the BLOB column from the beginning of either an INSERT or
UPDATE statement (which opens the stream) until the end of the transaction scope. A COMMIT
or ROLLBACK statement ends the transaction scope inside SQL or a PL/SQL block and closes the
large object stream. Another nuance would be the termination of an autonomous block, which
may also commit the write.

276 Oracle Database 11g PL/SQL Programming

The following INSERT and UPDATE statement prototypes demonstrate a specialized approach
to managing LOB datatypes. They are mirror images to those that work with CLOB and NCLOB
datatypes but for the empty_blob() constructor. The RETURING keyword of the RETURNING
INTO clause means channeling out the column reference into a local variable.

INSERT Statement
The INSERT statement initializes a BLOB column, and then it returns the locator through the
RETURNING INTO clause into a local variable. The local variable is passed by reference and has
an OUT mode of operation. You can check Chapter 6 for details on the OUT mode operation, but
essentially it disallows the submission of a value to a formal parameter in a function signature. In
the INSERT statement, the assignment inside the values clause acts as part of an IN mode operation.
The insert also starts a transaction scope. You can add to or replace the contents pointed to by the
locator during the scope of this transaction.

UPDATE Statement
The UPDATE statement assumes column_name2 is a BLOB datatype. It sets the BLOB column’s
value, and then it returns the locator through the RETURNING INTO clause to a local variable.
The local variable is passed by reference and has an OUT mode of operation. Like the INSERT
statement, the UPDATE statement starts a transaction scope. You can add to or replace the contents
pointed to by the locator during the scope of this transaction.

The next two sections demonstrate how you read files larger than the PL/SQL limitation for
character data and write them to BLOB columns. The first one demonstrates how you can write
a PL/SQL module to load a BLOB. Unfortunately, you can’t read a BLOB from the database into
SQL*Plus as anything other than a binary string (not too much fun to most people). The reading

Chapter 8: Large Objects 277

and display examples use PHP to demonstrate how it is uploaded, written to the database, and
rendered in a web page.

PL/SQL Reading Files and Writing BLOB Columns
The DBMS_LOB package provides all the tools required to load large objects directly when they
exceed the buffer limitations for SQL or PL/SQL. The first step requires you define a virtual directory.
This was done for you if you ran the create_user.sql script from the publisher’s web site. As
mentioned in the section “PL/SQL Reading Files and Writing CLOB or NCLOB Columns,”
however, this virtual database directory must point to a canonical path. As in the CLOB example,
you need to create a virtual directory that maps to your operating system temporary directory.

You must connect as the SYSTEM user to define virtual directories. If you created this virtual
directory in the last section, you can skip redefining them here. The following commands work
depending on your specific operating system:

Linux or Unix

CREATE DIRECTORY generic AS '/tmp';

Windows

CREATE DIRECTORY generic AS 'C:\Windows\temp';

After you create the virtual directory, you need to grant read permissions on the directory to
the plsql user. The syntax is

GRANT READ ON DIRECTORY generic TO plsql;

The next steps are reading the file and writing the data to the BLOB column. While a couple
small snippets could show concepts, a single working code example is provided. The example uses
NDS (Native Dynamic SQL), which makes a forward reference to material covered in Chapter 11.

The following load_blob_from_file procedure demonstrates how you do this:

-- This is found in load_blob_from_file.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE load_blob_from_file
(src_file_name IN VARCHAR2
, table_name IN VARCHAR2
, column_name IN VARCHAR2
, primary_key_name IN VARCHAR2
, primary_key_value IN VARCHAR2) IS
 -- Define local variables for DBMS_LOB.LOADBLOBFROMFILE procedure.
 des_blob BLOB;
 src_blob BFILE := BFILENAME('GENERIC',src_file_name);
 des_offset NUMBER := 1;
 src_offset NUMBER := 1;
 -- Define a pre-reading size.
 src_blob_size NUMBER;
 -- Define local variable for Native Dynamic SQL.
 stmt VARCHAR2(2000);
BEGIN
 -- Opening source file is a mandatory operation.
 IF dbms_lob.fileexists(src_blob) = 1 AND NOT dbms_lob.isopen(src_blob) = 1 THEN
 src_blob_size := dbms_lob.getlength(src_blob);
 dbms_lob.open(src_blob,DBMS_LOB.LOB_READONLY);

278 Oracle Database 11g PL/SQL Programming

 END IF;
 -- Assign dynamic string to statement.

 stmt := 'UPDATE '||table_name||' '
 || 'SET '||column_name||' = empty_blob() '
 || 'WHERE '||primary_key_name||' = '||''''||primary_key_value||''' '
 || 'RETURNING '||column_name||' INTO :locator';
 -- Run dynamic statement.
 EXECUTE IMMEDIATE stmt USING OUT des_blob;
 -- Read and write file to BLOB.
 dbms_lob.loadblobfromfile(dest_lob => des_blob
 , src_bfile => src_blob
 , amount => dbms_lob.getlength(src_blob)
 , dest_offset => des_offset
 , src_offset => src_offset);
 -- Close open source file.
 dbms_lob.close(src_blob);
 -- Commit write.
 IF src_blob_size = dbms_lob.getlength(des_blob) THEN
 $IF $$DEBUG = 1 $THEN
 dbms_output.put_line('Success!');
 $END
 COMMIT;
 ELSE
 $IF $$DEBUG = 1 $THEN
 dbms_output.put_line('Failure.');
 $END
 RAISE dbms_lob.operation_failed;
 END IF;
END load_blob_from_file;
/

The procedure takes arguments that let you use it against any table that has a single BLOB
column and one column primary key. After validating the file exists and isn’t open, the
DBMS_LOB.OPEN procedure call opens the external file and reads it into a BFILE datatype.
The BFILENAME function secures the canonical directory path from the database catalog and
appends the filename. The BFILENAME function returns a canonical filename. The dynamic
UPDATE statement sets the BLOB column to an empty_blob() and then returns the column into
an output variable. The :locator bind variable is the output variable in the NDS statement. The
program returns a BLOB locator and assigns it to the des_blob variable when the NDS statement
runs. The external file size is compared against the uploaded BLOB column before committing
the transaction. Conditional code blocks signal successful or unsuccessful completion of the
procedure when you’ve set PLSQL_CCFLAGS option in the session as qualified in Chapter 4.

All the preceding actions read the source file and destination BLOB column locator into the
program scope. With these two resource handlers, the call to LOADBLOBFROMFILE procedure
transfers the contents of the open file to the BLOB locator. This read-and-write operation lets you
put large chunks of files directly into BLOB columns. The source file offset (src_offset) and
destination BLOB column offset (dest_offset) values let you parse chunks out of the file and
place them in the BLOB column. You can add a loop to approach the upload a chunk at a time
for very large binary files, like movies.

You can test this stored procedure by running the following anonymous-block program:

-- This is found in load_blob_from_file.sql on the publisher's web site.
BEGIN

Chapter 8: Large Objects 279

 FOR i IN (SELECT item_id
 FROM item
 WHERE item_title = 'Harry Potter and the Sorcerer''s Stone'
 AND item_type IN
 (SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_table = 'ITEM'
 AND common_lookup_column = 'ITEM_TYPE'
 AND REGEXP_LIKE(common_lookup_type,'^(dvd|vhs)*','i'))) LOOP
 -- Call procedure for matching rows.
 load_blob_from_file(src_file_name => 'HarryPotter1.png'
 , table_name => 'ITEM'
 , column_name => 'ITEM_BLOB'
 , primary_key_name => 'ITEM_ID'
 , primary_key_value => TO_CHAR(i.item_id));
 END LOOP;
END;
/

The call to the load_blob_from_file procedure is made for every item_id value that
meets the business rule, which is defined by the regular expression search. The regular expression
gets all DVD and VHS rows where the item_title is “Harry Potter and the Socerer’s Stone”;
the apostrophe is backquoted to treat the embedded the single quote as an embedded apostrophe.
The item_type maps to a string value starting with a DVD or VHS substring, which means images
are loaded into all the target columns for any matching rows. Appendix E explains more on how
regular expressions work in Oracle 11g.

You can run the following formatting and query to confirm that the two rows now have BLOB
columns with binary data streams longer.

-- Format column for output.
COL item_id FORMAT 9999
COL item_title FORMAT A50
COL size FORMAT 9,999,990

-- Query column size.
SELECT item_id
, item_title
, dbms_lob.getlength(item_blob) AS "SIZE"
FROM item
WHERE dbms_lob.getlength(item_blob) > 0;

It yields the following three rows:

 ITEM_ID ITEM_TITLE SIZE
---------- -- -------
 1021 Harry Potter and the Sorcerer's Stone 121,624
 1022 Harry Potter and the Sorcerer's Stone 121,624

This section has shown you how to load directly from files into BLOB columns. You have also
learned revisited how to use the DBMS_LOB package to read external files. You should note that
there is less security restriction than that required to perform UTL_FILE or external Java file I/O
operations.

280 Oracle Database 11g PL/SQL Programming

Uploading BLOBs to the Database
As discussed in the parallel section for CLOB columns, external programming languages work with
the same limitations for uploading and writing BLOB columns. You must choose which language
and approach work best for your organization. This section assumes you want to upload the entire
image as a binary file.

The following solution creates a PL/SQL procedure that can support any external web
programming language that works with the Oracle JDBC or OCI8 libraries. It allows you to
reset and add a complete BLOB column value, but you should remember that truly huge files
should be written as chunks.

-- This is found in create_web_blob_loading.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE web_load_blob_from_file
(item_id_in IN NUMBER
, descriptor IN OUT BLOB) IS
BEGIN
 -- A FOR UPDATE makes this a DML transaction.
 UPDATE item
 SET item_blob = empty_blob()
 WHERE item_id = item_id_in
 RETURNING item_blob INTO descriptor;
END web_load_blob_from_file;
/

This procedure lets you open a BLOB locator and access it from a PHP library file. There are
three key features in this procedure. First, the formal parameter is a BLOB locator with an IN OUT
mode access. Second, the RETURNING INTO clause provides a local variable gateway into the
SET clause variable. Third, the lack of a COMMIT leaves the BLOB locked and DML transaction
scope open for external web programs.

These sections have demonstrated how to read and write BLOB columns on the database tier
and through external programs.

SecureFiles
SecureFiles are specialized large objects. They are declared with special storage parameters that
let you encrypt, compress, and deduplicate them.

Oracle 11g lets you store SecureFiles in BLOB, CLOB, and NCLOB columns. SecureFiles let
you encrypt, compress, and deduplicate LOBs. They work on a principle of Transparent Data
Encryption (TDE) and use an Oracle Wallet as the encryption key.

NOTE
This is available only in the Oracle 11g Enterprise Edition.

TDE lets you choose a non-default encryption algorithm. You can choose from the following:

3DES168

AES128

AES192 (default)

AES256

■

■

■

■

Chapter 8: Large Objects 281

You can check whether your instance is configured to work with SecureFiles by querying the
v$parameter view. The query and SQL*Plus formatting are

COLUMN name FORMAT A14
COLUMN value FORMAT A14
SELECT name, value FROM v$parameter WHERE name LIKE 'db_securefile';

You should have at least the following to work with SecureFiles:

NAME VALUE
-------------- --------------
db_securefile PERMITTED

The next step requires that you set up an encryption password in an Oracle 11g Wallet. The
easiest way to configure the Wallet is to run the Oracle 11g Wallet Manager.

The commands are noted here:

Linux or Unix

$ORACLE_HOME/bin/owm

Windows

C:> %ORACLE_HOME%\bin\launch.exe "oracle_canonical_path\bin" owm.cl

The menu command is probably easier. It is: Start | Programs | Oracle – Oracle Home |
Integrated Management Tools | Wallet Manager. Inside the Wallet Manager you can build an
encryption key. You should save it to the default location, which is

Linux or Unix

/etc/ORACLE/WALLETS/username

Windows

%USERPROFILE%\ORACLE\WALLETS

The %USERPROFILE% maps to the user name on a Windows platform. On some platforms you
must put directions into the sqlnet.ora file, which you’ll find in the /network/admin (reverse
the slashes for Windows) directory off the Oracle Home. The wallet filename is ewallet.p12.

You should enter the following in the sqlnet.ora file:

ENCRYPTION_WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA = (DIRECTORY=<canonical_path>\wallet)))

After creating the Wallet password, you should create a special tablespace for your
SecureFiles, like

CREATE TABLESPACE securefiles
DATAFILE '<canonical_path>\sec_file.dbf' SIZE 5M
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

282 Oracle Database 11g PL/SQL Programming

Keeping in harmony with the video store example, you’ll add a secure file CLOB column
to the item table. The following syntax allows you to create the new column as a secure file:

ALTER TABLE item ADD (sec_file CLOB) LOB(sec_file)
STORE AS SECUREFILE sec_file (TABLESPACE securefile);

You can now alter and encrypt the column:

ALTER TABLE item MODIFY LOB(sec_file) (ENCRYPT USING '3DES168');

You now have an encrypted column in the item table. Any internally stored LOB supports
SecureFiles, but you should put them in their own tablespace.

Binary Files: BFILE Datatype
The BFILE (binary file) datatype works differently than its counterpart BLOB, CLOB, and NCLOB
datatypes. The largest differences are that BFILE values are read-only LOB datatypes and stored
externally from the database. Unlike BLOB, CLOB, and NCLOB datatypes, the BFILE has a maximum
physical size set by the operating system.

External BFILEs represent data that doesn’t fit nicely into standard datatypes, such as images,
PDF files, Microsoft Office documents, and QuickTime movies. These external files are related to
business elements inside the database by storing an external file descriptor in a BFILE column.
They are generally served to Internet or intranet customers through web browsers. Web browsers
use the MIME content-type to interpret how they should render these documents, which generally
require browser plug-ins to manage access and display.

The first subsection explores how you configure and use the database to leverage external
files that are referenced as BFILE columns. You will set up another virtual directory (like those
in the earlier sections), define a BFILE locator, and examine how virtual directories limit your
access to the canonical filenames of external BFILE source files. Synchronizing the Apache and
Oracle virtual directories, while an administrative headache, is a traditional deployment strategy
when using external BFILE source files.

The second subsection shows you how to extend the database catalog and read canonical
filenames, which simplifies how you call external files from server-side programs. This is useful
when you want to store files internally in the database. Appendix D also shows you how to
leverage canonical filename resolution from the database, including how to read BFILE source
files into server-side JServlets.

Creating and Using Virtual Directories
Virtual directories are like synonyms; they point to another thing— a physical directory on the
operating system. The virtual and physical directory names are stored in the database catalog and
viewable in the dba_directories view. Database users can view them when they have been
granted the SELECT privilege on the view or the SELECT_CATALOG_ROLE role. By default, the
SYSTEM user accesses the dba_directories view through the SELECT_CATALOG_ROLE role.

You typically create virtual directories as the SYSTEM user or as another database user that enjoys
the DBA role privilege. Alternatively, the SYSTEM user can grant the CREATE ANY DIRECTORY
privilege to a user. This alleviates a burden from the DBA but can lead to a proliferation of virtual
directories and potential naming conflicts. You should generally disallow users other than the
DBA to create virtual directories.

All virtual directories are actually owned by the SYS user. The physical directory is always
the canonical path, which means a fully qualified directory path. A Linux or Unix canonical path

Chapter 8: Large Objects 283

starts at a mount point and ends at the desired directory. A Windows canonical file path starts at
the physical drive letter and as in Linux or Unix ends at the desired directory.

You should connect as the SYSTEM user and define an image virtual directory. The following
commands work on your specific operating system:

Linux or Unix

CREATE DIRECTORY images AS '/var/www/html/images';

Windows

CREATE DIRECTORY images AS 'C:\Program Files\Apache Group\Apache2\htdocs\images';

After you create the virtual directory, as the SYSTEM user you need to grant read permissions
on the directory to the plsql user. The syntax is

GRANT READ ON DIRECTORY images TO plsql;

The next steps typically involve creating a virtual alias and directory in your Apache
httpd.conf file. If you wish to configure the Apache virtual alias and directory, you can check
the sidebar “Creating an Apache Virtual Alias and Directory.” There are very good reasons to set
virtual alias and directories in Apache. As a rule, you must mirror the definition in the Apache
alias and virtual directory with the configuration of the Oracle database virtual directory. The rule
exists (rumor has it) because the DBMS_LOB package FILEGETNAME procedure provides only the
base filename; it doesn’t provide a means to find canonical filenames. Canonical filenames are
the combination of canonical paths and base filenames.

Creating an Apache Virtual Alias and Directory
Two Apache configuration steps are required when you want to enable a new virtual
directory. You need to configure an alias and directory in your httpd.conf file, as follows
for your respective platform.

Linux

Alias /images/ "/var/www/html/images"

<Directory "/var/www/html/images">
 Options None
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

Windows

Alias /images/ "C:/Program Files/Apache Group/Apache2/htdocs/images/"

<Directory "C:/Program Files/Apache Group/Apache2/htdocs/images">
 Options None
 AllowOverride None

284 Oracle Database 11g PL/SQL Programming

As seen in the sections “PL/SQL Reading Files and Writing CLOB or NCLOB Columns” and
“Reading Files and Writing BLOB Columns,” you can open a file in your PL/SQL block without
knowing the canonical path. This happens because the OPEN procedure in the DBMS_LOB
package resolves it for you. When you read the file through the virtual directory by using the
OPEN procedure, you must provide a separate module to render images in web pages. This is
required because the file has been converted into a raw byte stream when opened for reading.
Whenever you read the file as a byte stream, you must convert the file back into an image when
rendering it in a web page. The section “PHP Uploading Files and Writing BLOB Columns” earlier
in this chapter discusses why the conversion is required.

You should copy the Raiders3.png file from the publisher’s web site and put it in your
platform-specific physical directory that maps to your images virtual directory in the database.
You can find that physical system directory (or canonical path) by writing the following query as
the SYSTEM user:

SELECT * FROM dba_directories WHERE directory_name = 'IMAGES';

After you’ve configured the virtual directory and put the Raiders3.png file in the correct
directory, you should insert a BFILE locator into a database column for testing. You can use the
following statement to update a column with a BFILE locator:

UPDATE item
item_photo = BFILENAME('IMAGES','Raiders3.png')
WHERE item_id = 1055;

You need to commit the update. If you forget that step, later you may get a browser error
telling you the image can’t be displayed because it contains errors. This is the standard error when
the BFILE column returns a null or empty stream.

COMMIT;

You can verify that the file exists and the virtual directory resolves. Confirming the existence
of the file before attempting to open it provides your program with more control. The following
anonymous block lets you confirm the file existence and get its file size.

Naturally, you must enable SERVEROUTPUT in SQL*Plus to see any output:

SQL> SET SERVEROUTPUT ON SIZE 1000000

Then, you can run this anonymous-block program.

DECLARE
 file_locator BFILE;
BEGIN
 SELECT item_photo INTO file_locator FROM item WHERE item_id = 1055;

 Order allow,deny
 Allow from all
</Directory>

After you make these changes in your Apache configuration file, you must stop and start
your Apache instance. You use the Apache service on a Windows system and the apachectl
shell script on Linux or Unix systems.

Chapter 8: Large Objects 285

 IF dbms_lob.fileexists(file_locator) = 1 THEN
 dbms_output.put_line('File is: ['||dbms_lob.getlength(file_locator)|| ']');
 ELSE
 dbms_output.put_line('No file found.');
 END IF;
END;
/

The DBMS_LOB.FILEEXISTS function was built to work in both SQL and PL/SQL. Since
SQL does not support a native Boolean datatype, the function returns a 1 when it finds a file and
0 when it fails. The anonymous block should return the following:

File is: [126860]

If you’ve successfully added both an images alias and a virtual directory to your Apache
httpd.conf file, you should be able to display the file by using the following URL:

http://<hostname>.<domain_name>/images/Raiders3.png

Figure 8-2 depicts the image file found by the URL. You should note both the difference and
similarity between the browser titles of Figures 8-2 and 8-3. Figure 8-3 says that a PHP program
produced the image, whereas Figure 8-2 says that an image was read from the server. Both use
parentheses to identify the rendered PNG image and its pixel dimensions.

While the database can read the file without an Apache alias and virtual directory, the reading
process converts it to a byte stream. This puts the complexity of making an image reference on par
with reading a BLOB column from the database. You will need to convert the byte stream back
into a file. This is true whether you’re using C, C++, C#, Java, or PHP to accomplish the task.

FIGURE 8-2 PNG file rendered as an image (201 × 300 pixels)

286 Oracle Database 11g PL/SQL Programming

The following ConvertFileToImage.php program demonstrates how you read an external
file through a virtual database directory, convert it from a file into a byte stream, and convert it
from a byte stream to an image. This program can read a physical file from any virtual database
directory because the program leverages the database catalog to resolve the physical file location.

-- This is found in ConvertFileToImage.php on the publisher's web site.
<?php
 // Return successful attempt to connect to the database.
 if ($c = @oci_new_connect("plsql","plsql","orcl")) {
 // Declare input variables.
 (isset($_GET['id'])) ? $id = (int) $_GET['id'] : $id = 1021;
 // Declare a SQL SELECT statement returning a CLOB.
 $stmt = "SELECT item_photo FROM item WHERE item_id = :id";
 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);
 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);
 // Execute the PL/SQL statement.
 if (oci_execute($s)) {
 // Return a LOB descriptor and free resource as the value.
 while (oci_fetch($s)) {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 if (is_object(oci_result($s,$i))) {
 if ($size = oci_result($s,$i)->size()) {
 $data = oci_result($s,$i)->read($size); }
 else
 $data = " "; }
 else {
 if (oci_field_is_null($s,$i))
 $data = " ";
 else
 $data = oci_result($s,$i); }}
 // Free statement resources.
 oci_free_statement($s);
 // Print the header first.
 header('Content-type: image/png');
 imagepng(imagecreatefromstring($data)); }
 // Disconnect from database.
 oci_close($c); }
 else {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
"; }
?>

The program reads the BFILE locator, which then implicitly opens the BFILE into a binary
stream. The binary stream is read by the OCI8 read() method, converted to a file resource by
the imagecreatefromstring() function, and converted to an image by the imagepng()
function. Figure 8-3 shows the displayed image from this program.

Another approach to rending image files involves what’s known as structural coupling between
the virtual Apache and database directories. This means that you define the database virtual
directory as images when you also define the Apache alias as images. This lets you build a relative

Chapter 8: Large Objects 287

path to the image file location in the src element of the img tag. It also avoids the issue of
converting a binary stream back into a file.

The first step in accomplishing this type of approach requires a wrapper function around the
FILEGETNAME procedure of the DBMS_LOB package. The get_bfilename function delivers that
wrapper. You may reuse this program for other tables because it uses NDS (Native Dynamic SQL)
to query and return the data. The encapsulation of the SELECT statement inside the anonymous
block lets you capture the return value easily. You will find more on NDS in Chapter 11.

-- This is found in get_bfilename.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION get_bfilename
(table_name VARCHAR2
, column_name VARCHAR2
, primary_key_name VARCHAR2
, primary_key_value VARCHAR2)
RETURN VARCHAR2 IS
 -- Define a locator.
 locator BFILE;
 -- Define alias and filename.
 dir_alias VARCHAR2(255);
 directory VARCHAR2(255);
 file_name VARCHAR2(255);
 -- Define local variable for Native Dynamic SQL.
 stmt VARCHAR2(2000);
 delimiter VARCHAR2(1) := '/';
 -- Define a local exception for size violation.
 directory_num EXCEPTION;
 PRAGMA EXCEPTION_INIT(directory_num,-22285);
BEGIN

FIGURE 8-3 BFILE column rendered as a PNG image (201 × 300 pixels)

288 Oracle Database 11g PL/SQL Programming

 -- Wrap the statement in an anonymous block to create and OUT mode variable.
 stmt := 'BEGIN '
 || 'SELECT '||column_name||' '
 || 'INTO :locator '
 || 'FROM '||table_name||' '
 || 'WHERE '||primary_key_name||' = '||''''||primary_key_value||''';'
 || 'END;';
 -- Return a scalar query result from a dynamic SQL statement.
 EXECUTE IMMEDIATE stmt USING OUT locator;
 -- Check for available locator.
 IF locator IS NOT NULL THEN

dbms_lob.filegetname(locator,dir_alias,file_name);
 END IF;
 -- Return filename.
 RETURN delimiter||LOWER(dir_alias)||delimiter||file_name;
EXCEPTION
 WHEN directory_num THEN
 RETURN NULL;
END get_bfilename;
/

The dir_alias is the virtual database directory name. The function returns the dir_alias,
a / (forward slash), and a base filename. Assuming that you’re using the Raiders3.png file, you
can call the standalone function through a query:

SELECT get_bfilename('ITEM','ITEM_PHOTO','ITEM_ID','1055') AS directory
FROM dual;

It should return:

DIRECTORY

/images/Raiders3.png

The QueryRelativeBFILE.php program uses the get_bfilename return value as the
src element of the img tag. This works only when the Apache alias also points to the same
location. The query inside the PHP program makes a call to the get_bfilename function and
returns the value as the third element in the query. The PHP program assumes that the virtual path
is the only string returned with a leading / forward slash. You probably want to explore other
alternatives when you can have more than one image location in a single row of data.

The QueryRelativeBFILE.php follows:

-- This is found in QueryRelativeBFILE.php on the publisher's web site.
<?php
 // Declare input variables.
 (isset($_GET['id'])) ? $id = (int) $_GET['id'] : $id = 1021;
 // Call the local function.
 query_insert($id);
 // Query results after an insert.
 function query_insert($id) {
 // Return successful attempt to connect to the database.
 if ($c = @oci_connect("plsql","plsql","orcl")) {
 // Declare a SQL SELECT statement returning a CLOB.
 $stmt = "SELECT item_title
 , item_desc

Chapter 8: Large Objects 289

 , get_bfilename('ITEM','ITEM_PHOTO','ITEM_ID',:id)
 FROM item
 WHERE item_id = :id";
 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);
 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);
 // Execute the PL/SQL statement.
 if (oci_execute($s)) {
 // Return a LOB descriptor as the value.
 while (oci_fetch($s)) {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 if (is_object(oci_result($s,$i))) {
 if ($size = oci_result($s,$i)->size())
 if (oci_field_type($s,$i) == 'CLOB')
 $data = oci_result($s,$i)->read($size);
 else
 $data = " "; }
 else {
 if (oci_field_is_null($s,$i))
 $title = " ";
 else
 if (substr(oci_result($s,$i),0,1) == '/')
 $photo = oci_result($s,$i);
 else
 $title = oci_result($s,$i); }
 } // End of the while(oci_fetch($s)) loop.
 // Free statement resources.
 oci_free_statement($s);
 // Format HTML table to display BLOB photo and CLOB description.
 $out = '<table border="1" cellpadding="5" cellspacing="0">';
 $out .= '<tr>';
 $out .= '<td align="center" class="e">'.$title.'</td>';
 $out .= '</tr>';
 $out .= '<tr><td class="v">';
 $out .= '<div>';
 $out .= '<div style="margin-right:5px;float:left">';
 $out .= '';
 $out .= '</div>';
 $out .= '<div style="position=relative;">'.$data.'</div>';
 $out .= '</div>';
 $out .= '</td></tr>';
 $out .= '</table>'; }
 // Print the HTML table.
 print $out;
 // Disconnect from database.
 oci_close($c); }
 else {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
"; }}
?>

290 Oracle Database 11g PL/SQL Programming

While the QueryRelativeBFILE.php works for web-based solutions, it fails to work for
server-side programs that require the canonical filename, which is always an absolute value. It is
less expensive in terms of machine resources because it only reads the image file and serves it to
the Apache server. The problems with this approach are twofold. First, you have an administrative
duty to synchronize the two virtual directories. Second, any user can view the source and determine
some information about your physical file structure. As a security precaution, consuming a small
amount of overhead to obfuscate (hide) the location of files is a good thing. Likewise, eliminating
the job of synchronizing Apache and Oracle 11g virtual directories makes your application less
expensive to maintain. Figure 8-4 shows the output from of this relative image query.

This section has shown you how to configure and use virtual directories to support external
BFILE locators. It has also compared the process of using Apache alias and virtual directories to
the process of using the database to resolve of external file locations. The next section shows you
how to remake the rules, and how to access the canonical path names and filenames stored in the
database catalog.

Reading Canonical Path Names and Filenames
This section demonstrates how you can modify the database catalog and enable your programs
to translate BFILE locator to secure both the canonical path name and filename. You must open
permissions to secure the virtual directory information owned by the SYS user. As a rule of thumb,
you should grant access to SYS objects with care and allow only the minimum access required
when building your database applications. This generally translates to a two-step process. First,
grant the privilege from SYS to SYSTEM. Second, encapsulate the privilege by writing a stored
function or procedure (and don’t forget to wrap the source from prying eyes, too).

FIGURE 8-4 Rendered page from the QueryRelativeBFILE.php program

Chapter 8: Large Objects 291

The data required for capturing canonical paths is found in the dba_directories view.
The SYSTEM user only has privileges through the SELECT_CATALOG_ROLE role, which limits
the SYSTEM user access to the dba_directories view. Role privileges disallow a user to build
a stored function or procedure that queries the catalog view. Hence, the SYSTEM user can’t access
the dba_directories view through the SELECT_CATALOG_ROLE role.

You need to connect as the privileged SYS user as follows:

sqlplus '/ as sysdba'

This will require the database administrator password. This is typically the same as the
SYSTEM password. Sometimes the passwords differ because a company chooses to monitor the
gatekeeper more closely as a result of Sarbane-Oxley compliance. After connecting as the SYS
user, you should grant the minimum necessary privilege, which is SELECT on the specific view.

The grant command is

GRANT select ON dba_directories TO system;

Now, you should connect as the SYSTEM user and create the get_directory_path
function, as follows:

-- This is found in get_directory_path.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION get_directory_path
(virtual_directory IN VARCHAR2)
RETURN VARCHAR2 IS
 -- Define return variable.
 directory_path VARCHAR2(256) := 'C:\';
 -- Define dynamic cursor.
 CURSOR get_directory (virtual_directory VARCHAR2) IS
 SELECT directory_path
 FROM sys.dba_directories
 WHERE directory_name = virtual_directory;
 -- Define a local exception for name violation.
 directory_name EXCEPTION;
 PRAGMA EXCEPTION_INIT(directory_name,-22284);
BEGIN
 OPEN get_directory (virtual_directory);
 FETCH get_directory
 INTO directory_path;
 CLOSE get_directory;
 -- Return filename.
 RETURN directory_path;
EXCEPTION
 WHEN directory_name THEN
 RETURN NULL;
END get_directory_path;
/

The get_directory_path takes a virtual directory as its only formal parameter. It uses the
virtual directory to find the canonical path. You can use the FILEGETNAME procedure in the
DBMS_LOB package to find the virtual directory. It returns the canonical path and base filename
for any BFILE locator.

292 Oracle Database 11g PL/SQL Programming

The get_canonical_bfilename uses NDS (Native Dynamic SQL) to return a BFILE
column. This way you write one function for any number of possible BFILE columns. The only
problem with this example is that it depends on a single-column primary key for all target tables.
You should compile the get_canonical_bfilename function in the SYSTEM schema after
you’ve compiled the get_directory_path function.

-- This is found in get_canonical_bfilename.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION get_canonical_bfilename
(table_name IN VARCHAR2
, bfile_column_name IN VARCHAR2
, primary_key IN VARCHAR2
, primary_key_value IN VARCHAR2
, operating_system IN VARCHAR2 := 'WINDOWS')
RETURN VARCHAR2 IS
 -- Declare default delimiter.
 delimiter VARCHAR2(1) := '\';
 -- Define statement variable.
 stmt VARCHAR2(200);
 -- Define a locator.
 locator BFILE;
 -- Define alias and filename.
 dir_alias VARCHAR2(255);
 directory VARCHAR2(255);
 file_name VARCHAR2(255);
 -- Define a local exception for size violation.
 directory_num EXCEPTION;
 PRAGMA EXCEPTION_INIT(directory_num,-22285);
BEGIN
 -- Assign dynamic string to statement.
 stmt := 'BEGIN '
 || ' SELECT '||bfile_column_name||' '
 || ' INTO :column_value '
 || ' FROM '||table_name||' '
 || ' WHERE '||primary_key||'='||''''||primary_key_value||''''||';'
 || 'END;';
 -- Run dynamic statement.
 EXECUTE IMMEDIATE stmt USING OUT locator;
 -- Check for available locator.
 IF locator IS NOT NULL THEN

dbms_lob.filegetname(locator,dir_alias,file_name);
 END IF;
 -- Check operating system and swap delimiter when necessary.
 IF operating_system <> 'WINDOWS' THEN
 delimiter := '/';
 END IF;
 -- Create a canonical filename.
 file_name := get_directory_path(dir_alias) || delimiter || file_name;
 -- Return filename.
 RETURN file_name;
EXCEPTION
 WHEN directory_num THEN

Chapter 8: Large Objects 293

 RETURN NULL;
END get_canonical_bfilename;
/

The dir_alias (database virtual directory), directory (canonical directory), and
file_name (base filename) variables must be defined as 255 character–long strings before
calling the FILEGETNAME procedure from the DBMS_LOB package. The balance of the function
concatenates (glues) the canonical path and base filename together into a canonical filename.

While you may choose to grant this to only one or a select handful of scheme (or users), you
should consider making it a public grant like this:

GRANT EXECUTE ON get_canonical_bfilename TO PUBLIC;

Assuming you’ll want to build a synonym because that’s how the example works, as the
SYSTEM user you need to grant the CREATE ANY SYNONYM privilege to the plsql user. The
syntax is

GRANT CREATE ANY SYNONYM TO plsql;

You also need to create synonyms for any tables or views that the SYSTEM user should be
able to query. In this example, only the item table from the video store is required:

CREATE SYNONYM item ON plsql.item;

While this synonym can’t translate until the reciprocal grant is made, you’ll do that in a
moment. Reconnect as the plsql user:

SQL> connect plsql/plsql@orcl

and create the synonym:

CREATE SYNONYM get_canonical_bfilename FOR system.get_canonical_bfilename;

Then, grant the SELECT privilege to the SYSTEM user:

GRANT SELECT ON item TO SYSTEM;

Now you can call the get_canonical_bfilename and get the canonical filename for the
Raiders3.png file:

CALL get_canonical_bfilename('ITEM','ITEM_PHOTO','ITEM_ID','1055' INTO :directory;

It returns the operating system specific values (provided you’ve set it up earlier):

Linux or Unix

/var/www/html/images/Raiders3.png

Windows

C:\Program Files\Apache Group\Apache2\htdocs\images\Raiders3.png

This approach avoids configuring the Apache alias and virtual directory. It is also a handy
alternative in some organizations where control of virtual paths is strictly regulated and restricted.
However, it still requires you to read and convert the binary stream into an image or document.
At least this is true for web pages. Other server-side programs can leverage this mechanism to

294 Oracle Database 11g PL/SQL Programming

read images directly from their physical location. Appendix D has an example that uses this
approach to reading files.

Two programs let you implement this type of solution much as you implemented a read of both
CLOB and BLOB columns in the section “PHP Uploading Files and Writing BLOB Columns” earlier
in this chapter. Before working through these steps, you should download the Raiders3.txt
file from the publisher’s web site, and load it to the database with one of the tools introduced
earlier in this chapter.

The file upload is more complex than the previous examples because the file directory is no
longer guaranteed to be a subdirectory of the directory containing an uploading web page. Therefore,
we’ll focus on the two scripts that are required to read and display the externally stored BFILE
and internally stored CLOB description.

The QueryItemBFILE.php script reads the title and CLOB description from the item table,
and the script calls the ReadCanonicalFileToImage.php script inside a src element of an
img tag. The program follows:

-- This is found in QueryItemBFILE.php on the publisher's web site.
<?php
 // Declare input variables.
 (isset($_GET['id'])) ? $id = (int) $_GET['id'] : $id = 1021;
 // Call the local function.
 query_insert($id);
 // Query results after an insert.
 function query_insert($id) {
 // Return successful attempt to connect to the database.
 if ($c = @oci_connect("plsql","plsql","orcl")) {
 // Declare a SQL SELECT statement returning a CLOB.
 $stmt = "SELECT item_title, item_desc FROM item WHERE item_id = :id";
 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);
 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);
 // Execute the PL/SQL statement.
 if (oci_execute($s)) {
 // Return a LOB descriptor as the value.
 while (oci_fetch($s)) {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 if (is_object(oci_result($s,$i))) {
 if ($size = oci_result($s,$i)->size())

$data = oci_result($s,$i)->read($size);
 else
 $data = " "; }
 else {
 if (oci_field_is_null($s,$i))
 $title = " ";
 else

$title = oci_result($s,$i); }}
 // Free statement resources.
 oci_free_statement($s);
 // Format HTML table to display BLOB photo and CLOB description.
 $out = '<table border="1" cellpadding="5" cellspacing="0">';

Chapter 8: Large Objects 295

 $out .= '<tr>';
 $out .= '<td align="center" class="e">'.$title.'</td>';
 $out .= '</tr>';
 $out .= '<tr><td class="v">';
 $out .= '<div>';
 $out .= '<div style="margin-right:5px;float:left">';
 $out .= '';
 $out .= '</div>';
 $out .= '<div style="position=relative;">'.$data.'</div>';
 $out .= '</div>';
 $out .= '</td></tr>';
 $out .= '</table>'; }
 // Print the HTML table.
 print $out;
 // Disconnect from database.
 oci_close($c); }
 else {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
"; }}
?>

The program reads and assigns the CLOB column to the $data variable, and the item_title
column to the $title variable. You should note that there aren’t any changes required to the
Apache alias or virtual directory configuration for this solution.

MIME Content Types and Configuring Zend Core for Oracle
Two principles define how you display images to web pages when you read them from
BLOB columns as raw byte streams. The first principle involves how web browsers read
images from files. They read files through asynchronous threads by referencing the src
element in an img tag. The src element provides a URL or relative reference inside the
directory hierarchy of the web server. The second principle concerns how browsers read
image files. They read image files by comparing their file extensions and assigning a MIME
content-type (Multipart Internet Mail Extension). You can find a comprehensive list of MIME
content-types at the IANA (Intenet Assigned Numbers Authority):

www.iana.org/assignments/media-types/application/

This standard web browser process implicitly creates an XHTML header when reading
an image. It derives the MIME content-type from the file extension. An alternative approach
as shown in the example PHP code calls the PHP header() function and then a set of
functions to convert the raw stream into a resource and then an image file, as shown:

header('Content-type: image/png');
imagepng(imagecreatefromstring($data));

This set of steps creates an image that the browser can read into another web page. You
call the converting PHP program through a src element in an img tag. This graphics format
requires some additional configuration of the standard installation of Zend Core for Oracle.

www.iana.org/assignments/media-types/application/

296 Oracle Database 11g PL/SQL Programming

You should enable the exif and gd extensions to work with the PNG (Portable Network
Graphic) images found on the publisher’s web site with this code. It enables you to access the
required libraries to display the BLOB raw stream as an image without first writing it to a file.

You should connect to the Administration console at the following URL:

http://<hostname>.<domain_name>/ZendCore/login.php?goto=

After authenticating, the following illustration shows the console image for enabling
these extensions:

Then, you should also enable the mbstring extension, which handles multibyte
character processing on Microsoft Windows operating systems. The following illustration
shows you the Zend Core Administration console. This is found on the same web page as
the previous configuration step.

This general process can work with Microsoft Word, Excel, PowerPoint, and Portable
Document Format (PDF) files. You have some additional management steps, depending on
which you choose to implement.

Chapter 8: Large Objects 297

The ReadCanonicalFileToImage.php program is

-- This is found in ReadCanonicalFileToImage.php on the publisher's web site.
<?php
 // Return successful attempt to connect to the database.
 if ($c = @oci_new_connect("plsql","plsql","orcl")) {
 // Declare input variables.
 (isset($_GET['id'])) ? $id = $_GET['id'] : $id = 1021;
 // Declare a SQL SELECT statement returning a CLOB.
 $stmt = "SELECT get_canonical_bfilename('ITEM','ITEM_PHOTO','ITEM_ID',:id)
 FROM dual";
 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);
 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);
 // Execute the PL/SQL statement.
 if (oci_execute($s)) {
 // Return a LOB descriptor and free resource as the value.
 while (oci_fetch($s)) {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 if ((!is_object(oci_result($s,$i))) && (!oci_field_is_null($s,$i)))
 $data = oci_result($s,$i);
 else
 $data = " "; }

 // Print the header first.
header('Content-type: image/png');

 imagepng(imagecreatefromstring(file_get_contents($data))); }
 // Disconnect from database.
 oci_close($c); }
 else {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
"; }
?>

The ReadCanonicalFileToImage.php program renders the image by reading the
canonical filename. The program then uses the PHP file_get_contents() function to read
the file into a binary string. The imagecreatefromstring() function coverts the binary
stream to a resource, and the imagepng() function converts the resource into a file. Figure 8-5
shows the displayed image from this program.

You have learned how to work with external files—BFILE datatypes. The examples have
taught you how to leverage the locator and extend the database catalog to secure both canonical
path names and filenames.

298 Oracle Database 11g PL/SQL Programming

DBMS_LOB Package
Discussions earlier in the chapter rely on elements of the DBMS_LOB package. These include
functions, procedures, and package specification constants. This section summarizes the balance
of the features in the DBMS_LOB package, and it is divided into seven subsections. The subsections
are: package constants, package exceptions, opening and closing methods (a term that encompasses
functions and procedures), manipulation methods, introspection methods, BFILE methods, and
Temporary LOB methods.

Package Constants
There are several package constants that you can use when working with functions and
procedures in the DBMS_LOB package. They are qualified in Table 8-2.

These constants have various uses inside the package. They should be used in lieu of their
numeric equivalents because, while unlikely, Oracle reserves the right to change the values.

There are also four package specification types. Two are structures. Structures are a list of
variables organized by position and datatype. They act like rows of data. The other two types are
associative arrays of the base structures. Both the types and structures are limited to uses in your
PL/SQL blocks. They are covered next in pairs, the base structure and associative array.

BLOB_DEDUPLICATE_REGION Record Structures
The BLOB_DEDUPLICATE_REGION type is a record composed of five fields, as qualified in Table
8-3. The BLOB_DUPLICATE_REGION_TAB type is an associative array indexed by PLS_INTEGER.

FIGURE 8-5 Rendered page from the QueryPhotoBFILE.php program

Chapter 8: Large Objects 299

Name Classification Type Value
CALL General PLS_INTEGER 12

DEFAULT_CSID General INTEGER 0

DEFAULT_LANG_CTX General INTEGER 0

FILE_READONLY General BINARY_INTEGER 0

LOBMAXSIZE General INTEGER 1.84467

LOB_READONLY General BINARY_INTEGER 0

LOB_READWRITE General BINARY_INTEGER 1

NO_WARNING General INTEGER 0

SESSION General PLS_INTEGER 10

TRANSACTION General PLS_INTEGER 11

WARN_INCONVERTIBLE_CHAR General INTEGER 1

OPT_COMPRESS Option Type PLS_INTEGER 1

OPT_DEDUPLICATE Option Type PLS_INTEGER 4

OPT_ENCRYPT Option Type PLS_INTEGER 2

COMPRESS_OFF Option Value PLS_INTEGER 0

COMPRESS_ON Option Value PLS_INTEGER 1

ENCRYPT_OFF Option Value PLS_INTEGER 0

ENCRYPT_ON Option Value PLS_INTEGER 1

DEDUPLICATE_OFF Option Value PLS_INTEGER 0

DEDUPLICATE_ON Option Value PLS_INTEGER 1

TABLE 8-2 DBMS_LOB Package Constants

Position Field Name Datatype
1 LOB_OFFSET INTEGER

2 LEN INTEGER

3 PRIMARY_LOB BLOB

4 PRIMARY_LOB_OFFSET NUMBER

5 MIME_TYPE VARCHAR2(80)

TABLE 8-3 Field Map of the BLOB_DEDUPLICATE_REGION Record Structure

300 Oracle Database 11g PL/SQL Programming

CLOB_DEDUPLICATE_REGION Record Structures
The CLOB_DEDUPLICATE_REGION type is a record composed of five fields, as qualified in Table
8-4. The CLOB_DUPLICATE_REGION_TAB type is an associative array indexed by PLS_INTEGER.

Package Exceptions
There are eight exceptions defined in the DBMS_LOB package. They are covered in Table 8-5. You
should try to leverage these exceptions where appropriate in your own code before you create
new user-defined exceptions.

Opening and Closing Methods
The opening and closing methods apply to all LOB datatypes. You have a function to check
whether a file is already open, and procedures to open and close LOB datatypes.

CLOSE Procedure
You call the CLOSE procedure to close a LOB. This is a pass-by-reference procedure for the LOB
locator parameter. It requires that you define an appropriate LOB variable in the block where
you call the procedure. You can’t close a LOB unless it is already opened without raising an
ORA-22289 exception.

The overloaded procedure has the following prototypes:

CLOSE(bfile_locator)
CLOSE(blob_locator)
CLOSE(blob_locator)

You can find examples of the CLOSE function in the sections “PL/SQL Reading Files and
Writing CLOB Columns” and “PL/SQL Reading Files and Writing BLOB Columns.” They’re in
the load_clob_from_file.sql and load_blob_from_file.sql files.

ISOPEN Function
You call the ISOPEN function to check if a LOB is already open. You should use this function
instead of the FILEISOPEN function because FILEISOPEN only checks for opened files using the
input BFILE locator. The function is written to run in both SQL and PL/SQL environments. It returns
a 1 when successful and a 0 when unsuccessful because there aren’t any Boolean types in SQL.

The overloaded function has the following prototypes:

ISOPEN(bfile_locator)
ISOPEN(blob_locator)
ISOPEN(clob_locator)

Position Field Name Datatype
1 LOB_OFFSET INTEGER

2 LEN INTEGER

3 PRIMARY_LOB CLOB

4 PRIMARY_LOB_OFFSET NUMBER

5 MIME_TYPE VARCHAR2(80)

TABLE 8-4 Field Map of the CLOB_DEDUPLICATE_REGION Record Structure

Chapter 8: Large Objects 301

You can find examples of the ISOPEN function in the sections “PL/SQL Reading Files and
Writing CLOB Columns” and “PL/SQL Reading Files and Writing BLOB Columns.” They’re in the
load_clob_from_file.sql and load_blob_from_file.sql files.

OPEN Procedure
You call the OPEN procedure to open a LOB. This is a pass-by-reference procedure for the LOB
locator parameter. It requires that you define an appropriate LOB variable in the block where you
call the procedure. You can open BLOB, CLOB, or NCLOB files in read-only or read-write mode,
and BFILE in read-only mode. While you don’t have to use the constants, it is safer to do so. You
should use the LOB_READONLY or LOBREADWRITE constants for read-only or read-write mode
respectively. The open mode uses a default of DBMS_LOB.LOB_READONLY, and the actual
parameter is optional.

Exception Name Error Code Definition
ACCESS_ERROR ORA-22925 The ACCESS_ERROR exception occurs when

you attempt to write more than the maximum
size allowed for a LOB column.

INVALID_ARGVAL ORA-21560 The INVALID_ARGVAL exception occurs when
you pass a null value or a value outside of the
1–4GB range.

INVALID_LOCATOR ORA-22275 The INVALID_LOCATOR exception occurs
when you pass an invalid LOB locator value.

INVALID_DIRECTORY ORA-22287 The INVALID_DIRECTORY exception occurs
when you attempt to read from or write to
a virtual database directory that no longer
translates to a valid file system directory.

NOEXIST_DIRECTORY ORA-22285 The NOEXIST_DIRECTORY exception occurs
when you attempt to read from or write to a
virtual database directory that doesn’t exist.

NOPRIV_DIRECTORY ORA-22286 The NOPRIV_DIRECTORY exception occurs
when you attempt to read from or write to a
virtual database directory and you’ve not been
granted the appropriate access privilege.

OPEN_TOOMANY ORA-22290 The OPEN_TOOMANY exception occurs when
you attempt to open more files than are allowed
for the instance.

OPERATION_FAILED ORA-22288 The OPERATION_FAILED exception occurs
when you attempt to access a file that doesn’t
exist, or a file to which the Oracle user doesn’t
have read or write privileges.

UNOPENED_FILE ORA-22289 The UNOPENED_FILE exception occurs when
you try to perform operations on an external file
before you’ve opened it.

TABLE 8-5 DBMS_LOB Package Exceptions

302 Oracle Database 11g PL/SQL Programming

The overloaded procedure has the following prototypes:

OPEN(bfile_locator [, open_mode<MI><MI>])
OPEN(blob_locator [, open_mode])
OPEN(clob_locator [, open_mode])

You can find examples of the OPEN function in the sections “PL/SQL Reading Files and
Writing CLOB Columns” and “PL/SQL Reading Files and Writing BLOB Columns.”You’ll find
them in the load_clob_from_file.sql and load_blob_from_file.sql files.

Manipulation Methods
The manipulation methods are a collection of functions and procedures that allow you to read,
write, and alter the content of LOBs. Several new features have been added in Oracle 11g,
including compression, deduplication, and secure file encryption.

Many methods are overloaded to work with all LOB datatypes, while some only work with
BLOB, CLOB, and NCLOB datatypes. The following subsections cover these manipulation methods
and point out when a method is limited in scope.

You must create a transaction context by using an INSERT or UPDATE statement to use these
manipulation methods against LOB columns. The RETURNING INTO clause opens the transaction
scope, and a COMMIT statement closes it. You use the locator returned by these statements as the
gateway to copying one LOB to another of an equivalent type.

APPEND Procedure
You call the APPEND procedure to append to a BLOB, CLOB, or NCLOB datatype. The APPEND
procedure is a pass-by-reference procedure for the LOB locator parameter. It allows you to add
the contents of another LOB at the end of a LOB column. The WRITEAPPEND procedure does the
same thing, except it accepts a RAW or VARCHAR2 stream to append to a BLOB or CLOB column,
respectively.

The overloaded procedure has the following prototypes:

APPEND(blob_locator, new_lob_stream)
APPEND(clob_locator, new_lob_stream)

CONVERTTOBLOB Procedure
You call the CONVERTTOBLOB procedure to convert a CLOB or NCLOB to a BLOB datatype. The
CONVERTTOBLOB procedure is a pass-by-reference procedure for the LOB locator, destination
and source offset, and language context parameters.

The procedure has the following prototype:

CONVERTTOBLOB(destination_blob_locator, source_clob_locator, amount
,destination_offset, source_offset, blob_csid, language_context
,warning)

CONVERTTOCLOB Procedure
You call the CONVERTTOCLOB procedure to convert a BLOB to a CLOB or NCLOB datatype. The
CONVERTTOCLOB procedure is a pass-by-reference procedure for the LOB locator, destination
and source offset, and language context parameters.

The procedure has the following prototype:

Chapter 8: Large Objects 303

CONVERTTOCLOB(destination_clob_locator, source_blob_locator, amount
,destination_offset, source_offset, clob_csid, language_context
,warning)

COPY Procedure
You call the COPY procedure to copy a BLOB to another BLOB or a CLOB or NCLOB to another
equivalent character LOB datatype. The COPY procedure is a pass-by-reference procedure for the
destination LOB locator parameter.

The overloaded procedure has the following prototypes:

COPY(destination_clob_locator, source_clob_locator, amount
,destination_offset, source_offset)

COPY(destination_blob_locator, source_blob_locator, amount
,destination_offset, source_offset)

ERASE Procedure
You call the ERASE procedure to erase a chunk of a BLOB, or CLOB, or NCLOB datatype. The
ERASE procedure is a pass-by-reference procedure for the LOB locator and amount parameters.
The default offset is 1, and the offset is an optional parameter.

The overloaded procedure has the following prototypes:

ERASE(blob_locator, amount [, offset])
ERASE(clob_locator, amount [, offset])

FRAGMENT_DELETE Procedure
You call the FRAGMENT_DELETE procedure to delete a chunk of a BLOB, or CLOB, or NCLOB
datatype. The FRAGMENT_DELETE procedure is a pass-by-reference procedure for the LOB
locator parameter.

The overloaded procedure has the following prototypes:

ERASE(blob_locator, amount, offset)
ERASE(clob_locator, amount, offset)

FRAGMENT_INSERT Procedure
You call the FRAGMENT_INSERT procedure to insert a chunk of data (or a stream) to a BLOB, or
CLOB, or NCLOB datatype. This procedure is a pass-by-reference procedure for the LOB locator
parameter.

The overloaded procedure has the following prototypes:

FRAGMENT_INSERT(blob_locator, amount, offset, raw_buffer)
FRAGMENT_INSERT(clob_locator, amount, offset, character_buffer)

FRAGMENT_MOVE Procedure
You call the FRAGMENT_MOVE procedure to move a chunk of data (or a stream) to another
location in the same LOB. This function only works with BLOB, or CLOB, or NCLOB datatypes.
The FRAGMENT_MOVE procedure is a pass-by-reference procedure for the LOB locator parameter.

The overloaded procedure has the following prototypes:

FRAGMENT_MOVE(blob_locator, amount, source_offset, destination_offset)
FRAGMENT_MOVE(clob_locator, amount, source_offset, destination_offset)

304 Oracle Database 11g PL/SQL Programming

FRAGMENT_REPLACE Procedure
You call the FRAGMENT_REPLACE procedure to move a chunk of data (or a stream) to replace
a chunk of data in the same LOB. This function only works with BLOB, or CLOB, or NCLOB
datatypes. The FRAGMENT_REPLACE procedure is a pass-by-reference procedure for the LOB
locator parameter.

The overloaded procedure has the following prototypes:

FRAGMENT_MOVE(blob_locator, old_amount, new_amount, offset, buffer)
FRAGMENT_MOVE(clob_locator, old_amount, new_amount, offset, buffer)

ISSECUREFILE Function
You call the ISSECUREFILE function in Oracle 11g or newer to determine if a BLOB, CLOB,
or NCLOB is configured as a secure file. This function only works in a PL/SQL scope because
it returns a BOOLEAN datatype, and it is a pass-by-value function.

The overloaded function has the following prototypes:

ISSECUREFILE(blob_locator)
ISSECUREFILE(clob_locator)

The following anonymous block demonstrates how to use this new function:

DECLARE
 audit_blob BLOB;
 CURSOR c IS
 SELECT NVL(item_blob,empty_blob) FROM item WHERE item_id = 1021;
BEGIN
 OPEN c;
 FETCH c INTO audit_blob;
 IF dbms_lob.issecurefile(audit_blob) THEN
 dbms_output.put_line('A secure file.');
 ELSE
 dbms_output.put_line('Not a secure file.');
 END IF;
 CLOSE c;
END;
/

The ISSECUREFILE function requires that the BLOB column be initialized. If you attempt
to apply this function to invalid LOB locator, it raises an ORA-22275 error. There is an
opportunity to find this error anytime a row leaves the BLOB column non-initialized or null.
It is a good coding practice to enclose it in an NVL function call providing an empty_blob()
or empty_clob() constructor. By so doing, you evaluate for secure files without the risk of
raising a null exception. This approach ensures both non-secure files and null values are managed
by the ELSE clause. The approach also lets you suppresses run-time errors triggered by an invalid
LOB locator exception.

NOTE
This isn’t documented in the DBMS_LOB package specification in the
initial production release of Oracle 11g.

Chapter 8: Large Objects 305

LOADBLOBFROMFILE Procedure
You call the LOADBLOBFROMFILE procedure to copy a physical file, treated as a BFILE, to a
BLOB datatype. The LOADBLOBFROMFILE procedure is a pass-by-reference procedure for the
destination LOB locator and the destination and source offset parameters. You must always call
the OPEN procedure before this file, or you will raise an ORA-22889 for an unopened file.

The procedure has the following prototype:

LOADBLOBFROMFILE(destination_clob_locator, source_bfile, amount
,destination_offset, source_offset)

LOADCLOBFROMFILE Procedure
You call the LOADCLOBFROMFILE procedure to copy a physical file, treated as a BFILE, to a
CLOB datatype. The LOADCLOBFROMFILE procedure is a pass-by-reference procedure for the
destination LOB locator, the destination and source offset, and language context parameters.
You must always call the OPEN procedure before this file, or you will raise an ORA-22889 for
an unopened file.

The procedure has the following prototype:

LOADCLOBFROMFILE(destination_clob_locator, source_bfile, amount
,destination_offset, source_offset, bfile_csid
,language_context, warning)

LOADFROMFILE Procedure
You call the LOADFROMFILE procedure to copy a physical file, treated as a BFILE, to a BLOB,
CLOB or NCLOB datatype. The LOADFROMFILE procedure is a pass-by-reference procedure for
the destination LOB locator parameter. You must always call the OPEN procedure before this file,
or you will raise an ORA-22889 for an unopened file. The destination and source offset parameters
use a default value of 1, and are therefore optional parameters.

The overloaded procedure has the following prototypes:

LOADFROMFILE(destination_clob_locator, source_bfile, amount
[,destination_offset [, source_offset]])

LOADFROMFILE(destination_blob_locator, source_bfile, amount
[,destination_offset [, source_offset]])

While this procedure works, you should consider using the LOADBLOBFROMFILE or
LOADCLOBFROMFILE procedures first. They provide more control, and you can set language
context for CLOB columns.

SETOPTIONS Procedure
You call the SETOPTIONS procedure to override the storage option of SecureFiles, or BLOB,
CLOB, and NCLOB datatypes, in Oracle 11g. The SETOPTIONS procedure is a pass-by-reference
procedure for the LOB locator parameter. You must always create a transaction to access a
specific LOB locator.

The Oracle 11g documentation says you can change either the default column compression
or deduplication settings. The documentation did not say, at time of writing, that you could
override the default column encryption. However, encryption is one of three new constants added
to the DBMS_LOB package in Oracle 11g. Full utility of these features may await a bug fix or the
second release of Oracle 11g.

306 Oracle Database 11g PL/SQL Programming

NOTE
At the time of this writing, calling the SETOPTIONS procedure against
the Oracle 11g (11.1.0.6.0) release raises an ORA-43857 exception
for “an unsupported object type for SECUREFILE LOB operation.”

The overloaded procedure has the following prototypes:

SETOPTIONS(blob_locator, option_type, option)
SETOPTIONS(clob_locator, option_type, option)

TRIM Procedure
You call the TRIM procedure to remove unwanted content from CLOB, NCLOB, or BLOB datatypes.
The TRIM procedure is a pass-by-reference procedure for the LOB locator parameter and requires
a transaction context to change a LOB column value.

The overloaded procedure has the following prototypes:

TRIM(blob_locator, new_length)
TRIM(clob_locator, new_length)

WRITE Procedure
You call the WRITE procedure to write data to a CLOB, NCLOB, or BLOB datatype beginning at a
specified offset. The default offset is 1. Beginning in Oracle 11g, you should consider using the
FRAGMENT_INSERT or FRAGMENT_REPLACE procedures over the WRITE procedure.

The overloaded procedure has the following prototypes:

WRITE(blob_locator, amount, offset, raw_buffer)
WRITE(clob_locator, amount, offset, character_buffer)

WRITEAPPEND Procedure
You call the WRITEAPPEND procedure to append data to the end of a CLOB, NCLOB, or BLOB
datatype. Appendix J demonstrates the behaviors of this procedure in the sections “EMPTY_BLOB
Function” and “EMPTY_CLOB Function.”

The overloaded procedure has the following prototypes:

WRITEAPPEND(blob_locator, amount, raw_buffer)
WRITEAPPEND(clob_locator, amount, character_buffer)

Introspection Methods
Introspection methods let you discover something about the value in the instance of a datatype.
Some of these methods should look familiar because they’re staples in working with strings.

COMPARE Function
You call the COMPARE function to check whether two LOBs of the same datatype are equal, or
two LOB fragments of the same datatype are equal. The function is a pass-by-value module. It
works with BLOB, CLOB, NCLOB, or BFILE datatypes. The COMPARE function works in both SQL
and PL/SQL environments. It returns a 0 when the two are equal and a 1 when they’re not.

The overloaded function has the following prototypes:

Chapter 8: Large Objects 307

COMPARE(bfile_locator_1, bfile_locator_2, amount [, offset_1 [, offset_2]])
COMPARE(blob_locator_1, blob_locator_2 [, amount [, offset_1 [, offset_2]]])
COMPARE(clob_locator_1, clob_locator_2 [, amount [, offset_1 [, offset_2]]])

You should notice from the prototypes that the size for comparison is optional for BLOB,
CLOB, and NCLOB but it is required for BFILE datatypes. The simplest way to compare two
values is with a SQL statement, like

SELECT CASE
 WHEN DBMS_LOB.COMPARE(i1.item_blob,i2.item_blob) = 0 THEN
 THEN 'True'
 ELSE 'False'
 END AS compared
FROM item i1 CROSS JOIN item i2 WHERE i1.item_id = 1021 AND i2.item_id = 1022;

This statement returns true if you’ve uploaded the same image of Harry Potter to both rows (as
done in the load_blob_from_file.sql script). Otherwise, it returns false.

GETCHUNKSIZE Function
You call the GETCHUNKSIZE function to check the read and write chunk size. This is typically the
block size (as determined by the db_block_size database parameter) minus a handling value.
If you’re db_block_size is set to 8K (8,192 bytes), then the chunk size will be 8,132 bytes. The
function works with BLOB, CLOB, NCLOB, or BFILE datatypes.

The overloaded procedure has the following prototypes:

GETCHUNKSIZE(bfile_locator)
GETCHUNKSIZE(blob_locator)
GETCHUNKSIZE(clob_locator)

The simplest way to call this function is

SELECT DBMS_LOB.GETCHUNKSIZE(i1.item_blob)
FROM item i1
WHERE i1.item_id = 1021;

In most cases, it returns 8,132 bytes because the default db_block_size parameter value is
8,192 bytes. The query should work provided you inserted the Harry Potter image into the BLOB
column for this row.

GET_DEDUPLICATED_REGIONS Procedure
You call the GET_DEDUPLICATED_REGIONS procedure to check for deduplicated regions in
Oracle SecureFiles. This is a new procedure in Oracle 11g. The function works with BLOB, CLOB,
or NCLOB datatypes. It is a pass-by-reference procedure for the associative array of structures,
which are implementations of the record structures covered earlier in the “Package Constants”
subsection of this chapter.

The overloaded procedure has the following prototypes:

GET_DEDUPLICATED_REGIONS(blob_locator, blob_deduplicated_table)
GET_DEDUPLICATED_REGIONS(clob_locator, clob_deduplicated_table)

308 Oracle Database 11g PL/SQL Programming

GETLENGTH Function
You call the GETLENGTH function to get the length of a LOB. The function works with BLOB,
CLOB, NCLOB, or BFILE datatypes. It is a pass-by-value function and essential in many regards
for working with LOB columns. Appendix J contains several examples, like the one found in the
“BFILE Function” subsection.

The overloaded function has the following prototypes:

GETLENGTH(bfile_locator)
GETLENGTH(blob_locator)
GETLENGTH(clob_locator)

GETOPTIONS Function
You call the GETOPTIONS function to examine the storage options of SecureFiles, which are
BLOB, CLOB, or NCLOB datatypes in Oracle 11g. This function is a pass-by-reference function for
the LOB locator parameter. You must always create a transaction to access a specific LOB locator.
Again, full utility of these features may await a bug fix or the second release of the Oracle 11g.

NOTE
At the time of this writing, calling the GETOPTIONS procedure against
the Oracle 11g (11.1.0.6.0) release raises “an ORA-43856 exception
for an unsupported object type for SECUREFILE LOB operation.”

The overloaded function has the following prototypes:

GETOPTIONS(blob_locator, option_type)
GETOPTIONS(clob_locator, option_type)

GET_STORAGE_LIMIT Function
You call the GET_STORAGE_LIMIT function to get the maximum storage length of a LOB. The
function works with BLOB, CLOB, or NCLOB datatypes. It is a pass-by-value function.

The overloaded function has the following prototypes:

GET_STORAGE_LIMIT(blob_locator)
GET_STORAGE_LIMIT(clob_locator)

INSTR Function
You call the INSTR function to find the position where a byte pattern begins in a LOB. The
function works with BLOB, CLOB, NCLOB, or BFILE datatypes. It is a pass-by-value function.
The offset and nth_occurrence parameters have a default value of 1, which makes them optional.

The overloaded function has the following prototypes:

INSTR(bfile_locator, raw_byte_pattern [, offset [, nth_occurrence]])
INSTR(blob_locator, raw_byte_pattern [, offset [, nth_occurrence]])
INSTR(clob_locator, character_pattern [, offset [, nth_occurrence]])

READ Procedure
You call the READ procedure to read data from a CLOB, NCLOB, or BLOB datatype beginning at a
specified offset. There is no default offset value and it is a mandatory actual parameter.

Chapter 8: Large Objects 309

The procedure is pass-by-reference for the locator and buffer. The overloaded procedure has
the following prototypes:

READ(bfile_locator, amount, offset, raw_buffer)
READ(blob_locator, amount, offset, raw_buffer)
READ(clob_locator, amount, offset, character_buffer)

SUBSTR Function
You call the SUBSTR function to read data from a CLOB, NCLOB, or BLOB datatype beginning at
a specified offset. The default for the amount and offset is 1. This is a pass-by-value function that
returns a RAW datatype for BFILE and BLOB datatypes and VARCHAR2 datatype for CLOB or
NCLOB datatypes. The function is subject to the character stream limits of the environment where
you use it. This means that the SUBSTR function can return a 4,000-byte length string in SQL and
a 32,767-byte string in PL/SQL.

The overloaded function has the following prototypes:

SUBSTR(bfile_locator [, amount [, offset]])
SUBSTR(blob_locator [, amount [, offset]])
SUBSTR(clob_locator [, amount [, offset]])

BFILE Methods
The BFILE methods only support external and read-only BFILE datatypes. Some of the BFILE
methods have recommended alternatives. Oracle hasn’t deprecated any methods in the DBMS_
LOB package but they’ve superseded some methods by new DBMS_LOB methods. Recommendations
that you call alternative methods are noted in their respective subsections.

FILECLOSE Procedure
You call the FILECLOSE procedure to close a BFILE. This is a pass-by-reference procedure for
the LOB locator parameter. It requires that you define an appropriate LOB variable in the block
where you call the procedure. You can’t close a LOB unless it is already opened without raising
an ORA-22289 exception. Oracle recommends you use the CLOSE procedure instead of the
FILECLOSE procedure.

The procedure has the following prototype:

FILECLOSE(bfile_locator)

FILECLOSEALL Procedure
You call the FILECLOSEALL procedure to close all open files. This function has no formal
parameter.

The procedure has the following prototype:

FILECLOSEALL

FILEEXISTS Function
You call the FILEEXISTS function to check if a file exists on the file system. It relies on the
virtual database directory translation to a physical directory on the file system. You can use this
function in SQL or PL/SQL environments, and it returns a 1 if true and 0 when false.

310 Oracle Database 11g PL/SQL Programming

The function has the following prototype:

FILEEXISTS(bfile_locator)

FILEGETNAME Procedure
You call the FILEGETNAME procedure to find the base filename in a BFILE locator. You must
call the procedure only after you initialize all three actual parameter values to VARCHAR2(255)
strings. The definition of space for declared variables is required because the virtual database
directory and base filename formal parameters are OUT mode variables, which must be sized
before calling a pass-by-reference function or procedure.

The procedure has the following prototype:

FILEGETNAME(bfile_locator, virtual_database_directory, base_file_name)

You can refer to the example in the get_bfilename function for the details of how to use
this function. That is found in the section “Creating and Using Virtual Directories” earlier in this
chapter.

FILEISOPEN Function
You call the FILEISOPEN function to check if a BFILE is already open. You should not use this
function because it is only provided for backward compatibility. The alternative is the ISOPEN
function. This function, like the ISOPEN function, is written to run in both SQL and PL/SQL
environments. It returns a 1 when successful and a 0 when unsuccessful because there aren’t
any Boolean types in SQL.

The function has the following prototype:

FILEISOPEN(bfile_locator)

You can find examples in the sections “PL/SQL Reading Files and Writing CLOB Columns” or
“PL/SQL Reading Files and Writing BLOB Columns.” You’ll find them in the load_clob_from_
file.sql and load_blob_from_file.sql files.

FILEOPEN Procedure
You call the FILEOPEN procedure to open a BFILE. This is a pass-by-reference procedure for the
LOB locator parameter. It requires that you define an appropriate LOB variable in the block where
you call the procedure. Oracle recommends you use the OPEN procedure instead of the FILEOPEN
procedure. The option open mode parameter has a default value of DBMS.LOB_READONLY.

The procedure has the following prototype:

FILEOPEN(bfile_locator [, open_mode])

Temporary LOB Methods
Temporary LOB datatypes are not linked to a physical location in the database. The LOB locator
points to a memory location where the temporary LOB is written.

CREATETEMPORARY Function
You call the CREATETEMPORARY procedure to create a temporary BLOB, CLOB, or NCLOB in
memory. Temporary LOBs are time-bound entities, and you should constrain their existence to
the smallest time slice possible. The optional duration parameter is bound by the DBMS_LOB.
SESSION constant, which is the length of the session.

Chapter 8: Large Objects 311

The overloaded procedure has the following prototypes:

CREATETEMPORTY(blob_locator, cache [, duration])
CREATETEMPORTY(clob_locator, cache [, duration])

ISTEMPORARY Function
You call the ISTEMPORARY function to free resources that held a temporary BLOB or CLOB
variable. This is an important function and should be used each time you manage a temporary
LOB. It works with BLOB, CLOB, or NCLOB datatypes. The ISTEMPORARY function works in
both SQL and PL/SQL environments. It returns a 1 when successful and a 0 when not.

The overloaded function has the following prototypes:

ISTEMPORARY(blob_locator)
ISTEMPORARY(clob_locator)

FREETEMPORARY Function
You call the FREETEMPORARY procedure to free the memory consumed for a temporary BLOB,
CLOB, or NCLOB in memory. This is an important function and should be used each time you
manage a temporary LOB.

The overloaded procedure has the following prototypes:

FREETEMPORTY(blob_locator)
FREETEMPORTY(clob_locator)

This section has reviewed the methods of the DBMS_LOB package. Several new methods were
added Oracle 11g, and there may yet be more to simplify the access and management of LOBs.

Summary
You have covered how PL/SQL works with BLOB, CLOB, and NCLOB internally stored large
objects, and how to define these base types as SecureFiles. You have also seen how to use and
leverage internal locators to external BFILE files. Image retrieval has been demonstrated by
using the PHP programming language. Appendix D contains similar examples using the Java
programming language.

This page intentionally left blank

CHAPTER
9

Packages

313

314 Oracle Database 11g PL/SQL Programming

ackages are the backbone of Oracle 11g application development. They let you
group functions and procedures as components into libraries. Inside these package
libraries you can have shared variables, types, and components. Components are
functions and procedures. Unlike standalone stored functions and procedures
covered in Chapter 6, stored packages divide their declaration from their

implementation. Package specifications publish the declaration, and package bodies implement
the declaration.

This chapter explains how to declare, implement, leverage, and manage stored packages. The
sections are as follows:

Package architecture

 Forward referencing

 Overloading

Package specification

 Variables

 Types

 Components: functions and procedures

Package body

 Variables

 Types

 Components: functions and procedures

Definer and invoker rights

 Grants and synonyms

 Remote calls

Managing packages through the database catalog

 Finding, validating, and describing packages

 Checking dependencies

 Comparing validation methods: timestamp versus signature

The chapter is set up to help someone new to the concepts master them. However, if you’re
already familiar with the general concepts, you should also be able to target reference material to
support your current projects. Chapter 14 covers object types. Object types differ from packages
because their behavior is divided into two states: static and instance level. Static methods mirror
the behavior of functions and procedures in packages. Instance-level methods only work when
you create an instance of an object type. Instance methods only act on attributes of the object
instance.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

P

Chapter 9: Packages 315

Package Architecture
Packages are stored libraries in the database. They are owned by the user schema where they’re
created, like tables and views. This ownership makes packages schema-level objects in the database
catalog, like standalone functions and procedures.

Package specifications declare variables, datatypes, functions, and procedures. The declaration
publishes them to the local schema. You use package variables and datatypes in other PL/SQL
blocks by calling them from other PL/SQL blocks. Calling blocks can be inside or outside of the
package where they’re declared.

All users, other than the owner, must be granted the EXECUTE privilege on a package to
call its published components. This mimics the same rules for tables, views, SQL datatypes, or
standalone modules (like standalone functions and procedures). Published components have
context inside the package, just as a standalone component has context inside a user’s schema.

The Oracle 11g security model lets you grant the EXECUTE privilege on any package to all
users (through a grant to public). This effectively makes it possible to grant public access to
packages. Alternatively, you can restrict access to packages when you choose to do so. These
security tools let you narrow privileges to targeted audiences.

You define (declare and implement) package-only scope functions and procedures in package
bodies. Package-only scope functions and procedures can access anything in the package
specification. They can also access anything declared before them in the package body. However,
they don’t know anything declared after them in the package body.

This is true because PL/SQL uses a single-pass parser. Parsers place identifiers into a temporary
name space as they read through the source code. A parser fails when identifiers are referenced
before they are declared. This is why identifiers are declared in a certain order in PL/SQL declaration
sections. Typically, you declare identifiers in the following order: datatypes, variables, exceptions,
functions, and procedures.

The sequencing of identifiers solves many but not all problems with forward referencing.
Sometimes a component implementation requires access before another component exists. While
you could shift the order of some components to fix to this sequencing problem, it is often more
effective to declare a forward reference stub. A forward reference declares a subroutine without
implementing it. You can do this in any declaration block.

Forward Referencing
The concept of forward referencing is rather straightforward. You can’t send a text message to new
acquaintances from a conference if you didn’t get their cell phone numbers. In the same vein, you
can’t call a function or procedure until you know its name and formal parameter list.

The following example would demonstrate that A can’t call B until B has been declared, or
placed in scope. If you comment out the forward referencing stub for procedure B, the program
raises a “PLS-00313: ‘B’ not declared in this scope” error. The parser would raise
the error because it wouldn’t find a declaration of procedure B in its list of identifiers. The forward
referencing stub declares procedure B before it is defined (or implemented).

DECLARE
PROCEDURE b (caller VARCHAR2); -- This is a forward referencing stub.

 PROCEDURE a (caller VARCHAR2) IS
 procedure_name VARCHAR2(1) := 'A';
 BEGIN
 dbms_output.put_line('Procedure "A" called by ['||caller||']');

316 Oracle Database 11g PL/SQL Programming

 b(procedure_name);
 END;
 PROCEDURE b (caller VARCHAR2) IS
 procedure_name VARCHAR2(1) := 'B';
 BEGIN
 dbms_output.put_line('Procedure "B" called by ['||caller||']');
 END;
BEGIN
 a('Main');
END;
/

This prints

Procedure "A" called by [Main]
Procedure "B" called by [A]

The execution block knows everything in its declaration block or external declaration block(s).
The forward referencing stub lets the PL/SQL single-pass parser put the procedure B declaration
in its list of identifiers. It is added before the parser reads procedure A because single-pass parsers
read from the top down. When the parser reads procedure A, it knows of the declaration of
procedure B. The parser then validates the call to B and looks for the implementation of B later
in the program to compile the code successfully. The parser raises a PLS-00328 error if the
subprogram is missing after reading the complete source code.

NOTE
Java uses a two-pass parser and lets you avoid forward declarations.

Package specifications exist to declare implementations. Package bodies provide
implementations of the declarations found in the package specifications.

Figure 9-1 depicts the package specification and body. It shows you that the package
specification acts as an interface to the package body. You can declare variables, types, and
components inside both the package specification and the body. Those declared in the package
specification are published, while those declared only in the package body are local components.
Named blocks defined inside component implementations are private modules, or part of the
black box of local functions or procedures.

Types can be referenced by external PL/SQL blocks. You can assign values to package variables
or use their values. Constants are specialized variables that disallow assignments. You can only
use the values of constants as right operands. External PL/SQL blocks call package functions and
procedures when they’re declared in a package specification. Components declared only in the
package body call published components through their package declarations.

Chapter 3 discusses scalar and composite datatypes that are available in anonymous and
named blocks. All these are available in packages because they’re named blocks. You can use
any scalar or compound variable that is available in your package specification or body. You can
also create user-defined datatypes in your SQL environment or package. User-defined datatypes
are publicly available when you define them in the package specification to any other PL/SQL
block. They are privately available when you define them in the package body to PL/SQL blocks
implemented in the package body.

Chapter 9: Packages 317

As with functions and procedures, you can declare variables, types, and components in your
package specification or body. Unlike when using standalone functions and procedures, you can
access and use datatypes from your package specification in other PL/SQL blocks. You only need
to preface the components with the package name and the component selector (that’s the period)
before the datatype, as shown in the following call:

EXECUTE some_package.some_procedure(some_package.some_variable);

NOTE
Package types may include shared cursors. Shared cursors are
mutually exclusive structures during run time in Oracle 11g, which
means they can only be run by a single process at any time.

The next two sections cover how you define and implement packages. How you implement
variables and types is the same, whether you’re using a package specification or package body.
You’ll also find that while functions and procedures do everything that they did in Chapter 6, they
also support overloading.

FIGURE 9-1 PL/SQL package architecture

318 Oracle Database 11g PL/SQL Programming

Overloading
Overloading means that you create more than one function or procedure with the same identifier
(or component name) but different signatures. Function and procedure signatures are defined by
their respective formal parameter lists. An overloaded component differs in either the number of
parameters or the datatypes of parameters in respective positions. While PL/SQL supports named,
mixed, and positional notation (Oracle 11g forward), formal parameters are only unique by position
and datatype. Parameter names do not make formal parameter lists unique.

For example, you cannot overload the adding function that uses two numbers by simply
changing the formal parameter names, like this:

CREATE OR REPLACE PACKAGE not_overloading IS
FUNCTION adding (a NUMBER, b NUMBER) RETURN NUMBER;
FUNCTION adding (one NUMBER, two NUMBER) RETURN BINARY_INTEGER;
END not_overloading;
/

NOTE
PL/SQL allows you to overload functions and procedures by simply
renaming variables, but at run time the ambiguity raises a PLS-00307
exception.

You can compile this package specification and implement its package body without raising a
compile-time error. However, you can’t call the overloaded function without finding that too many
declarations of the function exist. The ambiguity between declarations raises the PLS-00307
exception. The return datatype for functions is not part of their signature. A change in the return
datatype for functions does not alter their unique signatures because the return type isn’t part of
the signature.

Redefining the package declaration like this lets you call either implementation of the
adding function. The datatypes now differ between the two declarations.

CREATE OR REPLACE PACKAGE overloading IS
FUNCTION adding (a NUMBER, b NUMBER) RETURN NUMBER;
FUNCTION adding (a VARCHAR2, b VARCHAR2) RETURN BINARY_INTEGER;
END not_overloading;
/

Figure 9-2 shows you how overloading works inside the black box. In the first signature, the
second parameter is a CLOB and the third a DATE, while their positions are reversed in the second
signature. A drawing of the sample adding function would show two round funnels for the
VARCHAR2 parameters, and two square funnels for the NUMBER parameters.

You call an overloaded function or procedure name with a list of actual parameters. Inside
the black box the run-time engine identifies the sequence and datatypes of the actual parameters.
It matches the calls against possible candidates. When it finds a matching candidate, the actual
parameters are sent to that version of the function or procedure.

This information is stored in the database catalog. You can see it in the ALL_ARGUMENTS,
DBA_ARGUMENTS, or USER_ARGUMENTS view. If there isn’t a signature that matches a function
call, the PL/SQL run-time engine returns an ORA-06576 error. The error says you’ve called an
invalid function or procedure.

Chapter 9: Packages 319

Package Specification
The package specification declares a package as a black box to a user’s schema. The declaration
publishes the available functions and procedures. After compiling a package specification, you
can use the SQL*Plus DESCRIBE command to see the functions and procedures inside a package.

FIGURE 9-2 Overloading the black box

320 Oracle Database 11g PL/SQL Programming

Unfortunately, the variables and datatypes are not visible when you describe a package. You
must determine those by inspecting the package specification found in the text column of the
user_source administration view.

You can query the source by using a query and SQL*Plus formatting like this:

-- Set page break to maximum SQL*Plus value.
SET PAGESIZE 49999
-- Set column formatting for 80 column display.
COLUMN line FORMAT 99999 HEADING "Line#"
COLUMN text FORMAT A73 HEADING "Text"
-- Query any source in the user's account.
SELECT line, text FROM user_source WHERE UPPER(name) = UPPER('&input_name');

NOTE
Oracle 11g and previous releases store all metadata by default in
uppercase strings. You can override that default behavior in Oracle
11g, as described in the sidebar “Case-Sensitive Table and Column
Names” of Appendix B. The UPPER function around the column
name ensures you’ll always match uppercase strings.

The prototype for a package specification lists all components as optional because it is
possible to build a package without any components. The prototype shows the possibilities
for package variables, types, and subroutines (functions and procedures).

The package specification prototype is

CREATE [OR REPLACE] PACKAGE package_name [AUTHID {DEFINER | CURRENT_USER}] IS
 [PRAGMA SERIALLY_REUSABLE;]
 [variable_name [CONSTANT] scalar_datatype [:= value];]
 [collection_name [CONSTANT] collection_datatype [:= constructor];]
 [object_name [CONSTANT] object_datatype [:= constructor];]

 [TYPE record_structure IS RECORD
 (field_name1 datatype
 [,field_name2 datatype
 [,field_name(n+1) datatype]]);]

 [CURSOR cursor_name
 [(parameter_name1 datatype
 [,parameter_name2 datatype
 [,parameter_name(n+1) datatype]])] IS

select_statement;]

[TYPE ref_cursor IS REF CURSOR [RETURN { catalog_row | record_structure }];]

 [user_exception_name EXCEPTION;
 [PRAGMA EXCEPTION_INIT(user_exception_name,-20001);]]

 [FUNCTION function_name
 [(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)]

Chapter 9: Packages 321

 RETURN { sql_data_type | plsql_data_type }
[DETERMINISTIC | PARALLEL_ENABLED]

 [PIPELINED]
 [RESULT_CACHE [RELIES_ON (table_name)]];]

 [PRAGMA RESTRICT_REFERENCES ({ DEFAULT | function_name }
 , option1 [, option2 [, option(n+1)]]);]

 [PROCEDURE procedure_name
 [(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype])];]
END package_name;
/

NOTE
The OR REPLACE clause is very important because without it you must
drop the package specification before attempting to re-declare it.

The SERIALLY_REUSABLE PRAGMA (precompiler instruction) can be used only in a
package context. You must use it in both the package specification and the body. This practice
differs from the PRAGMA instructions covered earlier for exceptions, functions, and procedures.
The SERIALLY_REUSABLE PRAGMA is important when you want to share variables because it
guarantees their starting state each time they’re called.

The CONSTANT qualifier lets you designate variables as read-only and static variables. While
this fact is not mentioned earlier chapters, you can also designate any variable as a CONSTANT
in any declaration block. A constant can’t be used as an assignment target in any package
where it is defined. Constants become more important when you share them through package
specifications.

NOTE
You cannot use package variables as assignment targets when they’re
defined as constants. Any attempt to assign a value to a constant raises
a PLS-00363 exception.

Package exceptions are helpful development tools because they can be referenced by other
program units. All you need do to use it in other programs is prepend the package name and
component selector to the exception.

For example, you would declare an exception like

sample_exception EXCEPTION;
PRAGMA EXCEPTION_INIT(sample_exception,-20003);

Chapter 5 demonstrates how you can leverage exceptions. You declare them in packages just
as you do in standalone functions and procedures, or anonymous blocks.

The section “System Reference Cursor” in Chapter 3 only discusses strongly and weakly typed
reference cursors. There, the chapter covers strongly typed reference cursors as datatypes anchored
to a catalog object, like a table or view. Package specifications let you share record type definitions
with other PL/SQL blocks. This feature lets you share record types with other PL/SQL blocks and
anchor reference cursors to package-defined record types.

322 Oracle Database 11g PL/SQL Programming

The nested function definition also shows the potential for pipelined and cached result
sets. You should remember to use a collection as the return type of pipelined functions. If you
forget, the compilation cycle raises a PLS-00630 exception telling you must return a supported
collection.

NOTE
The cached result set feature works for standalone (schema-level)
functions but doesn’t appear to work for functions inside packages.
At the time of this writing, it raises a PLS-00999 exception.

Table 6-3 in Chapter 6 covers the precompiler options that restrict function performance.
The package specification introduces a DEFAULT mode, which means apply the limitations to all
functions defined in the package. Again, these precompiler options that restrict function behaviors
and the TRUST option are more for backward compatibility than they are for new development.

The next three subsections discuss variables, types, and components. They point out changes
in behavior between serially or non–serially reusable packages. Non–serially reusable packages
are the default. Types are subdivided into structures, cursors, and collections.

Variables
Packages are non–serially reusable by default. This means that a second user isn’t guaranteed the
same package after a first user calls a package. The default works well when you don’t declare
shared variables or cursors in a package specification because the functions and procedures are
reusable. At least, they’re reusable when they don’t depend on package variables. Moreover, you
should always make packages serially reusable when they contain shared variables.

Schema-Level Programs
Stored functions, procedures, packages, and objects are schema-level programs. Only
schema-level programs can be defined as programs with definer rights or invoker rights. The
default model of operation is definer rights, which means the code runs with the permissions
available to the owner of the schema. You can define schema-level programs as invoker
rights models by including the AUTHID as CURRENT_USER. An invoker rights model runs
with the permissions of the schema that calls the component.

The definer rights model runs with the privileges of the owning schema and is best
suited for a centralized computing model. The AUTHID as DEFINER sets a schema-level
program as a definer rights model, but it is unnecessary because that’s the default. The
invoker rights model requires you to maintain multiple copies of tables or views in different
schemas or databases.

Package specifications define packages. The package body only implements the
declaration from the package specification. The package specification is the schema-level
program. You can define a package as having definer or invoker rights, but all components
of the package inherit a single mode of operation.

You raise a PLS-00157 exception when you try to set the mode of operation for
functions and procedures when they’re inside packages. Functions and procedures defined
inside packages are not schema-level programs. They’re actually nested components of
packages. They inherit the operational mode of the package.

Chapter 9: Packages 323

You define a package as serially reusable by placing the SERIALLY_REUSABLE PRAGMA
in the package specification. The PRAGMA changes the basic behavior of package variables. A
serially reusable package creates a new (fresh) copy of the package when it is called by another
program unit, whereas a default (non–serially reusable) package reuses variables.

PRAGMA SERIALLY_REUSABLE;

While you declare variables like any other anonymous or named block, they are not hidden
inside the black box. Package-level variables are accessible from other PL/SQL block programs.
This means package-level variables are shared. They are also subject to change by one or more
programs. The duration of package-level variables varies in any session. The length of time can
extend through the life of a connection or can be shortened when other packages displace it in
the SGA. Older and less-used packages can age out of the SGA because that’s how the least-used
algorithm works.

The least-used algorithm acts more or less like a garbage collector for the database. It is very
similar to the garbage collector in a JVM (Java Virtual Machine).

You can access shared constants or variables from package specifications. Constants have
fixed values whether you declare the package as serially or non–serially reusable. Variables don’t
have a fixed value in either case. A serially reusable package guarantees the initial values of
variables because a call to the package always gets a new copy of the package. A non–serially
reusable package doesn’t guarantee the initial value because it can’t. A non–serially reusable
package variable returns either the initial or last value of a variable. The last value is returned
when the package still resides in the SGA from a prior call in the same session.

The following example creates a shared_variables package specification and demonstrates
the behavior of a non–serially reusable package specification. The package defines a constant and
a variable. You can use the package specification to test the behavior of shared variables.

-- This is found in create_shared_variables.sql on the publisher's web site.
CREATE OR REPLACE PACKAGE shared_variables IS
 protected CONSTANT NUMBER := 1;
 unprotected NUMBER := 1;
END shared_variables;
/

The change_unprotected procedure changes the state of the package-level variable and
then prints the unprotected variable value. It takes one formal parameter, which can be any
number.

-- This is found in create_shared_variables.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE change_unprotected (value NUMBER) IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 shared_variables.unprotected := shared_variables.unprotected + value;
 dbms_output.put_line('Unprotected ['||shared_variables.unprotected||']');
END change_unprotected;
/

NOTE
You can access package specification variables from PL/SQL blocks
but not from SQL commands.

324 Oracle Database 11g PL/SQL Programming

You can test the durability of the shared package-level variable by running this command
twice or more:

EXECUTE change_unprotected(2);

It will print 3 initially, 5 next, and so on until the package ages out of the SGA. The function
prints 3 again, only when you call the package specification after it has aged out of the SGA.
You can recompile the specification to reset values. You use the following command to reset
the shared_variables package:

ALTER PACKAGE shared_variables COMPILE SPECIFICATION;

The procedure always returns 3 when you redefine it as serially reusable. This is true because
each call to the package gets a fresh copy. Serially reusable packages re-initialize the values of
shared variables. The only difference between a serially reusable variable and a constant is that a
constant can never change its value while the variable can. The change is lost on any subsequent
call to the package when the package is serially reusable. As a rule of thumb, package specification
variables should always be constants.

Types
There are two generalized types that you define in packages. You can declare static or dynamic
datatypes. Datatypes are typically PL/SQL structures, collections, reference cursors, and cursors.
All of these can be dynamic or static datatypes. They are dynamic when their declaration anchors
their type to a row or column definition. You use the %ROWTYPE to anchor to a row and %TYPE to
anchor to a column, as qualified in Table 9-1. Types are static when they rely on explicitly declared
SQL datatypes, such as DATE, INTEGER, NUMBER, or VARCHAR2.

As a general rule, package specifications are independent of other schema-level objects. You
build dependencies when you anchor package specification–declared types to catalog objects, like
tables and views. If something changes in the dependent table or view, the package specification
becomes invalid. As discussed later, in the section “Managing Packages in the Database Catalog,”
changes in package specifications can create a cascade reaction that invalidates numerous
package bodies and standalone schema-level programs.

Attribute Description
%ROWTYPE The %ROWTYPE anchors the datatype of a variable to the

row structure of a database catalog object (table or view),
or PL/SQL record structure. The new variable inherits both
the position and datatype of the columns found in the
referenced table or view when you anchor to a catalog
object. The new variable inherits both the position and
datatype of the explicit PL/SQL record structure, which
may inherit indirectly from one or more catalog objects.

%TYPE The %TYPE anchors the datatype of a variable to a column
datatype found in a database catalog object, like a table
or view.

TABLE 9-1 Anchoring Attributes

Chapter 9: Packages 325

Beyond the dynamic or static condition of package types, a shared cursor is a package cursor.
Shared cursors are dynamic in so far as they return different data sets over time. Other package
datatypes don’t inherit anything beyond the default values that may be assigned during their
declaration.

You can use any PL/SQL record and collection types that you declare in a package specification
as a formal parameter or function return datatype of a named PL/SQL block. You can’t use these
PL/SQL datatypes in SQL statements. PL/SQL blocks that reference package-level record and
collections are dependent on the package. If the package specification becomes invalid, so do
the external program units that depend on the package declarations.

Chapter 6 contains an example using this technique in the section “Pipelined Clause.” There
it declares a pipelined package specification that contains a record and collection type. The
collection type is dependent on the record structure. The standalone pf pipelined function
returns an aggregate table to the SQL environment. The standalone function uses the package-
level collection type, which implicitly relies on the package-level record structure. This example
demonstrates how you can use record and collection types found in package specifications in
other PL/SQL blocks.

Declaring shared cursors in the package specification anchors a cursor to the tables or views
referenced by its SELECT statement. This makes the package specification dependent on any
referenced tables or views. A change to the tables or views can invalidate the package specification
and all package bodies that list the invalid specification as a dependent.

Shared cursors can be queried simultaneously by different program units. The first program
that opens the cursor, gains control of the cursor until it is released by a CLOSE cursor command.
Prior to Oracle 11g these were not read consistent and required that you declare the package
serially reusable to ensure they performed as read-consistent cursors. Any attempt to fetch from an
open shared cursor by another process is denied immediately. A cursor already open, ORA-06511,
exception should be thrown, but the error message can be suppressed when the calling program
runs as an autonomous transaction. Autonomous transactions suppress the other error and raise
an ORA-06519 exception. Unfortunately, PL/SQL doesn’t have a WAIT n (seconds) command
syntax that would allow you to wait on an open cursor. This is probably one reason some
developers avoid shared cursors.

NOTE
If you need this feature, you could kludge something together with the
DBMS_LOCK.SLEEP procedure.

The following demonstrates a shared cursor package specification definition:

CREATE OR REPLACE PACKAGE shared_cursors IS
 CURSOR item_cursor IS SELECT item_id, item_title FROM item;
 END shared_cursors;
/

Pseudotypes or Attributes
The %ROWTYPE and %TYPE act as pseudotypes because they inherit the base catalog type
for a table or column respectively. More importantly, they implicitly anchor PL/SQL variable
datatypes to the database catalog. They are also known as attributes because they’re
preceded by the attribute indicator (the % symbol). The important point to remember is that
these attributes inherit a datatype and anchor a variable’s datatype to the database catalog.

326 Oracle Database 11g PL/SQL Programming

You can then access in an anonymous or named block, as follows:

BEGIN
 FOR i IN shared_types.item_cursor LOOP
 dbms_output.put_line('['||i.item_id||']['||i.item_title||']');
 END LOOP;
END;
/

NOTE
You can also reference any package specification collection type by
prepending the package name and component selector.

There’s the temptation to use a reference cursor defined by a record structure. You may
choose that development direction because you don’t want to create a view. The following
declares a strongly typed PL/SQL-only reference cursor:

CREATE OR REPLACE PACKAGE shared_types IS
 CURSOR item_cursor IS SELECT item_id, item_title FROM item;
 TYPE item_type IS RECORD
 (item_id item.item_id%TYPE
 , item_title item.item_title%TYPE);
END shared_types;
/

You can now use the reference cursor but not with the package-level cursor. Reference
cursors support only explicit cursors. You can test the shared package-level record structure
and cursor by first creating a SQL session-level (or bind) variable, like

VARIABLE refcur REFCURSOR

Then, you can run the following anonymous-block program:

DECLARE
 TYPE package_typed IS REF CURSOR RETURN shared_types.item_type;
 quick PACKAGE_TYPED;
BEGIN
 OPEN quick FOR SELECT item_id, item_title FROM item;
 :refcur := quick;
END;
/

The package_typed variable uses the package specification datatype to create a strong
reference cursor that is dependent on a package-level datatype as opposed to a schema-level
table or view. The record structure is a catalog object declared in the context of the package.

The anonymous block returns the cursor results into the bind variable. You can query the bind
variable reference cursor as follows:

SELECT :refcur FROM dual;

The query will return the results from the explicit query in the FOR clause. You should note that
the OPEN reference cursor FOR sql_statement; fails if you change the query so that it
returns a different set of datatypes or columns.

Chapter 9: Packages 327

NOTE
The substitution of a dynamic reference for a literal query raises a
PLS-00455 exception, which is a “cursor such-and-such and cannot
be used in a dynamic SQL OPEN statement.”

Shared record structures, collections, and reference cursors are the safest types to place in
package specifications. They become accessible to anyone with the EXECUTE privilege on the
package, but they aren’t part of the output when you describe a package. As mentioned in the
beginning of the section “Package Specification,” you must query the source to find the available
package specification types.

Components: Functions and Procedures
The components in package specifications are functions or procedures. They have slightly different
behaviors than their respective schema-level peers. Package specification functions and procedures
are merely forward referencing stubs. They define the namespace for a function or procedure and
their respective signatures. Functions also define their return types.

The package specification information is recorded in the USER_ARGUMENTS, ALL_ARGUMENTS,
and DBA_ARGUMENTS catalog views. These catalog views are covered in the section “Checking
Dependencies” later in the chapter.

You define a function stub as follows:

FUNCTION a_function (a NUMBER := 1, b NUMBER) RETURNS NUMBER;

You declare a procedure stub like this:

PROCEDURE a_procedure (a NUMBER := 1, b NUMBER);

The sample declarations assign a default to the first formal parameter, which makes it
optional. When there’s an optional parameter before one or more mandatory parameters, you
should use named notation. You can use a positional call, provided you pass a null value in the
position of the optional parameter.

The package specification is also where you provide any PRAGMA instructions for package-
level functions and procedures. Two PRAGMA instructions can apply to either the whole package
or all functions in a package. The SERIALLY_REUSABLE precompiler instruction must be placed
in both the package specification and the body. The RESTRICT_REFERENCES precompiler
instruction applies to all functions when you use the keyword DEFAULT instead of a function name.

The following precompiler instruction restricts the behavior of all functions in the package,
and it guarantees they can’t write any database state:

CREATE OR REPLACE PACKAGE financial IS
 FUNCTION fv (current NUMBER, periods NUMBER, interest NUMBER) RETURN NUMBER;
 FUNCTION pv (future NUMBER, periods NUMBER, interest NUMBER) RETURN NUMBER;

PRAGMA RESTRICT_REFERENCES(DEFAULT, WNDS);
END financial;
/

Chapter 6 contains the implementation of the fv and pv functions declared in the package
specification. They don’t write data states, and their implementations would succeed in a
package body.

328 Oracle Database 11g PL/SQL Programming

Package Body
The package body contains the implementations declared in the package specification. Everything
must match exactly, including default values for formal parameters. Prior to Oracle 9i, you could
declare formal parameters in the specification, but they weren’t enforced in the package body.
This is something you should check in your code before migrating from Oracle 8i to newer releases
(if you haven’t already done so).

The package body prototype is very similar to the package specification prototype. The package
body can declare almost everything that the specification sets except one thing. You can’t define
PRAGMA instructions for functions inside a package body. Any attempt raises a PLS-00708 error
that says you must put them in the package specification.

You can use EXCEPTION_INIT PRAGMA instructions for package-level exceptions provided
they’re distinct from those declared in your package specification. You can also override a variable
that is declared in the package specification. You do this by declaring the variable again in the
package body. When you do this, you make both copies of this variable inaccessible to your package
body. Any reference inside a package body to the doubly declared variable raises a PLS-00371
exception when you attempt to compile the package body. The exception tells you that at most
one declaration for the variable is permitted. The intent appears to indicate that you shouldn’t
take advantage of this behavior, and successful compilation of the package body may be a bug.

The prototype for a package body follows:

CREATE [OR REPLACE] PACKAGE package_name [AUTHID {DEFINER | CURRENT_USER}] IS
 [PRAGMA SERIALLY_REUSABLE;]
 [variable_name [CONSTANT] scalar_datatype [:= value];]
 [collection_name [CONSTANT] collection_datatype [:= constructor];]
 [object_name [CONSTANT] object_datatype [:= constructor];]

 [TYPE record_structure IS RECORD
 (field_name1 datatype
 [,field_name2 datatype
 [,field_name(n+1) datatype]]);]

 [CURSOR cursor_name
 [(parameter_name1 datatype
 [,parameter_name2 datatype
 [,parameter_name(n+1) datatype]])] IS

select_statement;]

[TYPE ref_cursor IS REF CURSOR [RETURN { catalog_row | record_structure }];]

 [user_exception_name EXCEPTION;
 [PRAGMA EXCEPTION_INIT(user_exception_name,-20001);]]

 -- This is a forward referencing stub to a function implemented later.
 [FUNCTION function_name
 [(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)]
 RETURN { sql_data_type | plsql_data_type }

Chapter 9: Packages 329

[DETERMINISTIC | PARALLEL_ENABLED]
 [PIPELINED]
 [RESULT_CACHE [RELIES_ON (table_name)]];]

 -- This is a forward referencing stub to a procedure implemented later.
 [PROCEDURE procedure_name
 [(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype])];]

 [FUNCTION function_name
 [(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)]
 RETURN { sql_data_type | plsql_data_type }

[DETERMINISTIC | PARALLEL_ENABLED]
 [PIPELINED]
 [RESULT_CACHE [RELIES_ON (table_name)]] IS
 [PRAGMA AUTONOMOUS_TRANSACTION;] -- Check rules in Chapter 6.

some_declaration_statement; -- Check rules in Chapter 6.
 BEGIN

some_execution_statement; -- Check rules in Chapter 6.
 [EXCEPTION
 WHEN some_exception THEN

some exception_handling_statement;] -- Check rules in Chapter 5.
 END [function_name];]

 [PROCEDURE procedure_name
 [(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
 [, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype])] IS
 [PRAGMA AUTONOMOUS_TRANSACTION;] -- Check rules in Chapter 6.

some_declaration_statement; -- Check rules in Chapter 6.
 BEGIN

some_execution_statement; -- Check rules in Chapter 6.
 [EXCEPTION
 WHEN some_exception THEN

some exception_handling_statement;] -- Check rules in Chapter 5.
 END [procedure_name];]
END [package_name];
/

The SERIALLY_REUSABLE PRAGMA (precompiler instructions) must be included in the
package body if the package specification uses it. This practice differs from the PRAGMA instructions
covered earlier.

The next three subsections discuss how you can implement variables, types, and components
in your package bodies. They point out changes in behavior between serially or non–serially
reusable packages. As mentioned, packages are non–serially reusable by default. As in the section
“Package Specification” earlier, types are subdivided into structures, cursors, and collections.

330 Oracle Database 11g PL/SQL Programming

Variables
Package-level variables declared in package bodies differ from those declared in package
specifications. You can’t access package-level variables outside of the package. Only functions
and procedures published by the package specification can access package-level variables. This
makes these variables very much like instance variables because they retain their state between
calls to the package functions and procedures. At least, they retain their state from the point of
the first call until the end of the session or they age out of the SGA.

The following package specification creates a function and procedure. The get function
returns the value of a package body variable. The set procedure lets you reset a package body
variable’s value. This package is non–serially reusable, which means it retains variable values
until it ages out of the SGA.

The package specification is

-- This is found on create_package_variables on the publisher's web site.
CREATE OR REPLACE PACKAGE package_variables IS
 -- Declare package components.
 PROCEDURE set(value VARCHAR2);
 FUNCTION get RETURN VARCHAR2;
END package_variables;
/

Package specifications don’t know what variables are implemented in package bodies. The
implementation details are known exclusively to the package body. Published functions and
procedures can access any package-level components. They are also available to any user who
is granted the EXECUTE privilege on the package.

The package body declares a package-level variable. It also provides the implementation for
the function and procedure. The published components have access to everything declared in the
package. You can call them without prepending the package name and component selector (that
period again) from inside the package.

The package body follows:

-- This is found on create_package_variables on the publisher's web site.
CREATE OR REPLACE PACKAGE BODY package_variables IS
 -- Declare package scope variable.

variable VARCHAR2(20) := 'Initial Value';
 -- Define function
 FUNCTION get RETURN VARCHAR2 IS
 BEGIN

RETURN variable;
 END get;
 -- Define procedure.
 PROCEDURE set(value VARCHAR2) IS
 BEGIN

variable := value;
 END set;
END package_variables;
/

The get function returns the package-level variable. The set procedure resets the package-
level variable. After you compile the program, you can test the behavior by declaring a session-

Chapter 9: Packages 331

level (bind) variable. Call the get function to return a value into the bind variable. You can then
query the bind variable:

VARIABLE outcome VARCHAR2(20)
CALL package_variables.get() INTO :outcome;
SELECT :outcome AS outcome FROM dual;

The output is

OUTCOME

Initial Value

Execute the set procedure to reset the variable’s value. Call the get function again before
you re-query the bind variable. The test results are

EXECUTE package_variables.set('New Value');
CALL package_variables.get() INTO :outcome;
SELECT :outcome AS outcome FROM dual;

The output is

OUTCOME

New Value

If you rerun the create_package_variables.sql file to repeat the test in the same
session, it works differently. You would print “New Value” first, not “Initial Value,” because the
package hasn’t aged out of the SGA. The DDL command replaces a package specification only
when there’s a change between the original and new package specifications. Otherwise, it simply
skips the process. The next DDL command in the file checks the package body for a change.
When it doesn’t find a change, it skips the replace command and runs the test scripts.

You can force a change and refresh variables by running an ALTER command to recompile
the package specification. After recompilation, all variables are returned to their initial values.
You can alter the package before rerunning the script, and see the same results shown.

The syntax to recompile only a package specification is

ALTER PACKAGE package_variables COMPILE SPECIFICATION;

If you change the package from non–serially reusable to serially reusable, the test results
change. Each call to a serially reusable package body gets a new copy of both the package
specification and the body. The package-level variable is always the same.

You should consider declaring packages as non–serially reusable libraries. If you adopt that
policy, you should declare only constants in the package specification. Declare variables only in
the package body or inside the functions and procedures as local variables.

Types
As with the package specification, you can declare dynamic or static datatypes in package bodies.
Datatypes are typically PL/SQL structures, collections, reference cursors, and cursors. You can
declare dynamic datatypes by anchoring them to row or column declarations (refer back to Table
9-1). You declare static datatypes when types are explicitly declared as SQL datatypes.

332 Oracle Database 11g PL/SQL Programming

Package bodies are dependent on their package specification. They are also dependent on
other schema-level objects that they use in their implementation of components. The behaviors of
types in the package body are consistent with those of the package specification with one exception:
PL/SQL blocks outside of the package body can’t access elements declared in the package body.

Components: Functions and Procedures
Components are implementation of published functions or procedures, or they are declarations or
definitions of package-only functions or procedures. You can also declare local components inside
published or package-only functions or procedures.

Declaring something before the implementation is called forward referencing (or a prototype).
When you define local components, you provide both their declaration and implementation.
Sometimes you need to declare a component before you’re ready to implement it. You do this
by providing a forward referencing stub for a function or procedure.

Components can only specify whether they are autonomous or local transactions. Local
transactions run inside a pre-existing transaction scope. Autonomous transactions run discretely
in their own transaction scope. By default, all functions and procedures are local transactions
unless you declare them as autonomous transactions. The AUTONOMOUS_TRANSACTION PRAGMA
declares a function or procedure as autonomous.

Only published functions or procedures can be called from PL/SQL blocks that are external
to the package. Package-level functions can be called by three types of components. You can call
them from published, package-level, or local components. Local components are declared and
implemented (or defined) inside a published or package-level component. Another option is to
define a local component inside another local component. Chapter 6 covers the rules governing
how you declare and implement functions and procedures.

The components package specification declares only a getter function and setter procedure.
A getter component simply gets something from the black box, while a setter component sets
an initial value or resets an existing value inside the black box. These are stock terms in OO
programming. As you’ve discovered earlier in this chapter, they also apply well to PL/SQL packages
that are declared as non–serially reusable.

Singleton Design Pattern
A Singleton design pattern lets you construct only one instance of an object. It guarantees
any subsequent attempt to construct an instance fails until the original object instance is
discarded. This pattern is widely used in OO programming languages, like C++, C#, or Java.

You can guarantee a single instance of a package in any session, too. To do so, you
simply embed a call to a locally scoped function or procedure as the first step in all
published functions and procedures. The locally scoped function or procedure holds a
local variable that should match a package-level control variable. If the values match,
the local function or procedure changes the package-level variable to lock the package.

You also need another locally scoped function or procedure as the last step in all
published functions and procedures. The last step resets all package variables to their initial
state. The easiest way is to accomplish this is to write a procedure that resets the default
values for package variables. You call the resetting procedure as the last statement in your
published function or procedure.

Don’t forget to reset the control variable with the other package variables. If you forget
to reset the control variable, the package would be locked until the end of the session or
when it ages out of the SGA.

Chapter 9: Packages 333

The components package specification is

-- This is found in create_components.sql on the publisher's web site.
CREATE OR REPLACE PACKAGE components IS
 PROCEDURE set (value VARCHAR2); -- Declare published procedure.
 FUNCTION get RETURN VARCHAR2; -- Declare published function.
END components;
/

Functions are almost always declared before procedures in PL/SQL, but their sequencing
is meaningless inside a package specification. It is meaningful when you declare them as local
functions and procedures because of forward referencing possibilities.

The components package body adds a package-level function and procedure, and two
shared variables. One variable is provided to demonstrate how you would implement a Singleton
pattern in a PL/SQL package. The other variable contains a value that should always have an
initial value.

The components package body is

-- This is found in create_components.sql on the publisher's web site.
CREATE OR REPLACE PACKAGE BODY components IS
 -- Declare package scoped shared variables.
 key NUMBER := 0;
 variable VARCHAR2(20) := 'Initial Value';
 -- Define package-only function and procedure.
 FUNCTION locked RETURN BOOLEAN IS
 key NUMBER := 0;
 BEGIN
 IF components.key = key THEN
 components.key := 1;
 RETURN FALSE;
 ELSE
 RETURN TRUE;
 END IF;
 END locked;
 PROCEDURE unlock IS
 key NUMBER := 1;
 BEGIN
 IF components.key = key THEN
 components.key := 0; -- Reset the key.
 variable := 'Initial Value'; -- Reset initial value of shared variable.
 END IF;
 END unlock;
 -- Define published function and procedure.
 FUNCTION get RETURN VARCHAR2 IS
 BEGIN
 RETURN variable;
 END get;
 PROCEDURE set (value VARCHAR2) IS
 BEGIN
 IF NOT locked THEN
 variable := value;

334 Oracle Database 11g PL/SQL Programming

 dbms_output.put_line('The new value until release is ['||get||'].');
 unlock;
 END IF;
 END set;
END components;
/

The key action occurs in the set procedure. It locks the package to change, changes a shared
variable, gets a copy of the temporary value (also known as a transitive value) of the shared
variable, and unlocks the package. The unlock procedure resets the control key and resets the
shared package variable.

You can test this by first creating a session or bind variable:

VARIABLE current_content VARCHAR2(20)

After setting bind variable, you call the function and return the value into the bind variable.
A select statement lets you see the initial package value, as shown:

CALL components.get() INTO :current_content;
SELECT :current_content AS contents FROM dual;

It returns the following:

CONTENTS

Initial Value

The temporary value is printed to console when you call the set procedure. At least, it is
printed when you’ve enable SERVEROUTPUT first.

SET SERVEROUTPUT ON SIZE 1000000
EXECUTE components.set('New Value');

The output should look like this:

The new value until release is [New Value].

A subsequent call to the get function returns the original value of the package variable. The
components package implements a Singleton pattern for shared package variables.

The locked function and unlock procedure ensure that the package state is always the same.
You are able to call the set procedure to change a variable, see the change with a call to the get
function. This is not possible when the package is serially reusable. A call to the get function
inside the set function always grabs a new copy of the package when the package is declared
serially reusable.

The components package demonstrates an approach to managing shared package variables
between calls. In this example, the shared package variable behaves like an instance variable in a
user-defined object. As mentioned earlier in this chapter, Chapter 14 covers user-defined objects.
Clearly, this is a lot of work to share a variable and guarantee that the next call to the package
finds the same initial value.

Aside from showing you how to implement the Singleton pattern, this code demonstrates how
you call package-level components through published declarations. Package-level declarations
are hidden package elements. You can’t see them when you describe a package.

Chapter 9: Packages 335

Definer vs. Invoker Rights
Earlier references have touched on the concepts of the definer and invoker rights. These are
models of operation. The default model of operation for stored programs is definer rights. Definer
rights programs act on catalog objects that are declared in the same schema. They perform with
all the privileges of the schema owner.

A definer rights model does not dictate that all declared catalog objects are owned by the
same schema as the package owner. It is possible that synonyms point to catalog objects owned
by another user, where that other user has granted privileges to on their catalog objects. Catalog
objects can be functions, packages, procedures, materialized views, sequences, tables, or views.
Figure 9-3 shows you a visual representation of a definer rights model where all the catalog
objects are owned by the same user.

A schema is a container of stored programs. The schema grants access to stored programs, or
black boxes, though privileges. External users may create synonyms to simplify call statements to
external programs. Synonyms only translate (resolve) when grants, stored programs, and catalog
objects are valid in the owning schema. The combination of synonyms and grants lets external
users call programs with inputs and retrieve output from stored programs in another schema.
They also allow a call syntax that mirrors what it would be in the owning schema, provided
you declare synonym names that match the target functions or procedures.

The definer rights model is ideal when you want to deploy a single set of stored programs
that act on local catalog objects. Alternatively, it also works when you want to have all access
centralized in a single schema. The centralized access model is a bit more complex because the
access schema may contain synonyms that point to stored programs in other schemas. The stored
programs in turn have definer rights on catalog objects in their own schema.

FIGURE 9-3 Definer rights model of operation with local catalog objects

336 Oracle Database 11g PL/SQL Programming

NOTE
A centralized access schema is exactly how the Oracle E-Business
Suite runs.

Grants and Synonyms
Assume you have a package named manage_items declared and implemented as a definer
rights program in your plsql schema. You want to create a second schema called purchasing
and let the purchasing user access the manage_items package. There are two steps required
to make access seamless to the manage_items package.

The first step requires you to connect as the plsql user and grant the EXECUTE privilege on
the manage_items package to the new purchasing schema. The following command grants
that privilege:

GRANT EXECUTE ON manage_items TO purchasing;

After you grant the EXECUTE privilege on the package, the purchasing user can access
the package. However, the purchasing user must prepend the plsql schema name and a
component selector to see the package, as follows:

SQL> DESCRIBE plsql.manage_items

CAUTION
You have limited privileges when grants are made through roles.
Functions and procedures that contain SQL statements may fail
at run time when grants are not explicit privileges.

You can dispense with the schema name and component selector by creating a SYNONYM
in the purchasing schema. A SYNONYM translates an alias to a fully qualified reference, like
plsql.manage_items. You create a synonym using the same name as the package as follows:

CREATE SYNONYM manage_items FOR plsql.manage_items;

After you create the synonym, you can describe the package by using the SYNONYM. This lets
you dispense with prepending the schema name and component selector to packages or any
other catalog object. You can grant the EXECUTE privilege to all other users by substituting the
schema name with PUBLIC. The following grants permissions to all other database users:

GRANT EXECUTE ON manage_items TO PUBLIC;

Grants and synonyms are powerful tools. You can find GRANT definitions in the
user_tab_privs administrative view. SYNONYM values are in the USER_SYNONYMS view.

More or less, the definer rights model lets individual users act on subsets of data that are
stored in a common repository. The stored programs control access and authentication by using
the DBMS_APPLICATION_INFO package to set the CLIENT_INFO column in V$SESSION.
They stripe the data by adding a column that ties to the user’s organization or business entity. The
section “Compound Triggers” in Chapter 10 demonstrates how use the CLIENT_INFO column.

The invoker rights model requires you to set the AUTHID value to CURRENT_USER in any
schema-level program. This approach requires that you identify all catalog objects that are

Chapter 9: Packages 337

dependencies of invoker rights programs. After identifying the dependencies, you must replicate
those catalog objects to any schema that wants to call the invoker rights programs. This requirement
is due to the fact that invoker rights modules resolve by using the caller’s privileges, not the definer’s
privileges.

NOTE
Database triggers and functions called from within views are always
executed with definer rights and run with the privileges of the user
who owns the triggering table or view.

You choose an invoker rights mode of operation to support distributed data repositories. A
single code repository can use grants and synonyms to bridge transactions across a network. They
accomplish this by using a DB_LINK. A DB_LINK lets you resolves a network alias through the
tnsnames.ora file to find another Oracle database. Appendix A describes how to configure and
use the tnsnames.ora file.

The invoker rights model best supports data that is stored in a separate user schema. It is also
ideal for distributed database solutions when they’re running in the same instance. There are
significant limitations to remote calls when making remote procedure calls that use database links.

Remote Calls
Remote calls are made from one database instance to another. You make remote calls through
database links (DB_LINK). A user must have the CREATE DATABASE LINK privilege to create
a database link. You grant as the SYSTEM user the privilege by using the following syntax:

GRANT CREATE DATABASE LINK TO schema_name;

After granting this to a schema, you can create a database link to another schema. The
prototype to create a DB_LINK is

CREATE DATABASE LINK db_link_name
CONNECT TO schema_name IDENTIFIED BY schema_password
USING 'tns_names_alias'

A database link is a static object in the database. It stores the schema name and password
to resolve a remote connection. You must update database links whenever the remote database
changes its schema’s password. Database links can reference other database instances or a
different schema of the same database.

The examples in this sidebar use a DB_LINK named loopback, which allows you to reconnect
to the same instance. You don’t need to change anything in the tnsnames.ora file to make a
loopback database link work. However, there are some rules on the calls that you can make
using a remote connection. You can call schema-level components provided that they don’t require
arguments.

For example, you call a remote status function by using the following syntax when using
the loopback database link:

SQL

SELECT status@loopback FROM dual;

338 Oracle Database 11g PL/SQL Programming

PL/SQL

BEGIN
 dbms_output.put_line('Status ['||status@loopback||']');
END;
/

The remote schema-level component can contain DDL or DML statements. You cannot return
a handle to a LOB. Any attempt to do so raises an ORA-22992 exception that says you can’t use
a LOB locator selected from a remote table.

Managing Packages in the Database Catalog
As databases grow, so do the stored programs that support them. Whether you choose to implement
a definer or invoker rights solution, understanding what you’ve added to your schema is very
important. The next three sections show you how to find, manage, and validate packages and
their dependencies in the Oracle 11g database.

Finding, Validating, and Describing Packages
The all_objects, dba_objects, and user_objects administrative views let you find
packages. They also let you validate whether a package specification or body is valid or invalid.
Rather than create new code artifacts, the example uses the pipelined package and pf function
created in the section “PIPELINED Clause” of Chapter 6.

The following query lets you see that they are created and valid. The SQL*Plus column
formatting ensures the output is readable in one 80-column screen.

COLUMN object_name FORMAT A10
SELECT object_name
, object_type
, last_ddl_time
, timestamp
, status
FROM user_objects
WHERE object_name IN ('PIPELINED','PF');

This query should return data like this:

OBJECT_NAME OBJECT_TYPE LAST_DDL_ TIMESTAMP STATUS
-------------------- ------------------- --------- ------------------- ------
PF FUNCTION 03-JAN-08 2008-01-03:22:50:23 VALID
PIPELINED PACKAGE 03-JAN-08 2008-01-03:22:50:19 VALID
PIPELINED PACKAGE BODY 03-JAN-08 2008-01-03:22:50:20 VALID

If you put an extraneous character in the pipelined package body, it will fail when you run
it. After attempting to compile an incorrect package body, re-query the data and you should see
something like this:

OBJECT_NAM OBJECT_TYPE LAST_DDL_ TIMESTAMP STATUS
---------- ------------------- --------- ------------------- -------
PF FUNCTION 03-JAN-08 2008-01-03:22:50:23 VALID
PIPELINED PACKAGE 03-JAN-08 2008-01-03:22:50:19 VALID
PIPELINED PACKAGE BODY 03-JAN-08 2008-01-03:22:53:34 INVALID

Chapter 9: Packages 339

The invalid package body does not invalidate the pf function, which is dependent on the
pipelined package. The reason is that the pf function is dependent on the package specification,
not the package body. As mentioned earlier, the package specification is the schema-level
component. You should fix the pipelined package body and recompile it before attempting
the next step.

If you now put an extraneous character in the pipelined package specification, it fails
when you try to compile it. Re-querying the data from the USER_SOURCE view tells you that
the dependent package body and pf function are also invalid.

OBJECT_NAM OBJECT_TYPE LAST_DDL_ TIMESTAMP STATUS
---------- ------------------- --------- ------------------- -------
PF FUNCTION 03-JAN-08 2008-01-03:22:50:23 INVALID
PIPELINED PACKAGE 03-JAN-08 2008-01-03:23:06:10 INVALID
PIPELINED PACKAGE BODY 03-JAN-08 2008-01-03:22:53:34 INVALID

You can rebuild the pipelined package by running the create_pipelined2.sql script
found on the publisher’s web site. You would find that the pf function is still invalid in the
database catalog after you recompiled the package specification and body (but not the case if
you reran the script).

You can validate it by an explicit compilation statement like

ALTER FUNCTION pf COMPILE;

Or, you can simply call the function, which validates that its dependent objects are valid
before running the statement. This is known as a lazy compile but is actually called automatic
recompilation.

SELECT * FROM TABLE(pf);

You can describe the package as you would a table or view from SQL*Plus:

SQL> DESCRIBE pipelined

It returns the following:

FUNCTION PF RETURNS ACCOUNT_COLLECTION

You may notice that the record and collection type declared in the package specification
aren’t displayed. This is normal. As stated in the section “Package Specification” earlier in the
chapter, you must query the all_source, dba_source, or user_source to find the complete
package declaration. Wrapped package bodies will be returned from that query as gibberish that
you should discard.

This section has shown you how to find, validate, and describe packages. The next section
explores tracking dependencies.

Checking Dependencies
The all_dependencies, dba_dependencies, and user_dependencies administrative
view let you examine dependencies between stored programs. As done in the previous section,
the example here uses the pipelined package and pf function created in the section “PIPELINED
Clause” of Chapter 6.

340 Oracle Database 11g PL/SQL Programming

The following query lets you see the dependencies for the pf function. The SQL*Plus column
formatting ensures the output is readable in one 80-column screen.

COLUMN name FORMAT A10
COLUMN type FORMAT A8
COLUMN referenced_name FORMAT A30
COLUMN referenced_type FORMAT A10
COLUMN dependency_type FORMAT A4
SELECT name
, type
, referenced_name
, referenced_type
, dependency_type
FROM user_dependencies
WHERE name = 'PF';

The output returned is displayed in the following illustration. The pf function has a direct
hard dependency on the pipelined package and two direct hard dependencies on the contact and
member tables. The two tables are referenced in the FROM clause of the CURSOR declared in the
pf function.

This section has shown you how to find the dependencies between stored programs. You can
also refer to Appendix H that covers the PL/Scope tool. Together you can understand what your
dependencies are and their respective frequency.

Comparing Validation Methods: Timestamp vs. Signature
Stored programs are validated or invalidated by using a timestamp or signature method. The
timestamp model is the default for most Oracle databases. The timestamp method compares
the last_ddl_time column, which you can check in the all_objects, dba_objects, or
user_objects view. When the base object has a newer timestamp than the dependent object,
the dependent object will be recompiled.

Dates and timestamps always provide some interesting twists and turns. When you are
working in a distributed situation and the two database instances are in different time zones,
the comparison may be invalid. You may also encounter unnecessary recompilations when
distributed servers are in the same time zone. Dependent objects are sometimes compiled even
when the change in last_ddl_time column didn’t result in a change of the base object.

Chapter 9: Packages 341

Another complication with time stamp validation occurs when PL/SQL is distributed between
the server and Oracle Forms. In this case, a change in the base code can’t trigger recompilation
because it isn’t included in the run-time version of the Oracle Form.

The alternative to timestamp validation is the signature model. This model works by comparing
the signature of schema-level and package-level functions and procedures. You must alter the
database as a privileged user to convert the database to signature model validation. You would
use the following command syntax:

ALTER SYSTEM SET REMOTE_DEPENDENCIES_MODE = SIGNATURE;

NOTE
You must hold the ALTER SYSTEM privilege to issue this command.

This command changes the remote_dependencies_mode parameter in your spfile.
ora or pfile.ora configuration file. If you want the change to be permanent, you should
change it in your configuration file.

The signature model works by checking whether the base object signature changes between
compilation events. If there is a change, it will force compilation of dependent packages. You
can find the signature information in the all_arguments, dba_arguments, and user_
arguments views.

NOTE
Remote procedure calls can raise an ORA-04062 exception when
a remote database uses timestamp, not signature, mode.

The timestamp model is ideal for centralized environments. The signature model is sometimes
more effective for some centralized development environments but generally a preferred solution
in distributed database applications.

Summary
This chapter has shown you why packages are the backbone of Oracle 11g application development.
You’ve learned how to group functions and procedures into libraries that include overloading.
You’ve also learned the difference between package and local variables, types, and components,
and you’ve seen how to plan and manage these features.

This page intentionally left blank

CHAPTER
10

Triggers

343

344 Oracle Database 11g PL/SQL Programming

atabase triggers are specialized stored programs. They are not called directly but are
triggered by events in the database. They run between the time you issue a command
and the time you perform the database management system action. You can write
triggers in PL/SQL or Java. Triggers can capture events that create, modify, or drop
objects, and they can capture inserts to, updates of, and deletes from tables or views.

They can also monitor changes in the state of the database or schema, and the actions of users.

This chapter covers the following:

Introduction to triggers

Trigger architecture

Data Definition Language triggers

Data Manipulation Language triggers

Compound triggers

Instead-of triggers

System or database event triggers

Trigger restrictions

The sections lay a foundation and develop ideas sequentially. They should also serve as a
quick reference if you want to focus on writing a specific trigger type quickly. For example, you
can go to the section “Data Manipulation Language Triggers” to learn how to write triggers for
inserts, updates, and deletes.

Introduction to Triggers
Database triggers are specialized stored programs. As such, they are defined by very similar DDL
rules. Likewise, triggers can call SQL statements and PL/SQL functions and procedures. You can
choose to implement triggers in PL/SQL or Java. You can check Chapter 14 and Appendix D for
clarification of syntax on writing Java libraries to support your triggers.

Database triggers differ from stored functions and procedures because you can’t call them
directly. Database triggers are fired when a triggering event occurs in the database. This makes
them very powerful tools in your efforts to manage the database. You are able to limit or redirect
actions through triggers.

You can do the following with triggers:

Control the behavior of DDL statements, as by altering, creating, or renaming objects

Control the behavior of DML statements, like inserts, updates, and deletes

Enforce referential integrity, complex business rules, and security policies

Control and redirect DML statements when they change data in a view

Audit information of system access and behavior by creating transparent logs

On the other hand, you can’t control the sequence of or synchronize calls to triggers, and this
can present problems if you rely too heavily on triggers. The only control you have is to designate

■

■

■

■

■

■

■

■

■

■

■

■

■

D

Chapter 10: Triggers 345

them as before or after certain events. Oracle 11g delivers compound triggers to help you manage
larger events, like those triggering events that you would sequence.

There are risks with triggers. The risks are complex because while SQL statements fire triggers,
triggers call SQL statements. A trigger can call a SQL statement that in turn fires another trigger.
The subsequent trigger could repeat the behavior and fire another trigger. This creates cascading
triggers. Oracle 11g and earlier releases limit the number of cascading trigger to 32, after which
an exception is thrown.

The following summarizes the five types of triggers and their uses:

Data Definition Language triggers These triggers fire when you create, change, or remove
objects in a database schema. They are useful to control or monitor DDL statements. An
instead-of create table trigger provides you with a tool to ensure table creation meets
your development standards, like including storage or partitioning clauses. You can also
use them to monitor poor programming practices, such as when programs create and
drop temporary tables rather than use Oracle collections. Temporary tables can fragment
disk space and degrade database performance over time.

Data Manipulation Language triggers These triggers fire when you insert, update, or
delete data from a table. You can fire them once for all changes on a table, or for each
row change, using statement- or row-level trigger types, respectively. DML triggers are
useful to control DML statements. You can use these triggers to audit, check, save, and
replace values before they are changed. Automatic numbering of numeric primary keys
is frequently done by using a row-level DML trigger.

Compound triggers These triggers acts as both statement- and row-level triggers when
you insert, update, or delete data from a table. This trigger lets you capture information
at four timing points: (a) before the firing statement; (b) before each row change from the
firing statement; (c) after each row change from the firing statement; and (d) after the firing
statement. You can use these types of triggers to audit, check, save, and replace values
before they are changed when you need to take action at both the statement and row
event levels.

Instead-of triggers These triggers enable you to stop performance of a DML statement and
redirect the DML statement. INSTEAD OF triggers are often used to manage how you write
to non-updatable views. The INSTEAD OF triggers apply business rules and directly insert,
update, or delete rows in tables that define updatable views. Alternatively, the INSTEAD
OF triggers insert, update, or delete rows in designated tables unrelated to the view.

System or database event triggers These triggers fire when a system activity occurs in the
database, like the logon and logoff event triggers. They are useful for auditing information
of system access. These triggers let you track system events and map them to users.

Triggers have some restrictions that are important to note. The largest one is that the trigger
body can be no longer than 32,760 bytes. That’s because trigger bodies are stored in LONG
datatypes columns. This means you should consider keeping your trigger bodies small. You do
that by placing the coding logic in other schema-level components, like functions, procedures,
and packages. Another advantage of moving the coding logic out of the trigger body is that you
can’t wrap it when it’s in trigger bodies, as explained in Appendix F.

Each of these triggers has a set of rules that govern its use. You will cover all five triggers in
their respective sections. The next section describes the architecture of database triggers.

■

■

■

■

■

346 Oracle Database 11g PL/SQL Programming

Database Trigger Architecture
Database triggers are defined in the database like packages. They’re composed of two pieces: the
database trigger declaration and the body. The declaration states how and when a trigger is called.
You can’t call a trigger directly. They are triggered (called) by a firing event. Firing events are DDL
or DML statements or database or system events. Database triggers implement an object-oriented
observer pattern, which means they listen for an event and then take action.

Trigger declarations consist of four parts: a trigger name, a statement, a restriction, and an
action. The first three define the trigger declaration, and the last defines the trigger body. A trigger
name must be unique among triggers but can duplicate the name of any other object in a schema
because triggers have their own namespace. A trigger statement identifies the event or statement
type that fires the trigger. A trigger restriction, such as a WHEN clause or INSTEAD OF clause,
limits when the trigger runs. A trigger action is a trigger body.

NOTE
A namespace is a unique list of identifiers maintained in the database
catalog.

A database trigger declaration is valid unless you remove the object that it observes. A
database trigger declaration also creates a run-time process when an event fires it. The trigger
body is not as simple. A trigger body can depend on other tables, views, or stored programs. This
means that you can invalidate a trigger body by removing a dependency. Dependencies are local
schema objects, but those include synonyms that may resolve across the network. You invalidate
a trigger when the trigger body becomes invalid. Trigger bodies are specialized anonymous-block
programs. You can call and pass them parameters only through the trigger.

The linkage becomes acute when you define a DDL trigger on the create event. As discussed
in the section “Data Definition Language Triggers,” an invalid trigger body for a CREATE trigger
disables your ability to recreate the missing dependency. Similar behaviors occur for other DDL
events, like ALTER and DROP.

You can recompile triggers after you replace any missing dependencies. The syntax is:

ALTER TRIGGER trigger_name COMPILE;

Privileges Required to Use Triggers
You must have the CREATE TRIGGER system privilege to create a trigger on an object that
you own. If the object is owned by another user, you’ll need that user to grant you the
ALTER privilege on the object. Alternatively, the privileged user can grant you the ALTER
ANY TABLE and CREATE ANY TRIGGER privileges.

You have definer permissions on your own schema-level components, but you must have
EXECUTE permission when you call a schema-level component owned by another user. You
should document any required privileges during development to streamline subsequent
implementation.

Chapter 10: Triggers 347

Triggering events communicate directly with the trigger. You have no control over or visibility
into how that communication occurs. You have no data other than that which is available through
the system-defined event attributes (see the section “Event Attribute Functions” later in this chapter
for more information on DDL, statement-level DML, and system and database event triggers). You
do have access to the new and old pseudo-record types in row-level DML and INSTEAD OF
triggers. The structure of these types is dynamic and defined at run time. The trigger declaration
inherits the declaration of these values from the DML statement that fires it.

DML row-level and INSTEAD OF triggers call their trigger bodies differently than statement-
level triggers. When an event fires this type of trigger, the trigger declaration spawns a run-time
program unit. The run-time program unit is the real “trigger” in this process. The trigger makes
available new and old pseudo-record structures by communicating with the DML statement that
fired it. The trigger code block can access these pseudo-record structures by calling them as bind
variables. The trigger code block is an anonymous PL/SQL block that is only accessible through a
trigger declaration.

As discussed in Chapter 3, Table 3-1, bind variables allow you to reach outside of a program’s
scope. You can access variables defined in the calling program’s scope. The :in and :out variables
are bind variables inside trigger bodies. They let the trigger code block communicate with the trigger
session. Only row-level triggers can reference these pseudo-record structure bind variables. Row-
level trigger code blocks can read and write through these bind variables, as shown in Figure 10-1.

FIGURE 10-1 Trigger architecture

348 Oracle Database 11g PL/SQL Programming

You can also call external standalone or package functions and procedures from trigger bodies.
When you call programs from the trigger body, the called programs are black boxes. This means
that external stored programs can’t access the :new and :old bind variables. You do have the
option to pass them by value or reference to other stored functions and procedures.

Oracle 11g introduces compound triggers. This new trigger changes the landscape of writing
triggers. You can now fire a compound trigger, capture row-level statement information, accumulate
it in a global trigger collection, and access that data in the AFTER STATEMENT timing block. You
can read this in detail in the section “Compound Triggers.”

You can define multiple triggers on any object or event. Oracle 11g provides you with no way
to synchronize which trigger fires first, second, or last. This limit is because triggers are interleaved,
that is, because program units work independently as discrete processes. Triggers can slow down
your application interface, especially row-level statements. You should be careful when and where
you deploy triggers to solve problems.

Data Definition Language Triggers
Data Definition Language triggers fire when you create, change, or remove objects in a database
schema. They are useful to control or monitor DDL statements. Table 10-1 lists the data definition
events that work with DDL triggers. These triggers support both BEFORE and AFTER event triggers
and work at the database or schema level.

You often use DDL triggers to monitor significant events in the database. Sometimes you use
them to monitor errant code. Errant code can perform activities that corrupt or destabilize your
database. More often, you use these in development, test, and stage systems to understand and
monitor the dynamics of database activities.

NOTE
A stage system is used for end-user testing and load balancing metrics
before deployment to production.

DDL triggers are very useful when you patch your application code. They can let you find
potential changes between releases. You can also use the instead-of create trigger during an
upgrade to enforce table creation storage clauses or partitioning rules.

CAUTION
The overhead of these types of triggers should be monitored carefully
in production systems.

These triggers can also track the creation and modification of tables by application programs
that lead to database fragmentation. They are also effective security tools when you monitor
GRANT and REVOKE privilege statements. The following sections list and describe in detail the
event attribute functions you can use to supplement your DDL trigger.

Chapter 10: Triggers 349

Event Attribute Functions
The following is a list of system-defined event attribute functions:

ORA_CLIENT_IP_ADDRESS

ORA_DATABASE_NAME

■

■

DDL Event Description
ALTER You ALTER objects by changing something about them, like their

constraints, names, storage clauses, or structure.
ANALYZE You ANALYZE objects to compute statistics for the cost optimizer.
ASSOCIATE
STATISTICS

You ASSOCIATE STATISTICS to link a statistic type to a column,
function, package, type, domain index, or index type.

AUDIT You AUDIT to enable auditing on an object or system.
COMMENT You COMMENT to document column or table purposes.
CREATE You CREATE objects in the database, like objects, privileges, roles,

tables, users, and views.
DDL You use the DDL event to represent any of the primary data definition

events. It effectively says any DDL event acting on anything.
DISASSOCIATE
STATISTICS

You DISASSOCIATE STATISTICS to unlink a statistic type from
a column, function, package, type, domain index, or index type.

DROP You DROP objects in the database, like objects, privileges, roles,
tables, users, and views.

GRANT You GRANT privileges or roles to users in the database. The privileges
enable a user to act on objects, like objects, privileges, roles, tables,
users, and views.

NOAUDIT You NOAUDIT to disable auditing on an object or system.
RENAME You RENAME objects in the database, like columns, constraints,

objects, privileges, roles, synonyms, tables, users, and views.
REVOKE You REVOKE privileges or roles from users in the database. The

privileges enable a user to act on objects, like objects, privileges,
roles, tables, users, and views.

TRUNCATE You TRUNCATE tables, which drops all rows from a table and resets
the high-water mark to the original storage clause initial extent
value. Unlike the DML DELETE statement, the TRUNCATE command
can’t be reversed by a ROLLBACK command. You can use the new
flashback to undo the change.

TABLE 10-1 Available Data Definition Events

350 Oracle Database 11g PL/SQL Programming

ORA_DES_ENCRYPTED_PASSWORD

ORA_DICT_OBJ_NAME

ORA_DICT_OBJ_NAME_LIST

ORA_DICT_OBJ_OWNER

ORA_DICT_OBJ_OWNER_LIST

ORA_DICT_OBJ_TYPE

ORA_GRANTEE

ORA_INSTANCE_NUM

ORA_IS_ALTER_COLUMN

ORA_IS_CREATING_NESTED_TABLE

ORA_IS_DROP_COLUMN

ORA_IS_SERVERERROR

ORA_LOGIN_USER

ORA_PARTITION_POS

ORA_PRIVILEGE_LIST

ORA_REVOKEE

ORA_SERVER_ERROR

ORA_SERVER_ERROR_DEPTH

ORA_SERVER_ERROR_MSG

ORA_SERVER_ERROR_NUM_PARAMS

ORA_SERVER_ERROR_PARAM

ORA_SQL_TXT

ORA_SYSEVENT

ORA_WITH_GRANT_OPTION

SPACE_ERROR_INFO

ORA_CLIENT_IP_ADDRESS
The ORA_CLIENT_IP_ADDRESS function takes no formal parameters. It returns the client IP
address as a VARCHAR2 datatype.

You can use it like this:

DECLARE
 ip_address VARCHAR2(11);
BEGIN
 IF ora_sysevent = 'LOGON' THEN

ip_address := ora_client_ip_address;

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Chapter 10: Triggers 351

 END IF;
END;

ORA_DATABASE_NAME
The ORA_DATABASE_NAME function takes no formal parameters. It returns the database name as
a VARCHAR2 datatype.

You can use it like this:

DECLARE
 database VARCHAR2(50);
BEGIN

database := ora_database_name;
END;

ORA_DES_ENCRYPTED_PASSWORD
The ORA_DES_ENCRYPTED_PASSWORD function takes no formal parameters. It returns the DES-
encrypted password as a VARCHAR2 datatype. This is equivalent to the value in the SYS.USER$
table PASSWORD column in Oracle 11g. Passwords are no longer accessible in the DBA_USERS or
ALL_USERS views.

You can use it like this:

DECLARE
 password VARCHAR2(60);
BEGIN
 IF ora_dict_obj_type = 'USER' THEN

password := ora_des_encrypted_password;
 END IF;
END;

ORA_DICT_OBJ_NAME
The ORA_DICT_OBJ_NAME function takes no formal parameters. It returns an object name as a
VARCHAR2 datatype. The object name represents the target of the DDL statement.

You can use it like this:

DECLARE
 database VARCHAR2(50);
BEGIN

database := ora_obj_name;
END;

ORA_DICT_OBJ_NAME_LIST
The ORA_DICT_OBJ_NAME_LIST function takes one formal parameter. The formal parameter is
also returned because it is passed by reference as an OUT mode list of VARCHAR2 variables. The
formal parameter datatype is defined in the DBMS_STANDARD package as ORA_NAME_LIST_T.
The ORA_NAME_LIST_T is a table of VARCHAR2(64) datatypes. The function returns the number
of elements in the list as a PLS_INTEGER datatype. The name_list contains the list of object
names touched by the triggering event.

You can use it like this:

DECLARE
 name_list DBMS_STANDARD.ORA_NAME_LIST_T;
 counter PLS_INTEGER;

352 Oracle Database 11g PL/SQL Programming

BEGIN
 IF ora_sysevent = 'ASSOCIATE_STATISTICS' THEN

counter := ora_dict_obj_name_list(name_list);
 END IF;
END;

ORA_DICT_OBJ_OWNER
The ORA_DICT_OBJ_OWNER function takes no formal parameters. It returns an owner of the
object acted upon by the event as a VARCHAR2 datatype.

You can use it like this:

DECLARE
 owner VARCHAR2(30);
BEGIN
 database := ora_dict_obj_owner;
END;

ORA_DICT_OBJ_OWNER_LIST
The ORA_DICT_OBJ_OWNER_LIST function takes one formal parameter. The formal parameter
is also returned because it is passed by reference as an OUT mode list of VARCHAR2 variables. The
formal parameter datatype is defined in the DBMS_STANDARD package as ORA_NAME_LIST_T.
The ORA_NAME_LIST_T is a table of VARCHAR2(64) datatypes. The function returns the number
of elements in the list indexed by a PLS_INTEGER datatype.

In the example, the owner_list contains the list of object owners, where their statistics
were analyzed by a triggering event. You can use it like this:

DECLARE
 owner_list DBMS_STANDARD.ORA_NAME_LIST_T;
 counter PLS_INTEGER;
BEGIN
 IF ora_sysevent = 'ASSOCIATE_STATISTICS' THEN

counter := ora_dict_obj_owner_list(owner_list);
 END IF;
END;

ORA_DICT_OBJ_TYPE
The ORA_DICT_OBJ_TYPE function takes no formal parameters. It returns the datatype of the
dictionary object changed by the event as a VARCHAR2 datatype.

You can use it like this:

DECLARE
 type VARCHAR2(19);
BEGIN

database := ora_dict_obj_type;
END;

ORA_GRANTEE
The ORA_GRANTEE function takes one formal parameter. The formal parameter is also returned
because it is passed by reference as an OUT mode list of VARCHAR2 variables. The formal parameter
datatype is defined in the DBMS_STANDARD package as ORA_NAME_LIST_T. The ORA_NAME_

Chapter 10: Triggers 353

LIST_T is a table of VARCHAR2(64) datatypes. The function returns the number of elements in
the list indexed by a PLS_INTEGER datatype. The user_list contains the list of users granted
privileges or roles by the triggering event.

You can use it like this:

DECLARE
 user_list DBMS_STANDARD.ORA_NAME_LIST_T;
 counter PLS_INTEGER;
BEGIN
 IF ora_sysevent = 'GRANT' THEN

counter := ora_grantee(user_list);
 END IF;
END;

ORA_INSTANCE_NUM
The ORA_INSTANCE_NUM function takes no formal parameters. It returns the current database
instance number as a NUMBER datatype.

You can use it like this:

DECLARE
 instance NUMBER;
BEGIN

instance := ora_instance_num;
END;

ORA_IS_ALTER_COLUMN
The ORA_IS_ALTER_COLUMN function takes one formal parameter, which is a column name. The
function returns a true or false value as a BOOLEAN datatype. It is true when the column has been
altered, and it is false when it hasn’t been changed. This function worked with the traditional
uppercase catalog information, but in Oracle 11g you need to match the catalog case if you opted
to save any tables in a case-sensitive format. The example uses a case-insensitive string as an
actual parameter.

You can use it like this:

DECLARE
 TYPE column_list IS TABLE OF VARCHAR2(32);
 columns COLUMN_LIST := column_list('CREATED_BY','LAST_UPDATED_BY');
BEGIN
 IF ora_sysevent = 'ALTER' AND
 ora_dict_obj_type = 'TABLE' THEN
 FOR i IN 1..columns.COUNT THEN
 IF ora_is_alter_column(columns(i)) THEN
 INSERT INTO logging_table
 VALUES (ora_dict_obj_name||'.'||columns(i)||' changed.');
 END IF;
 END LOOP;
 END IF;
END;

This is very useful if you want to guard against changing standard who-audit columns, like
CREATED_BY, CREATION_DATE, LAST_UPDATED_BY, or LAST_UPDATE_DATE. These are

354 Oracle Database 11g PL/SQL Programming

security columns generally used to identify who last touched the data through the standard
application programming interface (API). Any change to columns like these can destabilize an API.

ORA_IS_CREATING_NESTED_TABLE
The ORA_IS_CREATING_NESTED_TABLE function takes no formal parameters. It returns a true
or false value as a BOOLEAN datatype when you create a table with a nested table.

You can use it like this:

BEGIN
 IF ora_sysevent = 'CREATE' AND
 ora_dict_obj_type = 'TABLE' AND

ora_is_creating_nested_table THEN
 INSERT INTO logging_table
 VALUES (ora_dict_obj_name||'.'||' created with nested table.');
 END IF;
END;

ORA_IS_DROP_COLUMN
The ORA_IS_DROP_COLUMN function takes one formal parameter, which is a column name. The
function returns a true or false value as a BOOLEAN datatype. It is true when the column has been
dropped, and it returns false when it hasn’t been dropped. This function worked with the traditional
uppercase catalog information, but in Oracle 11g you need to match the catalog case if you opted
to save any tables in a case-sensitive format. The example uses a case-insensitive string as an
actual parameter.

You can use it like this:

DECLARE
 TYPE column_list IS TABLE OF VARCHAR2(32);
 columns COLUMN_LIST := column_list('CREATED_BY','LAST_UPDATED_BY');
BEGIN
 IF ora_sysevent = 'DROP' AND
 ora_dict_obj_type = 'TABLE' THEN
 FOR i IN 1..columns.COUNT THEN
 IF ora_is_drop_column(columns(i)) THEN
 INSERT INTO logging_table
 VALUES (ora_dict_obj_name||'.'||columns(i)||' changed.');
 END IF;
 END LOOP;
 END IF;
END;

This function is very useful if you want to guard against changing standard who-audit
columns, like those discussed for the ORA_IS_DROP_COLUMN function earlier in this table.

ORA_IS_SERVERERROR
The ORA_IS_SERVERERROR function takes one formal parameter, which is an error number.
It returns a true or false value as a BOOLEAN datatype when the error is on the error stack.

You can use it like this:

BEGIN
 IF ora_is_servererror(4082) THEN
 INSERT INTO logging_table

Chapter 10: Triggers 355

 VALUES ('ORA-04082 error thrown.');
 END IF;
END;

ORA_LOGIN_USER
The ORA_LOGIN_USER function takes no formal parameters. The function returns the current
schema name as a VARCHAR2 datatype.

You can use it like this:

BEGIN
 INSERT INTO logging_table
 VALUES (ora_login_user||' is the current user.');
END;

ORA_PARTITION_POS
The ORA_PARTITION_POS function takes no formal parameters. The function returns the numeric
position with the SQL text where you can insert a partition clause. This is only available in an
INSTEAD OF CREATE trigger.

You can use the following, provided you add your own partitioning clause:

DECLARE
 sql_text ORA_NAME_LIST_T;
 sql_stmt VARCHAR2(32767);
 partition VARCHAR2(32767) := 'partitioning_clause';
BEGIN
 FOR i IN 1..ora_sql_txt(sql_text) LOOP
 sql_stmt := sql_stmt || sql_text(i);
 END LOOP;

sql_stmt := SUBSTR(sql_text,1,ora_partition_pos – 1)||' '
 || partition||' '||SUBSTR(sql_test,ora_partition_pos);
 -- Add logic to prepend schema because this runs under SYSTEM.
 sql_stmt := REPLACE(UPPER(sql_stmt),'CREATE TABLE '
 ,'CREATE TABLE '||ora_login_user||'.');
 EXECUTE IMMEDIATE sql_stmt;
END;

The coding sample requires that you grant the owner of the trigger the CREATE ANY TRIGGER
privilege. You should consider a master privileged user for your application, and avoid using the
SYSTEM schema.

ORA_PRIVILEGE_LIST
The ORA_PRIVILEGE_LIST function takes one formal parameter. The formal parameter is also
returned because it is passed by reference as an OUT mode list of VARCHAR2 variables. The
formal parameter datatype is defined in the DBMS_STANDARD package as ORA_NAME_LIST_T. The
ORA_NAME_LIST_T is a table of VARCHAR2(64) datatypes. The function returns the number of
elements in the list indexed by a PLS_INTEGER datatype. The priv_list contains the list of
privileges or roles granted by the triggering event.

You can use it like this:

DECLARE
 priv_list DBMS_STANDARD.ORA_NAME_LIST_T;
 counter PLS_INTEGER;

356 Oracle Database 11g PL/SQL Programming

BEGIN
 IF ora_sysevent = 'GRANT' OR
 ora_sysevent = 'REVOKE' THEN

counter := ora_privilege_list(priv_list);
 END IF;
END;

ORA_REVOKEE
The ORA_REVOKEE function takes one formal parameter. The formal parameter is also returned
because it is passed by reference as an OUT mode list of VARCHAR2 variables. The formal
parameter datatype is defined in the DBMS_STANDARD package as ORA_NAME_LIST_T. The
ORA_NAME_LIST_T is a table of VARCHAR2(64) datatypes. The function returns the number
of elements in the list indexed by a PLS_INTEGER datatype. The priv_list contains the list of
users that had privileges or roles revoked by the triggering event.

You can use it like this:

DECLARE
 revokee_list DBMS_STANDARD.ORA_NAME_LIST_T;
 counter PLS_INTEGER;
BEGIN
 IF ora_sysevent = 'REVOKE' THEN

counter := ora_revokee(priv_list);
 END IF;
END;

ORA_SERVER_ERROR
The ORA_SERVER_ERROR function takes one formal parameter, which is the position on the error
stack, where 1 is the top of the error stack. It returns an error number as a NUMBER datatype.

You can use it like this:

DECLARE
 error NUMBER;
BEGIN
 FOR i IN 1..ora_server_error_depth LOOP

error := ora_server_error(i);
 END LOOP;
END;

ORA_SERVER_ERROR_DEPTH
The ORA_SERVER_ERROR_DEPTH function takes no formal parameters. The function returns
the number of errors on the error stack as a PLS_INTEGER datatype. The code samples for the
ORA_SERVER_ERROR and ORA_SERVER_ERROR_MSG functions demonstrate how you can use it.

ORA_SERVER_ERROR_MSG
The ORA_SERVER_ERROR_MSG function takes one formal parameter, which is the position on the
error stack, where 1 is the top of the error stack. It returns an error message text as a VARCHAR2
datatype.

You can use it like this:

Chapter 10: Triggers 357

DECLARE
 error VARCHAR2(64);
BEGIN
 FOR i IN 1..ora_server_error_depth LOOP

error := ora_server_error_msg(i);
 END LOOP;
END;

ORA_SERVER_ERROR_NUM_PARAMS
The ORA_SERVER_ERROR_NUM_PARAMS function takes no formal parameters. The function
returns the count of any substituted strings from error messages as a PLS_INTEGER datatype.
For example, an error format could be “Expected %s, found %s.” The code sample for
ORA_SERVER_ERROR_PARAM function shows how you can use it.

ORA_SERVER_ERROR_PARAM
The ORA_SERVER_ERROR_PARAM function takes one formal parameter, which is the position in
an error message, where 1 is the first occurrence of a string in the error message. It returns an error
message text as a VARCHAR2 datatype.

You can use it like this:

DECLARE
 param VARCHAR2(32);
BEGIN
 FOR i IN 1..ora_server_error_depth LOOP
 FOR j IN 1..ora_server_error_num_params(i) LOOP

param := ora_server_error_param(j);
 END LOOP;
 END LOOP;
END;

ORA_SQL_TXT
The ORA_SQL_TXT function takes one formal parameter. The formal parameter is also returned
because it is passed by reference as an OUT mode list of VARCHAR2 variables. The formal
parameter datatype is defined in the DBMS_STANDARD package as ORA_NAME_LIST_T. The
ORA_NAME_LIST_T is a table of VARCHAR2(64) datatypes. The function returns the number of
elements in the list indexed by a PLS_INTEGER datatype. The list contains the substrings of the
processed SQL statement that triggered the event. The coding example is shown with the ORA_
PARTITION_POS function.

ORA_SYSEVENT
The ORA_SYSEVENT function takes no formal parameters. The function returns the system event
that was responsible for firing the trigger as a VARCHAR2 datatype.

You can use it like this:

BEGIN
 INSERT INTO logging_table
 VALUES (ora_sysevent||' fired the trigger.');
END;

358 Oracle Database 11g PL/SQL Programming

ORA_WITH_GRANT_OPTION
The ORA_WITH_GRANT_OPTION function has no formal parameters. The function returns a true
or false value as a BOOLEAN datatype. It returns true when privileges are granted with grant option.

You can use it like this:

BEGIN
 IF ora_with_grant_option THEN
 INSERT INTO logging_table
 VALUES ('ORA-04082 error thrown.');
 END IF;
END;

SPACE_ERROR_INFO
The SPACE_ERROR_INFO function uses six formal pass-by-reference parameters. They are all
OUT mode parameters. The prototype is

space_error_info(error_number OUT NUMBER
 , error_type OUT VARCHAR2
 , object_owner OUT VARCHAR2
 , table_space_name OUT VARCHAR2
 , object_name OUT VARCHAR2
 , sub_object_name OUT VARCHAR2)

This function returns true when the triggering event is related to an out-of-space condition,
and it fills in all the outbound parameters. You implement this with a logging table that supports
at least the six OUT parameters. When the function returns false, the OUT mode variables are null.

You can use it like this:

DECLARE
 error_number NUMBER;
 error_type VARCHAR2(12);
 object_owner VARCHAR2(30);
 tablespace_name VARCHAR2(30);
 object_name VARCHAR2(128);
 subobject_name VARCHAR2(30);
BEGIN
 IF space_error_info(error_number, error_type
 , object_owner, tablespace_name
 , object_name, subobject_name) THEN
 INSERT INTO logging_table
 VALUES (… implementation_dependent …);
 END IF;
END;

Building DDL Triggers
The prototype for building DDL triggers is

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF} ddl_event ON {DATABASE | SCHEMA}
[WHEN (logical_expression)]
[DECLARE]
declaration_statements;

Chapter 10: Triggers 359

BEGIN
execution_statements;

END [trigger_name];
/

You can use the INSTEAD OF clause only when auditing a creation event. Before triggers
make sure the contents of the trigger body occur before the triggering DDL command, while
after triggers run last. See the section “ORA_PARTITION_POS” earlier in this chapter for an
implementation of an INSTEAD OF CREATE trigger that appends a partitioning table.

The DDL example trigger requires that you create the audit_creations table and
audit_creations_s1 sequence before the trigger. If you forget to create one or both, you
can’t create either after you attempt to compile the database trigger. This limitation exists because
you have a valid trigger declaration but an invalid trigger body. You must drop or disable the
trigger (declaration) before you can create anything in the schema.

You should note that the table and trigger share the same name. This is possible because there
are two namespaces in Oracle databases, one for triggers and another for everything else.

You create the table and sequence as follows:

CREATE TABLE audit_creation
(audit_creation_id NUMBER
, audit_owner_name VARCHAR2(30) CONSTRAINT audit_creation_nn1 NOT NULL
, audit_obj_name VARCHAR2(30) CONSTRAINT audit_creation_nn2 NOT NULL
, audit_date DATE CONSTRAINT audit_creation_nn3 NOT NULL
, CONSTRAINT audit_creation_p1 PRIMARY KEY (audit_creation_id));

CREATE SEQUENCE audit_creation_s1;

Now you can create the audit_creation system trigger. This trigger shows you the
behavior of a DDL trigger when dependencies become unavailable to the trigger:

CREATE OR REPLACE TRIGGER audit_creation
BEFORE CREATE ON SCHEMA
BEGIN
 INSERT INTO audit_creation VALUES
 (audit_creation_s1.nextval,ORA_DICT_OBJ_OWNER,ORA_DICT_OBJ_NAME,SYSDATE);
END audit_creation;
/

The following DDL statement triggers the system trigger, which inserts data from the trigger
attribute functions. It creates a synonym called mythology that doesn’t translate to anything real,
but it does create an event that fires the trigger.

The DDL statement is

CREATE SYNONYM mythology FOR plsql.some_myth;

You can query the results of the trigger using the following SQL*Plus formatting and
statement:

COL audit_creation_id FORMAT 99999999 HEADING "Audit|Creation|ID #"
COL audit_owner_name FORMAT A6 HEADING "Audit|Owner|Name"
COL audit_obj_name FORMAT A8 HEADING "Audit|Object|Name"
COL audit_obj_name FORMAT A9 HEADING "Audit|Object|Name"
SELECT * FROM audit_creation;

360 Oracle Database 11g PL/SQL Programming

The query returns

 Audit Audit Audit
 Creation Owner Object Audit
 ID # Name Name Date
--------- ------ --------- ---------
 21 PLSQL MYTHOLOGY 17-NOV-08

You have now seen how to implement a DDL trigger. The next section examines DML triggers.

Data Manipulation Language Triggers
DML triggers can fire before or after INSERT, UPDATE, and DELETE statements. DML triggers can
be statement- or row-level activities. Statement-level triggers fire and perform a statement or set of
statements once no matter how many rows are affected by the DML event. Row-level triggers fire
and perform a statement or set of statements for each row changed by a DML statement.

A principal caveat of triggers that manage data changes is that you cannot use SQL Data
Control Language (DCL) in them, unless you declare the trigger as autonomous. When triggers
run inside the scope of a transaction, they disallow setting a SAVEPOINT or performing either a
ROLLBACK or COMMIT statement. Likewise, they can’t have a DCL (also known as TCL) statement
in the execution path of any function or procedure that they call.

The prototype for building DML triggers is

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER}
{INSERT | UPDATE | UPDATE OF column1 [, column2 [, column(n+1)]] | DELETE}
ON table_name
[FOR EACH ROW]
[WHEN (logical_expression)]
[DECLARE]
 [PRAGMA AUTONOMOUS_TRANSACTION;]

declaration_statements;
BEGIN

execution_statements;
END [trigger_name];
/

The BEFORE or AFTER clause determines whether the trigger fires before or after the change
is written to your local copy of the data. You can define a BEFORE or AFTER clause on tables but
not views. While the prototype shows either an insert, update, update of (a column), or delete,
you can also use an inclusion, OR, operator between the events. Using one OR between two
events creates a single trigger that runs for two events. You can create a trigger that supports all
four possible events with multiple inclusion operators.

There are two options for DML triggers. You can declare them as statement-level triggers,
which are also known as table-level triggers, or you can declare them as row-level triggers.

You have a FOR EACH ROW clause, a WHEN clause, and new and old pseudo-records in row-
level triggers. The FOR EACH ROW clause specifies that the trigger should fire for each row as
opposed to once per statement. The WHEN clause acts as a filter specifying when the trigger fires.
Unlike when working with other stored program units, you must qualify a DECLARE block when
you declare local variables, types, or cursors in a trigger.

Chapter 10: Triggers 361

Triggers require the DECLARE block in trigger bodies because the declaration of a trigger is
separate from the trigger body. Trigger bodies are like anonymous-block PL/SQL programs. They
are called by the trigger, and the trigger implicitly manages parameter passing. Trigger bodies don’t
support substitution variables, like anonymous blocks. They support bind variables, but only in
the context of row-level triggers. There is no parameter passing to statement-level triggers.

Statement- and row-level triggers have different purposes and approaches. The trigger types
are covered in the next two subsections.

Statement-Level Triggers
Statement-level triggers are also known as table-level triggers because they’re triggered by a
change to a table. Statement-level triggers capture and process information when a user inserts,
updates, or deletes one or more rows in a table. You can also restrict (filter) UPDATE statement
triggers by constraining them to fire only when a specific column value changes. You can restrict
the trigger by using a UPDATE OF clause. The clause can apply to a column name or a comma-
delimited list of column names.

You can’t use a WHEN clause in a statement-level trigger. You also can’t reference the new or
old pseudo-records without raising an ORA-04082 exception. The exception is a compile-time
error, and it tells you that new or old references aren’t allowed in table-level triggers.

You can implement statement-level triggers on inserting, updating, or deleting events.
Statement-level triggers don’t let you collect transaction details. You have access to only the type
of event and values returned by event attribute functions. The UPDATE OF clause lets you filter
the triggering event to a specific column change.

The statement-level example uses an UPDATE OF column name event. The trigger depends
on your running the create_store.sql script from the publisher’s web site. You can find a
reference to it in the introduction.

The trigger logs events in the price_type_log table. It must be created before you compile
the trigger. The following statement creates the table:

-- This is found in create_price_type_trigger.sql on the publisher's web site.
CREATE TABLE price_type_log
(price_id NUMBER CONSTRAINT price_type_log_nn1 NOT NULL
, user_id VARCHAR2(32) CONSTRAINT price_type_log_nn2 NOT NULL
, action_date DATE CONSTRAINT price_type_log_nn3 NOT NULL
, CONSTRAINT price_type_log_p1 PRIMARY KEY (price_id))
/

After creating the table, you can create the trigger. It is possible that the trigger can fail if
you’ve already declared another price_t1 trigger on another table. The REPLACE command
only works when the CREATE OR REPLACE TRIGGER command works against the same table.
You raise an ORA-04095 exception when a trigger name already exists for another table.

The following trigger works in Oracle 10g or 11g. Oracle 10g doesn’t support references to
sequence .nextval or .currval pseudo-columns in SQL statements when they’re inside a
PL/SQL block.

This backward-compatible trigger is not found in the script on the publisher’s web site.

CREATE OR REPLACE TRIGGER price_t1
AFTER UPDATE OF price_type ON price
DECLARE
 price_id NUMBER;

362 Oracle Database 11g PL/SQL Programming

BEGIN
 SELECT price_log_s1.nextval INTO price_id FROM dual;
 INSERT INTO price_type_log
 VALUES (price_log_s1.nextval,USER,SYSDATE);
END price_t1;
/

Oracle 11g does support references to sequence .nextval or .currval pseudo-columns in
SQL statements when they’re inside PL/SQL blocks. The following is included:

-- This is found in create_price_type_trigger.sql on the publisher's web site.
CREATE OR REPLACE TRIGGER price_t1
AFTER UPDATE OF price_type ON price
BEGIN
 -- This statement only works in Oracle 11g forward.
 INSERT INTO price_type_log VALUES (price_log_s1.nextval,USER,SYSDATE);
END price_t1;
/

You can trigger this by running the following UPDATE statement that changes nothing because
it simply reassigns the current value of price_type column to itself:

UPDATE price p
SET p.price_type = p.price_type
WHERE EXISTS (SELECT NULL
 FROM price q
 WHERE q.price_id = p.price_id);

The following query shows that the trigger fired and wrote audit information to the
price_type_log table:

SELECT * FROM price_type_log;

This subsection has shown you how to use statement-level DML triggers. The next section
shows you how to write row-level triggers.

Row-Level Triggers
Row-level triggers let you capture new and prior values from each row. This information can
let you audit changes, analyze behavior, and recover prior data without performing a database
recovery operation.

There are two pseudo-records when you use the FOR EACH ROW clause in a row-level trigger.
They both refer to the columns referenced in the DML statement. The pseudo-records are composite
variables; new or old are the pseudo-record variable names in the WHEN clause, and :new and :old
are the bind variables in the trigger body. They differ because the trigger declaration and body are
separate PL/SQL blocks. The new and old pseudo-records are declared in scope by the row-level
trigger declaration. The trigger declaration is the calling block, and the trigger body is the called
block. Bind variables are passed by reference between PL/SQL blocks when an event fires a
trigger in a database session. The elements of the pseudo-record are pseudo-fields.

The new or old pseudo-records are session-level composite variables. They’re implicitly
declared in the scope of the triggering event, which is the DML statement. Triggers do not have

Chapter 10: Triggers 363

formal signatures like standalone functions or procedures, but they have access to column values
changed by DML statements. These column values are the elements of the pseudo-records, or
pseudo-fields. Pseudo-field values are those columns inserted by an INSERT statement, set by
an UPDATE statement, or destroyed by a DELETE statement.

You access pseudo-fields by referencing the new or old pseudo-records, a component selector,
and a column name in the WHEN clause. Inside a trigger body, you preface the pseudo-records
with a colon (:). The colon let you reference the externally scoped pseudo-records in the trigger
body. The DML statement declares the list of column names (pseudo-fields).

The following example demonstrates a trigger that replaces a whitespace in a last name with
a dash for hyphenated names.

The WHEN clause checks whether the value of the pseudo-field for the last_name column in
the contact table contains a whitespace. If the condition is met, the trigger passes control to the
trigger body. The trigger body has one statement; the REGEXP_REPLACE function takes a copy of
the pseudo-field as an actual parameter. REGEXP_REPLACE changes any whitespace in the string
to a dash, and it returns the modified value as a result. The result is assigned to the pseudo-field,
and becomes the value in the INSERT statement. This is an example of using a DML trigger to
enforce a business policy of entering all last names as hyphenated.

The trigger depends on your having run the create_store.sql script, as discussed in the
introduction. After compiling the trigger in your test schema, you can test the trigger by running
the following insert:

INSERT INTO contact
VALUES (contact_s1.nextval, 1001, 1003
, 'Zeta Jones','Catherine',NULL
, 3, SYSDATE, 3, SYSDATE);

It converts the last name to a hyphenated last name. You query last_name from the
contact table to see the actual inserted value:

SELECT last_name FROM contact WHERE last_name LIKE 'Zeta%';

You should have the following results:

LAST_NAME

Zeta-Jones

364 Oracle Database 11g PL/SQL Programming

The only problem with the trigger is that a user can simply update the column to remove the
dash from the last_name column. You can prevent that in a single trigger by using the inclusion
OR operator, like

CREATE OR REPLACE TRIGGER contact_insert_t1
 BEFORE INSERT OR UPDATE OF last_name ON contact
 FOR EACH ROW
 WHEN (REGEXP_LIKE(new.last_name,' '))
BEGIN
 :new.last_name := REGEXP_REPLACE(:new.last_name,' ','-',1,1);
END contact_insert_t1;
/

The trigger is now fired on any INSERT statement and only for UPDATE statements that change
the last_name column. It is always better to build triggers that work with multiple DML events
when you take the same type of action.

Another common use for a DML trigger is automatic numbering for a primary key column. As
you know, Oracle doesn’t support automatic numbering, like Microsoft Access or SQL Server. You
create a sequence and a trigger to manage automatic numbering.

While you can create this type of trigger with or without a WHEN clause, the WHEN clause
filters when the trigger should or shouldn’t run. A WHEN clause let you insert a manual primary
key value, which can synchronize pseudo-columns .nextval and .currval for primary and
foreign keys during a single transaction insert.

Rather than build a multiple table example, you will examine automatic numbering from the
perspective of logging new connections to and disconnections from the database. The balance
of the code for this example is in the section “Data Definition Language Triggers.” The DDL
triggers that monitor login and logout events call a user_connection package that logs to
a connection_log table. The table definition is

CREATE TABLE connection_log
(event_id NUMBER(10)
, event_user_name VARCHAR2(30) CONSTRAINT log_event_nn1 NOT NULL
, event_type VARCHAR2(30) CONSTRAINT log_event_nn2 NOT NULL
, event_date DATE CONSTRAINT log_event_nn3 NOT NULL
, CONSTRAINT connection_log_p1 PRIMARY KEY (event_id));

The row-level trigger connection_log_t1 demonstrates the proper way to write a pseudo-
automatic numbering trigger for Oracle 10g:

-- This is found in create_signon_trigger.sql on the publisher's web site.
CREATE OR REPLACE TRIGGER connection_log_t1
 BEFORE INSERT ON connection_log
 FOR EACH ROW
 WHEN (new.event_id IS NULL)
BEGIN
 SELECT connection_log_s1.nextval
 INTO :new.event_id
 FROM dual;
END;
/

Chapter 10: Triggers 365

The connection_log_t1 trigger demonstrates managing a sequence, but it also shows you
how to SELECT INTO a pseudo-field variable. You should really modify the trigger when deploying
it on an Oracle 11g database because you no longer have to select a sequence value into a variable
from the pseudo-table dual. You can simply assign it directly.

The row-level trigger connection_log_t2 demonstrates the proper way to write a pseudo-
automatic numbering trigger for Oracle 11g:

CREATE OR REPLACE TRIGGER connection_log_t1
 BEFORE INSERT ON connection_log
 FOR EACH ROW
 WHEN (new.event_id IS NULL)
BEGIN
 :new.event_id := connection_log_s1.nextval;
END;
/

The connection_log_t1 and connection_log_t2 triggers fire only when you fail to provide
a primary key value during an INSERT statement.

These row-level triggers illustrate two processing rules. One rule is that you can reference a
pseudo-row column as an ordinary variable in the WHEN clause because the actual trigger fires
in the same memory scope as the DML transaction. The other rule is that you must reference a
pseudo-row column as a bind variable inside the actual trigger scope, where it is running in a
different memory space. The pseudo-rows NEW and OLD are pass-by-reference structures, and
they contain your active DML session variable values when arriving at the trigger body. The new
and old pseudo-record variables also receive any changes made in the trigger body when they
are returned to your active DML session.

All the old pseudo-record columns are null when you execute an INSERT statement, and
the new pseudo-record columns are null when you run a DELETE statement. Both new and old
pseudo-records are present during UPDATE statements, but only for those columns referenced by
the SET clause.

This subsection has shown you how to write row-level triggers. It demonstrates how to use the
new and old pseudo-record in your WHEN clause and trigger body.

This section has covered how to use DML triggers and examined both statement- and row-
level trigger implementation. You should be able to use DML triggers by drawing on what you
have learned in this section.

Compound Triggers
Compound triggers acts as both statement- and row-level triggers when you insert, update, or
delete data from a table. You can use a compound trigger to capture information at four timing
points: (a) before the firing statement; (b) before each row change from the firing statement;
(c) after each row change from the firing statement; and (d) after the firing statement. You can
use these types of triggers to audit, check, save, and replace values before they are changed
when you need to take action at both the statement and row event levels.

Prior to compound triggers, you went to great lengths to mimic this behavior and ran the risk
of a memory leak with the failure of an after statement trigger. A compound trigger functions like
a multithreaded process. There is a declaration section for the trigger as a whole, and each timing
point section has its own local declaration section. Timing point sections are subordinate trigger
blocks of the compound trigger.

366 Oracle Database 11g PL/SQL Programming

You can use a compound trigger when you want the behavior of both statement-level and
row-level triggers. They can be defined on either a table or a view. Compound triggers don’t
support filtering actions with the WHEN clause or the use of the autonomous transaction PRAGMA.
You can use the UPDATE OF column name filter as a governing event in updates. Also, the firing
order of compound triggers is not guaranteed because they can be interleaved (mixed between)
with the firing of standalone triggers.

TIP
You can always call out to a stored function or procedure that runs
autonomously.

Compound triggers don’t support an EXCEPTION block, but you can implement EXCEPTION
blocks in any of the subordinate timing point blocks. The GOTO command is restricted to a single
timing point block, which means you can’t call between timing blocks. You can use the :new
and :old pseudo-records in the row-level statement blocks but nowhere else.

The minimum implementation of a compound trigger requires that you implement at least
one timing point block. Only DML statements trigger compound triggers. Also, compound triggers
don’t fire when (a) the DML statement doesn’t change any rows and (b) the trigger hasn’t
implemented at least a BEFORE STATEMENT or AFTER STATEMENT block. Compound triggers
have significant performance advantages when your DML statements use bulk operations.

The prototype for a compound trigger is

CREATE [OR REPLACE] TRIGGER trigger_name
FOR {INSERT | UPDATE | UPDATE OF column1 [, column2 [, column(n+1)]] | DELETE}
ON table_name
COMPOUND TRIGGER
[BEFORE STATEMENT IS
 [declaration_statement;]
 BEGIN

execution_statement;
 END BEFORE STATEMENT;]
[BEFORE EACH ROW IS
 [declaration_statement;]
 BEGIN

execution_statement;
 END BEFORE EACH ROW;]
[AFTER EACH ROW IS
 [declaration_statement;]
 BEGIN

execution_statement;
 END AFTER EACH ROW;]
[AFTER STATEMENT IS
 [declaration_statement;]
 BEGIN

execution_statement;
 END AFTER STATEMENT;]
END [trigger_name];
/

The example rewrites the insert event row-level trigger from the section “Row-Level Triggers”
as a compound trigger. The code follows:

Chapter 10: Triggers 367

-- This is found in create_signon_trigger.sql on the publisher's web site.
CREATE OR REPLACE TRIGGER compound_connection_log_t1
 FOR INSERT ON connection_log
 COMPOUND TRIGGER
 BEFORE EACH ROW IS
 BEGIN
 IF :new.event_id IS NULL THEN
 :new.event_id := connection_log_s1.nextval;
 END IF;
 END BEFORE EACH ROW;
END;
/

You should note three key elements about compound triggers. You can’t filter events in this
type of trigger by using a WHEN clause. As mentioned, :new and :old pseudo-records are only
available in the BEFORE EACH ROW and AFTER EACH ROW timing blocks. Variables declared
in the global declaration block retain their value through the execution of all timing blocks that
you’ve implemented.

You can collect row-level information in either the BEFORE EACH ROW or AFTER EACH
ROW timing points and transfer that information to a global collection declared in the trigger body.
Then, you can perform bulk operations with the collection contents in the AFTER STATEMENT
timing point. If you don’t write the data to another table, you could raise a maximum number of
recursive calls error, ORA-00036.

The next example demonstrates collecting information in the row-level timing points,
transferring it to a global collection, and processing it as a bulk transaction in the AFTER
STATEMENT timing block. This example depends on your running the create_store.sql
script, which is described in the introduction. The first step requires creating a log repository,
which is done by creating the following table and sequence:

-- This is found in create_compound_trigger.sql on the publisher's web site.
CREATE TABLE price_event_log
(price_log_id NUMBER
, price_id NUMBER
, created_by NUMBER
, creation_date DATE
, last_updated_by NUMBER
, last_update_date DATE);

CREATE SEQUENCE price_event_log_s1;

The trigger populates created_by and last_updated_by columns as part of the
applications “who-audit” information. It assumes that you’re striping the data, which means
you need to set a CLIENT_INFO value for the session. The physical CLIENT_INFO section is
found in the V$SESSION view. You can read more on these concepts in the sidebar “Reading
and Writing Session Metadata” later in this chapter.

The following sets the CLIENT_INFO value to 3, which is a valid system_user_id in the
system_user table:

EXEC dbms_application_info.set_client_info('3');

368 Oracle Database 11g PL/SQL Programming

The trigger depends on the state of the CLIENT_INFO column, but as you might imagine, it
can’t control it. Therefore, the trigger assigns a –1 when the CLIENT_INFO value is missing during
its execution.

The following defines the compound trigger with both BEFORE EACH ROW and AFTER
STATEMENT timing blocks:

-- This is found in create_compound_trigger on the publisher's web site.
CREATE OR REPLACE TRIGGER compound_price_update_t1
 FOR UPDATE ON price
 COMPOUND TRIGGER
 -- Declare a global record type.
 TYPE price_record IS RECORD
 (price_log_id price_event_log.price_log_id%TYPE
 , price_id price_event_log.price_id%TYPE
 , created_by price_event_log.created_by%TYPE
 , creation_date price_event_log.creation_date%TYPE
 , last_updated_by price_event_log.last_updated_by%TYPE
 , last_update_date price_event_log.last_update_date%TYPE);
 -- Declare a global collection type.
 TYPE price_list IS TABLE OF PRICE_RECORD;
 -- Declare a global collection and initialize it.
 price_updates PRICE_LIST := price_list();
 BEFORE EACH ROW IS
 -- Declare or define local timing point variables.
 c NUMBER;
 user_id NUMBER := NVL(TO_NUMBER(SYS_CONTEXT('userenv','client_info')),-1);
 BEGIN
 -- Extend space and assign dynamic index value.
 price_updates.EXTEND;
 c := price_updates.LAST;
 price_updates(c).price_log_id := price_event_log_s1.nextval;
 price_updates(c).price_id := :old.price_id;
 price_updates(c).created_by := user_id;
 price_updates(c).creation_date := SYSDATE;
 price_updates(c).last_updated_by := user_id;
 price_updates(c).last_update_date := SYSDATE;
 END BEFORE EACH ROW;
 AFTER STATEMENT IS
 BEGIN
 -- Bulk insert statement.
 FORALL i IN price_updates.FIRST..price_updates.LAST
 INSERT INTO price_event_log
 VALUES
 (price_updates(i).price_log_id
 , price_updates(i).price_id
 , price_updates(i).created_by
 , price_updates(i).creation_date
 , price_updates(i).last_updated_by
 , price_updates(i).last_update_date);
 END AFTER STATEMENT;
END;
/

Chapter 10: Triggers 369

The BEFORE EACH ROW timing block collects row-level data and stores it in a global collection,
which can then be read from another timing block. The numeric index for the collection is dynamic
and leverages the Collection API LAST method. If you’d like to check how that works, please
refer to Chapter 7, where it is covered.

The AFTER STATEMENT timing block reads the global collection and performs a bulk insert
of the data to the log table. The next time the trigger is fired, the global collection is empty because
the compound trigger implementation is serialized.

You can test the trigger by running the following UPDATE statement:

UPDATE price
SET last_updated_by = NVL(TO_NUMBER(SYS_CONTEXT('userenv','client_info')),-1);

Then, you can query the price_event_log table:

SELECT * FROM price_event_log;

This example has shown you how to capture row-level data, save it in a global collection,
and reuse it in a statement-level statement.

Reading and Writing Session Metadata
The process of writing to and reading from the session CLIENT_INFO column requires you to
use the DBMS_APPLICATION_INFO package. You use the SET_CLIENT_INFO procedure in
the DBMS_APPLICATION_INFO package to write data into the 64-character CLIENT_INFO
column found in the V$SESSION view. The following anonymous PL/SQL block assumes that
the CREATED_BY and LAST_UPDATED_BY columns should be 3:

BEGIN
 -- Write value to V$SESSION.CLIENT_INFO column.
 DBMS_APPLICATION_INFO.SET_CLIENT_INFO('3');
END;
/

You can now read this value by calling the READ_CLIENT_INFO procedure. You
should enable SERVEROUTPUT using SQL*Plus to see the rendered output when you run
the following program:

DECLARE
 client_info VARCHAR2(64);
BEGIN
 -- Read value from V$SESSION.CLIENT_INTO column.
 DBMS_APPLICATION_INFO.READ_CLIENT_INFO(client_info);
 DBMS_OUTPUT.PUT_LINE('['||client_info||']');
END;
/

User-defined session columns let you store unique information related to user credentials
from your Access Control List (ACL). You assign a session column value during user
authentication. Then, the session CLIENT_INFO column allows you to manage multiple
user interactions in a single schema. Authenticated users can access rows from tables when
their session CLIENT_INFO column value matches a striping column value in the table.

370 Oracle Database 11g PL/SQL Programming

This section has explained the new Oracle 11g compound triggers and shown you how to
implement them. They allow you to mix the benefits and operations of statement- and row-level
triggers in a single trigger.

Instead-of Triggers
You can use the INSTEAD OF trigger to intercept INSERT, UPDATE, and DELETE statements and
replace those instructions with alternative procedural code. Non-updatable views generally have
INSTEAD OF triggers to accept the output and resolve the issues that make the view non-
updatable.

The prototype for building an INSTEAD OF trigger is

CREATE [OR REPLACE] TRIGGER trigger_name
INSTEAD OF {dml_statement }
ON {object_name | database | schema}
FOR EACH ROW
[WHEN (logical_expression)]
[DECLARE]
 declaration_statements;
BEGIN
 execution_statements;
END [trigger_name];
/

INSTEAD OF triggers are powerful alternatives that resolve how you use complex and non-
updatable views. When you know how the SELECT statement works, you can write procedural
code to update the data not directly accessible through non-updatable views.

You can only deploy an INSTEAD OF DML trigger against a view. There is no restriction as to
whether the view is updatable or non-updatable, but generally INSTEAD OF triggers are built for
non-updatable views.

The following view is supported by the data model provided on the publisher’s web site. It is
also a non-updatable view because of the DECODE statement, as shown:

-- This is found in create_insteadof_trigger.sql on the publisher's web site.
CREATE OR REPLACE VIEW account_list AS
 SELECT c.member_id
 , c.contact_id
 , m.account_number
 , c.first_name
 || DECODE(c.middle_initial,NULL,' ',' '||c.middle_initial||' ')
 || c.last_name FULL_NAME
 FROM contact c JOIN member m ON c.member_id = m.member_id;

Without an INSTEAD OF trigger, a DML statement against this view can raise an ORA-01776
exception that says you’re disallowed from modifying more than one base table through a join.
You could also raise an ORA-01779 exception that tells you you’re disallowed to modify a column
because it fails to map to a non-key-preserved table.

You can create an INSTEAD OF trigger that would allow you to update or delete from this
view. However, the view doesn’t have enough information to support INSERT statements to

Chapter 10: Triggers 371

either base table. Without redefining the view, there is also no programmatic way to fix these
shortcomings.

The following is an INSTEAD OF INSERT trigger. It raises an exception for any insertion
attempt to the non-updatable view.

CREATE OR REPLACE TRIGGER account_list_insert
 INSTEAD OF INSERT ON account_list
 FOR EACH ROW
BEGIN
 RAISE_APPLICATION_ERROR(-20000,'Not enough data for insert!');
END;
/

After compiling the trigger, an INSERT statement run against the view now raises the
following exception stack:

INSERT INTO account_list
 *
ERROR at line 1:
ORA-20000: Not enough data for insert!
ORA-06512: at "PLSQL.ACCOUNT_LIST_INSERT", line 2
ORA-04088: error during execution of trigger 'PLSQL.ACCOUNT_LIST_INSERT'

The question here is, do you want to define three INSTEAD OF event triggers or one? Some
developers opt for multiple INSTEAD OF triggers as opposed to one that does everything. You
should consider defining one trigger for inserting, updating, and deleting events. Table 10-2
qualifies the INSERTING, UPDATING, and DELETING functions from the DBMS_STANDARD
package. These functions let you determine the type of DML event and write one trigger that
manages all three DML events.

Certain required fields for an insert to either the member or contact tables are missing from
the view. There is also a programmatic way to fix these shortcomings.

Function Name Return Datatype Description
DELETING BOOLEAN The DELETING function returns a

Boolean true when the DML event
is deleting.

INSERTING BOOLEAN The INSERTING function returns
a Boolean true when the DML is
inserting.

UPDATING BOOLEAN The UPDATING function returns
a Boolean true when the DML is
updating.

TABLE 10-2 Data Manipulation Language Event Functions

372 Oracle Database 11g PL/SQL Programming

You can build a complete trigger for all DML statements by using the event function from
Table 10-2. The following provides an example INSTEAD OF trigger:

-- This is found in create_insteadof_trigger.sql on the publisher's web site.
CREATE OR REPLACE TRIGGER account_list_dml
 INSTEAD OF INSERT OR UPDATE OR DELETE ON account_list
 FOR EACH ROW
DECLARE
 -- Source variable.

source account_list.full_name%TYPE := :new.full_name;
 -- Parsed variables.
 fname VARCHAR2(43);
 mname VARCHAR2(1);
 lname VARCHAR2(43);
 -- Check whether all dependents are gone.
 FUNCTION get_dependents (member_id NUMBER) RETURN BOOLEAN IS
 rows NUMBER := 0;
 CURSOR c (member_id_in NUMBER) IS
 SELECT COUNT(*) FROM contact WHERE member_id = member_id_in;
 BEGIN
 OPEN c (member_id);
 FETCH c INTO rows;
 IF rows > 0 THEN
 RETURN FALSE;
 ELSE
 RETURN TRUE;
 END IF;
 END get_dependents;
BEGIN
 IF INSERTING THEN -- On insert event.
 RAISE_APPLICATION_ERROR(-20000,'Not enough data for insert!');
 ELSIF UPDATING THEN -- On update event.
 -- Assign source variable.
 source := :new.full_name;
 -- Parse full_name for elements.
 fname := LTRIM(REGEXP_SUBSTR(source,'(^|^ +)([[:alpha:]]+)',1));
 mname := REGEXP_SUBSTR(
 REGEXP_SUBSTR(
 source,'(+)([[:alpha:]]+)((+|. +))',1),'([[:alpha:]])',1);
 lname := REGEXP_SUBSTR(
 REGEXP_SUBSTR(
 source,'(+)([[:alpha:]]+)(+$|$)',1),'([[:alpha:]]+)',1);
 -- Update name change in base table.
 UPDATE contact
 SET first_name = fname
 , middle_initial = mname
 , last_name = lname
 WHERE contact_id = :old.contact_id;
 ELSIF DELETING THEN -- On delete event.

Chapter 10: Triggers 373

 DELETE FROM contact WHERE member_id = :old.member_id;
 -- Only delete the parent when there aren't any more children.
 IF get_dependents(:old.member_id) THEN
 DELETE FROM member WHERE member_id = :old.member_id;
 END IF;
 END IF;
END;
/

Some tricks or risks are inherent in this type of trigger. Risks are bad in triggers because they
should be foolproof. One potential flaw in this trigger is the assignment of the pseudo-field :new.
full_name in the declaration section. The database doesn’t check when you compile the trigger
if the size of the source variable is large enough to handle possible assignments. This is a critical
place to use type anchoring as discussed in Chapter 9.

The account_list_dml trigger anchors the source variable to the assigned column value,
which ensures you won’t raise ORA-06502, ORA-06512, and ORA-04088 errors. An assignment
in the DECLARE block of a trigger body does raise a run-time exception, like standalone
anonymous-block programs.

This trigger fires on any DML event against the non-updatable view, and it handles the insert,
update, or deletion to the base tables where appropriate. As mentioned, there wouldn’t be enough
information to perform INSERT statements to the base tables. The trigger raises a user-defined
exception when someone attempts to insert a new record through the view. There is enough
information to update the name, but as you can tell, it isn’t a trivial bit of work. You should know
that the regular expression for the middle name won’t work if you have leading whitespace before
the first name. The DELETE statement only touches one table unless all dependent rows in the
contact table have been deleted first, because you never want to leave orphaned rows in a
dependent table.

This section has shown you how to write individual-event and multiple-event INSTEAD OF
triggers. You should try to write all DML events in a single INSTEAD OF trigger because they’re
much easier to maintain.

Non-Updatable Views
Views are non-updatable when they contain any of the following constructs:

Set operators

Aggregate functions

CASE or DECODE statements

CONNECT BY, GROUP BY, HAVING, or START WITH clauses

The DISTINCT operator

Joins (with exceptions when they contain the joining key)

You also cannot reference any pseudo-columns or expressions when you update a view.

■

■

■

■

■

■

374 Oracle Database 11g PL/SQL Programming

System or Database Event Triggers
System triggers enable you to audit server startup and shutdown, server errors, and user logon
and logoff activities. They are convenient for tracking the duration of connections per user and
the uptime of the database server.

The prototype for building a database SYSTEM trigger is

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER} database_event ON {database | schema}
[DECLARE]
 declaration_statements;
BEGIN
 execution_statements;
END [trigger_name];
/

The logon and logoff triggers monitor the duration of connections. The DML statements for
these triggers are in the user_connection package. Both the connecting_trigger and the
disconnecting_trigger call procedures in the user_connection package to insert logon
and logoff information per user.

The connecting_trigger provides an example of a system trigger that monitors users’
logons to the database, as shown:

-- This is found in create_system_triggers.sql on the publisher's web site.
CREATE OR REPLACE TRIGGER connecting_trigger
 AFTER LOGON ON DATABASE
BEGIN
 user_connection.connecting(sys.login_user);
END;
/

The disconnecting_trigger provides an example of a system trigger that monitors users’
logoffs from the database, as shown:

-- This is found in create_system_triggers.sql on the publisher's web site.
CREATE OR REPLACE TRIGGER disconnecting_trigger
 BEFORE LOGOFF ON DATABASE
BEGIN
 user_connection.disconnecting(sys.login_user);
END;
/

Both triggers are compact and call methods of the user_connection package. This
package requires the connection_log table, which is

-- This is found in create_system_triggers.sql on the publisher's web site.
CREATE TABLE connection_log
(event_id NUMBER
, event_user_name VARCHAR2(30) CONSTRAINT log_event_nn1 NOT NULL
, event_type VARCHAR2(14) CONSTRAINT log_event_nn2 NOT NULL
, event_date DATE CONSTRAINT log_event_nn3 NOT NULL
, CONSTRAINT connection_log_p1 PRIMARY KEY (event_id));

The package body declares two procedures. One supports the logon trigger, and the other
supports the logoff trigger. The package specification is

Chapter 10: Triggers 375

-- This is found in create_system_triggers.sql on the publisher's web site.
CREATE OR REPLACE PACKAGE user_connection AS
 PROCEDURE connecting (user_name IN VARCHAR2);
 PROCEDURE disconnecting (user_name IN VARCHAR2);
END user_connection;
/

The implementation of the user_connection package body is

-- This is found in create_system_triggers.sql on the publisher's web site.
CREATE OR REPLACE PACKAGE BODY user_connection AS
 PROCEDURE connecting (user_name IN VARCHAR2) IS
 BEGIN
 INSERT INTO connection_log (event_user_name, event_type, event_date)
 VALUES (user_name,'CONNECT',SYSDATE);
 END connecting;
 PROCEDURE disconnecting (user_name IN VARCHAR2) IS
 BEGIN
 INSERT INTO connection_log (event_user_name, event_type, event_date)
 VALUES (user_name,'DISCONNECT',SYSDATE);
 END disconnecting;
END user_connection;
/

You may notice that the connection_log table has four columns but the INSERT statement
only uses three. This is possible because the connection_log_t1 trigger automatically assigns
the next value from the connection_log_s1 sequence. You can find the source of the
connection_log_t1 trigger in the section “Row-Level Triggers” in this chapter.

This section has demonstrated how you can build system triggers.

Trigger Restrictions
There are several restrictions on how you implement triggers in Oracle 11g. They are fairly
consistent between releases, but Oracle 11g has relaxed some mutating table restrictions.
Restrictions have been covered in earlier sections when they apply to only one type of trigger.

The following subsections cover the remaining restrictions.

Maximum Trigger Size
A trigger body can be no longer than 32,760 bytes, as noted in the section “Introduction to
Triggers” at the beginning of this chapter. This size limitation means that you should consider
keeping your trigger bodies small in size. You can accomplish this without losing any utility by
moving coding logic into other schema-level components, such as functions, procedures, and
packages. An advantage of moving the coding logic out of the trigger body is that you can reuse the
code. You can also wrap schema-level objects, whereas you can’t wrap trigger bodies. Appendix
F discusses wrapping your PL/SQL code from prying eyes.

SQL Statements
Nonsystem trigger bodies can’t contain DDL statements. They also can’t contain Data Control
Language (DCL) or Transaction Control Language (TCL) commands, like ROLLBACK, SAVEPOINT,
or COMMIT. This rule holds true for the schema-level components that you call from nonsystem
trigger bodies when the trigger runs within the scope of the triggering statement.

376 Oracle Database 11g PL/SQL Programming

If you declare a trigger as autonomous, nonsystem trigger bodies can contain Data Control
Language commands because they don’t alter the transaction scope. They act outside of it. You
enable a trigger to work outside the scope of a triggering statement by putting the following in its
DECLARE block:

PRAGMA AUTONOMOUS_TRANSACTION;

A larger problem with SQL statements exists with remote transactions. If you call a remote
schema-level function or procedure from a trigger body, it is possible that you may encounter a
timestamp or signature mismatch. A mismatch invalidates the trigger and causes the triggering
SQL statement to fail.

LONG and LONG RAW Datatypes
The LONG and LONG RAW datatypes are legacy components. No effort is spent on updating them,
and you should migrate to LOBs at your earliest opportunity.

You can’t declare a local variable in a trigger with the LONG or LONG RAW datatype. However,
you can insert into a LONG or LONG RAW column when the value can be converted to a constrained
datatype, like a CHAR or VARCHAR2. The maximum length is 32,000 bytes.

Row-level triggers cannot use a :new or :old pseudo-record, or row of data, when the column
is declared as a LONG or LONG RAW datatype.

Mutating Tables
A mutating table is one undergoing change. Change can come from an INSERT, UPDATE, or
DELETE statement, or from a DELETE CASCADE constraint.

This type of error can only happen on row-level triggers.
You can’t query or modify tables when they’re changing. This makes sense if you think about

it. If a trigger fires because of a change on a table, it can’t see the change until it is final. While
you can access the new and old pseudo-records, you can’t read the state of the table. Any
attempt to do so raises an ORA-04091 exception.

The following demonstrates how mutating errors can occur. You create a mutant table, as
follows:

CREATE TABLE mutant
(mutant_id NUMBER
, mutant_name VARCHAR2(20));

You can then insert the four primary ninja turtles:

INSERT INTO mutant VALUES (mutant_s1.nextval,'Donatello');
INSERT INTO mutant VALUES (mutant_s1.nextval,'Leonardo');
INSERT INTO mutant VALUES (mutant_s1.nextval,'Michelangelo');
INSERT INTO mutant VALUES (mutant_s1.nextval,'Raphael');

After inserting the data, you can build the following trigger:

CREATE OR REPLACE TRIGGER mutator
AFTER DELETE ON mutant
FOR EACH ROW

Chapter 10: Triggers 377

DECLARE
 rows NUMBER;
BEGIN
 SELECT COUNT(*) INTO rows FROM mutant;
 dbms_output.put_line('[rows] has '||rows||']');
END;
/

The trigger body attempts to get the number of rows but it can’t find the number of rows
because the record set is not final. This restriction exists to prevent the trigger from seeing
inconsistent data.

You can fire the trigger by running the following command to delete Michelangelo from the
mutant table. The DELETE statement is

DELETE FROM MUTANT WHERE mutant_name = 'Michelangelo';

After running that statement, the DELETE statement raises the following error stack:

DELETE FROM mutant WHERE mutant_name = 'Michelangelo'

ERROR at line 1:
ORA-04091: table PLSQL.MUTANT is mutating, trigger/function may not see it
ORA-06512: at "PLSQL.MUTATOR", line 4
ORA-04088: error during execution of trigger 'PLSQL.MUTATOR'

A trigger rolls back the trigger body instructions and triggering statement when it encounters a
mutating table. You should be careful to avoid mutating table errors now that you understand why
they can occur.

System Triggers
System triggers can present interesting problems. Most problems relate to limitations or constraints
imposed by event attribute functions. Some of the event attribute functions may be undefined for
certain DDL events. You should refer back to the section “Event Attribute Functions” earlier in this
chapter to understand exactly what to expect from event attribute functions.

Event attribute functions are declared and implemented in the Oracle STANDARD package.
You can also encounter a problem creating objects after a system trigger fails to compile. This
occur for a CREATE event trigger when a CREATE event fires the trigger and the trigger body is
invalid due to a missing object dependency. The missing dependency invalidates the trigger and
marks it as invalid. When you try to create the missing object, the CREATE event trigger raises
an ORA-04098 error and disallows the DDL statement. You must drop the invalid trigger, fix the
object dependency, and recompile the trigger to proceed.

You can use the audit_creation trigger created in the section “Data Definition Language
Triggers” to illustrate this restriction. If you drop the audit_creation table, the audit_creation
trigger becomes invalid. Subsequently, you raise an ORA-04098 while attempting to create this
missing table. You can’t proceed until you drop the trigger, or you disable it. You disable the
trigger by running the following command:

ALTER TRIGGER audit_creations DISABLE;

378 Oracle Database 11g PL/SQL Programming

You can now create the table, and the trigger should re-validate when it is called. If the trigger
is still invalid, you can compile it with this syntax:

ALTER TRIGGER audit_new_stuff COMPILE;

This section has covered some trigger restrictions. You should check the individual sections
for restrictions that are specific to certain trigger types.

Summary
This chapter has reviewed the five types of database triggers. It has explained triggers and their
architecture.

PART
III

PL/SQL Advanced
Programming

This page intentionally left blank

CHAPTER
11

Dynamic SQL

381

382 Oracle Database 11g PL/SQL Programming

ative Dynamic SQL (NDS) delivered in Oracle 9i, improved in 10g and 11g,
provides a replacement for all but one feature of the DBMS_SQL package. NDS
is the future and you should consider moving any remaining DBMS_SQL code
forward at the earliest opportunity. NDS and the DBMS_SQL package let you
create and execute SQL at run time.

This chapter is divided into three principal areas:

Dynamic SQL architecture

Native Dynamic SQL (NDS)

 Dynamic statements

 Dynamic statements with inputs

 Dynamic statements with inputs and outputs

 Dynamic statements with an unknown number of inputs

DBMS_SQL package

 Dynamic statements

 Dynamic statements with input variables

 Dynamic statements with input and output variables

Dynamic SQL statements are a powerful technology that lets you write and execute queries
as your programs run. This means the DDL and DML statements can change as your programming
needs change.

The architecture of dynamic statements applies to both NDS and DBMS_SQL. It is covered
first, and you should at least examine it before going straight to the NDS or DBMS_SQL sections.
NDS is covered first because you can use it to handle everything except dynamic statements
where you don’t know the number and datatypes of output values. You must work with the
DBMS_SQL package to manage those. The DBMS_SQL package is covered next because there’s
often a lot of old code that gets migrated and supported for years.

Dynamic SQL Architecture
Dynamic SQL delivers the flexibility to solve many problems. It allows you to write what are
known as lambda-style functions. You declare lambda-style functions like other functions, but
they can have an unknown parameter list and return type. Dynamic SQL provides this functionality
to the PL/SQL programming language.

While you have two approaches, you should consider that Oracle 11g has improved NDS,
and that DBMS_SQL is provided for backward compatibility. Both solutions allow you to build
dynamic programs. You should choose which approach best meets your future needs.

You have essentially two architectures that apply in both cases. You can glue strings together,
or you can implement placeholders. The gluing of strings is susceptible to SQL injection attacks.
SQL injection attacks prey on the issues surrounding quoting strings. Implementing placeholders
makes your dynamic SQL immune to these attacks. You probably know these placeholders as
bind variables. They act as formal parameters to dynamic statements, but they’re not quite as tidy
as the signatures of functions and procedures.

■

■

■

■

■

■

■

■

■

■

N

Chapter 11: Dynamic SQL 383

You use NDS or the DBMS_SQL package to build dynamic SQL statements. At compile time
none of the elements in the dynamic statement are validated against objects in the database. This
lets you write statements that will work with future components, or work for multiple components.
The decision about what these dynamic statements will do rests with how you call them.

The process of running a dynamic statement involves four steps. First, the statement is parsed
at run time. Second, statements with placeholders map the actual parameters to the formal
parameters. Third, it executes the statement. Fourth, it returns values to the calling statement.
The process for DBMS_SQL is a bit more complex, but you can find the process flow chart in the
Oracle Database PL/SQL Packages and Types Reference.

Native Dynamic SQL (NDS)
NDS is a powerful and simple tool. It is easy to use and deploy. It generally meets most needs for
lambda-style functions. This section is divided into three parts. First, you cover dynamic statements,
which are gluing strings together to make dynamic statements. Second, you learn how to use
input bind variables. Third, you learn how to return data from NDS statements.

Dynamic Statements
This section shows you how to run dynamic statements. These statements are static shells when
you define your programs. You use them to build statement at run time. These types of statements
implement Method 1 from the DBMS_SQL package (see Table 11-1 for a list of these methods).

You write DDL statements in dynamic SQL to avoid failures during compilation. An example
would be a statement that should perform only when an object exists. Without dynamic SQL
statements, the program unit could fail due to missing objects in the database.

The reasons for dynamic DML statements are different. More often than not, it is tied to checking
something in the current session before you perform a statement. For example, you may read the
CLIENT_INFO value from the session to check for authentication, roles, and privileges in an end-
user application.

The subsections demonstrate dynamic DDL and DML statements.

Dynamic DDL Statement
A frequently performed task in standalone scripts requires you to check whether something is in
the database before you act on it. You don’t want to run a DROP statement on a table or sequence
that doesn’t exist because it would raise an error.

The following anonymous block shows you how to conditionally drop a sequence. It uses a FOR
loop to check whether the sequence exists, and then it creates and runs a dynamic DDL statement.

You should enable the SQL*Plus SERVEROUTPUT environment variable before testing this
code, if you want to see a confirmation message. You can run this anonymous block successfully
whether there is or isn’t a sample_sequence. The sample program creates the sequence, validates
it exists in the user_sequences view, and then run this anonymous block. After that, it queries
the user_sequences to confirm it’s no longer there.

-- This is found in create_nds1.sql on the publisher's web site.
BEGIN
 -- Use a loop to check whether to drop a sequence.
 FOR i IN (SELECT null
 FROM user_objects
 WHERE object_name = 'SAMPLE_SEQUENCE') LOOP
 EXECUTE IMMEDIATE 'DROP SEQUENCE sample_sequence';
 dbms_output.put_line('Dropped [sample_sequence].');

384 Oracle Database 11g PL/SQL Programming

 END LOOP;
END;
/

NDS is simple and direct. You simply query to see if the table is there; when it’s not there, you
drop it. The execute immediate runs the command.

Dynamic DML Statement
Dynamic DML statements are often simply strings assembled at run time. They can be inserted
as function or procedure parameters. The problem with gluing strings together from inputs is that
they’re subject to SQL injection attacks. The DBMS_ASSERT package lets you validate input
parameters against SQL injection attacks.

The following procedure lets you dynamically build an INSERT statement to the item table:

-- This is found in create_nds2.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE insert_item
(table_name VARCHAR2
, asin VARCHAR2
, item_type VARCHAR2
, item_title VARCHAR2
, item_subtitle VARCHAR2 := ''
, rating VARCHAR2
, agency VARCHAR2
, release_date VARCHAR2) IS
 stmt VARCHAR2(2000);
BEGIN
 stmt := 'INSERT INTO '||dbms_assert.simple_sql_name(table_name)||' VALUES '
 || '(item_s1.nextval '
 || ','||dbms_assert.enquote_literal('ASIN'||CHR(58)||asin)
 || ',(SELECT common_lookup_id '
 || ' FROM common_lookup '
 || ' WHERE common_lookup_type = '
 || dbms_assert.enquote_literal(item_type)||')'
 || ','||dbms_assert.enquote_literal(item_title)
 || ','||dbms_assert.enquote_literal(item_subtitle)
 || ', empty_clob() '
 || ', NULL '
 || ','||dbms_assert.enquote_literal(rating)
 || ','||dbms_assert.enquote_literal(agency)
 || ','||dbms_assert.enquote_literal(release_date)
 || ', 3, SYSDATE, 3, SYSDATE)';
 dbms_output.put_line(stmt);
 EXECUTE IMMEDIATE stmt;
END insert_item;
/

The item table could be hard-coded in the string, but it is a parameter to highlight the
QUALIFIED_SQL_NAME function. The QUALIFIED_SQL_NAME function compares the string
against the namespace value in the schema. It raises an ORA-44004 error when the actual
parameter is incorrect. The ENQUOTE_LITERAL function puts containing quotes around string
literals in SQL statements. This function is superior to the older style where you backquote the
quotes like '''some_string''' to get a delimited string literal, 'some_string'.

You can test the program with the following anonymous block:

Chapter 11: Dynamic SQL 385

-- This is found in create_nds2.sql on the publisher's web site.
BEGIN
 insert_item (table_name => 'ITEM'
 ,asin => 'B00005O3VC'
 ,item_title => 'Monty Python and the Holy Grail'
 ,item_subtitle => 'Special Edition'
 ,rating => 'PG'
 ,agency => 'MPAA'
 ,release_date => '23-OCT-2001');
END;
/

It successfully enters a new item in the item table.

SQL Injection Attacks
SQL injection attacks are attempts to fake entry by using unbalanced quotes in SQL
statements. Dynamic SQL is a place where some hacker might try to exploit your code.

Oracle now has the DBMS_ASSERT package to help you prevent SQL injection attacks.
DBMS_ASSERT has the following functions:

The ENQUOTE_LITERAL function takes a string input and adds leading and trailing
single quotes to the output string.

The ENQUOTE_NAME function takes a string input and promotes it to uppercase
before adding leading and trailing double quotes to the output string. There’s an
optional parameter Boolean parameter that lets you disable capitalization when
you set it to false.

The NOOP function takes a string input and returns the same value as an output
without any validation. The NOOP function is overloaded and can manage a
VARCHAR2 or CLOB datatype.

The QUALIFIED_SQL_NAME function validates the input string as a valid schema-
object name. This function lets you validate your functions, procedure, packages,
and user-defined objects. The actual parameter evaluates in lowercase, mixed case,
or uppercase.

The SCHEMA_NAME function takes a string input and validates whether it is a
valid schema name. The actual parameter needs to be uppercase for this to work
properly. So, you should pass the actual parameter inside a call to the UPPER
function covered in Appendix J.

The SIMPLE_SQL_NAME function validates the input string as a valid schema-
object name. This function lets you validate your functions, procedure, packages,
and user-defined objects.

The SQL_OBJECT_NAME function validates the input string as a valid schema-
object name. This function lets you validate your functions, procedures, and
packages. At the time of writing it raised an ORA-44002 error when checking a
user-defined object type.

You can find more about the DBMS_ASSERT package in the Oracle Database PL/SQL
Packages and Types Reference. Oracle NDS is immune to SQL injection attacks when you
use bind variables as opposed to gluing things together.

■

■

■

■

■

■

■

386 Oracle Database 11g PL/SQL Programming

Dynamic Statements with Inputs
A dynamic statement with input variables takes you one step beyond gluing strings together. This
lets you write a statement with placeholders. The placeholders act like formal parameters, but
they’re interspersed inside the SQL statement. You pass actual parameters into statements by
placing them as arguments to the USING clause. You return values through the RETURNING
INTO clause by default.

Placeholders are positional based on their location in the SQL statement, or the PL/SQL call
parameter. You must have an actual parameter in the USING clause for each placeholder. The
USING clause takes a comma-delimited list of parameters. They are IN mode (pass-by-value)
unless you specify otherwise. You override the default mode of operation by setting any parameter
to IN OUT or OUT mode.

You use IN mode parameters when the executing a SQL statement. The IN OUT or OUT mode
requires that you enclose the SQL statement inside an anonymous block, or you call a PL/SQL
function or procedure. The Oracle 11g documentation makes the following recommendations
with placeholder variables:

If a dynamic SQL SELECT statement returns at most one row, you should return the
value through an INTO clause. This requires that you either (a) open the statement as
a reference cursor, or (b) enclose the SQL statement inside an anonymous block. The
former does not use an IN OUT or OUT mode parameter in the USING clause, while the
latter requires it.

If a dynamic SQL SELECT statement returns more than one row, you should return the
value through a BULK COLLECT INTO clause. Like the INTO clause, the bulk collection
requires that you either (a) open the statement as a reference cursor, or (b) enclose the
SQL statement inside an anonymous block. The former does not use an IN OUT or OUT
mode parameter in the USING clause, while the latter requires it.

If a dynamic SQL statement is a DML with input-only placeholders, you should put them
in the USING clause.

If a dynamic SQL statement is a DML and uses a RETURNING INTO clause, you should
put the input values in the USING clause and the output values in the NDS RETURNING
INTO clause.

If the dynamic SQL statement is a PL/SQL anonymous block or CALL statement, then you
should put both input and output parameters in the USING clause. All parameters listed
in the USING clause are IN mode only. You must override the default and designate them
as IN OUT or OUT.

The examples in this section demonstrate all approaches with SQL statements and calling a
PL/SQL anonymous block. As a rule of thumb, you should avoid enclosing a NDS statement in
an anonymous block because the RETURNING INTO clause is superior and simpler.

The following example re-writes the insert_item procedure from the prior section. This
one uses bind variables:

-- This is found in create_nds3.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE insert_item
(asin VARCHAR2
, item_type VARCHAR2

■

■

■

■

■

Chapter 11: Dynamic SQL 387

, item_title VARCHAR2
, item_subtitle VARCHAR2 := ''
, rating VARCHAR2
, agency VARCHAR2
, release_date DATE) IS
 stmt VARCHAR2(2000);
BEGIN
 stmt := 'INSERT INTO item VALUES '
 || '(item_s1.nextval '
 || ',''ASIN''||CHR(58)||:asin '
 || ',(SELECT common_lookup_id '
 || ' FROM common_lookup '
 || ' WHERE common_lookup_type = :item_type)'
 || ', :item_title '
 || ', :item_subtitle '
 || ', empty_clob() '
 || ', NULL '
 || ', :rating '
 || ', :agency '
 || ', :release_date '
 || ', 3, SYSDATE, 3, SYSDATE)';
 EXECUTE IMMEDIATE stmt
 USING asin, item_type, item_title, item_subtitle, rating, agency, release_date;
END insert_item;
/

You may have noticed a couple of changes. Foremost is that all the DBMS_ASSERT package
calls were removed. Bind variables inherit the datatype from the actual parameter passed through
the USING clause. This is why there are no delimiting quotes around the variables that would
otherwise be string literals. The next change you may notice is the removal of the table name
substitution. You can’t substitute a table name as a bind variable without raising an ORA-00903
error at run time. The last change is the datatype of the release_date parameter; it is now a
DATE type.

The EXECUTE IMMEDIATE statement uses all variables passed as actual parameters through
the USING clause as IN mode–only variables. Like formal parameters in functions and procedures,
the IN mode is the default. You need to specify OUT mode when you want variables results
returned to the local program scope.

If the list of parameters is fewer than the actual number of placeholders, you raise an ORA-01008.
The error says that not all variables are bound. The using clause replace the old BIND_VALUE and
BIND_ARRAY procedures in the DBMS_SQL package.

The following anonymous block lets you test the replacement insert_item procedure:

-- This is found in create_nds3.sql on the publisher's web site.
BEGIN
 insert_item (asin => 'B00005O3VC'
 ,item_type => 'DVD_FULL_SCREEN'
 ,item_title => 'Monty Python and the Holy Grail'
 ,item_subtitle => 'Special Edition'
 ,rating => 'PG'
 ,agency => 'MPAA'
 ,release_date => '23-OCT-2001');
END;
/

388 Oracle Database 11g PL/SQL Programming

Bind variables are generally a preferred choice over gluing strings together, but both have
their purposes. They’re preferred because bind variables make your code immune to SQL
injection attacks.

Dynamic Statements with Inputs and Outputs
The ability to bind inputs is powerful and simple using NDS. The terrific thing about getting
output variables is that it is so simple. This is a refreshing change over the verbose DBMS_SQL
approach that you can find in the section “Dynamic Statements with Input and Output Variables”
later in this chapter.

-- This is found in create_nds4.sql on the publisher's web site.
DECLARE
 -- Define explicit record structure.
 TYPE title_record IS RECORD
 (item_title VARCHAR2(60)
 , item_subtitle VARCHAR2(60));
 -- Define dynamic variables.
 title_cursor SYS_REFCURSOR;
 title_row TITLE_RECORD;
 stmt VARCHAR2(2000);
BEGIN
 -- Set statement.
 stmt := 'SELECT item_title, item_subtitle '
 || 'FROM item '
 || 'WHERE SUBSTR(item_title,1,12) = :input';
 -- Open and read dynamic cursor, then close it.
OPEN title_cursor FOR stmt USING 'Harry Potter';

 LOOP
 FETCH title_cursor INTO title_row;
 EXIT WHEN title_cursor%NOTFOUND;
 dbms_output.put_line(
 '['||title_row.item_title||']['||title_row.item_subtitle||']');
 END LOOP;
 CLOSE title_cursor;
END;
/

The NDS statement is dynamic, accepting a single input bind variable. The OPEN FOR
statement simply appends the USING clause to accept filtering criteria. The USING clause in this
context is IN mode only. If you attempt to specify an OUT mode operation, the parser raises a
PLS-00254 error.

You output the results of the query as you would any other reference cursor statement.
Chapter 6 contains a sidebar on system reference cursors.

A bulk operation is also possible in NDS. Chapter 4 has a section called “Bulk Statements”
that you may cross-reference while working through the bulk processing examples. You simply
call the FETCH BULK COLLECT INTO statement. This is demonstrated in the next query:

-- This is found in create_nds5.sql on the publisher's web site.
DECLARE
 -- Define explicit record structure.
 TYPE title_record IS RECORD

Chapter 11: Dynamic SQL 389

 (item_title VARCHAR2(60)
 , item_subtitle VARCHAR2(60));
 TYPE title_collection IS TABLE OF TITLE_RECORD;
 -- Define dynamic variables.
 title_cursor SYS_REFCURSOR;
 titles TITLE_COLLECTION;
 stmt VARCHAR2(2000);
BEGIN
 -- Set statement.
 stmt := 'SELECT item_title, item_subtitle '
 || 'FROM item '
 || 'WHERE SUBSTR(item_title,1,12) = :input';
 -- Open and read dynamic cursor, then close it.
 OPEN title_cursor FOR stmt USING 'Harry Potter';

FETCH title_cursor BULK COLLECT INTO titles;
 FOR i IN 1..titles.COUNT LOOP
 dbms_output.put_line(
 '['||titles(i).item_title||']['||titles(i).item_subtitle||']');
 END LOOP;
 CLOSE title_cursor;
END;
/

The FETCH BULK COLLECT INTO moves the entire cursor return set into the collection
variable. In a larger program scope you could return the collection record set to another PL/SQL
block, or a pipelined function as described in Chapter 6. You can also reference the section
“FORALL Statements” in Chapter 4 to see how you could then use bulk inserts to process the
resulting collection.

The last item to cover is how you use NDS to handle input and output variables. You declare
actual parameters as OUT mode variables in the USING clause. This approach requires two things.
You enclose the SQL statement in an anonymous-block PL/SQL program, and you return the
variable through a RETURNING INTO clause in the dynamic statement.

The next two scripts depend on your adding another row to the item table. This anonymous
block uses the insert_item procedure that you build by running the create_nds3.sql script.

-- This is found in create_nds3.sql on the publisher's web site.
BEGIN
 insert_item (asin => 'B000G6BLWE'
 ,item_type => 'DVD_FULL_SCREEN'
 ,item_title => 'Young Frankenstein'
 ,rating => 'PG'
 ,agency => 'MPAA'
 ,release_date => '05-SEP-2006');
END;
/

The following example demonstrates reading and writing through a CLOB locator with a
dynamic SQL statement. Oracle 11g documentation recommends this approach. It has a couple
benefits. First, all input bind variables are passed through the USING clause, and all output bind
variables are returned through the RETURNING INTO clause. Second, there is no need to create
an enclosing anonymous PL/SQL block for the statement.

390 Oracle Database 11g PL/SQL Programming

The recommended script is

-- This is found in create_nds6.sql on the publisher's web site.
DECLARE
 -- Define explicit record structure.
 target CLOB;
 source VARCHAR2(2000) := 'A Mel Brooks comedy classic!';
 movie VARCHAR2(60) := 'Young Frankenstein';
 stmt VARCHAR2(2000);
BEGIN
 -- Set statement.
 stmt := 'UPDATE item '
 || 'SET item_desc = empty_clob() '
 || 'WHERE item_id = '
 || ' (SELECT item_id '
 || ' FROM item '
 || ' WHERE item_title = :input) '
 || 'RETURNING item_desc INTO :descriptor';
 EXECUTE IMMEDIATE stmt USING movie RETURNING INTO target;
 dbms_lob.writeappend(target,LENGTH(source),source);
 COMMIT;
END;
/

The :input placeholder receives the single actual parameter from the USING clause. The
statement RETURNING INTO clause returns the :descriptor placeholder to the target local
variable. As qualified in Chapter 8, the LOB locator is a special connection to a work area that
lets you read from and write to a CLOB variable. The locator acts like an IN OUT mode variable.
This is a very simple and direct approach compared to the alternative. The alternative would have
you replace the RETURNING INTO clause with an IN OUT mode parameter in the USING
clause, which would require you to enclose the SQL statement in a PL/SQL anonymous block.

You could also write a standalone procedure to manage this UPDATE statement. The
procedure would look like this:

-- This is found in create_nds7.sql script on the publisher's web site.
CREATE OR REPLACE PROCEDURE get_clob
(item_title_in VARCHAR2, item_desc_out IN OUT CLOB) IS
BEGIN
 UPDATE item
 SET item_desc = empty_clob()
 WHERE item_id =
 (SELECT item_id
 FROM item
 WHERE item_title = item_title_in)
 RETURNING item_desc INTO item_desc_out;
END get_clob;
/

After creating the procedure, you can then use NDS to call the stored procedure. This works
more like a call through the OCI than NDS. It does provide you with the ability to dynamically
marshal call parameters by filtering them through some procedural logic.

Chapter 11: Dynamic SQL 391

The following calls the stored procedure and writes a new string to the CLOB column. The
actual call semantic is enclosed in an anonymous block, which is required when you want to use
IN OUT or OUT mode placeholders.

-- This is found in create_nds7.sql on the publisher's web site.
DECLARE
 -- Define explicit record structure.
 target CLOB;
 source VARCHAR2(2000) := 'A Mel Brooks classic movie!';
 movie VARCHAR2(60) := 'Young Frankenstein';
 stmt VARCHAR2(2000);
BEGIN
 -- Set statement
 stmt := 'BEGIN '
 || ' get_clob(:input,:output); '
 || 'END;';
 EXECUTE IMMEDIATE stmt USING movie, IN OUT target;
 dbms_lob.writeappend(target,LENGTH(source),source);
 COMMIT;
END;
/

The USING clause maps the local movie variable to the :input placeholder, and the target
variable to the :output placeholder. The call to the standalone procedure returns a CLOB
locator. You use the CLOB locator as the first actual parameter to the DBMS_LOB.WRITEAPPEND
procedure. It writes the contents of the local source variable to CLOB column courtesy of the
placeholder.

You can’t replace the IN OUT mode variable with a RETURNING INTO clause because it
would fail. The attempt raises an ORA-06547 error. The error tells you that the RETURING INTO
clause can only be used with an INSERT, UPDATE, or DELETE statement.

NOTE
This fails if you have more than one row in the table that meets the
criteria. You should delete any extra copies to test this.

You can confirm any of the writes by running the following query:

SELECT item_desc FROM item WHERE item_title = 'Young Frankenstein';

You’ll see

ITEM_DESC

A Mel Brooks classic movie!

Dynamic Statements with an Unknown Number of Inputs
This section shows you how to create statements that run with an unknown number of placeholders.
It demonstrates what is known as DBMS_SQL Method 4 approach, which allows you to bind a
variable number of input placeholders.

392 Oracle Database 11g PL/SQL Programming

The following shows you how to build an unknown number of inputs, while returning a
known list of columns. You still need to use Method 4 and DBMS_SQL when you have a variable
list of outputs.

-- This is found in create_nds8.sql on the publisher's web site.
DECLARE
 -- Declare explicit record structure and table of structure.
 TYPE title_record IS RECORD
 (item_title VARCHAR2(60)
 , item_subtitle VARCHAR2(60));
 TYPE title_table IS TABLE OF title_record;
 -- Declare dynamic variables.
 title_cursor SYS_REFCURSOR;
 title_rows TITLE_TABLE;
 -- Declare DBMS_SQL variables.
 c INTEGER := dbms_sql.open_cursor;
 fdbk INTEGER;
 -- Declare local variables.
 counter NUMBER := 1;
 column_names DBMS_SQL.VARCHAR2_TABLE;
 item_ids DBMS_SQL.NUMBER_TABLE;
 stmt VARCHAR2(2000);
 substmt VARCHAR2(2000) := '';
BEGIN
 -- Find the rows that meet the criteria.
 FOR i IN (SELECT 'item_ids' AS column_names
 , item_id
 FROM item
 WHERE REGEXP_LIKE(item_title,'^Harry Potter')) LOOP
 column_names(counter) := counter;
 item_ids(counter) := i.item_id;
 counter := counter + 1;
 END LOOP;
 -- Dynamically create substatement.
 IF item_ids.COUNT = 1 THEN
 substmt := 'WHERE item_id IN (:item_ids)';
 ELSE
 substmt := 'WHERE item_id IN (';
 FOR i IN 1..item_ids.COUNT LOOP
 IF i = 1 THEN
 substmt := substmt ||':'||i;
 ELSE
 substmt := substmt ||',:'||i;
 END IF;
 END LOOP;
 substmt := substmt || ')';
 END IF;
 -- Set statement.
 stmt := 'SELECT item_title, item_subtitle '
 || 'FROM item '
 || substmt;

Chapter 11: Dynamic SQL 393

 -- Parse the statement with DBMS_SQL.
 dbms_sql.parse(c,stmt,dbms_sql.native);
 -- Bind the bind variable name and value.
 FOR i IN 1..item_ids.COUNT LOOP
 dbms_sql.bind_variable(c,column_names(i),item_ids(i));
 END LOOP;
 -- Execute using DBMS_SQL.
 fdbk := dbms_sql.execute(c);
 -- Convert the cursor to NDS.
 title_cursor := dbms_sql.to_refcursor(c);
 -- Open and read dynamic cursor, then close it.

FETCH title_cursor BULK COLLECT INTO title_rows;
 FOR i IN 1..title_rows.COUNT LOOP
 dbms_output.put_line(
 '['||title_rows(i).item_title||']['||title_rows(i).item_subtitle||']');
 END LOOP;
 -- Close the System Reference Cursor.
 CLOSE title_cursor;
END;
/

The program dynamically builds a SQL SELECT statement. The query looks like the following:

SELECT item_title, item_subtitle FROM item
WHERE item_id IN (:1,:2,:3,:4,:5,:6,:7,:8,:9,:10,:11,:12,:13,:14)

The loop binds the list of numeric placeholders with the values in the item_ids associative
array. The call to DBMS_SQL.TO_REFCURSOR function converts the DBMS_SQL cursor to a
standard weakly typed system reference cursor. It also closes the original DBMS_SQL cursor. If
you try to close the DBMS_SQL cursor after conversion, you raise an ORA-29471 error. The error
message says that you’re denied access because the package no longer owns the resource.

After converting to the system reference cursor, you simply use the standard NDS features
to bulk-fetch the record set. You can also convert back from NDS to DBMS_SQL by using the
TO_CURSOR_NUMBER function.

This section has shown you how to use NDS. You should note two things: NDS is simple to
implement and simple to use. The next section describes the older and more complex DBMS_SQL.

DBMS_SQL Package
Oracle introduced the DBMS_SQL package in Oracle 7. It gave you a way to store object code in
the database that would dynamically build SQL statements. It was an innovative solution because
it works around the problem of how PL/SQL checks dependencies. Prior to DBMS_SQL, you could
not store a SQL statement unless the table existed with the same definition.

DBMS_SQL was enhanced to support collections in Oracle 8i. The package has grown through
successive releases up to Oracle 9i. As discussed in the section “Native Dynamic SQL (NDS)”
earlier in the chapter, the direction shifted to NDS with the release of Oracle 9i.

The DBMS_SQL package provides several overloaded procedures. If you were to run a
describe command on the DBMS_SQL package, you would find a copy of each of these
overloaded procedures for the types listed. The section “DBMS_SQL Package Definition”
documents the constants, type, functions, and procedures.

394 Oracle Database 11g PL/SQL Programming

DBMS_SQL still has one major feature that is not delivered in NDS. It can manage dynamic
statements when the number and datatype of column returns are unknown before run time. This
feature is possible because of two DBMS_SQL procedures. The procedures are DESCRIBE_COLUMNS
and DESCRIBE_COLUMNS2.

Like the NDS approach, DBMS_SQL supports string concatenation and bind variables. If you
need a refresher on bind variables, please check Chapter 2. Unlike NDS, the DBMS_SQL package
requires explicit grants.

Oracle qualifies four types of dynamic SQL statements. You use certain functions and procedures
with each method type. Table 11-1 lists the methods, their definitions, and the DBMS_SQL functions
and procedures you use with each.

The next four subsections examine the DBMS_SQL package. The first three demonstrate the
features and use of dynamic SQL with the DBMS_SQL package. The last section documents the
package constants, types, functions, and procedures.

Dynamic Statements
This section shows you how to run dynamic statements. These statements are static when you
define your programs. They are constructed at run time. These types of statements implement
Method 1 from Table 11-1.

You write DDL statements in dynamic SQL to avoid failures during compilation. An example
would be a statement that should only perform when an object exists. Without dynamic SQL
statements, the program unit could fail due to missing objects in the database.

The reasons for dynamic DML statements are different. More often than not, they are tied to
checking something in the current session before you perform a statement. For example, you may

DBMS_SQL Grants and Privileges
The DBMS_SQL package is owned by the SYS schema. It is sometimes necessary to grant
permissions to the SYSTEM user first. Then, you can grant permissions to the individual users
rather than provisioning them through roles. You generally need access to the DBMS_SQL
and DBMS_SYS_SQL packages.

You grant permissions from the SYS account to the SYSTEM user with the following two
statements:

GRANT EXECUTE ON dbms_sys_sql TO system WITH GRANT OPTION;
GRANT EXECUTE ON dbms_sql TO system WITH GRANT OPTION;

After granting the proper privileges to the SYSTEM user, you can grant them to your
plsql user to run the sample programs. You grant the following privileges as the system user:

GRANT EXECUTE ON sys.dbms_sys_sql TO plsql;
GRANT EXECUTE ON sys.dbms_sql TO plsql;

You should now be able to run the scripts in this file, provided you’ve also installed the
video store example discussed in the introduction.

Chapter 11: Dynamic SQL 395

read the CLIENT_INFO value from the session to check for authentication, roles, and privileges
in an end-user application.

The subsections demonstrate dynamic DDL and DML statements, respectively.

Dynamic DDL Statement
A frequently performed task in standalone scripts requires you to check whether something is in
the database before you act on it. You don’t want to run a DROP statement on a table or sequence
that doesn’t exist.

The following anonymous block shows you how to conditionally drop a sequence. It uses a FOR
loop to check whether the sequence exists, and then it creates and runs a dynamic DDL statement.

Method Description Functions or Procedures

1 Method 1 supports DML or DDL statements that are
static. Static statements have no inputs or outputs
when they’re defined. Method 1 also does not
support DQL statements.

EXECUTE
OPEN_CURSOR
PARSE

2 Method 2 supports DML statements that are
dynamic, which means they have bind variables.
This method requires that you know the number and
datatype of bind variables at statement definition.
Method 2 also does not support DQL statements.

BIND_ARRAY
BIND_VARIABLE
EXECUTE
OPEN_CURSOR
PARSE

3 Method 3 supports DML statements that are dynamic,
which means they have bind variables. It also
supports the RETURNING INTO clause. The
RETURNING INTO clause lets you retrieve columns
and LOB locators from DML statements. This method
requires that you know the number and datatype
of bind variables at statement definition. Method 3
supports DQL statements, provided you know the
number and datatypes at statement definition.

BIND_ARRAY
BIND_VARIABLE
COLUMN_VALUE
DEFINE_COLUMN
EXECUTE
EXECUTE_AND_FETCH
FETCH_ROWS
OPEN_CURSOR
PARSE
VARIABLE_VALUE

4 Method 4 supports DML statements that are
dynamic, which means they have bind variables. It
also supports the RETURNING INTO clause. The
RETURNING INTO clause lets you retrieve columns
and LOB locators from DML statements. This
method does not require advanced knowledge of the
number and datatype of bind variables at statement
definition. Method 4 supports DQL statements
without requiring you to know the number and
datatype of columns at statement definition.

BIND_ARRAY
BIND_VARIABLE
COLUMN_VALUE
DEFINE_COLUMN
DESCRIBE_COLUMNS
DESCRIBE_COLUMNS2
DESCRIBE_COLUMNS3
EXECUTE
EXECUTE_AND_FETCH
FETCH_ROWS
OPEN_CURSOR
PARSE
VARIABLE_VALUE

TABLE 11-1 DBMS_SQL Methods of Operation

396 Oracle Database 11g PL/SQL Programming

You should enable the SQL*Plus SERVEROUTPUT environment variable before testing this
code, if you want to see the confirmation message. The code follows:

-- This is found in create_dbms_sql1.sql on the publisher's web site.
DECLARE
 -- Define local DBMS_SQL variables, and open cursor.
 c INTEGER := dbms_sql.open_cursor;
 fdbk INTEGER;
 stmt VARCHAR2(2000);

BEGIN
 -- Use a loop to check whether to drop a sequence.
 FOR i IN (SELECT null
 FROM user_objects
 WHERE object_name = 'SAMPLE_SEQUENCE') LOOP
 -- Build, parse, and execute SQL statement, then close cursor.
 stmt := 'DROP SEQUENCE sample_sequence';
 dbms_sql.parse(c,stmt,DBMS_SQL.NATIVE);
 fdbk := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);
 dbms_output.put_line('Dropped Sequence [SAMPLE_SEQUENCE].');
 END LOOP;
END;
/

The declaration block defines three variables for DBMS_SQL statements. One holds the
database cursor number; by tradition more than anything else it is named c for cursor. You’re
welcome to change it to something more meaningful to you, but you’ll see it in all the sample
programs. c is defined, not declared, by calling the DBMS_SQL.OPEN_CURSOR function. The
next variable is fdbk (another acronym), which stands for feedback. It is used to capture the
return value from the DBMS_SQL.EXECUTE function. The third name almost makes sense: stmt
means statement.

The execution block assigns a valid DDL statement to the stmt variable. Then, the DBMS_
SQL.PARSE ties the cursor number and statement together and runs the statement using the
current database version’s execution semantics.

You can test the program by creating a sample_sequence with the following syntax:

CREATE SEQUENCE sample_sequence;

You can confirm the sequence is there and working by querying the database catalog, or
incrementing the sequence. This verifies the presence of the sequence by incrementing it:

SELECT sample_sequence.nextval FROM dual;

Run the conditional drop statement and you see this message:

Dropped Sequence [SAMPLE_SEQUENCE].

Chapter 11: Dynamic SQL 397

You have now seen how to implement a dynamic DDL statement using the DBMS_SQL
package. If you check back in the section “Native Dynamic SQL (NDS),” you’ll see this approach
is more typing for little or no return.

Dynamic DML Statement
Dynamic DML statements are often created as strings at run time. They often audit some state
or behavior before deciding how to build the DML statement. This section discusses DBMS_SQL
Method 1, which allows only strings or patchworks of strings.

The example uses a code block that changes the column values for an INSERT statement.
Authenticated users enter one type of data, while unauthenticated users enter another.

You could check the value of the CLIENT_INFO variable in the session, and then choose the
value to insert into the LAST_UPDATED_BY column of a table. Chapter 10 has a sidebar “Reading
and Writing Session Metadata” that explains how you can set and get the CLIENT_INFO value
for your session.

The example checks if the value has been set. If not set, it substitutes a –1 for the
LAST_UPDATED_BY column. That would be an illegal user, and entering it conditionally
lets you track manual SQL entries to a production database. Actually, it should update both
the CREATED_BY and LAST_UPDATED_BY columns for completeness, but you’ll do that
in a subsequent example with bind variables.

-- This is found in create_dbms_sql2.sql on the publisher's web site.
DECLARE
 -- Define local DBMS_SQL variables, and open cursor.
 c INTEGER := dbms_sql.open_cursor;
 fdbk INTEGER;
 stmt1 VARCHAR2(2000);
 stmt2 VARCHAR2(20) := '-1,SYSDATE)';
 -- V$SESSION.CLIENT_INFO variable.
 client VARCHAR2(64);
BEGIN
 stmt1 := 'INSERT INTO item VALUES '
 || '(item_s1.nextval '
 || ',''ASIN'||CHR(58)||' B000VBJEEG'''
 || ',(SELECT common_lookup_id '
 || ' FROM common_lookup '
 || ' WHERE common_lookup_type = ''DVD_WIDE_SCREEN'') '
 || ',''Ratatouille'''
 || ','''''
 || ', empty_clob() '
 || ', NULL '
 || ',''G'''
 || ',''MPAA'''
 || ',''06-NOV-2007'''
 || ', 3, SYSDATE,';
 -- Get the current CLIENT_INFO value and conditionally append to string.
 dbms_application_info.read_client_info(client);

398 Oracle Database 11g PL/SQL Programming

 IF client IS NOT NULL THEN
 stmt1 := stmt1 || client || ',SYSDATE)';
 ELSE
 stmt1 := stmt1 || stmt2;
 END IF;
 -- Build, parse, and execute SQL statement, then close cursor.
 dbms_sql.parse(c,stmt1,dbms_sql.native);
 fdbk := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);
 dbms_output.put_line('Rows Inserted ['||fdbk||']');
END;
/

Unless you set the CLIENT_INFO column value, this script should insert one row with a –1
in the LAST_UPDATED_BY column. As you can tell from the statement, typing SQL statements
into a variable is tedious and a backquoting feat when successful. You raise an ORA-01756 error,
which says “quoted string not properly terminated,” when you fail to get all the single quotes
matched.

Colons inside dynamic SQL statements are indicators of placeholders. When DBMS_SQL.PARSE
parses a statement string, it marks placeholders as bind values targets. If you fail to call either the
BIND_ARRAY or BIND_VARIABLE procedure before you execute the parsed statement, it would
fail due to the missing bind variable. You bind scalar variables by calling the BIND_VARIABLE
procedure, and you bind nested tables by calling the BIND_ARRAY procedure.

You should use CHR(58) in lieu of the colon when you want to insert a colon as text, because
the parser doesn’t interpret it as a bind variable. While the parsed output string contains a colon,
the parsing process didn’t trigger a substitution.

All the DBMS_SQL command syntax mirrors the syntax in the DDL example in the preceding
section. You have now seen how to create and implement dynamic SQL statements by creating
and executing conditionally constructed strings.

Dynamic Statements with Input Variables
The prior section demonstrated how you dynamically piece strings together to build a statement.
That is a cumbersome process, and as you might guess, there is a better way. This section discusses
DBMS_SQL Method 2, which allows you to bind variables into statements.

You generally know the statement structure of your DML statements when you write a PL/SQL
block. You can actually write your dynamic statements like a function, with input values. You call
these input variables placeholders instead of formal parameters. Inside the statements they act as
bind variables, and you may find many people calling them that.

It is much easier to write a DDL or DML statement that uses placeholders than gluing strings
together through concatenation. DBMS_SQL Method 2 from Table 11-1 provides this feature.
Table 11-2 lists some errors that can occur when using placeholders and bind variables.

You should also note that you can implement a PL/SQL block with DBMS_SQL. The only
caveat is that you terminate the string with a semicolon. This is a departure from how ordinary
SQL statements work. The difference occurs because the closing semicolon terminates the
PL/SQL block. A semicolon acts as an execution instruction for a SQL statement. You will see
an example of this approach in the next section, “Dynamic Statements with Input and Output
variables.”

Chapter 11: Dynamic SQL 399

The following example re-implements the INSERT statement from the prior section. This time
it uses replacement variables. The anonymous block is rewritten as a standalone procedure. After
creating the procedure, you can insert new items into the item table through the procedure.

The following is the standalone procedure that implements IN mode placeholders or bind
variables:

-- This is found in create_dbms_sql3.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE insert_item
(asin VARCHAR2
, title VARCHAR2
, subtitle VARCHAR2 := NULL
, itype VARCHAR2 := 'DVD_WIDE_SCREEN'
, rating VARCHAR2
, agency VARCHAR2
, release DATE) IS
 -- Define local DBMS_SQL variables.
 c INTEGER := dbms_sql.open_cursor;
 fdbk INTEGER;
 stmt VARCHAR2(2000);
 -- Variable to get OUT parameter value.
 client VARCHAR2(64);

Error Code Description and Fix

ORA-00928 You raise an ORA-00928 error when you put placeholders inside the
overriding signature of an INSERT statement. The signature is the formal
parameter list between the table name and VALUES clause. The generic
“missing SELECT keyword” message can be misleading.

ORA-06502 You raise an ORA-06502 error when an explicit size is required for a
CHAR, RAW, or VARCHAR2 variable. You need to include the output size
when you call the BIND_VARIABLE_CHAR or BIND_VARIABLE_RAW
procedures. The generic “PL/SQL: numeric or value error” message can
be misleading.

ORA-01006 You raise an ORA-01006 error when you enclose placeholders for
VARCHAR2 datatypes in quotes. The BIND_VARIABLE function binds
the value and datatype to the statement, which eliminates the need for
delimiting quotes. The generic “bind variable does not exist” message
is a complete misnomer, but now you know how to fix it.

PLS-00049 You raise a PLS-00049 error when a placeholder receives an unexpected
datatype that can’t be implicitly converted to the target datatype. You need
to ensure any assignments are explicitly made with the correct datatype.
Don’t rely on implicit type conversion and you’ll never be disappointed.
The “bad bind variable” message isn’t clear, but it’s spot on because
you’ve sent the wrong datatype.

TABLE 11-2 Errors That Can Occur When Using DBMS_SQL

400 Oracle Database 11g PL/SQL Programming

BEGIN
 stmt := 'INSERT INTO item VALUES '
 || '(item_s1.nextval '
 || ',''ASIN''||CHR(58)|| :asin'
 || ',(SELECT common_lookup_id '
 || ' FROM common_lookup '
 || ' WHERE common_lookup_type = :itype) '
 || ',:title'
 || ',:subtitle'
 || ', empty_clob() '
 || ', NULL '
 || ',:rating'
 || ',:agency'
 || ',:release'
 || ',:created_by,SYSDATE,:last_updated_by,SYSDATE)';
 -- Call and dynamically set the session for the CLIENT_INFO value.
 dbms_application_info.read_client_info(client);
 IF client IS NOT NULL THEN
 client := TO_NUMBER(client);
 ELSE
 client := -1;
 END IF;
 -- Parse and execute the statement.
 dbms_sql.parse(c,stmt,dbms_sql.native);
 dbms_sql.bind_variable(c,'asin',asin);
 dbms_sql.bind_variable(c,'itype',itype);
 dbms_sql.bind_variable(c,'title',title);
 dbms_sql.bind_variable(c,'subtitle',subtitle);
 dbms_sql.bind_variable(c,'rating',rating);
 dbms_sql.bind_variable(c,'agency',agency);
 dbms_sql.bind_variable(c,'release',release);
 dbms_sql.bind_variable(c,'created_by',client);
 dbms_sql.bind_variable(c,'last_updated_by',client);
 fdbk := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);
 dbms_output.put_line('Rows Inserted ['||fdbk||']');
END insert_item;
/

The placeholders are represented in bold text inside the dynamic INSERT statement. You
should note that they don’t have delimiting single quotes around them. This is because the value
and datatype are bound to the statement, and the delimiters are unnecessary. If you forget and
include the delimiting internal quotes in the statement, an ORA-01006 error is raised at run time.
You need to remove the single quotes, or enclose the statement in a PL/SQL block.

As the number of bind variables increase, so do the calls to BIND_VARIABLE procedure. This
section has shown you how to use Method 2 dynamic SQL, which lets you substitute input variables.

Dynamic Statements with Input and Output Variables
This section shows you how to implement placeholders that either input or output data from SQL
statements. It demonstrates DBMS_SQL Method 3, which allows you to IN and OUT mode bind
variables in SQL statements.

Chapter 11: Dynamic SQL 401

Dynamic SELECT statements work in Method 3, provided you know at compile time how
many columns are retrieved. In this section you work with a set of scalar return values and a
single scalar input value.

You are performing row-by-row queries when you manage scalar output values. You process
parallel arrays when you return multiple columns from a SELECT statement into associative
arrays through bulk processing. You need to be very attentive to managing how you navigate
through these to ensure your index values are always equal. Failure to keep the index in
synchronization means you’re looking at columns from different rows.

This syntax is probably among the most tedious for the DBMS_SQL package, regardless of
whether you’re returning one, row-by-row, or bulk statement values. You should consider the
Native Dynamic SQL OPEN FOR clause for these types of operation because it’s simpler.

The row-by-row and bulk processing examples are covered in separate subsections.

Row-by-Row Statement Processing
The sample program shows you how to process single- and multiple-row returns from a
dynamic SELECT statement. These examples depend on the item table that is built by the
create_store.sql discussed in the introduction to this book.

The single-row statement is

-- This is found in create_dbms_sql4.sql on the publisher's web site.
DECLARE
 c INTEGER := dbms_sql.open_cursor;
 fdbk INTEGER;
 statement VARCHAR2(2000);
 item_id NUMBER := 1081;
 item_title VARCHAR2(60);
 item_subtitle VARCHAR2(60);
BEGIN
 -- Build and parse SQL statement.
 statement := 'SELECT item_title, item_subtitle '
 || 'FROM item WHERE item_id = :item_id';
 dbms_sql.parse(c,statement,dbms_sql.native);
 -- Define column mapping, execute statement, and copy results.
 dbms_sql.define_column(c,1,item_title,60); -- Define OUT mode variable.
 dbms_sql.define_column(c,2,item_subtitle,60); -- Define OUT mode variable.
 dbms_sql.bind_variable(c,'item_id',item_id); -- Bind IN mode variable.
 fdbk := dbms_sql.execute_and_fetch(c);
 dbms_sql.column_value(c,1,item_title); -- Copy query column to variable.
 dbms_sql.column_value(c,2,item_subtitle); -- Copy query column to variable.

Debugging Tips for DBMS_SQL with SELECT Statements
It is critical when working with scalar variable-length strings that you provide a physical
size to the DBMS_SQL.DEFINE_COLUMNS procedure. You must also do so when returning
a scalar RAW datatype. If you forget to provide the physical size, the DBMS_SQL package
raises a PLS-00307 error. The error says “too many declarations of DEFINE_COLUMN
match this call.” The error is actually a bit tricky because it involves how implicit casting
works when calling this function.

You can make your life easier by simply providing the fourth parameter, which is the
length of a CHAR, RAW, or VARCHAR2 datatype.

402 Oracle Database 11g PL/SQL Programming

 -- Print return value and close cursor.
 dbms_output.put_line('['||item_title||']['||NVL(item_subtitle,'None')||']');
 dbms_sql.close_cursor(c);
END;
/

This approach lets you enter the SELECT columns natively in the statement because they’re
OUT mode variables. You need to define the columns before executing the statement, and then
copy the column values to a local variable after fetching them. You reference columns by position
and local variables by name. This differs for the IN mode variable, which uses a semicolon to
identify it as a replacement variable (or bind variable).

This query should return

[We Were Soldiers][None]

You’ve now seen how to return a single row, but more often than not you return more than
one row. The following example performs a row-by-row query and prints the contents of the
returned rows:

-- This is found in dbms_sql5.sql on the publisher's web site.
DECLARE
 c INTEGER := dbms_sql.open_cursor;
 fdbk INTEGER;
 statement VARCHAR2(2000);
 item1 NUMBER := 1003;
 item2 NUMBER := 1013;
 item_title VARCHAR2(60);
 item_subtitle VARCHAR2(60);
BEGIN
 -- Build and parse SQL statement.
 statement := 'SELECT item_title, item_subtitle '
 || 'FROM item '
 || 'WHERE item_id BETWEEN :item1 AND :item2 '
 || 'AND item_type = 1014';
 dbms_sql.parse(c,statement,dbms_sql.native);
 -- Define column mapping and execute statement.
 dbms_sql.define_column(c,1,item_title,60); -- Define OUT mode variable.
 dbms_sql.define_column(c,2,item_subtitle,60); -- Define OUT mode variable.
 dbms_sql.bind_variable(c,'item1',item1); -- Bind IN mode variable.
 dbms_sql.bind_variable(c,'item2',item2); -- Bind IN mode variable.
 fdbk := dbms_sql.execute(c);
 -- Read results.
 LOOP
 EXIT WHEN dbms_sql.fetch_rows(c) = 0; -- No more results.
 -- Copy and print.
 dbms_sql.column_value(c,1,item_title); -- Copy column to variable.
 dbms_sql.column_value(c,2,item_subtitle); -- Copy column to variable.
 dbms_output.put_line('['||item_title||']['||NVL(item_subtitle,'None')||']');
 END LOOP;
 dbms_sql.close_cursor(c);
END;
/

You define the column mapping once for each column, and bind variables once. You need to
copy each row’s column values to the local variable to process them, as shown in the preceding loop.

Chapter 11: Dynamic SQL 403

With the SQL*Plus SERVEROUTPUT environment variable set, this should print

[Casino Royale][None]
[Die Another Day][None]
[Die Another Day][2-Disc Ultimate Version]
[Golden Eye][Special Edition]
[Golden Eye][None]
[Tomorrow Never Dies][None]
[Tomorrow Never Dies][Special Edition]
[The World Is Not Enough][2-Disc Ultimate Edition]
[The World Is Not Enough][None]

You’ve now seen how to process single- and multiple-row returns from a SELECT statement.
The next section shows you how to manage bulk SELECT operations.

Bulk Statement Processing
The idea of bulk processing is often a better solution than row-by-row statements. You should use
NDS for this behavior, not DBMS_SQL. The BULK COLLECT INTO clause would only work in
the context of a PL/SQL block. The DBMS_SQL bulk binding process isn’t designed to support SQL
statements inside anonymous blocks. If you attempt that type of unsupported work-around, you’ll
ultimately raise a PLS-00497 error.

DBMS_SQL Package Definition
The DBMS_SQL package has been in the product since Oracle 7. Changes and fixes have made it
a very stable and robust component in the database. It is popular notwithstanding the release of
Native Dynamic SQL (NDS) in Oracle 9i. In Oracle 11g, the only thing you can’t do in NDS is
work with statements that have an unknown set of columns at run time. The DBMS_SQL package
lets you manage these statements.

This section covers the constants, variables, functions, and procedures found in the DBMS_
SQL package. You can go to the appropriate subsection to check on component definitions.

DBMS_SQL Constants
There are three constants. They’re designed to support DBMS_SQL.PARSE procedure. You really
should only use NATIVE from Oracle 8 forward. Table 11-3 defines the constants.

DBMS_SQL Datatypes
The DBMS_SQL package supports associative arrays (the old PL/SQL tables) that are indexed by
binary integers for the following base scalar types: BFILE, BINARY_DOUBLE, BLOB, CLOB, DATE,
INTERVAL_DAY_TO_SECOND, INTERVAL_YEAR_TO_MONTH, NUMBER, TIME, TIMESTAMP,

Constant Name Description Value
NATIVE You should use the NATIVE constant from Oracle 8 forward.

It is an INTEGER datatype and indicates the parsing language.
1

V6 You shouldn’t use the V6 constant any more. 0
V7 You should use the V7 constant only if you’re running the

desupported Oracle 7 release.
2

TABLE 11-3 DBMS_SQL Available Constants

404 Oracle Database 11g PL/SQL Programming

TIMESTAMP_WITH_LTZ, and UROWID. These associative array datatypes use a naming pattern of
<scalar_type>_TABLE. They are designated as Bulk SQL Types in the Oracle Database PL/SQL
Packages and Types References.

A DBMS_SQL.VARCHAR2_TABLE datatype is also described in the same reference as a
general type. It behaves consistently with the bulk datatypes.

The DBMS_SQL package also supports three record structures:

The desc_rec supports the DESCRIBE_COLUMNS procedure. The procedure uses it to
describe columns for a cursor opened and parsed by the DBMS_SQL package.

TYPE desc_rec IS RECORD (col_type BINARY_INTEGER := 0
, col_max_len BINARY_INTEGER := 0
, col_name VARCHAR2(32) := "
, col_name_len BINARY_INTEGER := 0
, col_schema_name VARCHAR2(32) := "
, col_schema_name_len BINARY_INTEGER := 0
, col_precision BINARY_INTEGER := 0
, col_scale BINARY_INTEGER := 0
, col_charsetid BINARY_INTEGER := 0
, col_charsetform BINARY_INTEGER := 0
, col_null_ok BOOLEAN := TRUE);

The desc_rec2 supports the DESCRIBE_COLUMNS2 procedure. The procedure uses it
to describe columns for a cursor opened and parsed by the DBMS_SQL package.

TYPE desc_rec2 IS RECORD (col_type BINARY_INTEGER := 0
, col_max_len BINARY_INTEGER := 0
, col_name VARCHAR2(32767):= "
, col_name_len BINARY_INTEGER := 0
, col_schema_name VARCHAR2(32) := "
, col_schema_name_len BINARY_INTEGER := 0
, col_precision BINARY_INTEGER := 0
, col_scale BINARY_INTEGER := 0
, col_charsetid BINARY_INTEGER := 0
, col_charsetform BINARY_INTEGER := 0
, col_null_ok BOOLEAN := TRUE);

The desc_rec3 supports the DESCRIBE_COLUMNS3 procedure. The procedure uses it
to describe columns for a cursor opened and parsed by the DBMS_SQL package.

TYPE desc_rec3 IS RECORD (col_type BINARY_INTEGER := 0
, col_max_len BINARY_INTEGER := 0
, col_name VARCHAR2(32767):= "
, col_name_len BINARY_INTEGER := 0
, col_schema_name VARCHAR2(32) := "
, col_schema_name_len BINARY_INTEGER := 0
, col_precision BINARY_INTEGER := 0
, col_scale BINARY_INTEGER := 0
, col_charsetid BINARY_INTEGER := 0
, col_charsetform BINARY_INTEGER := 0
, col_null_ok BOOLEAN := TRUE
, col_type_name VARCHAR2(32) := "
, col_type_name_len BINARY_INTEGER := 0);

■

■

■

Chapter 11: Dynamic SQL 405

There are also associative arrays for each of the record types. These record structures and
associative arrays are used for Method 4 processing, which involves an unknown set of columns
at compile time.

DBMS_SQL Functions and Procedures
The functions and procedures of the DBMS_SQL package have endured over the years. They are
still widely used, while virtually everything can run through NDS. Some of the reasoning is related
to backward compatibility or coding standards that try to keep things the same. Clearly, Oracle 11g
continues the trend toward deprecating the DBMS_SQL package somewhere in the future.

Whether for maintenance or replacement with NDS, the following synopses should help you
quickly check the functions and procedures of the DBMS_SQL package. If you run into permission
issues, please check the sidebar “DBMS_SQL Grants and Privileges” earlier in this chapter.

BIND_ARRAY Procedure The BIND_ARRAY procedure supports bulk DML operations. The function
binds a nested table collection into a SQL statement. You can choose a collection from a list of
base SQL datatypes. It is an overloaded procedure. There are two types of signatures, and all
parameters use an IN mode of operation.

Prototype 1

bind_array(cursor_number NUMBER
 , column_name VARCHAR2
 , collection <datatype_list>)

Prototype 2

bind_array(cursor_number NUMBER
 , column_name VARCHAR2
 , collection <datatype_list>
 , index1 NUMBER
 , index2 NUMBER)

The collection is an associative array, indexed by a BINARY_INTEGER. You can choose the
base scalar variable from: BFILE, BLOB, CLOB, DATE, NUMBER, ROWID, TIME, TIMESTAMP,
TIME WITH TIME ZONE, or VARCHAR2. This function also supports nested tables, VARRAYs,
and user-defined object types through the OCI libraries.

BIND_VARIABLE Procedure The BIND_VARIABLE procedure supports row-by-row DML
operations. The function binds a wide variety of datatypes into a SQL statement. It is an
overloaded procedure with a single type of signature, and all parameters in the signature
use an IN mode of operation.

Prototype

bind_variable(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value <datatype_list>)

The datatype list includes any of these SQL datatypes: BFILE, BINARY_DOUBLE,
BINARY_FLOAT, BLOB, CLOB, DATE, INTERVAL YEAR TO MONTH, INTERVAL YEAR TO
SECOND, NUMBER, REF OF STANDARD, ROWID, TIME, TIMESTAMP, TIMESTAMP WITH
TIME ZONE, TIME WITH TIME ZONE, or VARCHAR2.

406 Oracle Database 11g PL/SQL Programming

BIND_VARIABLE_CHAR Procedure The BIND_VARIABLE_CHAR procedure supports row-by-
row DML operations. The function binds a CHAR datatype into a SQL statement. It is an
overloaded procedure with two signatures, and all parameters use an IN mode of operation.

Prototype 1

bind_variable_char(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value CHAR)

Prototype 2

bind_variable_char(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value CHAR
 , out_value_size NUMBER)

BIND_VARIABLE_RAW Procedure The BIND_VARIABLE_RAW procedure supports row-by-row
DML operations. The function binds a RAW datatype into a SQL statement. It is an overloaded
procedure with two signatures, and all parameters use an IN mode of operation.

Prototype 1

bind_variable_raw(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value CHAR)

Prototype 2

bind_variable_raw(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value CHAR
 , out_value_size NUMBER)

BIND_VARIABLE_ROWID Procedure The BIND_VARIABLE_ROWID procedure supports row-by-
row DML operations. The function binds a ROWID datatype into a SQL statement. It is not an
overloaded procedure with a single signature, and all parameters use an IN mode of operation.

Prototype

bind_variable_rowid(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value ROWID)

CLOSE_CURSOR Procedure The CLOSE_CURSOR procedure closes an open DBMS_SQL cursor. It
is not an overloaded procedure, and it has one signature. The cursor number is passed by reference
as an IN OUT mode variable.

Prototype

close_cursor(cursor_number NUMBER)

Chapter 11: Dynamic SQL 407

COLUMN_VALUE Procedure The COLUMN_VALUE procedure supports bulk and row-by-row
DQL operations. The function binds the output from a SELECT statement into an OUT mode
variable. The variable can be a scalar variable or a nested table of a scalar variable. The cursor
name and position are IN mode variables, while the variable or collection value and column
error and actual length are OUT mode variables. The procedure has three overloaded signatures.

Prototype 1

column_value(cursor_number NUMBER
 , position NUMBER
 , variable_value <datatype_list>)

Prototype 2

column_value(cursor_number NUMBER
 , position NUMBER
 , collection <datatype_list>)

Prototype 3

column_value(cursor_number NUMBER
 , position NUMBER
 , collection <datatype_list>
 , column_error NUMBER
 , actual_length NUMBER)

The datatype can be a scalar or associative array variable of any of these SQL datatypes:
BFILE, BLOB, CLOB, DATE, NUMBER, ROWID, TIME, TIMESTAMP, TIME WITH TIME ZONE,
or VARCHAR2.

The prototype signature five parameters are restricted to an associative array of a DATE,
NUMBER, or VARCHAR2 scalar datatype. This function also supports associative arrays nested
tables, VARRAYs, and user-defined object types through the OCI libraries.

COLUMN_VALUE_CHAR Procedure The COLUMN_VALUE_CHAR procedure supports row-by-row
DQL operations. The function binds the output from a SELECT statement for a CHAR column into
an OUT mode variable. It is an overloaded procedure, and it has two signatures.

Prototype 1

column_value_char(cursor_number NUMBER
 , position NUMBER
 , variable_value CHAR)

Prototype 2

column_value_char(cursor_number NUMBER
 , position NUMBER
 , variable_value CHAR
 , column_error NUMBER
 , actual_length NUMBER)

COLUMN_VALUE_LONG Procedure The COLUMN_VALUE_LONG procedure supports row-by-row
DQL operations. The function binds the output from a SELECT statement for a LONG column into
an OUT mode variable. It is not an overloaded procedure, and it has one signature.

408 Oracle Database 11g PL/SQL Programming

Prototype

column_value_long(cursor_number NUMBER
 , position NUMBER
 , variable_value LONG)

COLUMN_VALUE_RAW Procedure The COLUMN_VALUE_RAW procedure supports row-by-row
DQL operations. The function binds the output from a SELECT statement for a RAW column into
an OUT mode variable. It is an overloaded procedure, and it has two signatures.

Prototype 1

column_value_raw(cursor_number NUMBER
 , position NUMBER
 , variable_value RAW)

Prototype 2

column_value_raw(cursor_number NUMBER
 , position NUMBER
 , variable_value RAW
 , column_error NUMBER
 , actual_length NUMBER)

COLUMN_VALUE_ROWID Procedure The COLUMN_VALUE_ROWID procedure supports row-
by-row DQL operations. The function binds the output from a SELECT statement for a ROWID
column into an OUT mode variable. It is an overloaded procedure, and it has two signatures.

Prototype 1

column_value_rowid(cursor_number NUMBER
 , position NUMBER
 , variable_value ROWID)

Prototype 2

column_value_rowid(cursor_number NUMBER
 , position NUMBER
 , variable_value ROWID
 , column_error NUMBER
 , actual_length NUMBER)

DEFINE_ARRAY Procedure The DEFINE_ARRAY procedure supports bulk DQL operations. The
function defines (or maps) a nested table to columns of a SELECT statement. You must use this
before calling the COLUMN_VALUE procedure. It is an overloaded procedure, and it has one type
of signature.

Prototype

define_array(cursor_number NUMBER
 , position NUMBER

Chapter 11: Dynamic SQL 409

 , collection <datatype_list>
 , count NUMBER
 , lower_bound NUMBER)

The count parameter sets the maximum number of elements returned. The lower_bound
parameter sets the starting point, which is typically 1.

The datatype can be an associative array variable of any of these SQL datatypes: BFILE,
BLOB, CLOB, DATE, NUMBER, ROWID, TIME, TIMESTAMP, TIME WITH TIME ZONE, or
VARCHAR2.

DEFINE_COLUMN Procedure The DEFINE_COLUMN procedure supports row-by-row DQL
operations. The function defines (or maps) column values to columns of a SELECT statement.
You must use this before calling the COLUMN_VALUE procedure. It is an overloaded procedure,
and it has one type of signature.

Prototype

define_column(cursor_number NUMBER
 , position NUMBER
 , variable_value <datatype_list>)

The datatype can be a scalar variable of any of these SQL datatypes: BFILE, BLOB, CLOB,
DATE, NUMBER, ROWID, TIME, TIMESTAMP, TIME WITH TIME ZONE, or VARCHAR2.

DEFINE_COLUMN_CHAR Procedure The DEFINE_COLUMN_CHAR procedure supports row-by-
row DQL operations. The function defines (or maps) column values to columns of a SELECT
statement. You must use this before calling the COLUMN_VALUE procedure. It is not an overloaded
procedure, and it has one signature.

Prototype

define_column_char(cursor_number NUMBER
 , position NUMBER
 , variable_value CHAR)

DEFINE_COLUMN_LONG Procedure The DEFINE_COLUMN_LONG procedure supports row-by-
row DQL operations. The function defines (or maps) column values to columns of a SELECT
statement. You must use this before calling the COLUMN_VALUE procedure. It is not an overloaded
procedure, and it has one signature.

Pro]totype

define_column_long(cursor_number NUMBER
 , position NUMBER
 , variable_value LONG)

DEFINE_COLUMN_RAW Procedure The DEFINE_COLUMN_RAW procedure supports row-by-row
DQL operations. The function defines (or maps) column values to columns of a SELECT statement.
You must use this before calling the COLUMN_VALUE procedure. It is not an overloaded procedure,
and it has one signature.

410 Oracle Database 11g PL/SQL Programming

Prototype

define_column_raw(cursor_number NUMBER
 , position NUMBER
 , variable_value RAW)

DEFINE_COLUMN_ROWID Procedure The DEFINE_COLUMN_ROWID procedure supports row-
by-row DQL operations. The function defines (or maps) column values to columns of a SELECT
statement. You must use this before calling the COLUMN_VALUE procedure. It is not an
overloaded procedure, and it has one signature.

Prototype

define_column_rowid(cursor_number NUMBER
 , position NUMBER
 , variable_value ROWID)

DESCRIBE_COLUMNS Procedure The DESCRIBE_COLUMNS procedure supports bulk and row-
by-row DQL and DML operations. The function describes columns for a cursor opened and
parsed by the DBMS_SQL package. It works only with column names that are 30 characters or
smaller in Oracle 10g but works with 32-character column names in Oracle 11g. It is not an
overloaded procedure, and it has one signature.

Prototype

describe_columns(cursor_number NUMBER
 , column_count NUMBER
 , record_collection DBMS_SQL.DESC_TAB)

DBMS_SQL.DESC_TAB datatype is an associative array of the DBMS_SQL.DESC_REC record
datatype. The DESC_REC record datatype contains the metadata about the column values. The
information is a subset of what you would find in the user_tables view.

DESCRIBE_COLUMNS2 Procedure The DESCRIBE_COLUMNS2 procedure supports bulk and
row-by-row DQL and DML operations. The function describes columns for a cursor opened and
parsed by the DBMS_SQL package. It only works with column names that are up to 32,760 bytes
in length from Oracle 10g forward. It is not an overloaded procedure, and it has one signature.

Prototype

describe_columns2(cursor_number NUMBER
 , column_count NUMBER
 , record_collection DBMS_SQL.DESC_TAB2)

DBMS_SQL.DESC_TAB2 datatype is an associative array of the DBMS_SQL.DESC_REC2
record datatype. The DESC_REC2 record datatype contains the same metadata about the column
values as the DESC_REC but allows for a larger column name. The information is a subset of what
you would find in the USER_TABLES view.

DESCRIBE_COLUMNS3 Procedure The DESCRIBE_COLUMNS3 procedure supports bulk and
row-by-row DQL and DML operations. The function describes columns for a cursor opened and
parsed by the DBMS_SQL package. It only works with column names that are up to 32,760 bytes
in length from Oracle 10g forward. It is not an overloaded procedure, and it has one signature.

Chapter 11: Dynamic SQL 411

Prototype

describe_columns3(cursor_number NUMBER
 , column_count NUMBER
 , record_collection DBMS_SQL.DESC_TAB3)

DBMS_SQL.DESC_TAB3 datatype is an associative array of the DBMS_SQL.DESC_REC3
record datatype. The DESC_REC3 record datatype contains the same metadata about the column
values as the DESC_REC2, plus it adds the datatype name and name length to the record structure.
The information is a broader subset of what you would find in the user_tables view.

EXECUTE Function The EXECUTE function runs the statement associated with an open
DBMS_SQL cursor. It returns the number of rows touched by DML statements. You should
ignore the return value when it runs a DDL statement because it is a meaningless value
(technically an undefined value). This function is not overloaded, and it has one signature.
The parameter uses an IN mode of operation.

Prototype

execute(cursor_number NUMBER) RETURN NUMBER

EXECUTE_AND_FETCH Function The EXECUTE_AND_FETCH function runs the statement
associated with an open DBMS_SQL cursor and fetches one or more rows from a cursor. The
function is more or less like running the EXECUTE and FETCH_ROWS functions in tandem.
The function returns the number or rows touched by DML statements. You should ignore the
return value when it runs a DDL statement because it is a meaningless value (technically an
undefined value).

The optional exact parameter is false by default, which lets you return more than one row. You
can return only one row when you override the default value of the exact parameter. Oracle 7
forward does not support an exact fetch option for LONG datatype columns.

The function is not overloaded. It also has one signature. The parameter uses an IN mode of
operation.

Prototype

execute_and_fetch(cursor_number NUMBER
 , exact_fetch BOOLEAN DEFAULT FALSE) RETURN NUMBER

FETCH_ROWS Function The FETCH_ROWS function fetches a row or set of rows from a given
cursor. You can run the FETCH_ROWS function until all rows are read. The COLUMN_VALUE
function reads the fetch row into a local variable. The local variable can be a scalar or nested
table datatype. The cursor number is passed by using an IN mode of operation.

The FETCH_ROWS function returns the number of rows fetched, or a –1. The latter means that
all rows have been read.

Prototype

fetch_rows(cursor_number NUMBER) RETURN NUMBER

IS_OPEN Function The IS_OPEN function checks whether a cursor is open. It returns true when
the cursor is open and false when it’s not. The function is not overloaded. It also has one signature.
The parameter uses an IN mode of operation.

412 Oracle Database 11g PL/SQL Programming

Prototype

execute(cursor_number NUMBER) RETURN BOOLEAN

LAST_ERROR_POSITION Function The LAST_ERROR_POSITION function returns the byte offset
in a SQL statement text where an error occurred. Unlike other things that start with a 1, this checks
the string with the first position being 0. You must call this function after the PARSE call but before
any execution function call.

Prototype

last_error_position RETURN NUMBER

LAST_ROW_COUNT Function The LAST_ROW_COUNT function returns the cumulative number
of rows fetch from a query. You get the cumulative number when you call the LAST_ROW_COUNT
function after an EXECUTE_AND_FETCH or FETCH_ROWS call. If you call this function after an
EXECUTE function, you get zero.

Prototype

last_row_count RETURN NUMBER

LAST_ROW_ID Function The LAST_ROW_ID function returns the ROWID value of the last row
fetched from a query. You get the ROWID when you call the LAST_ROW_COUNT function after an
EXECUTE_AND_FETCH or FETCH_ROWS call.

Prototype

last_row_id RETURN ROWID

LAST_SQL_FUNCTION_CODE Function The LAST_SQL_FUNCTION_CODE function returns SQL
function code for the statement. You can find these codes in the Oracle Call Interface Programmer’s
Guide. This must be called immediately after you run the SQL statement, or the return value is
undefined.

Prototype

last_sql_function_code RETURN INTEGER

OPEN_CURSOR Function The OPEN CURSOR function opens a cursor in the database and
returns the cursor’s number. You must call the CLOSE_CURSOR function to close the cursor
and release the resource.

Prototype

open_cursor RETURN INTEGER

PARSE Procedure The PARSE procedure parses a given statement string. All statements are
parsed immediately. DML statements queue on a call to EXECUTE or EXECUTE_AND_FETCH
functions. DDL statements are run immediately after they’re successfully parsed. It is an overloaded
procedure, and it has five types of signatures.

Chapter 11: Dynamic SQL 413

Prototype 1

parse(cursor_number NUMBER
 , statement {CLOB | VARCHAR2}
 , language_flag NUMBER)

Prototype 2

parse(cursor_number NUMBER
 , statement {CLOB | VARCHAR2}
 , language_flag NUMBER
 , edition VARCHAR2)

Prototype 3

parse(cursor_number NUMBER
 , statement {VARCHAR2S | VARCHAR2A}
 , language_flag NUMBER
 , lower_bound NUMBER
 , upper_bound NUMBER
 , language_flag NUMBER)

Prototype 4

parse(cursor_number NUMBER
 , statement {VARCHAR2S | VARCHAR2A}
 , language_flag NUMBER
 , lower_bound NUMBER
 , upper_bound NUMBER
 , language_flag NUMBER
 , edition VARCHAR2)

Prototype 5

parse(cursor_number NUMBER
 , statement {CLOB | VARCHAR2 | VARCHAR2S | VARCHAR2A}
 , language_flag NUMBER
 , edition VARCHAR2
 , apply_crossedition_trigger VARCHAR2
 , fire_apply_trigger BOOLEAN)

The VARCHAR2S datatype is a nested table collection of 256-byte strings. The VARCHAR2A
datatype is a nested table collection of 32,767-byte strings.

TO_CURSOR_NUMBER Function The TO_CURSOR_NUMBER function converts a NDS cursor to
a DBMS_SQL cursor. It can be useful when you open a cursor of indefinite columns and want
to process it by using the DBMS_SQL package. It takes a single IN mode cursor reference, and
it returns a generic reference cursor.

Prototype

to_cursor_number(reference_cursor REF CURSOR) RETURNS NUMBER

414 Oracle Database 11g PL/SQL Programming

TO_REFCURSOR Function The TO_REFCURSOR function converts a DBMS_SQL cursor number
to a NSD reference cursor. It can be useful when you open a cursor in DBMS_SQL and want to
process it by using NDS. It takes a single IN mode cursor number, and it returns a cursor number.

Prototype

to_refcursor(cursor_number NUMBER) RETURNS REF CURSOR

VARIABLE_VALUE Procedure The VARIABLE_VALUE procedure supports bulk and row-by-row
DML operations. It is used to transfer a variety of datatype results back through a RETURNING
INTO clause. The function binds a wide variety of datatypes into a SQL statement. It is an overloaded
procedure with a single type of signature. The cursor and column name are passed by value as IN
mode operations. The variable value is returned because it is passed as an OUT mode variable.

Prototype

variable_variable(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value <datatype>)

The datatype list includes scalar or associative arrays of scalar variables. You can use any of
the following scalar datatypes: BFILE, BINARY_DOUBLE, BINARY_FLOAT, BLOB, CLOB, DATE,
INTERVAL YEAR TO MONTH, INTERVAL YEAR TO SECOND, NUMBER, REF OF STANDARD,
ROWID, TIME, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIME WITH TIME ZONE, or
VARCHAR2. This function also supports associate arrays (PL/SQL tables), VARRAYs, and user-
defined object types through the OCI libraries.

VARIABLE_VALUE_CHAR Procedure The VARIABLE_VALUE_CHAR procedure supports row-
by-row DML operations. It is used to transfer CHAR datatype results back through a RETURNING
INTO clause. It is not an overloaded procedure. The cursor and column name are passed by
value as IN mode operations. The variable value is returned because it is passed as an OUT
mode variable.

Prototype

variable_value_char(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value CHAR)

VARIABLE_VALUE_RAW Procedure The VARIABLE_VALUE_RAW procedure supports row-by-
row DML operations. It is used to transfer CHAR datatype results back through a RETURNING
INTO clause. It is not an overloaded procedure. The cursor and column name are passed by
value as IN mode operations. The variable value is returned because it is passed as an OUT
mode variable.

Prototype

variable_value_raw(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value RAW)

Chapter 11: Dynamic SQL 415

VARIABLE_VALUE_ROWID Procedure The VARIABLE_VALUE_ROWID procedure supports row-
by-row DML operations. It is used to transfer CHAR datatype results back through a RETURNING
INTO clause. It is not an overloaded procedure. The cursor and column name are passed by value
as IN mode operations. The variable value is returned because it is passed as an OUT mode
variable.

Prototype

variable_value_rowid(cursor_number NUMBER
 , column_name VARCHAR2
 , variable_value ROWID)

This section has reviewed the functions and procedures in the DBMS_SQL package. You
should find most of them in the DBMS_SQL examples.

Summary
This chapter has shown you how to leverage NDS and the DBMS_SQL package to create and
execute dynamic SQL statements. You should now have a foundation on how you can use them
in your PL/SQL applications.

This page intentionally left blank

CHAPTER
12

Intersession
Communication

417

418 Oracle Database 11g PL/SQL Programming

ntersession communication is the ability to communicate between different user
connections. Sessions are individual work areas. Sessions begin when you connect
and end when you disconnect from the Oracle 11g database. You have several
approaches that enable you to communicate between sessions. The DBMS_PIPE
and DBMS_ALERT built-in utilities are the focus of the chapter.

You will cover the following topics. The chapter assumes you read it sequentially. It also
assumes you have read the preceding eleven chapters. If you feel comfortable with an area,
consider moving straight to it. However, the chapter assumes you have mastery of earlier sections.

Introducing intersession communication

DBMS_PIPE built-in package

DBMS_ALERT built-in package

Introducing Intersession Communication
Intersession communication is the ability to communicate between different user connections.
When users connect to the database, they establish sessions. The duration of a session starts
at connection and ends at disconnection. During the session users are in full control of their
resources. Resources are anything that they own directly or have access permissions to perform,
for example, using DQL, DML, or PL/SQL execution against resources.

You can communicate between sessions in Oracle 11g using several approaches. They each
have pluses and minuses. Synchronizing discrete sessions in real time and configuring intersession
communication quickly are pluses. Event propagation delays like those common with Advanced
Queuing (AQ) solutions are a minus. Two types of intersession communication involve permanent
or semipermanent objects in the database. The other two types involve SGA memory segments,
called named pipes. A synopsis of methods follows.

Requiring Permanent or Semipermanent Structures
Permanent or semipermanent structures enable you to do the following:

You can leverage the Advanced Queuing facility introduced in Oracle 8 with the
DBMS_AQADM and DBMS_AQ packages. These involve setting up advanced queuing for
each of the participants. Then, you use messages to exchange information between the
sessions. This technology underpins Oracle’s implementation of workflow applications.

You can use tables, grants, and synonyms to exchange data between sessions. The solution
is simple but subject to transaction control limitations: a transaction must complete and
commit permanently the change to the database. The solution more or less involves
implementing triggers to restrict DML operations based on other table values.

For more information on advanced queues, you should check the Oracle Streams Concepts
and Administration or Oracle Streams Advanced Queuing User’s Guide for 11g Release 1.

Not Requiring Permanent or Semipermanent Structures
Here you can do the following:

■

■

■

■

■

I

Chapter 12: Intersession Communication 419

You can use the DBMS_PIPE built-in package. DBMS_PIPE uses dynamic memory
structures in the SGA called pipes. They are very similar to Unix pipes. Pipes may
be local, private, or publicly accessible. They act as first-in, first-out (FIFO) queues.
Transaction control issues do not bind them. You can use pipes to send and receive
data between sessions asynchronously.

You can use the DBMS_ALERT built-in package. DBMS_ALERT also uses a memory
structure in the SGA. While the structure is not formally referred to as a pipe, it works
as a public pipe. These are likewise similar to Unix pipes. They are publicly accessible
pipes, or FIFO queues. These pipes are populated on event triggers and subject to
transaction control limits. The alert pipes communicate between sessions asynchronously
at the conclusion of an event. Events are anything that you can build a trigger against,
like a DML or system action (check Chapter 10 for more on triggers). Unlike DBMS_PIPE,
the DBMS_ALERT built-in package works on a publish-and-subscribe paradigm. It
publishes notifications. Then it enables subscribers to register their interest in the alert
and receive the alert notifications.

Comparing Intersession Communication Approaches
You should understand when and where to use these approaches. As a rule of thumb, you do not
want to use permanent or semipermanent structures to exchange information when they can be
avoided. Using these types of structures incurs file access, which can slow your application down.
Intersession communication should be done in memory where possible.

Both DBMS_PIPE and DBMS_ALERT work in memory. They do not have permanent or
semipermanent structures in the database. The structures are designed to support intersession
communication. Pipes can be defined to support intersession communication in two ways: Pipes
can support communication between two or more sessions of a single user. Alternatively, they can
support communication between two or more users. Alerts also support two or more sessions of a
single user.

DBMS_ALERT works best as an asynchronous transaction control mechanism. The DBMS_ALERT
notifies subscribers of an event. The subscribers can then take action on events. DBMS_ALERT
implements a publish-and-subscribe paradigm. When you use a publish-and-subscribe process,
polling daemons are simplified or eliminated. Polling daemons (pronounced dee·muh n) run as
background processes. They consume varying resources, depending on how you implement
them. If you eliminate polling daemons, you reduce resource demands on the database and
physical machine.

DBMS_PIPE can help you mimic Unix pipes or POSIX-compliant threads. Unix pipes allow
you to move data between two active processes. Unix pipes control communication at the process
level. C/C++ also lets you control threading activities with mutex variables, which work at the
process and thread levels. Both provide higher programming language equivalents to operating
system semaphores.

DBMS_PIPE is ideal for passing information to external processes that may monitor or control
system resources. For example, DBMS_PIPE can

Enable you to use local pipes to control a single program’s execution.

Enable you to use private pipes to control concurrent programs run by the single user.

Enable you to use public pipes to control concurrent programs run by multiple users.

■

■

■

■

■

420 Oracle Database 11g PL/SQL Programming

The DBMS_PIPE Built-in Package
In Oracle 11g, DBMS_PIPE is a privileged package owned by the SYS user. You or your DBA
must grant EXECUTE permission on the DBMS_PIPE package to the PLSQL user as well as
another user of your choice—some of the examples and exercises in this chapter require two
users. You create the USERA and USERB users to run the examples in this chapter. The users
require EXECUTE permission on the DBMS_PIPE package.

TIP
You or your DBA should probably grant execute permission with
the grant option to SYSTEM. Then, the SYSTEM user should grant
execute permission to the PLSQL, USERA, and USERB users manually.
Alternatively, you can run the create_user.sql script found on the
publisher’s website.

Introducing the DBMS_PIPE Package
The architecture of DBMS_PIPE is key to understanding its use. You need to understand three
perspectives presented by DBMS_PIPE. The perspectives are represented by access privileges. Also,
the structures used to temporarily store the data are memory structures in the PGA or the SGA.

DBMS_PIPE has session local, user private, and public pipe variations. It is possible that using
multiple types in the same session can cause problems. Typically, the problems relate to inadvertent
destruction of the session local pipe contents. The session local pipe acts as a private buffer.
Unfortunately, the same private buffer serves as the access to and from user private and public
pipes. The private buffer is a PGA pipe and is inaccessible by named reference externally to the
session. Private and public pipes are SGA structures.

You will now examine each of the access methods. Local pipes are first. The local pipe is only
a buffer. The buffer can contain only one element. You write a variable-length string to the local
buffer. Then you may read the string from the buffer. If the element is not read locally or forwarded
to a named private or public pipe before the next write, the original value is lost. Figure 12-1 depicts
a local pipe read-and-write operation. Forwarding the element will be covered later.

Having learned how to use the local read-and-write buffer, you will examine a private user
pipe read-and-write operation. Private user pipes are accessible to all sessions of the user who
created the pipe. Before writing to the private pipe, you must write the data to the local buffer.
Then, you send the contents of the local buffer to the private pipe. The contents of the private
pipe can then be read to a local session buffer. The local session buffer can then be read and
assigned to a variable. Figure 12-2 illustrates a private user pipe.

FIGURE 12-1 Session local buffer read-and-write operation

Chapter 12: Intersession Communication 421

Figure 12-2 shows that there are one or two sessions when using a private user pipe. It is
possible that the same user session creating a private pipe can write to and read from it. As
discussed, the local pipe is a buffer that contains only one value. A private pipe may contain any
number of values in a FIFO queue. Therefore, a session that needs to write a series of data values
may write to and read from a private pipe.

Alternatively, the same user can have two or more sessions and share the FIFO queue. This
scenario presents some interesting issues because any session created by the user who owns the
queue can write to or read from it. There is no way to track which session wrote to the pipe
unless you tokenize the variable-length string.

In the tokenized string scenario, it is possible for the wrong session to read a message. If you
implement this architecture, you will need to ensure the code puts the message back into the
queue. Unfortunately, it will be out of sequence once it’s read and replaced. This behavior is a
natural consequence of FIFO queues. When using FIFO queues, you should not depend solely
on sequencing of data. As an alternative, you can use a set of tokenized messages. A set of

FIGURE 12-2 Private pipe read-and-write operation

Tokenizing Strings
Tokenizing a variable-length string means that you build a string that contains a delimiter and
substrings. The delimiter separates substrings. You can tokenize a string by using a comma, for
instance. The first value before the comma can contain a string that identifies the originating,
or writing, session. The next delimited string can contain the destination, or reading, session.
The last substring can contain the value substring or a series of delimited substrings.

An American telephone number is traditionally a tokenized number. The parentheses
around the first three digits identify them as an area code. A comma-separated list is also
a tokenized string. You can also sequence a set of tokenized strings by embedding index
values in them.

422 Oracle Database 11g PL/SQL Programming

tokenized messages is a series of delimited substrings that include index values. They are typically
sent as sequential messages but may be jumbled in transmission and reassembled by the recipient.
This type of use is similar to how packets are transmitted across networks. You can get much more
complex in specific solutions, but that topic belongs in another book.

The premise of a private pipe is not too different from that of a public pipe. In fact, all the
activity described in a private user pipe can be done in a public pipe. A public pipe is also
the default pipe created. You must override the default behavior to create a private user pipe.
Figure 12-3 shows a public pipe.

Moreover, public pipes are designed for sharing between two users. Figure 12-3 depicts two
sessions, which would occur for multiple users sharing a public pipe. All read and write operations
mirror the previously described behaviors.

You should now have a high-level view of what DBMS_PIPE uses as memory structures. This
architectural view will be important as we cover the procedures and functions of the DBMS_PIPE
built-in.

Defining the DBMS_PIPE Package
The DBMS_PIPE package contains procedures and functions that let you manage intersession
private and public pipes. Typically, procedures would be limited to PL/SQL execution and
functions enabled for SQL and PL/SQL. The CREATE_PIPE function has limited utility in SQL
because the PRIVATE formal parameter is a Boolean datatype, and Boolean datatypes cannot
be used in SQL. Since the default value for the PRIVATE formal parameter is true, you must use
PL/SQL to create a public pipe.

The subsections qualify the DBMS_PIPE package functions and procedures. These sections
examine how you create, manage, write to, and read from database pipes. They also qualify when
you can use them from SQL.

FIGURE 12-3 Public pipe read-and-write operation

Chapter 12: Intersession Communication 423

CREATE_PIPE Function
The CREATE_PIPE function returns an INTEGER datatype and has limited SQL access. It takes
three formal parameters:

PIPENAME is positionally the first and is a mandatory parameter. It is defined as a VARCHAR2
datatype. Its maximum size should be 128 bytes. You should not use ORA$ as a preface to
any of your pipes because those are reserved by Oracle Corporation for its own use.

MAXPIPESIZE is positionally the second and an optional formal parameter. It has an
INTEGER datatype. The default value is 8192.

PRIVATE is positionally the third and an optional parameter. It has a BOOLEAN datatype.
The default value is TRUE, which maps to a default private pipe.

If a privileged user calls the CREATE_PIPE function and the pipe already exists, it will not
alter the existing pipe. It will return a zero value. The zero value indicates successful completion,
but in this case nothing was created; it was ignored.

The CREATE_PIPE function prototype is

CREATE_PIPE(pipe_name [, maxpipe_size [, private]])

You may attempt to re-create a public pipe as another user. It will appear to work, but in
reality the command is ignored.

If you lack permission to create the object, you raise an ORA-23322 exception.

NEXT_ITEM_TYPE Function
The NEXT_ITEM_TYPE function takes no formal parameters. It is accessible by SQL. It reads the
contents of the local pipe or buffer. It returns an INTEGER that maps to values shown in Table 12-1.

The NEXT_ITEM_TYPE has the following prototype:

NEXT_ITEM_TYPE(message_item)

If you empty the local buffer, you will raise an ORA-06556 exception when attempting to secure
a return value.

■

■

■

Integer Return Meaning

0 An empty buffer

6 A NUMBER datatype

9 A VARCHAR2 datatype

11 A ROWID datatype

12 A DATE datatype

23 A RAW datatype

TABLE 12-1 NEXT_ITEM_TYPE Function Return Types and Meaning

424 Oracle Database 11g PL/SQL Programming

PACK_MESSAGE Procedure
The PACK_MESSAGE procedure takes a single formal parameter. It is not accessible from SQL.
The parameter can be a DATE, NCHAR, NUMBER, or VARCHAR2 datatype.

It has the prototype

PACK_MESSAGE(message_item)

PACK_MESSAGE takes the value of the actual parameter and puts it into the local pipe or buffer.

PACK_MESSAGE_RAW Procedure
The PACK_MESSAGE_RAW procedure takes a single formal parameter. It is not accessible from
SQL. The parameter is a RAW datatype. It has the prototype

PACK_MESSAGE_ROWID(message_item)

PACK_MESSAGE_RAW takes the value of the actual parameter and puts it into the local pipe or buffer.

PACK_MESSAGE_ROWID Procedure
The PACK_MESSAGE_ROWID procedure takes a single formal parameter. It is not accessible from
SQL. The parameter is a ROWID datatype. It has the prototype

PACK_MESSAGE_ROWID(message_item)

PACK_MESSAGE_ROWID takes the value of the actual parameter and puts it into the local pipe or
buffer.

PURGE Procedure
The PURGE procedure takes a single formal parameter. It is not accessible from SQL. The parameter
is a VARCHAR2 datatype and must be a valid private or public pipe name. It has the following
prototype:

PURGE(pipe_name)

RECEIVE_MESSAGE Function
The RECEIVE_MESSAGE function takes one or two formal parameters. It is accessible from SQL.
The first positional parameter is a VARCHAR2 datatype and must be a valid private or public pipe
name. The second positional and optional parameter is an INTEGER datatype. Unless you can
allow your program to hang for 1,000 days, you should override this value to a suitably lower
count in seconds.

The RECEIVE_MESSAGE prototype is

RECEIVE_MESSAGE(pipe_name [, time_out_value])

It reads the contents of the named pipe and transfers it to the local buffer. It returns an
INTEGER that maps to the values shown in Table 12-2.

REMOVE_PIPE Function
The REMOVE_PIPE function takes one formal parameter. It is accessible from SQL. It is a
VARCHAR2 datatype and must be a valid private or public pipe name. The prototype is

REMOVE_PIPE(pipe_name)

Chapter 12: Intersession Communication 425

It returns a 0 for successful completion. If you lack permission to remove the object, you raise an
ORA-23322 exception. If the user who created the named pipe is not known, the DBA has one of
two choices. The DBA can shut down and restart the instance to get rid of the conflicting named
pipe. Alternatively, as SYSDBA, you can remove the offending named pipe.

RESET_BUFFER Procedure
The RESET_BUFFER procedure takes no formal parameter. It is not accessible from SQL. It
removes the contents of the local buffer.

SEND_MESSAGE Function
The SEND_MESSAGE function takes one to three formal parameters. It is accessible from SQL. The
first positional parameter is a VARCHAR2 datatype and must be a valid private or public pipe name.
The second positional sets the time-out length for the message and is an optional INTEGER parameter.
Unless you can allow your program to hang for 1,000 days, you should override this value to a
suitably lower count in seconds. The third positional and optional parameter is an INTEGER
representing the total size of all messages placed in the pipe. This number must be equal to or
less than the value used when creating the named pipe.

The SEND_MESSAGE prototype is

SEND_MESSAGE(pipe_name [, time_out_value [, max_pipe_size]])

It writes the contents of the local buffer to the named pipe. It returns an INTEGER that maps
to the values shown in Table 12-3.

If you lack permission to access the pipe, you raise an ORA-23322 exception. The error
means you cannot write to that pipe.

Integer Return Meaning

0 Successful completion

1 A time-out without a reply

2 A pipe message too large for the buffer, which should never happen

3 An interrupt of some kind

TABLE 12-2 RECEIVE_MESSAGE Function Return Types and Meaning

Integer Return Meaning

0 Successful completion

1 A time-out without a reply

2 A pipe message too large for the buffer, which should never happen

3 An interrupt of some kind

TABLE 12-3 SEND_MESSAGE Function Return Types and Meaning

426 Oracle Database 11g PL/SQL Programming

UNIQUE_SESSION_NAME Function
The UNIQUE_SESSION_NAME function takes no formal parameter. It is accessible from SQL.
It returns a VARCHAR2 string that represents the current session.

UNPACK_MESSAGE Procedure
The UNPACK_MESSAGE procedure takes a single formal parameter. It is not accessible from SQL.
The parameter can be a DATE, NCHAR, NUMBER, or VARCHAR2 datatype. The prototype is

UNPACK_MESSAGE(DATE | NCHAR | NUMBER | VARCHAR2)

UNPACK_MESSAGE takes the value from the local pipe or buffer and returns it as the OUT mode
value of the actual parameter.

UNPACK_MESSAGE_RAW Procedure
The UNPACK_MESSAGE_RAW procedure takes a single formal parameter. It is not accessible from
SQL. The parameter must be a RAW datatype. The prototype is

UNPACK_MESSAGE_RAW(RAW)

UNPACK_MESSAGE_RAW takes the value from the local pipe or buffer and returns it as the OUT
mode value of the actual parameter.

UNPACK_MESSAGE_ROWID Procedure
The UNPACK_MESSAGE_ROWID procedure takes a single formal parameter. It is not accessible
from SQL. The parameter must be a ROWID datatype. The prototype is

UNPACK_MESSAGE_ROWID(ROWID)

UNPACK_MESSAGE_ROWID takes the value from the local pipe or buffer and returns it as the OUT
mode value of the actual parameter.

Having reviewed the DBMS_PIPE package, you work with DBMS_PIPE examples in the next
section.

Working with the DBMS_PIPE Package
In this section, you will work with the following:

Sending to and receiving from the local pipe or buffer

Creating pipes

Reading and writing from pipes

Putting a wrapper around DBMS_PIPE

These topics will help prepare you to use DBMS_PIPE successfully. The topics also should
prepare you to experiment with the package.

If you do not have a PLSQL account with the correct permissions, you can run the
create_intersession_user.sql script to build one. You will find it in the code for
this chapter on the publisher’s web site.

■

■

■

■

Chapter 12: Intersession Communication 427

Sending to and Receiving from the Local Pipe or Buffer
The local buffer is very important. You can write programs that will return an anomalous result if
you do not understand how to use the local buffer. Only the session that writes to the local buffer
can access the local buffer.

The following program shows how to write to the local buffer:

-- This is found in write_local.sql on the publisher's web site.
DECLARE
 message VARCHAR2(30 CHAR);
 success INTEGER;
BEGIN
 message := DBMS_PIPE.UNIQUE_SESSION_NAME;
 DBMS_PIPE.RESET_BUFFER;
 DBMS_PIPE.PACK_MESSAGE(message);
 DBMS_OUTPUT.PUT_LINE('Written to pipe ['||message||']');
END;
/

The sample program resets the local buffer and packs a new message in it. The next program
unpacks the buffer, reads the data, and prints the contents of the pipe to the console.

-- This is found in read_local.sql on the publisher's web site.
DECLARE
 message VARCHAR2(30 CHAR);
 success INTEGER;
BEGIN
 DBMS_PIPE.UNPACK_MESSAGE(message);
 DBMS_OUTPUT.PUT_LINE('Message ['||message||']');
END;
/

You have learned how to write to and read from the local buffer. If you attempted to receive
the contents from a named pipe in this session between writing to and reading from the local
buffer, you may raise a pipe is empty exception. This can occur because the data is only in the
local pipe.

The following SQL query reads the contents of a nonexistent named pipe. What it really does
is attempt to transfer the contents of a nonexistent named pipe to the local buffer. If you insert the
following SQL statement between the write_local.sql and read_local.sql programs, it
will return a 1.

A 1 indicates the pipe is empty. When the RECEIVE_MESSAGE function returns any value, it
has done one of two things: it has returned the contents of a named pipe or a null into the local
buffer.

-- This is found in read_local_error.sql on the publisher's web site.
SELECT DBMS_PIPE.RECEIVE_MESSAGE('NOWHERE',0)
FROM dual;

You can test this behavior by running the read_local_error.sql script. The script
produces the following output error messages:

-- This is generated by read_local_error.sql on the publisher's web site.

428 Oracle Database 11g PL/SQL Programming

DECLARE
*
ERROR at line 1:
ORA-06556: the pipe is empty, cannot fulfill the
 unpack_message request
ORA-06512: at "SYS.DBMS_PIPE", line 78
ORA-06512: at line 10

You have seen that sequencing of commands is critical to having something in the local
buffer. Also, you have seen that a call to the RECEIVE_MESSAGE function will fail but write
a null to the local buffer.

You will now learn how to create named pipes.

Creating Pipes
There are two types of named pipes: one is a private named pipe; the other is a public named
pipe. The former is the default type for named pipes.

You will learn how to build a named private pipe and public pipe. You should ensure you run
this as the PLSQL user, since the pipe name is hard-coded. The following example demonstrates
creating a private pipe:

-- This is found in create_pipe1.sql on the publisher's web site.
DECLARE
 message_pipe VARCHAR2(30) := 'PLSQL$MESSAGE_INBOX';
 message_size INTEGER := 20000;
 retval INTEGER;
BEGIN
 -- Define a private pipe.
 retval := DBMS_PIPE.CREATE_PIPE(message_pipe, message_size);
 IF (retval = 0) THEN
 DBMS_OUTPUT.PUT_LINE('MESSAGE_INBOX pipe is created.');
 END IF;
EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 RETURN;
END;
/

The program creates a named private pipe owned by the PLSQL schema. The private pipe is
empty.

Unfortunately, there is no convenient way to display defined pipes. If you connect as another
user (like USERA) and attempt to run the create_pipe1.sql script, it will raise two errors. The
attempt to use DBMS_PIPE.REMOVE_PIPE will result in an untrapped error. This is the default
error message:

-- This is generated by create_pipe1.sql on the publisher's web site.
DECLARE
*
ERROR at line 1:
ORA-23322: Privilege error accessing pipe
ORA-06512: at “SYS.DBMS_SYS_ERROR”, line 86
ORA-06512: at “SYS.DBMS_PIPE”, line 130
ORA-06512: at line 4

Chapter 12: Intersession Communication 429

The attempt to create a named pipe owned by the PLSQL user will raise SQLERRM only. It
does so because it is managed in the exception handler. It raises the following exception:

-- This is generated by create_pipe1.sql on the publisher's web site.
ORA-23322: Privilege error accessing pipe

You have learned that the user who created the private named pipes is the only one who can
alter them. Any other user will receive a privilege error when attempting to remove or re-create
a private named pipe. You will now see the differences between creating private and publicly
accessible pipes.

The following example should be run as the PLSQL user. If you fail to run it as the user that
owns the current private pipe, it fails with an exception. The first block removes the private pipe,
and the second shows you how to create a public pipe:

-- This is found in create_pipe2.sql on the publisher's web site.
DECLARE
 retval INTEGER := DBMS_PIPE.REMOVE_PIPE('PLSQL$MESSAGE_INBOX');
BEGIN
 NULL;
END;
/
DECLARE
 message_pipe VARCHAR2(30) := 'PLSQL$MESSAGE_INBOX';
 message_size INTEGER := 20000;
 message_flag BOOLEAN := TRUE;
 retval INTEGER;
BEGIN
 -- Define a public pipe.
 retval := DBMS_PIPE.CREATE_PIPE(message_pipe
 ,message_size
 ,message_flag);
 IF (retval = 0) THEN
 DBMS_OUTPUT.PUT_LINE('MESSAGE_INBOX pipe is created.');
 END IF;
EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 RETURN;
END;
/

The first program deletes a public pipe. If you fail to remove a named pipe before trying to create
a variation using the same name, it will raise an ORA-23322 error. There is unfortunately no
equivalent to the SQL create or replace command syntax for database objects in the DBMS_PIPE
package.

After deleting the pipe, you can recreate it. The second creates a public pipe and writes a
message into it.

The next test assumes you have run create_pipe2.sql as the PLSQL user. If you connect
as USERA, you will find that you can rerun the create_pipe2.sql statement without raising
an exception.

It appears that the public pipe is re-created under a new user because no exception was
raised. This is not the case. A zero, or success, is returned when the public pipe already exists

430 Oracle Database 11g PL/SQL Programming

with the same signature. (A signature is a collection of formal parameter[s] that define a function,
method, or procedure.)

The lack of a raised exception is misleading. Unfortunately, that’s the way DBMS_PIPE.
CREATE_PIPE works when the same signature is used. You can test the lack of a privilege error
by running create_pipe1.sql in the PLSQL schema and then running create_pipe2.sql
in another user’s schema.

It will raise the following exception:

ORA-23322: Privilege error accessing pipe

If you attempt to run create_pipe1.sql in the USERA schema, you will raise an exception.
The reason it now returns a privilege exception is straightforward: USERA is attempting to modify
the signature for the pipe, making it private when it is public. USERA cannot override the pipe
created in that name because it is not the user who created it.

While it would have taken too much space in the book, a create_pipe3.sql script can be
found on the publisher’s web site. It has all the appropriate error trapping and good coding practices.
You should take a look at how it works. Much of the anonymous block logic is migrated into the
DBMS_PIPE wrapper discussed later in this chapter.

You have learned how to create private and public pipes. You have also seen that the
privileges error can sometimes be suppressed. The next section will show how to read from
and write to named pipes.

Writing to and Reading from Pipes
Private and public pipes are written to and read from in the same way. You write data by placing
it in the local buffer and sending it to the named pipe. Then, you read data by the inverse process.
You receive data from a named pipe into the local buffer and then read data from the local buffer.

You will examine two programs. One will write data to a named pipe. The other will read
from a named pipe. You should use the PLSQL schema to write and read the data. However, you
can read the data from any other user who has the execute privilege on DBMS_PIPE, provided
you last ran create_pipe2.sql in the PLSQL schema, which builds a public pipe.

The following program writes to a named pipe:

-- This is found in write_pipe.sql on the publisher's web site.
DECLARE
 line_return VARCHAR2(1) := CHR(10);
 flag INTEGER;
BEGIN
 -- Purge pipe content.

dbms_pipe.purge('PLSQL$MESSAGE_INBOX');
 DBMS_OUTPUT.PUT_LINE('Input Message to Pipe');
 DBMS_OUTPUT.PUT_LINE('---------------------');
 FOR i IN 1..3 LOOP
 DBMS_OUTPUT.PUT_LINE('Message ['||i||']');

DBMS_PIPE.PACK_MESSAGE('Message ['||i||']'||line_return);
 flag := DBMS_PIPE.SEND_MESSAGE('PLSQL$MESSAGE_INBOX');
 END LOOP;
 IF (flag = 0) THEN
 DBMS_OUTPUT.PUT_LINE('Message sent to PLSQL$MESSAGE_INBOX.');
 END IF;
END;
/

Chapter 12: Intersession Communication 431

The program writes a tokenized message to standard out for each message it writes to the
pipe. It outputs the following to the console:

-- This is generated by write_pipe.sql on the publisher's web site.
Input Message to Pipe

Message [1]
Message [2]
Message [3]
Message sent to PLSQL$MESSAGE_INBOX.

You can read the data from the named pipe by inverting the write process. The process is
demonstrated in the following program:

-- This is found in read_pipe.sql on the publisher's web site.
DECLARE
 line_return VARCHAR2(1) := CHR(10);
 message VARCHAR2(4000);
 output VARCHAR2(4000);
 flag INTEGER;
BEGIN

DBMS_PIPE.RESET_BUFFER;
 DBMS_OUTPUT.PUT(line_return);
 DBMS_OUTPUT.PUT_LINE('Output Message from Pipe');
 DBMS_OUTPUT.PUT_LINE('------------------------');
 FOR i IN 1..3 LOOP
 flag := DBMS_PIPE.RECEIVE_MESSAGE('PLSQL$MESSAGE_INBOX',0);
 -- Read message from local buffer.

DBMS_PIPE.UNPACK_MESSAGE(message);
 output := output || message;
 END LOOP;
 IF (flag = 0) THEN
 DBMS_OUTPUT.PUT(output);
 DBMS_OUTPUT.PUT_LINE('Message received from PLSQL$MESSAGE_INBOX.');
 END IF;
END;
/

The sample program uses the DBMS_PIPE.RESET_BUFFER procedure to clear the local buffer.
While unnecessary when nothing is done with the buffer contents before retrieving from a named
pipe, this procedure can cause erroneous data to be retrieved from the local buffer. It is a good
programming practice to use it before reading from a named pipe.

It then uses DBMS_PIPE.RECEIVE_MESSAGE to move the contents from the named pipe to
the local buffer. It uses a second parameter of zero. This forces an immediate read on the pipe.
Unless you override the time-out of 1,000 days, your program could hang on an empty pipe instead
of returning an error message.

The program outputs this:

-- This is generated by write_pipe.sql on the publisher's web site.
Output Message from Pipe

Message [1]
Message [2]

432 Oracle Database 11g PL/SQL Programming

Message [3]
Message received from PLSQL$MESSAGE_INBOX.

You should notice that the output from the pipe is ordered the same as when it was written. This
is a property of a FIFO queue. As you learned earlier in the chapter, all pipes are FIFO queues.

You have learned how to create private and public pipes. Moreover, you can now write to
and read from pipes. The PACK_MESSAGE_RAW, PACK_MESSAGE_ROWID, UNPACK_MESSAGE_
RAW, and UNPACK_MESSAGE_ROWID procedures are not covered because they work like the
PACK_MESSAGE and UNPACK_MESSAGE procedures.

Two other commands have also not been covered in earlier examples; the NEXT_ITEM_TYPE
and UNIQUE_SESSION_NAME functions are covered in the following example program:

-- This is found in next_item_type.sql on the publisher's web site.
DECLARE
 session VARCHAR2(30) := DBMS_PIPE.UNIQUE_SESSION_NAME;
 line_return VARCHAR2(1) := CHR(10);
 message VARCHAR2(4000);
 output VARCHAR2(4000);
 flag INTEGER;
 code INTEGER;
 message1 INTEGER := 1776;
 message2 DATE := TO_DATE('04-JUL-1776');
 message3 VARCHAR2(30 CHAR) := 'John Adams';
 message11 INTEGER;
 message12 DATE;
 message13 VARCHAR2(30 CHAR);
BEGIN
 -- Write the messages to a pipe.

DBMS_PIPE.PURGE('PLSQL$MESSAGE_INBOX');
 DBMS_OUTPUT.PUT_LINE('Input Message to Pipe');
 DBMS_OUTPUT.PUT_LINE('Session: ['||session||']');
 DBMS_OUTPUT.PUT_LINE('--------------------------------');
 -- Process message1.
 DBMS_OUTPUT.PUT_LINE(message1||'[NUMBER]');

DBMS_PIPE.PACK_MESSAGE(message1);
 flag := DBMS_PIPE.SEND_MESSAGE('PLSQL$MESSAGE_INBOX');
 -- Process message2.
 DBMS_OUTPUT.PUT_LINE(message2||'[DATE]');

DBMS_PIPE.PACK_MESSAGE(message2);
 flag := DBMS_PIPE.SEND_MESSAGE('PLSQL$MESSAGE_INBOX');
 -- Process message3.
 DBMS_OUTPUT.PUT_LINE(message3||'[VARCHAR2]');

DBMS_PIPE.PACK_MESSAGE(message3);
 flag := DBMS_PIPE.SEND_MESSAGE('PLSQL$MESSAGE_INBOX');
 IF (flag = 0) THEN
 DBMS_OUTPUT.PUT_LINE('Message sent to PLSQL$MESSAGE_INBOX.');
 END IF;
 DBMS_OUTPUT.PUT(line_return);
 -- Read the messages from a pipe.
 DBMS_OUTPUT.PUT_LINE('Output Message from Pipe');
 DBMS_OUTPUT.PUT_LINE('Session: ['||session||']');
 DBMS_OUTPUT.PUT_LINE('--------------------------------');

Chapter 12: Intersession Communication 433

 FOR i IN 1..3 LOOP
DBMS_PIPE.RESET_BUFFER;

 flag := DBMS_PIPE.RECEIVE_MESSAGE('PLSQL$MESSAGE_INBOX',0);
 code := DBMS_PIPE.NEXT_ITEM_TYPE;
 CASE code
 WHEN 6 THEN -- Buffer is a NUMBER.

DBMS_PIPE.UNPACK_MESSAGE(message11);
 output := output || message11 ||'[NUMBER]'||line_return;
 WHEN 9 THEN -- Buffer is a VARCHAR2.

DBMS_PIPE.UNPACK_MESSAGE(message13);
 output := output || message13 ||'[VARCHAR2]'||line_return;
 WHEN 12 THEN -- Buffer is a DATE.

DBMS_PIPE.UNPACK_MESSAGE(message12);
 output := output || message12 ||'[DATE]'||line_return;
 END CASE;
 END LOOP;
 -- Print messages.
 IF (flag = 0) THEN
 DBMS_OUTPUT.PUT(output);
 DBMS_OUTPUT.PUT_LINE('Message received from PLSQL$MESSAGE_INBOX.');
 END IF;
END;
/

This program demonstrates sending three messages in sequence with different datatypes. Then,
it uses the return type from DBMS_PIPE.NEXT_ITEM_TYPE to read and manage the different
datatypes. The following is the output from the next_item_type.sql script. It shows the
datatype in square brackets to the right of the value sent in and received from the pipe.

-- This is generated by next_item_type.sql on the publisher's web site.
Input Message to Pipe
Session: [ORA$PIPE$00F2AFC20001]

1776[NUMBER]
04-JUL-76[DATE]
John Adams[VARCHAR2]
Message sent to PLSQL$MESSAGE_INBOX.

Output Message from Pipe
Session: [ORA$PIPE$00F2AFC20001]

1776[NUMBER]
04-JUL-76[DATE]
John Adams[VARCHAR2]
Message received from PLSQL$MESSAGE_INBOX.

TIP
The PACK_MESSAGE and UNPACK_MESSAGE procedures are
overloaded in the DBMS_PIPE package. They can use DATE, NUMBER,
and VARCHAR2 datatypes. You must ensure you evaluate datatypes
before reading them from the local buffer when you use more than
VARCHAR2 datatypes.

434 Oracle Database 11g PL/SQL Programming

The preceding program has highlighted how you manage DATE, NUMBER, and VARCHAR2
into and out of database pipes. The DBMS_PIPE.NEXT_ITEM_TYPE function provides the tool
to read out different datatypes.

You will now see how some of the complexity of DBMS_PIPE can be hidden from your users.

Putting a Wrapper Around DBMS_PIPE
You probably noticed that working with DBMS_PIPE is a bit tedious. Much of the problem is
because of the awkward mix of functions and procedures. Functions require return variables, and
procedures, the UNPACK_MESSAGE procedure, for instance, require active actual parameter values.

Access to these can be simplified by writing a PL/SQL stored procedure that hides the
complexity of the DBMS_PIPE package. The following package provides a wrapper to exchange
messages between all users on the system. The package builds two pipes for any user by using
the create_pipe3.sql script mentioned earlier in the chapter. These pipes are named
USER$MESSAGE_INBOX and USER$MESSAGE_OUTBOX, respectively.

The package specification creates two functions: SEND_MESSAGE and RECEIVE_MESSAGE.
These wrap the complexity of the DBMS_PIPE package.

The package body implements the two published functions and creates a local function
GET_USER. It returns the user name for the current session. This eliminates any formal parameters
for the RECEIVE_MESSAGE function.

The MESSENGER package provides the ability to send and receive messages in SQL or PL/SQL.
It manages only VARCHAR2 datatypes. The MESSENGER package provides a glimpse into building
components based on the DBMS_PIPE package. The following contains the package specification
and body:

-- This is found in create_messenger.sql on the publisher's web site.
CREATE OR REPLACE PACKAGE messenger IS
 FUNCTION send_message
 (user_name VARCHAR2
 ,message VARCHAR2
 ,message_box VARCHAR2 DEFAULT 'MESSAGE_INBOX')
 RETURN INTEGER;

 FUNCTION receive_message
 RETURN VARCHAR2;
END messenger;
/
CREATE OR REPLACE PACKAGE BODY messenger IS
 FUNCTION get_user
 RETURN VARCHAR2 IS
 BEGIN
 FOR i IN (SELECT user FROM dual) LOOP
 return i.user;
 END LOOP;
 END get_user;

 FUNCTION send_message
 (user_name VARCHAR2
 ,message VARCHAR2
 ,message_box VARCHAR2 DEFAULT 'MESSAGE_INBOX')

Chapter 12: Intersession Communication 435

 RETURN INTEGER IS
 message_pipe VARCHAR2(100 CHAR);
 BEGIN
 DBMS_PIPE.RESET_BUFFER;
 message_pipe := UPPER(user_name) || '$' || UPPER(message_box);
 DBMS_PIPE.PACK_MESSAGE(message);

-- Return 0 for sent message and 1 for unsent message.
 IF (DBMS_PIPE.SEND_MEESAGE(message_pipe) = 0) THEN
 RETURN 0;
 ELSE
 RETURN 1;
 END IF;
 END send_message;

 FUNCTION receive_message
 RETURN VARCHAR2 IS
 message VARCHAR2(4000 CHAR) := NULL;
 message_box VARCHAR2(100 CHAR);
 inbox VARCHAR2(14 CHAR) := 'MESSAGE_INBOX';
 timeout INTEGER := 0;
 return_code INTEGER;
 BEGIN

DBMS_PIPE.RESET_BUFFER;
 message_box := get_user || '$' || inbox;
 return_code := DBMS_PIPE.RECEIVE_MESSAGE(message_box,timeout);
 CASE return_code
 WHEN 0 THEN
 DBMS_PIPE.UNPACK_MESSAGE(message);
 WHEN 1 THEN
 message := 'The message pipe is empty.';
 WHEN 2 THEN
 message :=
 'The message is too large for variable.';
 WHEN 3 THEN
 message :=
 'An interrupt occurred, contact the DBA.';
 END CASE;
 -- Return the message.
 RETURN message;
 END receive_message;
END messenger;
/

As a rule, programs are explained in text. For a package like this, a text description is
unproductive. You can see the package lets you exchange messages with other users, provided
they have execute privileges to the wrapper MESSENGER package or a separate copy in their
user source code.

The specification for the package follows:

-- This is generated by SQL*Plus DESCRIBE MESSENGER.
FUNCTION RECEIVE_MESSAGE RETURNS VARCHAR2
FUNCTION SEND_MESSAGE RETURNS NUMBER(38)

436 Oracle Database 11g PL/SQL Programming

 Argument Name Type In/Out Default?
 ---------------- ----------------------- ------ --------
 USER_NAME VARCHAR2 IN
 MESSAGE VARCHAR2 IN
 MESSAGE_BOX VARCHAR2 IN DEFAULT

The following program illustrates sending and receiving a message using the wrapper
MESSENGER package:

-- This is found in use_messenger.sql on the publisher's web site.
DECLARE
 FUNCTION get_user
 RETURN VARCHAR2 IS
 BEGIN
 FOR i IN (SELECT user FROM dual) LOOP
 return i.user;
 END LOOP;
 END get_user;
BEGIN
 -- Send message.
 IF (MESSENGER.SEND_MESSAGE(get_user,'Hello World!') = 0) THEN
 DBMS_OUTPUT.PUT_LINE(MESSENGER.RECEIVE_MESSAGE);
 END IF;
END;
/

You can use this package or create your own to experiment with DBMS_PIPE. You have now
covered the DBMS_PIPE package and a key feature—intersession messaging. You will now learn
about DBMS_ALERT.

DBMS_ALERT Built-in Package
DBMS_ALERT is the second intersession communication tool provided by Oracle 11g. It builds on
the behavior of DBMS_PIPE and leverages the DBMS_PIPE package.

Introducing the DBMS_ALERT Package
DBMS_ALERT is an asynchronous transaction control mechanism. It publishes an event. Other
users become subscribers by registering their interest in the named alert. DBMS_ALERT implements
a publish-and-subscribe paradigm.

As mentioned at the beginning of the chapter, a publish-and-subscribe process eliminates
polling daemons. Polling daemons run as background processes. They loop until they find an
event. The event triggers the polling daemon to signal, spawn another program activity, or
terminate. There are three components to polling daemons: One is the monitoring loop. Another
is the signal processing detection. Finally, there is the activity or termination logic triggered by
receiving a signal.

If you eliminate polling daemons, you can reduce resource demands on the database and
physical machine. Unfortunately, there are good business reasons for using polling daemons.
DBMS_ALERT provides a means of automating the monitoring loop and signal processing
detection components. DBMS_ALERT implements public pipes through using the DBMS_PIPE
package.

Chapter 12: Intersession Communication 437

DBMS_ALERT also uses the DBMS_PIPE memory structure in the SGA. While the structure is
not formally referred to as a pipe, it works as a public pipe. As discussed earlier in the chapter,
they are publicly accessible pipes or FIFO queues similar to Unix pipes. These pipes are populated
on event triggers and subject to transaction control limits. Moreover, alert pipes communicate
between sessions asynchronously after a transaction occurs, and they implement a publish-and-
subscribe paradigm. It publishes notifications. Then it enables subscribers to register to receive
event notifications.

Defining the DBMS_ALERT Package
The DBMS_ALERT package contains only procedures. Procedures are limited to PL/SQL execution.
The DBMS_ALERT procedures support only VARCHAR2 datatype pipes. Like the MESSENGER
package provided earlier in the chapter, DBMS_ALERT is a wrapper package to the DBMS_PIPE
package. There is one exception. DBMS_ALERT maintains a new memory structure that enables
the publish-and-subscribe process. That memory structure contains a list of pipes and those who
are interested in their receipt.

REGISTER Procedure
The REGISTER procedure takes a single formal parameter, NAME, which accepts a valid SIGNAL
name. Unfortunately, you don’t raise an exception when you register for a signal name that doesn’t
exist. It has the prototype

REGISTER(signal_name)

You use REGISTER to subscribe to one or more alerts. It is important to note that you must
keep track of which alerts you subscribe to because there isn’t a tool to check them.

REMOVE Procedure
The REMOVE procedure takes a single formal parameter, NAME, which accepts a valid SIGNAL
name. Like the REGISTER procedure, the REMOVE procedure fails to raise an exception when
unsubscribing from an alert. The prototype is

REMOVE(signal_name)

You use REMOVE to unsubscribe interest in one or more alerts. Also, like the REGISTER
procedure, the REMOVE procedure does not track when you unsubscribe to an alert. You must
keep a list of your own.

REMOVEALL Procedure
The REMOVEALL procedure has no formal parameter. It has the prototype

REMOVEALL

You unsubscribe from all alerts when you call the REMOVEALL procedure. It is the cleanest
way to reset your listening state for alerts.

SET_DEFAULTS Procedure
The SET_DEFAULTS procedure sets only default, and that is the sensitivity parameter. The
procedure takes an INTEGER as its single formal parameter. The prototype is

SET_DEFAULTS(event_polling_in_seconds)

438 Oracle Database 11g PL/SQL Programming

The polling default is five seconds. Although you can reset it, you should be careful because
you increase the likelihood of missing a signal. Signals are perishable events, erased by
subsequent events.

SIGNAL Procedure
The SIGNAL procedure takes two formal parameters: the NAME and MESSAGE parameters. The
NAME parameter accepts a valid SIGNAL name. A SIGNAL name must be no longer than 30
characters. The MESSAGE parameter accepts a valid VARCHAR2 name. The prototype for the
procedure is

SIGNAL(signal_name, signal_message)

The MESSAGE parameter size is limited to 1,800 bytes. This means that you have 600
characters in a 3-byte UTF8 Unicode character set. The VARCHAR2 datatype doesn’t support the
2-byte AL16UTF16 character set because it is reserved for NCHAR, NCLOB, and NVARCHAR2
dataypes.

CAUTION
You should not use ORA$ as a preface to any of your alerts because
it is reserved by Oracle Corporation for their own use.

WAITONE Procedure
The WAITONE procedure takes four formal parameters, as described in Table 12-4.

When using the WAITONE procedure, you need to ensure that the variable is equal to or larger
than the actual message sent. If you size the variable too small, you may not receive an alert.

Parameter Mandatory or Optional Description
NAME Mandatory The NAME parameter is positionally the

first paramater, and it accepts an IN mode
VARCHAR2 datatype that represents the
SIGNAL name.

MESSAGE Mandatory The MESSAGE parameter is positionally the
second parameter, and it is an OUT mode
VARCHAR2 datatype containing the 1,800 byte
message text.

STATUS Mandatory The STATUS parameter is positionally the
third parameter, and it is also an OUT mode
INTEGER datatype. The STATUS parameter
returns a zero when successful and one due to
a failure.

TIMEOUT Optional The TIMEOUT parameter is positionally the last
parameter. It is an IN mode INTEGER datatype
that sets the length of time to wait on an alert,
which is expressed in seconds.

TABLE 12-4 Four Formal Parameters of the WAITONE Procedure

Chapter 12: Intersession Communication 439

In addition, you should note that since DBMS_ALERT uses DBMS_LOCK it is possible to
receive a status four from DBMS_LOCK. This occurs when you try to override an existing lock.

You have reviewed the idea, utility, and specifics of the DBMS_ALERT package. In the next
section, you will see how DBMS_ALERT works.

Working with the DBMS_ALERT Package
In this section, you will work with the following:

Building a trigger to signal an alert

Registering interest in an alert

Waiting on an alert

Triggering an alert

Analyzing the impact of transaction-based alerts

These topics will help prepare you to use DBMS_ALERT successfully. The topics also should
prepare you to experiment with the package. Before running any of these scripts, you should run
create_messages_table.sql. It will build necessary database tables to support the examples.

Building a Trigger to Signal an Alert
These topics will help prepare you to use DBMS_ALERT successfully. The topics also should
prepare you to experiment with the package. Before running any of these scripts, you should run
create_messages_table.sql. It will build necessary database tables to support the examples.

The following row-level trigger allows you to see how to capture inserts, updates, and deletes
from a table. As you work with the trigger and DBMS_ALERT, you will find there are some design
issues to consider. This trigger is our signaling device. Any call to DBMS_ALERT.SIGNAL should
be found in a database trigger. If it is not in a trigger, you are leveraging DBMS_ALERT in an
unintended way.

-- This is found in create_signal_trigger.sql on the publisher's web site.
CREATE OR REPLACE TRIGGER signal_messages
AFTER
INSERT OR UPDATE OR DELETE
OF message_id
 ,message_source
 ,message_destination
 ,message
ON messages
FOR EACH ROW
BEGIN
 IF :old.message_id IS NULL THEN -- Check for no previous row - an inserts.
 -- Signal Event and insert message.
 DBMS_ALERT.SIGNAL('EVENT_MESSAGE_QUEUE'
 ,:new.message_source||':Insert');
 INSERT
 INTO messages_alerts
 VALUES (:new.message_source||':Insert');

■

■

■

■

■

440 Oracle Database 11g PL/SQL Programming

 ELSIF :new.message_id IS NULL THEN -- Check for no current row - a deletes.
 DBMS_ALERT.SIGNAL('EVENT_MESSAGE_QUEUE'
 ,:old.message_source||':Delete');
 INSERT
 INTO messages_alerts
 VALUES (:old.message_source||':Delete');
 ELSE – Handle all others - updates.
 IF :new.message_source IS NULL THEN
 DBMS_ALERT.SIGNAL('EVENT_MESSAGE_QUEUE'
 ,:new.message_source||':Update#1');
 INSERT
 INTO messages_alerts
 VALUES (:new.message_source||'Update#1');
 ELSE
 DBMS_ALERT.SIGNAL('EVENT_MESSAGE_QUEUE'
 ,:old.message_source||':Update#2');
 INSERT
 INTO messages_alerts
 VALUES (:old.message_source||':Update#2');
 END IF;
 END IF;
END;
/

The sample trigger fires on DML events to the messages table. The trigger checks if the :old
.message_id does not exist. This condition is met whenever a new row is inserted into the target
table. If this condition is met, it signals an alert to EVENT_MESSAGE_QUEUE and inserts a matching
message into the messages_alert table: the :new.message_id does not exist. This condition
is met whenever a row is deleted from the target table. If this condition is met, it again signals the
event and writes a record. The ELSE block handles the same behavior for UPDATE statements. You
have built your signaling device. It will publish the message. The next section will examine how
you subscribe to see the published message.

Registering Interest in an Alert
When you register your interest in an alert, you are subscribing to an alert. You register within the
scope of a session. This means that each session that is interested in a published alert must subscribe.

The following example program subscribes to a named alert:

-- This is found in register_interest.sql on the publisher's web site.
BEGIN
 DBMS_ALERT.REGISTER('EVENT_MESSAGE_QUEUE');
END;
/

The sample program registers interest in the EVENT_MESSAGE_QUEUE alert.
You have now registered interest in the EVENT_MESSAGE_QUEUE alert. Alternatively, you

have subscribed to the alert. Every time the alert fires after an insert, update, or delete, you will
receive a message if you are waiting to handle its receipt.

Waiting on an ALERT
After you have registered your interest in an alert, you may or may not receive an alert. Part of a
publish-and-subscribe paradigm requires you to wait to receive a message. It is very much like

Chapter 12: Intersession Communication 441

a baseball pitcher’s and catcher’s relationship. If the catcher is not there and the pitcher throws
the ball, the ball will not be caught.

In the following program, you will learn to catch the ball. The program shows you how to
wait on a single alert. You should also note that the SENSITIVITY, or polling rate, discussed
earlier is the default. The default is checking every five seconds.

-- This is found in waitone.sql on the publisher's web site.
DECLARE
 -- Define OUT mode variables required from WAITONE.
 message VARCHAR2(30 CHAR);
 status INTEGER;
BEGIN
 -- Register interest in an alert.
 DBMS_ALERT.WAITONE('EVENT_MESSAGE_QUEUE', message, status, 30);
 IF (STATUS <> 0) THEN
 DBMS_OUTPUT.PUT_LINE('A timeout has happened.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Alert Messages Received');
 DBMS_OUTPUT.PUT_LINE('-----------------------');
 DBMS_OUTPUT.PUT_LINE(message);
 END IF;
END;
/

The sample program uses DBMS_ALERT.WAITONE procedure to create a polling loop for 30
seconds. Given a five-second default interval, the polling loop will run six times before ending.
A time-out occurs when no alert was received. If the time-out does not occur before an alert is
received, it will print the alert. Otherwise, nothing is printed.

You should run this without doing anything to trigger the alert. It will show you a time-out
message:

-- This is generated by waitone.sql on the publisher's web site.
A timeout has happened.

You have worked through subscribing to an alert. Unfortunately, there was no alert signaled
before the scheduled time-out. The next section will show you how to trigger events.

Triggering an Alert
After you have built a trigger and registered interest in another session where you are waiting for
a signaled alert, you can trigger the alert. That means you need two sessions connected to the
PLSQL user to do this. In one session, you need to start the waitone.sql script discussed
previously. In the other session, you need to run the following program before the thirty seconds
has expired. If thirty seconds is too short a time, then you should modify waitone.sql to allow
yourself more time.

The following program will trigger an alert:

-- This is found in trigger_alerts1.sql on the publisher's web site.
-- Insert a new row.
INSERT
INTO messages
VALUES (4,'PLSQL','USERA','Insert, Shazaam.');
-- Upgrade a row.

442 Oracle Database 11g PL/SQL Programming

UPDATE messages
SET message = 'Update, Shazaam.'
WHERE message_id = 2;
-- Delete a row.
DELETE messages
WHERE message_id = 3;
-- Commit the changes.
COMMIT;

The preceding program inserted, updated, and deleted rows from the messages table. After
making all three changes, it committed the changes.

The waitone.sql script will now return the following formatted output:

-- This is generated by waitone.sql on the publisher's web site.
Alert Messages Received

PLSQL:Delete

MESSAGE

PLSQL:Insert
PLSQL:Update#2
PLSQL:Delete

You can see the benefit of doing the INSERT statement within the signal_messages trigger.
It sends the messages and inserts a duplicate into a table. The commit for the external transaction
commits the writes to the messages_alerts table. As you can see, there are three messages,
but the DBMS_ALERT subscription returned only the last one. The other two messages were lost.
This is why the output for alert messages received shows only the last DML change made.

In the next section, you will analyze why you lost two messages with DBMS_ALERT. You may
already have guessed the answer. If so, you have two choices at this point. You can skip the next
section or confirm your analysis.

Analyzing the Impact of Transaction-Based Alerts
The general answer is that the polling loop returns immediately with any alert message. In the
preceding script, the commit occurs only once at the end of the program. Actually, three messages
were sent by DBMS_ALERT.SIGNAL. The second message overwrote the value of the first, and
the third, the value of the second. The third value was actually the only value published because
it was the last value signaled before the commit.

DBMS_ALERT operates much like DBMS_PIPE. Individual signals are stuffed into a private
pipe that acts like a local buffer. Imitating a local buffer, the private pipe can contain only one
signal value. Therefore, only the last private pipe value is signaled to the subscribers.

The following program will trigger three alerts:

-- This is found in trigger_alert2.sql on the publisher's web site.
-- Insert a new row.
INSERT
INTO messages
VALUES (4,'PLSQL','USERA','Insert, Shazaam.');
-- Commit the change.

Chapter 12: Intersession Communication 443

COMMIT;
-- Upgrade a row.
UPDATE messages
SET message = 'Update, Shazaam.'
WHERE message_id = 2;
-- Commit the change.
COMMIT;
-- Delete a row.
DELETE messages
WHERE message_id = 3;
-- Commit the change.
COMMIT;

The preceding program inserted, updated, and deleted rows from the messages table. It
committed each change before making another.

You can now rerun the waitone.sql program in one session and trigger_alerts2.sql
in another. The waitone.sql script will generate the following results:

-- This is generated by waitone.sql on the publisher's web site.
Alert Messages Received

PLSQL:Insert

MESSAGE

PLSQL:Insert
PLSQL:Update#2
PLSQL:Delete

As you can see, only the first signaled message is received by the polling program waitone.sql.
The reason is that the polling program is a simple illustration of how you catch the signal. The
commit terminates the transaction. Termination of the transaction triggers the signaling of the alert.

The presentation has laid a foundation for you. More elegant solutions can be developed. You
develop them by nesting the polling logic into signal management programming logic.

Summary
You have covered both mechanisms for accomplishing intersession communication, DBMS_ALERT
and DBMS_PIPE. The DBMS_PIPE package gives you more freedom of latitude but requires more
programming management, while the DBMS_ALERT package is very limited in scope because of
how it is linked to transaction processing.

The chapter has provided coverage of both utilities. Advanced Queuing also provides these
features and is part of work-flow solutions. Advanced Queuing is best when communication
delays between sessions are not critical. You should be able to leverage the material to rapidly
build intersession communication solutions.

This page intentionally left blank

CHAPTER
13

External Procedures

445

446 Oracle Database 11g PL/SQL Programming

xternal routines are delivered in Oracle 11g through external procedures. They
enable the database to communicate with external applications through PL/SQL.
While it is nontrivial to configure the database to support them, external procedures
provide a critical framework.

You will cover the following topics. The chapter assumes you read it sequentially. It also
assumes you have read the preceding twelve chapters.

Introducing external procedures

Working with external procedures

The introduction to this book provides scripts that create a user account, create a data model,
and then seed the data model. You need to run them before working through the examples in the
chapter.

Introducing External Procedures
External routines provide the ability to communicate between the database and external programs
written in C, C++, COBOL, FORTRAN, PL/1, Visual Basic, and Java. There is one caveat: the
language must be callable from C. While the surgeon general has not provided a warning, other
languages can present different challenges than PL/SQL. The chapter focuses on implementations
of C and Java libraries as external routines.

Development teams may want to isolate programming logic from the database. External routines
are the natural solution. They are ideal for computation-intensive programs, providing an interface
between external data sources and the database. Unlike stand-alone Oracle Pro*C programs, they
are callable from PL/SQL.

You will work with a C shared library and a Java class library in this chapter. The C and Java
examples have been made as small and narrow in scope as possible to conserve space while you
focus on PL/SQL programming. You can find more on stored Java classes in Chapter 15. Appendix
D also offers a Java Primer for those new to Java.

External routines leverage the Oracle Net Services transport layer. You will need to work through
a number of architectural and configuration issues to run the basic samples. It is helpful if you
have some formal background in C or Java, but it is not necessary. This chapter is important
because PL/SQL programmers can be expected to explain the process to C and Java programmers.
You will also write the PL/SQL library definitions, which become the gateways to these libraries.
These are often called “PL/SQL wrappers.”

NOTE
The documentation for this chapter is spread far and wide. The
key configuration references are from Appendix A in the Advanced
Application Developer’s Guide, Chapter 4 in the Heterogeneous
Connectivity Administrator’s Guide, and Chapter 13 in the Net
Services Administrator’s Guide.

You will now work with implementing external procedures.

■

■

E

Chapter 13: External Procedures 447

Working with External Procedures
As discussed, external procedures enable you to communicate through PL/SQL with external
programs. The external programs can call back to an Oracle database using the Oracle Call
Interface (OCI). They can also communicate with external databases such as Sybase, IBM DB2,
and Microsoft SQL Server. External procedures are ideal to work with external applications.
External applications can use other databases or file systems as data repositories. Moreover,
any combination of these is supported.

You will now learn about the architecture for external procedures. Then you will learn the
setup issues for Oracle Networking and the heterogeneous service agent. When you have learned
how to configure your environment, you will then work with building and accessing C and Java
libraries from PL/SQL.

Defining the extproc Architecture
Oracle built an extensible architecture for external procedures. It is flexible to support any
programming language that is callable by the C programming language. For example, you can
call a C++ program using the extern command in C. However, callbacks into the database by
the external programming languages are limited to those supported by OCI. OCI supports C, C++,
COBOL, FORTRAN, PL/1, Visual Basic, Perl, PHP, and Java.

Whatever programming language you choose to implement must support building a shared
library. Likewise, the platform must support shared libraries. Shared libraries, also called dynamic
link libraries (DLLs), are code modules that can be leveraged by your program. Java shared
libraries are called libunits. When you access shared libraries from PL/SQL, the libraries are
loaded dynamically at run time as external procedures. By default, each remote procedure call
uses a discrete and dedicated extproc agent to access the shared library. Alternatively, you can
configure a multithreaded agent through the Oracle Heterogeneous Services. If you do so, you
can share the extproc agent among any number of database sessions.

External procedures use the PL/SQL library definition to exchange data between the PL/SQL
run-time engine and shared libraries. The PL/SQL library definition acts as a wrapper to the shared
library. It defines the external call specification and maps PL/SQL datatypes to native language
equivalents. The map between data types is used to translate data types when exchanging
information. Figure 13-1 illustrates the external procedure architecture.

A call to a PL/SQL wrapper translates types. Then, the wrapper sends a signal across Oracle Net
Services. Oracle Net Services receives the signal and spawns or forks an extproc agent process. It
is the extproc agent that accesses the shared library. The extproc agent forks a Remote Procedure
Call (RPC) to the shared library. The shared library result is returned to the extproc agent by the
RPC. The extproc agent then returns the result to the PL/SQL wrapper. Next, the PL/SQL wrapper
receives and translates the data types from the local language to the native PL/SQL data types.
Ultimately, the PL/SQL wrapper returns the value to the calling PL/SQL program.

As you can see from Figure 13-1, there are two potential failure points to dynamic execution.
The decision diamonds in the process flow chart qualify potential failure points. Both failure
points are linked to the listener. The second failure point can also be missing libraries in the
defined locations.

One failure point exists when a separate extproc agent listener is not configured or is
incorrectly configured. The other failure point arises in two possible cases. One case is when
the extproc listener fails to resolve the connection. Another case is when a physical shared
library is not found where defined in the PL/SQL library definition.

448 Oracle Database 11g PL/SQL Programming

Configuring the heterogeneous multithreaded agent is complex. However, it enables you to
share a single extproc agent among multiple database sessions. Benefits of this implementation
are a reduction in resources required to dynamically fork extproc agents. The default behavior
of external procedures is to fork a new extproc agent for each external procedure call. The
default works but consumes too many resources too frequently. When you have many sessions
using external libraries, you should use a multithreaded extproc agent. Figure 13-2 looks at
how a multithreaded extproc agent works.

As shown in the diagram, multiple database sessions can connect through the heterogeneous
multithreaded extproc agent, which fits into the extproc agent niche in Figure 13-1. Once the
signal arrives at the agent, the monitor thread puts the connection into a FIFO queue. The monitor
thread maintains load-balancing information; using that information, the monitor thread passes
the connection to the first available dispatcher thread, which puts the request into another FIFO
queue. Task threads read the dispatcher FIFO queues and process requests. Each task thread sends
the result back to the requesting session. You will cover more about the multithreaded agent later
in this chapter.

FIGURE 13-1 External procedure architecture

Chapter 13: External Procedures 449

You have developed an understanding of the basic architecture of external procedures. The
next section will show you how to set up and configure Oracle Net Services to support external
procedures.

Defining extproc Oracle Net Services Configuration
External procedures use Oracle Net Services to fork or link signals to the extproc agent. As
discussed, the extproc agent can be the default stand-alone unit or a multithreaded extproc
agent. Unfortunately, configuring your listener.ora and tnsnames.ora files is a manual
process.

The standard listener built by the Net Configuration Assistant on installation does not provide
a complete extproc agent listener. Net Configuration Assistant likewise does not provide an
automated way to create an extproc agent listener. The standard listener includes an extproc
handler service in the standard listener. This is not adequate for implementing the extproc
agent. You must set up an exclusive listener for external procedures.

As a PL/SQL developer, configuring Oracle Net Services may not be something you do often.
It is also possible your DBA may be unfamiliar with the nuances required to support extproc
agents. This section provides the steps required to configure Oracle Net Services to support
extproc agents.

The listener.ora file can be found in one of two locations. It can be found in the directory
pointed to by the $TNS_ADMIN environment variable. Alternatively, the default location is in the
$ORACLE_HOME/network/admin directory. The standard listener.ora file contains two
entries: one is the LISTENER and the other is the SID_LIST_LISTENER.

FIGURE 13-2 Multithreaded agent architecture

450 Oracle Database 11g PL/SQL Programming

The LISTENER describes an address list or set of address lists. Addresses consist of a protocol
definition and a key value, or else a protocol definition, a host name, and a port number. The
Oracle 11g standard fresh install LISTENER entry in the listener.ora file follows:

-- This is found in listener1.ora on the publisher’s web site.
LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)
 (KEY = EXTPROC1521)
)
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)
 (HOST = <host_name>.<domain_name>)
 (PORT = 1521)
)
)
)
)

The standard listener.ora file has a problem supporting the extproc agent. The problem
is that the listener has two ADDRESS_LIST parameters using different protocols. The first listens
for Internal Procedure Calls (IPCs). The second listens for TCP messages, like RPCs. This is the
principal reason why a separate listener is required for extproc IPC calls.

NOTE
Oracle 11g lists the KEY parameter value as EXTPROC<listener_port>;
whereas previously only EXTPROC was listed.

The SID_LIST_LISTENER, the second entry in the standard listener.ora file, contains the
SID description. The Oracle 11g standard SID_DESC is defined by the SID_NAME, ORACLE_HOME,
and PROGRAM parameter definitions. The SID_NAME parameter is defined as PLSExtProc, which
is used as the extproc identifier. The ORACLE_HOME parameter defines the Oracle home directory.
Finally, the PROGRAM parameter defines the extproc agent as the program. The Oracle 11g
standard SID_LIST_LISTENER entry in the listener.ora file follows:

-- This is found in listener1.ora on the publisher’s web site.
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = <oracle_home_directory)
 (PROGRAM = extproc)
)
)

The standard SID_LIST_LISTENER is another mix of two purposes in one definition.
The SID_NAME and PROGRAM parameters are there to support the extproc agent signals. The
ORACLE_HOME parameter is provided for both the TCP listener and extproc IPC services. These

Chapter 13: External Procedures 451

two services run under a single standard listener, although they really are suited to separate
listeners. The clincher is that external procedures require their own listener.

NOTE
Oracle provides the preceding caveat for the extproc listener
in Appendix A of the Oracle Database Advanced Application
Developer’s Guide, Release 11g.

The standard listener.ora file works in tandem with the standard tnsnames.ora file.
The listener.ora and tnsnames.ora files are used by Oracle Net Services. The standard
tnsnames.ora file provides two service names. One is CODE, which maps to the standard
listener to the database. The other is EXTPROC_CONNECTION_DATA, which maps to the
extproc agent. The following is an example of the standard tnsnames.ora file:

-- This is found in tnsnames1.ora on the publisher’s web site.
CODE =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)
 (HOST = <host_name>.<domain_name>)
 (PORT = 1521)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <database_sid>)
)
)

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)
 (KEY = EXTPROC)
)
)
 (CONNECT_DATA =
 (SID = PLSExtProc)
 (PRESENTATION = RO)
)
)

The tnsnames.ora service names provide connection aliases that enable users and
programs to connect to the listener. They resolve requests for connections by matching the
tnsnames.ora ADDRESS parameter to the address in a running listener. Then they use the
CONNECTION_DATA parameters to connect a database or agent. The extproc agent is not the
only agent supported by Oracle 11g. You can define any number of heterogeneous servers that
enable communication between Oracle and other databases.

On any case-insensitive system, these files resolve extproc across Oracle Net Services. They
fail on a case-sensitive system. The KEY parameter in the listener.ora file is lowercase, while
the KEY value in the tnsnames.ora is uppercase. The two will fail to resolve. You can see if
your system contains the error by using the tnsping utility.

452 Oracle Database 11g PL/SQL Programming

For example, run tnsping with the following:

$ tnsping EXTPROC_CONNECTION_DATA

If you get the following, everything is correctly configured:

TNS Ping Utility for Linux: Version 11.1.0.6.0 - Production on 22-AUG-2007
Copyright (c) 1997, 2007, Oracle. All rights reserved.
Used parameter files:
/u03/oracle/11g/11.1.0/network/admin/sqlnet.ora
Used TNSNAMES adapter to resolve the alias
Attempting to contact (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL =
IPC)(KEY = EXTPROC1521))) (CONNECT_DATA = (SID = PLSExtProc) (PRESENTATION = RO)))
OK (0 msec)

If you get a TNS-12541 error when using tnsping, the likelihood is that there is a mismatch
between the ADDRESS parameter values in the listener.ora and tnsnames.ora files.

Before you are introduced to working files, you need to learn about the PROGRAM and ENV
parameters in listener.ora files. The PROGRAM parameter must specify a valid executable
in the $ORACLE_HOME/bin directory. The program can access only libraries found in the
$ORACLE_HOME/lib directory by default. You can change the default by doing any of the
following:

Define EXTPROC_DLLS to enable loading of shared libraries. You have three choices for
using EXTPROC_DLLS. They are shown in Table 13-1.

Define the $LD_LIBRARY_PATH for the extproc agent.

Define the $PATH for the extproc agent.

Define the $APL_ENV_FILE to specify a set of environment variables for the external
extproc agent.

■

■

■

■

Syntax Description Security Level
DLL:DLL Allows the extproc agent to load any of

the specified shared libraries located in the
$ORACLE_HOME/lib directory.

Medium

ONLY:DLL:DLL Allows extproc to run any entered DLLs
from specified directories.

High (recommended)

ANY Allows extproc to load any DLL. It
disables DLL checking.

Low

TABLE 13-1 Options for EXTPROC_DLLS

Chapter 13: External Procedures 453

The following listener.ora file separates the two listeners. It also defines an external
library that you will work with later in the chapter. You can use it as an example to build your
own listener.ora file.

-- This is found in listener2.ora on the publisher’s web site.
LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)
 (HOST = <host_name>.<domain_name>)
 (PORT = 1521)
)
)
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = <database_name>)
 (ORACLE_HOME = <oracle_home_directory>)
)
)

CALLOUT_LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)
 (KEY = extproc)
)
)
)
)

SID_LIST_CALLOUT_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = <oracle_home_directory>)
 (PROGRAM = extproc)
 (ENV = "EXTPROC_DLLS=ONLY:
 <oracle_home_directory>/customlib/writestr1.so
 ,LD_LIBRARY_PATH=<oracle_home_directory>/lib")
)
)

454 Oracle Database 11g PL/SQL Programming

The sample listener.ora file has a standard LISTENER TCP listener on port 1521. You
should note that the IPC ADDRESS information has been removed from the standard listener. The
sample file also has a standard SID_LIST_LISTENER. You should notice that the SID_NAME
parameter value is no longer PLSExtProc, which was used for the extproc agent. It uses the
database name. You should also notice that the PROGRAM parameter and value are no longer in
the SID_LIST_LISTENER.

The second address was removed from the standard listener and put in a separate listener, and
the CALLOUT_LISTENER IPC listener uses a KEY parameter value of extproc. As a result of this
change, the SID_NAME parameter has a value of PLSExtProc, and it should map to a case-sensitive
equivalent SID parameter value in the tnsnames.ora service name. Also, the PROGRAM parameter
is there with a new ENV parameter. The ENV parameter provides the recommended security
implementation that allows access to only a specified library and the LD_LIBRARY_PATH for the
external procedure.

The new listener.ora requires a new tnsnames.ora file. The following file works with
the new listener.ora previously covered:

-- This is found in tnsnames2.ora on the publisher’s web site.
CODE =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)
 (HOST = <host_name>.<domain_name>)
 (PORT = 1521)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = CODE)
)
)

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)
 (KEY = extproc)
)
)
 (CONNECT_DATA =
 (SID = PLSExtProc)
 (PRESENTATION = RO)
)
)

The sample tnsnames.ora file has a CODE alias that uses an ADDRESS pointing to the
database and a CONNECT_DATA parameter supporting a dedicated connection. The CONNECT_DATA
parameter SERVER has a dedicated value, which means a dedicated server connection. The sample
file also has an EXTPROC_CONNECTION_DATA alias that uses a single ADDRESS to an IPC and
CONNECT_DATA to the extproc SID.

You now have working listener.ora and tnsnames.ora files. You will need to shut
down the listener services, copy the files into the new locations, and restart the listener. The
following are the steps to take to replace the listener, by platform.

Chapter 13: External Procedures 455

Microsoft Windows

 1. As the Oracle user, source your environment, navigate to your system services, and shut
down the Oracle listener.

 2. Copy the original listener.ora and tnsnames.ora files in the %ORACLE_HOME%\
network\admin directory to listener.ora.orig and tnsnames.ora.orig.

 3. Copy the new listener2.ora and tnsnames2.ora files into the %ORACLE_HOME%\
network\admin directory and rename them as listener.ora and tnsnames.ora,
respectively.

 4. As the Oracle user, source your environment, navigate to your system services, and start
up the Oracle listener. In Windows, you will need to rebuild the original service and
build a new service for the second listener.

 5. Verify that you have two listener processes running by using the Task Manager. You will
find the running services under the Processes tab.

Unix

 1. As the Oracle user, source your environment and shut down the Oracle listener. You can
use the following on a generic demonstration database:

$ lsnrctl stop LISTENER

 2. Copy the original listener.ora and tnsnames.ora files in the $ORACLE_HOME/
network/admin directory to listener.ora.orig and tnsnames.ora.orig.

 3. Copy the new listener2.ora and tnsnames2.ora files into the $ORACLE_HOME/
network/admin directory and rename them as listener.ora and tnsnames.ora,
respectively.

 4. As the Oracle user, source your environment and start up the Oracle listener and
extproc agent listener. You can use the following syntax, based on a generic
demonstration database:

$ lsnrctl start LISTENER
$ lsnrctl start CALLOUT_LISTENER

 5. Verify that you have two listener processes running by using the ps utility, as shown:

$ ps –ef | grep –v grep | grep tnslsnr

At this point, you should have a LISTENER for the database and a CALLOUT_LISTENER for
the extproc agent. You should also have a background process running for the extproc agent.
In Microsoft Windows, you can check with the Task Manager for an extprocPLSExtProc
process. In Unix, you can use the ps utility to find it.

Assuming you have successfully started the two listeners, you need to confirm whether or not
it can communicate to the extproc agent. There are two steps to validating whether or not it is
working. After sourcing your environment files, you should first use the tnsping utility as you did
earlier in the chapter to test the network connection. You will use the EXTPROC_CONNECTION_DATA
alias to check connectivity. Run tnsping with the following:

$ tnsping EXTPROC_CONNECTION_DATA

456 Oracle Database 11g PL/SQL Programming

If you get the following, everything is correctly configured:

TNS Ping Utility for Linux: Version 11.1.0.6.0 - Production on 22-AUG-2007
Copyright (c) 1997, 2007, Oracle. All rights reserved.
Used parameter files:
/u03/oracle/11g/11.1.0/network/admin/sqlnet.ora

If you get a TNS-12541 error when using tnsping, the likelihood is that there is a mismatch
between the ADDRESS parameter values in the listener.ora and tnsnames.ora files. Please
check if there is a typo in either the listener.ora or tnsnames.ora file. You must resolve
any TNS-12541 error before continuing with the examples in the chapter.

Assuming you have successfully used the tnsping utility, the second step is to attempt to
connect to the extproc agent TNS alias. Use this to attempt to connect to the extproc agent
TNS alias:

$ sqlplus plsql/plsql@EXTPROC_CONNECTION_DATA

It should always fail. You should get the following output:

SQL*Plus: Release 11.1.0.6.0 - Production on Wed Aug 22 16:15:50 2007
Copyright (c) 1982, 2007, Oracle. All rights reserved.
ERROR:
ORA-28547: connection to server failed, probable Net8 admin error

This is the correct behavior. It is actually telling you that the SQL*Plus connection is rejected by
the extproc agent. The connection must have attempted to start and been rejected for you to
receive this message.

You have now learned how to configure your listener to support the extproc agent. The
next section will demonstrate an alternative to spawning a dedicated extproc agent for each
database session.

Defining the Multithreaded External Procedure Agent
As discussed in the review of architecture, configuring the heterogeneous multithreaded agent
is complex. However, it enables you to share a single extproc agent among multiple database
sessions. Implementing a multithreaded external procedure agent reduces resources required to
dynamically fork extproc agents.

The default behavior of external procedures is to fork a new extproc agent for each external
procedure call. This default works but consumes too many resources too frequently. When you
have many sessions using external libraries, you should use a multithreaded extproc agent. This
section will show you how to configure and use the multithreaded extproc agent.

Before you begin to learn how to configure the multithreaded external procedure agent, there
are three things to note about it:

The external library must be thread-safe.

The agent process, the database server, and the listener process must be on the same host.

The agent process must run from the same database instance that issues the external
procedure call.

■

■

■

Chapter 13: External Procedures 457

When using the multithreaded external procedure agent, you must start the agent separately
from the database. The multithreaded external procedure agent is an implementation of Oracle
Heterogeneous Connectivity Services. The agtctl executable to start and manage sessions is the
Agent Control utility. You will find it in the $ORACLE_HOME/hs directory.

If you attempt to use this tool without setting either the $AGTCTL_ADMIN or $TNS_ADMIN
environment variable, you will generate the following error message:

$ agtctl

AGTCTL: Release 11.1.0.6.0 - Production on Wed Aug 22 07:57:24 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

ORA-28591: agent control utility: unable to access parameter file
ORA-28591: agent control utility: unable to access parameter file

It is recommended that you set the $AGTCTL_ADMIN environment variable to point to the
$ORACLE_HOME/hs/admin directory. Any environment variables configured in the ENV
parameter within your extproc listener must be in the sourced environment of the Oracle
user when running agtctl.

The agtctl utility has two interfaces. One is the single-line command mode, and the other
is the agtctl shell mode. There is no GUI interface to the agtctl utility. There is no text
configuration file for this utility. It maintains parameter values in the $ORACLE_HOME/hs/
admin/initagt.dat control file, which is a binary file maintained by the agtctl utility.
Before you run the agtctl utility, the file will not exist. Table 13-2 provides a synopsis of the
command structure.

There are six initialization parameters. All have default behaviors that can be overridden by
using the agtctl set command. Table 13-3 provides the initialization parameters and their
default values and descriptions.

Command Syntax Description

delete agent_sid Deletes an agent_sid entry.
Exit Exits the agtctl file.
Help Displays available commands.

set parameter_name parameter_value Sets a configuration parameter.

Show parameter_name Shows a parameter’s value.

shutdown agent_sid Shuts down an agent_sid multithreaded
agent.

startup agent_sid Starts an agent_sid multithreaded agent.

unset parameter_name parameter_value Unsets a configuration parameter.

TABLE 13-2 Commands for the agtctl Utility

458 Oracle Database 11g PL/SQL Programming

You will now configure the extproc multithreaded agent using the agtctl shell mode. The
following steps will enable one hundred sessions and four dispatchers before starting the extproc
multithreaded agent:

AGTCTL> set agent_sid CALLOUT_LISTENER
AGTCTL> set max_dispatchers 4
AGTCTL> set max_sessions 100
AGTCTL> show max_dispatchers
4
AGTCTL> show max_sessions
100
AGTCTL> startup extproc

In Unix, you can use the ps utility to see the multithreaded external procedure agent. The task
manager in Microsoft Windows will also let you see the process. Here is the Unix command:

$ ps –ef | grep –v grep | grep extprocCALLOUT

The output from this command is

oracle 4635 1 0 18:41 ? 00:00:01 extprocCALLOUT_LISTENER -mt

Parameter Default Value Description
listener_address (ADDRESS_LIST =

 (ADDRESS =
 (PROTOCOL = IPC)
 (KEY = PNPKEY))
 (ADDRESS =
 (PROTOCOL = IPC)
 (KEY= <oracle_sid>)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = 127.0.0.1)
 (PORT = 1521)))

Address list for the agent
controller listener. The <oracle_
sid> value is the <service_name>
parameter in the tnsnames.ora
entry for the database.

max_dispatchers 1 Maximum number of dispatchers.
max_sessions 5 Maximum number of sessions.
max_task_threads 2 Maximum number of threads.
shutdown_address (ADDRESS_LIST =

 (ADDRESS =
 (PROTOCOL = IPC)
 (KEY = extproc)))

Address on which agtctl listens
for shutdown instruction.

tcp_dispatchers 0 Number of dispatchers listening
on TCP. All other dispatchers
listen on IPC.

TABLE 13-3 Initialization Parameters for the agtctl Utility

Chapter 13: External Procedures 459

You can now shut down the multithreaded external procedure agent by using the shutdown
command. Shutdown without an argument acts like a shutdown of the database, which means it
allows transactions in progress to complete. Shutdown immediate will cause in-progress external
procedure calls to abort. This is the immediate command:

AGTCTL> shutdown immediate

When you start the extproc multithreaded agent, all new external procedure calls will route
through the multithreaded agent. However, any calls previously started with dynamic stand-alone
extproc agents will continue to completion.

When you shut down the extproc multithreaded agent, it stops taking new requests. This
means all processing transactions should complete normally unless you stop the agent with the
immediate clause. The immediate clause forces all running threads to stop. After you shutdown
the multithreaded agent, the external procedure monitoring thread rejects new calls. Dynamic
extproc agents are then spawned for any new external procedure calls.

You have now learned how to start, configure, and stop the multithreaded external procedure
agent. You have seen how you can seamlessly move between dedicated dynamic extproc
sessions and a background multithreaded agent. The next section will demonstrate how you
create an external C shared library.

Working with a C Shared Library
As discussed when you covered the extproc architecture, Oracle built an extensible architecture
for external procedures. It is flexible to support any programming language that is callable by the
C programming language. For example, you can call a C++ program using the extern command
in C. You could call another C program from the shared library. It could then call back into the
database. The second C program would use embedded SQL to access data. Using embedded SQL
requires use of the Oracle Pro*C precompiler and the Oracle Call Interface (OCI). Both the Pro*C
precompiler and OCI tools require a solid working knowledge of C or C++.

Defining the C Shared Library
You will now define a simple C shared library. You will use the following C program as a dynamic
link library (DLL) or shared library. The structure of this program has been chosen to avoid having
to introduce you to the extensive details of Oracle Pro*C precompiler and OCI functionality. You
will need to have a C compiler installed on your platform to compile this example.

Compiling a C program has several nuances. A C compiler does several things. It preprocesses
the source code by breaking it down into tokens while validating syntax. Then, it compiles the
program into assembly programming code and uses an assembler to create object code. After
creating the object code, the compiler then links other object code into the program to create a
stand-alone program unit.

The following program includes standard library header files but does not link libraries:

-- This is found in writestr1.c on the publisher’s web site.
/* Include standard IO. */
#include <stdio.h>

/* Declare a writestr function. */
void writestr(char *path, char *message)
{

460 Oracle Database 11g PL/SQL Programming

 /* Declare a FILE variable. */
 FILE *file_name;

 /* Open the file in write-only mode. */
 file_name = fopen(path,"w");

 /* Write to file the message received. */
 fprintf(file_name,"%s\n",message);

 /* Close the file. */
 fclose(file_name);
}

The program includes the stdio.h file, which is called a header file. stdio.h contains
the definitions required to do basic I/O operations in C programs. The #include <stdio.h>
statement tells the C precompiler to include the contents of /usr/include/stdio.h file in the
program. The program writes a new file with a string message passed by an actual parameter to
the library.

It should be noted that the writestr1.c program does not have a main() function. A
main() function is required for a stand-alone C program. This program can be used only as a
DLL or shared library.

If you attempt a generic compilation of a library file that lacks a main() function, it will raise
an error. For example, if writestr1.c were a stand-alone program, you would compile it into
object code like this:

$ cc -o writestr.o writestr1.c

This will raise an error because there is no main() function in the program. The error message
follows:

/usr/lib/gcc-lib/i386-redhat-linux7/2.96/../../../crt1.o(.text+0x18): In function
'_start':
: undefined reference to 'main'
collect2: ld returned 1 exit status

It is assumed that you have a C or C++ Development IDE if you are working on the Microsoft
Windows platform. Since each IDE works a bit differently, you will have to understand how to use
your IDE to compile the program as a DLL.

If you are working on Unix, you live in the command-line world. The following examples
illustrate the two methods for creating a C shared library in Unix. The first example will work
on the Sun Microsystems C compiler. The second example is the most common approach and
supported on Linux.

Unix C Compiler that supports the –G option

cc –G –o writestr1.so writestr1.c

Unix C Compiler that supports the –shared option

cc –shared –o writestr1.so writestr1.c
 - OR -
gcc –shared –o writestr1.so writestr1.c

Chapter 13: External Procedures 461

TIP
If you are using IBM AIX and the IBM C compiler, you need to ensure
that you have a symbolic link named cc that points to xlc. The IBM
C compiler will attempt to include proprietary libraries that are not
referenced in the sample program. It will not attempt to include those
libraries when the calling executable is a symbolic cc.

You should now have a C shared library. Now, you or your DBA should create a custom
library directory off your $ORACLE_HOME. Please name it customlib if you want to be consistent
with the examples in this chapter. You should ensure the permissions for the directory is read,
write, and execute for owner and read and execute for group and user.

If you are not the DBA but a member of the DBA group, copying the file and executing it will
work. If are not in the DBA group, please have your DBA change the group ownership of the file to
the DBA group. It will not prevent you from executing the shared library, but it is a check-in
mechanism. Any files not in the DBA group would be considered development or stage program units.

You have now created a DLL/shared library and positioned it where a database external
procedure can call it. Next, you will define the PL/SQL library definition and wrapper.

Defining and Calling the PL/SQL Library Wrapper
You have configured your network; learned how to start, configure, and shut down a
multithreaded and stand-alone extproc agent; and created a C DLL or shared library. Now you
need to define a PL/SQL library definition and wrapper so that you can pass information from the
database to your C program.

PL/SQL Library Definition
The first step is to define the external library in the database. You do this after you have decided
where to place your library. $ORACLE_HOME/customlib is used for the C external procedure
example. As discussed, using a custom library requires configuration of the EXTPROC_DLLS
value in the ENV parameter. The ENV parameter is found in the listener.ora file. Alternatively,
you can put your libraries in the $ORACLE_HOME/bin or $ORACLE_HOME/lib directory and
not configure the EXTPROC_DLLS value. If you have customized where you place your libraries,
please synchronize the directory path for the library with your listener.ora file.

The PL/SQL library prototype is

CREATE [OR REPLACE] LIBRARY <library_name> AS | IS
'<file_specification>'
AGENT '<agent_dblink>';
/

The create_library1.sql and create_library2.sql files use Dynamic Native SQL
(DNS) to build the library creation DLL. This was done to simplify your submission of a directory
path. The command is provided in the comments section for the programs and noted in the
following:

-- This is found in create_library1.sql on the publisher’s web site.
CREATE OR REPLACE LIBRARY library_write_string AS
'<oracle_home_directory>/<custom_library>/<file_name>.<file_ext>';
/

The PL/SQL library role defines the name of the library and the physical location where the
library will be found. There is no validation of whether or not the file is physically located where

462 Oracle Database 11g PL/SQL Programming

you have specified. The library name is the access point for your PL/SQL wrapper. You will now
learn about the PL/SQL library wrapper.

PL/SQL Library Wrapper
The principal role of the PL/SQL library wrapper is to define an interface between the database and
the external procedure. The interface defines how the formal parameters map between PL/SQL
and C data types. It also defines any context and the location of the external procedure or library.
When you create a PL/SQL library wrapper, there is no check whether or not the shared library is
in the directory. You need to have a management process to ensure check-in and version control.

Oracle provides additional derived types to support OCI. The table columns show the source
of the types. The table also shows you the default conversion type. Table 13-4 maps PL/SQL and
C data types.

In your small example, data types are converted only from PL/SQL to C, but the library definition
supports bidirectional conversions. The bidirectional support is independent of the external shared
library. Whether the external C library returns data or not, the PL/SQL library wrapper has defined it
as bidirectional.

There are some differences beyond mapping between PL/SQL and C data types. They are
qualified here:

A variable can be NULL in PL/SQL, but there is no equivalent of a null value in C. When
a variable can be NULL, you must use another variable to notify that a variable is null
or not. This second variable is known as an indicator. You use OCI_IND_NULL and
OCI_IND_NOTNULL to check whether the indicator variable is null or not. The indicator
value is passed by value unless you override that behavior and pass by reference. An
advanced consideration for an indicator variable is that it can have a type descriptor
object (TDO) for composite objects and collections.

Both C and PL/SQL need to know the length of character strings when they are exchanged.
This is problematic because there is no standard means of determining the length of RAW
or STRING parameter types. You can use the LENGTH or VSIZE functions to determine
the length of a formal parameter. It is important to note that LENGTH is passed into the
external procedure by value when the mode is IN. It is passed by reference when using
mode OUT. You should use VSIZE when dealing with binary strings.

CHARSETID and CHARSETFORM are subject to globalization complexity if the extproc
agent database is running in a different database. The calling database NLS_LANG and
NLS_CHAR values are the expected values for the extproc agent. If this is not the case for the
extproc agent, you need to use the OCI attribute names to set these for the program.
The OCI attributes are OCI_ATTR_CHARSET_ID and OCI_ATTR_CHARSET_FORM. Both
CHARSETID and CHARSETFORM are passed by value for IN mode and by reference for
OUT mode.

The generalized format for creating a C library wrapper procedure is noted here:

CREATE [OR REPLACE] PROCEDURE name [parameter_list]
AS EXTERNAL
LIBRARY_NAME library_name
NAME "<external_library_name>"
AGENT IN [parameter_list]
WITH CONTEXT
PARAMETER [parameter_list];

■

■

■

Chapter 13: External Procedures 463

PL/SQL Native C Oracle Default

BINARY_INTEGER
BOOLEAN
PLS_INTEGER

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T

INT

NATURAL
NATURALN
POSITIVE
POSITIVEN
SIGNTYPE

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T

[UNSIGNED] INT

FLOAT
REAL

FLOAT FLOAT

DOUBLE PRECISION DOUBLE DOUBLE

CHAR
CHARACTER
LONG
NCHAR
NVARCHAR2
ROWID
VARCHAR
VARCHAR2

STRING
OCISTRING

STRING

LONG RAW
RAW

RAW
OCIRAW

RAW

BFILE
BLOB
CLOB
NCLOB

OCILOBLOCATOR OCILOBLOCATOR

NUMBER
DEC
DECIMAL
INT
INTEGER
NUMERIC
SMALLINT

OCINUMBER OCINUMBER

DATE OCIDATE OCIDATE

TIMESTAMP
TIMESTAMP WITH
TIME ZONE
TIMESTAMP WITH
LOCAL TIME ZONE

OCIDATETIME OCIDATETIME

INTERVAL DAY TO
SECOND
INTERVAL YEAR TO
MONTH

OCIINTERVAL OCIINTERVAL

Composite Object
Types: ADTs

dvoid dvoid

Composite Object
Types: Collections
(VARRAYS, NESTED
TABLES)

OCICOLL OCICOLL

TABLE 13-4 Mapping PL/SQL Datatypes to C

464 Oracle Database 11g PL/SQL Programming

It is important to note that the external_library_name is case sensitive when the operating
system supports case sensitivity. Even while working on Microsoft Windows, you should always
treat it as case sensitive. Good PL/SQL coding habits can make your life simpler when you change
work environments.

When you define the parameter lists for a PL/SQL wrapper, positional order is not important.
The PL/SQL wrapper relates them by name.

Objects present a unique case with the normally implicit SELF. In PL/SQL, you do not have
to manage an object type’s SELF member function, because it is implicitly managed. The problem
is that the SELF reference is a parameter in the formal parameter list. The external C program
requires the PL/SQL external procedure wrapper to define a complete formal parameter list. This
means that it must formally define SELF. You pass an object to an external procedure by using
the WITH CONTEXT clause when you define the object type. The following example illustrates
defining an external object type:

CREATE OR REPLACE TYPE BODY object_library_sample AS
MEMBER FUNCTION get_tea_temperature
RETURN NUMBER
AS LANGUAGE C
NAME "tea_temp"
WITH CONTEXT
PARAMETERS
(CONTEXT
, SELF
, SELF INDICATOR STRUCT
, SELF TDO
, RETURN INDICATOR);
END;
/

Another rule applies to passing variables by reference to an external procedure. You must
append the BY REFERENCE phrase to all variables passed by reference.

The AGENT IN clause allows run-time identification of the external agent program. This is an
advanced feature. It is useful when you have more than one external agent running or configured.
An example that would benefit from this type of PL/SQL wrapper is an environment with multiple
external applications. Making the external agent a dynamic component gives you more flexibility.
You can then use stored objects to make dynamic calls to different external application libraries.

You are now ready to create your PL/SQL external procedure wrapper. The sample program to
build the PL/SQL wrapper follows:

-- This is found in create_library1.sql on the publisher’s web site.
CREATE OR REPLACE PROCEDURE write_string
 (path VARCHAR2
 ,message VARCHAR2) AS EXTERNAL
LIBRARY library_write_string
NAME "writestr"
PARAMETERS
 (path STRING
 ,message STRING);
/

Chapter 13: External Procedures 465

The PL/SQL external procedure wrapper publishes the external library. It creates a data
dictionary entry for a library named library_write_string. You should note that it qualifies
the name of the external procedure without the *.so suffix (or on Microsoft Windows platforms,
a *.dll). The suffix is automatically postpended. If it were included in the definition of the NAME
value, the extproc agent would look for writestr1.so.so and fail.

You have learned how to define and configure a PL/SQL wrapper. Previously, you learned
how to do all network plumbing, library coding, and agent configuration. It is now time to see
if it was done correctly.

If you are working in Unix, use the online file. However, if you are working in Microsoft
Windows, change the first argument to the write_string procedure. It should change from
/tmp/file.txt to C:\TEMP\FILE.TXT. You can now execute the external procedure by
invoking the PL/SQL wrapper, as shown in the following code:

-- This is found in create_library1.sql on the publsiher’s web site.
BEGIN
 write_string('/tmp/file.txt','Hello World!');
END;
/

When the procedure completes successfully, you can then open the file in the Unix /tmp or
Microsoft Windows C:\TEMP directory. Rerunning the program will create a new file of the same
name and rewrite the same string. If the file is in the /tmp or C:\TEMP directory, only the file’s
date stamp will appear to change.

There are some restrictions when working with external procedures:

You should not use global variables because they are not thread safe.

You should not use external static variables because they are not thread safe.

You can use this feature only on platforms that support DLLs or shared libraries.

You can use only programming languages callable from the C programming language.

You must use objects when you want to pass cursor or record variables to an external
procedure.

You cannot use a DB_LINK in the LIBRARY clause of a PL/SQL wrapper declaration.

You can pass a maximum of 128 parameters. If you have float or double data types, they
count for two parameters.

You have completed everything required to configure and set up a C DLL or shared library. If
everything worked, please accept our congratulations. However, if something failed, you can go
straight to the troubleshooting section. In that section, you will troubleshoot the most common
problems.

Alternatively, it is time to look at creating Java external procedures.

Working with a Java Shared Library
As discussed when you covered the extproc architecture, Oracle built an extensible architecture
for external procedures. It is flexible enough to support any programming language that is callable
by the C programming language.

■

■

■

■

■

■

■

466 Oracle Database 11g PL/SQL Programming

Oracle directly supports Java as part of the database (except in the Oracle Express Edition).
Java libraries do not use the extproc agent because they are natively part of the Oracle database.
This simplifies much but does restrict some activities. Those restricted activities make the case for
using the extproc agent and external C or C callable libraries.

Java has a few advantages over C:

Java understands SQL types. It avoids the tedious data type mapping when using C.

Java is loaded into the Oracle database. It avoids the file management issues and listener
ENV parameter processes because it does not use the extproc agent.

Java is natively thread safe. It does not require you to deal with the threading nuances,
provided you avoid static variables.

Java does not require management of memory addresses. (Memory addresses are called
pointers in C/C++.)

NOTE
Java static variables are considered class-level variables, which means
they are built at compile time, not run time. There can be only one
copy of a class variable in a Java Virtual Machine (JVM), provided
there is only one Java class loader. Within the context of the Oracle
JVM there can be more than one Java class loader. Therefore, if you
plan on using a Java class for an external procedure, avoid using static
variables.

Java has a few disadvantages relative to C:

Java uses the Java pool in the SGA for processing, whereas C external procedures
use their own memory space. Effectively, C external programs lower the memory
consumption of the SGA, while Java increases the load on the SGA.

Java is not as fast as C because native Java byte code needs to be interpreted by the JVM.

Java has restricted access to files. This protects the integrity of the database. The
DBMS_JAVA package provides a means to define read and write access for Java library
programs.

PL/SQL wrapper functions that use Java libraries impose a limit on method definitions. All
Java class methods accessed by PL/SQL wrapper functions must be static. Therefore, Java
libraries that support PL/SQL wrapper functions are not thread safe.

You will now define a simple Java library.

Defining the Java Library
Java is generally an interpreted language, as opposed to a compiled language like C. C compilation
results in a file of object code, which consists of machine code or binary instructions. Java
compilation results in a Java byte stream. The JVM interprets the byte stream and executes the
run-time object code. JVMs are platform specific, while byte streams are generic. This is why
Java class files are portable across platforms.

■

■

■

■

■

■

■

■

Chapter 13: External Procedures 467

Compiling a Java program does several things. It preprocesses the source code by breaking it
down into tokens while validating syntax. Then, it compiles the program into Java byte code and
writes a Java .class file. Java .class files are dependent at run time on any included libraries.

The following program includes a standard I/O library. This will enable the database to access
a physical file external to the instance. You do not define permission to Java file access in the
initSID.ora parameter file. You must use the DBMS_JAVA package to grant permission from
the SYSTEM account. The grant has already been done if you ran the online create_user.sql
script for this chapter. The following shows the command required to grant read-only access to
the /tmp/file.txt file:

-- This is found in create_user.sql on the publisher’s web site.
 -- Grant Java permissions to file IO against a file.
 DBMS_JAVA.GRANT_PERMISSION('PLSQL'
 ,'SYS:java.io.FilePermission'
 ,'/tmp/file.txt'
 ,'read');

NOTE
This syntax is provided only for Linux or Unix. This command fails
when run in a Windows environment. If you’re running Windows,
change the third actual parameter to the correct local directory.

Much as when you use C external procedures, you first need to define the Java library. At a
minimum, you will need to configure your Java environment. If you are using a Java IDE, it is
assumed you know how to compile Java source code into class files. Only the command-line
steps are covered here.

Unlike the example in Chapter 10, the Java program does not interact with the database
through SQL. That means you do not need to include the class files to support SQL. Therefore,
you do not need to set your $CLASSPATH. For reference, the Oracle SQL class files are found
in $ORACLE_HOME/jdbc/lib/ojdbc5.jar.

Oracle 11g Security Alert
Java is disallowed to write to the operating system by default. This is set in the Oracle
JVM properties. When you grant permissions to write files, you create a security risk. The
contents of the database are much harder to hack than the server file system. When you
write data to or from files, those directories pose a security risk.

The superuser account owns the privileges to open a directory for Java programs.
Unfortunately, there is no equivalent mechanism for external procedures written in
languages like C, C++, or C#. Any schema that can create libraries enjoys the liberty of
reading content from or writing content to any directories in the DBA group. You should
advise your System Administrator to take extra precautions with any directory open to
database writes.

The same security rules apply to any directory configured in your spfile<sid>.ora
to support the UTL_FILE package. The spfile<sid>.ora file contains the initialization
parameters for the database. The UTL_FILE package also lets you read and write data
between the Oracle 11g Database and the file system.

468 Oracle Database 11g PL/SQL Programming

Assuming you have access to the Java SDK, you need to download the following program and
compile it to Java byte code:

-- This is found in ReadFile1.java on the publisher’s web site.
// Class imports.
import java.io.*;

// Class definition.
public class ReadFile1
{
 // Convert the string to a file resource and call private method.
 public static String readString(String s){
 return readFileString(new File(s)); }

 // Read an external file.
 private static String readFileString(File file) {
 // Define control variables.
 int c;
 String s = new String();
 FileReader inFile;

 try {
 inFile = new FileReader(file);

 while ((c = inFile.read()) != -1) {
 s += (char) c; }
 }
 catch (IOException e) {
 return e.getMessage(); }

 return s; }

 // Testing method.
 public static void main(String[] args) {
 String file = new String("/tmp/file.txt");
 System.out.println(ReadFile1.readString(file)); }
}

The program takes a canonical filename as a string and reads a file. The program can read
from any directory where it has owner or group file system privileges. The static main() method
is only provided for external testing and should be removed before deploying code in the database.

Once you have downloaded the file and compiled it, you need to load it into the database.
You can do so with the Oracle loadjava utility, which is covered in Chapter 15. The following
loadjava command will make the Java class available in the PLSQL schema:

$ loadjava -r -f -o -user plsql/plsql ReadFile1.class

You have now completed the library Java library definition. You will now define and call the
PL/SQL library wrapper to the Java library.

Defining and Calling the PL/SQL Library Wrapper
Writing the PL/SQL library wrapper to a Java module is called publishing the Java library. Since you
used a C external procedure, you will define a Java library function. There are a couple reasons

Chapter 13: External Procedures 469

for doing so. First, Java libraries must use static methods when they are published as PL/SQL
functions. Second, it gives you an opportunity to see how arguments for Java libraries are limited.

Arrays support a pass by reference semantic in Java. A pass by reference semantic means that
the memory address is passed by the PL/SQL run-time engine to the Java library. After the Java
library updates the array and completes processing, it will return control to the PL/SQL run-time
engine. PL/SQL knows the address and can access any changed data values. If you want to move
data into and out of a Java library, you must do one of two things:

You define a function and manage the return type of the function. The downside
to a function is that it is not thread safe because you must use static method
definitions.

You define a procedure and use an array in OUT mode. The array option requires
including the ojdbc5.jar file and using an oracle.sql.ARRAY[] data type.
oracle.sql.ARRAY[] is a nested table collection with a numeric index value.

Java libraries and PL/SQL have a mapping relationship like C. Chapter 15 contains a table that
maps PL/SQL and Java datatypes.

Most of the types are straightforward. The LONG and LONG RAW data types are limited to 32K.
The oracle.sql.Datum is an abstract class. This means that it is dynamic and becomes
whatever SQL type is passed to it.

You can publish your Java function by using the following wrapper:

-- This is found in create_javalib1.sql on the publisher’s web site.
CREATE OR REPLACE FUNCTION read_string
 (file IN VARCHAR2)
 RETURN VARCHAR2 IS
 LANGUAGE JAVA
 NAME 'ReadFile.readString(java.lang.String) return String';
/

The PL/SQL Java library wrapper publishes the Java class. It is important to point out that you
must define the formal parameter with the fully qualified package. If you attempt to use String
and not java.lang.String, it will compile successfully but fail at run time. The following
program can test success or failure:

-- This is found in call_javawrapper.sql on the publisher’s web site.
SELECT read_string('/tmp/file.txt')
FROM dual;

It will return the following output from the /tmp/file.txt file if you modify the input
formal parameter as described previously, that is, if you change the java.lang.String to
String.

-- This is found in call_javawrapper.sql on the publisher’s web site.
FROM dual
 *
ERROR at line 2:
ORA-29531: no method readString in class ReadFile

You have now defined a Java library and published the Java class file. Next, you will take a
look at troubleshooting the extproc agent and external procedures.

■

■

470 Oracle Database 11g PL/SQL Programming

Troubleshooting the Shared Library
This is the section where you try to find out why something is not working. Hopefully, we have put
most of the explanation in the chapter already. This section will cover some known errors and
their fixes.

External procedures typically fail because of two issues. One is the configuration of the listener,
shared library, or environment. That is why you went through all the components and how they fit
together. Another is when the definition of the external program differs from the PL/SQL wrapper.
This typically happens when data types are incorrectly mapped. Each class of problem is described
in one of the two subsections that follow.

Configuration of the Listener or Environment
There are four general problems with network connectivity. They are noted here with the typical
error messages and explanations.

Listener ENV Parameter Is Incorrect
As discussed in the extproc Oracle Net Services configuration, the following error will be raised
when the ENV variable is incorrectly configured:

BEGIN
*
ERROR at line 1:
ORA-06520: PL/SQL: Error loading external library
ORA-06522: /u03/oracle/11g/11.1.0/lib/writestr1.so: cannot open shared object
file: No such file or directory
ORA-06512: at "PLSQL.WRITE_STRING", line 1
ORA-06512: at line 4

If you receive this error, you have experienced one of two types of failures. One is that the library
is not in the directory you have designated, is named differently, or is case sensitive. Another is
that you have made an error in configuring the ENV parameter in your listener.ora file.

File Path Problem
If the file path is not in the directory you have designated in the ENV value, correcting the file path
should resolve the problem. If the file path is missing a component or is not consistent in case
with the PL/SQL wrapper NAME parameter value or EXTPROC_DLLS value, synchronizing all
three entries will fix it.

If the file path is in the directory and all three locations mentioned are matched in spelling
and case, the problem is in the listener ENV parameter. Two areas can cause the problem: a bad
EXTPROC_DLLS or a bad $LD_LIBRARY_PATH entry. There is a third potential error: the
$APL_ENV_FILE value. This third error is typically a problem only when you have positioned
the extproc agent in another Oracle home.

EXTPROC_DLLS Value Problem
You need to check the ENV variable in CALLOUT_LISTENER. The general rule is that you should
have an entry for EXTPROC_DLLS and LD_LIBRARY_PATH in the ENV value. EXTPROC_DLLS
should specify an equal sign, the word ONLY, a colon, and the shared libraries you want to use or

Chapter 13: External Procedures 471

a list of shared libraries separated by colons. Alternatively, you can choose to leave out the ONLY
qualifier and provide a shared library or list of shared libraries separated by colons. If you leave
the ONLY qualifier out, you have not restricted the IPC listener to only those libraries. It is
recommended by Oracle that you use ONLY to narrow the privileges of the listener.

You also need to check whether the shared libraries have a fully qualified path statement, the
filename, and the file extension. Likewise, the LD_LIBRARY_PATH should at a minimum specify
the fully qualified path to the $ORACLE_HOME/lib directory. If your libraries require other libraries,
you would use the LD_LIBRARY_PATH reference. When you have more than the one library in
the LD_LIBRARY_PATH, you use a set of fully qualified path statements separated by colons.

If you would like to see this error, you can do the following:

 1. Rename the shared library path in the PL/SQL wrapper. You would do this by rerunning
the create_library1.sql script with an incorrect path statement.

 2. Rerun the anonymous block PL/SQL call to the write_string procedure.

NOTE
If you run this test, do not forget to fix everything before you move on
to the rest of the chapter.

The extproc Listener Is Incorrectly Configured or Not Running
As discussed in the extproc Oracle Net Services configuration, the following error will be raised
when the extproc listener is not running or configured properly:

BEGIN
*
ERROR at line 1:
ORA-28576: lost RPC connection to external procedure agent
ORA-06512: at "PLSQL.WRITE_STRING", line 1
ORA-06512: at line 4

If you receive this error, the extproc listener is not running or the KEY parameters don’t match in
listener.ora and in tnsnames.ora files. You need to verify the setup of your listener.ora
and tnsnames.ora files. The method is described in an earlier section of this chapter, “Defining
extproc Oracle Net Services Configuration.”

If you would like to see this error, you can do the following:

 1. Shut down the CALLOUT_LISTENER.

 2. Alter the KEY parameter value in the listener.ora file so that it no longer agrees with
the tnsnames.ora file.

 3. Start up the CALLOUT_LISTENER.

 4. Rerun the anonymous-block PL/SQL call to the write_string procedure.

NOTE
If you run this test, do not forget to fix everything before you move on
to the rest of the chapter.

472 Oracle Database 11g PL/SQL Programming

There Is No Separate extproc Listener
As discussed in connection with the extproc Oracle Net Services configuration, the following
error will be raised when three conditions are met:

The correct environment is defined in the extproc listener.

There is no separate extproc listener.

The extproc agent is attempting to access the DLL or shared library in any directory
other than $ORACLE_HOME/bin or $ORACLE_HOME/lib.

BEGIN
*
ERROR at line 1:
ORA-28595: Extproc agent : Invalid DLL Path
ORA-06522: h§n¶h§n¶

If you receive this error, these three conditions are met, since you have configured a perfect ENV
variable in the standard single LISTENER. You now need to do one of two things. You can migrate
the extproc agent listener to a separate listener. This is described in the section “Defining
extproc Oracle Net Services Configuration.” Alternatively, you can abandon the custom library
directory and put the external libraries in the $ORACLE_HOME/lib directory.

If you would like to see this error, you can do the following:

 1. Shut down the CALLOUT_LISTENER.

 2. Using the online listener1.ora and tnsnames2.ora files, replace your
listener.ora and tnsnames.ora, respectively. Do not forget to configure these
files. You need to provide full path statements that match your system for them to work.
Do not forget to make a copy of your modified files so that you can restore them.

 3. Start up the CALLOUT_LISTENER.

 4. Rerun the anonymous block PL/SQL call to the write_string procedure.

NOTE
If you run this test, do not forget to fix everything before you move on
to the rest of the chapter.

PL/SQL Wrapper Defined NAME Value Is Incorrect
As discussed in the context of defining and calling the PL/SQL library wrapper, the following error
will be raised when the NAME variable is incorrectly entered:

BEGIN
*
ERROR at line 1:
ORA-06521: PL/SQL: Error mapping function
ORA-06522: /u03/oracle/11g/11.1.0/lib/libagtsh.so: undefined symbol:
writestr1.so
ORA-06512: at "PLSQL.WRITE_STRING", line 1
ORA-06512: at line 3

■

■

■

Chapter 13: External Procedures 473

If you receive this error, you need to check the NAME variable in the PL/SQL external library
definition. The ORA-06522 error returns the filename of the object that cannot be found. It is unclear
from the error if it was looking for the writestr1.so file in the $ORACLE_HOME/lib directory.
Actually, it first looked in the designated custom library directory, then in the $ORACLE_HOME/lib
directory. It could not find the writestr1.so.so file. Defining the NAME parameter of the external
procedure with the filename and suffix can cause the problem. It should always be only the filename.
The extproc agent implicitly appends .so or .DLL, depending on the platform.

NOTE
The extproc agent always searches the ENV defined directories first
and the $ORACLE_HOME/lib last. Anytime the DLL or shared library
name fails to match the value in the PL/SQL library definition, the
ORA-06522 will return the $ORACLE_HOME/lib directory.

If you encounter this error and verify everything is working, shut down your extproc listener.
Use the ps utility to find the running extprocPLSExtProc agent. If it is running after you shut
down the listener, it should not be running. Use the kill utility to end it. Then restart your
extproc listener. This eliminates the conflict with the preserved state in the extproc agent.

If you would like to see this error, you can do the following:

 1. Rename the writestr.so shared library file.

 2. Rerun the anonymous block PL/SQL call to the write_string procedure.

NOTE
If you run this test, do not forget to fix everything before you move on
to the rest of the chapter.

The LD_LIBRARY_PATH should at a minimum specify the fully qualified path to the
$ORACLE_HOME/lib directory. If you use the default location for your shared library, you
can exclude it.

Configuration of the Shared Library
or PL/SQL Library Wrapper
As you built the shared external library file and PL/SQL wrapper, you probably noticed that the
formal parameter types mapped correctly. When they do not map correctly, you will lose the RPC
connection and generate the following error message:

BEGIN
*
ERROR at line 1:
ORA-28576: lost RPC connection to external procedure agent
ORA-06512: at "PLSQL.WRITE_STRING", line 1
ORA-06512: at line 4

If you receive this error, the PL/SQL library is defining a mapping relationship that cannot be
implicitly cast. This error is raised when you try to fork an external library with actual parameters
that do not implicitly cast to the formal parameters of the library.

474 Oracle Database 11g PL/SQL Programming

CAUTION
Implicit casting is a big nightmare. If you run into an implicit cast, you
will not get an error during the call to the external procedure. You
will likely get bad data from your program, and it may take a while to
sort out why. Ensuring the external library types match the definition
in the PL/SQL wrapper is a configuration management issue. You will
save yourself countless hours of frustration and lost productivity if
you create a check-in process that ensures external library definitions
agree with PL/SQL library definitions.

If you would like to see this error, you can do the following:

 1. Create a writestr2.so shared library from the online writestr2.c file.

 2. Shut down the CALLOUT_LISTENER.

 3. Use the online listener3.ora and tnsnames3.ora files to replace your listener.
ora and tnsnames.ora files, respectively. Do not forget to configure these files. You
need to provide full path statements that match your system for them to work.

 4. Start up the CALLOUT_LISTENER.

 5. Run the online create_library2.sql file to build the PL/SQL external procedure
wrapper.

 6. Rerun the anonymous block PL/SQL call to the write_string procedure.

NOTE
If you run this test, do not forget to fix everything before you move on
to the rest of the chapter.

You have now completed the troubleshooting section. It is time to summarize what you have
done in the chapter.

Summary
You have learned what external procedures do and how to configure the Oracle Net Services to
support them. You have worked through defining and calling extproc and native Java libraries.
Then, you learned how to troubleshoot the most common problems.

CHAPTER
14

Object Types

475

476 Oracle Database 11g PL/SQL Programming

his chapter examines how you define, initialize, and use objects. It lays a
foundation of what PL/SQL object types are and how object-oriented (OO)
programming works by covering the following topics:

Object basics

 Declaring object types

 Implementing object bodies

 Getters and setters

 Static member methods

 Comparing objects

Inheritance and polymorphism

 Declaring subclasses

 Implementing subclasses

 Type evolution

Implementing arrays of objects

 Declaring object type collections

 Implementing object body collections

As discussed, procedural programming functions perform well-defined tasks, and they hide
the details of their operation. A collection of functions can be grouped together to perform a task
that requires a set of functions. Organized groups of functions are modules; and the process of
grouping them together is modularization. Modules are stored in PL/SQL packages.

Packages, like functions and procedures, hide their complexity through a predefined
application programming interface (API). While you can access global variables and constants
that are declared in package specifications, you can’t guard against their external change without
implementing a Singleton pattern. The sidebar “Singleton Design Pattern” in Chapter 9 explains
how you can control access with a Singleton pattern. Functions and procedures present different
problems because they control all operations on their run-time variables.

Object-oriented (OO) programming solutions fix some of the shortcoming of functions,
procedures, and packages because they maintain the operational state of their variables. Object
types define how to store data and define API operations, also known as member functions or
procedures. Operations are generally described as methods in OO programming languages, but
they are implemented as class member functions or procedures in PL/SQL.

Exploring where OO programming started helps explain why maintaining object state is
important. The idea for OO programming comes from the Simula language developed in Norway
in the 1960s. The concept of an object evolved from the idea that simulated events pass through
many small software factories, known as “finite-state” or “state” machines. State machines are
miniature applications that simulate real-world events.

■

■

■

■

■

■

■

■

■

■

■

■

■

T

Chapter 14: Object Types 477

The object that moves through the series of state machines is like a software equivalent to a
ball in a physical pinball machine. The software “ball” isn’t really moving in response to mechanical
devices but in response to state machines that simulate bumpers and other physical objects. The
velocity, spin, and direction of the software ball are its internal state, which must be known and
tracked to determine where it will strike and at what speed and spin. These factors determine how
the next bumper, or state machine, will impact the software ball.

The possible characteristics and behaviors of the software ball are its attributes and operations.
Since each ball starts with the same characteristics and behaviors, you can define a single piece
of code to contain these attributes. The single piece of code is defined as an object type, or
blueprint. Each creation of a run-time unit of this code is an instantiation, or creation of an object.

Objects are also state machines. They are defined by variables that have known and unknown
values; and these variables enable or constrain the operations of real-time instances. Object type
instances are objects, though realistically this formalism seems lost more often than not. Object
types and objects are also known as classes in many OO programming languages. This book uses
object types to describe declarations of objects and object bodies to describe run-time instances
of object types; and interchangeably classes to describe declarations of objects and instances of
classes to describe run-time instances of object types.

Like PL/SQL package specifications and bodies, an object type mirrors the behavior of a
package specification. Also, an object body implements the object type just as a package body
implements a package specification.

Inside of these object types and instances of objects you have hidden data and operations. The
process of hiding data storage and operations is described by two words in OO programming.
The first is encapsulation—the process of hiding the operational details; and the second is
abstraction—the process of using generalization to mask task complexity. The internal aspects
of object types are wrapped, as a birthday present is wrapped by colorful paper. The wrappers
access the hidden components through published operations, which is similar to the package
architecture described in Chapter 9.

These hidden operations and data plus their wrapper operations require OO programmers
to take some time to work out what should be an object and then to define the object type.
This analysis and design process is called object-oriented analysis and design (OOAD). OOAD
evolved from concepts in systems engineering and business process modeling. It has gone
through several variations from the 1960s, including symbolic representation models like Booch
and object-modeling technique (OMT). These models were merged into the Unified Modeling
Language (UML) in the 1990s.

The current method for visually representing object types is generally done in UML. Object
types are represented by a rectangle divided into three rectangular sections. The topmost section
contains the object type name. The middle section contains the list of attributes, which are
variables used in the object type. The bottom section contains the list of methods that describes
the API to the object type or object. Figure 14-1 contains a sample UML diagram describing the
MyClass object type.

OO programming has two types of API interfaces in object types. One is known as static, and
the other is known as instance. Static methods allow you to access object type variables and
methods without creating an instance of a class. Static variables aren’t available in PL/SQL. You
can implement static methods like package functions and procedures.

Instance methods let you access object variables and methods of an instance of a class. They
are not static, and they are available only after you create an instance of an object type. Then,
they are capable of managing class events.

478 Oracle Database 11g PL/SQL Programming

The static area of objects is generally limited to variables and functions that are common
features across all class instances. PL/SQL does not support static class variables. It only supports
static class functions and procedures. You can use static functions to return a copy of an
instantiated class, which implements the object-oriented programming concrete builder pattern.
Likewise, you can use static member functions or procedures to return what would otherwise be
an instance variable. The section “Static Member Methods” later in this chapter contains an
example returning an instance as a return type. That example shows you how to implement a
factory design pattern in PL/SQL.

Oracle 11g, like predecessors since Oracle 9i, lets you create object types and bodies as SQL
datatypes. You can use these object types as SQL datatype in four situations. You can use them as
a column datatype when you define a table. They can also serve as the datatype of an object
attribute when you declare an object type. You can also use them as a formal parameter datatype
in the signature of a function or procedure, and you can use them as a return type for a function.

Oracle 11g qualifies objects as either persistent or transient objects. The qualification is made
by assessing the lifetime of the objects.

Persistent objects are further qualified by dividing them into standalone and embedded
objects. Standalone objects are stored in a database table and have a unique object identifier.
Embedded objects are not stored in a database table but are embedded in another Oracle
structure, like another object type. You don’t have an object identifier for embedded objects,
which makes using them through the OCI difficult. You can find more about persistent objects
in the Oracle Database Object-Relational Developer’s Guide.

Transient objects are instances of objects that aren’t stored in the database. They have a
lifetime limited to the duration of their use in a PL/SQL block. These are the primary type of
objects you’ll learn about in this chapter.

You will now learn how to define and implement objects in PL/SQL. While the sections are
written independently, they are positioned to be read sequentially.

Objects Basics
The same naming requirements as those used with other objects in the database apply to objects.
Object type names in PL/SQL must start with an alphabetical character and consist of only
alphabetical characters, numbers, or underscores. Object names share the same name space
as all other objects except database triggers.

Scope for object types is the same as for other standalone functions or procedures, and
package functions and procedures. It is also limited to the defining schema. You must grant
execute on an object type if you want to enable another scheme to use it.

FIGURE 14-1 UML class diagram

Chapter 14: Object Types 479

Classes, unlike functions, cannot have return types. Class instantiation returns a copy or instance
of a class. While object construction generally occurs as the source operand on the right side of
an assignment operator, you can dynamically construct an object instance as an actual parameter
to a function, or as a member of a collection. The existence of object instances is limited to the
duration of the call, or its membership as a component of a collection.

You will find that objects are similar to those in many other languages but different enough
to review the object operators. Table 3-1 provides you with a list of PL/SQL delimiters that also
support example programs in this chapter.

Having met the general concepts, you will now work through the specifics of implementing
transient object types in PL/SQL. You will begin by learning how to declare, implement, and
instantiate objects. Then, you’ll examine good OO programming techniques, like getters, setters,
static methods, and comparative class methods.

Declaring Objects
PL/SQL object types, like package specifications, have a prototype definition. You have a couple
specialized functions—CONSTRUCTOR, MAP, and ORDER. You can implement one or more
CONSTRUCTOR functions, but the signatures must follow the overloading rules qualified in the
sidebar “Overloading” in Chapter 9. Constructor functions determine how you build instances
of object types. Constructor functions return an instance of the object type, which is known in
PL/SQL as SELF, not the Java this. Functions can also use PRAGMA instructions to restrict their
behaviors. You implement the MAP or ORDER function for comparisons. Parameter lists for
member or static functions and procedures follows the same rules as standalone functions and
procedures, as qualified in Chapter 6.

Attributes (instance variables) and methods are listed in a single parameter list that applies to
the object type. You can’t declare object type variables as you can package variables. All attributes
are instance-only variables, which means you can only access them after you construct an object
instance.

You need to list elements in the following order: attributes, constructors, functions, procedures,
and the MAP or ORDER function. If you try to put an attribute at the end of the list, you’ll receive a
PLS-00311 error. The error tells you that the declaration of the object type is malformed because
you’ve got elements out of sequence.

The prototype for object types is

CREATE [OR REPLACE] OBJECT TYPE object_name
[AUTHID {DEFINER | CURRENT_USER}] IS OBJECT
([instance_variables {sql_datatype | plsql_datatype}]
, [CONSTRUCTOR FUNCTION constructor_name
 [(parameter_list)] RETURN RESULT AS SELF
, [{MEMBER | STATIC} FUNCTION function_name
 [(parameter_list)] RETURN { sql_data_type | plsql_data_type }
, [{MEMBER | STATIC} PROCEDURE procedure_name
 [(parameter_list)]
,{[MAP FUNCTION map_name RETURN { CHAR | DATE | NUMBER | VARCHAR2 } |
 [ORDER FUNCTION order_name RETURN { sql_data_type | plsql_data_type }}])
[NOT] INSTANTIABLE [NOT] FINAL;
/

NOTE
The OR REPLACE clause is very important because without it you
must drop the object type before attempting to re-declare it.

480 Oracle Database 11g PL/SQL Programming

You can build an object type with the following statement:

The hello_there basic class has two constructors and only the to_string instance
method. Constructor function names must match the object type name, like Java classes. One
constructor function creates an instance of the object without actual call parameters, while the
other requires a mandatory parameter to create an instance of the object type. If you changed
the mandatory parameter in the constructor function to an option parameter, you could trigger
a PLS-00307 exception at run time. This happens because the signature of a no-parameter
constructor and one with a single optional parameter are equal at run time when you don’t
supply a value. A call made with a parameter would resolve and construct an object instance.

NOTE
The compiler raises a PLS-00658 error when you forget to match
your constructor function to the name of the object type.

The MEMBER PROCEDURE is only accessible once you’ve created an object instance. This
object is instantiable (capable of creating an object instance), and not final (capable of being
extended or subtyped). All object type variables are instance variables. As such, they are not
available through static functions and procedures.

After you create an object type, you examine it by using the DESCRIBE command, like

SQL> describe HELLO_THERE

You get the following back to your console:

HELLO_THERE is NOT FINAL
 Name Null? Type
 --- -------- -------------------
 WHO VARCHAR2(20)
METHOD

 FINAL CONSTRUCTOR FUNCTION HELLO_THERE RETURNS SELF AS RESULT

Chapter 14: Object Types 481

METHOD

 FINAL CONSTRUCTOR FUNCTION HELLO_THERE RETURNS SELF AS RESULT
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 WHO VARCHAR2 IN
 MEMBER PROCEDURE TO_STRING

The output is different from what you get describing a table, view, function, procedure, or
package. You get a list of all instance variables, class constructor functions, and member functions
and procedures.

The next section shows you how to implement this declaration. You’ll also see how to
construct an instance and use it in a PL/SQL block.

Implementing Object Bodies
PL/SQL object bodies, like package bodies, must implement their declarations exactly. This means
you must provide an implementation for everything you have in the object type declaration. Unlike
when defining package bodies, you can’t add private methods known only to the object body. Nor
can you add the equivalent of package-level variables inside an object body implementation. The
only attributes, functions, and procedures in object bodies are those declared in the object type.

NOTE
Unlike some OO programming languages, Oracle 11g object types
don’t support inner classes.

Inside functions and procedures, you can define named functions and procedures in the
declaration block, and anonymous-block programs in the execution block. You address the
attributes of object types by prefacing them with SELF, a component selector (that period
again), and the attribute name.

The following is the prototype for implementing an object body:

CREATE [OR REPLACE] OBJECT TYPE object_name
[AUTHID {DEFINER | CURRENT_USER}] IS
([CONSTRUCTOR FUNCTION constructor_name
 [(parameter_list)] RETURN RESULT AS SELF IS
 BEGIN

execution_statements;
 END [constructor_name];
 [{MEMBER | STATIC} FUNCTION function_name
 [(parameter_list)] RETURN { sql_data_type | plsql_data_type } IS
 BEGIN

execution_statements;
 END [function_name];
 [{MEMBER | STATIC} PROCEDURE procedure_name IS
 [(parameter_list)]
 BEGIN

execution_statements;
 END [procedure_name];
 {[MAP FUNCTION map_name RETURN { CHAR | DATE | NUMBER | VARCHAR2 } IS
 BEGIN

execution_statements;

482 Oracle Database 11g PL/SQL Programming

 END [procedure_name]; |
 [ORDER FUNCTION order_name RETURN { sql_data_type | plsql_data_type } IS
 BEGIN

execution_statements;
 END [procedure_name];}])
END [object_name];
/

An object body is very close to a package body implementation, except it excludes local
variables and components. As mentioned earlier, the MAP and ORDER functions are specialized
units, and you can only implement whichever one was declared in the object type.

TIP
Exclude the object name at the end of the object body because it
sometimes suppresses meaningful errors and causes compilation
failure.

There are a few subtle changes between traditional functions and procedures and object
bodies. The largest is the idea of an object instance. An object instance is represented inside the
object body as SELF. SELF is a departure from the traditional this keyword from Java and other
OO programming languages. Object instance attributes are elements of SELF, just as field values
are elements of a record structure. The same syntax rules apply for assigning and retrieving values,
as shown in the hello_there object body.

You can find the create_helloworld_object.sql script on the publisher’s site. It
contains the object type and body, plus the testing program units.

The following implements the hello_there object body:

Chapter 14: Object Types 483

Object types should generally provide a default constructor. Default constructors typically
have no formal parameters. In objects where the formal parameters are required to make instances
useful, the default constructor calls the constructor with default parameters. This is done in an
object body by four steps. First, you create a local variable of the object type. Second, you
instantiate the local (internal) class with default actual parameters. Third, you assign the transient
local object to the instance itself. Fourth, you return a handle to the current object. The RETURN
statement works differently in an object than a standalone function. It never takes an argument
because it is returning a copy of the object type.

The behavior of managing a default constructor can be tricky, but they simplify the construction
of object instances. The default constructor hides (from the eyes of the consuming developer) the
details of creating an object instance. The overriding constructor provides the values to build an
object instance but hides the details of how to do so.

The to_string procedure lets you see the contents of the constructed class. You can test the
class by calling the default constructor, as shown

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 hello HELLO_THERE := hello_there; -- hello_there() works too!
BEGIN
 hello.to_string();
END;
/

This anonymous block constructs an instance of the object by using the default constructor.
You can construct an instance with or without empty parentheses, like function and procedure
calls in PL/SQL blocks. You call the member procedure just as you would a package procedure.

The call to the instance of hello_there.to_string() prints

Hello Generic Object.

The next anonymous block calls the overriding constructor. This provides a non-default
parameter to the instance. The code is

DECLARE
 hello HELLO_THERE := hello_there('Overriding Object');
BEGIN
 hello.to_string();
END;
/

It prints

Hello Overriding Object.

This section has shown you how to implement object bodies. You have also learned how
to construct an object instance, and how to distinguish between a default constructor and an
overriding constructor.

Getters and Setters
Getters and setters are common OO programming terms indicating that you get or set a class
instance variable. In PL/SQL you need to write individual get_variable_name() or
set_variable_name() functions for each class attribute.

484 Oracle Database 11g PL/SQL Programming

The following extends the previous hello_there object type by adding a get_who()
member function and set_who() member procedure. There’s no magic in choosing a function
for the getter because you want to take something out of the object instance. Functions return
expressions, as you’ll find in Chapter 6. The setter can be either a function or a procedure, but
more often than not it’s a procedure. Setter method calls don’t generally return a value. In most
OO programming languages, you implement setters as functions with a void return type.

The modified hello_there object type is

CREATE OR REPLACE TYPE hello_there IS OBJECT
(who VARCHAR2(20)
, CONSTRUCTOR FUNCTION hello_there
 RETURN SELF AS RESULT
, CONSTRUCTOR FUNCTION hello_there
 (who VARCHAR2)
 RETURN SELF AS RESULT
, MEMBER FUNCTION get_who RETURN VARCHAR2
, MEMBER PROCEDURE set_who
, MEMBER PROCEDURE to_string)
INSTANTIABLE NOT FINAL;
/

The implementation of these two member methods is straightforward. The setter passes a new
value for who, while the getter retrieves the current value.

The hello_there object body is

CREATE OR REPLACE TYPE BODY hello_there IS
 CONSTRUCTOR FUNCTION hello_there RETURN SELF AS RESULT IS
 hello HELLO_THERE := hello_there('Generic Object');
 BEGIN
 self := hello;
 RETURN;
 END hello_there;
 CONSTRUCTOR FUNCTION hello_there (who VARCHAR2) RETURN SELF AS RESULT IS
 BEGIN
 self.who := who;
 RETURN;
 END hello_there;
 MEMBER FUNCTION get_who RETURN VARCHAR2 IS
 BEGIN
 RETURN self.who;
 END get_who;
 MEMBER PROCEDURE set_who (who VARCHAR2) IS
 BEGIN
 self.who := who;
 END set_who;
 MEMBER PROCEDURE to_string IS
 BEGIN
 dbms_output.put_line('Hello '||self.who||'.');
 END to_string;

Chapter 14: Object Types 485

END;
/

The setter assigns a new value from the actual parameter, and the getter grabs the current
class instance value. The following anonymous block demonstrates calling these new member
methods:

DECLARE
 hello HELLO_THERE := hello_there('Overriding Object');
BEGIN
 hello.to_string();

hello.set_who('Newbie Object');
 dbms_output.put_line(hello.get_who);
 hello.to_string();
END;
/

The anonymous block successfully resets and gets the values as shown:

Hello Overriding Object.
Newbie Object.
Hello Newbie Object.

This section has shown you how to implement and use getters and setters.

Static Member Methods
The static functions and procedures let you use an object type like a standard package. Static
methods can create instances of their object type, but they are limited to working with instances
of the object like external PL/SQL blocks.

The nice thing about static methods is that they can provide developers with a standard
look and feel of procedural programming. You can write static methods to perform standard
programming tasks, or to return an instance of their class. Writing a function that returns a class
instance can simplify how you use objects because you don’t have to worry about long parameter
lists in the constructors.

The following declares an object type that includes a static function:

-- This is found in create_item_object.sql on the publisher's web site.
CREATE OR REPLACE TYPE item_object IS OBJECT
(item_title VARCHAR2(60)
, item_subtitle VARCHAR2(60)
, CONSTRUCTOR FUNCTION item_object
 RETURN SELF AS RESULT
, CONSTRUCTOR FUNCTION item_object
 (item_title VARCHAR2, item_subtitle VARCHAR2) RETURN SELF AS RESULT
, STATIC FUNCTION get_item_object (item_id NUMBER) RETURN ITEM_OBJECT
, MEMBER FUNCTION to_string RETURN VARCHAR2)
INSTANTIABLE NOT FINAL;
/

486 Oracle Database 11g PL/SQL Programming

The static function get_item_object take one parameter. The parameter doesn’t map to the
parameter lists in the constructors, but the static function returns an instance of the item_object.
This means that the static function must create an instance of the object type as a local variable
before it can return one to a calling program.

External programs create an instance of the object type before they can act on it. The static
get_item_object function lets you get a initialize an object instance without calling the
constructor. In fact, you can assign the result from the get_item_object to a variable declared
as the same object type. The result is an active transient object instance.

The following implements the object body of item_object class:

-- This is found in create_item_object.sql on the publisher's web site.
CREATE OR REPLACE TYPE BODY item_object IS
 CONSTRUCTOR FUNCTION item_object RETURN SELF AS RESULT IS
 item ITEM_OBJECT := item_object('Generic Title','Generic Subtitle');
 BEGIN
 self := item;
 RETURN;
 END item_object;
 CONSTRUCTOR FUNCTION item_object
 (item_title VARCHAR2, item_subtitle VARCHAR2)
 RETURN SELF AS RESULT IS
 BEGIN
 self.item_title := item_title;
 self.item_subtitle := item_subtitle;
 RETURN;
 END item_object;
 STATIC FUNCTION get_item_object (item_id NUMBER) RETURN ITEM_OBJECT IS
 item ITEM_OBJECT;
 CURSOR c (item_id_in NUMBER) IS
 SELECT item_title, item_subtitle FROM item WHERE item_id = item_id_in;
 BEGIN
 FOR i IN c (item_id) LOOP
 item := item_object(i.item_title,i.item_subtitle);
 END LOOP;
 RETURN item;
 END get_item_object;
 MEMBER FUNCTION to_string RETURN VARCHAR2 IS
 BEGIN
 RETURN '['||self.item_title||']['||self.item_subtitle||']';
 END to_string;
END;
/

The get_item_object static function uses the actual parameter and local cursor to find a
row in the item table. The static function uses the values from the cursor to construct an instance
of the object type. It then returns the local instance variable as its actual return value.

You can test the static method by using the following anonymous-block program:

Chapter 14: Object Types 487

The call to the object involves a couple component selectors. Oracle refers to this process
of connecting multiple pieces together with periods as attribute chaining. You call the static
get_item_object function by referencing the schema-level item_object object type. The
result of the static function call is a valid instance of the object type. You can then add a period
and a call to the to_string instance function.

NOTE
The to_string function call works with or without parentheses, like
ordinary standalone and package functions.

It prints

[Pirates of the Caribbean][The Curse of the Black Pearl]

This section has shown you how to declare and implement a static function. You can use this
approach to accomplish building other static methods that let you leverage object types in your
database.

Comparing Objects
Comparing object instances is very important in OO programming. In the Java programming
language, an equals method is provided for the root node of its single object hierarchy. Good
programming practice dictates that you should override it when you implement your own
classes that extend the behavior of the Object class.

Oracle object types don’t have a root node that you extend in the same way as Java. You
have a master template that you implement through SQL DDL syntax. Oracle does provide two
predefined member functions—MAP and ORDER. You can implement only one MAP or ORDER
function in any object type. If you attempt to define both, the object type specification raises a
PLS-00154 error during compilation. The error states that “An object type may have only 1 MAP
or 1 ORDER method.” The MAP member function doesn’t take a formal parameter and can only
return a scalar type of CHAR, DATE, NUMBER, and VARCHAR2.

TIP
Subclasses can’t override the MAP or ORDER functions found in a parent class.

488 Oracle Database 11g PL/SQL Programming

The benefit of a MAP member function is limited. It limits you to testing for equality based
on a single number that identifies a class instance. The ORDER member function is more flexible
because it can take parameters of any SQL datatype. However, the ORDER member function only
returns a NUMBER datatype. The parameter is the advantage, and the return type really isn’t a
disadvantage. You may recall that many built-in functions return a number so that you can use
them in SQL and PL/SQL. If the ORDER member function returned a BOOLEAN datatype, it would
only let you compare objects in PL/SQL.

The next two subsections demonstrate comparing objects with MAP and ORDER member
functions. You’ll have to choose what works best for you, but the ORDER member function is
recommended as the better option.

Comparing with the MAP Member Function
As discussed, the MAP member function validates against a scalar type of CHAR, DATE, NUMBER,
and VARCHAR2 datatype. The MAP member function works best when a single attribute value of
a class instance determines whether it is equal to or greater than another object instance. When
more than one attribute, or a relationship of attributes, determines ordering, the MAP member
function fails to allow you to sort objects easily.

You can accomplish a barebones example by declaring only constructor and map member
functions. The following declares the map_comparison object type:

-- This is found in the map_comparison.sql on the publisher's web site.
CREATE OR REPLACE TYPE map_comp IS OBJECT
(who VARCHAR2(20)
, CONSTRUCTOR FUNCTION map_comp (who VARCHAR2) RETURN SELF AS RESULT
, MAP MEMBER FUNCTION equals RETURN VARCHAR2)
INSTANTIABLE NOT FINAL;
/

MAP is a keyword designating the function for sorting operations. The implementation of the
map_comp object type is

-- This is found in the map_comparison.sql on the publisher's web site.
CREATE OR REPLACE TYPE BODY map_comp IS
 CONSTRUCTOR FUNCTION map_comp (who VARCHAR2) RETURN SELF AS RESULT IS
 BEGIN
 self.who := who;
 RETURN;
 END map_comp;

MAP MEMBER FUNCTION equals RETURN VARCHAR2 IS
 BEGIN
 RETURN self.who;
 END equals;
END;
/

The test program creates a collection of object types in mixed alphabetical order and then
runs the items through a bubble sort operation to put them in ascending order. The code follows:

Chapter 14: Object Types 489

-- This is found in the map_comparison.sql on the publisher's web site.
DECLARE
 -- Declare a collection of an object type.
 TYPE object_list IS TABLE OF MAP_COMP;
 -- Initialize four objects in mixed alphabetical order.
 object1 MAP_COMP := map_comp('Ron Weasley');
 object2 MAP_COMP := map_comp('Harry Potter');
 object3 MAP_COMP := map_comp('Luna Lovegood');
 object4 MAP_COMP := map_comp('Hermione Granger');
 -- Define a collection of the object type.
 objects OBJECT_LIST := object_list(object1, object2, object3, object4);
 -- Swaps A and B.
 PROCEDURE swap (a IN OUT MAP_COMP, b IN OUT MAP_COMP) IS
 c MAP_COMP;
 BEGIN
 c := b;
 b := a;
 a := c;
 END swap;
BEGIN
 -- A bubble sort.
 FOR i IN 1..objects.COUNT LOOP
 FOR j IN 1..objects.COUNT LOOP
 IF objects(i).equals = LEAST(objects(i).equals,objects(j).equals) THEN
 swap(objects(i),objects(j));
 END IF;
 END LOOP;
 END LOOP;
 -- Print reordered objects.
 FOR i IN 1..objects.COUNT LOOP
 dbms_output.put_line(objects(i).equals);
 END LOOP;
END;
/

It produces the following output:

Harry Potter
Hermione Granger
Luna Lovegood
Ron Weasley

The LEAST function determines whether the outer loop element MAP member function result
is less than the inner loop element. When it is least, it swaps the values until the least of the entire
set is the first element in the collection, and the rest are in ascending order. While bubble sorts
are inefficient, they’re nice tools for demonstrating concepts.

This section has demonstrated how you can sort by using the MAP member function. As you
can see, the logic for the comparison lies largely outside of the object type. This means the sorting
isn’t hidden and the logic not encapsulated.

490 Oracle Database 11g PL/SQL Programming

Trick or Treat’n with Persistent Object Types
While the chapter is about transient objects in the scope of your PL/SQL programs, it seems
only fair to not leave you in a lurch. You could find some interesting trick or treat behavior
when you try reading objects from the database.

The following demonstrates a quick example that helps you understand how to read
your stored objects from the database. The first step is to create a persistent_object
table and persistent_object_s1 sequence as follows:

CREATE TABLE persistent_object
(persistent_object_id NUMBER
, mapping_object MAP_COMP);
CREATE SEQUENCE persistent_object_s1;

Second, you’ll insert the nine companions in the Fellowship of the Ring. The syntax is
the same for each but you’ll need to switch the names in the constructor:

INSERT INTO persistent_object
VALUES (persistent_object_s1.nextval,map_comp('Frodo Baggins'));
INSERT INTO persistent_object
VALUES (persistent_object_s1.nextval,map_comp('Bilbo Baggins'));

You can select these natively, in which case you’ll see return values like

MAPPING_OBJECT(WHO)

MAP_COMP('Frodo Baggins')
MAP_COMP('Bilbo Baggins')

This type of query doesn’t let you apply instance methods. You might start to think that
these object types have little use. The trick is the TREAT function. The TREAT function
takes a column return and treats it as the object type you designate.

The column formatting ensures it displays well for you. The following query allows you
to query the column values as object instances, and it lets you sort them with their own
equals function:

COLUMN primary_key FORMAT 9999999 HEADING "Primary|Key ID"
COLUMN fellowship FORMAT A30 HEADING "Fellowship Member"
SELECT persistent_object_id AS primary_key
, TREAT(mapping_object AS map_comp).equals() AS fellowship
FROM persistent_object
WHERE mapping_object IS OF (map_comp)
ORDER BY 2;

This query sorts the object through the MAP function and returns:

Primary
 Key ID Fellowship Member
-------- -----------------
 2 Bilbo Baggins
 1 Frodo Baggins

The TREAT function works with object types or subclasses of object types, as explained
in the section “Inheritance and Polymorphism” later in this chapter.

Chapter 14: Object Types 491

Comparing with the ORDER Member Function
The ORDER member function allows you to pass an object instance into another object and
compare whether they’re equal. You can also build it to judge whether one object instance is
greater or smaller than another. While the MAP member function works best with single-attribute
class instances, the ORDER member function supports internal validation when more than one
attribute indexes an object instance.

You can accomplish a barebones example by declaring two attributes, a constructor and an
ORDER member function. The MAP member function requires that you implement the matching
code externally from the object type. ORDER member functions require that you resolve whether
or not to sort into a single number.

You can find the order_comparison.sql script on the publisher’s site. It contains the
object type and body, plus the testing program units.

The following declares the order_comp object type:

The order_comp function takes a parameter of its own object type. This mimics the
equivalent behavior in Java for the equals method. The idea is to pass an object instance inside
another of the same type because the object type should contain the validation of whether two
instances are equal or not. A to_string function is also declared, which will let you examine
the contents of object instances.

The following implements the object body:

-- This is found in order_comparison.sql on the publisher's web site.
CREATE OR REPLACE TYPE BODY order_comp IS
 CONSTRUCTOR FUNCTION order_comp
 (who VARCHAR2, movie VARCHAR2) RETURN SELF AS RESULT IS
 BEGIN
 self.who := who;
 self.movie := movie;
 RETURN;
 END order_comp;

492 Oracle Database 11g PL/SQL Programming

 MEMBER FUNCTION to_string RETURN VARCHAR2 IS
 BEGIN
 RETURN '['||self.movie||']['||self.who||']';
 END to_string;
 ORDER MEMBER FUNCTION equals (object order_comp) RETURN NUMBER IS
 BEGIN
 -- The primary sort.

IF self.movie < object.movie THEN
 RETURN 1;
 -- The secondary sort.

ELSIF self.movie = object.movie AND self.who < object.who THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
 END equals;
END;
/

The primary sort operation determines if the current object instance’s movie attribute is less
than the value of the external instance. The function returns 1 when that’s true. The secondary
sort operation runs only when the first attributes match. It determines if the current object
instance’s who attribute is less than the external instance. The ORDER member function also
returns 1 when the secondary sort finds the combination of values less than the values of the
external object instance. All other value comparisons are rejected, and the ORDER member
function returns 0.

The equals function returns 1 as the true outcome, which means you should sort
the instance passed as an actual parameter before the base instance. When the equals
function returns 0 as the false outcome, the base instance should remain in its current position
in a list.

The test program is a bit larger for this comparison but straightforward. Like the program
that tested the MAP member function, this program creates a collection, initializes eight object
instances, and initializes the collection. You should notice that the only change to the swap
procedure is a change of datatype in the formal parameters.

Equals or Not Comparison
While the example does more than a standard equals method, you could implement a
direct equality comparison by changing the IF block to

 IF self.movie = object.movie AND self.who = object.who THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;

This would then return 1 when both objects are equal and 0 when they’re not. It doesn’t
provide you with a sorting key, but you could implement another sorting_hat method
for that.

Chapter 14: Object Types 493

It follows:

-- This is found in order_comparison.sql on the publisher's web site.
DECLARE
 -- Declare a collection of an object type.
 TYPE object_list IS TABLE OF ORDER_COMP;
 -- Initialize four objects in mixed alphabetical order.
 object1 ORDER_COMP := order_comp('Ron Weasley','Harry Potter 1');
 object2 ORDER_COMP := order_comp('Harry Potter','Harry Potter 1');
 object3 ORDER_COMP := order_comp('Luna Lovegood','Harry Potter 5');
 object4 ORDER_COMP := order_comp('Hermione Granger','Harry Potter 1');
 object5 ORDER_COMP := order_comp('Hermione Granger','Harry Potter 2');
 object6 ORDER_COMP := order_comp('Harry Potter','Harry Potter 5');
 object7 ORDER_COMP := order_comp('Cedric Diggory','Harry Potter 4');
 object8 ORDER_COMP := order_comp('Severus Snape','Harry Potter 1');
 -- Define a collection of the object type.
 objects OBJECT_LIST := object_list(object1, object2, object3, object4
 ,object5, object6, object7, object8);
 -- Swaps A and B.
 PROCEDURE swap (a IN OUT ORDER_COMP, b IN OUT ORDER_COMP) IS
 c ORDER_COMP;
 BEGIN
 c := b;
 b := a;
 a := c;
 END swap;
BEGIN
 -- A bubble sort.
 FOR i IN 1..objects.COUNT LOOP
 FOR j IN 1..objects.COUNT LOOP
 IF objects(i).equals(objects(j)) = 1 THEN -- Ascending order.
 swap(objects(i),objects(j));
 END IF;
 END LOOP;
 END LOOP;
 -- Print reordered objects.
 FOR i IN 1..objects.COUNT LOOP
 dbms_output.put_line(objects(i).to_string);
 END LOOP;
END;
/

You should gain better use of the ORDER member function by consistently labeling it as equals
because that mimic Java. It is a recommended solution to standardized how you deploy transient
objects in your code.

The anonymous-block program simply passes a copy of one instance to the other. You swap
them when the equals function returns 1 (which means true). The function returns true when the
actual parameter isn’t greater than the base instance. This sorts the instances in ascending order.

You get the following output:

[Harry Potter 1][Harry Potter]
[Harry Potter 1][Hermione Granger]
[Harry Potter 1][Ron Weasley]

494 Oracle Database 11g PL/SQL Programming

[Harry Potter 1][Severus Snape]
[Harry Potter 2][Hermione Granger]
[Harry Potter 4][Cedric Diggory]
[Harry Potter 5][Harry Potter]
[Harry Potter 5][Luna Lovegood]

If you change the IF block to check for 0 (or false), like this

IF objects(i).equals(objects(j)) = 0 THEN
 swap(objects(i),objects(j));
END IF;

you get a descending sort like

[Harry Potter 5][Luna Lovegood]
[Harry Potter 5][Harry Potter]
[Harry Potter 4][Cedric Diggory]
[Harry Potter 2][Hermione Granger]
[Harry Potter 1][Severus Snape]
[Harry Potter 1][Ron Weasley]
[Harry Potter 1][Hermione Granger]
[Harry Potter 1][Harry Potter]

This section has demonstrated how to compare objects by using the MAP or ORDER member
functions. You’ve seen how to leverage both while working with transient object instances.

Inheritance and Polymorphism
Object-oriented (OO) programming languages demand a change in thinking, but sometimes you
may find yourself asking why. The foregoing part of this chapter explains the mechanics of building
object types as libraries. You can also build packages by developing a collection of functions and
procedures. While building libraries of object types requires more effort and design than building
packages, the return on your investment of time is their extensibility.

Objects are extensible because you can add to their capabilities by building subclasses. Subclasses
inherit the behaviors of other class, which become known as superclasses. Subclasses can also
override the behaviors of their superclass by creating methods to replace superclass members.
The idea that subclasses extend and change behaviors of their superclasses is termed morphing.
Polymorphing is the process of multiple subclasses inheriting the behaviors of superclasses.

The classic example is a generalized class that defines a vehicle. You can develop specializations
of the vehicle class by building car, motorcycle, truck, and van subclasses. These subclasses
extend the general attributes and methods provided by the vehicle class and in some cases
provide overriding methods. The specialized methods manage the differences between driving
a car or riding a motorcycle. When the vehicle class is subclassed, the vehicle class is promoted
and called a superclass.

Objects inherit and polymorph behaviors by extending base behaviors in an organized tree
called an object hierarchy. Object hierarchies contain libraries of object types, which are reusable
programming units, or in the OO programming lexicon, reusable code artifacts.

Reusability has many facets. Using static functions and procedures to exchange information
between class instances enables you to position reusable class components. These static structures
have general use across all or many class instances and support sharing function and variable states.

Subclasses are created according to two patterns: single inheritance and multiple inheritance.
Single-tree OO programming languages, such as Java, support the single-inheritance model. C++
supports a multiple-inheritance model. The single-inheritance model is represented in Figure 14-2.

Chapter 14: Object Types 495

The semantics of Java and PL/SQL support only the single-inheritance model, but realistically,
you can use the OO principle of aggregation to overcome this limitation. Inheritance is a
specialized form of aggregation, which you can implement without much effort. Ordinary
aggregation requires you to define a class variable of another class, instantiate an instance of the
class, and develop method wrappers that redirect action to the class instance methods. You can
implement inheritance and aggregation in the same class and mimic the multiple-inheritance model.

Inheritance means that you define a class as a child of a parent class—a subclass of a class.
When you create an instance of the subclass, you get an instance that has the behaviors of the
parent class and subclass. If a subclass provides a method that has the same name as a parent
class method, the subclass method overrides the parent class method. This means that when you
call the method (function or procedure), it will implement the subclass method, not the parent
class method.

The power of OO programming exists in extending generalized behaviors and organizing
variables and functions into real-world object types. You have learned how to build and access
object types and instances of objects. In the next sections, you will learn how to extend general
classes into subclasses.

Declaring Subclasses
Subclasses require a bit of new and very specific Oracle vocabulary. Unlike the Java programming
language where a subclass extends behavior, Oracle object types develop their implementation
under the superclass. This really means the same thing—subclasses extend behavior. The UNDER
keyword is consistent with the mental image you may have formed from Figure 14-2.

You must state a member method is an overriding behavior. While this is also a departure
from how you override methods in Java, it does improve the clarity of definition. This is especially
true when you inspect the declaration of an object type in the database catalog. If you started
with Java, it may require an adjustment.

FIGURE 14-2 Single-inheritance UML model

496 Oracle Database 11g PL/SQL Programming

There are several restrictions that apply to subtypes. You can’t override type attributes, which
means you don’t list them when you declare the subtype. If you forget the rule, the compiler reminds
you with a PLS-00410 error. The PLS-00410 error is adequate but was really developed for
duplication when you create a record type. The message is “duplicate fields in RECORD, TABLE
or argument list are not permitted.” The error means that an object type and all subtypes share a
formal parameter list (aka argument list). Subtypes can implement the same attributes as other
sibling subtypes but not parents. A sibling subtype is one that is directly subclassed from the
same parent class.

The MAP and ORDER member functions are elements of the formal parameter list. They are
only implemented in the object type. This limitation means that you must kludge comparative
validation of subtypes by implementing another member function for comparisons. Alternatively,
you can couple the parent MAP or ORDER function to all subtypes. This type of coupling requires
that you maintain both when changing either. Subtypes call the MAP or ORDER member function
for base object comparison, and then it performs a supplemental subtype comparison.

The compiler raises a PLS-00154 error when you attempt to put a MAP or ORDER function
in a subtype where the parent already has one. This error is also triggered because of the shared
formal parameter list.

The example extends the behavior of the order_comp object presented in the section
“Comparing with the ORDER Member Function” earlier in this chapter. It is critical that you
confirm that the parent object type is declared and valid in your schema before trying to create
a subclass. You will see how to create a subclass and override a method, which in this case is a
member function.

You can find the order_subcomparison.sql script on the publisher’s site. It contains the
object type and body, plus the testing program units.

You declare the order_subcomp object type as follows:

This order_subcomp subtype is deployed under the order_comp subtype. It extends the
behavior of the type and inherits all behaviors that are not overridden. The subtype adds a new
parameter to the list and reflects the parameter list change in the constructor function. It also
overrides the to_string function of the parent subtype.

Chapter 14: Object Types 497

After you subtype an object type, the parent type has dependents. You can’t replace the object
type without invalidating the children, and then you can only do it by adding the FORCE clause
to the DDL DROP TYPE statement. This means there is some significant linkage that you’ll
need to account for in your deployment and maintenance scripts. It is known as type evolution,
and you can find a discussion of it in the section “Type Evolution” later in this chapter. The
order_subcomparison.sql script it takes care of managing these dependencies for you.

Implementing Subclasses
The process of implementing subclasses is closer to the generic process for implementing a
base object type. Unlike the object type declaration, the object body doesn’t actually reference
the object type.

You can implement this function by applying the principles covered earlier in this chapter.
The implementation of the object body is

-- This is found in order_subcomparison.sql on the publisher's web site.
CREATE OR REPLACE TYPE BODY order_subcomp IS
 CONSTRUCTOR FUNCTION order_subcomp
 (who VARCHAR2, movie VARCHAR2, subtitle VARCHAR2)
 RETURN SELF AS RESULT IS
 BEGIN
 self.who := who;
 self.movie := movie;
 self.subtitle := subtitle;
 RETURN;
 END order_subcomp;

OVERRIDING MEMBER FUNCTION to_string RETURN VARCHAR2 IS
 BEGIN
 RETURN (self as order_comp).to_string||'['||self.subtitle||']';
 END to_string;
END;
/

The implementation shows that you construct an instance of the subtype with three parameters.
You should note that the constructor assigns values to the who and movie attributes, which are
declared by the base object type. While you can write to those variables inside the constructor,
you cannot write to or read them in other methods of the subtype object. If you want to access
them, you’ll need to write getters and setters to make it possible. Any attempt to directly access them
in a subclass raises a PLS-00671 error.

The OVERRIDING member function presents a new syntax. The syntax lets you call to the
parent class and execute any method. The overriding to_string function calls the superclass
to_string function and treats the return value as an expression.

(self as order_comp).to_string

You cannot gain access to parent class attributes, because there aren’t any. Your subclass
initializes superclass attributes as instance attributes inside the subclass. When you call a
superclass function or procedure, it operates on the instance class variables in the subtype.
It doesn’t matter whether they were declared in the superclass.

The anonymous block that tests this subtype is a modified version of the one in the section
“Comparing with the ORDER Member Function.” The only change is that one of the eight object

498 Oracle Database 11g PL/SQL Programming

instances is now a subtype, and the subtype works in the context of the collection of the base
object type.

The program is

-- This is found in order_subcomparison.sql on the publisher's web site.
DECLARE
 -- Declare a collection of an object type.
 TYPE object_list IS TABLE OF ORDER_COMP;
 -- Initialize one subtype.
 object1 ORDER_SUBCOMP := order_subcomp('Ron Weasley','Harry Potter 1'
 ,'Socerer''s Stone');
 -- Initialize seven types.
 object2 ORDER_COMP := order_comp('Harry Potter','Harry Potter 1');
 object3 ORDER_COMP := order_comp('Luna Lovegood','Harry Potter 5');
 object4 ORDER_COMP := order_comp('Hermione Granger','Harry Potter 1');
 object5 ORDER_COMP := order_comp('Hermione Granger','Harry Potter 2');
 object6 ORDER_COMP := order_comp('Harry Potter','Harry Potter 5');
 object7 ORDER_COMP := order_comp('Cedric Diggory','Harry Potter 4');
 object8 ORDER_COMP := order_comp('Severus Snape','Harry Potter 1');
 -- Define a collection of the object type.
 objects OBJECT_LIST := object_list(object1, object2, object3, object4
 ,object5, object6, object7, object8);
 -- Swaps A and B.
 PROCEDURE swap (a IN OUT ORDER_COMP, b IN OUT ORDER_COMP) IS
 c ORDER_COMP;
 BEGIN
 c := b;
 b := a;
 a := c;
 END swap;
BEGIN
 -- A bubble sort.
 FOR i IN 1..objects.COUNT LOOP
 FOR j IN 1..objects.COUNT LOOP
 IF objects(i).equals(objects(j)) = 1 THEN
 swap(objects(i),objects(j));
 END IF;
 END LOOP;
 END LOOP;
 -- Print reordered objects.
 FOR i IN 1..objects.COUNT LOOP
 dbms_output.put_line(objects(i).to_string);
 END LOOP;
END;
/

The object1 instance variable is constructed by calling the subtype. The subtype instance
is then added to the collection of the base type. It is also passed as an actual argument to the base
type ORDER member function and local swap procedure. In both cases the subtype masquerades
as the base object type.

Subtypes are a combination of the base class and subclass code. The base object body code
acts on the subclass attributes when a subclass initializes them. The subclass-specific methods act

Chapter 14: Object Types 499

on the subclass-only components. You can also call any method from your parent class to work
with attributes stored there. Together you get the attributes and behaviors of the base class and
subclass.

The anonymous block implicitly treats all elements of the nested table as their native type.
This is more or less what you accomplish by calling the TREAT function in a query. The TREAT
function constructs a transient object instance from a persistent object constructor. You create
the constructor when you store the object in a table. Reading the object from the table requires
you to create an instance of the object at runtime as shown in the sidebar “Trick or Treat’n with
Persistent Object Types” earlier in the chapter.

Subtypes are implicitly cast at runtime. This means they behave the same as transient object
types. The following creates a table using the ORDER_COMP supertype:

CREATE TABLE harry_potter
(harry_potter_id NUMBER
, character_role ORDER_COMP);

You can then insert both a superclass and subclass into the harry_potter table, like this:

INSERT INTO harry_potter VALUES
(1, order_subcomp('Ron Weasley','Harry Potter 1','Socerer''s Stone'));
INSERT INTO harry_potter VALUES
(1, order_comp('Hermione Granger','Harry Potter 1'));

These insert the following raw data, which you can query with

COLUMN character_role FORMAT A68
SELECT character_role FROM harry_potter;

It shows

CHARACTER_ROLE(WHO, MOVIE)
--
ORDER_SUBCOMP('Ron Weasley', 'Harry Potter 1', 'Socerer''s Stone')
ORDER_COMP('Hermione Granger', 'Harry Potter 1')

The column title for the query appends the constructor for the object superclass. One row
stores a call to the subclass constructor, and the other stores a call to the superclass constructor.

You can select the object contents by using the TREAT function. The TREAT function actually
constructs an instance of the object by calling recursively for each row the constructor stored in
the table.

With the SQL*Plus formatting, the query returns the results of the to_string instance function:

COLUMN character_role FORMAT A50
SELECT TREAT(character_role AS ORDER_COMP).to_string() AS character_role
FROM harry_potter;

You must include the parentheses when calling the instance method in a SQL statement. This
statement returns the following:

CHARACTER_ROLE
--
[Harry Potter 1][Ron Weasley][Socerer's Stone]
[Harry Potter 1][Hermione Granger]

500 Oracle Database 11g PL/SQL Programming

As you can see, the TREAT function constructs an instance of the supertype or subtype. It
determines which one to call by reading the constructor call that is stored in the column. You
should always declare columns with the supertype. If you forget and declare a column that uses
the subtype, the database lets you insert superclass constructors, but they fail at runtime. This
behavior should really raise an ORA-00932 error, which explains that inconsistent datatypes are
disallowed. You receive an ORA-00932 error when you attempt to enter another unrelated object
type constructor.

The rule is simple: always declare object datatypes with the top-most class in a hierarchy.
Leave the subtyping to the database, unless you’re querying. Queries use the TREAT function.

This section has shown you how to build subclasses, override methods, and call superclass
methods.

Type Evolution
Object type evolution refers to changes in object types when they have dependents. This is
a concern when using transient objects but is a critical issue when you actually store data in
persistent objects in the database.

You can’t change object types once you declare their dependents as columns in database
tables. Therefore, you should be certain that you’ve captured one hundred percent of the
requirements before you use them in database tables. Alternatively, you require a migration
strategy to move the contents of older persistent object types into new ones.

If you attempt to add an attribute to the base object type order_comp when order_subcomp
exists in the database, you raise an ORA-02303 error. It says that you can’t “drop or replace a type
with type or table dependents.” The type refers to transient objects, or programming components
only. Table dependents are columns that use the object type as their datatype.

When you’ve limited the use of object types to transient objects, you can simply drop the
derived classes first. That means you drop subclasses before classes. You can find this type of
logic in the order_subcomparison.sql script on the publisher’s web site.

Implementing Collection Object Bodies
Collections of an object type are fairly easy because you simply declare a VARRAY or nested table
of the object type. Collections are a specialized object type, as covered in Chapter 7.

Since collections don’t inherit any of the behaviors from their base element datatype, you
must wrap a collection type inside another object type if you want to access those behaviors. The
wrapping object type can let you manage a list or array of the base-object type. Arrays limit the
number of elements to a fixed size, while nested tables are open-ended lists. You should generally
implement lists, not arrays, when you build collections of object types.

The next two sections show you how to declare and implement an object type collection.
You should cover them in sequence because you need to understand the declaration before the
implementation.

Declaring Object Type Collections
Object type collections require a base object type, and a collection of the base object type. After
you create those, you can build an object type collection. This section leverages the item_object
type created in the section “Static Member Methods” earlier in the chapter.

You create the collection of the item_object type with the following syntax:

CREATE OR REPLACE TYPE item_table IS TABLE OF item_object;
/

Chapter 14: Object Types 501

The wrapper to the collection should define at least one instance variable. The instance
variable should have the item_table collection datatype. You should provide a default
constructor that creates a collection by querying the database, and a constructor that takes
a collection of the base object type.

The declaration of an object type collection of the item_table is

-- This is found in create_items_object.sql on the publisher's web site.
CREATE OR REPLACE TYPE items_object IS OBJECT
(items_table ITEM_TABLE
, CONSTRUCTOR FUNCTION items_object
 RETURN SELF AS RESULT
, CONSTRUCTOR FUNCTION items_object
 (items_table ITEM_TABLE) RETURN SELF AS RESULT
, MEMBER FUNCTION get_size RETURN NUMBER
, STATIC FUNCTION get_items_table RETURN ITEM_TABLE)
INSTANTIABLE NOT FINAL;
/

The object attribute is a nested table of the base item_object type variable. You also have
a static get_items_object function that lets you generate and return a collection of the base
object type.

Implementing Object Type Collections
This section shows you how to implement the object type collection that you have declared. It
also implements another concrete factory pattern by constructing a collection through a static
function call.

The object body implements the following:

-- This is found in create_items_object.sql on the publisher's web site.
CREATE OR REPLACE TYPE BODY items_object IS
 CONSTRUCTOR FUNCTION items_object
 RETURN SELF AS RESULT IS
 c NUMBER := 1; -- Counter for table index.
 item ITEM_OBJECT;
 CURSOR c1 IS
 SELECT item_title, item_subtitle FROM item;
 BEGIN
 FOR i IN c1 LOOP
 item := item_object(i.item_title,i.item_subtitle);
 items_table.EXTEND;
 self.items_table(c) := item; -- Must use something other than loop index.
 c := c + 1;
 END LOOP;
 RETURN;
 END items_object;
 CONSTRUCTOR FUNCTION items_object
 (items_table ITEM_TABLE) RETURN SELF AS RESULT IS
 BEGIN
 self.items_table := items_table;
 RETURN;
 END items_object;

502 Oracle Database 11g PL/SQL Programming

 MEMBER FUNCTION get_size RETURN NUMBER IS
 BEGIN
 RETURN self.items_table.COUNT;
 END get_size;
 STATIC FUNCTION get_items_table RETURN ITEM_TABLE IS
 c NUMBER := 1; -- Counter for table index.
 item ITEM_OBJECT;
 items_table ITEM_TABLE := item_table();
 CURSOR c1 IS
 SELECT item_title, item_subtitle FROM item;
 BEGIN
 FOR i IN c1 LOOP
 item := item_object(i.item_title,i.item_subtitle);
 items_table.EXTEND;
 items_table(c) := item; -- Must use something other than loop index.
 c := c + 1;
 END LOOP;
 RETURN items_table;
 END get_items_table;
END;
/

The default constructor builds a list of all qualifying rows from the item table. The
get_items_table does the same thing, but it returns a collection of base object types. You
can use the static get_items_table function to initialize the items_object collection.

The following anonymous block shows you how:

-- This is found in create_items_object.sql on the publisher's web site.
DECLARE
 items ITEMS_OBJECT;
BEGIN

items := items_object(items_object.get_items_table);
 dbms_output.put_line(items.get_size);
END;
/

The items_object constructor takes a call to the static function as its actual parameter.
The static function returns a table of item_object type variables. The call to the instance get
function returns the number of elements in the collection, which should be 93 if the original
create_store.sql script wasn’t changed. The instructions for the seeding script are in the
introduction.

You can also use the static function to retrieve the collection of item_object. Once they
are retrieved, you can print the contents of the individual elements by calling the base object
to_string function.

The following demonstrates this functionality:

Chapter 14: Object Types 503

-- This is found in create_items_object.sql on the publisher's web site.
DECLARE
 items ITEM_TABLE;
BEGIN
 items := items_object.get_items_table;
 FOR i IN 1..items.COUNT LOOP
 dbms_output.put_line(items(i).to_string);
 END LOOP;
END;
/

Concrete Factory Pattern
A concrete factory pattern is derived from an abstract factory pattern. It provides a design
approach to build object instances. There are many ways to implement this OO design
pattern, as is true for most design patterns. The example in Chapter 14 uses a static member
function as the factory. The static member function creates an instance of item_object
and returns it to the calling program.

The object type declares the interface for the factory and object type. The static
get_item_object function returns an object type. A static function is a factory when
it returns an instance of an object.

The item_object instance in the preceding illustration represents only the instance
components. The static component has been abstracted from the instance into a separate
class in the drawing. It illustrates the role of the static function as a factory.

504 Oracle Database 11g PL/SQL Programming

This section has shown you how to declare an object type collection. You have also declared
a static method that you can implement as a concrete factory. The static method allows you to
grab an instance object type collection without explicitly constructing it in your standalone
PL/SQL blocks.

Summary
This chapter has examined how you define, initialize, and use objects. You should now have
a foundation of what objects are and how you can use them in your PL/SQL applications.

CHAPTER
15

Java Libraries

505

506 Oracle Database 11g PL/SQL Programming

racle 11g lets you extend your applications by writing stored functions and
procedures, and by creating packages for both. You also have the opportunity to
write these stored programs in the Java programming language. There is one catch.
While you can write the implementation in the Java programming language, the
gateway between the environment and Java libraries is a PL/SQL programming

specification. A specification defines a function, procedure, or package to the environment. These
are much like package specifications that define package bodies. Publishing Java libraries is nothing
more than wrapping them in PL/SQL specifications. That’s why they’re called PL/SQL wrappers.

This chapter covers the following:

Oracle 11g JVM new features

Java architecture in Oracle

Oracle JDBC connection types

 Client-side driver, or JDBC thin driver

 Oracle call interface driver, or middle-tier thick driver

 Oracle server-side internal driver, or server-tier thick driver

Building Java class libraries in Oracle

 Building internal server Java functions

 Building internal server Java procedures

 Building internal server Java objects

 Troubleshooting Java class libraries

Mapping Oracle types

This chapter builds on concepts, but if you feel you understand the basics, you should be
able to jump to the section of interest, although a quick browse might save you time looking for
a missing piece later in the chapter.

Oracle 11g JVM New Features
The Oracle 11g Java Virtual Machine (JVM) has matured. The following new features are in this
release of the database:

The internal Oracle JVM is now compatible with Standard Edition of Java 5 (aka as Java 1.5).

Oracle JVM enhancements include support for loadjava URL, list-based operations
with dropjava, the ability to resolve external class references by using the ojvmmtc
utility, and increased functionality in the ojvmjava tool.

The introduction of database-resident JAR files, which means when you load a JAR file,
you now have the option of creating an object representing the JAR file transparently.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

O

Chapter 15: Java Libraries 507

The ability to share metadata between user-defined classes. This mimics the concept of a
multithreaded process control block.

A two-tier duration for Java session state is now possible. This lets you use Java as
previously done in autonomous transactions within a connection, or as a persistent
session with preserved state between transactions. You can use the ENDSESSION
function in the DBMS_JAVA package to clear previous session state on entry. It
preserves any property settings when it clears the session state. You should use the
ENDSESSION_AND_RELATED_STATE function from the DBMS_JAVA package
when you want to clear both the session state and property settings.

The ability to redirect output streams externally from the database.

The ability to set system properties that are propagated on connection to the database
server.

The delivery of a Java just-in-time (JIT) compiler that reduces Java byte streams
directly into machine-specific code, improving performance by eliminating the
interpretation phase.

Java Architecture
The Oracle 11g databases provide a robust architecture for developing server-side or internal Java
programming components. Java components are object-oriented (OO) structures that fit naturally
into Oracle’s object-relational model. The component architecture is a library stack that contains

Platform-dependent operating systems, like Unix, Linux, and Microsoft Windows

Platform-dependent Oracle database management files and libraries

The Oracle database instance Java Virtual Machine, which is platform independent

Java core class libraries, which are ported to various platforms

Oracle-supported Java Application Programming Interfaces (APIs), like SQLJ, JDBC,
and JNDI

Oracle PL/SQL stored objects, which provide an interface between SQL and PL/SQL
programs, as well as server-side Java classes.

■

■

■

■

■

■

■

■

■

■

■

The Java Interactive Interface
The ojvmjava utility is an interactive interface to the session namespace and database
instance. You can now launch executables through this tool. A new runjava option lets
you run ojvmjava shell in command mode or resident class mode. The current version of
ojvmjava has reduced the stack trace for thrown exceptions. You also have the ability to
open a new connection without leaving the current ojvmjava session.

508 Oracle Database 11g PL/SQL Programming

The Oracle and Java libraries store and manage application programs like a ubiquitous file
system—ubiquitous because they are operating system independent. Oracle libraries make storing,
retrieving, and recovering files a standard process across many diverse platforms. The Java Virtual
Machine (JVM) provides a standard environment where you can build well-documented OO
programs. Oracle PL/SQL enables the development of wrapper packages to access Java libraries
from other PL/SQL stored objects and SQL. The architecture of the Oracle Java Virtual Machine is
shown here.

Oracle JVM uses two types of namespaces, the long name and the short name. The long name
is exactly as the class is named in Java. You can call stored Java programs by their native namespace.
While the chapter examples are short and not placed into packages, you’ll most likely put your
Java programs into packages. The namespace for Java stored code includes the entire package
hierarchy. When this is larger than 30 characters, Oracle uses a hashed namespace in the data
dictionary views. Use the DBMS_JAVA package and LONGNAME function to get the full namespace.
You can also use the DBMS_JAVA package and SHORTNAME function to get the short name.

The JVM enjoys automated storage management, which means you do not need to allocate
and free memory explicitly. Also, Java is a strongly typed programming language like PL/SQL. The
combination of strong typing and a garbage collector to manage memory provides a scalable and
simplified environment like the PL/SQL run-time engine.

Both Java and PL/SQL are interpreted languages and require just-in-time (JIT) compilation.
Oracle 11g introduces just-in-time Java compilation for Java programs. Native compilation enables
ahead-of-time compilation. It changes PL/SQL and Java byte code into machine-executable
programming code.

Native compilation speeds execution by eliminating JIT compilation delay. Unfortunately,
it takes time to compile the programs in interpreted languages into machine code. If you rarely
change your code, the trade-off may be worth using native compilation.

There are three ways to put Java classes into the database instance:

A two-step process: (a) compiling the Java source file, <file_name>.java, with
the javac executable to generate a Java byte code program, and (b) using the Oracle
loadjava utility to put the file into the database instance

A one-step process using the loadjava utility to compile and put the Java class file into
the database instance

■

■

Chapter 15: Java Libraries 509

A one-step process using Data Definition Language to build and compile the Java source
file as a stored Java class

There are occasionally parser problems running DDL commands when you build Java programs.
While a SQL DDL example is provided, the loadjava command line is recommended over SQL
DDL commands. You can also call the LOADJAVA procedure from the DBMS_JAVA package to
load your Java classes. The loadjava command both compiles and loads class files into the
database.

TIP
If you opt to use the one-step loadjava utility, please note you may
encounter an ORA-29533 error for attempting to overwrite the file. The
replace option in the loadjava utility does not work in some releases.
Use dropjava with the –user option and the <file_name>.class
before rerunning the loadjava utility.

This chapter assumes you have a basic familiarity with Java. Basic familiarity means that you
can compile and run Java programs. The samples include command-line instructions. There is
also a Java primer in Appendix D. The Java primer also includes configuration instructions for
JDBC interaction with an Oracle 11g database.

Java stored program units are like traditional PL/SQL program units. They are called with
either definer’s-rights or invoker’s-rights access from a single session. There are differences
between how Java works externally and internally within the Oracle database instance. Some
of the differences are qualified in the following subsections.

Java Execution Control
Execution control differs from native Java. While you can now have a main() method inside a
Java resource class, it is only accessible through the ojvmjava utility. Internal Java resource files
have to two types of behaviors: stored program bodies and instantiable classes. Stored program
bodies support functions and procedures whether schema or package level in scope. Instantiable
classes support user-defined object types and provide the implementation for the object type. You
instantiate the objects by using the SQLData interface.

Java Resource Storage
Java class resources are stored in clear text, Java byte code, and compressed Java ARchives (also
known as JAR files). JAR files can be stored internally or externally in an Oracle 11g database
instance. You can now load JAR files and concurrently define their internal object representation
in the database. Oracle manages these as source, class, and resource Java objects. Schemas
contain a JAVA$OPTIONS table, which can be accessed and configured by the DBMS_JAVA
package, the SET_COMPILER_OPTION and RESET_COMPILER_OPTION procedures, or the
GET_COMPILER_OPTION function.

Java Class Names
Internal Oracle Java class names are maintained in two forms. One is the short form that supports
standard schema database objects and is limited to 30 characters. When a fully qualified package
and class name exceeds the limit, Oracle automatically creates a hashed name as the class short
name and stores the long name elsewhere.

■

510 Oracle Database 11g PL/SQL Programming

Java Resolvers
The standard Java Class.forName() isn’t supported for internal Oracle Java classes. Oracle
11g supports multiple resolvers, and they help you locate classes. You can get unexpected results
from a search when one resolver runs another. This problem involves the way classes can be
distributed among different database scheme. There are several workarounds. The workarounds
all involve your qualifying the owning schema and class file. Chapter 2 in the Oracle Database
Java Developer’s Guide describes the suggested workarounds.

Java Security and Permissions
Operating resources are restricted. You can only alter these as the privileged user SYSDBA. Use
the DBMS_JAVA package and the GRANT_PERMISSION procedure to open operating resources
like file I/O.

Java Threading
Java threading works differently for Oracle internal Java classes. The Oracle JVM uses a non-
preemptive threading model. This means that all threads run in a single operating system thread
and the Oracle JVM merely switches contexts between threads. Switching context means that the
Oracle JVM spawns one thread for a time slice and then another, in a round-robin fashion, until
their execution is complete.

Oracle 11g now also supports class loaders, which enable you to create preemptive threading
solutions. This requires you to have a master class spawn instances through different class loaders.
Class loaders inside the JVM run in their own thread of execution. You should note that this changes
the behavior of static variables in Java because multiple copies of static variables can discretely
exist when they’re not in the same class loader.

Oracle Java Connection Types
Oracle implements the Java Database Connection (JDBC) in three ways in order to meet three
different needs. These are the thin, thick, and default connections. Respectively, they map to the
client-side driver, the call interface driver (or middle-tier driver), and the server-side (or internal)
driver. In the next sections, you’ll examine all three.

The Client-Side Driver, or JDBC Thin Driver
The Oracle thin connection is probably the most used by Java applications, Java Server Pages
(JSPs), and Enterprise JavaBeans (EJBs). It provides many advantages to building code without
directly accessing Oracle library files.

The advantages of the Oracle JDBC thin driver are numerous for external Java applications
because it requires the least setup and configuration. First, though, make sure your Java programming
environment has access to the standard Java library and the Oracle JDBC library. You can set
this up by configuring your CLASSPATH environment variable. You should include the Oracle
ojdbc5.jar JAR file when you want the external files to match the internal JVM. You can use
the ojdbc6.jar JAR file, but be careful with the newer features that aren’t backward compatible
with the Oracle JVM. You can find details about how to set these in Appendix D.

Unfortunately, you can’t use the Oracle thin JDBC driver unless you’ve configured and started
your database listener. You’ll likewise need to provide the host name, listener port number, and
database name, along with your user ID and password, each time you spawn a connection to
the database instance.

Chapter 15: Java Libraries 511

TIP
The Oracle client-side or thin driver returns a rather meaningless error
message if the host name, listener port number, or database name
is incorrect. In fact, it will report an ORA-17002 error. This error
is found in Oracle’s implementation of the JDBC API. Appendix D
demonstrates a clean mechanism to audit for the error.

The uses of the Oracle JDBC thin driver are limited to external Java applications, JSPs, and
EJBs. A multithreaded Java servlet is an example of a Java application that would implement an
Oracle JDBC thin driver file. Oracle JDBC thin connections can be optimistic or pessimistic
connections.

Optimistic connections are temporary connections transmitted using the Hypertext Transfer
Protocol (HTTP), which are limited to a 15-second pipelined TCP socket connection. TCP
connections travel through the Oracle listener for the instance. These solutions are ideal for JSPs
but resource-expensive because they must establish a connection for each communication.

Pessimistic connections are typically transmitted using a state-aware TCP socket that’s open
through the duration of the connection. Again the Oracle listener supports these connections
on the server-side. Pessimistic connections are used by multithreaded Java servlets to create
and maintain database connection pools. Java servlets can be implemented in two-tier or n-tier
solutions.

The Oracle Call Interface Driver, or Middle-Tier Thick Driver
The Oracle call interface (OCI) driver is more tightly coupled with the Oracle C/C++ libraries
than the Oracle JDBC thin driver. If you use the Oracle JDBC call interface (or middle-tier thick)
driver, you’ll need to ensure that the PATH, CLASSPATH, and LD_LIBRARY_PATH environment
variables map to Oracle libraries. The libraries need to be on the same physical platform or map
through a storage area network (SAN), like NFS in Unix.

The OCI driver can maintain persistent connection pools through Java servlets. As a rule,
you’ll have an easier configuration if you use the Oracle JDBC thin driver in your servlet.

The Oracle Server-Side Internal Driver,
or Server-Tier Thick Driver
The Oracle server-side internal driver is likewise tightly coupled with, and dependent on, the
Oracle C/C++ libraries. Unfortunately, there’s no other choice available to build Java programs
as stored objects in the Oracle database.

The Oracle server-side internal driver uses the getConnection() method of the DriverManager
class to connect to the database. This poses a bit of a testing problem if you want to test the Java
program externally because the actual parameter for internal reference classes differs from the
thin client argument. It’s best if you test the Java code in your development instance with the thick
connection and avoid porting it.

Unlike the OCI driver, the server-side internal driver is faster than the Oracle JDBC thin driver.
The speed comes because the libraries are all local on the server and not subject to network calls.
As you read the chapter and examine the code, you’ll find that embedding Java in the Oracle
database requires a few tricks and techniques.

The next section examines how to build and troubleshoot class libraries and instantiable Java
stored objects.

512 Oracle Database 11g PL/SQL Programming

Building Java Class Libraries in Oracle
When you choose to build Java class libraries, you have two deployment choices. You can build
call-interface driven (middle-tier) or server-side Java class libraries.

Call-interface libraries act like server-side includes to your Apache server. They must be
replicated to all nodes of your Apache server and are managed within the structure of your web
server load-balancing tool. These components act like external programs that call into the Oracle
server and are better treated in Enterprise Java books.

NOTE
While middle-tier Java class libraries are not directly covered, they do
require a direct reference in their path to the Oracle OCI libraries. The
OCI libraries are in the Oracle Application Server but not on other
web servers.

Server-side Java class libraries are stored objects within the Oracle JVM, which is a subcomponent
of the Oracle database. Server-side Java class libraries are the core theme of this chapter. In the next
two sections, you’ll learn how to build internal server Java functions and procedures.

NOTE
If you’re unfamiliar with configuring and testing a Java JDBC
connection, please check Appendix D for instructions.

Java programming ranges from simple to complex, but these examples should be straightforward.
You have two core executables to run Java programs, which you’ll use in the examples. They are

javac Compiles your text file Java programs into Java byte code

java Runs your compiled Java byte code programs

The file-naming convention in Java is case-sensitive, so you should ensure you name files
consistent with the web-based code example files. If you attempt to compile a Java file when
the filename and class name are different, you’ll receive an error. Also, the file extension for Java
programs is a lowercase .java.

You’ll now build a simple HelloWorld1.java file to make sure the balance of the
examples works. If you’re working in Microsoft Windows, please open a Command Prompt
window. If you’re working in Unix, please use a terminal window. The following is the code
for HelloWorld1.java:

-- This is found in HelloWorld1.java on the publisher’s web site.

// Class definition.
public class HelloWorld1 {
 public static void main(String args[]) {
 System.out.println("Hello World."); }
}

Java text files are compiled by the following syntax:

javac HelloWorld1.java

■

■

Chapter 15: Java Libraries 513

Successful compilation does not return anything to the console. The lack of any message is a
good thing. The way to verify whether or not you have a Java byte code file is to run the Microsoft
Windows directory (dir) command or Unix list (ls) command for files matching HelloWorld1.*
in the present working directory. You should see two files displayed to the console:

HelloWorld1.java
HelloWorld1.class

After building the Java byte code compiled program, you can test its execution by doing the
following:

java HelloWorld1

NOTE
You do not provide the .class extension when running Java programs
because it is assumed. Appending .class to the filename will
raise the following exception: java.lang.NoClassDefFoundError:
HelloWorld1/class.

TIP
You can also raise the java.lang.NoClassDefFoundError: HelloWorld1/
class error if you do not have your present working directory in your
$CLASSPATH environment variables.

You’ll receive the following results:

Hello World.

The next section covers how you build server-side or internal server Java programming units.
You’ll learn how to build Java class files to support stored functions and procedures and how to
wrap their existence in PL/SQL packages. The following two sections are sequential, and the
second section assumes you have worked through the first.

Building Internal Server Java Functions
You build an internal server Java function by building a Java class file that will use the server-side
internal or JDBC Thick connection. As described earlier in the chapter, the JDBC Thick connection
depends on Oracle Call Interface (OCI) libraries. All OCI libraries are directly accessible from
your Java class file when you’ve loaded it into the Oracle JVM.

Java Database Connectivity (JDBC) lets you build connections by using the DriverManager
class. This is a change over the defaultConnection() method for internal Java class files
and external connections. They now both use the getConnection() static method from the
DriverManager class. The only difference between a thin client and a thick one is the actual
parameter provided to the method. Examples in this chapter use the internal syntax, and examples
in Appendix D use the external thin client syntax.

Java internal or server-side class files are built and accessed by a three-step process. You use
Java to build and compile the class file. Then, you use the Oracle loadjava utility to load the
compiled class file into the server. Once these are built and loaded into the server, you build a
PL/SQL wrapper to the Java class library.

514 Oracle Database 11g PL/SQL Programming

The following assumes you have the correct CLASSPATH and PATH to use Java. If you are
unable to compile or test the Java programs, it’s possible your environment is configured incorrectly.
As mentioned earlier, you should use Appendix D to ensure you have correctly configured your
environment.

The example builds a Java class library with two methods. These methods are overloaded,
which means they have different signatures or formal parameter lists. They each return a Java
string. Both of the overloaded methods will map to two overloaded PL/SQL functions that return
VARCHAR2 native Oracle datatypes.

-- This is found in HelloWorld2.java on the publisher’s web site.

// Oracle class imports.
import oracle.jdbc.driver.*;

// Class definition.
public class HelloWorld2 {

 public static String hello() {
 return "Hello World."; }

 public static String hello(String name) {
 return "Hello " + name + "."; }

 public static void main(String args[]) {
 System.out.println(HelloWorld2.hello());
 System.out.println(HelloWorld2.hello("Larry")); }
}

The program defines two overloaded hello methods. One takes no formal parameters, and
the other takes one. After you compile and run this program, the method without any formal
parameters always prints

Hello World.

while the one that takes one formal parameter always prints

Hello Larry.

This happens because the static main() method always sends either no parameter or the
same actual parameter to the dynamic method. As a rule, you want to remove testing components
like the main() method before loading them into the database and passing actual parameters to
dynamic methods.

TIP
You can leave the static main() method in the program. It harms
nothing and enables you to test the program with the ojvmjava
interactive utility.

If you have not built the PLSQL schema, please run the create_user.sql script now
(you’ll find where to download it in the introduction). When you have the PLSQL schema built,
compile it with the javac utility, as covered earlier in the chapter. Once it is compiled, you’ll
load it into the Oracle JVM with the loadjava utility as follows:

loadjava -r -f -o -user plsql/plsql HelloWorld2.class

Chapter 15: Java Libraries 515

NOTE
On the Microsoft platform, you may get a message that states “The
procedure entry point kpuhhalo could not be located in the dynamic
link library OCI.dll.” If you receive this error, it means you don’t have
%ORACLE_HOME\bin% in your PATH environment variable.

The loadjava utility command loads the Java HelloWorld2 class file into the Oracle JVM
under the PLSQL schema. After loading the Java class file into the database, you’ll need to build a
PL/SQL wrapper to use it. The following HelloWorld2.sql script builds the package and
package body as a wrapper to the Java class library:

-- This is found in HelloWorld2.sql on the publisher’s web site.

-- Create a PL/SQL wrapper package specification to a Java class file.
CREATE OR REPLACE PACKAGE hello_world2 AS
 FUNCTION hello
 RETURN VARCHAR2;

 FUNCTION hello
 (who VARCHAR2)
 RETURN VARCHAR2;
END hello_world2;
/

-- Create a PL/SQL wrapper package body to a Java class file.
CREATE OR REPLACE PACKAGE BODY hello_world2 AS

 FUNCTION hello
 RETURN VARCHAR2 IS
 LANGUAGE JAVA
 NAME 'HelloWorld2.Hello() return String';

 FUNCTION hello
 (who VARCHAR2)
 RETURN VARCHAR2 IS
 LANGUAGE JAVA
 NAME 'HelloWorld2.Hello(java.lang.String) return String';
END hello_world2;
/

When you run this in your schema, it creates a wrapper to the HelloWorld2.class file that
you previously loaded. The return type of your PL/SQL wrapper is a VARCHAR2 datatype. You
map it to a java.lang.String class, and it must be that fully qualified path.

You can verify all components are present to test by querying the user_objects view with
the following:

-- This is found in HelloWorld2.sql on the publisher’s web site.

SELECT object_name
, object_type
, status
FROM user_objects
WHERE object_name IN ('HelloWorld2','HELLO_WORLD2');

516 Oracle Database 11g PL/SQL Programming

The script should output the following results:

-- This output is generated from the online HelloWorld2.sql file.

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------ -------
HELLO_WORLD2 PACKAGE VALID
HELLO_WORLD2 PACKAGE BODY VALID
HelloWorld2 JAVA CLASS VALID

If you did not get the same output, you’ll need to see what step you may have skipped.
Please do that before attempting to proceed. If you did get the same output, you can now test
the Java class library in SQL and PL/SQL. You can test it in SQL with a query or in PL/SQL with
the DBMS_OUTPUT.PUT_LINE statement. The following illustrates a SQL query of the wrapper,
which uses the internal Java class file:

SELECT hello_world2.hello('Paul McCartney')
FROM dual;

The query will return the following results:

HELLO_WORLD2.HELLO('PAULMCCARTNEY')

Hello Paul McCartney.

You can also build the entire Java source, publishing specification, and implementation in a
single SQL file. Then, you can run it directly from the SQL*Plus command line. This is done by
using a DDL command. The prototype for the DDL command is

CREATE OR REPLACE AND RESOLVE JAVA SOURCE NAMED <java_class_name> AS
<java_source>
/

The Java class filename can serve two purposes. You can use it as a package container or
ignore it to implement a procedure or function. If you implement a function or procedure, they
reference only one method in your Java class. Functions and procedures unfortunately can’t
support overloading because they behave as normal PL/SQL functions and procedures. You
can implement overloading when you publish a Java class as a package.

NOTE
You must use a forward slash to execute a DDL command that builds
an internal Java class. If you substitute a semicolon, you’ll raise an
ORA-29536 exception.

You create the Java HelloWorldSQL class with the following DDL command:

-- This is found in HelloWorldSQL.sql on the publisher’s web site.

CREATE OR REPLACE AND RESOLVE JAVA SOURCE NAMED HelloWorldSQL AS
// Class Definition.
public class HelloWorldSQL {

Chapter 15: Java Libraries 517

public static String hello() {
 return "Hello World."; }

public static String hello(String name) {
 return "Hello " + name + "."; }
}
/

The RESOLVE JAVA SOURCE NAMED targets the class filename, and it parses and compiles the
Java source into the instance. You can then publish individual methods as functions or procedures,
or the class as a package.

The following publishes the class as a package:

-- This is found in HelloWorldSQL.sql on the publisher’s web site.

-- Create a PL/SQL wrapper package specification to a Java class file.
CREATE OR REPLACE PACKAGE hello_world_sql AS
 FUNCTION hello
 RETURN VARCHAR2;

 FUNCTION hello
 (who VARCHAR2)
 RETURN VARCHAR2;
END hello_world_sql;
/

-- Create a PL/SQL wrapper package body to a Java class file.
CREATE OR REPLACE PACKAGE BODY hello_world_sql AS

 FUNCTION hello
 RETURN VARCHAR2 IS
 LANGUAGE JAVA
 NAME 'HelloWorldSQL.hello() return String';

 FUNCTION hello
 (who VARCHAR2)
 RETURN VARCHAR2 IS
 LANGUAGE JAVA
 NAME 'HelloWorldSQL.hello(java.lang.String) return String';
END hello_world_sql;
/

The package provides an overloaded hello function. You can call it with or without an actual
parameter. You can then publish only a single method of the class as a function, like

-- This is found in HelloWorldSQL.sql on the publisher’s web site.

CREATE OR REPLACE FUNCTION hello
(who VARCHAR2) RETURN VARCHAR2 IS
LANGUAGE JAVA
NAME 'HelloWorldSQL.hello(java.lang.String) return String';
/

518 Oracle Database 11g PL/SQL Programming

You can query the function by

SELECT hello('Nathan') AS SALUTATION
FROM dual;

and it returns

SALUTATION

Hello Nathan.

You have now covered how to build Oracle database instance–stored Java class files that
map methods to functions. The next section will examine how you build components to deliver
procedure DML behaviors.

Building Internal Server Java Procedures
Building a procedure will follow very similar rules to building functions. PL/SQL procedures
have IN, IN OUT, or OUT modes. However, you cannot use an IN OUT mode in PL/SQL when
wrapping a Java method. This behavior differs from that described in Chapter 13 because the
restriction over formal parameters belongs to Java, not PL/SQL. All formal parameters are defined
as IN mode only. When you want an output back, you should write a PL/SQL function, not a
procedure.

If you attempt to define a package body with a procedure using IN OUT modes, it will raise
the following exception:

PLS-00235: the external type is not appropriate for the parameter

You’ll now build an IN mode procedure as a wrapper to a Java class method. When you use
Java methods in the context of a procedure, you return a void type from the Java method.

Oracle 11g Internal Connection Instances
Over several releases the syntax for building a Java Connection instance has been constant.
The comfortable syntax for Oracle 9i or 10g and Java 1.3 or 1.4 is

Connection conn = new OracleDriver().defaultConnection();

This syntax no longer works. You will have to migrate the connection logic for all your
stored Java libraries. The correct syntax for Oracle 11g and Java 5 is

Connection conn = DriverManager.getConnection("jdbc:default:connection:");

The new syntax is used in the internal class files for this chapter.

Chapter 15: Java Libraries 519

The following Java source file supports an IN mode PL/SQL procedure:

-- This is found in HelloWorld3.java on the publisher’s web site.

// Oracle class imports.
import java.sql.*;
import oracle.jdbc.driver.*;

// Class definition.
public class HelloWorld3 {

 public static void doDML(String statement
 ,String name) throws SQLException {
 // Declare an Oracle connection.
 Connection conn = DriverManager.getConnection("jdbc:default:connection:");

 // Declare prepared statement, run query and read results.
 PreparedStatement ps = conn.prepareStatement(statement);
 ps.setString(1,name);
 ps.execute(); }

 public static String doDQL(String statement) throws SQLException {
 // Define and initialize a local return variable.
 String result = new String();

 // Declare an Oracle connection.
 Connection conn = DriverManager.getConnection("jdbc:default:connection:");

 // Declare prepared statement, run query and read results.
 PreparedStatement ps = conn.prepareStatement(statement);
 ResultSet rs = ps.executeQuery();
 while (rs.next())
 result = rs.getString(1);

return result; }
}

This program creates a Java Connection instance using the Oracle 11g process. The new
process calls a static getConnection() method of the DriverManager class. Any code from
your Oracle 10g instance will require you to make this change.

The program implements two methods: one to insert records and another to query records.
The insert statement returns a void, and the query returns a string.

TIP
While these don’t use explicit cursors, statements and result sets
persist across calls and their finalizers do not release database cursors.
You should remember to always close explicitly opened cursors.

520 Oracle Database 11g PL/SQL Programming

There is no main() method in the HelloWorld3.java class file. Including a main()
method to test the program externally to the database would require changing the connection to
a client-side or OCI driver. You can refer to Appendix D if you wish to build a test externally
to the database instance.

Most likely, you have built the PLSQL schema, but if not, you should run the create_user.sql
script now. When you have the PLSQL schema built, compile it with the javac utility as covered
earlier in the chapter. Once it is compiled, you’ll load it into the Oracle JVM with the loadjava
utility using the following:

loadjava -r -f -o -user plsql/plsql HelloWorld3.class

The loadjava utility command loads the Java HelloWorld3 class file into the OracleJVM
under the PLSQL schema. After loading the Java class file into the database, you’ll need to build
a mytable table and PL/SQL wrapper to use it.

The mytable table is built by using the following command:

-- This is found in HelloWorld3.sql on the publisher’s web site.

CREATE TABLE mytable (character VARCHAR2(100));

The following HelloWorld3.sql script builds the package and package body as a wrapper
to the Java class library:

-- This is found in HelloWorld3.sql on the publisher’s web site.

-- Create a PL/SQL wrapper package specification to a Java class file.
CREATE OR REPLACE PACKAGE hello_world3 AS
 PROCEDURE doDML
 (dml VARCHAR2
 , input VARCHAR2);

 FUNCTION doDQL
 (dql VARCHAR2)
 RETURN VARCHAR2;
END hello_world3;
/

-- Create a PL/SQL wrapper package body to a Java class file.
CREATE OR REPLACE PACKAGE BODY hello_world3 AS

PROCEDURE doDML
 (dml VARCHAR2
 , input VARCHAR2) IS
 LANGUAGE JAVA
 NAME 'HelloWorld3.doDML(java.lang.String,java.lang.String)';

FUNCTION doDQL
 (dql VARCHAR2)

RETURN VARCHAR2 IS
 LANGUAGE JAVA
 NAME 'HelloWorld3.doDQL(java.lang.String) return String';
END hello_world3;
/

Chapter 15: Java Libraries 521

This program defines two methods:

The doDML procedure takes two formal parameters that are VARCHAR2 datatypes and
returns nothing as a stored procedure.

The doDQL function takes one formal parameter that is a VARCHAR2 and returns a
VARCHAR2 datatype as a stored function.

You can verify that all components are present to test by querying the user_objects view
with the following:

-- This is found in HelloWorld3.sql on the publisher’s web site.

SELECT object_name
, object_type
, status
FROM user_objects
WHERE object_name IN ('HelloWorld3','HELLO_WORLD3');

The script should output the following results:

-- This output is generated from the online HelloWorld3.sql file.

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------ -------
HELLO_WORLD3 PACKAGE VALID
HELLO_WORLD3 PACKAGE BODY VALID
HelloWorld3 JAVA CLASS VALID

If you did not get the same output, you’ll need to see what step you may have skipped.
Please do this before attempting to proceed. If you did get the same output, you can now test
the Java class library in SQL and PL/SQL. You can test it in SQL with a query or in PL/SQL
with the DBMS_OUTPUT.PUT_LINE statement. The following illustrates a SQL query of the
wrapper, which uses the internal Java class file:

SELECT hello_world3.doDQL('SELECT character FROM mytable')
FROM dual;

The query returns the following results:

HELLO_WORLD3.DODQL('SELECTCHARACTERFROMMYTABLE')

Bobby McGee

You’ve now covered how to build Oracle database instance stored Java class files that map
a Java method to a PL/SQL procedure. The next section discusses how to build real Java objects
wrapped by PL/SQL object types.

Building Internal Server Java Objects
The Java programming language is object-oriented (OO). In the previous examples, Java stored
objects were used as static functions. The potential to use Java to accomplish significant OO
computing lies in the Oracle object features introduced in Oracle 9i Release 2. They haven’t
changed much since that release because of a rumor that very few development projects use

■

■

522 Oracle Database 11g PL/SQL Programming

them. Beginning with that release, you can construct instances of object types and use them as
objects. After you develop an understanding of implementing stored Java objects in this section,
you can see how PL/SQL objects work (covered in more detail in Chapter 14).

Server-side stored Java programs support full run-time object behaviors starting with Oracle 9i,
as noted earlier. This means you can now design, develop, and implement natural Java applications
beneath PL/SQL object type wrappers. These Java classes can have instance methods, which mean
non-static methods. You may also use static methods for libraries.

The balance of the differences covered earlier in the chapter still applies. You build Java
object libraries by writing the Java class file and SQL object type definition. Object type bodies
are not defined when the object type implementation is written in a stored Java object.

The substantial difference between external Java objects and server internal Java objects lies
in the way you construct an instance of the class. You do not directly instantiate the class file and
cannot use overriding constructors in the Java class file. The SQLData interface is the key to
instantiating stored Java objects. It enables instantiating the Java class by passing back and forth
the parameter values. This enables a class to return a reference to a copy or instance of the class.

TIP
There’s no way to instantiate directly a default constructor when using
a stored Java object class. You also cannot use overriding constructors.
The SQLData interface allows you to pass values to an instantiated
class based on known class scope instance variables. Instance
variables are not static variables. These limits are imposed by the
implementation of the SQLData interface.

Implementing the SQLData interface is done by providing a variable definition and three
concrete methods in your Java class file. The following are the components:

A String datatype named sql_type.

A getSQLTypeName() method that returns a String datatype.

A readSQL() method that takes two formal parameters and returns a void. One formal
parameter is a SQLInput that contains a stream. The other is a string that contains a
datatype name.

A writeSQL() method that takes one formal parameter, which is a SQLOutput that
contains a stream.

Details on implementing run-time Java classes will be illustrated in the following examples.
The HelloWorld4 Java class file is designed to work as an instantiable Java stored object type
body. The source code for the class follows:

-- This is found in HelloWorld4.java on the publisher’s web site.

// Oracle class imports.
import java.sql.*;
import java.io.*;
import oracle.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.oracore.*;

■

■

■

■

Chapter 15: Java Libraries 523

// Class definition.
public class HelloWorld4 implements SQLData {
 // Define or declare SQLData components.
 private String className = new String("HelloWorld4.class");
 private String instanceName;
 private String qualifiedName;
 private String sql_type;

 public HelloWorld4() {
 String user = new String();

 try {
 user = getUserName(); }
 catch (Exception e) {}

 qualifiedName = user + "." + className; }

 // Define a method to return a qualified name.
 public String getQualifiedName() throws SQLException {
 // Declare return variable.
 return this.qualifiedName + "." + instanceName; }

 // Define a method to return the database object name.
 public String getSQLTypeName() throws SQLException {
 // Returns the UDT map value or database object name.
 return sql_type; }

 // Define getUserName() method to query the instance.
 public String getUserName() throws SQLException {
 String userName = new String();
 String getDatabaseSQL = "SELECT user FROM dual";

 // Declare an Oracle connection.
 Connection conn = DriverManager.getConnection("jdbc:default:connection:");

 // Declare prepared statement, run query and read results.
 PreparedStatement ps = conn.prepareStatement(getDatabaseSQL);
 ResultSet rs = ps.executeQuery();
 while (rs.next())
 userName = rs.getString(1);

 return userName; }

// Implements readSQL() method from the SQLData interface.
 public void readSQL(SQLInput stream, String typeName) throws SQLException {
 // Define sql_type to read input and signal overloading signatures.
 sql_type = typeName;

 // Pass values into the class.
 instanceName = stream.readString(); }

524 Oracle Database 11g PL/SQL Programming

 // Implements writeSQL() method from the SQLData interface with a placeholder.
 public void writeSQL(SQLOutput stream) throws SQLException {
 // You pass a value back by using a stream function.
 /* stream.writeString(‘variable_name’); */ }
}

The Java class implements the SQLData interface. A couple of these methods provide an
opportunity to discuss how internal Java classes behave. The getQualifiedName() method
returns the this.qualifiedName variable, which is an instance variable for the class. If you
were to attempt to reference a class variable in a Java stored class supporting a PL/SQL function
and procedure wrappers, it would fail. The loadjava utility would raise an exception to prevent
putting it into the database instance.

The getSQLTypeName(), readSQL(), and writeSQL() methods provide implementations
or stubs for the SQLData interface. You must implement the SQLData interface to support user-
defined object types. The readSQL() method manages the incoming stream, and the writeSQL()
method manages the outgoing stream for the stored object type.

If you have not built the PLSQL schema, please run the create_user.sql script now.
When you have the PLSQL schema built, you can compile it with the javac utility as covered
earlier in the chapter. However, there is an alternative syntax that enables you to load and
compile against the Oracle JVM libraries.

The HelloWorld4.java program contains import statements that require you to place the
ojdbc5.jar file in your CLASSPATH environment variable. If you’ve not done this yet, you
should do so now. The file is found in your $ORACLE_HOME/jdbc/lib directory on Linux or
Unix, and %ORACLE_HOME%\jdbc\lib directory on Windows.

You can directly load a Java source, or text, file with the loadjava utility as follows:

loadjava -r -f -o -user plsql/plsql HelloWorld4.java

The loadjava utility command behaves slightly differently when you choose this option. It
parses, stores the Java source as a text entry, and compiles the stored Java source into a Java byte
stream in the Oracle JVM under the PLSQL schema.

TIP
After loading the Java class file into the database this way, you won’t
be able to use the dropjava utility to remove the HelloWorld4.class
file. Instead, use the dropjava utility to remove the HelloWorld4.
java file, which also drops the HelloWorld4.class file.

You’ll need to build a SQL object type to wrap the Java stored object class. The following
HelloWorld4.sql script builds the object type as a wrapper to the Java class object:

-- This is found in HelloWorld4.sql on the publisher’s web site.

-- Create a PL/SQL wrapper object type to a Java class file.
CREATE OR REPLACE TYPE hello_world4 AS OBJECT
EXTERNAL NAME 'HelloWorld4' LANGUAGE JAVA
USING SQLData
(instanceName VARCHAR2(100) EXTERNAL NAME 'java.lang.String'
, CONSTRUCTOR FUNCTION hello_world4
 RETURN SELF AS RESULT
, MEMBER FUNCTION getQualifiedName
 RETURN VARCHAR2 AS LANGUAGE JAVA

Chapter 15: Java Libraries 525

 NAME 'HelloWorld4.getQualifiedName() return java.lang.String'
, MEMBER FUNCTION getSQLTypeName
 RETURN VARCHAR2 AS LANGUAGE JAVA
 NAME 'HelloWorld4.getSQLTypeName() return java.lang.String')
INSTANTIABLE FINAL;
/

The SQL object type wrapper defines an object type using an external name that is the case-
sensitive Java class name and the USING SQLData clause. The USING SQLData clause requires
at least one variable with an external name that identifies the Java datatype.

NOTE
Any attempt to use SQLData without a mapped type will raise an
exception. If you want to instantiate a class and not pass any variables
to it, you can designate a blank VARCHAR2(1) EXTERNAL NAME
‘java.lang.String’ in the wrapper. Then, you simply avoid defining the
streams in the SQLData interface methods readSQL and writeSQL and
pass a NULL argument when instantiating the PL/SQL wrapper in your
PL/SQL programs.

After you’ve defined the PL/SQL object type wrapper, you can see that both the object type
and the body have been registered in the Oracle instance metadata. You can see this by running
the following query:

COL object_name FORMAT A30
COL object_type FORMAT A12
COL status FORMAT A7

SELECT object_name
, object_type
, status
FROM user_objects
WHERE object_name = 'HELLO_WORLD4';

The output, if you have run everything successfully, will be the following:

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------ -------
HELLO_WORLD4 TYPE VALID
HELLO_WORLD4 TYPE BODY VALID

If you use the dropjava utility at this point, you’ll invalidate the TYPE BODY. Reloading the
Java source file with the loadjava utility leaves the TYPE BODY in an invalid status. The first
call to the object results in the following error:

-- Available online as part of HelloWorld4.sql script described previously.

DECLARE
*
ERROR at line 1:
ORA-29549: class PLSQL.HelloWorld4 has changed, Java session state cleared
ORA-06512: at "PLSQL.HELLO_WORLD4", line 0
ORA-06512: at line 10

526 Oracle Database 11g PL/SQL Programming

A second call to the object results in success, but the Oracle instance metadata will still report
that the TYPE BODY is invalid. The metadata report is incorrect, but you’ll need to run an ALTER
command to fix it. For example, you can use the following:

ALTER TYPE hello_world4 COMPILE BODY;

Now, you’ll test this PL/SQL object type wrapper by instantiating two object instances with
the following script:

-- This is found in HelloWorld4.sql on the publisher’s web site.

DECLARE

 -- Define and instantiate an object instance.
 my_obj1 hello_world4 := hello_world4('Adam');
 my_obj2 hello_world4 := hello_world4('Eve');

BEGIN

 -- Test class instance.
 dbms_output.put_line(‘Item #1: ['||my_obj1.getQualifiedName||']');
 dbms_output.put_line(‘Item #2: ['||my_obj2.getQualifiedName||']');
 dbms_output.put_line(‘Item #3: ['||my_obj1.getSQLTypeName||']');
 dbms_output.put_line(‘Item #4: ['||my_obj1.getSQLTypeName||']');

 -- Test metadata repository with DBMS_JAVA.
 dbms_output.put_line(
 'Item #5: ['||user||'.'||dbms_java.longname('HELLO_WORLD4')||']');

END;
/

You should see the following output displayed:

Item #1: [PLSQL.HelloWorld4.class.Adam]
Item #2: [PLSQL.HelloWorld4.class.Eve]
Item #3: [PLSQL.HELLO_WORLD4]
Item #4: [PLSQL.HELLO_WORLD4]
Item #5: [PLSQL.HELLO_WORLD4]

The SQLData interface allows you to pass a user-defined type (UDT), which means you can
use any defined user structure. If you debug the execution of the Java instance, you’ll find that
each invocation of the instance method actually reinstantiates the class instance.

The next section discusses troubleshooting the Java class library processes that build, load/
drop, and use Java server stored object classes.

Troubleshooting Java Class Libraries
This section covers how to troubleshoot Java class libraries. Some of this becomes intuitive after a
while, but initially it is very tricky.

Chapter 15: Java Libraries 527

Building, Loading, and Dropping Java Class Library Objects
When you build Java class libraries, you can encounter a number of problems. Many errors occur
through simple syntax rule violations, but often the PATH or CLASSPATH environment variable
excludes required Java libraries. You need to ensure that your PATH environment variable includes
the Java SDK released with the Oracle database you’re using. It’s best you research which Java
class libraries you’ll require and then source them into your CLASSPATH. The following illustrates
the minimum for the examples used in this chapter by the operating system:

Windows

C:> set PATH=%PATH%;C:%ORACLE_HOME%\jdk\bin
C:> set CLASSPATH=%CLASSPATH%;C:%ORACLE_HOME%\jdbc\lib\ojdbc5.jar

If you want to use the JPublisher command-line tool, you need to add both of the following
Java archive files:

%ORACLE_HOME%\sqlj\lib\translator.zip
%ORACLE_HOME%\sqlj\lib\runtime12.zip

Unix

export PATH=$PATH:/<mount>/$ORACLE_HOME/jdk/bin
export CLASSPATH=$CLASSPATH:/<mount>/$ORACLE_HOME/jdbc/lib/ojdbc5.jar

If you want to use the JPublisher command-line tool, you must add both of these Java archive
files to your CLASSPATH environment variable:

$ORACLE_HOME/sqlj/lib/translator.zip
$ORACLE_HOME/sqlj/lib/runtime12.zip

Another potential problem in configuring Java archive access can be found in the LD_
LIBRARY_PATH used in the listener.ora file. Check to make sure it’s set as follows:

LD_LIBRARY_PATH=C:\oracle\ora92\lib;C:\oracle\ora92\jdbc\lib

You may also encounter an error like this, which says you cannot drop a Java class file
directly from your database instance. The error is raised by running the dropjava utility with
the following syntax:

C:> dropjava -u plsql/plsql HelloWorld4.class

The following error message should then appear:

Error while dropping class HelloWorld4
 ORA-29537: class or resource cannot be created or dropped directly

The reason for the error is that you used loadjava to compile and load a Java source file,
HelloWorld4.java. Thus, you should use dropjava and the source file, which will delete the
class and source file.

NOTE
The behavior is generally consistent with this preceding description,
but occasionally the command will work and delete both the source
and class files from the Oracle JVM.

528 Oracle Database 11g PL/SQL Programming

The error signaling that you have excluded something from your CLASSPATH environment
variable should appear as follows:

C:\>loadjava -r -f -o -user plsql/plsql HelloWorld4.class
errors : class HelloWorld4
 ORA-29521: referenced name oracle/jdbc2/SQLData could not be found
 ORA-29521: referenced name oracle/jdbc2/SQLInput could not be found
 ORA-29521: referenced name oracle/jdbc2/SQLOutput could not be found
The following operations failed
 class HelloWorld4: resolution
exiting : Failures occurred during processing

If you get an ORA-29549 error, you’re missing a Java archive reference. As noted earlier in
the chapter, an ORA-29549 error is also raised when the Java class is removed and replaced the
first time it’s called.

TIP
If you replace your Java class files, make sure you call them once from
the target schema to avoid users’ managing the Java session change.

Now that you’ve reviewed the major issues with building, loading, and dropping Java stored
object class files, let’s examine some errors in the SQL and PL/SQL environments.

Using Java Class Library Objects
When you use Java stored object classes, you should ensure you define only one constructor in
the PL/SQL object type definition. The only constructor acted on by a PL/SQL object type wrapper
is the default constructor.

TIP
Avoid overriding constructors unless you plan to call them from other
Java libraries wrapped as procedures and functions.

An example of overriding constructors being ignored is found in the HelloWorld4e.sql
script. The script references the HelloWorld4.class file addressed earlier in the chapter.
HelloWorld4e.sql defines two constructors for the HelloWorld4.class file. One is a
null argument constructor, and the other is a single formal parameter argument. Since there’s no
duplicate constructor defined in the targeted class file, you would expect the following object
type definition to fail:

-- This is found in HelloWorld4.sql on the publisher’s web site.

-- Create a PL/SQL wrapper package to a Java class file.
CREATE OR REPLACE TYPE hello_world4 AS OBJECT
EXTERNAL NAME 'HelloWorld4' LANGUAGE JAVA
USING SQLData
(instanceName VARCHAR2(100) EXTERNAL NAME 'java.lang.String'
, CONSTRUCTOR FUNCTION hello_world4
 RETURN SELF AS RESULT
, CONSTRUCTOR FUNCTION hello_world4
 (instanceName VARCHAR2)
 RETURN SELF AS RESULT
, MEMBER FUNCTION getQualifiedName

Chapter 15: Java Libraries 529

 RETURN VARCHAR2 AS LANGUAGE JAVA
 NAME 'HelloWorld4.getQualifiedName() return java.lang.String'
, MEMBER FUNCTION getSQLTypeName
 RETURN VARCHAR2 AS LANGUAGE JAVA
 NAME 'HelloWorld4.getSQLTypeName() return java.lang.String')
INSTANTIABLE FINAL;

/

It does not fail, however, but instead succeeds in defining a type that misrepresents the
internal Java program’s capabilities. You can test this program with the HelloWorld4e.sql script,
which demonstrates that the type fails to support the overriding constructor:

-- This is found in HelloWorld4e.sql on the publisher’s web site.

DECLARE

 -- Define and instantiate an object instance.
 my_obj1 hello_world4 := hello_world4('Adam');
 my_obj2 hello_world4 := hello_world4('Eve');

 PROCEDURE write_debug
 (number_in NUMBER
 , value_in VARCHAR2) IS
 BEGIN
 INSERT INTO java_debug VALUES (number_in,value_in);
 END write_debug;
BEGIN
 -- Test class instance.
 dbms_output.put_line('Item #1: ['||my_obj1.getQualifiedName||']');
 write_debug(101,'Item #1 Completed');
 dbms_output.put_line('Item #2: ['||my_obj2.getQualifiedName||']');
 write_debug(102,'Item #2 Completed');
 dbms_output.put_line('Item #3: ['||my_obj1.getSQLTypeName||']');
 write_debug(103,'Item #3 Completed');
 dbms_output.put_line('Item #4: ['||my_obj1.getSQLTypeName||']');
 write_debug(104,'Item #4 Completed');

 -- Test metadata repository with DBMS_JAVA.
 dbms_output.put_line(
 'Item #5: ['||user||'.'||dbms_java.longname('HELLO_WORLD4')||']');
END;
/

This will send the following output to your console:

-- This output is generated from the HelloWorld4e.sql file.

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 4

530 Oracle Database 11g PL/SQL Programming

This would imply that the overriding constructor takes a single VARCHAR2 formal parameter that
cannot support a VARCHAR2 value. The real issue is that the SQLData type is what is passed and
it’s managed as a SQLData type. As noted earlier, the methods used in the SQLData interface
define how values are passed.

You may encounter many issues when first implementing stored Java object classes and thus
may benefit from building a java_debug error management table like the following:

CREATE TABLE java_debug
(debug_number NUMBER
, debug_value VARCHAR2(4000));

Adding the following method to your Java class files will enable you to write to the
java_debug table:

 // Define the debugLog() method.
 public void debugLog(int debug_number
 ,String debug_value) throws SQLException {
 String statement = "INSERT INTO java_debug VALUES (?,?)";

 // Declare an Oracle connection.
 Connection conn = DriverManager.getConnection("jdbc:default:connection:");

 // Declare prepared statement, run query and read results.
 PreparedStatement ps = conn.prepareStatement(statement);
 ps.setInt(1,debug_number);
 ps.setString(2,debug_value);
 ps.execute(); }

The two question marks in the VALUES clause of the INSERT statement let you bind
positional variables from your Java program into the SQL statement. You have now covered the
major issues with troubleshooting Java stored object classes. The next section summarizes the
mapping of Oracle types to Java types.

Mapping Oracle Types
Oracle maps all native types and user-defined types (UDTs) to Java types. When you use
SQLData, you map individual components and structures. Table 15-1 shows how Oracle types
map to Java types.

Native types and UDTs can be used and managed by the SQLData conventions covered in
the chapter. The Oracle JPublisher tool enables you to develop SQLData stubs and programs to
use your UDTs.

Chapter 15: Java Libraries 531

SQL Datatypes Java Class Datatypes
CHAR
LONG
VARCHAR2

oracle.sql.CHAR
java.lang.String
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.lang.BigDecimal
java.sql.Date
java.sql.Time
java.sql.Timestamp
byte
short
int
long
float
double

DATE oracle.sql.DATE
java.lang.String
java.sql.Date
java.sql.Time
java.sql.Timestamp

NUMBER oracle.sql.NUMBER
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.lang.BigDecimal
byte
short
int
long
float
double

TABLE 15-1 Oracle Datatypes Mapped to Java Datatypes

532 Oracle Database 11g PL/SQL Programming

Summary
You should now have an understanding of how to implement and troubleshoot server-side or
internal Java class libraries. With these skills, you can build robust solutions in Java, providing
you an alternative in lieu of PL/SQL.

SQL Datatypes Java Class Datatypes
OPAQUE oracle.sql.OPAQUE

RAW
LONG RAW

oracle.sql.RAW
byte[]

ROWID oracle.sql.CHAR
oracle.sql.ROWID
java.lang.String

BFILE oracle.sql.BFILE

BLOB oracle.sql.BLOB
oracle.jdbc2.Blob

CLOBNCLOB oracle.sql.CLOB
oracle.jdbc2.Clob

OBJECT
Object types

oracle.sql.STRUCT
java.sql.Struct
java.sql.SqlData
oracle.sql.ORAData

REF
Reference types

oracle.sql.REF
java.sql.Ref
oracle.sql.ORAData

TABLE
VARRAY
Nested table and types
VARRAY types

oracle.sql.ARRAY
java.sql.Array
oracle.sql.ORAData

Any of the preceding SQL types oracle.sql.CustomDatum
oracle.sql.Datum

TABLE 15-1 Oracle Datatypes Mapped to Java Datatypes (continued)

CHAPTER
16

Web Application
Development

533

534 Oracle Database 11g PL/SQL Programming

here are many opportunities for building web applications against an Oracle 11g
database. This book contains examples of PHP web application development in
Chapter 8 to illustrate LOBs, and server-side Java Libraries in Chapter 15. Appendixes
C and D support these development examples. Appendix D also highlights how to
use the JDBC to support Java applications.

You require a separate Apache HTTP server whether you use a scripting solution in PHP
or JServlet solution in Java. This chapter explores Oracle complete solutions using PL/SQL
programming solutions.

This chapter covers the following topics:

PL/SQL web server architectures

Configuring a standalone Oracle HTTP server

 Describing the mod_plsql cartridge

 Configuring the Oracle HTTP server

Configuring the XML DB Server

 Configuring static authentication

 Configuring dynamic authentication

 Configuring anonymous authentication

Comparison of PL/SQL web procedures and pages

Creating web-enabled PL/SQL procedures

 Developing procedures without formal parameters

 Developing procedures with formal parameters

Creating PL/SQL Server Pages (PSPs)

 Developing procedures without formal parameters

 Developing procedures with formal parameters

Oracle 10g and 11g provides another alternative that relies completely on the Oracle
database. It is the Oracle XML Database Server, which is more commonly referred to as the
Oracle XML DB Server. The Oracle XML DB Server is a built-in Apache HTTP server. A similar
solution exists for Oracle 9i and 10g, but it requires the Oracle HTTP Server (OHS).

Like Oracle 10g, Oracle 11g deploys Application Express. Application Express lets you build
web applications by leveraging a framework built on the framework of the Oracle HTMLDB
product. In both releases, this product uses the Oracle XML DB Server (sometimes abbreviated
as XDB). Unlike Oracle 10g, Oracle 11g ships without the standalone OHS.

The Database Configuration Assistant (DBCA) installs the XML DB Server as a component of
the sample database instance. The XML DB Server contains a complete Apache configuration

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

T

Chapter 16: Web Application Development 535

inside the database instance. It also supports its own listener, which is the XML DB Listener. You
configure the XML DB through the Oracle Enterprise Manager or by using the DBMS_EPG package.

Oracle 9i and 10g shipped the Oracle HTTP Server (OHS) on the companion disk. Oracle-
only web solutions required you to configure OHS to deliver standalone PL/SQL web pages.
With the release of Oracle 11g, OHS is now considered exclusively part of the Oracle Application
Server product.

PL/SQL web programs depend on the OHS or XML DB product and the PL/SQL Toolkit. The
PL/SQL Toolkit is actually the PL/SQL Web Toolkit. The original PL/SQL Toolkit shipped with
Oracle 7. It has been expanded and stabilized in subsequent releases. The PL/SQL Toolkit enables
developers to render dynamic web pages based on business logic embedded in stored procedures
or PL/SQL Server Pages (PSPs).

PSPs were introduced in Oracle 8i (version 8.1.6). These enable you to build the equivalent
of Java Server Pages (JSPs) without having to master both Java and PL/SQL. PSPs follow the same
pattern as scripting language, JSPs, and ASPs (Active Server Pages from Microsoft in the .NET
suite). The nice thing about PSPs is that you don’t have to build a JServlet because Oracle
provides an alternative framework. The first production release of Oracle 11g ships with the
PL/SQL Web Toolkit, version 10.1.2.0.8.

This chapter introduces you to the big picture of using the PL/SQL web pages. You learn how
to set up OHS, and XML DB to work with PL/SQL stored procedures and PL/SQL web pages (PSPs).
Setup requires that you understand the purpose of the mod_plsql cartridge and how to configure
it. If you understand the architecture well, you may skip to points of interest, but each section in
the chapter depends on earlier topics.

PL/SQL Web Server Architecture
The PL/SQL web server architecture depends on an implementation choice. Oracle 9i lets you
choose to implement the Oracle Application Server or Oracle HTTP Server (OHS). Oracle 10g
lets you choose to implement the Oracle Application Server, OHS, or XML DB Server. Oracle 11g
lets you choose to implement the Oracle Application Server or XML DB product. The architecture
of the OHS and XML DB products are discussed in the next two sections.

Discovering the PL/SQL Web Toolkit Version
You can find the PL/SQL Web Toolkit Version by running the GET_VERSION function of the
OWA_UTIL package. You should connect as the SYS user and run the following query:

SELECT owa_util.get_version AS "PL/SQL Toolkit" FROM dual;

A query against the Oracle 11g (11.1.0.6.0) product should return the following:

PL/SQL Toolkit

10.1.2.0.8

It is very likely that subsequent releases of Oracle 11g update the PL/SQL Web Toolkit
version.

536 Oracle Database 11g PL/SQL Programming

Oracle HTTP Server Architecture
The OHS provides an HTTP listener to receive and process Uniform Resource Locator (URL)
requests. It is based on the Apache HTTP server. The Apache and OHS server support the
Common Gateway Interface (CGI), which enables running server-side include programs. They
also support Apache modules.

CGI was the beginning of web applications, but it had a big problem. Every call to the web
server launched the interpreter for a scripting language. Launching an interpreter to run a program
is a form of dynamic marshaling. The process is resource intensive and fails to scale well. As the
Apache HTTP Server matured, configuring and pre-spawning the programming language interpreters
became an obvious solution to eliminate the dynamic marshaling load from the web servers.

Perl is one of the early scripting languages. It requires an interpreter to run programs. Perl
programs are also known as server-side includes (small web server program files). Server-side
includes are programs located on the web server. The web server can be a standalone machine
or an application server tier in n-tier application computing solutions. Perl uses an Apache
module known as mod_perl, which embeds a Perl interpreter inside the Apache server and
reduces the overhead needed to launch requests that run Perl programs.

Oracle implements a mod_plsql module that does the same thing for PL/SQL programs. OHS
defines the relationship between incoming requests based on a virtual mapping that links by a
Data Access Descriptor (DAD). The DAD contains the connection information to manage an
HTTP-pipelined connection to the Oracle database. Information received in the URL by the OHS
listener is mapped against possible DAD values. The DAD values then map the connections to
the database. The DAD is in the Apache/modplsql/conf/dads.conf physical file, which
resides in the OHS home.

NOTE
The OHS home must be separate from the Oracle database home
when they are on the same tiers.

There are two approaches to implementing OHS. One includes the Oracle Application Server
9i/10g, which is delivered in the standard product release. The other approach is as a smaller
standalone component with the Oracle 9i/10g Database. Configuration of the Oracle Application
Server 9i/10g can be found in Chapter 4 of the Oracle Application Server 10g Administration
Handbook by by John Garmany and Donald K. Burleson (McGraw-Hill, 2004). This chapter
demonstrates the configuration of the smaller solution shipped with the Oracle Database product.

The general architecture is displayed in Figure 16-1.
As you can see from the figure, the process is as follows:

 1. OHS receives a PL/SQL procedure or PSP request from a client browser.

 2. OHS routes the request to the mod_plsql module.

 3. The request is forwarded by mod_plsql to a stored procedure on the Oracle Database.
The mod_plsql module routes the request by reading the DAD mapping information,
which is stored on the file system. The mod_plsql module also prepares call parameters
and calls database code.

 4. A stored procedure generates an HTML page by calling the PL/SQL Web Toolkit. You can
create a web-enabled stored procedure or a PSP, which acts as a stored procedure.

Chapter 16: Web Application Development 537

 5. The PL/SQL Web Toolkit returns HTML formatting to the calling procedure.

 6. The stored procedure returns a formatted HTML page as a response to OHS.

 7. OHS forwards the return HTML page back to the client browser, where it is rendered.

You have covered the general architecture for the OHS product. The next section describes
the XML DB Server and its process.

Oracle XML Database Server Architecture
The XML Database Server (or XML DB Server) is an embedded service in the Oracle 11g database.
It is an Apache HTTP Server with an embedded PL/SQL gateway. The gateway also has a Database
Access Descriptor (DAD) maintained in the database. Like a standard Apache HTTP server, the
XML Database Server supports CGI and Apache modules. The embedded PL/SQL gateway also
has a DAD. Unlike the OHS product, the XML Database Server requires all maintenance to be
done through the database.

NOTE
If you want your database server behind a firewall, you should
configure it in standalone mode.

You must have the XDBA Admin role privilege to administer the XML Database Server, and you
must enable the ANONYMOUS user account. By default, the ANONYMOUS user account is locked. The
section “Configuring the XML DB Server” shows you how to perform these administrative tasks.

Oracle 11g installs the XML DB Server with the sample demonstration database when you use
the DBCA tool. If you built the database instance without using the DBCA tool, you may have to
install the XML DB Server separately.

The general architecture of the XML DB Server is displayed in Figure 16-2.

FIGURE 16-1 Overview of the Oracle HTTP Server (OHS)

538 Oracle Database 11g PL/SQL Programming

Installing XML DB Server from Scratch
You can install and start the XML DB Server in an Oracle 11g database if you didn’t do so
when you created the database. It is critical that you start the database instance in Oracle
9.2.0 compatibility or higher for the installation to work.

To install and configure the XML DB Server, follow these steps:

 1. Create an XDB schema.

 2. Run the catqm.sql creation script found in the Oracle home rdbms/admin
directory as the SYS user. You need to provide the XDB password, tablespace
name, and temporary tablespace name when running the script, like

@catqm.sql xdb_password xdb_tablespace_name temporary_tablespace_name

 3. Reconnect as the SYS user and run the catxdbj.sql script:

@catxdbj.sql

 4. Add the following line to your init.ora file:

Dispatchers = "(PROTOCOL = TCP) (SERVICE = <sid>XDB)"

 5. Restart the database and listener so that the XML DB Server can start.

 6. Unlock the ANONYMOUS user account if you want to allow unauthenticated access
to the database.

You can find the configuration sequences and discussion in the section “Configuring
XML DB Server” later in the chapter. It also explains the various authentication modes for
the product.

FIGURE 16-2 Overview of the XML Database Server (XDB)

Chapter 16: Web Application Development 539

As you can see from the figure, the process is very similar to the standalone OHS handling of
requests:

 1. The XML DB Listener receives a PL/SQL procedure or PSP request from a client browser.

 2. XML DB Listener routes the request to the Embedded PL/SQL Gateway as specified in the
virtual-path mapping defined in the DAD. The request is forwarded by the embedded
PL/SQL Gateway’s mod_plsql to the stored procedure in the Oracle Database. The
mod_plsql module routes the request by reading the DAD mapping information, which
is stored in the database. At this point, the Embedded PL/SQL Gateway authenticates access.

 3. The Embedded PL/SQL Gateway’s mod_plsql module prepares call parameters and
calls the database stored procedure.

 4. A stored procedure generates an HTML page by calling the PL/SQL Web Toolkit. You can
create a web-enabled stored procedure or a PSP, which acts as a stored procedure.

 5. The PL/SQL Web Toolkit returns HTML formatting to the calling procedure.

 6. The stored procedure returns a formatted HTML page as a response to the XML DB Listener.

 7. XML DB Listener forwards the return HTML page back to the client browser, where it is
rendered.

You can configure XML DB Server to support static or dynamic authentication models. The
DBMS_EPG package lets you configure the authentication model.

The XML DB Server supports XMLType tables and an XML Repository. There are Service Oriented
Architecture (SOA) services that support PL/SQL and Java APIs for managing and working with
XMLTypes. The PL/SQL API is defined by the DBMS_XDB package. Java is supported through
Java/JNI. It also supports versioning, Access Control Lists (ACLs), and foldering technologies.
You also have access to the XML Developer Kit (XDK).

The master configuration file is xdbconfig.xml. It is physically stored in the database
but you can find the template xdbconfig.xml.11.0 in the /rdbms/xml subdirectory of
the Oracle home. You can query the file with the following formatting:

SET LONG 100000
SET PAGESIZE 9999
SELECT dbms_xdb.cfg_get() FROM dual;

This returns the XMLType for the xdbconfig.xml file. The formatting ensures that you
can see the entire XML file. You can read more about the XML DB Server in the Oracle XML
DB Developer’s Guide.

The following two sections describe how you configure OHS for Oracle 9i or 10g, or XML DB
for Oracle 11g.

Configuring the Standalone Oracle HTTP Server
The OHS product changes with each release of the Oracle Database server. This section describes
how it works in Oracle 9i and 10g. You also learn how to configure the mod_plsql DAD and
the standalone Oracle HTTP Server shipped with the Oracle Database 9i/10g.

540 Oracle Database 11g PL/SQL Programming

NOTE
The Oracle Database 10g ships the OHS product on the companion
CD, so you’ll need to install it. The companion disk also contains
critical components for the Oracle Call Interface (OCI), which is
discussed in more detail in Chapter 13.

Describing mod_plsql Cartridge
The mod_plsql module or cartridge is a framework that provides essential services. It was
originally defined as a cartridge in the Common Object Request Broker Architecture (CORBA). You
probably know it better as a module. The Oracle PL/SQL Gateway is delivered by mod_plsql,
which provides the following services:

Accelerates your PL/SQL dynamic content.

Enables your PL/SQL programs to become part of OHS, which is an implementation of
the Apache HTTP server.

Monitors access throughout the HTTP cycle from the URL to the HTML page return.

In Unix, the key to configuring mod_plsql is the DAD file. You’ll find the DAD file in the
$OHS_HOME/Apache/modplsql/conf/dads.conf file. The minimum configuration is
noted next:

<Location /pls>
 SetHandler pls_handler
 Order deny,allow
 Allow from all
 AllowOverride None
 PlsqlDatabaseUsername <oracle_user_name>
 PlsqlDatabasePassword <oracle_password>
 PlsqlDatabaseConnectString <hostname>.<domain_name>:<port>:<sid>
 PlsqlAuthenticationMode Basic
</Location>

The Windows platform will require different changes. For instance, the Oracle and OHS
homes in Oracle 9i are in the same folder on Windows. You do not modify the dads.conf file,
but rather the $ORACLE_HOME\Apache\modplsql\cfg\plsql.conf file.

The syntax is very rigid, and you can explore additional parameters by referring to the Oracle
HTTP Server mod_plsql User’s Guide. You can create multiple PL/SQL DADs in this configuration
file. Also, you should read and understand the following before configuring the dads.conf file:

Location Defines the URL component that will point to a specific DAD. This location
marker enables you to define multiple DADs for any given Oracle Database instance.

PlsqlDatabaseUsername Defines the Oracle instance user name.

PlsqlDatabasePassword Defines the Oracle instance user’s password. It is defined in
clear text but may be obfuscated by running the dadTool.pl program.

PlsqlDatabaseConnectString Defines the connection string to the instance. It requires
the hostname domain name separated by a dot or period. Then, there is a colon that is
followed by the port number for the Oracle Database listener, which is followed by a
colon and the Oracle TNS service name used by the listener.

■

■

■

■

■

■

■

Chapter 16: Web Application Development 541

When you have configured your dads.conf file, you are ready to configure OHS. In case
something goes wrong and you fail to connect with a ubiquitous error like a 503 from your web
browser, you should enable logging. You enable logging by editing the following line in the
$OHS_HOME/conf/plsql.conf file:

PlsqlLogEnable Off

You should change it to:

PlsqlLogEnable On

Log files will be generated for each URL attempt to connect to the database. The log files will
be found in the $OHS_HOME/Apache/modplsql/logs/_pls directory. The last directory name
in the path statement is generated automatically according to the location value used in the
dads.conf file.

The most often encountered problem is a failure to connect to the database. If you get an
error like the following, you have a connection problem between your dads.conf file and the
Oracle Database listener:

<2749636625 ms>[ReqStartTime: 3/May/2005:12:49:26]
<2749636625 ms>Request ID ReqID:3758_1115146166
<2749636625 ms>Connecting to database with connect string : "CODE"
<2749748861 ms>ORA-12154 LogOn ORA-12154: TNS:could not resolve service name
<2749748862 ms>Stale Connection due to Oracle error 12154
<2749748862 ms>Logoff: Closing connection due to stale connection
<2749748862 ms>[ReqEndtime: 3/May/2005:12:51:18]
<2749748862 ms>[ReqExecTime: 112237 ms]

If you receive a connection error, please check all the related values and map them to your
listener.ora and tnsnames.ora files. The potential errors in your dads.conf file are
PlsqlDatabaseUsername, PlsqlDatabasePassword, and PlsqlDatabaseConnectStr
ing values.

Configuring the Oracle HTTP Server
All the Oracle HTTP Server versions require you to configure an environment file. The generic
environment file requirements are noted next:

Unix

ORACLE_HOME=/<mnt_point>/<directories>
export ORACLE_HOME
PATH=$ORACLE_HOME/Apache/modplsql/conf:$PATH
export PATH
PATH=$ORACLE_HOME/perl/bin:$PATH;export PATH
LD_LIBRARY_PATH=$ORACLE_HOME/lib
export LD_LIBRARY_PATH

Windows

set ORACLE_HOME=<logical_drive>\<directories>
set PATH=%ORACLE_HOME%\Apache\modplsql\conf;%PATH%
set PATH=%ORACLE_HOME%\perl\bin;%PATH%
set LD_LIBRARY_PATH=%ORACLE_HOME%\lib

542 Oracle Database 11g PL/SQL Programming

The next sections cover the configuration of Oracle 9i and 10g OHS standalone
environments.

Configuring the Oracle 9i HTTP Server
After you have a correct environment file, you should source the file into your shell environment.
Then, you will be able to start, stop, and the check status for the Oracle 9i OHS.

NOTE
In Linux or Unix, you can use the env utility to see all your
environment variables.

Linux or Unix requires that you build an environment file with the following entry in order to
start the OHS Apache services:

PATH=$ORACLE_HOME/Apache/Apache/bin:$PATH
export PATH

Sourcing a File
There are different mechanisms for sourcing an environment file into a Linux or Unix shell.
Sourcing means that you read a file and set environment variables. Environment variables
are aliases for canonical file paths or names. You can find your shell by running the
following command:

echo $SHELL

Then, you can source your environment variables using the appropriate command:

csh or tcsh

source some_environment_file.env

Bourne, Korn, or Bash

. some_environment_file.env

Assume that your environment file set the $ORACLE_HOME environment variable. You
can see the value by typing

cat $ORACLE_HOME

Microsoft Windows also supports environment variables. The only difference is that
they are sourced by executing the environment file and enclosed by % symbols. You source
a file in Windows as if you were executing it. As a result of that process difference,
environment files are generally batch files. Batch files have a .bat file extension.

Chapter 16: Web Application Development 543

You start and stop OHS with the apachectl utility. The options are start, status, and stop.
When you change the DAD configuration files, you need to stop and start OHS for the changes
to take effect. You may find this behavior familiar, since this is how the Oracle listener works.

NOTE
The actual environment is defined for you in Windows in the startJSV
and stopJSV batch files. The %ORACLE_HOME%\Apache\Apache\bin
folder contains these files.

Configuring the Oracle 10g HTTP Server
As with the Oracle 9i configuration, you need to define a correct environment file. After defining
it, you source the file into your shell environment. Then, you will be able to start, stop, and check
the status for the Oracle 10g OHS.

Linux or Unix requires that you build an environment file to start the OHS Apache services.
The environment file should contain the following:

PATH=$ORACLE_HOME/opmn/bin:$PATH
export PATH

Oracle 10g ships with a feature called the Oracle Process Management and Notification
(OPMN) utility. The OPMN utility supports a web view of your database instance. These web
pages rely on the OHS server. As a result, you can no longer start OHS with the apachectl
utility because doing so may cause unexpected behavior in the OPMN utility.

In Oracle 10g, you start and stop OHS with opmnctl utility. The options are start, status, and
stop. When you change the DAD configuration files, you need to stop and start OHS for the changes
to take effect. Again, you may find this behavior familiar, since this is how the Oracle listener works.

NOTE
OHS configuration in 10g Release 2 is identical to that in 10g Release 1.
Release 2 adds access to the XML DB Server through the DBMS_EPG
package.

You have now learned how to configure the OHS product. The balance of the chapter will
illustrate building stored PL/SQL procedures or PSPs.

Configuring the XML DB Server
The XML DB Server is completely self-contained in the Oracle 11g database. It has two principal
elements. They are the XML DB Listener and the Embedded PL/SQL Gateway. You enable the
XML DB Listener by setting the dispatchers parameter in the Oracle init.ora file, and
configure it through the DBMS_XDB package. The Embedded PL/SQL Gateway manages the
Data Access Descriptor (DAD) and mod_plsql components. You use the DBMS_EPG package.

Table 16-1 shows the map between DAD attributes used in both the mod_plsql and
Embedded PL/SQL Gateway. Table 16-2 shows how the two global attributes map between
the two products. Global attributes apply to all DADs in the XML DB Server.

544 Oracle Database 11g PL/SQL Programming

mod_plsql
DAD Attribute Name

Embedded PL/SQL Gateway
DAD Attribute Name

Legal Values

PlsqlAfterProcedure after-procedure String

PlsqlAlwaysDescribeProcedure always-describe-procedure On, Off

PlsqlAuthenticationMode authentication-mode Basic,
SingleSignOn,
GlobalOwa,
CustomOwa,
PerPackageOwa

PlsqlBeforeProcedure before-procedure String

PlsqlBindBucketLengths bind-bucket-lengths Unsigned integer

PlsqlBindBucketWidths bind-bucket-widths Unsigned integer

PlsqlCGIEnvironmentList cgi-environment-list String

PlsqlCompatibilityMode compatibility-mode Unsigned integer

PlsqlDatabaseConnectString database-connect-string String

PlsqlDatabasePassword database-password String

PlsqlDatabaseUsername database-username String

PlsqlDefaultPage default-page String

PlsqlDocumentPath document-path String

PlsqlDocumentProcedure document-procedure String

PlsqlDocumentTablename document-table-name String

PlsqlErrorStyle error-style ApacheStyle,
ModplsqlStyle,
DebugStyle

PlsqlExclusionList exclusion-list String

PlsqlFetchBufferSize fetch-buffer-size Unsigned integer

PlsqlInfoLogging info-logging InfoDebug

PlsqlInputFilterEnable input-filter-enable String

PlsqlMaxRequestsPerSession max-requests-per-session Unsigned integer

PlsqlNLSLanguage nls-language String

PlsqlOWADebugEnable owa-debug-enable On, Off

PlsqlPathAlias path-alias String

PlsqlPathAliasProcedure path-alias-procedure String

PlsqlRequestValidationFunction request-validation-function String

PlsqlSessionCookieName session-cookie-name String

PlsqlSessionStateManagement session-state-management StatelessWithResetPackageState,
StatelessWithFastResetPackageState,
StatelessWithPreservePackageState

PlsqlTransferMode transfer-mode Char, Raw

PlsqlUploadAsLongRaw upload-as-long-raw String

TABLE 16-1 Map of mod_plsql and Embedded PL/SQL Gateway DAD Attributes

Chapter 16: Web Application Development 545

Users of mod_plsql do not require you to set the PlsqlDatabasePassword or
PlsqlDatabaseConnectString attributes. Default values are generally sufficient for
most users of the Embedded PL/SQL Gateway.

There are three ways to create DADs for the Embedded PL/SQL Gateway. The first method uses
static authentication. Static authentication is for those migrating mod_plsql applications that
provide credentials inside the DAD configuration file. It relies on the schema user and password.
The second mode uses dynamic authentication, which requires the user to authenticate through
the browser. This is known as Basic HTTP Authentication, and it sends user credentials in clear
text. This is how the XML DB Server is authenticated as a default configuration. The third method
uses anonymous authentication. This is how Oracle Application Express connects to the database.

Oracle 11g provides you with a diagnostic script that helps you understand the current
configuration of the XML DB Server. It is the epgstat.sql script, which is found in /rdbms/
admin subdirectory of the Oracle home. The script checks the following:

Configured HTTP and FTP ports of the XML DB Server (0 by default)

DAD virtual mappings

DAD attributes

DAD authorizations

ANONYMOUS user status (expired and locked by default)

ANONYMOUS users access to XML DB repository (disabled by default)

You can run the epgstat.sql script anytime as the SYS account. Alternatively, you can
grant the XDBADMIN role to another user you can perform most of the configuration steps.

■

■

■

■

■

■

mod_plsql
Global Attribute Name

Embedded PL/SQL Gateway
Global Attribute Name

Legal Values

PlsqlLogLevel log-level Unsigned integer

PlsqlMaxParameters max-parameters Unsigned integer

TABLE 16-2 Map of mod_plsql and Embedded Pl/SQL Gateway Global Attributes

Running Configuration Scripts from the Oracle Home
When you administer Oracle services, upgrade, or maintain the database, you learn a few
tricks and techniques for running scripts from the Oracle home. One is that you can
substitute a question mark for the environment variable $ORACLE_HOME (in Linux or Unix)
or %ORACLE_HOME% (in Windows) to reference the Oracle home.

You can run the epgstat.sql script as follows from inside the SQL*Plus environment:

SQL> @?/rdbms/admin/epgstat.sql

In a Windows operating system, you need to replace the forward slashes with
backslashes.

546 Oracle Database 11g PL/SQL Programming

Before you begin the authorization sections, you should set the HTTP listening port. You do
this by calling the DBMS_XDB.SETHTTPPORT procedure. In this sample, the HTTP listening port
is set to 8080, but you can substitute another if you prefer.

EXEC DBMS_XDB.SETHTTPPORT(8080);

The epgstat.sql program should report the new port. Alternatively, you can run the
following block to find the HTTP listening port:

DECLARE
 endpoint NUMBER := 1;
 host VARCHAR2(40);
 port NUMBER := -1;
 protocol NUMBER := -1;
BEGIN
 dbms_xdb.getlistenerendpoint(endpoint,host,port,protocol);
 dbms_output.put_line('port ['||port||']');
END;
/

There are three steps to creating the DAD. You create it, map a database user to it, and
authorize the database user to use it. Alternatively, you can grant the EXECUTE privilege to the
user on the DBMS_EPG package and the user can self-authorize. The AUTHORIZE_DAD procedure
is overloaded to support these approaches. The following example uses the latter approach, given
that it leaves it to the developer, not the DBA.

The next three sections guide you through these configuration types. There is duplication in
the following subsections because it seemed more effective to let you read any approach without
flipping pages for odds and ends in others.

Configuring Static Authentication
Static authentication is a direct corollary to a mod_plsql user who stores the username and
password in the DAD. This means that the browser user doesn’t have to enter any authentication
to see the web page. This is fine for unsecured web pages that display dynamic but public
information.

Create the DAD
You create a DAD by mapping a virtual directory to the XML DB Server. The example uses the
/pls/ virtual path. You call the CREATE_DAD procedure, as shown:

EXEC DBMS_EPG.CREATE_DAD('PLSQL_DAD','/pls/*');

The asterisk (*) following the /pls/ virtual directory simply acknowledges everything in that
virtual directory. After creating the DAD, you need to set the database-username attribute.
You do so by calling the following procedure:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('PLSQL_DAD','database-username','ANONYMOUS');

The DAD attribute is case-sensitive and must be lowercase. The user account should be
uppercase. Leaving the DAD in uppercase works and is easier to read.

You have now created a PLSQL_DAD. The next step is authorizing the DAD.

Chapter 16: Web Application Development 547

Configure the DAD
You have two choices when you authorize the DAD. Authority can remain with only those users
who hold the XDBADMIN role, or you can delegate authority to the schema that owns the PL/SQL
web procedures or PSPs.

If you don’t choose to authorize the user schema, you can authorize the DAD by calling this
as the SYS user or another user who holds the XDBADMIN role privilege:

EXECUTE dbms_epg.authorize_dad('PLSQL_DAD','PLSQL');

NOTE
This call to AUTHORIZE_DAD requires that the user have the ALTER
ANY USER privilege directly and not through a role.

You can authorize the user schema by granting the EXECUTE privilege on the DBMS_EPG
package, like

GRANT EXECUTE ON dbms_epg TO plsql;

Reconnect to the PLSQL user and authorize yourself with this call:

EXECUTE dbms_epg.authorize_dad('PLSQL_DAD','PLSQL');

You have now authorized the DAD. The next step is configuring the database by granting
permissions and creating synonyms.

This configuration doesn’t require you to grant privileges or build synonyms. It is ideal when
you have dynamic content but no intent of restricting access through the DAD.

Configuring Dynamic Authentication
Dynamic authentication relies on Basic HTTP Authentication. This is a bad or good thing, depending
on your perspective. It means that any time a user accesses the web pages, that user must have
the database user name and password. Most security people dislike this approach and may nix
it in a production system because it transmits information in clear text.

Dynamic authentication is a convenient testing mechanism when you’re developing PL/SQL
web applications. It lets you circumvent your ACL and test PL/SQL web procedures and PSPs
directly. You can maintain one dynamic DAD while maintaining another static or anonymous
DAD for end-user testing.

You create and authorize a DAD in this solution because it goes directly to the user schema
for access. End-user authentication occurs in the browser.

Create the DAD
You create a DAD by mapping a virtual directory to the XML DB Server. The example uses /pls/
virtual path. You call the CREATE_DAD procedure, as shown:

EXEC DBMS_EPG.CREATE_DAD('DYNAMIC_DAD','/pls/*');

Again, the asterisk (*) following the /pls/ virtual directory simply acknowledges everything
in that virtual directory. After creating the DAD, you need to set the database-username
attribute. You do so by calling the following procedure:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('DYNAMIC_DAD','database-username','PLSQL');

548 Oracle Database 11g PL/SQL Programming

The DAD attribute is case-sensitive and must be lowercase. The user account should be
uppercase. Leaving the DAD in uppercase works and is easier to read.

You have now created a dynamic PLSQL_DAD that uses Basic HTTP authentication. There is
no next step because you don’t have to authorize the DAD. You have delegated authorization to
the browser and the XML DB Listener.

Configuring Anonymous Authentication
Anonymous authentication connects to a neutral schema where there isn’t any data. The
ANONYMOUS schema is designed to support this type of model. After enabling this schema and
configuring the Embedded PL/SQL Gateway, you grant execute permissions on your procedures
to the ANONYMOUS schema. Naturally, you then define synonyms in the ANONYMOUS schema
to resolve directly to the schema where you’ve put the procedures. This process of grants and
synonyms also works for PSPs.

The anonymous authentication method requires the ANONYMOUS schema. It is locked and
expired by default during most installations. You will need to unlock and then open the ANONYMOUS
schema before you proceed with the configuration.

Open the ANONYMOUS Schema
You open the anonymous schema by taking two administrative steps. You should be either the
SYSTEM user or someone with the DBA role privilege to perform these commands.

You unlock the ANONYMOUS user with the following command:

ALTER USER anonymous ACCOUNT UNLOCK;

After you unlock the account, the epgstat.sql script will show that it is still expired. You can
open the account by assigning a password to the ANONYMOUS user with the following:

ALTER USER anonymous IDENTIFIED BY anonymous;

NOTE
The dba_users view no longer contains encrypted passwords in Oracle
11g; you have to fetch them from the user$ table in the SYS schema.

While you’re here, you should now grant the CREATE ANY SYNONYM privilege to the
ANONYMOUS user. The user needs it to make the PL/SQL web pages available in a browser.
The syntax is

GRANT CREATE ANY SYNONYM TO anonymous;

Create the DAD
You create a DAD by mapping a virtual directory to the XML DB Server. The example uses the
/pls/ virtual path. You call the CREATE_DAD procedure, as shown:

EXEC DBMS_EPG.CREATE_DAD('PLSQL_DAD','/pls/*');

The asterisk (*) following the /pls/ virtual directory simply acknowledges everything in that
virtual directory. After creating the DAD, you need to set the database-username attribute.
You do so by calling the following procedure:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('PLSQL_DAD','database-username','ANONYMOUS');

Chapter 16: Web Application Development 549

The DAD attribute is case-sensitive and must be lowercase. The user account should be
uppercase. Leaving the DAD in uppercase works and is easier to read.

You have now created a PLSQL_DAD. The next step is authorizing the DAD.

Configure the DAD
You have two choices when you authorize the DAD. Authority can remain with only those users
who hold the XDBADMIN role, or you can delegate authority to the schema that owns the PL/SQL
web procedures or PSPs.

If you don’t choose to authorize the user schema, you can authorize the DAD by calling this
as the SYS user or another user who holds the XDBADMIN role privilege:

EXECUTE dbms_epg.authorize_dad('PLSQL_DAD','PLSQL');

As mentioned earlier in a note, a user must have the ALTER ANY USER privilege to indirectly
authorize a DAD. You can authorize the user schema by granting the EXECUTE privilege on the
DBMS_EPG package, like

GRANT EXECUTE ON dbms_epg TO plsql;

Reconnect to the PLSQL user and authorize yourself with this call:

EXECUTE dbms_epg.authorize_dad('PLSQL_DAD','PLSQL');

You have now authorized the DAD. The next step is configuring the database by granting
permissions and creating synonyms.

Granting Permissions to and Creating Synonyms for Procedures or PSPs
This section shows you how to configure the ANONYMOUS user and PLSQL user accounts. The
PLSQL user account holds ownership of the PL/SQL web procedures and PSPs. The PLSQL user
must grant permissions to the ANONYMOUS user. The ANONYMOUS user then creates synonyms to
the granted objects. This two-step process allows a smooth translation between the ANONYMOUS
and PLSQL schemas and implements the definer rights model discussed in Chapter 9.

The easiest way to test whether you’ve successfully configured the Embedded PL/SQL
Gateway is to run a copy of the create_helloworld1.sql script in the PLSQL schema. You
can find the code in the section “Developing Procedures without Formal Parameters” later in this
chapter. It creates a helloworldprocedure1 procedure.

You should grant the EXECUTE privilege to the ANONYMOUS user, as shown:

GRANT EXECUTE ON helloworldprocedure1 TO anonymous;

Reconnect as the ANONYMOUS user, and create a synonym to this procedure. This requires that
the ANONYMOUS user has the CREATE ANY SYNONYM privilege. You can use this syntax:

CREATE SYNONYM helloworldprocedure1 FOR plsql.helloworldprocedure1;

You can now test whether you have a PL/SQL web application. You can enter the following
URL in a browser of your choice:

http://localhost:8080/pls/helloworldprocedure1

Figure 16-3 shows you what you should see. You’ve now learned how to configure Embedded
PL/SQL Gateway anonymous authentication.

550 Oracle Database 11g PL/SQL Programming

These sections have shown you how to configure the XML DB Server. You will use one of
these configurations when you implement PL/SQL web procedures or PSPs in Oracle 11g, unless
you also implement the Oracle 10g Application Server.

Comparing Web-Enabled PL/SQL Procedures
and PSPs
There are two solutions to writing dynamic web pages using the PL/SQL programming language.
One is writing PL/SQL procedures, and the other is writing PL/SQL Server Pages (PSPs). PSPs are
similar to Java Server Pages (JSPs) because they combine PL/SQL and HTML components into a
single working program.

Like PL/SQL procedures, PSPs also use the PL/SQL Web Toolkit to format HTML web pages.
Table 16-3 has comparative guidelines to help you choose whether PL/SQL procedures or PSPs
are best in your environment.

The remaining sections examine how you create web-enabled PL/SQL procedures and PSPs.
The sections demonstrate that both approaches have much in common. PSPs syntax clearly differs
from standard PL/SQL code, whereas the PL/SQL procedures are more similar.

Creating Web-Enabled PL/SQL Stored Procedures
Stored procedures work differently when they support PL/SQL web applications. They generate an
HTML output stream that can’t be read in the SQL*Plus environment. You can only see the stream
rendered in a web page through the mod_plsql utility. This is accomplished by using the PL/SQL
Web Toolkit.

The PL/SQL Web Toolkit provides a collection of packages that make PL/SQL stored
procedures possible. Oracle 7 introduced the PL/SQL Web Toolkit. Table 16-4 lists the packages
in the toolkit. The HTP package provides a means to render web pages, while the HTF package
allows you to return variable-length HTML snippets that you can bundle into HTP package calls.

The PL/SQL Web Toolkit packages are in the Oracle PL/SQL Packages and Type Reference.
Check them for further details on these packages.

FIGURE 16-3 Web page results from helloworldprocedure1 procedure

Chapter 16: Web Application Development 551

PL/SQL Procedures PL/SQL Server Pages

A large body of PL/SQL code that
produces formatted output.

A large body of dynamic HTML to display in a single
web page.

The Oracle Portal authoring tool,
which uses the PL/SQL procedures.

Authoring tools effectively support PSPs.

Web pages require line-by-line
formatting and control.

Web pages include JavaScript embedded tags.

Other server-side includes are used
in the rendered page.

Other server-side includes are not used in the
rendered page.

Migrating from static text web pages. Migrating from Java Server Pages (JSPs) because they
use the same syntax.

Migrating Active Data Object (ADO) pages because
Active Server Pages (ASPs) have a similar syntax.

TABLE 16-3 Comparative Rationale for PL/SQL Procedures or PSPs

TABLE 16-4 PL/SQL Toolkit Packages

Package Description
HTP The HTP procedure lets you generate HTML tags, which can be read from

the mod_plsql module. For example, the procedure HTP.BOLD generates a
HTML tag, like
some_string

HTF The HTF package lets you generate HTML tags and return them as strings
to your program scope. You use the HTF functions when you want to nest
rendered HTML tags in other HTP procedure calls. For example, the function
HTF.ITALIC function creates a tag that can then be encapsulated by a call to
HTP.BOLD, like
HTP.BOLD(HTF.ITALIC);

You would see a web page render:
<I>some_string</I>

OWA_CACHE The OWA_CACHE package helps improve performance by caching results on
the application server. These functions and procedures are most suited to web
architecture that uses the Oracle Application Server. You can also use this
package to expire and validate caching while using the PL/SQL Gateway file
system.

552 Oracle Database 11g PL/SQL Programming

Package Description
OWA_COOKIE The OWA_COOKIE package lets you send, read, and remove cookies.

Cookies are strings that browsers use to maintain state between HTTP calls.
They limit the duration of the transaction state by setting a client session
cookie expiration date. Passing cookies between the client and server is a
risky business. You should minimize the data exchanged by storing state
information on the server and returning only a key to the data as a cookie.
The key is usually known as a session ID value. Exchanging only the session
ID greatly enhance your web application security because you minimize the
exchange and exposure of sensitive information to hackers.

OWA_CUSTOM The OWA_CUSTOM contains a single AUTHORIZE function. You use the
AUTHORIZE function when you are using custom or global authentication
for the DAD. If enabled, the global PL/SQL agent connects to database using
the DAD connection string before passing control for user validation to your
application code.

OWA_IMAGE The OWA_IMAGE package contains the GET_X and GET_Y functions. You call
these procedures by using a variable of OWA_IMAGE.POINT datatype, which
is a table of binary integers. The table never should contain more than two
values. Index 1 returns the x-coordinate, and index 2 returns the y-coordinate.
You use this package when you’re managing a user-click in an image that
triggers a PL/SQL Gateway event.

OWA_OPT_LOCK The OWA_OPT_LOCK package implements an optimistic locking strategy to
prevent the loss of data during updates. Lost updates can happen when a user
selects, alters, and attempts to update a row whose values have already been
changed. The changed values occur because another user also accessed the
same data but changed it before the first user acts.

OWA_PATTERN The OWA_PATTERN package implements a regular expression engine that
allows you to match partial stings.

OWA_SEC The OWA_SEC package provides program units to support the DAD. You use
them to authenticate connections to the database from the PL/SQL Gateway.

OWA_TEXT The OWA_TEXT package implements text manipulation functions and
procedures to support the OWA_PATTERN matching features. You can also
call these functions and procedures to support your code.

OWA_UTIL The OWA_UTIL package supports dynamic SQL utilities, retrieving CGI
environment variables, and date conversion from HTML strings to the Oracle
DATE datatype. This package also supports your MIME content-type and
header meta tags.

WPG_DOCLOAD The WPG_DOCLOAD package provides you with the ability to download from
a document repository. You must configure the DAD to support the repository
before calling these subroutines. You can download or upload binary or text
files in accordance with the RFC 1867 specification, “Form-Based File Upload
in HTML” (IETF).

TABLE 16-4 PL/SQL Toolkit Packages (continued)

Chapter 16: Web Application Development 553

The next two sections show you how to implement PL/SQL procedures for web applications.
The first section demonstrates how to build procedures without a formal parameter list. The next
section shows you how to build procedures with formal parameter lists.

Developing Procedures Without Formal Parameters
A web application PL/SQL procedure renders an HTML web page when called by the PL/SQL
gateway. You develop a web application PL/SQL procedure by using the same DDL command
as you do for non-web application procedures.

The following program creates a “Hello World!” web page. It uses the HTP to create HTML
tags, and the OWA_UTIL package to create an HTML metatag.

-- This is found in create_helloworld1.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE HelloWorldProcedure1 AS
BEGIN
 -- Set an HTML meta tag and render page.
 owa_util.mime_header('text/html'); -- <META Content-type:text/html>
 htp.htmlopen; -- <HTML>
 htp.headopen; -- <HEAD>
 htp.htitle('HelloWorldProcedure1'); -- <TITLE>HelloWorldProcedure</TITLE>
 htp.headclose; -- </HEAD>
 htp.bodyopen; -- <BODY>
 htp.line; -- <HR>
 htp.print('Hello world.'); -- Hello world.
 htp.line; -- <HR>
 htp.bodyclose; -- </BODY>
 htp.htmlclose; -- </HTML>

END HelloWorldProcedure1;
/

After you create the procedure, it is stored in the database. You can’t access it by running it
from the SQL*Plus command line. An attempt raises an ORA-06502 exception, which is a numeric
or value error because the procedure expects a call from the PL/SQL gateway.

You can test the procedure by entering a URL in your web browser. The following URL assumes
you’ve defined the DAD Location as /pls/, as done earlier in this chapter:

http://<hostname>.<domain_name>:<port>/pls/HelloWorldProcedure1

The web browser renders the image shown in Figure 16-4. The only difference between
Figures 16-3 and 16-4 is that the port number changes for the OHS server. You can have both
running in the same environment.

This example has shown you how to develop a static page. The next example teaches you
how to build a dynamic page. The page also accepts actual parameters, which allow you to alter
the returned values from the embedded query.

Developing Procedures with Formal Parameters
Web pages are dynamic when they have the ability to display different information from a data
source, like a database or file system. Passing parameters to a web page enables dynamic
behavior and content.

554 Oracle Database 11g PL/SQL Programming

There are two approaches to passing actual parameters to web pages. One is to use HTML
form tags to collect input selections or data entry that are then submitted to the data source to
render a new page. The other is to hard-code values in the URL statement.

PL/SQL Toolkit procedures support formal parameters just as they do in stored functions or
procedures. You define the procedure with a formal parameter list, which is also known as the
signature for the function or procedure. PL/SQL web pages only support the following native
types as formal parameters:

A NUMBER data type

A VARCHAR2 data type

A PL/SQL collection, which is limited to a table of NUMBER or VARCHAR2 data types. These
are implemented by using the OWA_UTIL.IDENT_ARR type, which is an Oracle 9i index-
by table or Oracle 10g associative array of NUMBER or VARCHAR2 native PL/SQL types.

You can overload procedures in PL/SQL, but mod_plsql raises an exception in some cases.
For example, mod_plsql raises an exception if you use the same formal parameter name in
overloaded procedures and only change the data type from NUMBER to VARCHAR2 or vice versa.
However, you can use the same formal parameter name and change the data type to PL/SQL
collections without raising an exception. The mod_plsql module can see the difference between
a NUMBER or VARCHAR2 native type and PL/SQL collection.

You can find a basic example of this in the create_helloworld2.sql, and the script
creates the following stored procedure:

-- This is found in create_helloworld2.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE HelloWorldProcedure2
(who VARCHAR2) AS
BEGIN
 -- Set a HTML MIME content-type before rendering a web page.
 owa_util.mime_header('text/html'); -- <META Content-type:text/html>
 htp.htmlopen; -- <HTML>

■

■

■

FIGURE 16-4 Rendered HelloWorldProcedure1 web page

Chapter 16: Web Application Development 555

 htp.headopen; -- <HEAD>
 htp.htitle('HelloWorldProcedure2'); -- <TITLE>HelloWorld...</TITLE>
 htp.headclose; -- </HEAD>
 htp.bodyopen; -- <BODY>
 htp.line; -- <HR>
 htp.print('Hello '||who||'''s world.'); -- Hello world.
 htp.line; -- <HR>
 htp.bodyclose; -- </BODY>
 htp.htmlclose; -- </HTML>
END HelloWorldProcedure2;
/

Like the earlier HelloWorldProcedure1, this is stored in the database by using a standard
SQL DDL command. Once it is stored in the database, you access it by using a URL and your
web browser. The following URL assumes you have defined the DAD location as /pls/, as done
earlier in this chapter:

http://<hostname>.<domain_name>:<port>/pls/HelloWorldProcedure2?who=Developer

The URL appends a question mark and a list of variable assignments. The who is the defined
variable name for the single formal parameter defined for the stored procedure,
HelloWorldProcedure2. The variable name uses an equal sign to assign the next string to the
value. The URL is parsed by the OHS, and the argument is managed by the mod_plsql module.
The web browser renders the image shown in Figure 16-5.

The preceding example illustrated how you could build a dynamic PL/SQL Toolkit procedure
with native types. You’ll now learn how to pass a PL/SQL collection variable to the PL/SQL Toolkit
procedure. The create_store.sql script creates an item table sequence and seeds the table
to support the passing of a PL/SQL collection variable to a dynamic web page. As covered in the
introduction, you should run the create_store.sql script in the plsql schema.

There are two approaches to managing a PL/SQL collection against the PL/SQL Toolkit. One
approach is to use a single collection variable and pass it multiple times in the URL, while the
other is to use flexible parameter passing.

FIGURE 16-5 Rendered HelloWorldProcedure2 web page

556 Oracle Database 11g PL/SQL Programming

The following example, found in the create_item1.sql script, uses a single parameter
passed multiple times in the URL:

-- This is found in create_item1.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE item1
(items OWA_UTIL.IDENT_ARR) AS
 CURSOR get_items
 (begin_item_id NUMBER
 , end_item_id NUMBER) IS
 SELECT item_id AS item_number
 , item_title||': '||item_subtitle AS item_title
 , item_release_date AS release_date
 FROM item
 WHERE item_id BETWEEN begin_item_id AND end_item_id;
BEGIN
 -- Set HTML page rendering tags.
 htp.htmlopen;
 htp.headopen;
 htp.htitle('Item List'); -- Sets the browser window and frame title.
 htp.headclose;
 htp.bodyopen;
 htp.line;
 -- Use PL/SQL Toolkit to format the page.
 htp.tableopen(cborder => 2
 ,cattributes => 'style=background-color:feedb8');
 htp.tablerowopen;
 htp.tabledata(cvalue => '#'
 ,calign => 'center'
 ,cattributes => 'style=color:#336699
 background-color:#cccc99
 font-weight:bold
 width=50');
 htp.tabledata(cvalue => 'Title'
 ,calign => 'center'
 ,cattributes => 'style=color:#336699
 background-color:#cccc99
 font-weight:bold
 width=200');
 htp.tabledata(cvalue => 'Release Date'
 ,calign => 'center'
 ,cattributes => 'style=color:#336699
 background-color:#cccc99
 font-weight:bold
 width=100');
 htp.tablerowclose;
 -- Use a loop to collect the data.
 FOR i IN get_items(items(1),items(2)) LOOP
 htp.tablerowopen;
 htp.tabledata(cvalue => i.item_number
 ,calign => 'center'
 ,cattributes => 'style=background-color:#f7f7e7');
 htp.tabledata(cvalue => i.item_title

Chapter 16: Web Application Development 557

 ,calign => 'left'
 ,cattributes => 'style=background-color:#f7f7e7');
 htp.tabledata(cvalue => i.release_date
 ,calign => 'center'
 ,cattributes => 'style=background-color:#f7f7e7');
 htp.tablerowclose;
 END LOOP;
 -- Close the table.
 htp.tableclose;
 -- Print a line and close body and page.
 htp.line;
 htp.bodyclose;
 htp.htmlclose;
END item1;
/

You call this by using the following URL:

http://<hostname>.<domain_name>:<port>/pls/item1?items=1021&years=1031

The URL appends a question mark and a list of variable assignments. The first items
parameter becomes element one in the PL/SQL collection, and the next parameter the second,
and so on. This simple and easy-to-use syntax renders the following HTP-formatted web page
shown in Figure 16-6.

FIGURE 16-6 Rendered item1 web page

558 Oracle Database 11g PL/SQL Programming

The preceding example illustrated how you can build a dynamic PL/SQL Toolkit procedure
with a PL/SQL collection type. There is also the approach using flexible parameter passing.
Unfortunately, Oracle 11g supports flexible parameter passing only when you implement the
Oracle 10g Application Server. It does work with Oracle 9i and 10g, provided you install and
configure the standalone OHS product.

There are two alternatives for how you enable flexible parameter passing in standalone
procedures. Oracle recommends you use two PL/SQL collection types, one as the index set and
the other as the values set. While you can use use OWA_UTIL.IDENT_ARR or OWA.IDENT_ARR
for variable-length strings of less than 30 characters in Oracle 9i or 10g, OWA.IDENT_ARR is no
longer available in Oracle 11g. OWA_UTIL.VC_ARR or OWA.VC_ARR datatypes handle larger
variable-length strings, and they are available in all releases through Oracle 11g.

NOTE
Flexible parameter passing works only when you use Oracle 10g
Application Server or OHS, and it may be deprecated in a future
release.

Flexible parameter passing is demonstrated in create_item2.sql, but only the signature
of the procedure and actual parameters to the cursor change from the prior example. The code
is unchanged except for those variable names. Flexible parameter passing requires specific
variable names because they are managed by an Oracle HTTP API. The signature for the
items2 procedure follows:

-- This is found in create_item2.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE item2
(name_array OWA.VC_ARR
, value_array OWA.VC_ARR) AS
…
 FOR i IN get_items(name_array(1),value_array(2)) LOOP
…
END item2;
/

NOTE
There is no discretion on the naming convention of variables when
you have chosen flexible parameter naming. These are the expected
names by the mod_plsql module. They must be name_array and
value_array. If you make any variation to the naming convention,
the Apache log will show a PLS-00306 error. Flexible parameter
naming uses these names in the signature and will fail without them.

The URL necessary to create a connection with flexible parameter naming is a departure from
typical web pages. The following runs the item2 procedure:

http://<hostname>.<domain_name>:<port>/pls/!items2?begin=1052&end=1056

The URL includes an exclamation mark (also called a bang symbol) before the PL/SQL procedure
name. The bang tells the standalone DAD that mod_plsql should parse for flexible parameter
rules. Flexible parameter passing maps actual parameters to different PL/SQL datatypes than
standard URL parameter passing without the bang. Figure 16-7 shows you the rendered web page.

Chapter 16: Web Application Development 559

Ultimately, this method departs from every other web solution in the current market and is a
backward-compatible legacy component. It appears that Oracle’s direction moving forward may
abandon flexible parameter passing. If you attempt to call this module through the XDB DB
Listener, you return a file not found error (404). This occurs because the URL is parsed incorrectly.

TIP
When you want to have more than one set of PL/SQL collections
passed to your PL/SQL Toolkit enabled procedure, you should avoid
flexible parameter naming.

Understanding Advantages and Limitations
Advantages of PL/SQL Toolkit procedures include the ability to pass PL/SQL collections or tables
of VARCHAR2 data types. Also, you can build small units called from other Java Server Pages
(JSPs), from PSPs, or as links within static web pages. Calling them “static” is a misnomer, but
physical files that contain links are known as static web pages.

Disadvantages are that you have a complex partial solution. PSPs offer a more flexible, intuitive,
and consistent approach to dynamic page development.

Now that you have learned how to use the PL/SQL Toolkit to build dynamic web pages in this
section, it’s now time to explore PL/SQL Server Pages (PSPs) procedures.

Building and Accessing PL/SQL Server
Pages (PSPs)
The ability to build PL/SQL Server Pages (PSPs) procedures is a powerful tool that’s been available
since Oracle 8i, Release 8.1.6. The following demonstrates how to develop and run PSP procedures
with and without formal parameters, and then discusses their advantages and limitations.

FIGURE 16-7 Rendered item2 web page

560 Oracle Database 11g PL/SQL Programming

You use PSPs to create a complete dynamic web page that uses native Oracle types. PSPs have
an advantage because they contain a similar programming structure to JSPs. PSPs can provide a
more natural solution to web programming than standard PL/SQL stored objects for those with a
background in ASPs or JSPs.

PSPs can include JavaScript or other client-side script code natively in the stored procedure.
PSPs use the same scripting syntax as Java Server Pages (JSPs), which makes the skills readily
transferable between web development solutions. PSPs push the processing to the server and
present the client browser with a plain HTML text file for rendering.

PSPs can contain text, tags, PSP directives, declarations, and scriptlets. They typically have
the .psp file extension. Text and tags in PSPs are typical of HTML pages. PSPs have directives that
enable controlling the page behaviors as noted in Table 16-5.

Directive Description
PAGE Specifies the scripting language it uses, the type of information

(MIME type) it produces, and the code it should run to handle
uncaught exceptions. This might be an HTML file with a
friendly message, renamed to a .psp file. You must specify
this same filename in the loadpsp command that compiles
the main PSP file. You must specify exactly the same name in
both the errorPage directive and the loadpsp command,
including any relative path name such as ./include/.

Syntax:
<%@ page [language="PL/SQL"]
[contentType="content type string"]
charset="encoding”
[errorPage="file.psp”] %>

PROCEDURE Specifies the name of the stored procedure produced by the
PSP file. The name is the filename without the .psp extension
by default.

Syntax:
<%@ plsql procedure="procedure_name" %>

PARAMETER Specifies the name, and optionally the type and default, for
each parameter expected by the PSP stored procedure. The
parameters are passed using name-value pairs, typically from
an HTML form. To specify a default value of a character type,
use single quotes around the value, inside the double quotes
required by the directive.

Syntax:
<%@ plsql parameter="parameter name"
[type="PL/SQL type"]
[default="value"] %>

TABLE 16-5 PL/SQL Server Page Directives

Chapter 16: Web Application Development 561

Directive Description
INCLUDE Specifies the name of a file to be included at a specific point in

the PSP file. The file must have an extension other than .psp.
It can contain HTML, PSP script elements, or a combination
of both. The name resolution and file inclusion happen when
the PSP file is loaded into the database as a stored procedure,
so any changes to the file after that are not reflected when the
stored procedure is run.

Syntax:
<%@ include file="path name" %>

DECLARATION BLOCK Declares a set of PL/SQL variables that are visible throughout
the page, not just within the next BEGIN/END block. This
element typically spans multiple lines, with individual PL/SQL
variable declarations ended by semicolons.

Syntax:
<%! PL/SQL declaration;
[PL/SQL declaration;] ... %>

CODE BLOCK SCRIPTLET Executes a set of PL/SQL statements when the stored procedure is
run. This element typically spans multiple lines, with individual
PL/SQL statements ended by semicolons. The statements can
include complete blocks, or they can be the bracketing parts of
IF/THEN/ELSE or BEGIN/END blocks. When a code block
is split into multiple scriptlets, you can put HTML or other
directives in the middle, and those pieces are conditionally
executed when the stored procedure is run.

Syntax:
<% PL/SQL statement;
[PL/SQL statement;] ... %>

EXPRESSION BLOCK Specifies a single PL/SQL expression, such as a string,
arithmetic expression, function call, or combination of those
things. The result is substituted as a string at that spot in the
HTML page that is produced by the stored procedure. You do
not need to end the PL/SQL expression with a semicolon.

Syntax:
<%= PL/SQL expression %>

COMMENT BLOCK Specifies a comment in a PSP page.

Syntax:
<%-- PL/SQL expression --%>

TABLE 16-5 PL/SQL Server Page Directives (continued)

562 Oracle Database 11g PL/SQL Programming

PSP procedures are loaded into the database by the loadpsp utility. However, there is no
droppsp utility corresponding to dropjava. You drop PSP procedures by using a standard DDL
DROP command from the SQL*Plus environment. The –replace option first removes the prior
copy before attempting to load the new one. If you do not have a backup copy of your working
PSP procedure, you should make one before running the loadpsp utility. The general syntax for
the utility is

loadpsp [-replace] –user username/password[@connect_string]
 < [include_file_name …] [error_file_name] >
 psp_file_name.psp_file_extension

The next two sections show you how to develop and run PSP procedures with, and without,
arguments. You will see they are very much like the PL/SQL Toolkit server-side includes that were
covered earlier in the chapter.

Developing and Running No Formal Parameter PSP
Procedures
You’ll now build a PSP stored procedure that renders a Hello World web page. This PSP takes no
formal parameters and acts much like a static web page.

The following script builds a HelloWorld1 PSP:

-- This is found in HelloWorld1.psp on the publisher's web site.
<%@ plsql language="PL/SQL" %>
<%@ plsql procedure="HelloWorld1" %>
<html>
<title>Expert PL/SQL - HelloWorld1</title>
<head>
</head>
<body>
<%-- Print a plain string. --%>
Hello World!

<%-- Print using the PL/SQL Toolkit --%>
<% htp.print('Hello World!'); %>
</td></tr></table>
</body>
</html>

You use the following syntax to put the PSP procedure into the database:

loadpsp –replace –user plsql/plsql HelloWorld1.psp

After the procedure is stored in the database by using the loadpsp utility, you can see that
the loadpsp utility does some text conversion of the file. You can set the SQL*Plus PAGESIZE
to 999 and see those modifications by using the following query:

SELECT text
FROM user_source
WHERE name = 'HELLOWORLD1';

You can see that the procedure has been modified by running the loadpsp utility. The
following is the stored source for the HelloWorld1 procedure:

Chapter 16: Web Application Development 563

PROCEDURE HelloWorld1 AS
 BEGIN NULL;
htp.prn('
');
htp.prn('

<html>
<title>Expert PL/SQL - HelloWorld1</title>
<head>
</head>
<body>
<! Print a plain string. >
Hello World!

<! Print using the PL/SQL Toolkit >
');
 htp.print('Hello World!');
htp.prn('
</td></tr></table>
</body>
</html>
');
 END;

The loadpsp utility takes the PSP file and builds a standard PL/SQL procedure. It puts a
BEGIN in front and appends an END to create proper block structure. It also inserts a NULL
statement in the event you have uploaded only a shell. All HTML tags are encapsulated by using
the HTP package from the PL/SQL Toolkit.

Once stored in the database, you access it by using a URL and your web browser. The following
URL assumes you have defined the DAD Location as /pls/, as done earlier in this chapter:

http://<hostname>.<domain_name>:<port>/pls/HelloWorld1

The web browser renders the image shown in Figure 16-8. The URL is transparent to the end
user whether it is a PL/SQL web procedure or PSP.

FIGURE 16-8 Rendered HelloWorld1 PSP

564 Oracle Database 11g PL/SQL Programming

This example shows you how to build a PSP without any formal parameters. The next section
explores formal parameters.

Developing Formal Parameter PSP Procedures
Dynamic content works by passing parameters that determine changing output. Developing PSPs
that accept formal parameters is necessary to build real web applications. You need to know how
to use formal parameters to be able to submit and process dynamic content because passing
arguments determines dynamic PSPs. Obviously, you can’t really write very useful programs
unless you can handle formal parameters in your PSPs.

This section will review how to build a PSP to accept parameters, how to run the PSP from
a URL, and also dynamically from a static web page using JavaScript components.

As covered earlier, the parameter directives are enclosed between <%@ and %> brackets.
When you define parameters, they may have a PL/SQL type but not a size. Physical size will be
managed in your code blocks because if you manage them in the declaration section, you can’t
effectively trap errors. The following HelloWorld2.psp script enables you to build a PSP that
accepts a single parameter:

-- This is found in HelloWorld2.psp on the publisher's web site.
<%@ plsql language="PL/SQL" type="PL/SQL type" %>
<%@ plsql procedure="HelloWorld2" %>
<%-- Defines a parameter in a PARAMETER block. --%>
<%@ plsql parameter="who" type="VARCHAR2" default="NULL" %>
<head>
<title>Expert PL/SQL - HelloWorld2</title>
<%!
 CURSOR get_user
 (requestor VARCHAR2) IS
 SELECT 'Hello '|| USER ||' schema, this is a '||requestor||'!' line
 FROM dual;
%>
</head>
<body>
 <% FOR i IN get_user(who) LOOP %>
 <%= i.line %>
 <% END LOOP; %>
</body>
</html>

This PSP takes a parameter and uses it in a trivial cursor so that you can see how to declare a
parameter, cursor, and FOR loop. This small example shows you the pieces to build larger programs.

NOTE
You must enclose all expressions in scriptlet or code blocks because
they terminate the line like the semicolon in PL/SQL programs.

You use the following syntax to put the PSP procedure into the database:

loadpsp –replace –user plsql/plsql HelloWorld21.psp

Chapter 16: Web Application Development 565

After the procedure is stored in the database by using the loadpsp utility, you can see that
the loadpsp utility does some text conversion of the file. You can set the SQL*Plus PAGESIZE
to 999 and see those modifications by using the following query:

SELECT text
FROM user_source
WHERE name = 'HELLOWORLD2';

Note that the procedure has been modified by running the loadpsp utility. The following is
the stored source for the HelloWorld2 procedure, which will append a BEGIN and END into the
file (as seen previously in the chapter) as well as a single null statement. A DECLARE statement is
unnecessary, since it’s defined in the scope of a stored procedure.

After putting it in the database, you access it by using a URL and your web browser. The
following URL assumes you’ve defined the DAD Location as /pls/, as done earlier in this
chapter:

http://<hostname>.<domain_name>:<port>/pls/HelloWorld2

The web browser renders the image shown in Figure 16-9 was generated using the XML DB
Server in Oracle 11g. You should note that the USER is the ANONYMOUS schema where you call
the helloworld2 procedure if you’re using an anonymous authentication. This differs from both
the static and dynamic methods, which could display the USER as PLSQL.

Now that you’ve seen a small example program, the next one is bit more like a real-world
example. This program is a reimplementation of the item1 and item2 PL/SQL Toolkit procedures
seen earlier in this chapter, except the program is now a PSP.

You should check instructions in the Introduction for running the create_store.sql script
against your plsql schema.

FIGURE 16-9 Rendered HelloWorld2 PSP

566 Oracle Database 11g PL/SQL Programming

The create_item3.psp script follows:

-- This is found in create_item3.psp on the publisher's web site.
<%@ plsql language="PL/SQL" type="PL/SQL type" %>
<%@ plsql procedure="item3" %>
<%-- Defines a parameter in a PARAMETER block. --%>
<%@ plsql parameter="begin_id" type="NUMBER" default="NULL" %>
<%@ plsql parameter="end_id" type="NUMBER" default="NULL" %>
<head>
<title>Item List PSP</title>
 <%!
 CURSOR get_items
 (begin_item_id NUMBER
 , end_item_id NUMBER) IS
 SELECT item_id AS item_number
 , item_title||': '||item_subtitle AS item_title
 , item_release_date AS release_date
 FROM item
 WHERE item_id BETWEEN begin_item_id AND end_item_id; %>
</title>
<body>
<hr>
<table cborder=2 style=background-color:feedb8>
 <tr>
 <td align="center"
 style="color:#336699;background-color:#cccc99;font-eight:bold;width=50">
 #
 </td>
 <td align="center"
 style="color:#336699;background-color:#cccc99;font-weight:bold;width=200">
 NAME
 </td>
 <td align="center"
 style="color:#336699;background-color:#cccc99;font-weight:bold;width=100">
 TENURE
 </td>
 </tr>
 <% FOR i IN get_items(year1,year2) LOOP %>
 <tr>
 <td align="center"
 style="color:#336699;background-color:#f7f7e7">
 <%= i.item_number %>
 </td>
 <td align="center"
 style="color:#336699;background-color:#f7f7e7">
 <%= i.item_title %>
 </td>
 <td align="center"
 style="color:#336699;background-color:#f7f7e7">
 <%= i.release_date %>

Chapter 16: Web Application Development 567

 </td>
 </tr>
 <% END LOOP; %>
</table>
<hr />
</body>
</html>

This PSP shows you how to implement parameters, a cursor, and a FOR loop. It prints a
dynamic set of rows in a table.

NOTE
You should note that the parameter directives use native
PL/SQL types and not the package variables supported
by PL/SQL procedures.

Use the following syntax to put the PSP procedure into the database:

loadpsp –replace –user plsql/plsql item3.psp

As covered earlier in the chapter, the loadpsp utility does some text conversion of the file.
If you would like to see it, set the SQL*Plus PAGESIZE to 999 and use the following query:

SELECT text
FROM user_source
WHERE name = 'HELLOWORLD2';

After putting it in the database, access it by using a URL and your web browser. The following
URL assumes you have defined the DAD Location as /pls/, as done earlier in this chapter:

http://<hostname>.<domain_name>:<port>/pls/item3?begin_id=1067&year2=1077

The web browser renders the Star Wars items in the item table, as shown in Figure 16-10.
You have now learned how to build PSPs. They are powerful tools. You can develop them

with the Oracle Database and the Oracle 10g Application Server, Oracle HTTP Server (OHS),
or XML DB Server. All examples in this chapter were tested with both the Oracle 10g Release 2
database and standalone OHS, and the Oracle 11g database and XML DB Server.

Understanding Advantages and Limitations
As mentioned earlier in the chapter, PSPs are great solutions when you have a large body of
HTML that includes dynamic database content. Java Server Pages (JSPs) are more complex
solutions, and they generally require an IDE to support development.

The limitations of PSPs are that they work as standalone complete solutions. You cannot
leverage them as modules elsewhere in your web-enabled applications.

568 Oracle Database 11g PL/SQL Programming

Summary
You should now have an understanding of how to implement and troubleshoot server-side PL/SQL
Toolkit web pages and PL/SQL Server Pages (PSPs). With these skills, you can build robust web
application solutions in native PL/SQL, and leverage the tight integration that PL/SQL enjoys with
the data server in your development.

FIGURE 16-10 Rendered Item List PSP

PART
IV

Appendixes

This page intentionally left blank

APPENDIX
A

Oracle Database
Administration Primer

571

572 Oracle Database 11g PL/SQL Programming

his appendix introduces you to the general concepts of database architecture. It
also exposes you to Oracle Database architecture and teaches you how to start and
stop both the database instance and the database listener. These processes show
you how to use traditional command-line processes to start and stop services, like
the web-based Oracle Enterprise Manager Database Control. The appendix also

will demonstrate how you can use Oracle Enterprise Manager Database Control to start, stop,
or manage the database instance. These basic skills are critical to managing an Oracle database
instance when you don’t have a Database Administrator (DBA) handy to manage it for you, or
possess some experience as an Oracle DBA.

The appendix covers material in the following sequence:

Oracle Database architecture

Starting and stopping the Oracle database

Starting and stopping the Oracle listener

Oracle roles and privileges

Accessing and using the SQL*Plus interface

There are several books that provide general introductions to the Oracle database product stack,
such as the Oracle Database 11g DBA Handbook. Also, you can find a summary step-by-step
review in the Oracle Database 2 Day DBA or a complete review in the Oracle Administrator’s
Guide for the Oracle Database 11g release.

The appendix assumes that you will read it sequentially, and each section may reference
material introduced earlier. Naturally, you can zoom forward to an area of interest when you
already understand the earlier material.

Oracle Database Architecture
The Oracle Database 11g database will have three varieties. One is the free Express Edition (XE),
which is a limited version of the premier Oracle Database 11g Standard Edition (SE) product. The
full-featured version is the Oracle Database 11g Enterprise Edition (EE) product.

All versions contain all the standard relational database management system components,
embedded Java, collection types, and PL/SQL run-time engine that set Oracle apart in the
database industry. These components enable any of these Oracle database management systems
to manage small to large data repositories, consistently accessing data concurrently by multiple
users. The Oracle Database 11g Enterprise Edition also includes many features that empower
advanced context and object management.

You can divide the components of Oracle database management systems into two groups of
services:

Data repositories, also known as databases. They enable a SQL interface that can access
any column value in one or more rows of a table or result set. Result sets are selected
values of a single table or the product of joins between multiple tables (SQL joins are
described in Appendix B). Tables are persistent two-dimensional structures that are
organized by rows of defined structures. You create these structures when defining and

■

■

■

■

■

■

T

Appendix A: Oracle Database Administration Primer 573

creating tables in a database instance. Databases are relational databases when they
include a data catalog that tracks the definitions of structures.

Programs, which enable administering and accessing the data repository, and provide
the infrastructure to manage a data repository. The combination of a data repository and
enabling programs is known as an instance of a database because the programs process
and manage the data repository and catalog. A data catalog stores data about data, which
is also known as metadata. The catalog also defines how the database management
system programs will access and manage user-defined databases. The programs are
background processes that manage the physical input and output to physical files and
other required processing activities. Opening a relational database instance starts these
background processes.

Integrating the data repository and administrative programs requires a relational programming
language that (a) has a linear structure; (b) can be accessed interactively or within procedural
programs; and (c) supports data definition, manipulation, and query activities. The Structured
Query Language (SQL) is the relational programming language used by the Oracle database and
most other relational database products.

Appendix B provides you with an introduction on how to work with Oracle SQL. Like any
spoken or written language, SQL has many dialects. The Oracle Database 11g products support
two dialects of SQL. One is the Oracle Proprietary SQL Syntax, and the other is the ANSI 1999
SQL. The SQL language provides users with high-level definition, set-at-a-time, insert, update,
and delete operations, as well as the ability to select data. SQL is a high-level language because
it enables you to access data without dealing with physical file access details.

Data catalogs are tables mapping data that defines other database tables, views, stored
procedures, and structures. Database management systems define frameworks, which qualify
what can belong in data catalogs to support database instances. They also use SQL to define,
access, and maintain the data catalog. Beneath the SQL interface and background processes
servicing SQL commands, the database management system contains a set of library programs
that manage transaction control. These services guarantee transactions in a multiple-user database
are ACID compliant.

ACID-compliant transactions are atomic, consistent, isolated, and durable. Atomic means that
every part or no part of a transaction completes. Consistent means that the same results occur
whether the transaction is serially or concurrently run. Isolated means that changes are invisible
to any other session until made permanent by a commit action. Durable means they are written
to a permanent store at the conclusion of the transaction.

The architecture of the Oracle database instance is shown in Figure A-1. The figure shows
that inside a relational database instance, you have shared memory segments, active background
processes, and files. The shared memory segment is known as the Shared Global Area (SGA). The
SGA contains various buffered areas of memory that process queries, inserts, updates, and delete
statements in databases. The active background processes support the database instance. The five
required Oracle background processes are Process Monitor (PMON), System Monitor (SMON),
Database Writer (DBWn), Log Writer (LGWR), and Checkpoint (CKPT). An optional background
process for backup is the Archiver (ARCn). These six background process are found in Figure A-1.
The files supporting database instances are divisible into three segments: files that contain instance
variables, files that contain the physical data and data catalog, and files that contain an archive
file of the data and data catalog.

■

574 Oracle Database 11g PL/SQL Programming

The five Oracle database required instance background processes perform the following services:

Process Monitor (PMON) Cleans up the instance after failed processes by rolling back
transactions, releasing database locks and resources, and restarting deceased processes.

System Monitor (SMON) Manages system recovery by opening the database,
rolling forward changes from the online redo log files, and rolling back uncommitted
transactions. SMON also coalesces free space and deallocates temporary segments.

Database Writer (DBWn) Writes data to files when any of the following occur:
checkpoints are reached, dirty buffers reach their threshold or there are no free buffers,
timeouts occur, Real Application Cluster (RAC) ping requests are made, tablespaces
are placed in OFFLINE or READ ONLY state, tables are dropped or truncated, and
tablespaces begin backup processing.

Log Writer (LGWR) Writes at user commits or three-second intervals, whichever comes
first; when one-third full or there is 1MB of redo instructions; and before the Database
Writer writes.

Checkpoint (CKPT) Signals the Database Writer at checkpoints and updates the file
header information for database and control files at checkpoints.

The optional Archiver (ARCn) process is critical to recovering databases. When an Oracle
database instance is in archive mode, the Archiver writes to the redo log file are mirrored in the
archive log files as the database switches from one redo log file to another. You should have the
database in archive mode unless it is a test system and the time to rebuild it is trivial or unimportant.

The other optional background processes for the Oracle 11g database family are Coordinator
Job Queue (CJQ0), Dispatcher (Dnnn), RAC Lock Manager – Instance (LCKn), RAC DLM Monitor
– Remote (LMDn), RAC DLM Monitor – Global Locks (LMON), RAC Global Cache Service (LMS),
Parallel Query Slaves (Pnnn), Advanced Queuing (QMNn), Recoverer (RECO), and Shared Server
(Snnn). All of these are available in the Oracle Database 11g products. You may only additionally
configure the Coordinator Job Queue, Dispatcher, and Recoverer processes.

Understanding the details of how shared memory, processes, and files interact is the
responsibility of the Database Administrator (DBA). You can find a fairly comprehensive guide
to how to manage databases in the Oracle Database 11g DBA Handbook published by Oracle
Press. A summary explanation can also be found in the Oracle Database Express Edition 2 Day
DBA manual.

Beyond the database instance, the Oracle database management system provides many utilities.
These utilities support database backup and recovery, Oracle database file integrity verification (via
the DB Verify utility – dbv), data import and export (using the imp and exp utilities demonstrated
in Appendix E), and a network protocol stack. The network protocol stack is a critical communication
component that enables local and remote connections to the Oracle database by users other than
the owner of the Oracle executables. The networking product stack is known as Net8. Net8 is a
complete host layer that conforms to the Open System Interconnection (OSI) Reference Model
and provides the session, presentation, and application layers. You can find more on the OSI
model at http://en.wikipedia.org/wiki/OSI_model.

Oracle Net8 enables connectivity between both local and remote programs, and the database
instance. Remote programs whether implemented on the same physical machine or different
physical machines use Remote Procedure Calls (RPCs) to communicate to the database instance.
RPCs let one computer call another computer by directing the request to a listener service.

■

■

■

■

■

http://en.wikipedia.org/wiki/OSI_model

Appendix A: Oracle Database Administration Primer 575

RPCs require software on both the client and the server. The remote client program environment
needs to know how to get to the server programming environment, which is found by reading the
tnsnames.ora file in the Oracle Database 11g Client software. The Oracle Database 11g Server
software provides the implementation for the Oracle listener that receives and handles RPC
requests. Net8 provides the packaging and de-packaging of network packets between local and
remote programs and a database instance.

The Oracle listener listens for Net8 packaged transmissions on a specific port. The packaged
transmissions are Oracle Net8 encoded packages. Packages are received from a network transport
layer, like TCP/IP, at a designated port number. The default port number is 1521. This port is where
the Oracle listener hears, receives, and connects the transactions to the local database instance.

As illustrated in Figure A-2, the package arrives at the listening port where a listener thread hears
it and then hands it to the OCI thread. Then, the transaction is sent through the Net8 transport layer
to remove the packaging and pass the SQL command to a transactional object in a database
instance, like a table, view, or stored procedure.

FIGURE A-1 Oracle instance architecture diagram

576 Oracle Database 11g PL/SQL Programming

This process has two variations: one is called thick-client, and the other is called thin-client.
Thick-client communication is the old model and supports client/server computing, which
worked like telnet or secure shell (shh) across state-aware network sockets. The thick-client
communication model requires you install an Oracle client software application on the client.
The Oracle client software contains the necessary programs and libraries to effect bidirectional
state-aware sockets between client and server computers. The newer thin-client communication
model supports both state-aware and stateless transaction patterns, but it does so differently. All
you need is an Oracle Call Interface (OCI) library that enables you to package the communication
into a compatible Net8 packet. JDBC programs use an Oracle Java archive, while the C, C++,
PHP, and other third-party programming languages use the OCI8 libraries to make connections
to the Oracle database. The JDBC programs can work with only the Java archive file, while the
others require the Oracle Database 11g Client installation.

Inside the database instance, user accounts are called schemas. The superuser schemas are
known as SYS and SYSTEM. The SYS schema contains the data catalog and as a rule should
never be used for routine administration. The SYSTEM schema has a master set of roles and
privileges that enable the DBA to use it like a superuser account, and it contains administrative

FIGURE A-2 Oracle Listener architecture

Appendix A: Oracle Database Administration Primer 577

views to the data catalog. The SYSTEM schema views are typically easier to use than trying to
kludge through the physical tables that contain the data catalog.

CAUTION
A small mistake in the data catalog can destroy your database instance
and provide you with no way to recover it. Also, changing things in
the SYS schema is not supported by your license agreement unless you
are instructed to do so by Oracle to fix a specified problem.

Unix or Linux requires that you set an environment $ORACLE_HOME variable that maps to the
physical Oracle database management home directory. Windows does not automatically create a
%ORACLE_HOME% environment variable because it adds the fully qualified directory path to your
%PATH% variable.

You set the correct operating environment in Unix or Linux by running the following
commands in the Bash or Korn shell as the owner of the Oracle database installation:

export set ORACLE_SID=oracle_sid
export set ORACLE_ASK=no

You can then navigate to the default /usr/local/bin directory to find the installed
oraenv file. You then source it as shown in the Bash or Korn shell:

./oraenv

You will find further instructions in the Oracle Database Installation Guide for your release.
These are also found on the http://otn.oracle.com web site under documentation for the
database.

This has provided you with a summary of the Oracle database architecture and pointed you to
some additional useful references. You can also review whitepapers and administration-related
database architecture notes posted on http://otn.oracle.com for additional information. In the next
sections, you will learn how to start and stop the database and listener, and learn how to access
SQL*Plus to run SQL statements.

Microsoft Windows Services
The design of Microsoft Windows compels Oracle to deploy services to start and stop the
database and listener. This is done by the platform-specific utility ORADIM. Fortunately, the
Oracle Database 11g installation builds these services for you when you use the Database
Configuration Assistant as a post-installation step. Only change these services when you
truly understand how to do so. A mistake working with the ORADIM facility can force you
to refresh your operating system or manually clean up the registry.

http://otn.oracle.com
http://otn.oracle.com

578 Oracle Database 11g PL/SQL Programming

Starting and Stopping the Oracle Database
This section demonstrates how to start and stop the Oracle Database 11g server. The command-
line utility is sqlplus and works the same for the Unix, Linux, and Microsoft Windows versions.
The only difference is linked to account ownership of the database. This difference exists because
of how the file system and ownership models work in Microsoft Windows, Unix, and Linux. The
differences evoke strong emotions from some people who prefer one over the other, but they simply
present different opportunities and hurdles from varying perspectives.

The Oracle database management system can support multiple database instances. The ability
to support multiple instances makes it necessary to assign each instance a unique System Identifier
(SID). The generic database SID value is orcl when installing the Oracle Database 11g server.
The assignment of the SID is the same regardless of platform.

While they’re very similar, you will cover them separately. You can choose to read one or the
other because both cover the same material from the perspective of the operating system. These
subsections teach you how to start and shut down the database in the Linux and Microsoft
Windows environments.

Unix or Linux Operations
Oracle Database 11g should install as the oracle user in a dba group on the Unix or Linux
system and is set up to start at boot. When you want to shut down or start the database after the
system has booted, use the substitute user, su, command. The substitute user command lets you
become another user and inherit that user’s environment variables. The following command lets
you change from a less privileged user to the oracle owner:

su - oracle

You will assume the mantle of oracle by providing the correct password to the account. Then,
you have two choices as to how you start or stop the database for an Oracle Database 11g XE
installation (provided they release one). As an Oracle Database 11g XE user, you can use the script
built during installation to start, stop, restart, configure, or status the database and all attendant
services by typing the following:

/etc/init.d/oracle-xe {start|stop|restart|configure|status}

Alternatively, with an Oracle Database 11g SE or EE installation, you can use the sqlplus
utility to start, stop, restart, configure, or status the database or start the Oracle listener and then
the Enterprise Manager Database Control utility to start, stop, restart, or status the database.

You will need to build an environment file and source it into your environment. The following
values are the minimum required values for your environment file:

export set ORACLE_HOME=/mount_point/11g/product/11.1.0/db_1
export set PATH=$PATH:$ORACLE_HOME/bin:.
export set ORACLE_SID=oracle_sid
export set LD_LIBRARY_PATH=/usr/lib/openwin/lib:$ORACLE_HOME/lib

Assuming that you are in the same directory as your environment file, you source your
environment in Bash or Korn shell as follows:

. ./11g.env

Then, you can start the Enterprise Manager Database Control utility as follows:

emctl start dbconsole

Appendix A: Oracle Database Administration Primer 579

You can also issue a sqlplus command to connect to the Oracle Database 11g instance
as the privileged user SYS, using a specialized role for starting and stopping the database. The
connection command is

sqlplus '/ as sysdba'

NOTE
You can connect directly to the Oracle database only when you are
the owner of the Oracle database. This type of connection is a direct
connection between the shell process and the database, which means
that the communication is not routed through Net8 and the Oracle
listener does not need to be running.

After connecting to the SQL> prompt, you will need to provide the Oracle superuser password.
Once authenticated, you will be the SYS user in a specialized role known as SYSDBA. The SYSDBA
role exists for starting and stopping your database instance and performing other administrative
tasks. You can see your current Oracle user name by issuing the following SQL*Plus command:

SQL> show user
USER is "SYS"

Assuming the database is already started, you can use the following command to see the
current SGA (System Global Area) values:

SQL> show sga

Total System Global Area 1233534976 bytes
Fixed Size 1297104 bytes
Variable Size 935765296 bytes
Database Buffers 285212672 bytes
Redo Buffers 11259904 bytes

You can shut down the database by choosing abort, immediate, transactional,
and normal. Only the abort fails to secure transaction integrity, which means that database
recovery is required when restarting the database. The other three shutdown methods do not

Enterprise Management Utility
If the console told you the emctl program was not found, it is most likely not found in your
path statement. You can determine whether the executable is in your current path by using
the which utility, shown here:

which –a emctl

The –a option returns a list of all emctl programs in order of their precedence in your
$PATH variable. You fix the $PATH environment variable by adding the required directory
path where the executable is found. After fixing your $PATH variable in the environment
file, you should again source the environment file.

580 Oracle Database 11g PL/SQL Programming

require recovery when restarting the database. The optional arguments perform the following
types of shutdown operations:

Shutdown normal Stops any new connections to the database and waits for all
connected users to disconnect; then the Oracle instance writes completed database
transactions from redo buffers to data files and marks them closed, terminates
background processes, closes the database, and dismounts the database.

Shutdown transactional Stops any new connections to the database and disconnects
users as soon as the current transactions complete; when all transactions complete, the
Oracle instance writes database and redo buffers to data files and marks them closed,
terminates background processes, closes the database, and dismounts the database.

Shutdown immediate Stops all current SQL statements, rolls back all active
transactions, and immediately disconnects users from the database; then the Oracle
instance writes database and redo buffers to data files and marks them closed, terminates
background processes, closes the database, and dismounts the database.

Shutdown abort Stops all current SQL statements, and immediately shuts down
without writing database and redo buffers to data files; the Oracle instance does not
roll back uncommitted transactions but terminates running processes without closing
physical files and the database, and it leaves the database in a mounted state requiring
recovery when restarted.

The following illustrates the immediate shutdown of a database instance:

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.

When you want to start the database, you have three options. You can start the database by
using the startup command and either the nomount, mount, or open (default) option. The
optional arguments perform the following types of startup operations:

Startup nomount Starts the instance by reading the parameter file in the $ORACLE_HOME/dbs
directory. This file can be named spfile.ora or pfile.ora. The former can’t be read
in a text editor but is the default parameter file option beginning with Oracle 9i. You can
create an editable pfile.ora using SQL as the SYS user in the role of SYSDBA from
an open database. This startup starts the background processes, allocates the SGA shared
memory segment, and opens the alertSID.log and trace files. The SID is the name
of an Oracle database instance. The value is stored in the data catalog and control files.
This type of startup is only done when creating a new database or rebuilding control files
during a backup and recovery operation.

Startup mount Does everything the nomount process does, and then it continues
by locating, opening, and reading the control files and parameter files to determine
the status of the data files and online redo log files, but no check is made to verify the
existence or state of the data files. This type of startup is useful when you need to rename

■

■

■

■

■

■

Appendix A: Oracle Database Administration Primer 581

the data files, change the online redo file archiving process, or perform full database
recovery.

Startup open Does everything the mount process does, and then it continues by
locating, opening, and reading the online data files and redo log files. This is the default
startup operation, and you use it when opening the database for user transactions.

After reconnecting to the database if you disconnected, you can issue the startup
command. If you provide a nomount or mount argument to the startup command, only those
processes qualified earlier will occur. When you provide the startup command with no
argument, the default argument open is applied and the database will be immediately available
for user transactions. The following demonstrates a standard startup of the database instance:

SQL> startup
ORACLE instance started.

Total System Global Area 1233534976 bytes
Fixed Size 1297104 bytes
Variable Size 935765296 bytes
Database Buffers 285212672 bytes
Redo Buffers 11259904 bytes
Database mounted.
Database opened.

Viewing how the database moves from shutdown to nomount to mount to open is helpful.
The following syntax demonstrates moving the database one step at a time from a shutdown
instance to an open database:

SQL> startup nomount
ORACLE instance started.

Total System Global Area 1233534976 bytes
Fixed Size 1297104 bytes
Variable Size 935765296 bytes
Database Buffers 285212672 bytes
Redo Buffers 11259904 bytes
SQL> ALTER DATABASE MOUNT;

Database altered.

SQL> ALTER DATABASE OPEN;

Database altered.

The preceding output demonstrates that the Oracle instance creates the shared memory
segment before opening the database, even in a startup nomount operation. The memory
segment is first operation because it is the container where you store the open instance. You can
use an ALTER SQL statement against the database to mount and open the database instance.

This section has shown you how to shut down and restart your database instance. It has also
provided some insights into routine database administration tasks, which you can explore further
in the Oracle Database 11g DBA Handbook by Oracle Press.

■

582 Oracle Database 11g PL/SQL Programming

Microsoft Windows Operations
Oracle Database 11g installs as a standard program on the Microsoft Windows system. You have
full access from any user account that has Administrator privileges. Oracle Database 11g also
installs several services using the platform-specific ORADIM utility. You can find these services
by opening your control panel and navigating to the Services icon. The navigation path changes
whether you are in the Classic or Category view. In the Classic view, click the Administrative
Tools icon and then the Services icon. In the Category view, first click the Performance and
Maintenance icon, second click the Administrative Tools icon, and then click the Services icon.
This will bring you to the Services view displayed in Figure A-3.

As a general rule, you are best served starting, restarting, and shutting down the services from
this GUI view. However, you will need the command-line utility when you want to perform data
backup and recovery activities. You can access the sqlplus utility from any command prompt
session to manually start, stop, restart, configure, or status the database. This is possible because
the fully qualified directory path is placed in the generic %PATH% environment for all Administrator
accounts variables during the product installation. Making changes in the database requires that
you connect to the Oracle Database 11g instance as the privileged user SYS.

You’ll use the SQL*Plus executable, sqlplus, to connect to the database. There is a
specialized role for starting and stopping the database, known as SYSDBA. You connect using
the following syntax:

sqlplus '/ as sysdba'

After connecting to the SQL> prompt, Oracle will prompt you for the Oracle superuser
password that you set during product installation. Once authenticated, you will be the SYS user

FIGURE A-3 Microsoft Services Console

Appendix A: Oracle Database Administration Primer 583

in a specialized role known as SYSDBA. The SYSDBA role exists for starting and stopping your
database instance and performing other administrative tasks. You can see your current Oracle
user name by issuing the following SQL*Plus command:

SQL> show user
USER is "SYS"

Assuming the database is already started, you use the following command to see the current
SGA (System Global Area) values:

SQL> show sga

Total System Global Area 1233534976 bytes
Fixed Size 1297104 bytes
Variable Size 935765296 bytes
Database Buffers 285212672 bytes
Redo Buffers 11259904 bytes

You can shut down the database by choosing abort, immediate, transactional, and
normal. Only the abort fails to secure transaction integrity, which means that database recovery
is required when restarting the database. The other three shutdown methods do not require
recovery when restarting the database. The optional arguments perform the following types of
shutdown operations:

Shutdown normal Stops any new connections to the database and waits for all
connected users to disconnect; then the Oracle instance writes completed database
transactions from redo buffers to data files and marks them closed, terminates
background processes, closes the database, and dismounts the database.

Shutdown transactional Stops any new connections to the database and disconnects
users as soon as the current transactions complete; when all transactions complete, the
Oracle instance writes database and redo buffers to data files and marks them closed,
terminates background processes, closes the database, and dismounts the database.

Shutdown immediate Stops all current SQL statements, rolls back all active transactions,
and immediately disconnects users from the database; then the Oracle instance writes
database and redo buffers to data files and marks them closed, terminates background
processes, closes the database, and dismounts the database.

Shutdown abort Stops all current SQL statements, and immediately shuts down
without writing database and redo buffers to data files; the Oracle instance does not
roll back uncommitted transactions but terminates running processes without closing
physical files and the database, and it leaves the database in a mounted state requiring
recovery when restarted.

The following illustrates the immediate shutdown of a database instance:

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.

■

■

■

■

584 Oracle Database 11g PL/SQL Programming

When you want to start the database, you have three options. You can start the database by
using the startup command and either the nomount, mount, or open (default) option. The
optional arguments perform the following types of startup operations:

Startup nomount Starts the instance by reading the parameter file in the %ORACLE_HOME%\dbs
directory. This file can be named spfile.ora or pfile.ora. The former can’t be read
in a text editor but is the default parameter file option beginning with Oracle 9i. You can
create an editable pfile.ora using SQL as the SYS user in the role of SYSDBA from
an open database. This startup starts the background processes, allocates the SGA shared
memory segment, and opens the alertSID.log and trace files. The SID is the name
of an Oracle database instance. The value is stored in the data catalog and control files.
This type of startup is only done when creating a new database or rebuilding control files
during a backup and recovery operation.

Startup mount Does everything the nomount process does, and then it continues
by locating, opening, and reading the control files and parameter files to determine
the status of the data files and online redo log files, but no check is made to verify the
existence or state of the data files. This type of startup is useful when you need to rename
the data files, change the online redo file archiving process, or perform full database
recovery.

Startup open Does everything the mount process does, and then it continues by
locating, opening, and reading the online data files and redo log files. This is the default
startup operation and used when you want to transact against the database.

As discussed earlier, all Administrator user accounts have the sqlplus executable in their
working %PATH% environment variable. Using the sqlplus command, you connect to the Oracle
Database 11g instance as the privileged user SYS under the SYSDBA role. This role lets you start,
stop, and perform database administration tasks on a database instance. The command is

sqlplus '/ as sysdba'

After connecting to the database, you can issue the startup command. If you provide a
nomount or mount argument to the startup command, only those processes qualified will
occur. When you provide the startup command with no argument, the default argument
open is applied and the database will be immediately available for transactions. The following
demonstrates a standard startup of the database instance:

SQL> startup
ORACLE instance started.

Total System Global Area 1233534976 bytes
Fixed Size 1297104 bytes
Variable Size 935765296 bytes
Database Buffers 285212672 bytes
Redo Buffers 11259904 bytes
Database mounted.
Database opened.

Viewing how the database moves from shutdown to nomount to mount to open is helpful.
The following syntax demonstrates moving the database one step at a time from a shutdown
instance to an open database:

■

■

■

Appendix A: Oracle Database Administration Primer 585

SQL> startup nomount
ORACLE instance started.

Total System Global Area 1233534976 bytes
Fixed Size 1297104 bytes
Variable Size 935765296 bytes
Database Buffers 285212672 bytes
Redo Buffers 11259904 bytes
SQL> ALTER DATABASE MOUNT;

Database altered.

SQL> ALTER DATABASE OPEN;

Database altered.

The preceding output demonstrates that the Oracle instance creates the shared memory
segment before opening the database, even in a startup nomount operation. The memory
segment is first operation because it is the container where you store the open instance. You can
use an ALTER SQL statement against the database to mount and open the database instance.

This section has shown you how to shut down and restart your database instance. It has also
provided some insights into routine database administration tasks, which you can explore further
in the Oracle Database 11g DBA Handbook by Oracle Press.

Starting and Stopping the Oracle Listener
The Oracle lsnrctl utility lets you start the server-side Oracle listener process on a port that
you set in the listener.ora configuration file. There are actually three files used in configuring
the Oracle Net8 listener; they are the listener.ora, tnsnames.ora, and sqlnet.ora
configuration files. The sqlnet.ora file is not necessary for basic operations and is not
configured in the shipped version of Oracle Database 11g. You can use the sqlnet.ora file
to set network tracing commands, which are qualified in the Oracle Database Net Services
Administrator’s Guide 11g Release 1 and Oracle Database Net Services Reference 11g Release 1
documentation. You may browse or download these from http://otn.oracle.com for supplemental
information.

The network configuration files are in the network/admin subdirectory of the Oracle
Database 11g product home directory. The following qualifies the default Oracle product home
by platform:

Unix or Linux

/mount_point/directory_to_oracle_home/

Microsoft Windows

C:\directory_to_oracle_home

The Oracle product home path is typically set as an environment variable for all user accounts.
Environment variables are aliases that point to something else and exist in all operating systems.
You can set an Oracle product home directory as follows by platform:

http://otn.oracle.com

586 Oracle Database 11g PL/SQL Programming

Unix or Linux

export set ORACLE_HOME=/mount_point/directory_to_oracle_home/

Microsoft Windows

C:\directory_to_oracle_home

You can then navigate to the Oracle product home by using the $ORACLE_HOME in Unix or
Linux or %ORACLE_HOME% in Microsoft Windows. These settings are temporary unless you put
them in a configuration file that gets sourced when you connect to your system in Unix or Linux.
It is a convention for you to put these in your .bashrc file or have your system administrator put
them in the standard .profile account in Linux. You can also configure permanent environment
variables in your System Properties in Microsoft Windows. You will find the instructions for setting
the Oracle Database 2 Day DBA manual.

TIP
You can set your environment variables by going to the Control Panel
and launching the System icon, where you will choose the Advanced
tab and click the Environment Variable button.

The sample listener.ora file is a configuration file. A listener.ora file exists after
you install Oracle Database 11g. You will find that your listener.ora file contains the Oracle
product home directory, your server machine hostname, and a port number. These values are
critical pieces of information that enable your listener to find your Oracle installation. These data
components mirror the configuration directives that enable Apache to hand off HTTP requests to
appropriate services.

The only differences between the Unix or Linux and Microsoft Windows operating system
versions are different path statement for the Oracle product home and the case sensitivity or
insensitivity of the host name. The hostname is lowercase for a Unix or Linux system and
uppercase for Microsoft Windows.

-- This is an example of a default listener.ora file.

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1))
 (ADDRESS = (PROTOCOL = TCP)(HOST = hostname)(PORT = port_number))
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = oracle_product_home_directory)
 (PROGRAM = extproc)
)
)

Appendix A: Oracle Database Administration Primer 587

The listener.ora file has two key addressing components. The first is the actual listener
name, which by default isn’t too original because it is an uppercase string, LISTENER. The
default listener name is implicitly assumed unless you provide an overriding listener name to any
lsnrctl command. You must explicitly provide the listener name when you use anything other
than the default as your actual listener name.

The listener name is also appended to the SID_LIST_ descriptor, which registers static maps
for external procedures and the Oracle Heterogeneous Server. Oracle Database 11g uses one
external procedure configurations—PLSExtProc. Oracle recommends that you have discrete
listeners for IPC and TCP traffic, but in the standard listener configuration file they share a listener.
Unless you change the listener file, you will encounter an ORA-28595 error because user-defined
shared libraries, DLLs, must communicate across an IPC channel. You will find configuration
instructions to support external procedures in Chapter 13.

The DEFAULT_SERVICE_LISTENER is set to orcl in the listener.ora file. ORCL also is
the global name of the current database instance. The SERVICE_NAME parameter defaults to the
global database name when one is not specified in the spfileSID.ora or pfileSID.ora file.
The service name for any Oracle database is the database name concatenated to the database
domain. Oracle Database 11g defines the default database name as ORCL and assigns no database
domain. You can find this information by connecting as the SYS user under the SYSDBA role,
formatting the return values, and running the following query:

COL name FORMAT A30
COL value FORMAT A30

SELECT name
, value
FROM v$parameter
WHERE name LIKE '%name'
OR name LIKE '%domain';

The query returns the following data:

NAME VALUE
------------------------------ ------------------------------
db_domain
instance_name orcl
db_name orcl
db_unique_name orcl

Net8 is designed to support client load balancing and connect-time failover. The service_
name replaces the SID parameter that previously enabled these features. The tnsnames.ora file
is a mapping file that enables client requests to find the Oracle listener. The tnsnames.ora file
contains a network alias that maps to the Oracle service_name and connection configurations to
facilitate access to external procedures. The hostname and port_number enable the network alias,
ORCL, to find the Oracle listener. Naturally, there is an assumption that your hostname
maps through DNS resolution or the local host file to a physical Internet Protocol (IP) address.

TIP
You can add the hostname and IP address to your local host file when
you do not resolve to a server through DNS. The /etc/host file is
the Linux host file, and C:\WINDOWS\system32\drivers\etc\
hosts file is the Microsoft Windows host file.

588 Oracle Database 11g PL/SQL Programming

A sample tnsnames.ora file is

-- This is an example of a default tnsnames.ora file.

ORCL =

 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = hostname)(PORT = port_number))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = ORCL)
)
)

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))
)
 (CONNECT_DATA =
 (SID = PLSExtProc)
 (PRESENTATION = RO)
)
)

Some strings in these configuration files are case sensitive. An example is the PROGRAM value
in the listener.ora file and the KEY value in the tnsnames.ora file. These values are case sensitive
and must match exactly between files or you will receive an ORA-28576 error when accessing
the external procedure.

These files support the lsnrctl utility regardless of platform. The lsnrctl utility enables
you to start, stop, and status the listener process. As discussed when covering how to start and
stop the database instance, you will need to be the root user in the Linux environment and an
Administrator user in the Microsoft Windows environment.

The default installation starts the Oracle listener when the system boots, but you should check
whether it is running before attempting to shut it down. You can use the following to check the
status of the Oracle listener:

lsnrctl status

As discussed, the command implicitly substitutes LISTENER as the default second argument.
You will need to explicitly provide the listener name when starting, stopping, or checking status
when you have changed the default listener name. You should see the following on a Linux system
when you check the status of a running Oracle Database 11g listener and only slight differences
on a Unix or Windows system:

LSNRCTL for Linux: Version 11.1.0.3.0 - Beta on 25-FEB-2007
Copyright (c) 1991, 2006, Oracle. All rights reserved.
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=host.domain)
(PORT=1521)))

Appendix A: Oracle Database Administration Primer 589

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1521)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Linux: Version 11.1.0.3.0 – Beta
Start Date 25-FEB-2007 19:02:01
Uptime 0 days 0 hr. 0 min. 0 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File /mount_pt/oracle_home/network/admin/listener.ora
Listener Log File /mount_pt/oracle_home/network/log/listener.log
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=name.domain)(PORT=1521)))
Services Summary...
Service "PLSExtProc" has 1 instance(s).
 Instance "PLSExtProc", status UNKNOWN, has 1 handler(s) for this service...
The command completed successfully

You can stop the service by using

lsnrctl stop

You can restart the service by using

lsnrctl start

After stopping and starting the listener, you should check if you can make a network connection
from your user account to the listener. This is very similar to the idea of a network ping operation,
except you are pinging the Oracle Net8 connection layer. You use the tnsping utility to verify
an Oracle Net8 connection, as follows:

tnsping orcl

You should see the following type of return message but with a real hostname as opposed to
the substituted hostname value; provided you haven’t changed the default network port number:

C:\>tnsping orcl

TNS Ping Utility for 32-bit Windows: Version 11.1.0.6.0
Copyright (c) 1997, 2007, Oracle. All rights reserved.

Used parameter files:
C:\app\11.1.0\db_1\network\admin\sqlnet.ora

Used TNSNAMES adapter to resolve the alias
Attempting to contact (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST =
hostname.domain)(PORT = 1521)) (CONNECT_DATA = (SERVER = DEDICATED)
(SERVICE_NAME = ORCL)))

OK (10 msec)

590 Oracle Database 11g PL/SQL Programming

The tnsping checks the sqlnet.ora parameter file for any instructions that it may contain.
Net8 connections first check the sqlnet.ora file to find any network tracing instructions before
proceeding with connection attempts. The Oracle Net8 tracing layers are very powerful tools and
can assist you in diagnosing complex connection problems. You will find answers to configuring
sqlnet.ora in the Oracle Database Net Services Reference 11g Release 1.

You can use a GUI tool to start, stop, and status the Oracle listener when you are running
on Microsoft Windows. You can find it by navigating to the Control Panel, then if you are using
a Classic view choose Administrative Tools and Services; but if you are using a Category view
choose Performance and Maintenance, Administrative Tools, and Services. Highlight
OracleORCLListener in the list of services in the right panel and click Stop The Service.

This section has explained where the configuration files are and how they work to enable
you to start, stop, and check the status on the Oracle listener. In the next section you will see
how users connect using the Oracle listener.

Oracle Roles and Privileges
Database privileges are granted by the superuser or its designee, like SYS or SYSTEM. These
privileges provide explicit permissions to perform tasks. You can group privileges into roles, which
are simply a collection of privileges. When you grant roles to users, they do not always provide
the same rights and permissions. Some privileges cannot be effectively granted as part of a role.

The list of privileges that require explicit grants changes with each release of the database. If
you encounter a situation where your rights and privileges seem less than what you expect, then
you should connect as the superuser or designee and grant that privilege explicitly. As a rule,
this audit helps you find any privileges that aren’t fully granted as roles. You can also check the
Oracle Database 11g Administrator’s Guide for further information.

Accessing and Using the SQL*Plus Interface
The Oracle Database 11g product provides you with one command-line interface to access, insert,
update, or delete data, and create, alter, or drop structures in database instances. The interface
enables you to interact with the database by using Structured Query Language (SQL). If you are
unfamiliar with the concepts of SQL, please check Appendix B before continuing with this segment.

Oracle SQL*Plus is both an interactive environment where you can enter SQL statements and
process them one by one and a batch environment where you can run scripts as batch submissions.
Scripts are small SQL programs or collections of programs found in a single file. The SQL*Plus
environment is also a programming shell environment and supports session-level variables, using
the data types covered in Table A-1. Various ways to use these session-level variables are discussed
in this book.

You have two ways to use SQL with the Oracle Database 11g product. One is through the
iSQL*Plus web page interface, and the other is through a command-line interface. This section will
cover the command-line tool. Web tools and integrated development tools are covered in Chapter 2.

The Oracle SQL and PL/SQL examples used throughout the book require a schema known
as PLSQL. You will use the create_user.sql script available from the publisher’s web site to
create the user and assign privileges. You will use the default storage clause unless you modify the
create_user.sql script with something other than the default user tablespace. Storage clauses
enable you to designate where a user will physically store data, which is in a designated
tablespace. Tablespaces are logical structures that act as portals to one to many physical files.

Appendix A: Oracle Database Administration Primer 591

Data Type Description
BINARY_DOUBLE The BINARY_DOUBLE datatype is a 64-bit floating-point number that takes

eight bytes of storage. It is defined without a formal parameter. It has the
following prototype:
BINARY_DOUBLE

BINARY_FLOAT The BINARY_FLOAT datatype is a 32-bit floating-point number that takes four
bytes of storage. It is defined without a formal parameter. It has the following
prototype:
BINARY_FLOAT

BLOB The BLOB datatype may contain any type of unstructured binary data up to a
maximum size of 4GB. It has the following prototype:
BLOB

CHAR The CHAR datatype stores fixed-length character data in bytes or characters.
You can override the default by providing a formal size parameter. The BYTE or CHAR
qualification is optional and will be applied from the NLS_LENGTH_SEMANTICS
parameter by default. It has the following prototype:
CHAR [(size [BYTE | CHAR])]

CLOB The CLOB datatype stands for Character Large Object. They store character
strings up to 4GB in size. Variables with Unicode character sets are also
supported up to the same maximum size. CLOB types are defined without
any formal parameter for size. It has the following prototype:
CLOB

NCHAR The NCHAR datatype stores fixed-length Unicode national character data in
bytes or characters. Unicode variables require two or three bytes, depending
on the character set, which is an encoding schema. The AL16UTF16 character
set requires two bytes, and UTF8 requires three bytes. You can override the
default by providing a formal size parameter. It has the following prototype:
NCHAR [(size)]

NCLOB The NCLOB datatype stands for Unicode national Character Large Object. They
store character strings up to 4GB in size. Variables with Unicode character sets
are also supported up to the same maximum size. NCLOB types are defined
without any formal parameter for size. It has the following prototype:
NCLOB

NUMBER The NUMBER datatype is a 38-position numeric data type. You can declare its
precision, or size, and its scale, or number of digits to the right of the decimal
point. You can define it without a formal parameter, with a single precision
parameter, or with both precision and scale parameters. It has the following
prototype:
NUMBER [(precision [, scale])]

TABLE A-1 SQL*Plus Session-Level Variables

592 Oracle Database 11g PL/SQL Programming

The basic architecture of a user schema is disconnected from physical storage through a
series of software abstractions. A user can access and store data in one or more tablespaces, and
a tablespace can reference one or more files. This architecture enables a user to store more data
than the physical file limits imposed by an operating system. You designate a default storage
tablespace when you define a user/schema, but Oracle Database 11g plans on all users being
stored in the USER tablespace. You can find the default tablespace for a user by running the
following script:

SELECT username
, default_tablespace
FROM dba_users;

The enclosed scripts do not attempt to override the planned intent of the product, and the
script assumes you will use the default USER tablespace. If you are working in an Oracle Standard
or Enterprise Edition version of the database, you should consider creating a PLSQL tablespace
and modifying the scripts to place all data there.

You will work with the command-line interface first because doing so provides an opportunity
to discuss the differences between the SQL*Plus and SQL environments. The discussion lays a
foundation for the subsequent web page interface materials. You can further your understanding of
Oracle SQL*Plus by referring to the SQL*Plus User Guide and Reference Release 1, or Oracle SQL
by referring to the Oracle Database SQL Reference 11g Release 1 found on http://otn.oracle.com.

SQL Command-Line Interface
The SQL*Plus command-line interface requires that you have an account on the server or that you
install Oracle client software on your local machine. The command-line tool requires a thick-client

Data Type Description
NVARCHAR2 The NVARCHAR2 datatype stores variable-length strings in bytes or characters

up to 4,000 characters in length. The size per character is determined by the
Unicode setting for the database instance. You define a NVARCHAR2 datatype
by setting its maximum size parameter. It has the following prototype:
NVARCHAR2 (size)

REFCURSOR The REFCURSOR datatype stores a cursor returned by a PL/SQL block, which
can contain an array of a structure. The structure can be dynamic and may
implement a structure defined in the data catalog or in a query. It has the
following prototype:
REFCURSOR

VARCHAR2 The VARCHAR2 datatype stores variable-length strings in bytes or characters up
to 4,000 characters in length. If BYTE or CHAR is not specified, the type uses
the NLS_LENGTH_SEMANTICS parameter defined for the database instance.
You define a VARCHAR2 datatype by setting its maximum size parameter. It has
the following prototype:
VARCHAR2 [(size [BYTE | CHAR])]

TABLE A-1 SQL*Plus Session-Level Variables (continued)

http://otn.oracle.com

Appendix A: Oracle Database Administration Primer 593

connection to build a socket between a client and a server. The interactive SQL*Plus interface is
provided by the Oracle client software.

You can access the SQL*Plus application directly when you are working on the same
machine as the Oracle database. If you are working on a Linux machine, you will need to put
the $ORACLE_HOME/bin directory in your environment path and set several other environment
variables. You will find the instructions for setting the Oracle Database 11g Client environment
variables in the Oracle Database Client Installation Guide 11g. This installation guide is platform
specific.

Only Linux users will need to set the environment file. You do it by running the oracle_env.csh
when your account uses the c or tcsh shell, and oracle_env.sh when your account uses the
Bash or Korn shell.

After creating your environment variable file, you source the file into your environment, and
copy the create_user.sql file to a working directory owned by your user account. These files
build your Oracle PLSQL user account. Microsoft Windows users will need to open a command
prompt session to access the SQL*Plus command-line tool.

In the directory where you have copied the file, you can now connect to the SQL*Plus
environment by typing the following command:

sqlplus system/password@orcl

NOTE
You set the default password during installation. Don’t misplace that
password.

This assumes you own or have access to the Oracle superuser accounts, SYS and SYSTEM,
and know the password. If you don’t own the superuser account, you should contact your DBA to
run the create_user.sql script from the SYSTEM account. The @orcl is an instruction to use
the network alias in your tnsnames.ora file to find the database. When you append a TNS alias,
the connection only resolves through a running Oracle listener.

You can execute scripts from the SQL*Plus environment by prefacing them with a @ symbol.
This reads the file directly into a line-by-line execution mode. Alternatively, you can use the GET
command to read the file into the current SQL*Plus buffer, before running it. The latter method is
fine when you have only a SQL statement in the file and no SQL*Plus statements. DO NOT use
the GET command with these scripts because they contain many SQL and SQL*Plus statements.

NOTE
SQL commands let you interact with the database, while SQL*Plus
commands let you configure your SQL*Plus environment. They also
enable you to format and secure feedback from the database on the
success or failure of your SQL statements.

You create the PLSQL user and schema with the create_user.sql script. The script
contains SQL*Plus, SQL, and PL/SQL components. PL/SQL, as described in the introduction,
stands for Procedural Language/Structured Query Language, a language that was created by
Oracle to let users write stored procedures in the database.

You have two options as to how you run the script. The first option is connecting to SQL*Plus
and running the script from the command line. The second option is running the script as an actual

594 Oracle Database 11g PL/SQL Programming

parameter to the sqlplus executable. The easiest way for new Oracle users is to connect to
SQL*Plus and run the script. You connect with the command

sqlplus system/password@orcl

The script will fail unless you run it as the SYSTEM user. After connecting as the SYSTEM user,
you use this syntax to run the script from a local Linux directory or Microsoft Windows folder:

SQL> @create_user.sql

This script checks whether there is an existing PLSQL user in your database before creating
one. It removes the PLSQL user when found. Dropping a user wipes out all objects owned by that
user. This script can be rerun in case you make an error and want to wipe out your working area
to start over, but remember that it wipes everything owned by the previous PLSQL user. The
create_user.sql follows:

-- This is found in create_user.sql on the enclosed CD.

SET FEEDBACK ON
SET PAGESIZE 999
SET SERVEROUTPUT ON SIZE 1000000
SPOOL create_user.log

DECLARE
 -- Define an exception.
 wrong_schema EXCEPTION;
 PRAGMA EXCEPTION_INIT(wrong_schema,-20001);

 -- Define a return variable.
 retval VARCHAR2(1 CHAR);

 /*
 || Define a cursor to identify whether the current user is either the
 || SYSTEM user or a user with the DBA role privilege.
 */
 CURSOR privs IS
 SELECT DISTINCT null
 FROM user_role_privs
 WHERE username = 'SYSTEM'
 OR granted_role = 'DBA';
BEGIN
 -- Open cursor and read through it.
 OPEN privs;
 LOOP

 -- Read a row.
 FETCH privs INTO retval;

 -- Evaluate if cursor failed.
 IF privs%NOTFOUND THEN
 -- Raise exception.
 RAISE wrong_schema;

Appendix A: Oracle Database Administration Primer 595

 ELSE
 -- Evaluate whether PLSQL user exists and drop it.
 FOR i IN (SELECT null FROM dba_users WHERE username = 'PLSQL') LOOP
 EXECUTE IMMEDIATE 'DROP USER plsql CASCADE';
 END LOOP;

 -- Create user and grant privileges.
 EXECUTE IMMEDIATE 'CREATE USER plsql IDENTIFIED BY plsql;
 EXECUTE IMMEDIATE 'GRANT connect TO plsql';
 EXECUTE IMMEDIATE 'GRANT resource TO plsql';

 -- Print successful outcome.
 DBMS_OUTPUT.PUT_LINE(CHR(10)||'Created PLSQL user.');
 END IF;

 -- Exit the loop.
 EXIT;

 END LOOP;

 -- Close cursor.
 CLOSE privs;

EXCEPTION
 -- Handle a defined exception.
 WHEN wrong_schema THEN
 DBMS_OUTPUT.PUT_LINE('The script requires the SYSTEM user and '
 || 'you are using the <'||user||'> schema or '
 || 'the script requires a user with DBA role '
 || 'privileges.');

 -- Handle a generic exception.
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 RETURN;
END;
/

-- Define SQL*Plus formatting.
COL grantee FORMAT A8
COL granted_role FORMAT A30
COL grantor FORMAT A12
COL privilege FORMAT A12
COL owner FORMAT A6
COL table_name FORMAT A10

-- Query user granted roles.

SELECT grantee
, granted_role
FROM dba_role_privs
WHERE grantee = 'PLSQL';

596 Oracle Database 11g PL/SQL Programming

-- Query resources.
SELECT grantor
, owner
, table_name
, grantee
, privilege
FROM dba_tab_privs
WHERE grantee = 'PLSQL';

COL admin_option FORMAT A3
COL privilege FORMAT A30
COL username FORMAT A10

-- Query user system privileges.
SELECT grantee
, privilege
, admin_option
FROM dba_sys_privs
WHERE grantee = 'PLSQL';

SPOOL OFF

Coming from a MySQL background, the script may look like the new stored procedures
introduced in version 5. This file uses Oracle PL/SQL to manage the process of creating a user.
The script then uses formatting commands to govern the output from two SQL queries, and the
queries determine the permissions of the new user.

The COL[UMN] and SET commands belong to the SQL*Plus environment and are specific
to Oracle. They let you configure the way output is rendered in the command-line SQL*Plus
environment. The SPOOL command is like the tee command in MySQL and splits standard out
to both the console and a file.

You should see the following output after running the script:

GRANTEE GRANTED_ROLE
-------- ------------------------------
PLSQL DBA
PLSQL CONNECT

2 rows selected

no rows selected

GRANTEE PRIVILEGE ADM
-------- ------------------------------ ---
PLSQL UNLIMITED TABLESPACE NO

1 rows selected.

These are the base permissions required for the PLSQL user. The password is set trivially as
PLSQL, but you can change it to whatever you like. You have two options to change a password.
The first option is to type password at the SQL prompt, as shown:

Appendix A: Oracle Database Administration Primer 597

SQL> password
Changing password for PLSQL
Old password:
New password:
Retype new password:
Password changed

The second option for changing your password is to use the ALTER SQL command to change
the PLSQL user password. The syntax is

SQL> ALTER USER plsql IDENTIFIED BY secret_password;

This has explained the standard command-line interface. There are some subtle differences
when you connect through Oracle iSQL*Plus or Application Express web interfaces. In fact, if
you’ve used the Application Express product to connect as this user, you will return different
information.

After you connect through the Oracle Database 11g Application Express web login page, the
second query against the DBA_TAB_PRIVS table in the create_user.sql script will return a
different set of granted privileges. These are granted as part of your initial login through the web
applications. The newly granted privileges for the PLSQL user are

GRANTOR OWNER TABLE_NAME GRANTEE PRIVILEGE
------------ ------ ---------- -------- ------------
FLOWS_020100 SYS DBMS_RLS PLSQL EXECUTE
FLOWS_020100 CTXSYS CTX_DDL PLSQL EXECUTE
FLOWS_020100 CTXSYS CTX_DOC PLSQL EXECUTE

You can now disconnect from the SQL*Plus session by typing the word quit and pressing ENTER:

SQL> quit

Bind Variables
As presented in Table A-1, there are session-level variables in the SQL*Plus environment. These
are also called bind variables because you can bind the contents from query execution to use in
another query. Likewise, you can bind values from one PL/SQL execution scope to another or a
subsequent SQL statement. Bind variables is the more commonly known term for describing
SQL*Plus session variables. You define a variable-length string bind variable as follows:

SQL> VARIABLE mybindvar VARCHAR2(30)

You’ll notice that there is no semicolon after the definition of a bind variable and that a
variable-length string must be allocated physical space, which is 30 characters in this example.

BEGIN
 :mybindvar := 'Demonstration';
END;
/

You can then query the contents of the bind variable by

SQL> SELECT :mybindvar AS "Bind Variable" FROM dual;

598 Oracle Database 11g PL/SQL Programming

This prints the following to the console:

Bind Variable

Demonstration

There is a great deal more information about the SQL*Plus environment, but you will need
to review it in the SQL*Plus User Guide and Reference Release 1 manual, which is over 500
pages long.

You should check Oracle Database Express Edition Application Express User’s Guide and the
Oracle Database Express Edition 2 Day Developer Guide for more information on the web-based
products.

Summary
This appendix has introduced you to the architecture of relational databases and demonstrated
how you start and stop database instances on Unix or Linux and Microsoft Windows. It has also
shown you how to start, stop, and status an Oracle listener and access the SQL*Plus environment
to interact with the database.

APPENDIX
B

Oracle Database
SQL Primer

599

600 Oracle Database 11g PL/SQL Programming

he Structured Query Language (SQL) is the mechanism for accessing information
in relational databases. The SQL acronym has different pronunciations, but many
people use the word sequel because IBM originally named it the Structured English
Query Language. The SEQUEL acronym mutated to SQL when IBM discovered the
original acronym was trademarked by Hawker Siddeley.

SQL is a nonprocedural programming language designed to work with data sets in relational
database management systems. SQL lets you define, modify, and remove database objects, transact
against data, control the flow of transactions, and query data. The SQL language commands are
often grouped by function into four groups that are also called languages: Data Definition Language
(DDL), Data Manipulation Language (DML), Data Control Language (DCL), and Data Query
Language (DQL).

As a SQL primer, this appendix covers these languages in the order required to build database
applications. The primer will refer to examples provided in Chapter 1 that support this book by
creating a working model and seeding it with initial data.

Oracle SQL*Plus datatypes

Data Definition Language (DDL)

Data Query Language (DQL)

Data Manipulation Language (DML)

Data Control Language (DCL)

DCL and DQL are not universally accepted in many published references. DCL was originally
called Transaction Control Language (TCL), and DQL was considered part of the DML language
commands. While Oracle Corporation used the TCL acronym for years to describe the Data
Control Language, even Oracle appears to be adopting DCL to avoid confusion with the Tool
Command Language (TCL) created at Berkeley in 1987. You will use DCL to describe transaction
control commands, like SAVEPOINT, ROLLBACK, and COMMIT. DQL describes using the
SELECT statement to query data without locking the rows, whereas SELECT statements that lock
rows for subsequent transactions are more than a query but less than data manipulation, although
they are classified as DML statements. You will use DQL to describe all SELECT statement queries.

SQL implementations differ for many reasons. They vary in their level of compliance with
different ANSI standards. For example, Oracle SQL supports two semantic join models—one is
the Oracle Proprietary method and the other is ANSI SQL 2003–compliant. Table B-1 covers the
SQL standards.

Oracle 11g is ANSI SQL:2003 compliant. Window functions calculate aggregates over a
window of data. You can find more about the ANSI SQL:2003–compliant features introduced in
the Oracle 10g family products by reading the Oracle SQL Standard Support in Oracle Database
10g White Paper on the http://otn.oracle.com web site.

While these topics are arranged for the beginner from start to finish, you should be able to use
individual sections as independent references. A more gradual approach to Oracle SQL is found
in Oracle Database 10g SQL by Jason Price (McGraw-Hill/Osborne, 2004). The comprehensive
reference is the Oracle Database SQL Reference 11g Release 1 manual, which has over 1,000
printed pages and is available online at http://otn.oracle.com.

■

■

■

■

■

T

http://otn.oracle.com
http://otn.oracle.com

Appendix B: Oracle Database SQL Primer 601

Oracle SQL*Plus Datatypes
Oracle Database 11g supports character, numeric, timestamp, binary, and row address datatypes.
These are also known as SQL datatypes or built-in types because they can be used to define
columns in tables and parameter datatypes in PL/SQL. Table B-2 summarizes these SQL datatypes
and qualifies two widely used data subtypes by groups. While the list is not comprehensive of all
subtypes, which can be found in the Oracle Database SQL Reference 11g Release 2 manual, it
should cover the most frequently used data subtypes.

Name Year Description

SQL-86 1986 This is the first standardized version of SQL. It was ratified by
ISO in 1987.

SQL-89 1989 This is a minor revision of SQL-86.

SQL-92 1992 This is a major revision of SQL-89 and also known as SQL2.

SQL:1999 1999 This is a major revision of SQL-92 that added recursive queries,
regular expression handling, database triggers, nonscalar
datatypes, and object-oriented features.

SQL:2003 2003 This is a major revision of SQL:1999 that added auto-generated
columns, standardized sequences, window functions, and XML-
related functions.

TABLE B-1 ANSI SQL Standards

Data Type Raw
Code

Description

CHAR 96 The CHAR datatype column stores fixed-length character data in bytes or characters.
You can override the default by providing a formal size parameter. The BYTE or CHAR
qualification is optional and will be applied from the NLS_LENGTH_SEMANTICS
parameter by default. It has the following prototype:
CHAR [(size [BYTE | CHAR])]

NCHAR 96 The NCHAR datatype column stores fixed-length Unicode national character data in
bytes or characters. Unicode variables require two or three bytes, depending on the
character set, which is an encoding schema. The AL16UTF16 character set requires
two bytes, and UTF8 requires three bytes. You can override the default by providing a
formal size parameter. It has the following prototype:
NCHAR [(size)]

STRING 1 The STRING datatype column is a subtype of VARCHAR2 and stores variable-length
strings in bytes or characters up to 4,000 characters in length. If BYTE or CHAR is not
specified, the type uses the NLS_LENGTH_SEMANTICS parameter defined for the
database instance. You define a VARCHAR2 datatype by providing a required size
parameter. It has the following prototype:
STRING [(size [BYTE | CHAR])]

TABLE B-2 SQL Datatypes

602 Oracle Database 11g PL/SQL Programming

Data Type Raw
Code

Description

VARCHAR2 1 The VARCHAR2 datatype column stores variable-length strings in bytes or characters
up to 4,000 characters in length. If BYTE or CHAR is not specified, the type uses the
NLS_LENGTH_SEMANTICS parameter defined for the database instance. This value
is 2 bytes for AL16UTF16 and 3 bytes for UTF8.You define a VARCHAR2 datatype by
setting its maximum size parameter. It has the following prototype:
VARCHAR2 [(size [BYTE | CHAR])]

NVARCHAR2 1 The NVARCHAR2 datatype column stores variable-length strings in bytes or characters
up to 4,000 characters in length. The size per character is determined by the Unicode
setting for the database instance. You define a NVARCHAR2 datatype by setting its
maximum size parameter. It has the following prototype:
NVARCHAR2 (size)

CLOB 112 The CLOB datatype column stands for Character Large Object. They store character
strings up to 4GB in size. Variables with Unicode character sets are also supported up
to the same maximum size. CLOB types are defined without any formal parameter for
size. It has the following prototype:
CLOB

NCLOB 112 The NCLOB datatype column stands for Unicode national Character Large Object.
They store character strings up to 4GB in size. Variables with Unicode character sets
are also supported up to the same maximum size. NCLOB types are defined without
any formal parameter for size. It has the following prototype:
NCLOB

LONG 8 The LONG datatype column is provided for backward compatibility and will
soon become unavailable because the CLOB and NCLOB datatypes are its future
replacement types. (NOTE: Oracle recommends you should begin migrating LONG
datatypes, but no firm date for its deprecation have been announced.) It contains a
variable-length string up to 2GB of characters per row of data, which means you can
have only one LONG datatype in a table definition. You define a LONG without any
formal parameter. It has the following prototype:
LONG

BINARY_FLOAT 100 The BINARY_FLOAT is a 32-bit floating-point number column that takes four bytes of
storage. It is defined without a formal parameter. It has the following prototype:
BINARY_FLOAT

BINARY_DOUBLE 101 The BINARY_DOUBLE is a 64-bit floating-point number column that takes eight bytes
of storage. It is defined without a formal parameter. It has the following prototype:
BINARY_DOUBLE

FLOAT 2 The FLOAT is a 126-position subtype of the NUMBER datatype column. You can define
it without a formal parameter or with a formal parameter of size. It has the following
prototype:
FLOAT [(size)]

NUMBER 2 The NUMBER is a 38-position numeric datatype column. You can declare its precision,
or size, and its scale, or number of digits to the right of the decimal point. You can
define it without a formal parameter, with a single precision parameter, or with both
precision and scale parameters. It has the following prototype:
NUMBER [(precision [, scale])]

TABLE B-2 SQL Datatypes (continued)

Appendix B: Oracle Database SQL Primer 603

Data Type Raw
Code

Description

DATE 12 The DATE is a seven-byte column and represents a timestamp from 1 Jan 4712 B.C.E.
to 31 Dec 9999 using a Gregorian calendar representation. The default format mask,
DD-MON-RR, is set as a database parameter and found as the NLS_DATE_FORMAT
parameter in the V$PARAMETER table. It has the following prototype:
DATE

INTERVAL YEAR 182 The INTERVAL YEAR is a five-byte column and represents a year and month, and the
default display is YYYY MM. You can define it with or without a formal parameter of
year. The year must be a value between 0 and 9 and defaults to 2. The default limits of
the year interval are –99 and 99. It has the following prototype:
INTERVAL YEAR [(year)] TO MONTH

INTERVAL DAY 183 The INTERVAL DAY is an 11-byte representation of days, hours, minutes, and seconds
in an interval. The default display is DD HH:MI:SS, or days, hours, minutes, and
seconds. The days and fractions of seconds must be values between 0 and 9. The
default limits the days and interval is between 1 and 31, and seconds are returned
without fractions. It has the following prototype:
INTERVAL YEAR [(years)] TO SECOND [(seconds)]

TIMESTAMP 180 The TIMESTAMP is a 7 to 11–byte column and represents a date and time, and it
includes fractional seconds when you override the default seconds parameter. The
default seconds parameter returns seconds without any fractional equivalent. The
fractions of seconds must be values between 0 and 9 and have a maximum display
precision of microseconds. It has the following prototype:
TIMESTAMP [(seconds)]

TIMESTAMP WITH
TIME ZONE

231 The TIMESTAMP WITH TIME ZONE is a 13-byte column and represents a date and
time including offset from UTC; it includes fractional seconds when you override the
default seconds parameter. The default seconds parameter returns seconds without any
fractional equivalent. The fractions of seconds must be values between 0 and 9 and
have a maximum display precision of microseconds. It has the following prototype:
TIMESTAMP [(seconds)] WITH TIME ZONE

BLOB 113 The BLOB datatype column may contain any type of unstructured binary data up to a
maximum size of 4GB. It has the following prototype:
BLOB

BFILE 114 The BFILE datatype column contains a reference to a file stored externally on a file
system. The file must not exceed 4GB in size. It has the following prototype:
BFILE

RAW 23 The RAW datatype column is provided for backward compatibility and will soon
become unavailable because the BLOB datatype is its future replacement. (NOTE:
Oracle recommends that you begin migrating RAW datatypes, but no firm date for the
type’s deprecation has been announced.) It can contain a variable-length raw binary
stream up to two thousand bytes per row of data, which means you can only have one
RAW datatype in a table definition. It has the following prototype:
RAW (size)

LONG RAW 24 The LONG RAW datatype column is provided for backward compatibility and will soon
become unavailable because the BLOB datatype is its future replacement. (NOTE:
Oracle recommends that you begin migrating LONG RAW datatypes, but no firm date
for the type’s deprecation has been announced.) It can contain a variable-length raw
binary stream up to 2GB bytes. It has the following prototype:
LONG RAW

TABLE B-2 SQL Datatypes (continued)

604 Oracle Database 11g PL/SQL Programming

You can also find examples using these Oracle SQL datatypes in the Oracle Database
Application Developer’s Guide – Fundamentals and Oracle Database Application Developer’s
Guide – Large Objects. The most frequently used datatypes are the BLOB, BFILE, CLOB, DATE,
FLOAT, NUMBER, STRING, TIMESTAMP, and VARCHAR2 datatypes. International implementations
also use the TIMESTAMP WITH LOCAL TIME ZONE to regionalize Virtual Private Databases
available in the Oracle Database 11g product family.

Data Definition Language (DDL)
The DDL commands let you create, replace, alter, drop, rename, and truncate database objects,
permissions, and settings. You require a database instance before you can you create, replace,
alter, drop, rename, and truncate database objects. When you installed the Oracle database, the
installation script created a clone of a sample database. Alternatively, the installation program
could have used the CREATE command to build a database instance. After creating the database
instance, you can then use the ALTER command to change settings for the instance or for given
sessions. Sessions last the duration of a connection to the database instance.

The DDL section is organized into subsections and covers the following topics:

Managing tables and constraints

Managing views

Managing stored programs

Managing sequences

Managing user-defined types

You will most frequently use DDL commands to manage tables, constraints, views, stored
programs (such as functions, procedures, and packages), sequences, and user-defined types. This
section works through the general form and application for these commands.

■

■

■

■

■

Data Type Raw
Code

Description

ROWID 69 The ROWID datatype column contains a ten-byte representation of a Base 64 binary
data representation retrieved as the ROWID pseudocolumn. The ROWID pseudocolumn
maps to a physical block on the file system or raw partition. It has the following
prototype:
ROWID

UROWID 208 The UROWID datatype column contains a maximum of 4,000 bytes, and it is the Base
64 binary data representation of the logical row in an index-organized table. The
optional parameter sets the size in bytes for the UROWID values. It has the following
prototype:
UROWID [(size)]

TABLE B-2 SQL Datatypes (continued)

Appendix B: Oracle Database SQL Primer 605

Managing Tables and Constraints
Database tables are the typically two-dimensional structures that hold the raw data that makes
databases useful. The first dimension defines the column names and their datatypes, and the
second dimension defines the rows of data. Rows of data are also known as records and instances
of the table structure.

Tables are the backbone of the database instance. Tables are built by using the CREATE
statement. You have several options when building database tables, but the basic decision is whether
you are creating a structure to hold data or copying a data structure to a newly named table.

Assuming you are building a table for the first time as a structure where you will hold
information, you need to determine whether the table will have database constraints. Database
constraints are rules that define how you will allow users to insert and update rows or records in
the table. Five database constraints are available in an Oracle database; they are: check, foreign
key, not null, primary key, and unique. Constraints restrict DML commands as follows:

Check constraints check whether a column value meets criteria before allowing a value
to be inserted or updated into a column. They check whether a value is between two
numbers, a value is greater than two numbers, or a combination of logically related
compound rules is met. Also, not null and unique constraints are specialized types of
check constraints.

Foreign key constraints check whether a column value is found in a list of values in a
column designated as a primary key column in the same or a different table. Foreign key
constraints are typically managed in the application programs, rather than as database
constraints, because of their adverse impact on throughput.

Not null constraints check whether a column value contains a value other than null.

Primary key constraints identify a column as the primary key for a table and impose both
a not null and unique constraint on the column. A foreign key can only reference a valid
primary key column.

Unique constraints check whether a column value will be unique among all rows in a table.

Database constraints are assigned during the creation of a table or by using the ALTER
command after a table is created. You can include constraints in the create statement by using in-
line or out-of-line constraints. While some maintain that this is a matter of preference, it is more
often a matter of finding working examples. You should consider using out-of-line constraints
because they’re organized at the end of your table creation and can be grouped for increased
readability. Unfortunately, only in-line NOT NULL constraints are visible when you describe a
table. The following demonstrates creating a table using SQL:

-- This is found in create_store.sql on the publisher's web site.

CREATE TABLE member
(member_id NUMBER
, account_number VARCHAR2(10)
, credit_card_number VARCHAR2(19)
, credit_card_type NUMBER

■

■

■

■

■

606 Oracle Database 11g PL/SQL Programming

, created_by NUMBER
, creation_date DATE
, last_updated_by NUMBER
, last_update_date DATE
, CONSTRAINT pk_member_1 PRIMARY KEY(member_id)
, CONSTRAINT nn_member_1 CHECK(account_number IS NOT NULL)
, CONSTRAINT nn_member_2 CHECK(credit_card_number IS NOT NULL)
, CONSTRAINT nn_member_3 CHECK(credit_card_type IS NOT NULL)
, CONSTRAINT nn_member_4 CHECK(created_by IS NOT NULL)
, CONSTRAINT nn_member_5 CHECK(creation_date IS NOT NULL)
, CONSTRAINT nn_member_6 CHECK(last_updated_by IS NOT NULL)
, CONSTRAINT nn_member_7 CHECK(last_update_date IS NOT NULL)
, CONSTRAINT fk_member_1 FOREIGN KEY(credit_card_type)
 REFERENCES common_lookup (common_lookup_id)
, CONSTRAINT fk_member_2 FOREIGN KEY(created_by)
 REFERENCES system_user (system_user_id)
, CONSTRAINT fk_member_3 FOREIGN KEY(last_updated_by)
 REFERENCES system_user (system_user_id));

The CREATE statement for a table cannot include the REPLACE clause, because you must
DROP a table before altering its definition. This limitation exists because of the linkages between
database constraints and indexes that reference the table, both of which are implicitly dropped
when you DROP a table. The preceding MEMBER table is created by using out-of-line NOT NULL
constraints, which means you won’t see them while describing the table in SQL*Plus. The foregoing
CREATE TABLE statement demonstrates primary key, check, and foreign key constraints.

TIP
You should define NOT NULL constraints in-line because that’s the
only way they’ll be displayed when you describe the table from the
SQL*Plus command line.

You have the option of building constraints without names, but all of these constraints have
meaningful names, which enable programmers to sort out errors much faster when they occur.
The database assigns system-generated names when you fail to provide explicit names, and you
will find that they are not very helpful to you when you’re troubleshooting an application failure.
You should always use meaningful constraint names.

You can create copies of tables by using a CREATE statement that uses a SELECT statement to
implicitly derive the table structure, as follows:

CREATE TABLE member_clone AS SELECT * FROM member;

This implicit cloning of one table into another has the downside of naming all database
constraints for the table using a meaningless sequence, like SYS_C0020951. However, it is
convenient for building a place to store data until you can perform maintenance on the table.
Using the SQL*Plus describe command,

SQL> describe member_clone

Appendix B: Oracle Database SQL Primer 607

you will see a mirror to the original table, as follows:

 Name Null? Type
 --- -------- ------------
 MEMBER_ID NOT NULL NUMBER
 CREDIT_CARD_NUMBER NOT NULL VARCHAR2(19)
 CREDIT_CARD_TYPE NOT NULL NUMBER
 CREATED_BY NOT NULL NUMBER
 CREATION_DATE NOT NULL DATE
 LAST_UPDATED_BY NOT NULL NUMBER
 LAST_UPDATE_DATE NOT NULL DATE

Case-Sensitive Table and Column Names
Oracle 10g introduced the quoted identifier delimiter. This lets you define case-sensitive
table and column names in the database. The only problem with case-sensitive table and
column names is that you can only query them with special handling. You must use the
correct case and enclose case-sensitive table and column names inside two quoted
identifiers: double quotes symbols.

You can create tables with all case-sensitive, case-insensitive, or a mix of both. The case
of table and column names is found in the USER_TAB_COLUMNS view, or if you enjoy DBA
privileges, the ALL_TAB_COLUMNS and DBA_TAB_COLUMNS views.

The following creates a table with a case-sensitive table name, and two case-sensitive
and one case-insensitive column names:

CREATE TABLE "CaseSensitive"
("CaseSensitiveId" NUMBER
, "CaseSensitive" VARCHAR2(30)
, case_insensitive VARCHAR2(30));

After you insert and commit the row, you can then query the record delimiting any
case-sensitive column and table names inside double quotes (the quoted identifier). This
query demonstrates the technique:

 SELECT "CaseSensitiveId"
 , "CaseSensitive"
 , case_insensitive
 FROM "CaseSensitive";

You can view the table definition by querying the TABLE_NAME and COLUMN_NAME
columns from the USER_TAB_COLUMNS view. You would use the following syntax to query
the database catalog view:

 SELECT table_name, column_name
 FROM user_tab_columns
 WHERE table_name = 'CaseSensitive';

You’ll find that the stored definition is a mix of case-sensitive and -insensitive. Double
quotes must delimit case-sensitive strings, and case-insensitive strings can be delimited by
double quotes when you use uppercase text for their values.

608 Oracle Database 11g PL/SQL Programming

The cloning operation redefines the out-of-line check constraints from the MEMBER table as
in-line constraints in the MEMBER_CLONE table. This reinforces best development practices by
demonstrating how Oracle’s engine will implicitly define a clone of a table. The NOT NULL
constraints are now displayed by the SQL*Plus environment DESCRIBE command.

The ALTER command provides you with the opportunity to add, rename, or drop columns
while keeping the table active in the database. The ALTER command demonstrates how to add
a column to the MEMBER table when it contains data:

ALTER TABLE member ADD (demo_column VARCHAR2(10));

You can use an in-line constraint when the table does not contain any data, like the following:

ALTER TABLE member ADD (demo_column VARCHAR2(10)
CONSTRAINT nn_member_8 NOT NULL);

This syntax will not work when one or more rows does not contain data in the target column.
You should note that the in-line constraint does not identify itself as a check constraint but simply
denotes the NOT NULL condition. This is typical of in-line constraints, whereas out-of-line NOT
NULL constraints must be qualified as CHECK constraints. After you populate the new column in
all existing rows with a value, you can add a named NOT NULL constraint by using the following
ALTER command syntax:

ALTER TABLE member ADD CONSTRAINT nn_member_8
CHECK(demo_column IS NOT NULL);

You can then drop the column explicitly, which also drops the nn_member_8 NOT NULL
constraint. The following ALTER command drops the column, including any values that you’ve
added:

ALTER TABLE member DROP COLUMN demo_column;

You can also rename a table whether it has dependents or not. All foreign key constraint
references are implicitly changed to point to the new table name when their respective primary
key column exists. This happens because the ALTER command changes only a non-identifying
property of a catalog table reference. Application code references in stored program units are not
altered to reflect the change because they are not part of the database catalog. You can rename a
table with the ALTER command, like so:

ALTER TABLE member RENAME TO membership;

Then, you can use the alternate syntax to rename it back by using

RENAME membership TO member;

The TRUNCATE command lets you remove all data from a table but keep the structure of the
table. There is no rolling back the TRUNCATE command when you issue it. Truncating a table is
final! Since we don’t need the MEMBER_CLONE table’s data created earlier, you can truncate the
data with the following syntax:

TRUNCATE TABLE member_clone;

Database tables typically stand alone in the database, but when you add a foreign key
constraint that references another table, that table has a dependent. You drop tables without

Appendix B: Oracle Database SQL Primer 609

dependents differently than tables with dependents. You can drop a table that has no dependents
by using the following command syntax:

DROP TABLE member_clone;

You append the CASCADE CONSTRAINTS phrase when dropping tables with dependents,
like this:

DROP TABLE member CASCADE CONSTRAINTS;

What the CASCADE CONSTRAINTS phrase does is tell the database to ignore the foreign key
dependency. However, you will need to repopulate the table with the primary key data to support
the foreign key values in the dependent tables, or they become orphan rows. You should identify
orphan rows and discover why they’ve been orphaned, which is typically due to an error caused
by an insertion or update anomaly. You discover orphans by using outer joins between the foreign
and primary key values.

The error can be harmless or harmful. Harmless errors mean that you meant to delete the rows
and forgot. Harmful errors are that the parent rows were deleted in error, which means you’ll
need to recover the data.

NOTE
If you dropped the MEMBER table, please rerun the database seeding
scripts described in Chapter 1.

This section has covered the mechanics of the basic DDL statements. There are many other
commands that you can use. Your best reference to more details about the DDL statements in the
primer is the index for the ALTER, CREATE, DROP, RENAME, and TRUNCATE commands in the
Oracle Database SQL Reference 11g Release 1 manual.

Managing Views
Views are constructed by using SELECT statements to provide subsets of columns from tables, a
subset of rows, a subset of columns and rows combined, or a combination of columns from two
or more tables. Views are often built to display complex information in easily queried database
objects. SELECT statements you use to build views can contain aggregation, conversion,
calculation, transformation, and various types of grouping and set operations.

An example of a conversion function is using a TO_CHAR function to convert a DATE datatype
column into VARCHAR2 datatype when you want to return a known date format mask.
Aggregation functions count, average, and sum are examples using the COUNT, AVG, and SUM()
functions respectively. Grouping operators reduce the number of actual rows to summary levels
by paring the repeating column values into a single row in the result set. A result set is the number
of rows and columns returned from a SELECT statement. You can also limit the number of
returned rows from a VIEW by using a WHERE clause in the SELECT statement to narrow selected
rows based on criteria evaluation. This is often called filtering the result set.

Views are powerful structures, but they have some clearly defined limits when you want to
transact against them using DML statements. The SELECT statement for the views cannot have
any of the following in order to let you insert, update, and delete records through the view:

Expressions Expressions can be conversion or aggregation functions.

Set operators These can be UNION, UNION ALL, INTERSECT, or MINUS.

Sorting operations These can be DISTINCT, GROUP BY, HAVING, or ORDER BY clauses.

■

■

■

610 Oracle Database 11g PL/SQL Programming

Eliminating these from SELECT statements used in views solves most problems related to
INSERT and UPDATE statements. One remaining element of a SELECT statement can enable
insertion and update anomalies, and that problem is a WHERE clause narrowing returned rows
by some criteria evaluation. You can eliminate the potential anomalies by appending the WITH
CHECK OPTION phrase to the end of the view creation statement.

TIP
You can check whether a view is updatable by inspecting the list of
columns in the USER_UPDATABLE_COLUMNS table when in doubt.

Using Set Operators
Set operators are powerful structures when you need to build a view that contains two or
more data sets filtered by different criteria. The sets may come from the same table or view
or different tables or views. The restrictions on set operators are straightforward. Queries
joined by set operations must have the same number of columns, and the columns must be
of the same datatype. The statement parser compares columns by evaluating their position
and then their type.

When data doesn’t exist in one of the queries, you can fabricate it from thin air, but you
must ensure that you fabricate a column with the same datatype. In the simplest form, you
can use the pseudotable dual to get today’s and tomorrow’s date in two rows, as follows:

SELECT SYSDATE FROM dual
UNION ALL
SELECT SYSDATE + 1 FROM dual;

This returns the following if today’s date is March 24, 2007:

SYSDATE

24-MAR-07
25-MAR-07

The query works because adding 1 to a date increments the date by one day and leaves
the datatype as a date. You can also fabricate a type by explicitly casting it as shown in the
following query:

SELECT TO_CHAR(SYSDATE,'MON') FROM dual
UNION ALL
SELECT 'APR' FROM dual;

This returns two variable-length strings representing the months March and April:

SYSDATE

MAR
APR

You should be judicious in how you use set operators. As a rule of thumb, the UNION
ALL and MINUS are very efficient, while the UNION carries some overhead because of an
incremental sort operation. You’ll seldom use the INTERSECT operator because joins are
typically more useful.

Appendix B: Oracle Database SQL Primer 611

Views are typically built by using the CREATE OR REPLACE clause because you cannot alter
a view without replacing it completely. The ALTER statement can only compile a view when it has
been invalidated because a referenced catalog table or view in the SELECT statement has been
dropped and recreated. Sometimes you need to build views before underlying tables exist. You
can do that by using the CREATE OR REPLACE FORCE syntax, but after creating the view, it will
immediately become invalid because of the missing table. The benefit of using a FORCE option occurs
when you want to build a VIEW when the table isn’t present in the database. Underlying tables can
be missing due to normal database defragmentation exercises during these maintenance windows.

The following SQL statement builds a CURRENT_RENTAL view that should only be used to
query data:

-- This is found in seed_store.sql on the web site.

CREATE OR REPLACE VIEW current_rental AS
 SELECT m.account_number
 , c.first_name
 || DECODE(c.middle_initial,NULL,' ',' '||c.middle_initial||' ')
 || c.last_name FULL_NAME
 , i.item_title TITLE
 , i.item_subtitle SUBTITLE
 , SUBSTR(cl.common_lookup_meaning,1,3) PRODUCT
 , r.check_out_date
 , r.return_date
 FROM common_lookup cl
 , contact c
 , item i
 , member m
 , rental r
 , rental_item ri
 WHERE r.customer_id = c.contact_id
 AND r.rental_id = ri.rental_id
 AND ri.item_id = i.item_id
 AND i.item_type = cl.common_lookup_id
 AND c.member_id = m.member_id
 ORDER BY 1,2,3;

NOTE
You can only build a view when the schema has been granted the
CREATE ANY VIEW privilege by a superuser account, like SYSTEM.
This rule holds for Oracle 10gR2 forward due to a change in the scope
of the RESOURCE role.

This view cannot be updated because the concatenation and two functions in the SELECT
statement make it ineligible for insert or update operations. However, try querying the
USER_UPDATABLE_COLUMNS table with the following query:

SELECT table_name
, column_name
FROM user_updatable_columns
WHERE table_name = 'CURRENT_RENTAL';

612 Oracle Database 11g PL/SQL Programming

You will see the column names appear as updatable when they’re not:

TABLE_NAME COLUMN_NAME
------------------------------ --------------
CURRENT_RENTAL MEMBER_ID
CURRENT_RENTAL FULL_NAME
CURRENT_RENTAL TITLE
CURRENT_RENTAL SUBTITLE
CURRENT_RENTAL PRODUCT
CURRENT_RENTAL CHECK_OUT_DATE
CURRENT_RENTAL RETURN_DATE

This type of output from USER_UPDATABLE_COLUMNS can be misleading, but you should notice
that the column names do not match actual columns in tables. The column names are aliases from
the SELECT statement that builds the CURRENT_RENTAL view. If you attempt to insert values,
you would receive an ORA-01732 error message, and it would tell you that the data manipulation
operation is not legal on this view. You provide INSTEAD OF triggers when you want to write to
non-updatable views. These triggers translate the update to the underlying data and are discussed
in Chapter 10.

The RENAME and DROP operations are the same as those for tables. You cannot use a TRUNCATE
operation, because views contain no data of their own. They are only reflections of tables that
contain data.

Managing Stored Programs
Stored programs in Oracle are written in the PL/SQL programming language or other languages
with PL/SQL wrappers. You can build libraries in the C/C++, C#, or Java programming languages.

You use CREATE OR REPLACE syntax to build functions, procedures, and packages. Packages
contain functions, procedures, and user-defined types. The ALTER statement works the same for
stored programs as it did for views: you alter stored programs to compile them when they’ve
become invalid. Stored programs become invalid when referenced tables, views, or other stored
programs become invalid.

NOTE
User-defined datatypes can be dropped, but when they are, columns
referencing them are dropped from tables and stored programs
become invalid.

Stored programs cannot be renamed but can be dropped from the database, and re-created
under a new name. The TRUNCATE statement does not apply because they do not contain raw
data components. You will learn more about stored programs in Chapters 6 and 9.

Managing Sequences
Sequences are counting structures that maintain a persistent awareness of their current value.
They are simple to create when you want them to start at 1 and increment by 1. The basic
sequence also sets no cache, minimum, or maximum values and accepts both NOCYCLE and
NOORDER properties. A sequence caches values by groups of 20 by default, but you can overwrite
the cache size when creating the sequence or by altering it after creation, as is done in the sample
code found in this book’s introduction. You build a generic SEQUENCE with this command:

Appendix B: Oracle Database SQL Primer 613

-- This is found in create_world_leaders.sql on the web site.

CREATE SEQUENCE president_s1;

Many designs simply build these generic sequences and enable rows to be inserted by the
web application interface. Some tables require specialized setup rows. These rows are inserted by
administrators. They often use special primary key values below the numbering sequence assigned
the regular application. When you have a table requiring manual setup rows, some developers
leave the first 100 values and start the sequence at 101. Other applications leave more space and
start the sequence at 1001. Both approaches are designed to provide your application with the
flexibility to add new setup rows after initial implementation. This lets you isolate setup row values
in a range different than ordinary applications data.

The SYSTEM_USER, RENTAL_LOOKUP, and other tables in the video store example requires
setup data, which is often called seeding data. The sequences for both of these tables add an
initial START WITH clause that sets the starting number for the sequence values, as shown:

-- This is found in create_store.sql on the web site.

CREATE SEQUENCE system_user_s1 START WITH 1001;

Sequences are typically built to support primary key columns in tables. Primary key columns
impose a combination constraint on their values—they use both UNIQUE and NOT NULL
constraints. During normal Online Transaction Processing (OLTP), some insertions are rolled back
because other transactional components fail. When transactions are rolled back, the captured
sequence value is typically lost. This means that you may see numeric gaps in the primary key
column sequence values.

Typically, you ignore small gaps. Larger gaps in sequence values occur during after-hours
batch processing, where you are performing bulk inserts into tables. Failures in batch processing
typically involve operation staff intervention in conjunction with programming teams to fix the
failure and process the data. Part of fixing this type of failure is resetting the next sequence value.
While it would be nice to simply use an ALTER statement to reset the next sequence value, you
cannot reset the START WITH number using an ALTER statement. You can reset every other
criterion of a sequence with the ALTER statement, but you must drop and recreate the sequence
to change the START WITH value.

There are three steps in the process to successfully modify a sequence START WITH value.
You modify a sequence START WITH value by: (a) querying the primary key that uses the
sequence to find the highest current value; (b) dropping the existing sequence with the DROP
SEQUENCE sequence_name; command; and (c) recreating the sequence with a START WITH
value one greater than the highest value in the primary key column. Naturally, the gap doesn’t
hurt anything, and you can skip this step, but as a rule, it is recommended to eliminate gaps
during maintenance operations.

You can alter properties of a sequence by using the ALTER statement as illustrated by the
following prototype:

ALTER SEQUENCE sequence_name [INCREMENT BY increment_value]
 [MINVALUE minimum | NOMINVALUE]
 [MAXVALUE maximum | NOMAXVALUE]
 [CACHE | NOCACHE]
 [ORDER | NOORDER]

614 Oracle Database 11g PL/SQL Programming

You use sequences by appending (with a dot notation) two pseudocolumns to the sequence
name: .nextval and .currval. The .nextval pseudocolumn initializes the sequence in a
session and gets the next value, which is initially the START WITH value. After accessing the
.nextval pseudocolumn, you get the current value by using the .currval pseudocolumn.
You receive an ORA-08002 error when attempting to access the .currval pseudocolumn
before having called the .nextval pseudocolumn in a session. The error message says that
you have tried to access a sequence not defined in the session because .nextval initializes
or declares the sequence in the session.

There are several ways to access sequences with the .nextval pseudocolumn. The basic
starting point is querying the pseudotable DUAL, as shown:

SELECT president_s1.nextval
FROM dual;

Then, you can see the value again by querying:

SELECT president_s1.currval
FROM dual;

Oracle 11g Supports Direct Assignment of Sequence Values
Historically, PL/SQL differs from SQL on how you could handle sequence values in DML
statements. Oracle 11g fixes that difference; you can now put sequence calls directly into
statements without first querying them from the dual pseudotable.

If your code must be backward compatible with Oracle 10g or an earlier release, you need
to use a variable, a sequence, and a query to put a sequence value into a SQL statement. For
example, you can build the following sequencing table and sequencing_s1 sequence:

CREATE TABLE sequencing (sequencing_id NUMBER);
CREATE SEQUENCE sequencing_s1;

In Oracle 10g you would use a sequence value in a PL/SQL block as follows:

DECLARE
 sequence_value NUMBER;
BEGIN
 SELECT sequencing_s1.nextval INTO sequence_value FROM dual;
 INSERT INTO sequencing VALUES (sequence_value);
 COMMIT;
END;
/

While this syntax still works in Oracle 11g, you can now simplify it by using:

BEGIN
 INSERT INTO sequencing VALUES (sequencing_s1.nextval);
 COMMIT;
END;
/

You can also use a sequence with a pseudocolumn to make direct assignments to
numeric variables inside your PL/SQL block. This improvement makes using sequences
more consistent between SQL and PL/SQL environments.

Appendix B: Oracle Database SQL Primer 615

The number will be the same, provided you did not connect to another schema and/or
reconnect to SQL*Plus session. You can also use the .nextval and .currval pseudocolumns
in the VALUES clause of INSERT or UPDATE statements. The next example demonstrates their
use in the inserts of data to related tables:

-- This is found in seed_store.sql on the web site.

INSERT INTO member VALUES
(member_s1.nextval
,'B293-71445'
,'1111-2222-3333-4444'
,(SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_context = 'MEMBER'
 AND common_lookup_type = 'DISCOVER_CARD')
, 2, SYSDATE, 2, SYSDATE);

INSERT INTO contact VALUES
(contact_s1.nextval
, member_s1.currval
,(SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_context = 'CONTACT'
 AND common_lookup_type = 'CUSTOMER')
,'Winn','Randi','', 2, SYSDATE, 2, SYSDATE);

The first INSERT statement accesses the member_s1.nextval sequence to insert a primary
key value into the MEMBER table. The .nextval pseudocolumn defines the sequence in the
session and returns a number. The member_s1.currval pseudocolumn in the second INSERT
statement calls the defined sequence and returns the same number, which is used as a foreign
key column in the CONTACT table. You guarantee primary key and foreign key value matches
when you combine the .nextval and .currval pseudocolumns as demonstrated in the
seed_store.sql script.

NOTE
A DQL or SELECT statement runs as a subquery inside both INSERT
statements. These subqueries ensure the INSERT statement uses the
right foreign key by querying on meaningful information the correct
primary key from the COMMON_LOOKUP table. This type of subquery,
also known as a SQL expression, returns only one column and one
row. Only SQL expressions can be used inside the VALUES clause of
an INSERT statement.

TIP
You need to ensure that each SELECT statement returns the same
number of rows when running multiple SELECT statements as
subqueries to an INSERT statement.

You can use the RENAME command to change a sequence name. Sequences have no direct
dependencies at the database level but often have dependencies in stored programs and database
triggers that access the sequence to mimic automatic numbering behaviors of primary key values.

616 Oracle Database 11g PL/SQL Programming

Managing User-Defined Types
User-defined types have been available since Oracle 8i and were dramatically increased in scope
by Oracle 9i Release 2. You have the ability to define two groups of user-defined types in Oracle
Database 11g family of products: collections and object types. Object types are not currently
supported by the Oracle Call Interface (OCI8) library and therefore cannot be used in your Java
(thin client only), PHP, and other external programs. Oracle collections are supported by the
OCI8 library.

There are two types of OCI8-supported collections—one is a VARRAY, and the other is a
NESTED TABLE. After you create these types, you can use them as column datatypes when
defining SQL objects, such as tables and stored procedures. VARRAY collections are defined as
fixed-sized arrays of scalar variables, like DATE, NUMBER, and VARCHAR2 datatypes. VARRAY
collections are the closest Oracle programming structure to a native array in most programming
languages. NESTED TABLE collections are defined as variable-sized lists of scalar variables and
naturally behave like lists in other programming languages. Elements in both collection types are
indexed by sequential positive integers starting with the number 1.

You create a VARRAY by using the following syntax:

-- This is found in create_world_leaders.sql on the publisher's web site.

CREATE OR REPLACE TYPE president_name_varray
 AS VARRAY(100) OF VARCHAR2(60 CHAR);
/

This builds a 100-element VARRAY collection of variable-length strings that are 60 characters
in length. You raise an ORA-06502 when you attempt to enter an element greater than the
maximum length of the scalar variable, and an ORA-22165 when you attempt to enter a list
of elements greater than the boundary size of 100 elements.

There is no boundary set when you build a NESTED TABLE because they act more like lists
than arrays. You use the following syntax to create a NESTED TABLE collection for a scalar
variable-length string of up to 60 characters:

-- This is found in create_world_leaders.sql on the publisher's web site.

CREATE OR REPLACE TYPE president_name_ntable
 AS TABLE OF VARCHAR2(60 CHAR);
/

The ALTER, RENAME, and TRUNCATE statements cannot be used against user-defined
collections. You can use the ALTER statement to add and drop member attributes from user-
defined object types, and you can alter those object types from instantiable to final and back
again. Scalar collections are a specialized object type with a predefined implementation. You
create and maintain scalar collections through SQL DDL commands. User-defined object types
have a specification and body implemented in PL/SQL, like packages. Their definition and
implementation follow the rules of packages. You cannot alter a user-defined object type except
when you want to recompile the specification or implementation. Chapter 14 covers how you
define, implement, and maintain user-defined object types.

The REPLACE command enables you to alter the definition of collection types. However,
replacing and dropping user-defined types becomes complex when you have defined other
objects that reference them. The problem can be demonstrated by creating a table using the
president_name_ntable as a column datatype:

Appendix B: Oracle Database SQL Primer 617

CREATE TABLE president_name
(president_name_id NUMBER
, president_names PRESIDENT_NAME_NTABLE)
NESTED TABLE president_names STORE AS PRESIDENT_NAMES_TABLE;

After a table is defined referencing the user-defined SQL collection datatype, attempting
CREATE OR REPLACE or DROP statements raises an ORA-02303 error. The error message
explains that you cannot drop or replace a type that has type or table dependents. You can
override this limitation by using the FORCE option for both statements, but it will remove the
dependents’ types from tables.

The trick to using user-defined collection types is to understand the hierarchy of sequencing
dependencies, and work within the hierarchy. This means drop the lowest item that depends on a
type up to the user-defined type, and replace the user-defined type before any objects that reference
the type or the type dependents.

Data Query Language (DQL)
DQL commands are basically SELECT statements. SELECT statements let you query the database
to find information in one or more tables, and return the query as a result set. A result set is an
array structure, or more precisely in computerese, a result set is a two-dimensional array. The
internal index for each row of data is the rowid pseudocolumn, which maps to the physical
address for where the data is written.

NOTE
A SELECT statement with a FOR UPDATE clause is a transaction and
DML statement, not a DQL query. This is a fine distinction, but critical
should you encounter an ORA-22292 error while working with the
DBMS_LOB package covered in Chapter 15.

The first dimension of the array is a list of values indexed by column names from one or more
tables. The elements in the list of values are sometimes called column or field values, and to the
fraternity- (or sorority-) pledged database designers, they are attributes, like matrices in linear
algebra. The combination of these column values is also known as a record structure. The second
dimension of the array is the row, or a numerically indexed list of record structures. So, a result
set is a collection of data values organized by column name and row number.

NOTE
Attributes and tuples are columns and rows, respectively, in linear
algebraic vocabulary and suitable to hear about in college classrooms,
but really they’re nothing more than columns and rows.

DQL statements can be stand-alone queries, in-line views (or tables), subqueries, or correlated
subqueries. They can return scalar or compound values in the Oracle database because Oracle
can store instantiable object types as column datatypes. There are some restrictions governing
what types of objects can be managed between PL/SQL and external third-generation programming
languages.

TIP
Databases do not like zero-based numbering schemas, and queries
return rows by row numbers starting with 1.

618 Oracle Database 11g PL/SQL Programming

All SQL statements have the ability to join multiple tables; otherwise, database systems would
be little more than complex file systems. Oracle Database 11g supports two join semantics. One
is known as the Oracle Proprietary SQL semantic, and the other is the ANSI 2003:SQL semantic.
The original join approach used by Oracle is similar to IBM SQL/DS (Structured Query Language/
Data System) and simply predates ANSI standards. You will be exposed to both and then decide
which you like best.

Queries
The SQL SELECT statement has several components, known variously and interchangeably as
clauses, phrases, and predicates. A clause is the generally accepted term, but the others work
too, provided they convey the concept to your audience. The basic SELECT clauses and their
descriptions are listed in Table B-3 for your convenience.

Clause Description

SELECT The SELECT clause contains a list of columns. Columns can also be defined by SQL expressions.
Expressions are the result of single-row SQL functions. Oracle provides a set of single-row SQL
functions, along with the ability for you to develop user-defined single-row SQL functions. Either type
of single-row SQL function is supported in the SELECT clause. Columns and expressions are delimited
by commas and support alias naming without whitespace and alias naming enclosed in quote marks
with intervening whitespace. The Oracle SQL parser assumes an AS predicate when one is not
provided in the SELECT clause. You precede duplicate column names with the table name or alias
of the table name. The prototype of the SELECT clause is
SELECT column1 [AS alias1]
[, column2 [AS alias2]
[, column(n+1) [AS alias(n+1)]]]

FROM The FROM clause contains a list of tables when using Oracle Proprietary SQL, and a list of tables and
join conditions between the listed tables when using ANSI SQL:2003. Tables can be tables, views, or
in-line views (subqueries embedded in the FROM clause). Table names can have aliases composed of
characters, numbers, and underscores. Table name aliases are a shorthand notation for table names.
The prototype for Oracle Proprietary SQL is
FROM table1 [alias1]
 [, table2 [alias2]
 [,(in_line_view)[alias3]
 [, table(n+1) [alias(n+1)]]]
The prototype for ANSI SQL:2003 differs when joining on two columns that share the same name, or
two columns that have different names. The SQL parser assumes an INNER JOIN when no optional
join qualifier is provided. The prototype for two columns with the same name is
FROM table1 [INNER] | LEFT [OUTER] |
 RIGHT [OUTER] | FULL [OUTER] JOIN table2
ON table1.column_name1 = table2.column_name2
The prototype for two columns with different names is
FROM table1 [INNER] | LEFT [OUTER] |
 RIGHT [OUTER] | FULL [OUTER] JOIN table2
USING(column_name)
A NATURAL JOIN links tables using all matching columns found in both tables, and produces a
Cartesian product or CROSS JOIN when both tables have mutually exclusive lists of column names.
The prototype for a NATURAL JOIN is
FROM table1 NATURAL JOIN table2
The CROSS JOIN syntax forces a Cartesian product between two tables, which is a result set with
row(s) of the left table matched with all the row(s) of the right table. The prototype is
FROM table1 CROSS JOIN table2

TABLE B-3 SELECT Statement Clauses

Appendix B: Oracle Database SQL Primer 619

Clause Description

WHERE The WHERE clause contains a list of column names compared against column names or string literals.
Using the equal operator, the comparison operator supports joins in the Oracle Proprietary SQL
syntax. You also have inequality operators, like less than or equal to or greater than or equal to, and
the IS NULL or IS NOT NULL for comparison to columns containing null values. Each qualifying
comparison statement is separated by an AND or OR operator. The prototype for Oracle Proprietary SQL
join is
WHERE table1.columna = table2.columnb
Alternatively, you can use the WHERE clause to filter the result set from the query using ANSI
SQL:1999 syntax:
WHERE table1.columnb = numeric_literal
AND table1.columnc = ‘string_literal’
OR table1.columnd = subquery

HAVING The HAVING clause eliminates groups. The prototype uses a SUM() SQL row-level function to group a
result set
HAVING SUM(column) > 30

ORDER BY The ORDER BY clause does sorting of the result set. You can use column names or numbers for the
positional columns. The prototype is
ORDER BY column1 [, column2 [, column(n+1)]]

GROUP BY The GROUP BY clause groups ordinary columns when the query includes a row-level function in the
SELECT or HAVING clause. It requires you to mirror column descriptions from the SELECT clause. The
prototype is
GROUP BY column1 [, column2 [, column(n+1)]]

FOR UPDATE The FOR UPDATE clause lets you lock rows with a SELECT statement. It changes the query into the
start of a database transaction. This clause is necessary when selecting rows for use in a PL/SQL loop,
and typically present in cursor definitions. The clause is also necessary when you select Oracle BLOB,
NBLOB, CLOB, and NCLOB datatypes for use in external programming languages, like Java and PHP.
Beginning with the OCI8 library, you are required to use this clause to begin a transaction. You can
only access BLOB, CLOB, and NCLOB datatypes within the scope of a transaction. The FOR UPDATE
clause makes a SELECT statement transactional. The prototype is
FOR UPDATE

RETURNING
INTO

The RETURNING INTO clause lets you transfer SELECT clause variables into a bind variable. This
clause is necessary when working with Oracle CLOB and NCLOB datatypes and external third-
generation programming languages. The prototype is
RETURNING select_clause_variable
INTO :bind_variable

TABLE B-3 SELECT Statement Clauses (continued)

There are two subtypes of queries. One returns only one column and row and is known as a
SQL expression. Expressions have wide uses in other than the SELECT statement, as seen in the
subsection “Managing Sequences” earlier in this appendix. The other query subtype is the general
rule for queries, and what most people think of when using the word query—a query returns zero,
one, or many rows in a result set.

Join Behaviors
There are six join patterns in SQL and two join concepts: equijoin and non-equijoin. The abstract
UML inheritance static class diagram illustrates how join patterns can exist as part of an object-
oriented specialization tree. Figure B-1 shows the topmost node as the most general behavior and
bottom nodes as the most specific. Bottom nodes are also known as leaf nodes.

620 Oracle Database 11g PL/SQL Programming

The most generalized joins are cross joins. Cross joins return what is known as a Cartesian
product in set mathematics. It means that it returns a list of every row in one table with every row
in another table. This list becomes quite long because the number of rows in the result set is the
product of multiplying the rows in one table by the rows in the other. Cross joins are useful when
you want to determine a relationship between one column value and a range of values found in
another table. The WHERE clause filters the result set and returns only the relevant rows.

Inner joins are actually filtered cross joins. You find join statements in either the ON or USING
predicate of the FROM clause or the WHERE clause of a query. A NATURAL JOIN statement works
like an INNER JOIN statement. Natural joins match column names from both tables but can
produce unexpected results when matching columns don’t exist. When matching columns don’t
exist, natural joins works like cross joins. Release engineering processes can miss column name
dependencies from natural joins, and you should avoid using natural joins for that reason.

Outer joins extend the behaviors of inner joins by adding the relative complement of one
table to the result. Assume table A is on the left and B is on the right of the join operator. Then,
the relative complement of A is the set of rows in table B not found in table A. The opposite is
true for the relative complement of B.

FIGURE B-1 Join inheritance tree

Appendix B: Oracle Database SQL Primer 621

The left relative complement of an outer join between table A and table B is the set of rows
from table A minus any matching rows in table B. This is also known as the relative complement
of table B. The right relative complement is the set of the rows from table B not found in table A.
The right relative complement is also the relative complement of A. Figure B-2 is a Venn diagram
showing the intersection and relative complements of two sets.

When A is the left operand and B is the right operand, the relative complement of set A and
set B is a right join. The left join is the relative complement of set B and set A. This math rule is
why Oracle’s proprietary syntax puts the (+) symbol on the right to return the left complement and
vice versa. The idea was to place the (+) on the side pointing to the relative complement. While
the left and right joins are respectively the right and left relative complements, labeling them
according to which table returns non-matching values makes better sense when writing joins.

You implement the relative complement by adding non-matching rows from one table to the
matches between the tables. Figure B-1 uses an abstract class because left and right joins are
mirroring behaviors. Left joins submit the table on the left as the first actual parameter and the
table on the right as the second actual parameter. A right join reverses the actual parameter
positions. This means that a left join of set A to set B is the same as the right join of set B to set A.
When you submit both left and right joins together to get a full outer join, you return a union of
the left and right joins. A union of left and right joins combines both relative complements with
the intersection between the two sets.

Applying these join patterns requires you to understand two concepts. One is an equijoin,
and the other is a non-equijoin. Joins behave differently, depending on which one you use.

Equijoin means you check whether the values in one column equal those in another. Joins
between tables typically use equijoins. Five join patterns support equijoin resolution. They are
the inner, natural, left, right, and full outer joins. The inner and natural joins return rows when the
column values match in both tables. The others return the intersection plus one or more relative
complements.

The meaning of a non-equijoin can also include an equijoin when you use a greater-than or
equal operator. These operators look for matches and values that are less or greater than the match.
It is also possible to look for only those less or greater than a column value. Using the less- and
greater-than operators excludes an equality comparison.

Another type of non-equijoin performs range comparisons. Checking which month a
customer rented a video compares a transaction date against the start and end dates of the month.
This is a range comparison.

FIGURE B-2 Relative complement Venn diagram

622 Oracle Database 11g PL/SQL Programming

You can also use a not-equal operator to get an anti-join. Anti-joins contain both relative
complements minus any matching rows. Matching rows are the intersection for equijoins and
relative inequality result for non-equijoins.

This sidebar has covered SQL join behaviors. The six join patterns covered were (a) cross joins,
(b) inner joins, (c) natural joins, (d) left and right outer joins, (e) full outer joins, and (f) anti-joins.
The equijoin and non-equijoin choices provide you with additional join possibilities. The
understanding of these principles enables you to use SQL to solve problems.

The following example demonstrates a standard query from two tables using an INNER JOIN
on different column names:

-- This is found in SelectItemRecords.php on the publisher's web site.

SELECT i.item_id AS id
, i.item_barcode AS barcode
, c.common_lookup_type AS type
, i.item_title AS title
, i.item_rating AS rating
, i.item_release_date AS release_date
FROM item i INNER JOIN common_lookup c
ON i.item_type = c.common_lookup_id
WHERE c.common_lookup_type = 'XBOX'
ORDER BY i.item_title;

The query demonstrates a standard query that returns a result set of zero, one, or many rows. It
uses the ANSI SQL:2003 syntax for the join between tables but really only uses features that exist
in the ANSI SQL:1999 standard. The query also demonstrates both column and table aliases.

After you join two tables using a single join statement in a query, like [INNER] JOIN, LEFT
[OUTER] JOIN et cetera. A third table is joined to the result set, or product, of the first join, like this:

COLUMN calling_name FORMAT A30 HEADING "Calling Name"
COLUMN telephone_number FORMAT A20 HEADING "Telephone Number"

SELECT c.last_name||', '||c.first_name||CHR(10)
|| a.city||', '||a.state_province AS calling_name
, t.telephone_number
FROM contact c INNER JOIN address a
ON c.contact_id = a.contact_id LEFT JOIN telephone t
ON c.contact_id = t.contact_id
AND a.address_id = t.address_id;

The first join looks for the intersection between the primary key in the CONTACT table and the
foreign key in the ADDRESS table. The second join takes the product, or result set, of the first join
and performs an outer join to both the CONTACT and ADDRESS table. The outer join is necessary
because it is possible in this application that the customer has only provided only an address. A
missing telephone number would fail to identify customers whose telephone numbers aren’t in
your database with an inner join operation.

The following query demonstrates a SQL expression:

SELECT COUNT(*)
FROM ITEM
WHERE item_type = (SELECT common_lookup_id
 FROM common_lookup

Appendix B: Oracle Database SQL Primer 623

 WHERE common_lookup_context = 'ITEM'
 AND common_lookup_type = 'XBOX');

The SQL expression determines how many XBOX items are in the video store inventory. It uses a
subquery of the COMMON_LOOKUP table to find the ITEM_TYPE foreign key for a context of ITEM
and type of XBOX. The SELECT clause contains only a SQL row-level function, which guarantees
a single column and row in the result set.

The subquery in the foregoing example is not a correlated subquery. Correlated subqueries
have a join to the outer query in the inner query and are prefaced by the EXISTS or NOT EXISTS
operator. In-line views are subqueries that are found in the FROM clause. In-line views generally
have an alias, and joins between them are resolved in the same way as joins between normal
tables and views.

You can also reference subqueries by using equalities and nonequalities with the ALL, ANY,
or SOME operators. In lieu of equalities and nonequalities, you can use IN or NOT IN for subqueries,
and as noted, EXISTS or NOT EXISTS for correlated subqueries.

The CASE or Oracle-proprietary DECODE statement lets you conditionally select data. This is
very useful in a number of situations. Some other developers (not you) may even write unnecessary
PL/SQL program units to replace what could be done in a single query. You can use the CASE
statement typically from 9iR2 forward without issue, but older releases rely on the DECODE statement.

The following example uses a nested CASE statement to add debits and subtract credits inside
a SUM function that queries the TRANSACTION table:

-- This is found in seed_store.sql on the publisher's web site.

SELECT t.transaction_account
, SUM(CASE
 WHEN t.transaction_type =
 (SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_context = 'TRANSACTION'
 AND common_lookup_type = 'CREDIT')
 THEN t.transaction_amount
 ELSE 0
 END) AS cash_in
, SUM(CASE
 WHEN t.transaction_type =
 (SELECT common_lookup_id
 FROM common_lookup
 WHERE common_lookup_context = 'TRANSACTION'
 AND common_lookup_type = 'DEBIT')
 THEN t.transaction_amount
 ELSE 0
 END) AS cash_out
FROM transaction t
GROUP BY t.transaction_account;

The preceding query uses aliases to aggregate and transform rows into aggregate columns.
Some third-party Oracle material labels transforming queries like this as crosstab, matrix, or pivot
queries. Unfortunately, they are not pivot queries. You could not use SQL to pivot tables prior to
Oracle 11g; only Microsoft T-SQL possessed that feature. A PIVOT function acts with an aggregation
function to pivot the columns and rows of a query.

624 Oracle Database 11g PL/SQL Programming

This section has exposed you to some basics and a few tricks and techniques using queries.
As you analyze business problems, always look for opportunities to optimize SQL in your PL/SQL
program cursors.

Data Manipulation Language (DML)
INSERT, UPDATE, and DELETE statements define the DML commands. All of these may use
joins, subqueries, correlated subqueries, and in-line views. The in-line views must be contained
within a subquery or correlated subquery. DML commands can insert, update, or delete one to
many rows of data.

INSERT Statements
The INSERT statement acts on rows of data. Inserting data into tables can be done row by row or
by groups of rows. You have two potential ways to create insertion anomalies when inserting data.

One type of insertion anomaly happens when you insert two rows with the same information.
Primary key constraints typically reduce the likelihood that the entire rows are duplicated, but it
is possible to create repeating sets that will disable some queries from tables. You can use unique
indexes across sets of columns to prevent this type of insertion anomaly, as demonstrated later in
the section.

Another type of insertion anomaly happens when you insert incorrect data. The incorrect data
can be foreign key columns or descriptive nonkey columns. The foreign key error occurs when
you fail to properly leverage a sequence of .nextval and .currval attributes or fail to use
SQL expressions to find the foreign keys. You should refer to the sequence coverage earlier in this
appendix to understand how to use .nextval and .currval for managing primary and foreign
keys in transaction sets. As demonstrated in the INSERT statements found in Chapter 1, it is
important to match foreign keys by using SQL expressions.

INSERT statements differ from other DML statements in that they use the metadata definition
of the table. The metadata is stored when a table is created, and acts like a function or method
signature for the INSERT statement. It lists the formal parameters in the same order used by the
CREATE TABLE statement, and the database appends columns to the list when they are added
later by using the ALTER statement.

You can determine a table signature by querying the USER_TAB_COLUMNS view using the
following query:

SELECT column_id
, column_name
, data_type
, nullable
FROM user_tab_columns
WHERE table_name = 'MEMBER';

The query returns the default signature of the MEMBER table, which was created earlier in the
appendix. INSERT statements use the default signature unless you specify an overriding column
list before the VALUES clause. Overriding the default signature is a common practice when
inserting into tables that have many null allowed columns. The following are the results from
the query against USER_TAB_COLUMNS for the MEMBER table:

 COLUMN_ID COLUMN_NAME DATA_TYPE N
---------- -------------------- ---------- -
 1 MEMBER_ID NUMBER N

Appendix B: Oracle Database SQL Primer 625

 2 ACCOUNT_NUMBER VARCHAR2 Y
 3 CREDIT_CARD_NUMBER VARCHAR2 Y
 4 CREDIT_CARD_TYPE NUMBER Y
 5 CREATED_BY NUMBER Y
 6 CREATION_DATE DATE Y
 7 LAST_UPDATED_BY NUMBER Y
 8 LAST_UPDATE_DATE DATE Y

The results from this view can be deceiving when tables are defined using out-of-line CHECK
constraints instead of in-line NOT NULL constraints. Only in-line and primary key constraints
will show an N in the NULLABLE column. You can check the USER_CONSTRAINTS and
USER_CONS_COLUMNS views to determine whether or not there is a NOT NULL check constraint.

The following inserts a row into the MEMBER table by using the default signature just
described:

-- This is found in seed_store.sql on the publisher's web site.

INSERT INTO member VALUES
(member_s1.nextval -- 1 MEMBER_ID
,'B293-71445' -- 2 ACCOUNT_NUMBER
,'1111-2222-3333-4444' -- 3 CREDIT_CARD_NUMBER
,(SELECT common_lookup_id -- 4 CREDIT_CARD_TYPE
 FROM common_lookup
 WHERE common_lookup_context = 'MEMBER'
 AND common_lookup_type = 'DISCOVER_CARD')
, 2 -- 5 CREATED_BY
, SYSDATE -- 6 CREATION_DATE
, 2 -- 7 LAST_UPDATED_BY
, SYSDATE); -- 8 LAST_UPDATE_DATE

When you need to override the default signature, you add an overriding column list, as shown
in the following prototype:

INSERT INTO table_name
(column1 [, column2 [, column(n+1)]])
VALUES
([column_value1 | function_call1 | fsql_statement1]
[,column_value2 | function_call2 | fsql_statement2]
[,column_value(n+1) | function_call(n+1) | fsql_statement(n+1)]]])
[RETURNING column_name INTO :bind_variable];

You can insert a literal value, a bind variable, a locally scoped variable, a function return value,
or a scalar subquery. This is true of any column value in an INSERT statement. A user-defined SQL
scalar collection is also allowed when the target column is a scalar collection of the same datatype.
The RETURNING INTO clause is used to shift a column value reference for an Oracle LOB datatype
into a bind variable, as demonstrated in Chapter 8, Appendix C, and Appendix F.

The INSERT statement uses a SQL expression to find the appropriate foreign key value for the
CREDIT_CARD_TYPE column. While the SELECT statement returns a single row and column,
the structure of the query does not guarantee that behavior by itself. A unique INDEX guarantees
the business rule and that the SQL expression cannot return more than one row:

-- This is found in create_store.sql on the web site.

626 Oracle Database 11g PL/SQL Programming

CREATE UNIQUE INDEX common_lookup_u1
 ON common_lookup(common_lookup_context,common_lookup_type);

You can insert multiple rows with a single INSERT statement by using a SELECT statement in
place of the VALUES clause, just as you created a new table by querying an old table earlier in this
appendix. You can also select sequences with the .nextval pseudocolumn and nested subqueries,
provided you return the same number of rows from each.

When you insert from data residing somewhere else in the database, you use the following
prototype:

INSERT INTO table_name
AS select_statement;

UPDATE Statements
The UPDATE statement lets you update one or more column values in one row or a set of rows
in a table. It supports different direct assignments to each column value by using bind variables,
literal values, and subqueries. The WHERE clause in the UPDATE statement qualifies which rows
are changed by the UPDATE statement. You can check the section “Data Query Language (DQL)”
earlier in this appendix for more coverage on the WHERE clause.

NOTE
All rows in the table are updated when you run an UPDATE statement
without a WHERE clause.

Update anomalies occur much like the insertion anomalies that happen when you insert two
rows with the same information. The only difference is that the UPDATE statement alters a second
row when it shouldn’t. You eliminate updating multiple rows in error by using unique indexes
across sets of columns to prevent it, as described in the preceding section, “INSERT Statements.”

The UPDATE statement has the following prototype:

UPDATE table_name [alias]
SET column1 = {value | function_call | select_statement}
, column2 = {value | function_call | select_statement}
, column(n+1) = {value | function_call | select_statement}
WHERE list_of_comparative_operations
[RETURNING column_name INTO :bind_variable];

You can use a literal value, a bind variable, a locally scoped variable, a function return value,
or a scalar subquery when you set a new value in an UPDATE statement. The assigned values
must match the column datatype.

You should note that unlike when using the alias assignment in the SELECT clause, you must
exclude the AS clause or you raise an ORA-00971 error that says you are missing the SET clause.
The RETURNING INTO clause is used to shift a column value reference for an Oracle LOB datatype
into a bind variable, as demonstrated in Chapter 8, Appendix C, and Appendix F. Appendix C
demonstrates uploading a large string by using the UploadBioSQL.php program. A sample
UPDATE statement using a correlated subquery updates the middle initial for a single row in the
CONTACT table as follows:

UPDATE contact c1
SET c1.middle_initial = 'B'

Appendix B: Oracle Database SQL Primer 627

WHERE EXISTS (SELECT NULL
 FROM contact c2
 WHERE c1.contact_id = c2.contact_id
 AND c2.last_name = 'Vizquel'
 AND c2.first_name = 'Oscar');

The correlated query could have been eliminated by putting the LAST_NAME and FIRST_NAME
column value comparisons in the WHERE clause. This illustrates that there are many ways to do
equivalent things using SQL statements.

DELETE Statements
The DELETE statement, like the INSERT statement, works at the row level. You delete one to
many rows with a DELETE statement. As when using the UPDATE statement, you generally will
have a WHERE clause; otherwise, you delete all rows in the table.

Deleting data can be tricky when you have dependent foreign key columns in other tables.
While generally most businesses do not enable foreign key referential integrity at the database
level, they maintain the logic in the application interface. You should make sure the application
programming logic is correct, because incorrect logic can cause deletion anomalies. Deletion
anomalies manifest themselves in orphaned rows, join failures, and erroneous query result sets.

The prototype for a DELETE statement is

DELETE
FROM table_name
WHERE list_of_comparative_operations;

The following deletion statement against the video store will fail because it violates the
foreign key referential integrity rules maintained by foreign key database constraints:

DELETE
FROM item i
WHERE i.item_title = 'Camelot';

The row in the ITEM table that contains the ITEM_TITLE value of Camelot cannot be deleted,
because there is a dependent row in the RENTAL_ITEM table. It raises an integrity constraint
violation, ORA-02292, because of a foreign key dependency.

Mixing and Matching Row Returns
Mixing and matching row returns happens when you put a SQL expression into a SELECT
statement that returns multiple rows. The combination of a scalar query and a multiple-row
query fails with a too many rows returned error. The imbalance of the one row returned by
a SQL expression and multiple rows returned by a SQL statement triggers the error. A classic
example is when you want to use a SQL expression to capture a foreign key value for each
return from a containing query used to insert rows into another table.

The solution to this problem is to place the scalar subquery in the FROM clause as an in-
line view. Then, you use a CROSS JOIN statement to place the same foreign key value in
each row returned by the multiple-row query. This is another example of data fabrication
principles in SQL.

628 Oracle Database 11g PL/SQL Programming

Deleting rows is clearly simple, but the downside is that all too many rows can be deleted in
error. You should use care when deleting data, to delete only the right data. It is also a great time
to back up the table in case you need to recover from an error.

Data Control Language (DCL)
Data Control Language (DCL) is the ability to guarantee an all-or-nothing approach when changing
data in more than one table. Table B-4 covers the key commands involved in DCL to manage
transactions.

A good programming practice is to set a SAVEPOINT statement before beginning a set of
DML statements to change related data. Then, if you encounter a failure in one of the DML
statements, you can use the ROLLBACK statement to undo the DML statements that completed.
You use the COMMIT command to make the changes permanent when all changes have been
made successfully.

Summary
The appendix has reviewed the Structured Query Language (SQL) and explained how and
why basic SQL statements work. The coverage should enable you to work through the Oracle
Database 11g examples in the book.

Statement Description
COMMIT The COMMIT statement makes permanent all DML changes to data up

to that point in the user session. Once you commit data changes, they
are permanent unless you perform some form of point-in-time database
recovery. It has the following prototype:
COMMIT

ROLLBACK The ROLLBACK statement reverses changes to data that have not yet become
permanent through being committed during a user session. The ROLLBACK
makes sure all changes are undone from the most recent DML statement to
the oldest one in the current user session, or since the last commit action.
Alternatively, when a SAVEPOINT has been set during the user session, the
ROLLBACK can undo transactions only since either that SAVEPOINT or the
last commit. It has the following prototype:
ROLLBACK [TO savepoint_name]

SAVEPOINT The SAVEPOINT statement sets a point-in-time marker in a current
user session. It enables the ROLLBACK command to only roll back all
transactions after the SAVEPOINT is set. It has the following prototype:
SAVEPOINT savepoint_name

TABLE B-4 DCL Statements

APPENDIX
C

PHP Primer

629

630 Oracle Database 11g PL/SQL Programming

he PHP primer introduces you to PHP programming, the Apache HTTP server, and
the Oracle database web development environments. OPAL is a four-letter acronym
describing a web application solution stack using the Oracle, PHP, Apache, and
Linux operating systems. OPAL is an alternative to another four-letter acronym that
describes a GNU solution stack—LAMP. LAMP stands for Linux, Apache, MySQL,

and PHP. The P in OPAL or LAMP stacks can also represent the Perl or Python language. Both
stacks can also replace Linux with the Microsoft Windows operating system.

This primer discusses the advantages you’ll find when developing web applications using the
PHP programming language and Oracle Database 11g. It also demonstrates how you use the PHP
programming language; and how you work with Oracle advanced data types. It covers how you
use the OCI8 library to work with collections, system reference cursors, LOBs, and external
binary files. The OCI8 libraries also work with Oracle Database 8i, 9i, and 10g releases. In this
primer, you learn how to develop PHP web applications using an Oracle database, and jump-start
your productivity regardless of whether you’re new to Oracle, PHP programming, or both.

This primer discusses the following topics:

History and background

 What is PHP?

 What is Zend?

Developing web programming solutions

 What goes where and why?

 What does Oracle contribute to PHP?

 Why is PHP 5 important?

 How to use PHP

 How to use PHP and OCI8 to access the Oracle database

This primer provides examples of building PL/SQL programming units to support web-based
application development. Building web-based applications using PHP is simpler to illustrate
because there are fewer moving parts than Java. You can see how to build a web application
without dealing with how to deploy a web container, enterprise JavaBeans, and JSP pages. My
Oracle Database 10g Express Edition PHP Web Programming (McGraw-Hill, 2006) provides a
complete treatment of the OPAL stack using the OCI8 libraries, which also work with other
Oracle database family products.

A Java primer is also provided to demonstrate interfaces and PL/SQL development strategies
using the Java programming language in Appendix D. The Java primer focuses on how to deploy
server-side components, which are libraries, wrapped by PL/SQL or data abstraction layer class
files supporting JavaServer Pages (JSPs). Combining Appendix D with both volumes of the Core
Servlets and JavaServer Pages books provides good supplementary resources for more complex
Java solutions.

■

■

■

■

■

■

■

■

■

T

Appendix C: PHP Primer 631

History and Background
The history and background of programming languages and software products can help you find
and interpret old code snippets or administrative guidelines found on the Internet. This section
discusses the history and background of the PHP engine and programming model; the Oracle
Database 11g features and opportunities; and the Zend Technologies role, tools, and support for
the PHP and Oracle combination.

What Is PHP?
Today PHP is a recursive acronym for PHP: Hypertext Preprocessor. In 1995, it stood for Personal
Home Page and named a bunch of utilities that evolved from some Perl scripts. It was originally
developed to display the résumé of the original author, Rasmus Lerdorf. The first major release
was PHP 3 in 1997, and it was based on a new engine written by Zeev Suraski and Andi Gutmans.
Zeev and Andi then formed Zend Technologies Ltd., rewrote the engine again as the Zend Engine
1.0, and released PHP 4 in 2000. A second major rewrite led to Zend Engine 2.0 and the release
of PHP 5 in 2004. Each change in the engine has brought enhanced scalability, greater speed, and
more features.

PHP is a weakly typed language, although some prefer to label it a dynamically typed
language. It has a similar syntax to Perl in many respects, including variables preceded by dollar
signs—$variable. PHP is also a server-side-include type of programming environment,
deployable
as a CGI or Apache module working with the Apache or Microsoft IIS server. It is an interpreted
language, not a compiled one.

The language is flexible in two important ways: It is tightly integrated with HTML, and it has
the ability to work with virtually all commercial databases. The language enables you to embed
PHP in an HTML document and to embed HTML inside a PHP script. You can also use PHP as a
server-side scripting language, but it has limited file I/O characteristics.

Critics assail PHP because it is weakly typed, has a single name space for functions, and is not
thread safe. However, it is a flexible language that supports thousands of web applications around
the world. It is also a fun-to-use programming language that is effective at solving complex problems
and provides a quick prototyping solution for web applications.

What Is Zend?
Zeev Suraski and Andi Gutmans formed Zend Technologies Ltd. when they rewrote the PHP 4.0
engine as the Zend Engine 1.0. PHP 4.0 was released in 2000. Zend Corporation rewrote the PHP
engine again as the Zend Engine 2.0, which was released as PHP 5 in 2004. Each change in the
engine has brought greater scalability, speed, and features.

Zend Technologies is the magic behind the part of the GNU movement that brought the PHP
language into the light. They provide licensing and support contracts for the Zend Engine, which
contains features not found on the freely downloadable www.php.net site. The implementation of
GNU software often finds resistance until a company provides support and a distribution model.
Zend Technologies is doing that, and as a result the language is seeing even wider adoption by
major corporations and government entities.

You must be a licensed customer using the Zend Core for Oracle and the Zend Engine 2.0 to
receive support on your PHP and Oracle web applications. This also means that you are running
PHP 5.1.4 or higher. This book’s code was tested using this combination.

www.php.net

632 Oracle Database 11g PL/SQL Programming

Developing Web Programming Solutions
Web programming solutions are typically composed of an Apache or IIS HTTPD server, a server-
side include (CGI or Apache module), and a database. The selection of the products is often hotly
contested in many IT shops. For the moment, it is assumed that you have chosen Apache 2.0.55,
PHP 5.1.4, and the Oracle Database 11g Release 1.

What Goes Where and Why?
There are many ways to deploy these architectural components, and the choice often depends on
a number of factors. These factors can include the number or frequency of web hits, the volume
of data in the database, and the acceptable response time window.

In the simplest architecture, you place the Apache server, PHP engine, and Oracle database
on a single platform. Assuming this simple model, the customer request goes to the Apache server,
which hands off dynamic calls to the PHP engine. The PHP engine supports the scope of execution
of the PHP script, which can call the Oracle database server. The call from the PHP script is made
through the Oracle Call Interface 8 (OCI8), as described in later in this appendix. When the
database finishes processing the request, the PHP script then writes a temporary document that
is served back to the original client.

The scalable architecture of PHP is devoid of standalone processes, like the Java Virtual Machine
(JVM) supporting Java Server Pages (JSPs). Each PHP program acts as a standalone process, which
makes the web server tier very scalable by horizontally expanding the number of web servers.
Large-volume sites use a metric server to load-balance across a series of web servers that are also
known as a middle tier. This is depicted in Figure C-1.

Each web server tier machine requires an Apache or IIS server, a PHP server, and an Oracle
client. You can also replace the smaller footprint of an Oracle client with the Oracle server. The
deployment flexibility of this distributed architecture lets you choose where you can best put
components to increase integration, distribute load, and maximize reuse of code.

The distribution of components is illustrated in Table C-1, which represents directory (dir),
host name (hn), domain name (dn), and filename (fn), respectively.

FIGURE C-1 Oracle, PHP, and Zend architecture

Appendix C: PHP Primer 633

The architecture also lets you share the database server–tier PL/SQL code between both
PHP and JSP program units. SOA can also be exploited by deploying XMLType columns on the
database tier.

What Does Oracle Contribute to PHP?
The current OCI8 version now enables PHP developers to use several advanced features, such as

Querying and transacting with collections data types

Querying and transacting with reference cursors from stored procedures

Querying and transacting with BLOB, CLOB, and NCLOB data types

Querying BFILE column values from internally referenced locators and returning
externally stored files

Oracle has committed to extend the OCI8 libraries to support an increasing set of utilities and
the new connection pool architecture in Oracle Database 11g. Oracle offers PHP a robust
database that works well with PHP programs.

Why Is PHP 5 Important?
The addition of refactored OCI8 code components into PHP 5.1.4 means that PHP and Oracle
now natively support the new PHP 5 reference and object models. These were introduced by the
Zend Engine 2 and are a stumbling block for many PHP 4 sites adopting the newest version of PHP.

PHP 5 supports traditional and persistent connections to the database. It also supports
concurrent traditional and persistent connections from the same script. This extends PHP in a
similar way to how Java Server Pages leverage a JServlet that maintains a connection pool.

The object model in PHP 5 supports Oracle collection types, reference cursors, and large
object types. The PHP reference and object models are natural fits because they simplify how
developers gain access to composite data types. These types will also map nicely into any PHP
Data Object (PDO) architecture introduced later by Oracle Corporation.

How to Use PHP
This section will introduce you to the fundamental semantics and structures of the PHP 5
programming language. It covers the following:

Defining scripting tags and printing text to web pages

Commenting code

■

■

■

■

■

■

Web Server Tier Database Server Tier

HTML Pages http://<hn>.<dn>/<fn>.php

Templates <dir>/<fn>.inc

Business Logic <dir>/<fn>.inc <dir>/php/<fn>.<so | dll>

C/C++/C# Code <dir>/lib/<fn>.<so | dll> <dir>/lib/<fn>.<so | dll>

Java <dir>/lib/java/<fn>.<jar | zip> <dir>/lib/java/<fn>.<jar | zip>

TABLE C-1 Distribution Matrix for PHP Web Application Coding Components

634 Oracle Database 11g PL/SQL Programming

Defining, declaring, and naming variables

Defining and using conditional structures

Defining and using iterative structures

Defining and using functions

Defining and using objects

Handling run-time errors and exceptions

Reading and writing files

You should understand the basics of writing and running PHP programs after reading this
section. The primer focuses on how you run PHP code from a browser, but you can also run the
same code as a server-side scripting language from the command line.

NOTE
You will need to install Oracle Database 11g, the Apache Server, and
then the Zend for Oracle product (available from otn.oracle.com)
before testing this code.

Defining Scripting Tags
PHP is an interpreted recursive scripting language because you can embed it inside XHTML or
put XHTML inside it. The interpreter requires you to enclose the PHP code inside of scripting tags.
When code is not inside designated scripting tags, the web browser will treat it as ordinary text.

You have four available styles. Two are supported after the standard install and two are not.
The default- and HTML-style tags are supported after installing the product stack. You need to
modify the httpd.conf file to support the short- and ASP-style tags.

The following statements use print statements to render web pages as noted below:

Default-Style Tag

<?php
 print "Hello world.
";
?>

HTML-Style Tag

<script language="php">
 print "Hello world.
";
</script>

Short-Style Tag

<?
 print "Hello world.
";
?>

ASP-Style Tag

<%php
 print "Hello world.
";
%>

■

■

■

■

■

■

■

Appendix C: PHP Primer 635

The print and echo statements have two different approaches that you can use: the more
common form used in the preceding examples and the more formal that includes parentheses around
the string. You should pick one style and stick with it to increase the readability of your code.

A standard environment test after installing the product stack runs the following phpInfo()
function call, which returns information about your server installation:

<?php
 phpInfo();
?>

This section has demonstrated the four scripting tag approaches, using the print statement. You
also have an echo statement if you prefer. The two print and echo statements work alike, but you
can only use the echo statement to print a string or comma-delimited set of strings to a page.

Commenting Code
You can put single-line or multiple-line comments in your PHP programs. You have the same
single-line and multiple-line comments as C++, C#, or Java plus the traditional number symbol
from Unix shell scripting for single-line comments, as shown:

Single-Line Comments using a C++, C#, or Java Style

<?php
 // This is a single-line comment.
?>

Single-Line Comments using a Unix Shell Style

<?php
 # This is a single-line comment.
?>

Multiple-Line Comments using a C++, C#, or Java Style

<?php
 /* This is a first-line comment.
 This is a last-line comment. */
?>

Command-Line PHP Scripting
You can also run PHP programs from the command line by calling the interpreter and
passing the filename like

php helloworld.php

Provided you modify the previous program for the command line as

<?php
 print "Hello world.\n";
?>

it will print the following:

Hello World.

636 Oracle Database 11g PL/SQL Programming

Comments generally improve code readability. You should consider using the C++, C#, or
Java comment styles because they’re better known.

Defining, Declaring, and Naming Variables
Variables are defined in your PHP program namespace without a data type. You can define a
variable by using any series of case-sensitive alphabetical characters, numbers, or underscores,
but they must start with an alphabetical character or underscore. Variables are identified by
prefacing the name with a reserved $ character. The following are valid variable name definitions:

 $_MINE;
 $myVariable;
 $my_1234;

While these three statements define variables, you raise a notice error if you attempt to access
their data type with the PHP gettype() function after defining them without a data type. You
generally only see notice errors in your development environment, and this type of notice warns
you that you haven’t formally assigned a data type to a variable. The default type of unassigned
variables is a null data type. This behavior is considered a benefit of weakly or dynamically typed
languages, but you can also explicitly assign a valid type without assigning a value.

The reason for this behavior is not complex. The namespace keeps track of the variable name,
data type, and value. When the data type is undefined, the PHP interpreter raises a notice at run
time, assigns an implicit null type, and allocates memory space accordingly. The interpreter
doesn’t raise a run-time notice when you’ve assigned a data type, regardless of its value.

PHP supports three classes of variables: scalar, compound, and special. Four of the nine
supported data types—bool, int, float, and string—are scalar. Scalar variables can only
hold one value at any time. The compound variables are arrays and objects, while the special
types are functions, resources, and nulls.

You assign type or value using the assignment operator or an operation assignment operator,
as found in Table C-2. When you define and assign a value in a single statement, that is known
as declaring a variable. The following script provides examples of assignments and implicit type
conversions:

<?php
 $myVar = 1;
 print "\$myVar [$myVar] [".gettype($myVar)."]
";
 $myVar .= "2";
 print "\$myVar [$myVar] [".gettype($myVar)."]
";
 $myVar++;
 print "\$myVar [$myVar] [".gettype($myVar)."]
";
?>

Operator Behavior Description
= The assignment, or =, operator is a binary operator that assigns the right operand

to the variable value contained in the left operand. The left operand implicitly
inherits the data type from the right operand when they are not of the same type.

TABLE C-2 Assignment and Operation Assignment Operators

Appendix C: PHP Primer 637

Operator Behavior Description
+= The increment and assign, or +=, operator is a binary operator that adds the

right operand to the variable value contained in the left operand. The increment
and assign operator can implicitly cast the data type of the left operand.
Alternatively, you can explicitly cast the right operand to match the data type
of the assignment target or left operand.

-= The decrement and assign, or -=, operator is a binary operator that subtracts
the right operand from the value contained in the left operand. The decrement
and assign operator can implicitly cast the data type of the left operand.
Alternatively, you can explicitly cast the right operand to match the data type
of the assignment target or left operand.

*= The multiply and assign, or *=, operator is a binary operator that multiplies
the right operand by the value contained in the left operand. The multiple
and assign operator can implicitly cast the data type of the left operand.
Alternatively, you can explicitly cast the right operand to match the data type
of the assignment target or left operand.

/= The divide and assign, or *=, operator is a binary operator that divides the left
operand by the value contained in the right operand. The divide and assign
operator can implicitly cast the data type of the left operand. Alternatively, you
can explicitly cast the right operand to match the data type of the assignment
target or left operand.

.= The concatenate and assign, or .=, operator is a binary operator that concatenates
the right operand to the left operand. If the left operand is not a string, it is
implicitly cast to a string and the right operand is concatenated to it as a string.
There is no way to avoid this string type casting behavior with the concatenate
and assign operator.

-- The decrement, or --, operator is a unary operator that decrements the contents
of a variable by a value of 1. If the decrement unary operator precedes the
variable name (--$var), it decrements the variable before using it. If the
decrement unary operator follows the variable name (++$var), it decrements
the variable after using the variable. Unary operators change the last letter of
any string variable, and you should ensure that they are not applied against
string variables.

++ The increment, or ++, operator is a unary operator that increments the contents
of a variable by a value of 1. If the increment unary operator precedes the
variable name ($var++), it increments the variable before using it. If the
decrement unary operator follows the variable name (++$var), it increments
the variable after using the variable. Unary operators change the last letter of
any string variable, and you should ensure that they are not applied against
string variables.

TABLE C-2 Assignment and Operation Assignment Operators (continued)

638 Oracle Database 11g PL/SQL Programming

The first statement declares the $myVar variable and assigns a numeric literal value of 1 with
an implicit integer data type to the variable. The next statement prints the variable name, the
value, and the data type to the web page. The concatenate and assign operator then adds a string
literal of 2 to the integer 1. The left operand implicitly inherits the right operand string data type
and converts the $myVar variable to a string containing the value of 12. After printing the result,
the unary operator increments the $myVar value by 1 and alters the variable to an integer
with the value of 13. This is true whether you increment or decrement with a unary operator.
The output from the script is

$myVar [1] [integer]
$myVar [12] [string]
$myVar [13] [integer]

TIP
Not all outcomes of the unary operator work as nicely as the one
demonstrated. A lowercase character a string can be incremented by a
unary operator from a to z, then from a single character z to a double
character aa, and so forth. The same behavior exists for capital letters
and strings, but a decrementing unary operator will leave the a string
unaffected.

Assignment for compound variables, like arrays and objects, differs from the model seen with
scalar variables. Similar differences holds true for special data types—function and resource.
You define the variable as a left operand, and then you assign it the result of an object constructor,
like the following empty array:

$myArray = array();

It is now an empty array-type variable, which you can assign the letters of the alphabet by
doing the following:

$myArray[0] = "a";
$myArray[1] = "b";
$myArray[] = "c";
for ($i = 0;$i < count($myArray);$i++) {
 print "\$myArray[\$i] [$myArray[$i]] [".gettype($myArray[$i])."]
"; }

You cover the FOR loop later in this appendix. The script prints the following:

$myArray[0] [a] [string]
$myArray[1] [b] [string]
$myArray[2] [c] [string]

This demonstrates that after defining an array, you can, but do not need to, explicitly assign
index values. They can be assigned implicitly with an empty set of square braces, or [].
Alternatively, you can also declare an array on a single line, like this:

$myArray = array("a","b","c");

Arrays are powerful structures in any programming language. There are identification, seeding,
queuing, searching, traversing, sorting, merging, and splitting functions. You can check the list of

Appendix C: PHP Primer 639

functions and find examples for using them in Chapter 6 in the Oracle Database Express Edition
10g PHP Web Programming book. Alternatively, you can explore the documentation for them at
the www.php.net site.

You will cover functions and objects later in another subsection of this section. The last types
of variables you examine in this subsection are global, globally scoped, and predefined variables.
Global variables behave like constants and work like environment variables. They are aliases to
scalar variables, like numbers and strings. You declare global variables only once in a single
execution scope by using the define() function. Any attempt to define the same global variable
twice raises a notice error, but that will be ignored by the program’s execution. Global variables
also cannot be dynamically reassigned new values or change types through assignment operations,
and any attempt to do so will raise a fatal parsing error.

The following demonstrates declaring two global variables, or environment constants:

define('GLOBAL_NUMBER',1);
define('GLOBAL_STRING',"One");

You access global variables, or environment constants, by using their name only, as in the
following command to print their contents:

print GLOBAL_NUMBER."
";
print GLOBAL_STRING."
";

You can also define globally scoped variables by first defining them as global. The temptation
is to declare a global variable, by both defining and assigning it a value. This will fail because it
isn’t supported. After you define a globally scoped variable, it becomes available anywhere in
your program, and it can likewise be changed anywhere in your program. This becomes a risk
when building libraries because a globally scoped variable can be replaced by a new definition
and value altered by conflicting lines of code. Global variables are discouraged, but here’s how
you define and assign a value:

global $GLOBAL_NUMBER;
$GLOBAL_NUMBER = 14;

NOTE
You can define an ordinary variable by reusing the same name as a
global variable. Global variables exist in a separate namespace from
ordinary variables.

Predefined variables are also known as super global variables. These variables provide a
powerful set of features found in Table C-3. You will use the $_FILES, $_GET, and $_POST
super global variables in some examples later in this primer.

There are naturally some aspects of working with data types that were excluded due to space
constraints. A significant factor is that variables can implicitly lose precision through implicit
casting operations. You should be careful with how you use variables to avoid losing precision
through unanticipated run-time type conversions. More on how variables behave can be found
in Chapters 4 and 7 of Oracle Database Express Edition 10g PHP Web Programming.

This subsection has demonstrated how to define, declare, and name variables. You should be
set to read and use code in the balance of the PHP primer.

www.php.net

640 Oracle Database 11g PL/SQL Programming

Defining and Using Conditional Structures
Conditional structures describe the if-then, if-then-else, if-then-else-if-then-else, and switch
statements. These structures enable you make decisions based on single variables or collections
of variables. You make conditional evaluations by comparing the contents of variables. Table C-4
contains a list of comparison operators available in PHP.

If you’re coming from a purely database programming background, the identity comparison
operator may be new. The idea of comparing different types of variables in PL/SQL would break
the definition of a strongly typed variable, which is necessary in the scope of a database catalog.
Weakly typed languages require the identity operator to ensure that some comparisons are
between equally typed variables. This ensures that variable types are correct during comparison
operations.

Variable
Name

Description

$GLOBALS The variable contains a reference to every variable within the global scope
of the script. The keys for these values are the names of the global variables.

$_COOKIE The variable contains all HTTP cookies. It replaces the deprecated
$HTTP_COOKIE_VARS array.

$_ENV The variable contains all inherited environment variables or directly set
within the script. It replaces the deprecated $HTTP_ENV_VARS array.

$_FILES The variable contains all variables provided by HTTP post file uploads. It
replaces the deprecated $HTTP_POST_FILES array.

$_GET The variable contains all URL query string values. It replaces the $HTTP_GET_VARS
array. These are always sent in plain text and a security risk.

$_POST The variable contains all variables provided by HTTP POST. It replaces the
deprecated $HTTP_POST_VARS array.

$_REQUEST The variable contains all variables provided by GET, POST, and COOKIE
inputs. The order of variable is set by the PHP variable order configuration
parameter. The values in this variable are an also a security risk because
it makes a man-in-the-middle attack more likely, since $_GET variables
are included and vulnerable. You should use the $_POST in lieu of the
$_REQUEST predefined variable.

$_SERVER The variable contains variables set by the execution environment of
the web server and current running scripts. It replaces the deprecated
$HTTP_SERVER_VARS array.

$_SESSION The variable contains variables bound to the current session. It replaces the
deprecated $HTTP_SESSION_VARS array.

TABLE C-3 Predefined Variables

Appendix C: PHP Primer 641

If Statement The basic if statement prototype resembles how you perform a conditional
evaluation in PL/SQL, except the ELSIF is else if, as

if (expression)
statement;

else if (expression)
statement;

else
statement;

Another major difference occurs because you can evaluate whether any data type is true or
false in PHP but not in PL/SQL. This is also true when variables are undefined provided that you
use the error suppression operator, @. The process works by evaluating a zero, empty string, or
null as false and everything else as true in the context of treating the variable as an expression.

The PHP parser demands that expressions be enclosed in parentheses, which differs from how
PL/SQL works. The good news is that missing parentheses will always raise a parsing error. This
means the problem is very seldom encountered in programs, because they can’t be unit-tested
without complying with the rule.

Name Example Description

equal $a == $b The two equal signs together returns true if the values are
the same regardless of data type.

identical $a === $b The three equal signs together returns true if the values and
data type are the same.

not equal $a != $b
or
$a <> $b

The exclamation or bang operator and an equal sign or the
less-than and greater-than symbols together return true if
the values are different regardless of data type.

not identical $a !== $b The combination of an exclamation mark and two equal
signs together returns true if the values and data type are
not the same.

less than $a < $b The less-than sign returns true if the left operand contains
a value less than the right operand.

greater than $a > $b The greater-than sign returns true if the left operand
contains a value more than the right operand.

less than or
equal to

$a <= $b The combination of the less-than and equal signs returns
true if the left operand contains a value less than or equal
to the right operand.

greater than
or equal to

$a >= $b The greater-than sign returns true if the left operand
contains a value more than or equal to the right operand.

TABLE C-4 Comparison Operators

642 Oracle Database 11g PL/SQL Programming

The following demonstrates how to compare a variable against a string literal with a
guarantee that the arriving variable in the expression both is a string and contains a matching
value when comparing the two:

<?php
 $myVar = (string) 13;
 if ($myVar === "13")
 print "Meets condition
";
 else
 print "Fails condition
";
?>

The script explicitly casts the numeric literal 13 when assigning it to $myVar. The expression uses
the identity operation to guarantee the variable type and value is checked against the string literal.

You also have a ternary if-then-else operator, which is

(expression) ? true_statement; : false_statement;

When the expression evaluates as true, the true statement runs. When the expression evaluates
as false, the false statement runs. You can also nest ternary operators in place of either the true or
false statements.

Switch Statement The switch statement has two types—one is a simple case evaluation and the
other a searched case evaluation. The former requires you to use a number or string variable as
the criteria variable for branching execution. Both of these use a similar prototype. The difference
between the two is that the simple case switches on a variable compared against a criterion, while
the searched case evaluates the truth or untruth of an expression.

Switch statements differ from multiple if-then-else-if-then evaluation because they enable fall-
through. Fall-through behavior lets you enter the first successful case statement and proceed to
process all subsequent case statements, including the default. Fall-through is the default behavior.
You avoid fall-through by including a break; statement at the end of each case block. The
prototype demonstrates the switch statement by preventing fall-through as shown:

switch (variable | expression)
{
 case criterion:

statement;
 break;
 default:

statement;
 break;
}

The following demonstrates how you implement a simple switch statement that disables fall-
through:

<?php
 $myVar = 1;
 switch ($myVar)
 {
 case 1:
 print "\$myVar is [$myVar]
";
 break;

Appendix C: PHP Primer 643

 default:
 print "Can't happen!
";
 break;
 }
?>

You implement a searched switch statement in a similar way. There is a subtle difference
between the simple and searched switch statements. When you want to validate the truth of an
expression, the switch statement does not require an actual parameter because a bool true is the
default. You must override the default and provide a false when you want to check whether an
expression is false. The following searched switch statement overrides the default by providing a
false expression:

<?php
 $myVar = 1;
 switch (!$myVar) // Not true because 0 evaluates as false.
 {
 case (!$myVar == 0):
 print "\$myVar is [$myVar]
";
 break;
 default:
 print "Can only happen!
";
 break;
 }
?>

The first case in preceding program uses a false expression that resolves to true because of the
not, or !, operator found in front of the expression. The combination of negation and a true
expression is always false. Therefore, the program can only print the default case.

This subsection has covered comparison operators and conditional structures in PHP. You will
use these techniques later in this appendix.

Defining and Using Iterative Structures
Iterative control structures include DO-WHILE, FOR, FOREACH, and WHILE loops. They provide
programmers with the ability to repeat a set of instructions a specified number of times or until a
condition is met.

There are different structures because you can have different purposes when you want to step
through data repeatedly. Sometimes you want to do it until a condition is met, which is accomplished
with the FOR and DO-WHILE loops. On occasion you want to gate entry to an iterative structure
with a condition, which is what the WHILE loop does. In the case of a hash table or hash map,
PHP provides a special iterative structure—the FOREACH loop.

In the following section, you will examine the purpose and use of the DO-WHILE, FOR, FOREACH,
and WHILE loops. They are covered in alphabetical order because that puts the WHILE loop last
and it behaves differently than the others by gating entry, not exit, to a loop.

DO-While Loop The DO-WHILE loop does not audit conditions on entry but on exit. You will
find this structure useful when you always want the logic processed at least one time before
exiting the loop. The prototype for a DO-WHILE loop is

do
{

statement;
} while (expression);

644 Oracle Database 11g PL/SQL Programming

FOR Loop The FOR loop does not audit conditions on entry but, like the DO-WHILE loop, on
exit. You will find this structure useful when you want to put all streams of code through it and
want the convenience of setting the initial value, the exit evaluation, and the incrementing pattern
in one place. The pattern for a FOR loop is

for (expression1; expression2; expression3)
{
statement;

}

The first expression declares a counter variable. The second expression sets an upward limit for
an incrementing counter and downward limit for a decrementing counter. The third expression
defines how the counter increments or decrements.

The FOR loop traverses numerically indexed arrays or collections. The FOR loop can cause
failures while reading arrays that are sparsely populated. Sparsely populated arrays have one or
more gaps in the index values that sequence them, as discussed in Chapter 7. Fresh query results
from a database do not cause problems because the rows are returned sequentially. You’re more
likely to find the error when navigating PL/SQL index-by tables transferred in bulk with sparsely
populated indexes. You should take precautions when you are unsure whether the index is
sequential. Reorganizing an array with a new index solves this type of problem.

FOREACH Loop The FOREACH loop is a useful tool to navigate hash indexes or maps. These are
also known as associative arrays. Associative arrays are name and value pairs stored in structures.
The names may be numeric or alphanumeric, and therefore they mimic the behavior of hash
maps. There are two prototypes for this structure: one processes index values, and the other
ignores them. The following prototype lets you process index values:

foreach ($array_name as $name => $value)
{

statement;
}

The alternative prototype ignores index values:

foreach ($array_name as $value)
{

statement;
}

WHILE Loop The WHILE loop enables you to gate whether your program enters the loop. The
evaluation check at the top of the loop provides the pre-entry check and also prevents exit until
the condition is not met. The WHILE loop has the following pattern:

while (expression)
{
statement;

}

Defining and Using Functions
All programs contain instructions to perform tasks. When sets of tasks are frequently used to
perform an activity, they are grouped into a unit, which is known as a function or method in
most programming languages. PHP calls these units functions.

Appendix C: PHP Primer 645

Functions should perform well-defined tasks. They should also hide the complexity of their
tasks behind a prototype. A prototype includes a function name, a list of parameters, and a return
data type. The prototype should let you see how the function can be used in your programs.

Function names should be short declarative descriptions about what tasks they perform. The
list of parameters, also known as a signature, is typically enclosed in parentheses; it should use
descriptive variable names that signal their purpose when possible. The parameters in a function
signature are considered formal at definition and actual at run time. In strongly typed languages,
the parameters impose positional and data type restrictions. Weakly typed languages, like C or
PHP, typically impose only positional restrictions.

There are two types of parameters—one is mandatory and the other is optional. A formal
parameter becomes optional when you define a default value for it. Optional parameters should
be at the end of a formal parameter list. Unlike with PL/SQL, you do not have the ability to pass
parameters out of sequence by named reference. You must provide actual parameters for all
formal parameters that come before an optional parameter when you want to exclude it from the
list. A more effective solution is to use flexible parameter passing and avoid listing any mandatory
or optional variables in the formal parameter list.

Formal parameters can also designate whether run-time values are passed by value or reference
in some programming languages. The return type is a valid data type in the programming language.
When there is no return type, it is represented as a void.

NOTE
Functions that fail to return a value are like stored procedures in
PL/SQL, whereas functions that return values are more like stored
functions. PHP functions are not exactly like PL/SQL stored functions
because you can pass actual parameters by reference or by value.
Functions in PL/SQL are restricted to an IN mode only, which makes
them exclusively pass-by-value functions.

You can define functions with or without formal parameter lists because of flexible parameter
passing. Flexible parameter passing lets you call functions by using actual parameters not defined
in the function prototypes. The next three subsections describe available prototypes.

Pass-by-Value Function A pass-by-value function receives values into new variables known as
actual parameters when called. It can use those variable values anywhere inside the scope of the
function. At the conclusion of the function call, the actual parameters are discarded from memory,
and any variables used to pass those actual parameters are unchanged. You can also provide a
default value for any defined formal parameter, as noted:

function myFunction($formalParameter1 [= default_value]
 ,$formalParameter2 [= default_value])
{
 return $formalParameter1 + $formalParameter2;
}

This prototype can be called relying on the default values for the two formal parameters:

myFunction();

You can override the first formal parameter while ignoring the second. However, you cannot
override the second parameter without first providing the first parameter. The same rule does not

646 Oracle Database 11g PL/SQL Programming

hold when you override the first formal parameter, ignoring the second one. The following
demonstrates overriding both default parameter values:

myFunction(3,5);

You’ll notice that these are actual parameters and are numeric literals. Numeric literals can
only be used when providing actual parameters to formal pass-by-value parameters.

Pass-by-Reference Function A pass-by-reference function receives a reference to an existing
variable that has already been declared in the program scope. Functions of this type cannot
receive a numeric or string literal because they lack a memory address where the function can
update a change in the value. The ampersand, or &, designates that a formal parameter is a pass-
by-reference parameter in PHP 5. Prior to the current version, you placed the ampersand on the
actual parameters.

The following prototype is a pass-by-reference function that squares any declared variable:

function mySquare(&$formalParameter)
{
 return $formalParameter *= $formalParameter;
}

You can print the actual parameter variable contents before and after the function by using the
following type of code:

$myRoot = 2;
print "Root [".$myRoot."]
";
mySquare($myRoot);
print "Root [".$myRoot."]
";

The code prints

Root [2]
Root [4]

Flexible Parameter Passing Flexible parameter passing can also be described as variable-length
parameter lists. Variable-length parameter lists are common patterns in programming languages.
The C, C++, C#, and Java programming languages all support variable-length parameter lists, but
they label them differently. A variable-length parameter list is an array or a list of values, where
the values are valid PHP data types.

As discussed earlier, there are two parameter options: mandatory or optional. These options
make function parameter lists more complex. A function definition or prototype that uses a single
mandatory parameter requires that you call the function with at least one actual parameter but
does not restrict you from passing more than one. You can actually submit any number of
parameters beyond the mandatory number required by a function prototype. You can define
functions without any parameters and still manage a parameter list passed to the function, which
means prototypes are optional.

The absence of a parameter list frees you from sequential ordering of parameters and issues
arising from whether parameters are mandatory or optional. Sending a single associative array
that contains name and value pairs leaves the internals of your function to resolve when to apply
or ignore formal parameter default values. The flipside of this approach to writing functions is that
there is no prototype available for reuse. Functions must then include logic to manage variable-
length parameter lists. Table C-5 describes three predefined functions that let you manage
variable-length parameter lists.

Appendix C: PHP Primer 647

The generic prototype for a two-element flexible parameter list is

function myFunction()
{
 if (func_num_args() > 0)
 {
 foreach (func_get_args() as $index => $value)
 {
 switch $index
 {
 case argument_name1:

statement;
 break;
 case argument_name2:

statement;
 break;
 }
 }
 }

statement;
}

This subsection has demonstrated how to implement pass-by-value, pass-by-reference, and
flexible parameter lists. You should also note that PHP supports recursive programming, where a
function can call another copy of itself.

Function Description and Pattern
func_get_arg() The function takes one formal parameter, which is the index value

in the variable-length parameter list. When the actual parameter is
found in the range of the parameter list indexes, the function returns
that argument value. If the index value is not found in the list, the
function raises a warning and returns a null value. The function has
the following pattern:
mixed func_get_arg(int arg_num)

func_get_args() The function takes no formal parameters and returns a numerically
indexed array of arguments. If there are no parameters passed to the
function, a null array is returned. The null array has zero elements,
and attempting to access element zero will raise a non-fatal error. It
has the following pattern:
array func_get_args()

func_num_args() The function takes no formal parameters and returns the number
of elements in the argument list. The valid range is from 0 to the
maximum number of parameters. The function has the following
pattern:
int func_num_args()

TABLE C-5 Flexible Parameter Lists

648 Oracle Database 11g PL/SQL Programming

Defining and Using Objects
Procedural programming functions perform well-defined tasks, and they hide the details of their
operation. A collection of functions can be grouped together to perform a task that requires a
set of functions. Organized groups of functions are modules; and the process of grouping them
together is modularization. A PL/SQL package is a collection of related stored functions and
procedures that hides their complexity through a predefined application programming interface
(API). While packages can define package-level variables, they do nothing to ensure their
operational state or reusability.

Object-oriented (OO) programming solutions fix some of the shortcomings of functions and
modules because they maintain the operational state of variables. Object types define how to
store data and define API operations, also known as functions or methods. Operations are
generally described as methods in OO programming languages, but they are implemented as
class functions in PHP.

The same naming requirements as that used with functions apply to objects. Object names
in PHP must start with an alphabetical character or underscore and consist of only alphabetical
characters, numbers, or underscores. Object names are global in scope and case insensitive, as
are functions.

Scope for PHP classes, like that for functions, is global and enables you to use them anywhere
in your programs. Only classes, functions, and global constants, those built by using the define()
function, enjoy global environment scope.

Classes, unlike functions, cannot have return types. Class instantiation returns a copy or
instance of a class. While object construction generally occurs as the source operand on the right
side of an assignment operator, you can construct an object instance as an actual parameter to a
function, or as a member of an array. The object instance existence is limited to the duration of
the function or its membership as a component of an array variable.

You will find that objects are similar to many other languages but different enough to review
the object operators. These are the operators that work in PHP 5. Table C-6 provides definitions
that help you read the class definitions of PHP objects.

Operators Description

:: The scope resolution operator enables you to refer to class or instance variables and
functions. It is a binary operator. A class name, parent operator, or self operator must
precede the scope resolution operator as its left operand. A class constant, static variable, or
static function, or else the $this operator, can be the right operand. Using anything else as
the right operand will raise a fatal exception. The prototype for using the scope resolution
operator to reset a class variable is
ClassName::$ClassVariable = "new value";

TABLE C-6 Object Operators

Appendix C: PHP Primer 649

Operators Description

-> The pointer operator points to a member variable or function of an object instance. The
pointer operator is a binary operator. The left operand can be $this or a variable holding
an instance of the class, while the right operand is an instance variable or function. The
$this operator must precede the operator inside a class definition, as the instance of an
object. Outside of a class definition, the variable holding an instance of a class must precede
the member variable pointer, and the class variable or function follows its use. You can also
refer to a super class by using the parent::$this->variable or parent::$this-
>function syntax. The pointer operator prototype outside of a class is shown by using the
instance variable as the left operand of an assignment operation:
$ClassVariableName->InstanceVariable = "new value";
Alternatively, the pointer operator outside of a class can point to a function, which in this
case takes an actual parameter and returns nothing:
$ClassVariableName->Function("parameter");

clone The clone operator enables you to copy an instance of a class to a new instance of the
same class. The clone operator is a binary operator. It uses variable assignment as the left
operand, while the right operand must contain an instance of an object type. The prototype
for cloning an object instance is
$NewClassVariable = clone $OldClassVariable;

instanceof The instanceof operator enables you to check whether a variable is an instance of an
object type. Its use mirrors that of a comparison operator, returning true when an instance
is derived from an object type and false when not. The instanceof is a binary operator,
which takes a variable holding a class instance as the left operand and the name of an object
type as the right operand. It has the following prototype as a conditional expression:
if ($ClassVariable instanceof ClassName)

new The new operator enables you to build an instance of a class definition. The new operator
is a binary operator. It uses variable assignment as the left operand, while the right operand
must contain a constructor of an object type. The prototype for using the new operator is
$NewClassVariable = new ClassName("parameter");

parent The parent operator refers to a super class of an object and you can only use it in the
class definition of a subclass or in the scope of an internal class function. You can use it in
the __constructor and __destructor predefined functions. The parent operator
uses the scope resolution operator to reference constants, static variables, or functions, and
the $this operator, which precedes non-static variables and functions. The prototype for
assigning values from superclass constants and static variables from within a subclass is
$NewVariable = parent::classVariable;
While the prototype for calling superclass static functions from within subclasses is
$NewVariable = parent::functionName("parameter");
Calling superclass instance variables and functions requires using a combination of the parent
and scope resolution operators, like the following subclass function call to a superclass:
$NewVariable = parent::$this->function("parameter");

TABLE C-6 Object Operators (continued)

650 Oracle Database 11g PL/SQL Programming

An object prototype includes the class keyword and the body of the object type in curly
braces:

class object_name { object_body }

The PHP object prototype is very similar to other OO programming languages, especially the
C++ syntax. All classes are publicly accessible, which is consistent with their global scope. Table
C-7 qualifies access modifiers available in PHP objects.

A sample class definition is

class BasicObject
{
 public $name = "BasicObject";
}

You can define an instance of the class by doing the following:

$myObject = new BasicObject();

After creating an instance, you can access publicly available variables or methods by using
the pointer operator as shown:

print "[".$myObject->name."]
";

The simplistic class example relies on the default constructor and destructor functions provided
implicitly for you by the PHP engine. Object constructors are like functions and have signatures
that contain zero to many parameters in a list. The PHP default constructor, like the default
constructor in Java, takes no formal parameter. You cannot override the PHP default constructor
signature without implementing an overriding constructor of your own.

Operators Description

self The self operator refers to a local class of an object and you can only use it in the
definition of a class or in the scope of an internal class function. You can use it in the
__constructor and __destructor predefined functions. The self operator uses
the scope resolution operator to reference constants, static variables or functions, and the
$this operator, which precedes non-static variables and functions. The prototype for
assigning values from class constants and static variables from within a class is
$NewVariable = self::classVariable;
While the prototype for calling class static functions from within the same classes is
$NewVariable = self::functionName("parameter”);

$this This operator refers to the local instance of a class, and you can only use it in the definition
of a class. The scope limits require you to use it in an internal function, which can include
the __constructor and __destructor predefined functions. The $this operator
combined with the pointer operator enables you to access instance variables and functions.
The following prototype represents assigning a value to an instance variable within a class:
$this->classVariable = "new value";
The following prototype represents calling an instance function that returns no value:
$this->classFunction("parameter");

TABLE C-6 Object Operators (continued)

Appendix C: PHP Primer 651

The constructor and destructor functions are class operations or methods. You can override
the default constructor by using the __construct() function; and you can override the default
destructor by using the __destruct() function. The __construct() function is called when
you instantiate an instance of an object type with the new operator. The __destruct() function
is called when you no longer hold a reference to an object instance, which may be at the time a
PHP page is rendered.

Getters and setters are common OO programming terms indicating that you get or set a class
variable. In many OO programming languages, you need to write individual getVariable()
or setVariable($var) functions. You can write these custom getters and setters, or you can
overload the functionality with the __get() and __set() functions in PHP. Overloaded functions
can only be used with non-static variables.

The __get() and __set() functions have the following prototypes:

mixed __get($var);
void __set($var);

An example of implementing a getter is

public function __get($var)
{
 return $this->$var;
}

Access Modifier UML Notation Description
final Italicized The final access modifier ensures that a class

function cannot be overridden by a subclass
implementation. The final modifier can only
apply to functions.

private - The private access modifier hides a variable or
function from direct external class access. A
public class function can also indirectly access
private class variables and functions. Both
private class variables and functions are hidden
from all subclasses of a class.

protected # The protected access modifier hides a variable
or function from direct external class access. A
public function can indirectly access protected
class variables and functions. Both protected
class variables and functions are available from
subclasses of a class.

public + The public access modifier, or default behavior,
publishes class variables and functions.

static $ The static key word designates a variable or
function as accessible without creating a class
instance.

TABLE C-7 Class Access Modifiers

652 Oracle Database 11g PL/SQL Programming

You implement a setter typically with two formal parameters. These typically act like a name
and value pair, respectively named $key and $value in the prototype example. The benefit is
that a single __set() function call can now set all accessible variables, as noted:

public function __set($key,$value)
{
 $this->$key = $value;
}

This section has discussed the basics of building and accessing objects. Classes also support
subclassing, inheritance, abstract classes, interfaces, cloning, and run-time reflection. You can
find more about these topics at php.net or Chapter 8 in the Oracle Database 10g Express Edition
PHP Web Programming book.

Handling Run-Time Errors and Exceptions
Run-time errors are not run-time exceptions but behave differently. Run-time errors require
proactive management in your programming code. Prior to PHP 5, run-time errors were often
simply suppressed by using the error control operator, or @. Beginning with PHP 5, you can
manage known run-time errors by both suppressing and re-throwing them as exceptions.

Exceptions are also new to PHP 5. Exceptions use try-catch blocks, as in C++, C#, and
Java. Some run-time events raise exceptions, which don’t happen during the parsing phase like
compile-time errors. Exception handling qualifies how you manage run-time failures in your
programs.

Run-time errors thrown by many standard coding components raise three types of errors:
error, warning, and notice. The first is a fatal error, and it will stop the running script’s execution.
The next two—warning and notice—are informational and will not stop running scripts. You can
set error handling to prevent the display of warnings and notices in your production environment.
They should generally be enabled in the testing environment to establish that developers clearly
accept risks they place in their code.

The basic structure for a try-catch block used in exception handling is

try
{

statement;
}
catch (Exception $e)
{

statement;
}

When statements don’t implicitly throw exceptions on failure, you need to throw one manually.
This is a bit more involved because of the two error management systems. When a statement
raises an error and not an exception, you should use the following prototype:

try
{
 if (@!statement)
 throw new Exception(string error_msg,int error_code);
}

Appendix C: PHP Primer 653

You have the ability to define your own exceptions. User-defined exceptions are subclasses
of the Exception class. They are convenient, but when you do use them, there is risk that either
a standard or custom exception may be thrown. As a result of this behavior, you should define
multiple catch blocks, as shown:

catch (MyException $e)
{

statement;
}
catch (Exception $e)
{

statement;
}

The MyException and Exception are object types, and the process of including them in your
prototype is known as type hinting. You can use type hinting only when the variable can only be
an object data type.

This section has covered the fundamentals of objects to define common terms necessary to
understand how you manage Oracle collections and system reference cursors. These components
are part of the OCI8 and implemented as objects.

Reading, Writing, and Uploading Files
This subsection covers reading and writing ordinary and comma-separated value (CSV) files. The
subsection demonstrates how you upload and write to LOB data types in an Oracle database. It
also supports PL/SQL examples in Chapters 8 and 12, on LOB data types and file I/O respectively.

The ins and outs of accessing files on your application server let you move data from a
program variable in memory to: (a) another local program; (b) another remote program; (c) a
shared memory segment; or (d) the file system. Local and remote programs that share memory
segments and file systems are also known as resources. Files are a type of resource. Reading and
writing files is an integral part of application design.

Reading Ordinary and CSV Files You can read files character-by-character, chunk-by-chunk,
line-by-line, comma-separated values (CSV) and as a whole unit. The examples in this section
demonstrate how you read a file as a CSV data source. The following sample code runs from the
command line and reads a text file from the local directory. It reads the file into an array of strings
and then prints the array to standard out:

<?php
 // Verify operating file system delimiter.
 if (ereg("/",$_SERVER["Path"]))
 $slash = "/";
 else
 $slash = "\\";

 // Check local parameters to verify and read file.
 if ((@$_SERVER["argv"]) && (@$_SERVER["argc"] == 2))
 {
 $fn = @$_SERVER["argv"][1];
 $qfn = getcwd().$slash.$fn;

654 Oracle Database 11g PL/SQL Programming

 $contents = file($qfn);
 foreach ($contents as $value)
 print $value;
 }
 else
 print "No file name provided.";
?>

The ereg() function is used to determine if the file system is Microsoft Windows or Linux. Linux
paths contain a forward slash for directory references, whereas backslashes are used on Microsoft
Windows operating system. This ensures that the right type of delimiter is placed in front of the
physical filename.

A variation to reading the contents into an array is reading a CSV into a multiple-dimension
array, using lines as the first dimension and the comma-separated fields as the second. The
fgetcsv() function reads a line and parses the delimited values into an array. The following
code demonstrates reading a CSV file from the same directory as the script, and printing the
contents of the file into an XHTML table. It is rendered by a browser in a web page:

<?php
 $fname = realpath("BookSales.txt");
 $contents = array();
 if ($fp = fopen($fname,'r'))
 {
 while (!feof($fp))
 $contents[] = fgetcsv($fp,10000,",");
 fclose($fp);
 }
 print "<table>";
 foreach ($contents as $data)
 {
 print "<tr>";
 foreach ($data as $cell)
 print "<td>".$cell."</td>";
 print "</tr>";
 }
 print "</table>";
?>

CAUTION
Comma-separated value files created by some versions of Microsoft
Excel can leave unexpected characters that will raise warning errors.

There are several other reading functions that provide different approaches to reading files.
Character-by-character reads are done by the fgetc() function; chunk-by-chunk and line-by-
line reads are both done with the fgets() function.

Writing Ordinary and CSV Files Writing files differs from reading files in PHP. There is no function
to write characters per se, but the fwrite() function is binary safe and writes strings to files. The
fwrite() function has an alias fputs() function name. Alternatively, you can write arrays of
strings by using the file_put_contents() function or as comma-separated values (CSV) files
with the fputcsv() function.

Appendix C: PHP Primer 655

Unlike when reading files, you are limited to writing files as strings, CSV strings, or arrays
of strings. Since strings can vary from a single character to set of characters, you really have the
same power as provided by the predefined reading functions.

You can run the following code from the command line to create a new file from the
embedded array of strings:

<?php
 // Verify operating file system delimiter.
 if (ereg("/",$_SERVER["Path"]))
 $slash = "/";
 else
 $slash = "\\";

 // Define a data stream.
 $data = array();
 $data[] = "This is line number one, and";
 $data[] = "it is followed by line number two.";

 // Check local parameters to verify.
 if ((@$_SERVER["argv"]) && (@$_SERVER["argc"] == 2))
 {
 // Build the qualified file name.
 $fn = @$_SERVER["argv"][1];
 $qfn = getcwd().$slash.$fn;

 // Delete a same name existing file.
 if (is_file($qfn))
 unlink($qfn);

 // Open to append to a file.
 if ($fp = fopen($qfn,'a'))
 for ($i = 0;$i < count($data);$i++)
 if (!fwrite($fp,$data[$i]."\n"))
 fclose($fp);
 }
 else
 print "No file name provided.";
?>

This generates a file with the following two lines:

This is line number one, and it
is followed by line number two.

Writing a CSV file is not much different than reading one. You should notice the similarity
between writing an array of strings and writing a CSV file.

<?php
 // Verify operating file system delimiter.
 if (ereg("/",$_SERVER["Path"]))
 $slash = "/";
 else
 $slash = "\\";

656 Oracle Database 11g PL/SQL Programming

 // Define a data stream.
 $data = array(
 array("Account","Jan","Feb","Mar","Apr")
 , array("33-444-22","42","51","65","23")
 , array("33-444-23","24","15","16","17")
 , array("33-444-24","31","22","13","19")
 , array("Total:","97","88","94","59"));

 // Check local parameters to verify.
 if ((@$_SERVER["argv"]) && (@$_SERVER["argc"] == 2))
 {
 // Build the qualified file name.
 $fn = @$_SERVER["argv"][1];
 $qfn = getcwd().$slash.$fn;

 // Delete a same name existing file.
 if (is_file($qfn))
 unlink($qfn);

 // Open to write a file.
 if ($fp = fopen($qfn,'w'))
 for ($i = 0;$i < count($data);$i++)
 if (!fputcsv($fp,$data[$i],","))
 fclose($fp);
 }
 else
 print "No file name provided.";
?>

Uploading Files to the Server PHP supports managing file uploads with the move_uploaded_file()
function on the server. HTML supports the means to upload files in web browsers. You can
develop file uploads by using the HTML FORM and two INPUT tags.

The FORM tag contains an action attribute that specifies a URL pointing to a server-side
program. The first INPUT tag is designated as a file type within the scope of the FORM tags. When
an INPUT tag is set as a file type, a Browse button is automatically rendered to the right of the
input field. Clicking the Browse button launches the operating system file chooser, which enables
you to select a local file to upload to the server.

The second INPUT tag designates a submit type, which is also within the scope of the same
FORM tags. The Submit button fires the action qualified in the FORM tag. The Submit button makes
a call to a server-side program. Depending on the implementation details of the web browser, you
should use the POST but not the GET method.

The following program demonstrates uploading a file to your server using the POST method:

<form id="uploadForm"
 action=http://sever_name/UploadFile.php
 enctype="multipart/form-data"
 method="post">
 <table border=0 cellpadding=0 cellspacing=0>
 <tr>
 <td width=100>Select File</td>
 <td>

Appendix C: PHP Primer 657

 <input id="uploadFileName" name="userfile" type="file">
 </td>
 </tr>
 <tr>
 <td width=100>Click Button to</td>
 <td><input type="submit" value="Upload File"></td>
 </tr>
 </table>
</form>

This renders the image shown in Figure C-2. As just discussed, when you click the Browse
button the browser launches the operating system file chooser. After you select a file, the text box
will display the fully qualified or canonical path and file name. You click the Upload File button
to submit the HTML form contents to the server. Submitting the form sends the file to the server-
side program.

The FORM tag includes three critical attributes: the action, enctype, and method attributes.
As mentioned, the action tag contains a qualified URL and a server-side program that will process
the uploaded file. The enctype attribute designates the file encoding type and qualifies that the
HTML submission contains the regular array of form values. The method attribute designates whether
it is a POST or GET method. It is recommended that you use the POST, not the GET, method.

The INPUT tag designated as a file type has two key attributes. They are the name and type
attributes. The type attribute renders the Browse button and enables you to read the file system.
The name attribute designates what is used as the associative array index value for the selected
file in the $_FILES array variable.

The following program lets you process the file upload, move from a temporary file location,
read the file, and render it in the web page:

<?php
 // Define the upload file name for Windows or Linux.

if (ereg("Win32",$_SERVER["SERVER_SOFTWARE"]))
 $uploadFile = getcwd()."\\temp\\".$_FILES['userfile']['name'];
 else
 $uploadFile = getcwd()."/temp/".$_FILES['userfile']['name'];

 // Check for and move uploaded file.
 if (is_uploaded_file($_FILES['userfile']['tmp_name']))
 move_uploaded_file($_FILES['userfile']['tmp_name'],$uploadFile);

 // Open a file handle and suppress an error for a missing file.
 if ($fp = @fopen($uploadFile,"r"))
 {
 // Read until the end-of-file marker.
 while (!feof($fp))
 $contents .= fgetc($fp);

 // Close an open file handle.
 fclose($fp);
 }

 // Display moved file in web page.
 print $contents;
?>

658 Oracle Database 11g PL/SQL Programming

NOTE
This uploading script requires a temp directory to co-exist in the
directory where the script resides. While it is straightforward to
demonstrate how to process the uploading of a file, the permanent
location should usually be in a location not accessible from the
Apache server htdocs root.

TIP
The ereg() function call differs from earlier examples because there
are different name and value pairs when scripts are run from the
Apache server than when run from the run-time command line.

This subsection has covered how to read, write and upload files to your server. It also concludes
the earlier subsection “How to Use PHP.” The next subsection builds on the fundamental elements
of the programming language by demonstrating how to interface with the Oracle database. You may
find expanded coverage on the language at php.net or in Oracle Database 10g Express Edition PHP
Web Programming.

How to Use PHP and OCI8 to Access the Oracle Database
This subsection discusses the three connection types delivered by the OCI8 library. It also reviews
how you write SELECT, INSERT, UPDATE, and DELETE statements inside PHP programs using
SQL and PL/SQL statements. This subsection helps you see the benefits and risks of dynamically
building SQL statements. It shows you how to use OCI8 to bind scalar and compound variables—
scalar collections, system reference cursors, and large objects. You learn how to bind pass-by-
value and pass-by-reference variables in SQL and PL/SQL statements.

NOTE
While the code in prior portions of the appendix can run without
configuring the complete OPAL stack, you will need to either
manually configure your httpd.conf and php.ini files, or
run Zend for Oracle to configure them.

FIGURE C-2 Upload File web page

Appendix C: PHP Primer 659

OCI8 Connections
The Oracle Call Interface (OCI8) libraries provide three connection types to the Oracle database:

Standard Connections Build an RPC connection that is good for the duration of a
script’s execution unless explicitly closed by the script. All calls to the database in these
scripts use the same connection unless they open a unique connection by calling the
oci_new_connect() function. Standard connections place overhead on the server to
marshal and allocate resources that are dismissed when released by the script or after
the script terminates. There is no preserved state between HTTP requests to the server for
standard connections.

Unique Connections Build a unique RPC connection that is good during the duration
of a script’s execution unless explicitly closed by the script. Unique connections allow
a single script to have more than one open connection to the Oracle database, which
works well when you are using them to perform autonomous transactions. Autonomous
transactions run simultaneously rather than sequentially and are independent of each
other. Unique connections also place overhead on the server to marshal and allocate
resources that are dismissed when released by the script or after the script terminates.
There is no preserved state with a unique connection between HTTP requests to the server.

Persistent Connections Build an RPC connection that is good during the duration of a
script’s execution unless explicitly closed by the script. All calls to the database by these
scripts use the same connection unless they open a unique connection by calling the
oci_new_connect() function. Persistent connections place overhead on the server
to marshal and allocate resources that are not immediately dismissed after the script
terminates. There is preserved state between HTTP requests to the server for persistent
connections. Persistent connections are closed after a period of inactivity between
requests and require active DBA management to ensure that critical resources are not
locked without useful purpose.

The following demonstrates a non-persistent connection that queries the Oracle database
while avoiding the overhead of a commit action:

<?php
 // Connect with user, password, and TNS alias.
 if ($c = @oci_connect("php","php","xe"))
 {
 // Define a SQL statement.
 $stmt = "SELECT SYS_CONTEXT('USERENV','DB_NAME') AS DB FROM dual";

 // Parse SQL statement.
 $s = oci_parse($c,$stmt);

 // Execute deferring commit action on a query.
 oci_execute($s,OCI_DEFAULT);

 // Get and print column names.
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 print oci_field_name($s,$i).'
';

■

■

■

660 Oracle Database 11g PL/SQL Programming

 // Fetch rows, then iterate across columns.
 while (oci_fetch($s))
 {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 print oci_result($s,$i).'
';
 }

 // Close connection.
 oci_close($c);
 }
?>

You can replace the call to oci_connect() with calls to either oci_pconnect() or
oci_new_connect() to connect and query the database. Each of these connection modes uses
the constant OCI_DEFAULT as the default connection mode. Default connections require a call
to the oci_commit() function to make any change permanent. You can override the default
by using the OCI_COMMIT_ON_SUCCESS constant. Any call to oci_execute() using the
OCI_COMMIT_ON_SUCCESS value is managed as an autonomous transaction. Autonomous
transactions have two distinct behaviors: they commit any pending changes, and they terminate
any open transaction scope. The former is most useful when you are executing standalone INSERT,
UPDATE or DELETE statements but unnecessary overhead with ordinary queries. The latter
becomes important when working with queries or statements that start transactions and work with
LOB data types in an Oracle database. How you work within transaction scope and use LOB data
types is covered later in this appendix.

OCI8 Bind Variables
PHP programs exchange variables with SQL and PL/SQL statements two ways. One builds statements
by concatenating variables into a string like the $stmt variable. You expose your site to SQL
injection attacks when you paste variables into command strings. The other binds a variable
and data type into a parsed statement. Binding checks that you have a valid Oracle data type,
eliminating SQL injection attacks.

Pseudo-Binding Using the sprintf() Function
You mimic Oracle binding by using statement preparation like the following:

// Define a local variable.
$host = "SERVER_HOST";

// Define a SQL statement.
$stmt = sprintf("SELECT SYS_CONTEXT('USERENV','%s') AS HOSTNAME
 FROM dual",$host);

This approach also works using Oracle, but it is not really equivalent to binding a
variable. The sprintf() function lets you splice native data types into a string, but it is
like grafting the root of one plant to another’s trunk. The two become one after grafting.

Binding a variable lets you both assign and retrieve a value from a location in a parsed
statement. Oracle’s approach lets you bind scalar and compound variables. Compound
variables can be scalar collections, PL/SQL index-by tables, and LOBs.

Appendix C: PHP Primer 661

The next example demonstrates how you bind a variable into a query:

<?php
 // Return successful attempt to connect to the database.
 if ($c = @oci_connect("plsql","plsql","orcl"))
 {
 // Declare input variables.
 (isset($_GET['lname'])) ? $lname = $_GET['lname']
 : $lname = "[a-zA-Z]";

 // Declare array mapping column to display names.
$q_title = array("FULL_NAME"=>"Full Name"

 ,"TITLE"=>"Title"
 ,"CHECK_OUT_DATE"=>"Check Out"
 ,"RETURN_DATE"=>"Return");

 // Parse a query to a resource statement.
 $s = oci_parse($c,"SELECT cr.full_name
 , cr.title
 , cr.check_out_date
 , cr.return_date
 FROM current_rental cr
 WHERE REGEXP_LIKE(cr.full_name,:lname)");

// Bind a variable into the resource statement.
 oci_bind_by_name($s,":lname",$lname,-1,SQLT_CHR);

 // Execute the parsed query without a commit.
 oci_execute($s,OCI_DEFAULT);

 // Print the table header using calls to the query metadata.
 print '<table border="1" cellspacing="0" cellpadding="3">';

 // Print a open and close HTML row tags and column field names.
 print '<tr>';
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 print '<td class="e">'.$q_title[oci_field_name($s,$i)].'</td>';
 print "</tr>";

 // Read and print statement row return.
 while (oci_fetch($s))
 {
 // Print open and close HTML row tags and columns data.
 print '<tr>';
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 print '<td class="v">'.oci_result($s,$i).'</td>';
 print '</tr>';
 }

 // Print a close HTML table tag.
 print '</table>';

662 Oracle Database 11g PL/SQL Programming

 // Disconnect from database.
 oci_close($c);
 }
 else
 {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
";
 }
?>

The script also shows a formatting trick that lets you replace uppercase column names with
case-sensitive titles in an XHTML table. You do this by placing a function call inside an array
subscript reference.

Table C-8 explains the prototype and rules governing the oci_bind_by_name() function.
It lets you transfer data between your program and both SQL and PL/SQL statements. The
oci_bind_by_name() function works with scalar variables and compound variables defined
as SQL data types—these are scalar collections and LOBs. Table C-8 also covers the
oci_bind_array_by_name() function. It lets you bind PL/SQL index-by tables. PL/SQL index-by
tables are PL/SQL data types, not SQL data types. This means you have the ability to map and exchange
PL/SQL index-by tables and PHP arrays. It also provides you another alternative to do bulk operations
by reusing stored program units that have formal parameters defined as PL/SQL index-by table data types.

NOTE
At present you are limited to working with PL/SQL index-by tables of
scalar variables. This is like reducing functionality back to the bad old
Oracle 7.3.2 days, but Chapter 7 demonstrates how to write wrappers
to move PL/SQL index-by tables of structures into parallel arrays and
vice versa.

Subsequent subsections demonstrate how to use the binding functions from Table C-8. Some
of the examples require defining local variables—like collections, system reference cursors, and
LOB descriptors. Others require defining SQL and PL/SQL data types in the database schema.

OCI8 PL/SQL Index-By Tables
The next example shows you how to access the GET_PRESIDENTS stored procedure. It is an
overloaded procedure found in the WORLD_LEADERS package. You require some PL/SQL data
type definitions to make this example successful. The definitions are in the WORLD_LEADERS
package specification, as noted:

-- Define an associative array (PL/SQL Table) of numbers.
TYPE president_id_table IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;

-- Define three associative arrays (PL/SQL Table) of VARCHAR2 by size.
TYPE president_name_table IS TABLE OF VARCHAR2(60 CHAR)
 INDEX BY BINARY_INTEGER;
TYPE tenure_table IS TABLE OF VARCHAR2(9 CHAR)
 INDEX BY BINARY_INTEGER;
TYPE party_table IS TABLE OF VARCHAR2(24 CHAR)
 INDEX BY BINARY_INTEGER;

Appendix C: PHP Primer 663

TABLE C-8 OCI8 Library Binding Functions

Function Description

oci_bind_array_by_name() The oci_bind_array_by_name() function binds a numerically indexed
PHP array with a PL/SQL associative array, also known as a PL/SQL table before
Oracle Database 10g. The function returns a Boolean true when successful
and false when unsuccessful. As of PHP 5.1.4, this function can only bind
arrays of scalar Oracle data types, like VARCHAR2, NUMBER, DATE, et cetera.
Oracle development plans to add support for arrays of PL/SQL record types in a
future, and as yet unspecified, release. It has six parameters; four are mandatory,
and two are optional. The first and second parameters are passed by value; one
is a statement resource, and the second, a string name that maps to an Oracle
bind variable in a statement parsed by the oci_parse() function. The third
parameter is passed by reference, which means it can change during processing
but only when the PL/SQL parameter is set to IN/OUT mode. The remaining
arguments are passed by value. The fourth parameter is the number of items in the
list, and it must be 0 or a positive number. The fifth parameter is the maximum
size of the scalar values in the array. This parameter must be the physical size of a
target column when the column is defined in the data dictionary catalog, or one
greater than the maximum possible field size for dynamically built columns. You
build dynamic columns by concatenating results into a single string. The sixth
column is a designated data type from the following list of possible values:
SQLT_AFC – CHAR data type.
SQLT_AVC – CHARZ data type.
SQLT_CHR – VARCHAR2 data type.
SQLT_FLT – FLOAT data type.
SQLT_INT – INTEGER data type.
SQLT_LVC – LONG data type.
SQLT_NUM – NUMBER data type.
SQLT_ODT – DATE data type.
SQLT_STR – STRING data type.
SQLT_VCS – VARCHAR data type.
The oci_bind_array_by_name() function has the following pattern:
bool oci_bind_array_by_name(
 resource statement
,string bind_variable_name
,array &numeric_reference_array
,int maximum_elements
[,int maximum_field_length
[,int mapped_type]])

These type definitions provide the package PL/SQL-only data types that can be used by
package procedures. The procedures define formal parameters using the defined types. Other
packages in the same schema can also refer to these package data types by prefacing them with
the package name and a period. Packages in other schemas also require a grant of permissions
and then the name of the owning schema before the package name.

TIP
The process of putting schema, package, and data types is known as
attribute chaining in Oracle jargon.

664 Oracle Database 11g PL/SQL Programming

The first GET_PRESIDENTS procedure is one of several overloaded procedures in the
WORLD_LEADER package. Overloaded procedures reuse the same procedure name but have
distinct formal parameter signatures. The following procedure uses PL/SQL index-by tables as data
types in its signature:

PROCEDURE get_presidents
(term_start_in IN NUMBER
, term_end_in IN NUMBER

Function Description

oci_bind_by_name()
ocibindbyname()

The oci_bind_by_name() function binds a defined Oracle type to a PHP
variable. The variable can be any scalar variable or scalar collection but cannot
be used for an Oracle 10g associative array, also known as a PL/SQL table in
previous releases. You must use the oci_bind_array_by_name() function
when working with PL/SQL associative arrays. A scalar collection variable
can have a VARRAY or nested TABLE data type; these types are covered in
Chapter 7. The function returns a Boolean true when successful and false
when unsuccessful. It has five parameters; three are mandatory, and two are
optional. The first and second parameters are passed by value; one is a statement
resource, and the second, a string name that maps to an Oracle bind variable in
a statement parsed by the oci_parse() function. The third parameter is passed
by reference, which means it can change during processing but only when the
PL/SQL parameter is set to IN/OUT or OUT mode. The remaining arguments are
passed by value. The fourth parameter is the number of items in the list, and
it must be 0 or a positive number. The fifth parameter is the maximum size of
the scalar values in the array. Setting the maximum field length to -1 tells the
function to implicitly size the field at run time. The sixth column is a designated
data type from the following list of possible values:
SQLT_B_CURSOR – use for reference cursors, whether weakly or strongly typed.
SQLT_BIN – use for RAW column data type.
SQLT_BLOB – use for BLOB data type, that maps Binary Large objects.
SQLT_CFILE – use for CFILE data type.
SQLT_CHR – use for VARCHAR data types.
SQLT_CLOB – use for CLOB data type, that maps Character Large objects.
SQLT_FILE – use for BFILE data type.
SQLT_INT – use for INTEGER and NUMBER data types.
SQLT_LBI – use for LONG RAW data types.
SQLT_LNG – use for LONG data types.
SQLT_NTY – use for user-defined data types and user-defined scalar collections
that are either VARRAY and nested TABLE types.
SQLT_RDD – use for ROWID data type.
You need to allocate abstract types by calling the oci_new_descriptor()
before you bind them. Abstract types are LOB, ROWID, and BFILE data types. You
also need to call the oci_new_cursor() function before you bind a reference
cursor. The oci_bind_by_name() function has the following pattern:
bool oci_bind_by_name(
 resource statement
,string bind_variable_name
,array &numeric_reference_array
[,int maximum_field_length
[,int mapped_type]])

TABLE C-8 OCI8 Library Binding Functions (continued)

Appendix C: PHP Primer 665

, country_in IN VARCHAR2
, president_ids IN OUT PRESIDENT_ID_TABLE
, president_names IN OUT PRESIDENT_NAME_TABLE
, tenures IN OUT TENURE_TABLE
, parties IN OUT PARTY_TABLE) AS

BEGIN

 -- Define a Bulk Collect into parallel associative arrays.
 SELECT president_id pres_number
 , first_name||' '||middle_name||' '||last_name pres_name
 , term_start||'-'||term_end tenure
 , party
 BULK COLLECT
 INTO president_ids
 , president_names
 , tenures
 , parties
 FROM president
 WHERE country = country_in
 AND term_start BETWEEN term_start_in AND term_end_in
 OR term_end BETWEEN term_start_in AND term_end_in;

END get_presidents;

This version of the GET_PRESIDENTS procedure uses four pass-by-reference scalar
associative array types. The highlighted data types for the IN OUT mode variables are defined
in the WORLD_LEADER specification as noted. They actually fit better as OUT mode–only
variables, depending on what the procedure does.

The SELECT statement uses a BULK COLLECT operation. BULK COLLECT operations
build implicit cursors and read all return values INTO the target variables: president_ids,
president_names, tenures, and parties. The target variables are associative arrays that
are densely populated and indexed by numbers starting at 1. When the SELECT statement returns
null column values, they are added to the respective array and indexed. All arrays will have the
same number of elements and indexes in one array identify the same row in another array. Using
this approach, you create four parallel associative arrays. You can work these as compound
structures by using the mirrored index values in a single iterative structure.

Parsing Differences Between SQL and PL/SQL Statements
The SQL statement string in the last example differs from the connecting example because
there are actual line returns inside the string. This would fail in some languages like Java,
unless you encapsulate the strings on each line and then concatenate the lines. While it is a
lot of unnecessary work, you can implement that approach in your PHP code.

You cannot do the same thing when your statement calls a PL/SQL procedure or an
anonymous-block PL/SQL program unit. This fails because the PL/SQL parser can’t work
with tabs and line returns in a statement string. There is also a better solution than enclosing
a bunch of line-by-line strings in quotes and then concatenating them. You can use the
following strip_special_characters() function to prepare your PL/SQL statements:

666 Oracle Database 11g PL/SQL Programming

The following program uses the strip_special_characters() function to eliminate
tabs, line returns, and carriage returns, as follows:

<?php
 // Return successful attempt to connect to the database.
 if ($c = @oci_connect("plsql","plsql","orcl"))
 {
 // Declare input variables.
 (isset($_GET['begin'])) ? $t_start = (int) $_GET['begin']
 : $t_start = 1787;
 (isset($_GET['end'])) ? $t_end = (int) $_GET['end']
 : $t_end = (int) date("Y",time());
 (isset($_GET['country'])) ? $country = $_GET['country']
 : $country = "USA";

 // Declare a PL/SQL execution command.
 $stmt = "BEGIN
 world_leaders.get_presidents(:term_start
 ,:term_end
 ,:country
 ,:p_id
 ,:p_name
 ,:p_tenure
 ,:p_party);
 END;";

 // Strip special characters to avoid ORA-06550 and PLS-00103 errors.
 $stmt = strip_special_characters($stmt);

 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);

 $r_president_id = "";
 $r_president_name = "";
 $r_tenure = "";
 $r_party = "";

function strip_special_characters($str)
{
 $out = "";
 for ($i = 0;$i < strlen($str);$i++)
 if ((ord($str[$i]) != 9) && (ord($str[$i]) != 10) &&
 (ord($str[$i]) != 13))
 $out .= $str[$i];

 // Return character only strings.
 return $out;
}

This tidy function cleans up your code by making it more readable. You will find this
helpful later in the appendix.

Appendix C: PHP Primer 667

 // Bind PHP variables to the OCI input or in mode variables.
 oci_bind_by_name($s,':term_start',$t_start);
 oci_bind_by_name($s,':term_end',$t_end);
 oci_bind_by_name($s,':country',$country);

 // Bind PHP variables to the OCI output or in/out mode variable.
 oci_bind_array_by_name($s,':p_id',$r_president_id,100,38,SQLT_INT);
 oci_bind_array_by_name($s,':p_name',$r_president_name,100,10,SQLT_STR);
 oci_bind_array_by_name($s,':p_tenure',$r_tenure,100,10,SQLT_STR);
 oci_bind_array_by_name($s,':p_party',$r_party,100,24,SQLT_STR);

 // Execute the PL/SQL statement.
 if (oci_execute($s))
 {
 // Declare variable and open HTML table.
 $out = '<table border="1" cellpadding="3" cellspacing="0">';
 $out .= '<tr>';
 $out .= '<td class="e">#</td>';
 $out .= '<td class="e">President Name</td>';
 $out .= '<td class="e">Tenure</td>';
 $out .= '<td class="e">Party</td>';
 $out .= '</tr>';

 // Read parallel collections.
 for ($i = 0;$i < count($r_president_id);$i++)
 {
 $out .= '<tr>';
 $out .= '<td class="v">'.$r_president_id[$i].'</td>';
 $out .= '<td class="v">'.$r_president_name[$i].'</td>';
 $out .= '<td class="v">'.$r_tenure[$i].'</td>';
 $out .= '<td class="v">'.$r_party[$i].'</td>';
 $out .= '</tr>';
 }

 // Close HTML table.
 $out .= '</table>';
 }

 // Render table.
 print $out;

 // Disconnect from database.
 oci_close($c);
 }
 else
 {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
";
 }

 // Strip special characters, like carriage returns or line feeds and tabs.

668 Oracle Database 11g PL/SQL Programming

 function strip_special_characters($str)
 {
 $out = "";
 for ($i = 0;$i < strlen($str);$i++)
 if ((ord($str[$i]) != 9) && (ord($str[$i]) != 10) &&
 (ord($str[$i]) != 13))
 $out .= $str[$i];
 return $out;
 }
?>

This program demonstrates how to size a maximum return number for the PL/SQL index-by
tables. It uses only one of the index-by tables to govern the exit condition of the loop structure.
This can be done because all parallel index-by tables are assumed to have the same number of
rows.

TIP
Errors can happen when the parallel scalar arrays return unbalanced
value sets.

OCI8 Collections
SQL collections—VARRAY and nested tables—present another data type that you can use like
PL/SQL index-by tables. They differ from index-by tables in that they are user-defined SQL data
types. You must define them in a database schema, like the following for a VARRAY:

CREATE OR REPLACE TYPE president_name_varray
 AS VARRAY(100) OF VARCHAR2(60 CHAR);
/

A nested table has a similar creation process:

CREATE OR REPLACE TYPE president_name_ntable
 AS TABLE OF VARCHAR2(60 CHAR);
/

You should note nested tables exclude the index-by clause from PL/SQL index-by table
definitions. Once these are defined in your schema, you use the oci_new_collection() and
oci_bind_by_name() functions sequentially to define them in your PHP programs. Table C-9
contains three functions that define Oracle-specific compound data types. These functions define
scalar collections, system reference cursors, and LOB descriptors. LOB descriptors support large
objects stored in and out of the Oracle database.

You must define a collection in the database before you define an OCI-Collection
object instance in your program. The oci_new_collection() object constructor builds an
OCI-Collection instance. Defining the local OCI-Collection object is an extra step
beyond working with a PL/SQL index-by table.

The following defines an OCI-Collection variable for a nested table:

$president_copy = oci_new_collection($c,'PRESIDENT_NAME_NTABLE');

Appendix C: PHP Primer 669

Function Description

oci_new_collection()
ocinewcollection()

The oci_new_collection() function creates a PHP OCI-
Collection object that maps to an Oracle Collection variable. It
returns an OCI-Collection on success and false otherwise. At
writing, these types are limited to collections of scalar variables. Oracle
may extend the collection behavior to structures and instantiated PL/SQL
objects but has made no commitment as to when they will introduce
that behavior. The function has three parameters; two are mandatory,
and one is optional. The first parameter is a resource connection, and
the second is the data type name from the user/schema used to build
the connection. The optional third parameter lets you specify another
owning schema for the collection data type. The function has the
following pattern:
OCI-Collection oci_new_collection(
 resource connection
,string collection_type_name
[,string schema])

oci_new_cursor()
ocinewcursor()

The oci_new_cursor() function creates a system cursor resource
when successful and returns false otherwise. The function has one
parameter, a resource connection. The function has the following
pattern:
resource oci_new_cursor(
 resource connection)

oci_new_descriptor()
ocinewdescriptor()

The oci_new_descriptor() function creates a PHP OCI-Lob object
that maps to an Oracle LOB variable. It returns an OCI-Lob on success
and false otherwise. Table 14-1 covers the Oracle OCI-Lob library.
The function has two parameters; one is mandatory, and one is optional.
The first parameter is a resource connection and the second is the LOB
type. LOB data types are treated as abstract types along with Oracle
ROWID and FILE types. The following are the possible types:
OCI_D_FILE – sets the descriptor to manage binary or character files,
respectively BFILE and CFILE data types.
OCI_D_LOB – sets the descriptor to manage binary or character large
objects, respectively BLOB and CLOB data types.
OCI_D_ROWID – sets the descriptor to manage Oracle ROWID values,
which map the physical storage to file system blocks.
The function has the following pattern:
OCI-Lob oci_new_descriptor(
 resource connection
,int lob_type)

TABLE C-9 OCI8 Library SQL Object Type Creation Functions

After you parse the statement and define the OCI-Collection variable, you bind local
variables to parsed statements. Parsed statements can be SQL or PL/SQL statements. Bind
variables can be sent as IN mode–only, sent and received as IN OUT mode, or received as OUT
mode–only variables in PL/SQL stored procedures. You use the oci_bind_by_name() function
because OCI-Collections are SQL data types, as shown:

oci_bind_by_name($s,':r_president_name',$r_president_name,-1,SQLT_NTY);

670 Oracle Database 11g PL/SQL Programming

You then use the OCI-Collection methods to process elements in the collection. You can
find the number of elements using the size() method, or read a specific element by using the
getElem() method, like

for ($i = 0;$i < $r_president_id->size();$i++)
{
 $out .= '<tr>';
 $out .= '<td class="v">'.$r_president_id->getelem($i).'</td>';
 $out .= '<td class="v">'.$r_president_name->getElem($i).'</td>';
 $out .= '<td class="v">'.$r_tenure->getElem($i).'</td>';
 $out .= '<td class="v">'.$r_party->getElem($i).'</td>';
 $out .= '</tr>';
}

The same techniques for nested tables apply to VARRAYs. The differences between PL/SQL
index-by tables are: (a) you must define SQL data types before attempting to bind them; (b) you
use the oci_bind_by_name() function, not oci_bind_array_by_name(). More on object
access methods are in the subsection “Defining and Using Objects” earlier in the appendix.

OCI8 System Reference Cursors
PL/SQL benefits from a lookalike data type that mirrors result sets from SELECT statements. Oracle
developed the system reference cursor data type to meet this need. They can move result sets
from one program to another. System reference cursors act as pointers to a result set in a query
work area. You use them when you want to query data in one program and process it in another,
especially when the two programs are in different programming languages. You also have the
option of implementing a reference cursor two ways; one is strongly typed and the other weakly
typed reference cursors.

You explicitly define a strongly typed reference cursor by assigning a %ROWTYPE attribute to
the cursor. The %ROWTYPE attribute maps the structure from a catalog table or view in the database
to a variable. The variable then has the reference cursor as a data type. A reference cursor is also
known as a compound data type. You use strongly typed reference cursors when you need to
control the structure of input parameters to stored procedures or functions. You define a strongly
typed reference cursor inside a PL/SQL package specification by using the following syntax:

TYPE president_type_cursor IS REF CURSOR RETURN president%ROWTYPE;

You build weakly typed reference cursors dynamically at run time. They are more flexible
generally and can be reused by multiple structures. You can also define weakly typed reference
cursors in PL/SQL package specifications. They are useful as function return types when you
require polymorphic return types. The following is the definition used in the WORLD_LEADERS
package:

TYPE president_type_cursor IS REF CURSOR;

The preceding is a weakly typed reference cursor. You use weakly typed reference cursors
when you (a) require more flexibility with result sets, (b) return a result set that differs from any
catalog object, or (c) require polymorphic behaviors. Reusability of weakly typed reference
cursors is also a common coding practice.

The following GET_PRESIDENTS procedure uses three scalar input variables and returns one
reference cursor as an output variable:

Appendix C: PHP Primer 671

PROCEDURE get_presidents
(term_start_in IN NUMBER
, term_end_in IN NUMBER
, country_in IN VARCHAR2
, presidents OUT PRESIDENT_TYPE_CURSOR) AS
BEGIN
 -- Collect data for the reference cursor. OPEN presidents FOR
 SELECT president_id "#"
 , first_name||' '||middle_name||' '||last_name "Preisdent"
 , term_start||' '||term_end "Tenure"
 , party "Party"
 FROM president
 WHERE country = country_in
 AND term_start BETWEEN term_start_in AND term_end_in
 OR term_end BETWEEN term_start_in AND term_end_in;
END get_presidents;

You use the suffix to distinguish the formal parameter names from valid column names in the
SELECT statement. Substitution variables in SELECT statements must differ from valid column
names; otherwise, the SQL parser will ignore all substitution variable names that match valid
column names, using the column name values instead.

The PRESIDENTS variable is a weakly typed reference cursor defined in the WORLD_LEADERS
package specification. This means the reference cursor structure is set at run time. You use the
OPEN reference_cursor_name FOR syntax followed by a SELECT statement to open a
reference cursor. This explicitly opens a SQL cursor and assigns the query work area pointer to
the run-time instance of the GET_PRESIDENTS procedure, which is then returned to the calling
program.

TIP
Oracle reference cursors must be explicitly called and cannot be
referenced in implicit cursor management tools, like a PL/SQL FOR
loop.

NOTE
All rows are selected and placed in a query work area in the SGA
when you explicitly open a cursor. The pointer to that query work area
is a reference cursor, which is returned to the calling program, as done
in the ReferenceCursor.php script.

The following program takes three URL parameters, begin, end, and country. You limit the
number of rows returned by providing values to the starting and ending term parameters—begin
and end respectively. Absent those parameters, the program returns all former and current
presidents of the U.S.A., as found in the code:

-- This is found in ReferenceCursor.php on the publisher's web site.

<?php
 // Return successful attempt to connect to the database.
 if ($c = @oci_connect("php","php","xe"))
 {
 // Declare input variables.

672 Oracle Database 11g PL/SQL Programming

 (isset($_GET['begin'])) ? $t_start = (int) $_GET['begin']
 : $t_start = 1787;
 (isset($_GET['end'])) ? $t_end = (int) $_GET['end']
 : $t_end = (int) date("Y",time());
 (isset($_GET['country'])) ? $country = $_GET['country']
 : $country = "USA";

 // Declare a PL/SQL execution command.
 $stmt = "BEGIN
 world_leaders.get_presidents(:term_start
 ,:term_end
 ,:country
 ,:return_cursor);
 END;";

 // Strip special characters to avoid ORA-06550 and PLS-00103 errors.
 $stmt = strip_special_characters($stmt);

 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);

 // Declare a return cursor for the connection.
$rc = oci_new_cursor($c);

 // Bind PHP variables to the OCI input or in mode variables.
 oci_bind_by_name($s,':term_start',$t_start);
 oci_bind_by_name($s,':term_end',$t_end);
 oci_bind_by_name($s,':c',$country);

 // Bind PHP variables to the OCI output or in/out mode variable.
oci_bind_by_name($s,':return_cursor',$rc,-1,OCI_B_CURSOR);

 // Execute the PL/SQL statement.
 oci_execute($s);

 // Access the returned cursor.
oci_execute($rc);

 // Print the table header with known labels.
 print '<table border="1" cellpadding="3" cellspacing="0">';

 // Set dynamic labels control variable true.
 $label = true;

 // Read the contents of the reference cursor.
 while($row = oci_fetch_assoc($rc))
 {
 // Declare header and data variables.
 $header = "";
 $data = "";

Appendix C: PHP Primer 673

 // Read the reference cursor into a table.
 foreach ($row as $name => $column)
 {
 // Capture labels for the first row.
 if ($label)
 {
 $header .= '<td class="e">'.$name.'</td>';
 $data .= '<td class="v">'.$column.'</td>';
 }
 else
 $data .= '<td class=v>'.$column.'</td>';
 }

 // Print the header row once.
 if ($label)
 {
 print '<tr>'.$header.'</tr>';
 $label = !$label;
 }

 // Print the data rows.
 print '<tr>'.$data.'</tr>';
 }

 // Print the HTML table close.
 print '</table>';

 // Disconnect from database.
 oci_close($c);
 }
 else
 {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
";
 }

 // Strip special characters, like carriage returns or line feeds and tabs.
 function strip_special_characters($str)
 {
 $out = "";
 for ($i = 0;$i < strlen($str);$i++)
 if ((ord($str[$i]) != 9) && (ord($str[$i]) != 10) &&
 (ord($str[$i]) != 13))
 $out .= $str[$i];
 return $out;
 }
?>

This program uses oci_new_cursor() function to build a local reference cursor, against
which you bind a pass-by-reference variable using the oci_bind_by_name() function. You

674 Oracle Database 11g PL/SQL Programming

also use the oci_bind_by_name() function to bind three input variables as pass-by-value
variables. The optional fourth and fifth parameters in the oci_bind_by_name() function are
unnecessary when passing the string and numeric literal values. These optional parameters are
implicitly managed as VARCHAR2 data types. Oracle SQL implicitly downcasts a VARCHAR2
containing a number to a NUMBER data type because there is no loss of precision.

Reference cursors require the fifth parameter in the oci_bind_by_name() function to
designate the proper Oracle data type, so you must also provide the fourth parameter too. Using
a -1 for the maximum-length fourth parameter is the simplest way to ensure that changes in
the cursor do not require that you modify the max_field_length parameter for each call to the
oci_bind_by_name() function. The fifth parameter should be OCI_B_CURSOR, which
represents a system reference cursor.

OCI Large Objects
LOB and BFILE data types are highly specialized types in the Oracle database. Oracle uses the
DBMS_LOB stored package to read from and write to LOB data types when working inside a
session and transaction scope. The constants, functions, and procedures of the DBMS_LOB
package service requests from the OCI-Lob object provided in the OCI8 function library.

Table C-10 covers the oci_new_descriptor() function. This function lets you create
a link between an open large object and your PHP program code.

The contents of LOB columns are not stored in-line with other column values of a table. They
are stored out-of-line. Only a pointer is stored in the column value with other scalar data types.

Function Description
oci_new_descriptor() The oci_new_descriptor() function creates a local

PHP OCI-Lob object that maps to an Oracle LOB variable.
It returns an OCI-Lob type variable on success and
false when encountering an error. The function has two
parameters; one is mandatory, and the other is optional. The
first parameter is a resource connection, and the second
is an Oracle data resource type, which is conveniently
OCI_D_LOB by default. (Note: LOB data types are treated as
abstract types along with Oracle ROWID and FILE types.)
The function supports following resource types:
OCI_D_FILE – sets the descriptor to manage binary or
character files, respectively BFILE and CFILE data types.
OCI_D_LOB – sets the descriptor to manage binary or
character large objects, respectively BLOB and CLOB
data types.
OCI_D_ROWID – sets the descriptor to manage Oracle ROWID
values, which map the physical storage to file system blocks.
The function has the following pattern:
OCI-Lob oci_new_descriptor(
 resource connection
[,int type])

TABLE C-10 OCI8 Library Large Object Descriptor Function

Appendix C: PHP Primer 675

The pointer is known as a descriptor because it describes the internal location of a LOB column.
Some distinguish between descriptors when they apply to internally versus externally stored
data—calling them respectively descriptors and locators. They use locator for externally stored
files because the DBMS_LOB.GETFILENAME procedure returns a filename.

There are also limitations governing how you use descriptors and locators in SQL queries and
transactions compared to anonymous- and named-block PL/SQL programs. The differences have
to do with how they maintain references to descriptors or locators in the scope defined by the
DBMS_LOB package. The DBMS_LOB package defines scope by imposing a single transaction rule,
which limits both descriptors and locators to a scope that begins and ends in a single transaction.

You start a transaction against the database with an INSERT, UPDATE, or DELETE statement,
or by using a SELECT statement with a FOR UPDATE or RETURNING column_value INTO
variable_name clause. You end a transaction by using the COMMIT statement to make
permanent any change to the data. The oci_execute() function starts and ends a transaction
by default when executing a statement, which acts as an autonomous transaction. Autonomous
transactions open and close a descriptor or locator reference before you can use the reference.
Avoiding the default implicit COMMIT statement lets you use the oci_execute() function to
interact sequentially with the database.

Oracle LOB data types are accessible through the OCI-Lob object. You must do three things
to access and/or manipulate the contents of a LOB. They are: (a) you define a local descriptor
variable by using the oci_new_descriptor() function; (b) you map the descriptor variable
to a bind variable; and (c) you bind the local variable to the SQL or PL/SQL statement’s bind
variable. Then, you can use the local descriptor or locator variable name as the instance of the
OCI-Lob object and use its supplied methods.

Chapter 8 covers the process for handling Oracle LOBs. The following QueryLob.php
program demonstrates the easiest way to access a CLOB descriptor, by using the oci_fetch()
function:

<?php
 // Return successful attempt to connect to the database.
 if ($c = @oci_connect("php","php","xe"))
 {
 // Declare input variables.
 (isset($_GET['id'])) ? $id = (int) $_GET['id'] : $id = 1;
 (isset($_GET['name'])) ? $name = $_GET['name'] : $name = "Washington";

 // Declare a SQL SELECT statement returning a CLOB.
 $stmt = "SELECT biography
 FROM president
 WHERE president_id = :id";

 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);

 // Bind PHP to OCI variable(s).
 oci_bind_by_name($s,':id',$id);

 // Execute the PL/SQL statement.
 if (oci_execute($s))
 {

676 Oracle Database 11g PL/SQL Programming

 // Return a LOB descriptor, and access it with OCI methods.
 while (oci_fetch($s))
 {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 if (is_object(oci_result($s,$i)))
 {
 if ($size = oci_result($s,$i)->size())

 $data = oci_result($s,$i)->read($size);

 else

 $data = " ";
 }
 else
 {
 if (oci_field_is_null($s,$i))
 $data = " ";
 else
 $data = oci_result($s,$i);
 }
 } // End of the while(oci_fetch($s)) loop.

 // Format HTML table to display biography.
 $out = '<table border="1" cellpadding="3" cellspacing="0">';
 $out .= '<tr>';
 $out .= '<td align="center" class="e">Biography of '.$name.'</td>';
 $out .= '</tr>';
 $out .= '<tr>';
 $out .= '<td class="v">'.$data.'</td>';
 $out .= '</tr>';
 $out .= '</table>';
 }

 // Print the HTML table.
 print $out;

 // Disconnect from database.
 oci_close($c);
 }
 else
 {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
";
 }
?>

Using the oci_fetch() function in a WHILE loop is clearly the most consistent and easiest
approach for queries returning scalar and LOB column types from SQL statements and reference
cursors. The algorithm provided loops through rows and then the columns while checking for

Appendix C: PHP Primer 677

objects and null values that require special handling. The logic shown in the program manages all
possibilities because CLOB variables can be null, empty, and populated CLOB column values.

TIP
Don’t attempt to skip the two-step process of sizing and reading by
using the single-step OCI-Lob->load() method, because you can
run out of memory with truly large objects.

You can run this program by using the following URL when you have inserted data into the
CLOB BIOGRAPHY column:

http://hostname.domain/QueryLob.php?id=1&name=Washington

A similar approach works with BLOB, NBLOB, and NCLOB data types. You would also store a
MIME content-type in another column when BLOBs contain images, portable document format,
or other file types. The MIME content-type would enable your web application to know how the
web page should render the content.

You can use the following HTML form to upload a file containing the biography of George
Washington to the PRESIDENT table in the PHP schema:

<form id="uploadForm"
 action=http://hostname.domain/UploadBioSQL.php
 enctype="multipart/form-data"
 method="post">
 <table border=0 cellpadding=0 cellspacing=0>
 <tr>
 <td width=125>President Number</td>
 <td><input id="id" name="id" type="text"></td>
 </tr>
 <tr>
 <td width=125>President Name</td>
 <td><input id="name" name="name" type="text"></td>
 </tr>
 <tr>
 <td width=125>Select File</td>
 <td><input id="uploadfilename" name="userfile" type="file"></td>
 </tr>
 <tr>
 <td width=125>Click Button to</td>
 <td><input type="submit" value="Upload File"></td>
 </tr>
 </table>
</form>

NOTE
You need to enter your hostname and domain into the action attribute
of the HTML FORM tag for this to work in your environment.

You should enter data as shown in Figure C-3 when you’re uploading George Washington’s
biography. The president’s name is only used as part of the biography display, and you can enter
the full name if you prefer.

678 Oracle Database 11g PL/SQL Programming

The form calls the UploadBioSQL.php script. This script converts the uploaded file into a
string, updates the CLOB BIOGRAPHY column with the string, and then queries the CLOB column:

-- This is found in UploadBioSQL.php on the publisher's web site.

<?php
 // Displayed moved file in web page.
 $biography = process_uploaded_file();

 // Return successful attempt to connect to the database.
 if ($c = @oci_connect("php","php","xe"))
 {
 // Declare input variables.
 (isset($_POST['id'])) ? $id = (int) $_POST['id'] : $id = 1;
 (isset($_POST['name'])) ? $name = $_POST['name'] : $name = "Washington";

 // Declare a PL/SQL execution command.
 $stmt = "UPDATE president
 SET biography = empty_clob()
 WHERE president_id = :id
 RETURNING biography
 INTO :descriptor";

 // Strip special characters to avoid ORA-06550 and PLS-00103 errors.
 $stmt = strip_special_characters($stmt);

 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);

 // Define a descriptor for a CLOB.
 $rlob = oci_new_descriptor($c,OCI_D_LOB);

FIGURE C-3 Upload Biography web page

Appendix C: PHP Primer 679

 // Define a variable name to map to CLOB descriptor.
 oci_define_by_name($s,':descriptor',$rlob,SQLT_CLOB);

 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);
 oci_bind_by_name($s,':descriptor',$rlob,-1,SQLT_CLOB);

 // Execute the PL/SQL statement.
 if (oci_execute($s,OCI_DEFAULT))
 {
 $rlob->save($biography);
 oci_commit($c);
 query_insert($id,$name);
 }

 // Disconnect from database.
 oci_close($c);
 }
 else
 {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
";
 }

 // Query the updated record.
 function query_insert($id,$name)
 {
 // Return successful attempt to connect to the database.
 if ($c = @oci_new_connect("php","php","xe"))
 {
 // Declare a SQL SELECT statement returning a CLOB.
 $stmt = "SELECT biography
 FROM president
 WHERE president_id = :id";

 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);

 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id);

 // Execute the PL/SQL statement.
 if (oci_execute($s))
 {
 // Return a LOB descriptor as the value.
 while (oci_fetch($s))
 {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 if (is_object(oci_result($s,$i)))
 {
 if ($size = oci_result($s,$i)->size())

680 Oracle Database 11g PL/SQL Programming

 $data = oci_result($s,$i)->read($size);
 else
 $data = " ";
 }
 else
 {
 if (oci_field_is_null($s,$i))
 $data = " ";
 else
 $data = oci_result($s,$i);
 }
 } // End of the while(oci_fetch($s)) loop.

 // Format HTML table to display biography.
 $out = '<table border="1" cellpadding="3" cellspacing="0">';
 $out .= '<tr>';
 $out .= '<td align="center" class="e">Biography of '.$name.'</td>';
 $out .= '</tr>';
 $out .= '<tr>';
 $out .= '<td class="v">'.$data.'</td>';
 $out .= '</tr>';
 $out .= '</table>';
 }

 // Print the HTML table.
 print $out;

 // Disconnect from database.
 oci_close($c);
 }
 else
 {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
";
 }
 }

 // Manage file upload and return file as string.
 function process_uploaded_file()
 {
 // Declare a variable for file contents.
 $contents = "";

 // Define the upload file name for Windows or Linux.
 if (ereg("Win32",$_SERVER["SERVER_SOFTWARE"]))
 $upload_file = getcwd()."\\temp\\".$_FILES['userfile']['name'];
 else
 $upload_file = getcwd()."/temp/".$_FILES['userfile']['name'];

 // Check for and move uploaded file.

Appendix C: PHP Primer 681

 if (is_uploaded_file($_FILES['userfile']['tmp_name']))
 move_uploaded_file($_FILES['userfile']['tmp_name'],$upload_file);

 // Open a file handle and suppress an error for a missing file.
 if ($fp = @fopen($upload_file,"r"))
 {
 // Read until the end-of-file marker.
 while (!feof($fp))
 $contents .= fgetc($fp);

 // Close an open file handle.
 fclose($fp);
 }

 // Return file content as string.
 return $contents;
 }

 // Strip special characters, like carriage returns or line feeds and tabs.
 function strip_special_characters($str)
 {
 $out = "";
 for ($i = 0;$i < strlen($str);$i++)
 if ((ord($str[$i]) != 9) && (ord($str[$i]) != 10) &&
 (ord($str[$i]) != 13))
 $out .= $str[$i];

 // Return pre-parsed SQL statement.
 return $out;
 }
?>

The $rlob->save($biography) call updates to the BIOGRAPHY column with the uploaded
biography from an excerpt from the www.whitehouse.gov/history/presidents/ web site. Then, it
closes the transaction context opened by the UPDATE statement by calling the oci_commit()
function. After closing the transaction state, the program calls the local query_insert() function
to display the uploaded biography. The UploadBioSQL.php script displays the newly upgraded
biography as shown in Figure C-4.

This subsection has demonstrated how to insert and update LOBs stored in the database using
SQL. You can also write PL/SQL stored procedures to read and write LOBs.

OCI8 Library Externally Stored BFILE Type
Unlike CLOB data types that can be null, empty, or populated, BFILE columns are either null or
not null. They are also stored externally from the database.

The steps to configure your environment require you to (a) create an Oracle DIRECTORY
reference, (b) create an Apache virtual alias and directory, (c) update a column with a BFILE
locator, and (d) copy the physical file into the mapped directory. Chapter 8 has the specifics of
these configuration steps. After completing these steps, you can confirm the setup with a single
query using the DBMS_LOB.GETLENGTH function.

www.whitehouse.gov/history/presidents/

682 Oracle Database 11g PL/SQL Programming

FIGURE C-4 Uploaded Biography web page

Configuring the Oracle and Apache Environment
You need to define a DIRECTORY reference in the database that points to a physical
directory where you will store the binary files. You create a customized directory for these
examples by creating a DIRECTORY reference named MY_DIRECTORY, as shown:

Linux or Unix

CREATE DIRECTORY my_directory AS
'/var/www/html/photo';

Windows

CREATE DIRECTORY my_directory AS
'C:\Program Files\Apache Group\Apache2\htdocs\photo';

Next, you grant READ privilege to your PHP schema as the SYSTEM user. The following
command grants the READ privilege on a directory to the PHP user/schema:

GRANT READ ON DIRECTORY my_directory TO php;

After you modify the database, you need to configure an alias and directory in your
httpd.conf file, as follows for your respective platform:

Linux or Unix

Alias /mydirectory/ "/var/www/html/photo/"

<Directory "/var/www/html/photo">
 Options None
 AllowOverride None
 Order allow,deny

Appendix C: PHP Primer 683

Querying a BFILE name requires calling the FILEGETNAME procedure of the DBMS_LOB
package, and mapping the directory alias to a filename. This can lead some to say that you can’t
use SQL to navigate the BFILE locator. There are actually several alternative approaches to
supplementing the default Oracle database environment. The easiest way is to write a wrapper
function over the DBMS_LOB.FILEGETNAME procedure.

The GET_BFILENAME function in Chapter 8 creates an effective wrapper to the
DBMS_LOB.FILEGETNAME procedure. You can use a simple query when the GET_BFILENAME()
wrapper translates the locator to a filename, as shown in the following code:

-- This is found in QueryPhotoSQL.php on the publisher's web site.

<?php
 // Return successful attempt to connect to the database.
 if ($c = @oci_connect("php","php","xe"))
 {
 // Declare input variables.
 (isset($_GET['id'])) ? $id = (int) $_GET['id'] : $id = 1;
 (isset($_GET['name'])) ? $name = $_GET['name'] : $name = "Washington";

 // Declare a PL/SQL execution command.
 $stmt = "SELECT GET_BFILENAME(president_id) AS file_name
 FROM president
 WHERE president_id = :id";

 // Parse a query through the connection.
 $s = oci_parse($c,$stmt);

 // Bind PHP variables to the OCI types.
 oci_bind_by_name($s,':id',$id,-1,SQLT_INT);

 // Execute the PL/SQL statement.
 if (oci_execute($s))
 {
 // Return a LOB descriptor as the value.

 Allow from all
</Directory>

Windows

Alias /mydirectory/ "C:/Program Files/Apache Group/Apache2/htdocs/photo/"

<Directory "C:/Program Files/Apache Group/Apache2/htdocs/photo">
 Options None
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

The Apache HTTP server needs to be stopped and started after you change the directives
of the httpd.conf file. You restart Apache HTTP server using the apachectl utility in
Linux or Unix and the Apache service in Microsoft Windows.

684 Oracle Database 11g PL/SQL Programming

 while (oci_fetch($s))
 {
 for ($i = 1;$i <= oci_num_fields($s);$i++)
 $file_name = oci_result($s,$i);
 } // End of the while(oci_fetch($s)) loop.

 // Format HTML table to display photograph.
 $out = '<table border="1" cellpadding="3" cellspacing="0">';
 $out .= '<tr>';
 $out .= '<td align="center" class="e">Photo of '.$name.'</td>';
 $out .= '</tr>';
 $out .= '<tr>';
 $out .= '<td align="center" class="v" valign="center">';
 if (!is_null($file_name))
 $out .= '';
 else
 $out .= 'No available photo';
 $out .= '</td>';
 $out .= '</tr>';
 $out .= '</table>';
 }

 // Print the HTML table.
 print $out;

 // Disconnect from database.
 oci_close($c);
 }
 else
 {
 // Assign the OCI error and format double and single quotes.
 $errorMessage = oci_error();
 print htmlentities($errorMessage['message'])."
";
 }
?>

The SQL SELECT statement calls the GET_BFILENAME function and returns the filename to a
SQL statement. The DIRECTORY reference for the image is managed in the program as a relative
reference to the script’s current directory.

This section has demonstrated how to query a BFILE object using a SQL SELECT statement.
Chapter 8 demonstrates how you write a wrapper function to this Oracle built-in procedure. The
wrapper function overcomes how the DBMS_LOB.GETFILENAME procedure receives and returns
actual parameters.

Summary
This primer has discussed the advantages you’ll find when developing web applications using the
PHP programming language and Oracle Database 11g. It has also demonstrated how you use the
PHP programming language; and how you work with Oracle advanced data types. It covered
how you use the OCI8 library to work with collections, system reference cursors, LOBs, and
external binary files. More complete coverage is found in the Oracle Database 10g Express
Edition PHP Web Programming book.

APPENDIX
D

Oracle Database
Java Primer

685

686 Oracle Database 11g PL/SQL Programming

his appendix offers a basic primer on Java, covering how you use the Java Database
Connectivity (JDBC) model to access an Oracle database. It provides PL/SQL
developers supporting references to work through examples in Chapters 8, 13,
and 15. This appendix covers the following:

Java and JDBC architecture

Configuring the Java and Oracle environment

Java programming language primer

Testing a client-side or thin-driver JDBC connection

Accessing scalar variables

Writing and accessing large objects

Java and JDBC Architecture
Java is an object-oriented (OO) programming language that is portable across platforms. This
means you can write one program and then run it on Linux, Unix, or Microsoft Windows
operating systems. Java accomplishes this by compiling the programs into Java byte code. Byte
code, also known as byte streams, runs inside virtual machines that are known as Java Virtual
Machines (JVMs).

Virtual machines create self-contained environments. JVM environments are interfaces between
Java byte code and operating system services. JVMs run on all major operating systems. JVMs are
written in the C/C++ programming language and compiled individually for each platform. Java
programs run inside the JVM with all the rights and privileges granted to the JVM by the operating
system. The java.policy and java.security files set permissions for how all Java programs
run inside a JVM.

Java provides networking libraries that let you pass messages between different JVMs. Messages
communicate between JVMs through sockets. A socket is built between two ephemeral ports—one
where it sends the message and another where it listens for incoming messages. Java communicates
with databases by using the JDBC libraries. Java also lets you build Java Servlets, known as JServlets.
JServlets let you handle URL requests, as for an Apache HTTP Server. Commercial Oracle databases
also allow you to write and deploy Java programs in the database. You write PL/SQL programs as
interfaces to these internally stored libraries. The interfaces are known as PL/SQL wrappers.

Similar permissions to those found in the java.policy and java.security files for external
programs are also found in the Oracle database. These policy files enable or restrict how Java
programs work inside the Oracle database. You configure these policy files by using the functions
and procedures found in the DBMS_JAVA package. Changes to these configuration files require
you to connect using the SYSDBA role.

Oracle provides three JDBC drivers: the client-side or thin driver, the Oracle Call Interface
(OCI8) or thick driver, and the server-side internal driver. The drivers have specific roles that
govern how Java works with the database. The OCI and server-side internal drivers support Java
stored inside the database. The OCI can also support external programs resident on a server with

■

■

■

■

■

■

T

Appendix D: Oracle Database Java Primer 687

an Oracle server or client installation. The client-side or thin driver acts independent of a local
Oracle database or client installation. The thin driver lets you connect remotely to the Oracle
instance through the Oracle listener. The listener transfers the incoming request to the database
and opens a connection to it.

Configuring and verifying your ability to use Java programs is critical to deploying the technology.
You cannot connect without setting appropriate PATH and CLASSPATH environment variables.
The next section discusses how to configure and test your Java installation by connecting to the
Oracle database instance.

Configuring the Oracle Java Environment
The Oracle database ships with the necessary libraries to create and run Java programs. Oracle
Database 11g ships with the Oracle JDBC libraries for Java 1.4, 5, and 6. You should note Sun
changed the version naming convention with Java 1.5, making it Java 5, and so forth.

You need to set your PATH and CLASSPATH variables to work with the Java programming
language. You can configure Java many ways because there are many ways to deploy your Java
SDK. While you can install a separate Java SDK for external Java programs, you’ll need to use the
Java SDK shipped with the Oracle database for locally stored programs. The following assumes
you’re using the Java 6 SDK from the Oracle database, and provides syntax for the Microsoft
Windows and Unix platforms, like Linux.

Windows

C:> set PATH=%PATH%;C:%ORACLE_HOME%\jdk\bin
C:> set CLASSPATH=%CLASSPATH%;C:%ORACLE_HOME%\jdbc\lib\ojdbc6.jar

Unix

export PATH=$PATH:/<mount>/$ORACLE_HOME/jdk/bin
export CLASSPATH=$CLASSPATH:/<mount>/$ORACLE_HOME/jdbc/lib/ojdbc6.jar

You should now be able to test basic Java programs. Source files are native Java files before
compilation. They are written as plain text files and adhere to the syntax rules of the Java programming
language. Class files are compiled Java source files, and they are stored in Java byte code or
compressed formats such as Java archive (JAR) files.

You can find a nice Java tutorial at http://java.sun.com/docs/books/tutorial/index.html. This
appendix is a short version to get you up and running with Java programs. There are two executables
that you’ll need to compile and run Java programs:

javac Compiles your text file Java programs into Java byte code

java Runs your compiled Java byte code programs

The file naming convention in Java is case-sensitive, and you should ensure you name files
consistent with the web-based code example files. If you attempt to compile a Java file when the
filename and class name are different, you’ll receive an error. Also, the file extension for Java
programs is always a lowercase .java.

■

■

http://java.sun.com/docs/books/tutorial/index.html

688 Oracle Database 11g PL/SQL Programming

The javac executable compiles text files into Java byte code. Compiled code is known as
Java class files. The JVM interprets Java class files at run time by using the java executable.

Java uses a main() method to start a program from the command line. The main() method
acts as the launching pad for the program when calling it from the java executable. You can
only use classes without a main() method as class instances inside other Java class files.

The smallest footprint for a Java program is a Java class with only a main() method
definition. The following illustrates a basic program. It defines a class that contains only a
main() method. The main() method calls a static method to print a string to standard output.
This program lets you check whether you have correctly configured your Java environment:

Microsoft Windows Presents Challenges to Java
Microsoft Windows is a case-insensitive operating system, while Linux and Unix are case
sensitive. The case matters when you create files in Windows. You can change the case of
a filename by using the RENAME command.

The filename’s case can differ from the case provided as an argument to the javac
program on the Windows platform. For example, a WriteReadCLOB.java file can be
compiled as WriteReadCLOB.class without raising an error. However, the case for the
class filename must exactly match the name defining the class in the source code. When it
doesn’t, you’ll get the following error when you attempt to compile the Java source code:

C:\JavaDev>javac WriteReadCLOB.java
WriteReadCLOB.java:32: class WriteReadCLOB is public, should be declared in a file named
WriteReadCLOB.java
public class WriteReadCLOB extends JFrame {
 ^
1 error

There is another nuance you need to understand. No compilation errors are raised
when the filename matches the case of the internal source but the name differs as an
argument to the javac executable. This generates a run-time error:

C:\JavaDev>java WriteReadCLOB
Exception in thread "main" java.lang.NoClassDefFoundError: WriteReadCLOB (wrong name:
WriteReadCLOB)
 at java.lang.ClassLoader.defineClass1(Native Method)
 at java.lang.ClassLoader.defineClass(ClassLoader.java:620)
 at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:124)
 at java.net.URLClassLoader.defineClass(URLClassLoader.java:260)
 at java.net.URLClassLoader.access$000(URLClassLoader.java:56)
 at java.net.URLClassLoader$1.run(URLClassLoader.java:195)
 at java.security.AccessController.doPrivileged(Native Method)
 at java.net.URLClassLoader.findClass(URLClassLoader.java:188)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:306)
 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:276)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:251)
 at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:319)

The solution is twofold: First, always remember to name the files the same as the
source file class name. Second, always compile a class using the same case as the source
file class name.

Appendix D: Oracle Database Java Primer 689

-- This is found in HelloWorld.java on the publisher's web site.
public class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World."); }}

Assuming you’re at the command line in the same directory as the Java program, use the
following syntax to compile the file:

javac HelloWorld.java

You may then execute the Java program class file:

java HelloWorld

If it executes successfully, you will see the following output:

Hello World.

You have now configured and verified your Java environment. The next section provides a
whirlwind tour of the Java programming language.

Java Programming Language Primer
The Java programming language was originally developed to support embedded devices. The
embedded device language Oak was renamed Java in the early 1990s. Java is an object-oriented
programming language. This means that the basic programming unit is known as an object or
class. The programming language also shares many syntax rules with the C++ programming
language.

Java Basics
The language defines a class by specifying four items. The first item is an optional access modifier,
which can be public, protected, private, or default. The compiler assumes a default access
modifier when one is not provided. The second item is a reserved word class. The third is a
case-sensitive class name. The fourth is an implementation inside curly braces. Curly braces
designate your coding blocks—class, condition if-then-else, loop, method, et cetera. The generic
prototype of a class is

[public | protected | private] class class_name [extends parent_class] {}

Access modifiers determine who can execute a copy of the class. Table D-1 lists the access
modifiers. You use access modifiers to qualify classes, variables, and methods. Classes can
contain variable definitions, declarations, nested classes (known as inner classes), and methods.
You should also organize your Java classes into packages. Packages act like database user
accounts, and access modifiers act like grants to users. Packages provide libraries of related
classes that work cooperatively to solve business problems.

The extends clause is optional in your code. You extend the base Object class by default.
Java is a single-root node object hierarchy, and the Object class is the topmost class file. All
classes inherit the base behaviors of the Object class. Classes that extend the behavior of a child
node of the Object class inherit all behaviors of their parent class, as well as of the parent class
antecedents up to and including the Object class.

Interfaces are also optional. Interfaces specify methods that classes must implement. They let
you define a general set of behaviors for a set of classes.

690 Oracle Database 11g PL/SQL Programming

Packages are directories where you place your code before creating libraries. Libraries are
known as Java archive (JAR) files. You assign directories before the class definition, using a
prototype like

package company_name.directory_name.subdirectory_name;

For example, a company name of plsql and package name of fileio would look like
the folder structure in Figure D-1. After you define your library of Java classes, you can use the
jar executable to create a Java archive. You can then use the code in the Java archive file by
referencing it in your CLASSPATH environment variable.

The package command must be the first program in your class file. It is followed by any
importing commands. You import other classes that you use inside your class implementation.
The following prototype imports a Component class from the awt package of the rt.jar Java
archive:

import java.awt.Component;

There was no reference to the rt.jar file when you set the CLASSPATH earlier. None is
required, because the Java compiler and run-time executables know where the file is located and
it is built into the compiler configuration.

You can define attributes and methods in your class implementation. The naming rules differ
from the convention. The rules are that a variable or method name (also known as an identifier)
can include characters, digits, underscores, and dollar signs. Variable names cannot use any of
the reserved words found in Table D-2.

You also define variables by specifying a valid type followed by a name or identifier. Java has
eight primitive types that are in Table D-3. These types qualify characters, numbers, and Boolean
true and false values. Any class in your CLASSPATH source may also define a variable type, such
as java.lang.String.

Access Modifier Access from
Same Class

Access from
Same Package

Access from
Subclass

Access from
Another Package

public ✓ ✓ ✓ ✓

protected ✓ ✓ ✓

(default) ✓ ✓

private ✓

TABLE D-1 Access Modifiers

FIGURE D-1 Package hierarchy for FileIO.jar

Appendix D: Oracle Database Java Primer 691

abstract Continue float new switch

assert Default goto package synchronized

boolean Do if private this

break Double implements protected throw

byte Else import public throws

case Enum instanceof return transient

catch Extends int short try

char For interface static void

class Final long strictfp volatile

const Finally native super while

TABLE D-2 Java Reserved Word List

Name Range Size
char The char data type is a single 16-bit Unicode character. It has

a minimum value of '\u0000' (or 0) and a maximum value of
'\uffff' (or 65,535).

16-bit unsigned
boolean The boolean data type has only two possible values: true and

false.
unpublished

byte The byte data type is an 8-bit signed two’s complement integer. It
has a minimum value of –128 and a maximum value of 127.

8-bit signed

int The int data type is a 32-bit signed two’s complement integer.
It has a minimum value of –2,147,483,648 and a maximum
value of 2,147,483,647.

32-bit signed

double The double data type is a double-precision 64-bit IEEE
754 floating point number. It has a negative range between
–1.7976931348623157E+308 to –4.9E–324; and it has a positive
range between 1.4E–45 to 1.7976931348623157E+308.

64-bit IEEE 754
float The float data type is a single-precision 32-bit IEEE 754

floating point number. It has a negative range between
–3.4028235E+38 to –1.4E–45; and it has a positive range
between 1.4E–45 to 3.4028235E+38.

32-bit IEEE 754

long The long data type is a 64-bit signed two’s complement integer.
It has a minimum value of –9,223,372,036,854,775,808 and a
maximum value of 9,223,372,036,854,775,807.

64-bit signed

short The short data type is a 16-bit signed two’s complement integer. It
has a minimum value of –32,768 and a maximum value of 32,767.

16-bit signed

TABLE D-3 Java Primitive Data Types

692 Oracle Database 11g PL/SQL Programming

After you define a variable, you assign it a value. This can be done with a string or numeric
literal or with an instance of a class. Class instances are more often known as object instances,
and they are run-time containers of class definitions. You create a run-time class container by
“initializing” a copy of the class. You declare a variable when you both define and assign a value
on the same statement line. Examples of declaring variables are

boolean my_boolean = true; // Declare a Boolean.
byte my_byte = 1; // Declare a byte.
float my_float = 3000F; // Declare a float.
String string = new String("My New String"); // Declare a class instance.

Two forward slashes (//) designate a single-line comment. The /* starts a multiple-line
comment that is ended by the */. Single-line comments are easy but can be problematic when
you have a closing curly brace that is at the end of the line. It will comment out the closing curly
brace and leave your block open. You should check to make sure you don’t open your code
block by commenting out closing curly braces.

Variable definitions and declarations can only be made inside code block curly braces.
Declaring variables also lets you call methods of the current class or referenced classes. You can
designate variables as static or instance variables. A static variable is known as a class variable
and is assigned a value at compile time. Instance variables are known as run-time variables and
have no value until you instantiate a run-time class instance. Example of writing and using each
are included in the sample code of this appendix.

Coding logic, like if-then-else statements and loops, resides in methods. Methods are functions
or subroutines in class files. Two methods have special rules. The first is the main() method,
which is used to run a class from the command line. It is the externally executable access to your
program. The main() method from the HelloWorld.java class shows you how to implement
a class file that is callable from the command line. It prints a string to the standard output device.

The second special method is the constructor method, which must have the exact case-sensitive
name as the enclosing file. You don’t need to provide a constructor method when you want to use
the default constructor, because the compiler generates one when none is provided in the source
file. Default constructors take no formal parameters. However, if you implement a class with an
overriding constructor, the compiler no longer automatically creates a default constructor. After
adding any constructor method, you must implement a constructor with no formal parameters
when required. The following shows the default constructor built for the HelloWorld.java file:

public HelloWorld() {};

Java Assignment Operators
Assignment is straightforward when you assign the contents of one variable to another variable of
the same type. You do it with the equal symbol (=). It is not straightforward when you’re assigning
a different type because that involves a casting operation. Casting is taking the value in one data
type and moving it to another data type.

You can cast any primitive to a more precise primitive because nothing is lost. On the other
hand, you must explicitly state your intent when you cast a more precise primitive to a less
precise data type. This explicit acknowledgment ensures that developers know that they are
intentionally sacrificing precision. An example of this is found in the following code snippet:

Appendix D: Oracle Database Java Primer 693

int i;
float f = 30001.4F;
i = (int) f;

The first line defines a variable i, and its initial value is null. The second line assigns a real
number (designated by the trailing F) to the variable f. The third line takes the real number and
explicitly casts it as an Integer. This is known as downcasting. You downcast when you assign a
value from a more precise data type to a less precise one. The assignment tells the program to
discard the right side of the decimal and assign the left side to the Integer variable.

You can also downcast Object types. Downcasting an object instance actually makes the
behavior more general. An example of downcasting a String to an Object is

String s = new String("Hello");
Object o = (Object) s;

This section has covered Java basics. The next section covers how to make conditional
decisions and repeat operations until conditions are met.

Java Conditional and Iterative Structures
You have if-then-else and switch statements in Java. The if statement may include curly braces
that define operating scope. Curly braces are necessary when the code block is more than a single
statement. You may exclude curly braces when the code block is a single statement. The following
provides an example that uses curly braces with single statement code blocks:

if (somevariable == 0) {
statement1; }

else if (somevariable == 1) {
statement2; }

else {
statement3; }

The if statement performs a comparison operation. Comparisons can be tricky when you
forget to use two equal symbols and substitute a single equal statement. A single equal symbol
performs an assignment and does not raise a compilation error. Unfortunately, these types of
errors only manifest themselves during program run time. You can also compare inequalities
by using the less than, less than or equal to, and other operators.

NOTE
The comparison operator is a little thing if you write more Java than
PL/SQL but a big thing when the opposite is true. PL/SQL uses the
equal symbol for comparisons.

TIP
You should consider using curly braces to delimit code blocks all the
time. They save you time debugging when modifying code, which can
add statements in conditional blocks.

694 Oracle Database 11g PL/SQL Programming

Java switch statements work like those in C++ and C#. Unlike PL/SQL case statements,
switch statements experience fall-through without break statements in each case. Fall-through
is the principle of finding a match and then executing everything from that point forward until
you encounter a break statement. You can use a char or int variable for a simple switch
statement and any Boolean expression for a searched case. The following illustrates a simple
switch statement using an int variable:

int someVariable = 2;
switch (someVariable) {
 case 1:

statement1;
break;

 case 2:
statement2;
break;

 default:
statement3;
break; }

Iterative statements are loops. You have the DO-WHILE, FOR, and WHILE loops in the Java
programming language. The DO-WHILE loop doesn’t set an entrance barrier and runs until the exit
criterion is met at the bottom of the loop. Both of the others set an entrance barrier and run until
the exit criterion is met at the top of the loop. Figure D-2 shows the flow charts for these loop
structures.

You should note that you can use a logical and (&&) to make the criterion the result of two
criteria. Likewise, you can use a logical or (||) to make the criterion the result of one of two criteria.
The following example checks for real numbers not between 6 and 7:

if ((variableOne < 6) && (variableOne > 7))

FIGURE D-2 Iterative control flow diagrams

Appendix D: Oracle Database Java Primer 695

The DO-WHILE Loop
The DO-WHILE loop guarantees that your loop runs once before checking the criterion. The
criterion is generally a variable set prior to the beginning of the loop. This is known as a gate on
exit loop. The while statement follows the closing curly brace and requires a semicolon because
it is a statement. The general syntax is

do {
repeatingStatement;

} while(someVariable == 0);

The WHILE Loop
The WHILE loop checks for a condition on entry. Like the DO-WHILE loop, the WHILE loop also
relies on a variable set before the loop. This is known as a gate on entry loop. Unlike the DO-
WHILE loop, the while statement is not followed by a semicolon because it is followed by the
code block designated by curly braces. The general syntax is

while(someVariable == 0) {
repeatingStatement;

}

The FOR Loop
The FOR loop behaves differently than the WHILE loop because the evaluation variable is set in
the statement. This another variation of gate on entry loops. The criterion of a FOR loop is defined
by a numeric variable, limit, and incrementing or decrementing value. The general syntax is

for(int i; i < someValue; i++) {
repeatingStatement;

}

The i++ is a post-operation unary operator, and it adds 1 to the value of the number after
performing that line’s action. A pre-operation unary operator is defined by --i, and it decrements
the variable before performing that line’s action. The double pluses are for incrementing and the
double minuses, for decrementing. They are interchangeable as pre- or post-operations.

Java Method Definitions
You define subroutines in Java as methods. They can be static or instance methods. Static methods
have the ability of being called without instantiating a class, whereas you must instantiate a class
for an instance method. You should assign access modifiers to method definitions. The default
access method is assigned when you don’t explicitly assign an access modifier. The downside of
the default modifier is that the method can’t be subclassed by another class.

TIP
The default method is ideal when you want to prevent subclassing a
method that has tightly coupled dependencies.

The following prototype defines a private static method:

private static String someMethod(String someFormalParameter) {
 String someString = new String("some string literal");

someStatement;
 return someString; }

696 Oracle Database 11g PL/SQL Programming

The following prototype defines a public non-static or instance method:

public String someMethod(String someFormalParameter) {
 String someString = new String("some string literal");
someStatement;

 return someString; }

You can execute a static method without instantiating an object instance. The excerpt from
the WriteReadCLOB.java program demonstrates a static call:

clobText = FileIO.openFile(FileIO.findFile(this));

The static method lets you open a file chooser. It passes the this operator as an actual
parameter. The static method returns the contents of a character file as a Java String.

Calling an instance method is always a two-step process. First, you create an instance or a
copy of the other class as a variable in your current class file. Creating an instance of a class is
also known as instantiating a class. After you create an instance of the class, you can then call
an instance method by appending the class method using a period. The example from the
WriteReadCLOB.java file creates a variable of the DataConnectionPane class and
names it message:

private DataConnectionPane message = new DataConnectionPane();

Later in the same program, a call is made to an instance method of the instantiated class:

 host = message.getHost();

There are also varied means of chaining methods and return types, but they’re beyond the
scope of this primer. However, the basic rule is that the object return type from a method provides
a class instance, and you can then append any instance method to it.

Java try-catch Blocks
The try-catch block is a mechanism to manage error handling. You place statements in the
try block that may fail on an external resource. Then you place code to catch, report, and log
errors in the catch block. You also have the finally block, and you put code in it that you
want executed whether the try block failed or not. The following is a prototype for the try-
catch-finally block:

try {
resource_statement; }

catch (Exception e) {
exception_handling_statement; }

finally {
always_process_statement; }

You are required to use a try-catch block when calling a class method that throws an exception.
If you’re unaware that one is required, the Java compiler will throw an exception when you try to
compile your code without the try-catch and one is required.

Appendix D: Oracle Database Java Primer 697

This section has reviewed the basics of using the Java programming language. Broader tutorials
are found at the java.sun.com/docs/books/tutorial/ web page. The next section demonstrates how
to verify a connection to an Oracle database. Subsequent sections work with various data types,
like scalar variables and large objects.

Testing a Client-Side or Thin-Driver JDBC
Connection
Oracle Database 11g introduces a significant change to how JDBC connections work. You no
longer connect directly to the database, beginning with the ojdbc6.jar library. You connect
through the new database collection pool using Java 6. This change means that every program
you had working in the Java 5 must be rewritten to work in your new Oracle Database 11g
instance. Alternatively, you may continue to use the ojdbc5.jar file that is also provided in
the Oracle Database 11g instance.

Import packages for the Oracle JDBC implementation are found in Table D-4. The Oracle
ojdbc6.jar library adds the OracleDataSource class and deletes the DriverManager class.
You should consider using the new connection pool to better utilize database resources.

The examples in the appendix connect through the new connection pool. If you would like to
connect directly, please see the following discussion.

The following Java program lets you test your JDBC connection. It collects input arguments to
connect to an Oracle instance when you run it. The program queries a string literal from the DUAL
table. You provide the following input parameters when you run the program:

-- This is output from the HelloWorldThin.java file.

Enter User [UID/PASSWD]: <userid>/<passwd>
Enter Host Name: <hostname.domain_name>
Enter Port Name: <listener_port>
Enter Database Name: <tns_alias>

Package Import Statements Description
import java.sql.*; Standard JDBC packages
import java.math.*; The BigDecimal and BigInteger classes
import oracle.jdbc.*; Oracle extensions to JDBC
import oracle.jdbc.pool.*; OracleDataSource class used to connect through

the Oracle Database 11g connection pool, using the
ojdbc6.jar libraries

import oracle.sql.*; Oracle type extensions

TABLE D-4 Package JDBC Import Statements

698 Oracle Database 11g PL/SQL Programming

Appendix A explains what the tns_alias is and how it resolves connections to the database
instance. The readEntry() method is also available in the FileIO.java class as a static method
if you’d like to leverage a preexisting command-line interface. You would call the method like

String commandInput = FileIO.readEntry();

You can use this class file to connect to any Oracle database through the Oracle listener:

-- This is found in HelloWorldThin.java on the publisher's web site.

// Class imports.
import java.io.IOException;
import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;

Comparative JDBC Syntax
You can connect directly to the Oracle 11g Database by using the ojdbc14.jar or
ojdbc5.jar libraries. You need to put one of the older Java Archives in your CLASSPATH
environment variable. If you have two JDBC Java archives in your CLASSPATH environment,
the DatabaseMetaData class uses the driver information from the first Java Archive in the
CLASSPATH. The following code lets you connect directly to the database:

// Load Oracle JDBC driver.
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

// Define connection.
Connection conn = DriverManager.getConnection("jdbc:oracle:thin:@" +
 host + ":" + port + ":" + database, user, password);

The new syntax connects through the Oracle 11g Database connection pool. It instantiates
an OracleDataSource instance and then sets the URL, user, and password for the connections, as

// Set the Pooled Connection Source.
OracleDataSource ods = new OracleDataSource();
String url = "jdbc:oracle:thin:@//" + host + ":" + port + "/" + db;
ods.setURL(url);
ods.setUser(user);
ods.setPassword(passwd)

// Define connection.
Connection conn = ods.getConnection();

If you look closely at the difference between the connections, the old syntax uses the @
symbol to resolve through the TNS alias (found in the tnsnames.ora file). The new one
resolves through a URL listening on the same port as the Oracle 11g Database listener.

You must choose which one works best for your purposes. Migrating to the new
connection pool requires fixing all data abstraction layers that communicate directly
with the database.

Appendix D: Oracle Database Java Primer 699

// Oracle class imports.
import oracle.jdbc.driver.OracleDriver;
import oracle.jdbc.pool.OracleDataSource;
// ---/
public class HelloWorldThin {
 // Define a static class String variable.
 private static String user;

 // ---/
 private static void printLine() {
 printLine(null); }
 // ---/
 private static void printLine(String s) {
 if (s != null) {
 System.out.println(s); }

 // Print line.
 System.out.print ("---------------------------------------");
 System.out.println("---------------------------------------"); }
 // ---/
 private static String readEntry() {
 try {

 // Define method variables.
 int c;
 StringBuffer buffer = new StringBuffer();

 // Read first character.
 c = System.in.read();

 // Read remaining characters.
 while (c != '\n' && c != -1) {
 buffer.append((char) c);
 c = System.in.read(); }

 // Return buffer.
 return buffer.toString().trim(); }
 catch (IOException e) {
 return null; }}
 // ---/
 public static void main(String args[]) throws SQLException, IOException {
 // Define method variables.
 boolean debug = false;
 int slashIndex;
 String userIn;
 String password;
 String host;
 String port;
 String database;
 String debugString = new String("DEBUG");

 // Print line.

700 Oracle Database 11g PL/SQL Programming

 printLine();

 // Verify and print debug mode.
 if (args.length > 0) {
 if (args[0].toUpperCase().equals(debugString)) {
 debug = true;
 printLine("Debug mode is enabled."); }
 else {
 for (int i = 0;i < args.length;i++) {
 System.out.println("Incorrect argument(s): [" + args[i] + "]"); }

 // Print line and message.
 printLine();
 printLine("Valid case insensitive argument is: DEBUG."); }}

 // Prompt, read and capture credentials.
 System.out.print("Enter User [UID/PASSWD]: ");

 // Read input.
 userIn = readEntry();

 // Parse and check for token between user name and password.
 slashIndex = userIn.indexOf("/");
 if (slashIndex != -1) {
 user = userIn.substring(0, slashIndex);
 password = userIn.substring(slashIndex + 1); }
 else {
 user = userIn;
 System.out.print("Enter Password: ");
 password = readEntry(); }

 // Prompt, read and capture host name.
 System.out.print("Enter Host Name: ");
 host = readEntry();

 // Prompt, read, and capture port number.
 System.out.print("Enter Port Number: ");
 port = readEntry();

 // Prompt, read, and capture database name.
 System.out.print("Enter Database Name: ");
 database = readEntry();

 // Print line and message.
 printLine("Connecting to the database ...");
 printLine("jdbc:oracle:oci8:@" +
 host + ":" + port + ":" + database + "," +
 user + "," + password);

 // Attempt database connection.
 try {
 // Set the Pooled Connection Source

Appendix D: Oracle Database Java Primer 701

 OracleDataSource ods = new OracleDataSource();
 String url = "jdbc:oracle:thin:@//" + host + ":" + port + "/" + db;
 ods.setURL(url);
 ods.setUser(user);
 ods.setPassword(passwd);

 // Define connection.
 Connection conn = ods.getConnection();

 // Signal connection.
 printLine("Connected.");

 // Define metadata object and print message.
 DatabaseMetaData dmd = conn.getMetaData();
 printLine("Driver Version: [" + dmd.getDriverVersion() + "]\n" +
 "Driver Name: [" + dmd.getDriverName() + "]");

 // Create and execute statement.
 Statement stmt = conn.createStatement();
 ResultSet rset = stmt.executeQuery("SELECT 'Hello World.' FROM dual");

 // Read row returns.
 while (rset.next()) {
 printLine(rset.getString(1)); }

 // Close result set.
 rset.close();
 stmt.close();
 conn.close();

 // Print line and message.
 printLine("The JDBC Connection worked."); }
 catch (SQLException e) {
 if (debug) {
 e.printStackTrace();
 printLine(); }
 else {
 if (e.getSQLState() == null) {
 System.out.println(
 new SQLException("Oracle Thin Client Net8 Connection Error.",
 "ORA-" + e.getErrorCode() +
 ": Incorrect Net8 thin client arguments:\n\n" +
 " host name [" + host + "]\n" +
 " port number [" + port + "]\n" +
 " database name [" + database + "]\n",
 e.getErrorCode()).getSQLState()); }
 else {
 // Trim the postpended "\n".
 printLine(e.getMessage().substring(0,e.getMessage().length() - 1)); }}

 // Print line and message.
 printLine("The JDBC Connection failed."); }}}

702 Oracle Database 11g PL/SQL Programming

Before introducing the program, you saw the program output to collect arguments. The
balance of the output is shown next:

-- This is output from the HelloWorldThin.java file.

Connecting to the database ...

jdbc:oracle:oci8:@<hostname.domain_name>:<port>:<sid>,<uid>,<passwd>

Connected.

Driver Version: [11.1.0.0.0-Alpha]
Driver Name: [Oracle JDBC driver]

Hello World.

The JDBC Connection worked.

NOTE
You should check the management of the ORA-17002 error in
the SQL connection catch block. It can be very useful when
writing Java programs that use distributed architectures like
Enterprise JavaBeans (EJBs).

Your setup is incomplete or incorrect if you encounter any error messages or console printing
errors. You’ll need to revisit the instructions and troubleshoot the problem.

Accessing Scalar Variables
Java Swing applications let you build nice testing tools to verify data sets returned by your J2EE
or J3EE beans. The JTable works well with scalar-type variables but does not work well with Large
Objects. Binary Large Objects (BLOBs) and Character Large Objects (CLOBs) are displayed in a
single line. LONG data types display in JTables like BLOB and CLOB types. Character and Binary
File large objects simply can’t be displayed in a JTable.

Java Classes Stored in the Oracle Database
Internally stored Java class files require you to configure the env parameter in your
listener.ora. You will need to set the LD_LIBRARY_PATH in the listener.ora
file. You set it by providing the canonical path to the generic Oracle libraries in the lib
and jdbc/lib directories of the Oracle home. Chapter 13 contains detailed steps to set
up your listener.ora file.

Appendix D: Oracle Database Java Primer 703

When you run the QueryTable.java program, you’re presented with a tabbed dialog box
to enter database connection information. Figure D-3 shows how the dialog looks. You should
enter your host name with a fully qualified domain name in the Host tab. Enter the listening port
number for the Oracle database in the Port tab. Enter the TNS alias, discussed in Appendix A, in
the Database tab. You should then enter both the user account name in the UserID tab and the
password in the Password tab.

You can modify the query to work with any table using the DataTablePane.class library
file. The class allows you to enter any valid table name. Table D-5 lists three constants that change
the number of tabs displayed. An operating system prompt is provided in all cases with a Windows
default value.

FIGURE D-3 Database Connection Input dialog

Constant Names Constant Uses
TABLE_COLUMN_ALL You use this constant to instantiate a tabbed pane with only a

prompt for the table name. Use this when you want to return all
columns from a table.

TABLE_AND_COLUMN You use this constant to instantiate a tabbed pane with a prompt
for table and column. Use this when you want to return all rows
of a column.

TABLE_COLUMN_KEY You use this constant to instantiate a tabbed pane with a prompt
for table, column, primary key column name, and primary key
column value. Use this when you want to return only a filtered
set of rows of a column.

TABLE D-5 Static Constants for the DataTablePane.java Class

704 Oracle Database 11g PL/SQL Programming

After you are prompted for the connection string components, you will be prompted for the
table name (see Figure D-4). Later in this appendix there is a variation of this interface that uses
all five columns.

This program only displays dates, strings, and numbers in the JTable. If you want to also
work with CLOB data types, you can borrow that feature from the WriteReadCLOB.java
file later in this chapter. Other data types don’t work well with the JTable, and you should
consider alternative solutions. Figure D-5 shows the returned data after some manipulation
of column widths.

FIGURE D-4 Database Query Input dialog

FIGURE D-5 QueryTable.java display

Appendix D: Oracle Database Java Primer 705

The QueryTable.java program shows how you retrieve, format, and display scalar types.
It displays the results in a JTable. The program imports individual classes, so you can see all the
dependencies.

-- This is found in QueryTable.java on the publisher’s web site.

// Java Application class imports.
import java.awt.Component;
import java.awt.Dimension;
import java.awt.image.BufferedImage;
import java.awt.GridLayout;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import javax.swing.table.DefaultTableModel;
import javax.swing.table.TableCellRenderer;
import javax.swing.table.TableColumn;
import javax.swing.table.TableModel;

// Generic JDBC imports.
import java.sql.Clob;
import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;

// Oracle class imports.
import oracle.jdbc.driver.OracleDriver;
import oracle.jdbc.pool.OracleDataSource;

// Include book libraries (available at publisher’s web site).
import plsql.fileio.FileIO;
import plsql.jdbc.DataConnectionPane;
import plsql.jdbc.DataTablePane;
// ---/
public class QueryTable extends JFrame {
 // Define database connections.
 private String host;

706 Oracle Database 11g PL/SQL Programming

 private String port;
 private String dbname;
 private String userid;
 private String passwd;

 // Define query variables.
 private String tableName;

 // Define data connection pane.
 private DataConnectionPane message = new DataConnectionPane();
 private DataTablePane table = new DataTablePane(DataTablePane.TABLE_COLUMN_ALL);

 // Construct the class.
 public QueryTable (String s) {
 super(s);

 // Get database connection values or exit.
 if (JOptionPane.showConfirmDialog(this,message
 ,"Set Oracle Connection String Values"
 ,JOptionPane.OK_CANCEL_OPTION) == 0) {

 // Set class connection variables.
 host = message.getHost();
 port = message.getPort();
 dbname = message.getDatabase();
 userid = message.getUserID();
 passwd = message.getPassword();

 // Print connection to console (debugging tool).
 message.getConnection();

 // Collect query parameters.
 if (JOptionPane.showConfirmDialog(this,table
 ,"Set Oracle Connection String Values"
 ,JOptionPane.OK_CANCEL_OPTION) == 0) {

 // Set class query variables.
 tableName = table.getTableName();

 // Create a JPanel for data display.
 ManageTable panel = new ManageTable();

 // Configure the JPanel.
 panel.setOpaque(true);
 setContentPane(panel);

 // Configure the JFrame.
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLocation(100,100);
 pack();
 setVisible(true); }
 else
 System.exit(1); }
 // ---/
 private class ManageTable extends JPanel {

Appendix D: Oracle Database Java Primer 707

 // Define target table and query row size variable.
private String target = tableName;

 private int querySize = 0;

 // Define containers.
 private Object[][] data = getQuery(host,port,dbname,userid,passwd,target);
 private Object[][] cells = getData();
 private Object[] columns = getColumnHeaders();

 // Define display variables.
 private JTable table = new JTable(cells,columns);
 private JScrollPane scrollPane;
 private TableModel tableModel;
 // ---/
 public ManageTable () {
 super(new GridLayout(1,0));
 decorate(300,100); }
 // ---/
 private String[] getColumnHeaders() {
 // Size container, copy column headers and return data.
 String[] headers = new String[data[0].length];
 for (int i = 0;i < data[0].length;i++)
 headers[i] = (String) data[0][i];
 return headers; }
 // ---/
 private Object[][] getData() {
 // Size container, copy cells, and return data.
 Object[][] cells = new Object[querySize][];
 for (int i = 0;i < querySize;i++) {
 cells[i] = new Object[data[i + 1].length];
 for (int j = 0;j < data[i + 1].length;j++)
 cells[i][j] = data[i + 1][j]; }
 return cells; }
 // ---/
 private void decorate (int width, int height) {
 // Configure JPanel.
 setSize(width,height);

 // Configure and initialize JTable.
 table.setPreferredScrollableViewportSize(new Dimension(width,height));
 table.setFillsViewportHeight(true);
 initColumns(table);

 // Assign JScrollPane.
 scrollPane = new JScrollPane(table);
 add(scrollPane); }
 // ---/
 private void initColumns(JTable table) {
 // Initialize cell width.
 int headerWidth = 0;
 int cellWidth = 0;

 // Define display variables.
 Component component = null;
 TableColumn tableColumn = null;

708 Oracle Database 11g PL/SQL Programming

 TableCellRenderer headerRenderer =
 table.getTableHeader().getDefaultRenderer();

 // Initialize TableModel class.
 tableModel = table.getModel();

 // Initialize columns.
 for (int i = 0;i < table.getColumnCount();i++)
 tableColumn = table.getColumnModel().getColumn(i); }
 // ---/
 private Object[][] getQuery(String host,String port,String dbname
 ,String user,String pswd,String table) {
 // Define return type container.
 Object[][] dataset = null;
 String[] datatype = null;

 try {
 // Load driver, initialize connection, metadata, and statement.
 OracleDataSource ods = new OracleDataSource();
 String url = "jdbc:oracle:thin:@//"+host+":"+port+"/"+dbname;
 ods.setURL(url);
 ods.setUser(userid);
 ods.setPassword(passwd);
 Connection conn = ods.getConnection();
 DatabaseMetaData dmd = conn.getMetaData();
 Statement stmt = conn.createStatement();

 // Declare result set, initialize dataset, and close result set.
 ResultSet rset = stmt.executeQuery("SELECT COUNT(*) FROM " + table);
 while (rset.next())
 dataset = new Object[rset.getInt(1) + 1][];
 rset.close();

 // Reusing result set and get result set metadata.
 rset = stmt.executeQuery("SELECT * FROM " + table);
 ResultSetMetaData rsmd = rset.getMetaData();

 // Declare row counter.
 int row = 0;

 // Assign array sizes.
 dataset[row] = new Object[rsmd.getColumnCount()];
 datatype = new String[rsmd.getColumnCount()];

 // Assign column labels and types.
 for (int col = 0;col < rsmd.getColumnCount();col++) {
 dataset[row][col] = rsmd.getColumnName(col + 1);
 datatype[col] = rsmd.getColumnTypeName(col + 1); }

 // Size nested arrays and assign column values for rows.
 while (rset.next()) {
 dataset[++row] = new Object[rsmd.getColumnCount()];
 for (int col = 0;col < rsmd.getColumnCount();col++) {
 if (datatype[col] == "DATE")
 dataset[row][col] = rset.getDate(col + 1);

Appendix D: Oracle Database Java Primer 709

 else if (datatype[col] == "NUMBER")
 dataset[row][col] = rset.getLong(col + 1);
 else if (datatype[col] == "VARCHAR2")
 dataset[row][col] = rset.getString(col + 1); }}

 // Set query return size.
 querySize = row;

 // Close resources.
 rset.close();
 stmt.close();
 conn.close();

 // Return data.
 return dataset; }
 catch (SQLException e) {
 // Check for and return connection error or SQL error.
 if (e.getSQLState() == null) {
 System.out.println(
 new SQLException("Oracle Thin Client Net8 Connection Error.",
 "ORA-" + e.getErrorCode() +
 ": Incorrect Net8 thin client arguments:\n\n" +
 " host name [" + host + "]\n" +
 " port number [" + port + "]\n" +
 " database name [" + dbname + "]\n"
 , e.getErrorCode()).getSQLState());
 return dataset; }
 else {
 System.out.println(e.getMessage());
 return dataset; }}}}
 // ---/
 public static void main(String[] args) {
 // Define window.
 QueryTable frame = new QueryTable("Query Table"); }}

The getQuery() method contains the JDBC component. The method actually processes
two queries. The first query counts the number of rows, and the second selects all columns from
those rows. The WHILE loop reads the rows, and the nested FOR loop reads the columns. An if
statement processes DATE, VARCHAR2, and NUMBER data types. All other data types are ignored.

There are two alternatives using PL/SQL to reading scalar data types. You can read one row
at a time, or a group of rows. You can use a system reference cursor or a series of scalar arrays to
return a set of rows.

This section has shown you how to access scalar variables and display them in a Java
application. The next section explores how to query and manage large objects.

Writing and Accessing Large Objects
Java also can access large objects. Oracle supports Binary Large Objects (BLOBs), Character Large
Objects (CLOBs), National Character Large Objects (NCLOBs), and Binary Files (BFILEs). These
types are generically known as LOBs or Large Objects. LOB columns are not stored inline with
other data in a row. Only a reference is stored inline for LOBs. The reference points to where the
LOB is stored. BLOB, CLOB, and NCLOB data columns are stored inside the database. The BFILE
data type is stored externally in the file system. These columns cannot be indexed and are the
principal subject of Chapter 8.

710 Oracle Database 11g PL/SQL Programming

NOTE
You cannot use the DISTINCT function with a SELECT clause that
returns a BFILE column. If you attempt it, you will return an ORA-
00932 error. This is raised because these LOB types cannot be
indexed or sorted by the database.

The inline reference is alternatively called a descriptor or locator. Both words really mean an
external reference because they are stored externally from the row. The best qualification of when
to use descriptor or locator is whether the LOB is internally stored in the database. Many choose
to speak of a descriptor when the object is inside the database and a locator when it is external to
the database.

The following two sections illustrate examples of writing and reading a CLOB to the database
and reading a BFILE reference from the database.

Writing and Accessing a CLOB Column
The BLOB, CLOB, and NCLOB are internally stored structures. CLOB and NCLOB columns are
frequently long character streams. BLOB columns often contain media (like PDF files) or images.
This example works with reading a large character stream—the description of the items in the
media store.

The WriteReadCLOB.java program depends on a CLOB column item_desc in the item
table. The column can be null, empty, or populated when you run the program. Any previous
data is replaced by what you load into the column. You can create and seed values by running
the create_store.sql and seed_store.sql scripts found in the introduction.

NOTE
The WriteReadCLOB class can hang if you have another transaction
pending against the same row. You should commit any pending
changes before running the WriteReadCLOB class.

When you run the WriteReadCLOB.java program, you’re presented with a tabbed dialog
box to enter database connection information, as in the prior example. Figure D-3 shown in the
Accessing Scalar Variables section captures the dialog’s display. You should enter your host name
with a fully qualified domain name in the Host tab. Enter the listening port number for the Oracle
database in the Port tab, and the TNS alias, discussed in Appendix A, in the Database tab. You should
then enter both the user account name in the UserID tab and the password in the Password tab.

After you enter the database connection information, the WriteReadCLOB.java program
will present you with a file chooser. You should navigate to where you have stored the
LOTRFellowship.txt file and choose the file. Figure D-6 shows you how the file chooser
looks. The program will read the file and pass its contents as a string to the insertClob()
method, where it is written to the database. After successfully writing the file contents to the
CLOB column, the program calls the getQuery() method to read the column.

Appendix D: Oracle Database Java Primer 711

You use the getClob() method of the ResultSet class to assign the column reference to your
Java program. This opens a special thread to the database. Through the thread, you read the out-
of-line stored CLOB using the getCharacterStream() method of the Clob class. The output is
returned as an input stream, which can be comfortably assigned to a Reader class. After you have
read the input stream, you need to check that the CLOB column is both not null and populated.

CLOB columns have three states—null, empty, and populated. You should only attempt to
read a Clob instance once you know that it isn’t null and contains data. Then, you read it using
the read() method of the Reader class. The read method is a pass-by-reference subroutine (see
Chapter 6 for more on types of subroutines). It reads the contents of the input stream into the buffer,
returning the number of characters read or a –1. It raises an error when the stream is empty, which
is why you check it first. The program also raises an error when you attempt to read beyond the
length of the CLOB value.

TIP
This program manages CLOB values that are larger than 4,000
characters but not large enough to collapse the memory of the JVM.
Truly large files need to be read in chunks. You need to make sure
that the total size of your buffer reads matches the length of the CLOB
column. You can find the CLOB column length by using the
DBMS_LOB.GETLENGTH function before attempting to read it.

FIGURE D-6 WriteReadCLOB.java File Chooser display

712 Oracle Database 11g PL/SQL Programming

FIGURE D-7 WriteReadCLOB.java display

Leveraging Java Libraries
The WriteReadCLOB.java program uses a custom Java Archive file—FileIO.jar. You
can download it from the publisher’s web site as a Java Archive (JAR) file, or in its original
source. The FileIO.jar file contains utilities for collection database connection data,
and a set of libraries for reading files on Microsoft Windows, Linux, or Unix systems. You
can source this in your environment by adding it to your CLASSPATH environment
variable. It follows the same rules as the ojdbc6.jar file covered earlier.

You can discover the contents of any Java archive by using the following command:

jar –tf GenericJavaArchive.jar

If you want to build your own Java archive files, you should check the online tutorial at
Sun Microsystems. One caveat, don’t forget that each Java file must contain the

package path.subpath;

statement, which must be the first line in the file. While you can use the jar utility to
build Java archives, any class without the correct package statement line is unrecognized by
other files trying to reference it.

The WriteReadCLOB.java displays the CLOB column contents in a scrollable JTextArea.
Figure D-7 displays the rendered results.

Appendix D: Oracle Database Java Primer 713

The following demonstrates how to read and display a CLOB column in a Java Swing
application:

-- This is found in WriteReadCLOB.java on the publisher's web site.

// Java Application class imports.
import java.awt.Dimension;
import java.awt.Font;
import java.awt.GridLayout;
import java.io.Reader;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;

// Generic JDBC imports.
import java.sql.CallableStatement;
import java.sql.Clob;
import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;

// Oracle JDBC import.
import oracle.jdbc.driver.OracleDriver;
import oracle.jdbc.pool.OracleDataSource;

// Include book libraries (available at publisher's web site).
import plsql.jdbc.DataConnectionPane;
import plsql.fileio.FileIO;
// ---/
public class WriteReadCLOB extends JFrame {
 // Define database connections.
 private String host;
 private String port;
 private String dbname;
 private String userid;
 private String passwd;

 // Define data connection pane.
 private DataConnectionPane message = new DataConnectionPane();

 // Construct the class.
 public WriteReadCLOB (String s) {

714 Oracle Database 11g PL/SQL Programming

 super(s);

 // Get database connection values or exit.
 if (JOptionPane.showConfirmDialog(this,message
 ,"Set Oracle Connection String Values"
 ,JOptionPane.OK_CANCEL_OPTION) == 0) {

 // Set class connection variables.
 host = message.getHost();
 port = message.getPort();
 dbname = message.getDatabase();
 userid = message.getUserID();
 passwd = message.getPassword();

 // Print connection to console (debugging tool).
 message.getConnection();

 // Create a JPanel for data display.
 ManageCLOB panel = new ManageCLOB();

 // Configure the JPanel.
 panel.setOpaque(true);
 setContentPane(panel);

 // Configure the JFrame.
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLocation(100,100);
 pack();
 setVisible(true); }
 else
 System.exit(1); }
 // ---/
 private class ManageCLOB extends JPanel {
 // Define display variables.
 private String clobText;
 private JScrollPane scrollPane;
 private JTextArea textArea;
 // ---/
 public ManageCLOB () {
 // Set layout manager.
 super(new GridLayout(1,0));

 // Assign file read to String.
 clobText = FileIO.openFile(FileIO.findFile(this));

 // Insert record before querying it.
 if (clobText.length() > 0) {
 if (insertClob(host,port,dbname,userid,passwd,clobText))
 clobText = getQuery(host,port,dbname,userid,passwd); }
 else
 System.exit(2);

Appendix D: Oracle Database Java Primer 715

 // Construct text area and format it.
 textArea = new JTextArea(clobText);
 textArea.setEditable(false);
 textArea.setFont(new Font(Font.SANS_SERIF,Font.PLAIN,14));
 textArea.setLineWrap(true);
 textArea.setRows(10);
 textArea.setSize(400,100);
 textArea.setWrapStyleWord(true);

 // Put the image in container, and add label to panel.
 scrollPane = new JScrollPane(textArea);
 add(scrollPane); }
 // ---/
 private Boolean insertClob(String host,String port,String dbname
 ,String user,String pswd,String fileString) {
 try {
 // Set the Pooled Connection Source

 OracleDataSource ods = new OracleDataSource();
 String url = "jdbc:oracle:thin:@//"+host+":"+port+"/"+dbname;
 ods.setURL(url);
 ods.setUser(userid);
 ods.setPassword(passwd);

 // Define connection.
 Connection conn = ods.getConnection();

 // Create statement.
 CallableStatement stmt =
 conn.prepareCall("UPDATE item "+
 "SET item_desc = ? "+
 "WHERE item_title = "+
 "'The Lord of the Rings - Fellowship of the Ring'"+
 "AND item_subtitle = 'Widescreen Edition'");

 // Set string into statement.
 stmt.setString(1,fileString);

 // Execute query.
 if (stmt.execute())
 conn.commit();

 // Close resources.
 stmt.close();
 conn.close();

 // Return CLOB as a String data type.
 return true; }
 catch (SQLException e) {
 if (e.getSQLState() == null) {
 System.out.println(
 new SQLException("Oracle Thin Client Net8 Connection Error.",
 "ORA-" + e.getErrorCode() +

716 Oracle Database 11g PL/SQL Programming

 ": Incorrect Net8 thin client arguments:\n\n" +
 " host name [" + host + "]\n" +
 " port number [" + port + "]\n" +
 " database name [" + dbname + "]\n"
 , e.getErrorCode()).getSQLState());

 // Return an empty String on error.
 return false; }
 else {
 System.out.println(e.getMessage());

 // Return an empty String on error.
 return false; }}}
 // ---/
 private String getQuery(String host,String port,String dbname
 ,String user,String pswd) {
 // Define method variables.
 char[] buffer;
 int count = 0;
 int length = 0;
 String data = null;
 String[] type;
 StringBuffer sb;

 try {
 // Set the Pooled Connection Source.
 OracleDataSource ods = new OracleDataSource();
 String url = "jdbc:oracle:thin:@//"+host+":"+port+"/"+dbname;
 ods.setURL(url);
 ods.setUser(userid);
 ods.setPassword(passwd);

 // Define connection.
 Connection conn = ods.getConnection();

 // Define metadata object.
 DatabaseMetaData dmd = conn.getMetaData();

 // Create statement.
 Statement stmt = conn.createStatement();

 // Execute query.
 ResultSet rset =
 stmt.executeQuery(
 "SELECT item_desc " +
 "FROM item " +
 "WHERE item_title = " +
 "'The Lord of the Rings - Fellowship of the Ring'"+
 "AND item_subtitle = 'Widescreen Edition'");

 // Get the query metadata, size array, and assign column values.
 ResultSetMetaData rsmd = rset.getMetaData();

Appendix D: Oracle Database Java Primer 717

 type = new String[rsmd.getColumnCount()];
 for (int col = 0;col < rsmd.getColumnCount();col++)
 type[col] = rsmd.getColumnTypeName(col + 1);

 // Read rows and only CLOB data type columns.
 while (rset.next()) {
 for (int col = 0;col < rsmd.getColumnCount();col++) {
 if (type[col] == "CLOB") {
 // Assign result set to CLOB variable.
 Clob clob = rset.getClob(col + 1);

 // Check that it is not null and read the character stream.
 if (clob != null) {
 Reader is = clob.getCharacterStream();

 // Initialize local variables.
 sb = new StringBuffer();
 length = (int) clob.length();

 // Check CLOB is not empty.
 if (length > 0) {
 // Initialize control structures to read stream.
 buffer = new char[length];
 count = 0;

 // Read stream and append to StringBuffer.
 try {
 while ((count = is.read(buffer)) != -1)
 sb.append(buffer);

 // Assign StringBuffer to String.
 data = new String(sb); }
 catch (Exception e) {} }
 else
 data = (String) null; }
 else
 data = (String) null; }
 else {
 data = (String) rset.getObject(col + 1); }}}

 // Close resources.
 rset.close();
 stmt.close();
 conn.close();

 // Return CLOB as a String data type.
 return data; }
 catch (SQLException e) {
 if (e.getSQLState() == null) {
 System.out.println(
 new SQLException("Oracle Thin Client Net8 Connection Error.",
 "ORA-" + e.getErrorCode() +

718 Oracle Database 11g PL/SQL Programming

 ": Incorrect Net8 thin client arguments:\n\n" +
 " host name [" + host + "]\n" +
 " port number [" + port + "]\n" +
 " database name [" + dbname + "]\n"
 , e.getErrorCode()).getSQLState());

 // Return an empty String on error.
 return data; }
 else {
 System.out.println(e.getMessage());
 return data; }}
 finally {
 if (data == null) System.exit(1); }}}
 // ---/
 public static void main(String[] args) {
 // Define window.
 WriteReadCLOB frame = new WriteReadCLOB("Write & Read CLOB Text"); }}

The WriteReadCLOB.java program has demonstrated how to write and read a CLOB
column from the database. The next section discusses how to use database references to read
externally stored files.

Accessing a BFILE Column
Accessing an image stored in a BFILE requires you to understand how to process graphic images
in Java Swing applications. The first example demonstrates how to read an image from the file
system and display the image in a Swing application. The second shows how to read and translate
the references to an external files into a canonical filename. Canonical filenames are fully qualified
filenames that include an explicit path statement.

Reading and Displaying an Image
Reading files from the operating system is done by using an input stream. The ImageIO.read(new
File(String file_name)) static method requires explicitly creating a File class and returns
a BufferedImage instance. It hides the complexity of working with streams. You can also simplify
the program by constructing an ImageIcon instance from a string, but this sometimes confuses
maintenance programmers. The physical construction of a File class reference lets maintenance
programmers know that the string maps to a physical filename. Figure D-8 shows how
ReadImage.java renders the image.

FIGURE D-8 ReadImage.java display

Appendix D: Oracle Database Java Primer 719

The read() method of the ImageIO class also requires you to explicitly put a try-catch block
in your code to handle any thrown IOException. After you read the file into a BufferedImage, you
use it to build an instance of ImageIcon and then use it to build a JLabel. The JLabel is then added
to the JPanel, and rendered when the JPanel is added to a JFrame instance. The ReadImage.java
file demonstrates these steps as shown:

-- This is found in ReadImage.java on the publisher's web site.

// Required imports.
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import java.awt.GridLayout;
import java.awt.image.BufferedImage;
import java.io.IOException;
import java.io.File;
import javax.imageio.ImageIO;

// Include book libraries (available at publisher's web site).
import plsql.fileio.FileIO;
// ---/
public class ReadImage extends JPanel {
 // Use to read and diaplay BFILE image file.
 private BufferedImage image;
 private JLabel label;
 // ---/
 public ReadImage () {
 // Set layout manager.
 super(new GridLayout(1,0));

 // Read image file.
 try {

image = ImageIO.read(FileIO.findFile(this)); }
 catch (IOException e) {
 System.out.println(e.getMessage()); }

 // Put the image into a container and add container to JPanel.
label = new JLabel(new ImageIcon(image));

File Dependency Error
The ReadImage.java file requires a valid .gif, .jpg, or .png file. You will raise the
following exception when the file is not found:

Can't read input file!
Exception in thread "main" java.lang.NullPointerException
 at javax.swing.ImageIcon.<init>(ImageIcon.java:161)
 at ReadImage.<init>(ReadImage.java:43)
 at ReadImage.main(ReadImage.java:55)

720 Oracle Database 11g PL/SQL Programming

 add(label); }
 // ---/
 public static void main(String[] args) {
 // Define window.
 JFrame frame = new JFrame("Read BFILE Image");

 // Define and configure panel.
 ReadImage panel = new ReadImage();
 panel.setOpaque(true);

 // Configure window and enable default close operation.
 frame.setContentPane(panel);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setLocation(100,100);

 frame.pack();

 frame.setVisible(true); }}

The static main() method creates a JFrame and decorates it with an instance of the
ReadImage class. It launches a file chooser that lets you pick an image file to display. The
FileIO.jar file contains the file chooser code.

This section has demonstrated how to use Java to read and render an image file in a Java
Swing application. The next section will demonstrate how to find the image by reading the
locator reference in a BFILE column.

Reading and Displaying an Image by Using the Stored Reference
The inline reference for a BFILE column contains a virtual directory and filename. This differs from
the internal reference found in BLOB, CLOB, and NCLOB columns. You create virtual directories
before you can insert a BFILE column locator value. You insert the locator values by using the
BFILENAME() functions. As qualified in Chapter 8, the BFILE data type is a read-only type. It
is read-only because you can only insert or update these columns with a new virtual directory
or filename. There is also no way to write a new external file through the database unless you
provide external libraries to do it or leverage the UTL_FILE package. Likewise, there is also no
Oracle utility that lets you read a canonical path directly. An available canonical path would let
you prepend it to a filename, and create a canonical filename.

Web applications overcome this limitation by configuring an alias and a virtual directory in
your HTTP server. You can use the Apache, Oracle HTTP Server, or Oracle 10g Application Server
as the HTTP server. The alias maps to the database virtual path, and the virtual path maps to the
database canonical path. Unfortunately, this type of architecture is tightly coupled, which means
that when you change one, you must change the other.

Chapter 8 contains a means to overcome this limitation. It extends the database catalog by
adding the GET_DIRECTORY_PATH function to the SYSTEM schema and granting access to it to
the PLSQL schema. Then, it creates a GET_CANONICAL_BFILENAME function to the PLSQL
schema. While they do not eliminate the tight coupling between the HTTP server and database,
they do eliminate it for your programs interacting with the PLSQL schema.

Appendix D: Oracle Database Java Primer 721

The ReadBFILE.java program depends on several things. It expects that you have compiled
both the GET_DIRECTORY_PATH and GET_CANONICAL_PATH functions with their appropriate
grants and synonyms. If you have not run these programs, you can find full instructions to run the
create_store.sql and seed_store.sql scripts in the introduction. Also, after running
them, you must create a virtual directory that points to where you will physically locate the files.
Chapter 8 demonstrates how to set up and grant permissions to a virtual directory.

You can test whether they’re properly configured by running the following query on the
respective platforms:

Windows

 SELECT get_canonical_bfilename('ITEM'
 ,'ITEM_PHOTO'
 ,'ITEM_TITLE'
 ,'Star Wars – Episode I')
 FROM dual;

Extending the Database Catalog
Virtual directories are created by the SYS or SYSTEM users and owned by the SYS user. By
default SYSTEM only has read permissions to the DBA_DIRECTORIES view through the
SELECT_CATALOG_ROLE. Roles limit the ability to directly access tables from PL/SQL
programs, like get_directory_path.sql found in Chapter 8.

In order to grant direct permissions in this case, you must first connect without a
schema as the SYSDBA user. As the superuser, you can grant SELECT privilege on the
DBA_DIRECTORIES view to the SYSTEM user, as noted:

SQL> CONNECT / as sysdba
Connected.
SQL> GRANT SELECT ON dba_directories TO system;
Grant succeeded.

After granting the permission, you can connect as the SYSTEM user and run get_
directory_path.sql to create the GET_DIRECTORY_PATH function. This extends the
catalog behaviors, but you’ll still need to grant permissions to the designated user scheme.
You do this by granting the EXECUTE permission on the GET_DIRECTORY_PATH function.
The following grants that privilege to the PLSQL user:

SQL> GRANT EXECUTE ON get_directory_path TO plsql;

Reconnect as the PLSQL user and create a synonym to the GET_DIRECTORY_PATH
function. You can create a local copy of GET_CANONICAL_BFILE function. The following
syntax builds the synonym:

SQL> CREATE SYNONYM get_canonical_bfilename FOR system.get_directory_path;

Run the get_canonical_bfilename.sql script. It builds a local copy of the GET_
CANONICAL_BFILE function. The function returns a canonical filename.

722 Oracle Database 11g PL/SQL Programming

Unix

 SELECT get_canonical_bfilename('ITEM'
 ,'ITEM_PHOTO'
 ,'ITEM_TITLE'
 ,'Star Wars – Episode I'
 , 'LINUX')
 FROM dual;

You have correctly configured your environment when this select statement returns the
canonical filename. Reading the file is dependent on the correct file permissions.

The ReadBFILE.class uses the Database Connection Input dialog shown earlier, in Figure
D-3. After entering the connection data, you are prompted to enter the query data in the database
query input dialog. Figure D-9 shows you that dialog.

Clicking OK displays a JFrame containing the poster for Star Wars – Episode I, The Phantom
Menace. Figure D-10 displays the image by resolving the path through the database and avoids
using an external virtual directory.

NOTE
The ReadBFILE.java class must run on the same physical machine
as the database, and it must have at least other read-only file system
privileges to the canonical path or directory in Linux or Unix.

The ReadBFILE.java script uses a CallableStatement, not a Statement. Previous examples
use a Statement for preparsed SQL statements. You use a CallableStatement when you want to
submit parameters to a SQL statement. This is also known as binding values.

A CallableStatement also lets you work with PL/SQL stored functions or procedures. This example
uses an anonymous block to capture the canonical filename. It takes one output parameter from the
CallableStatement. You map the output parameter by using the registerOutParameter() method
from the CallableStatement. You map the input parameters by using the setString() method, but
there are other methods that support different Oracle data types.

TIP
Function and procedure calls should be made in an anonymous-block
program. Incorrect calls to stored functions and procedures inside a
CallableStatement instance can raise an ORA-17033 error. This is true
using Java 5 or earlier, but Java 6 simply raises an IO error.

FIGURE D-9 Database Query Input dialog

Appendix D: Oracle Database Java Primer 723

You also use the execute() method, not the executeQuery() method. Out parameters
can be captured by either name or positional reference. In this case, the out parameter uses
positional reference. The program is

-- This is found in ReadBFILE.java on the publisher's web site.

// Required imports.
import java.awt.GridLayout;
import java.awt.image.BufferedImage;
import java.io.IOException;
import java.io.File;
import javax.imageio.ImageIO;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;

// Generic JDBC imports.
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Types;

// Oracle JDBC import.
import oracle.jdbc.driver.OracleDriver;
import oracle.jdbc.pool.OracleDataSource;

FIGURE D-10 ReadBFILE.java display

724 Oracle Database 11g PL/SQL Programming

// Include book libraries (available at publisher's web site).
import plsql.jdbc.DataConnectionPane;
import plsql.jdbc.DataTablePane;
// ---/
public class ReadBFILE extends JFrame {
 // Define database connections.
 private String host;
 private String port;
 private String dbname;
 private String userid;
 private String passwd;

 // Define query variables.
 private String tableName;
 private String columnName;
 private String keyColumnName;
 private String keyColumnValue;
 private String operatingSystem;

 // Define data connection and query panes.
 private DataConnectionPane message = new DataConnectionPane();
 private DataTablePane table = new DataTablePane(DataTablePane.TABLE_COLUMN_KEY);

 // Construct the class.
 public ReadBFILE (String s) {
 super(s);

 // Get database connection values or exit.
 if (JOptionPane.showConfirmDialog(this,message
 ,"Set Oracle Connection String Values"
 ,JOptionPane.OK_CANCEL_OPTION) == 0) {

 // Set class connection variables.
 host = message.getHost();
 port = message.getPort();
 dbname = message.getDatabase();
 userid = message.getUserID();
 passwd = message.getPassword();

 // Print connection to console (debugging tool).
 message.getConnection();

 // Collect query parameters.
 if (JOptionPane.showConfirmDialog(this,table
 ,"Set Oracle Connection String Values"
 ,JOptionPane.OK_CANCEL_OPTION) == 0) {

 // Set class query variables.
 tableName = table.getTableName();
 columnName = table.getColumnName();
 keyColumnName = table.getKeyColumnName();
 keyColumnValue = table.getKeyColumnValue();
 operatingSystem = table.getOperatingSystem();

Appendix D: Oracle Database Java Primer 725

 // Print table query variables.
 table.getTable(); }
 else
 System.exit(2);

 // Create a JPanel for data display.
 ManageBFILE panel = new ManageBFILE();

 // Configure the JPanel.
 panel.setOpaque(true);
 setContentPane(panel);

 // Configure the JFrame.
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLocation(100,100);
 pack();
 setVisible(true); }
 else
 System.exit(1); }
 // ---/
 private class ManageBFILE extends JPanel {
 // Use to read and diaplay BFILE image file.
 private BufferedImage image;
 private JLabel label;
 private String canonicalFileName;
 // ---/
 public ManageBFILE () {

 // Set layout manager.
 super(new GridLayout(1,0));

 // Query the database and read canonical filename.
 canonicalFileName = getQuery(host,port,dbname,userid,passwd);

 try {
 image = ImageIO.read(new File(canonicalFileName)); }
 catch (IOException e) {
 System.out.println(e.getMessage());
 System.exit(3); }

 // Put the image into a container and add container to JPanel.
 label = new JLabel(new ImageIcon(image));
 add(label); }
 // ---/
 private String getQuery(String host,String port,String dbname
 ,String user,String pswd) {

 // Define return variable.
 String data = null;

 try {
 // Set the Pooled Connection Source
 OracleDataSource ods = new OracleDataSource();

726 Oracle Database 11g PL/SQL Programming

 String url = "jdbc:oracle:thin:@//"+host+":"+port+"/"+dbname;
 ods.setURL(url);
 ods.setUser(userid);
 ods.setPassword(passwd);

 // Define connection.
 Connection conn = ods.getConnection();

 // Create statement.
 CallableStatement stmt =
 conn.prepareCall("BEGIN " +
 " ? := get_canonical_bfilename(?,?,?,?,?);" +
 "END;");

 // Register the OUT mode variable.
 stmt.registerOutParameter(1,Types.VARCHAR);

 // Register the IN mode variables.
 stmt.setString(2,tableName);
 stmt.setString(3,columnName);
 stmt.setString(4,keyColumnName);
 stmt.setString(5,keyColumnValue);
 stmt.setString(6,operatingSystem);

 // Execute query.
 if (stmt.execute());

 // Read rows and only CLOB data type columns.
 data = (String) stmt.getString(1);

 // Close resources.
 stmt.close();
 conn.close();

 // Return CLOB as a String data type.
 return data; }
 catch (SQLException e) {
 if (e.getSQLState() == null) {
 System.out.println(
 new SQLException("Oracle Thin Client Net8 Connection Error.",
 "ORA-" + e.getErrorCode() +
 ": Incorrect Net8 thin client arguments:\n\n" +
 " host name [" + host + "]\n" +
 " port number [" + port + "]\n" +
 " database name [" + dbname + "]\n"
 , e.getErrorCode()).getSQLState());

 // Return an empty String on error.
 return data; }
 else { System.out.println("here");
 System.out.println(e.getMessage());

 // Return an empty String on error.
 return data; }}

Appendix D: Oracle Database Java Primer 727

 finally {
 if (data == null) System.exit(1); }}}
 // ---/
 public static void main(String[] args) {
 ReadBFILE frame = new ReadBFILE("Read BFILE Image"); }}

NOTE
Diagnostic information for your keyed inputs is printed to the
command console when you run the ReadBFILE.class file.

This section has shown you how to read and display images stored on the file system. It has
also demonstrated how you can leverage the Oracle 11g database to find and read canonical
filenames. The PL/SQL functions from Chapter 8 show you how to extend the data catalog to
deliver this functionality.

Summary
This appendix has reviewed the basics of working with Java and the JDBC. You have seen how to
work with scalar and large objects. This appendix has provided coding examples to support how
you’ll write PL/SQL programming units to support external programming languages.

This page intentionally left blank

APPENDIX
E

Regular Expression
Primer

729

730 Oracle Database 11g PL/SQL Programming

egular expressions in Oracle 11g enable you to perform powerful context searches in
variable-length strings, like the CHAR, CLOB, NCHAR, NCLOB, NVARCHAR2, and
VARCHAR2 character datatypes. They are strings that describe or match a set of strings.
They provide a powerful set of pattern matching capabilities by combining character
classes, collation classes, metacharacters, metasequences, and literals. Character

classes are groups of possible characters at a point in the search. Collation classes are sets of
characters and are treated like a range. Metacharacters are operators that specify search algorithms,
and metasequences are operators created by two metacharacters or literals. Literals are characters,
character sets, and words. Together, these let you search text by using patterns to match strings.

This appendix presents regular expressions in the following sections:

Introduction to regular expressions

Oracle 11g regular expression implementation

Using regular expressions

These sections should explain what regular expressions are, and how you can use them in
your PL/SQL application code. If you want the examples, go straight to the section “Using Regular
Expressions.”

Introduction to Regular Expressions
Regular expressions let you match text based on common characteristics, like case insensitive or
approximate spelling searches. Some languages provide search functions to perform these operations,
while others don’t. Regular expressions are a major facility in scripting languages, like Perl and
PHP. They provide pattern matching and flexibility when you search long strings for substrings
or instances of substrings.

You build pattern matching expressions by combining character classes, collation classes,
metacharacters, metasequences, and literals. These components are covered in the following
subsections.

Character Classes
Character classes are groups or ranges of possible characters. They may appear at any point in
your regular expression. Character classes are traditionally delimited by [] (square brackets). You
use a “-” (dash) inside the square brackets to designate everything between two characters. The
“-” in this context is a character-class metacharacter.

You use the ordinal numbers from 0 to 9 and upper- or lowercase letters A through F to
designate hexadecimal values. The character class [ABCDEFabcdef0123456789] represents
the group of possible characters found in hexadecimal characters. You can represent the same
letter and number range sets by using the character class [A-Fa-f0-9]. There is no practical
limit to the number of ranges that you can put in a character class.

The POSIX specification broadens the use of character classes by introducing the concept of
portable character classes (which means portable across languages). Portable character classes are
nested inside the basic [] as [::] (square brackets with colons). This means that the character
class [A-Za-z] that represents all upper- and lowercase letters is equal to the [[:alpha:]]
portable character class. Another popular character class [A-Za-z0-9] for all characters and
numbers is equal to [[:alpha:][:digit]]. This is a set of portable character classes that
you can replace with the [[:alnum:]] portable character class for alphanumeric characters. You
should note that the portable character classes are inside an additional set of square brackets. More

■

■

■

R

Appendix E: Regular Expression Primer 731

or less, the portable character classes act like range aliases. The second set of square brackets
delimits them as a character class. Unlike language-specific character classes, portable character
classes map across languages and simplify globalizing search patterns. Table E-1 lists the POSIX
portable character classes.

By themselves, character classes apply only to a single character or position of a string. When
matched with the “+” metacharacter (which means one or more of the preceding characters or
character classes), the expression may apply to more than a single character. The following example
demonstrates regular expressions that use standard character classes:

-- This is found in character_class1.sql on the publisher's web site.
DECLARE
 counter NUMBER := 1;

source_string VARCHAR2(12) := 'A1';
 pattern1 VARCHAR2(12) := '[A-Z]';
 pattern2 VARCHAR2(12) := '[0-9]';
BEGIN
 -- Compare using standard character class ranges.
 FOR i IN 1..LENGTH(source_string) LOOP
 IF REGEXP_INSTR(SUBSTR(source_string,counter,i),pattern1) = i THEN
 dbms_output.put(REGEXP_SUBSTR(
 SUBSTR(source_string,counter,i),pattern1));
 ELSE
 dbms_output.put_line(REGEXP_SUBSTR(
 SUBSTR(source_string,counter,i),pattern2));
 END IF;
 counter := counter + 1;
 END LOOP;
END;
/

Character Ranges Description
[:alnum:] All alphanumeric characters
[:alpha:] All alphabetic characters
[:cntrl:] All non-printable control characters
[:digit:] All numeric digits
[:graph:] All [:digit:], [:lower:], [:punct:], and [:upper:] portable

character classes
[:lower:] All lowercase alphabetic characters
[:print:] All printable characters
[:punct:] All punctuation characters
[:space:] All nonprinting space characters
[:upper:] All uppercase alphabetic characters
[:xdigit:] All hexadecimal characters

TABLE E-1 POSIX Portable Character Classes

732 Oracle Database 11g PL/SQL Programming

This prints A1 because the first character of the source_string matches the pattern1
character class, and second character matches the pattern2 character class. The next program
applies the same logic but substitutes the POSIX portable character classes for the language-
specific character classes.

-- This is found in character_class2.sql on the publisher's web site.
DECLARE
 counter NUMBER := 1;

source_string VARCHAR2(12) := 'A1';
 pattern1 VARCHAR2(12) := '[[:alpha:]]';
 pattern2 VARCHAR2(12) := '[[:alnum:]]';
BEGIN
 -- Compare using standard character class ranges.
 FOR i IN 1..LENGTH(source_string) LOOP
 IF REGEXP_INSTR(SUBSTR(source_string,counter,i),pattern1) = i THEN
 dbms_output.put(REGEXP_SUBSTR(
 SUBSTR(source_string,counter,i),pattern1));
 ELSE
 dbms_output.put_line(REGEXP_SUBSTR(
 SUBSTR(source_string,counter,i),pattern2));
 END IF;
 counter := counter + 1;
 END LOOP;
END;
/

Like the prior example, this program prints A1 because the first character of the source_string
matches the pattern1 portable character class, and second character matches the pattern2
portable character class.

This section has demonstrated the basics of using character and portable character classes.
You will revisit the concept later in other program samples.

Collation Classes
The collation class is new to regular expressions. It was introduced by the POSIX regular expression
standard and is designed to allow you to collate in languages that require a collating element.
Collating elements may contain more than one character, whereas traditional regular expressions
limit collating elements to single characters.

You define a collation class by using [..] (square brackets with offsetting dots or periods).
An example drawn from the Oracle Database Globalization Guide creates a collation element
inside a character class: [a-[.ch.]]. This allows you to find whether a collating element is
between an a or a ch. This is highly dependent on the NLS_SORT parameter and language
implementation. The details are best left to another book, on text retrieval.

Metacharacters
A metacharacter provides some mechanics for performing pattern matching. Some books and
documents group character classes, intervals, and scope limiting parentheses as metacharacters.
This appendix takes a different tack. Character and collating classes are treated separately from
other metacharacters. Both were covered earlier in the appendix. Table E-2 lists metacharacters.

Appendix E: Regular Expression Primer 733

Metacharacter Name Type Description
() parentheses Delimiter They act as a constraint on the scope of comparison.

A common use is to choose between two alternatives
with the '|' (or bar), like a 't(o|oo)' regular
expression that finds a to or too in a string. You create
subexpressions when you enclose evaluation criteria
in parentheses. Failure to match parentheses in
subexpressions raises an ORA-12725 exception. This
occurs because Oracle implements subexpressions
only when they are inside parentheses. This differs
from most implementations of regular expressions,
and it also changes some syntax rules.

{m} exact Interval Matches exactly m occurrences of the preceding
subexpression or character.

{m,} at least Interval Matches at least m occurrences of the preceding
subexpression or character.

{m,n} between Interval Matches at least m occurrences, but not more than
n occurrences, of the preceding subexpression or
character.

| or bar Logical It acts as a logical OR operator; and it treats the
characters to the left and right as operands in a
matching operation. It returns a match when either
operand is found. Alternatively, it can manage a
logical OR relationship between sets of characters
when they are inside ordinary parentheses.
Parentheses act as scope delimiters as already
noted with an or bar example.

. dot Matching It matches any one character.
^ caret Matching It matches the beginning of a line in generalized

regular expressions but represents the beginning
of a multiple-line document unless you specify the
“m” match_type_flag. Please refer to Table E-4
for more information.

$ dollar sign Matching It matches the end of a line in generalized regular
expressions but represents the end of a multiple-line
document unless you specify the “m”match_type_flag.
See Table E-4 for more information.

^ caret Negation It acts as a negation operator only when you use
it inside a character class. Then, it is technically a
character-class metacharacter. The following regular
expression disallows any uppercase characters
between K and M:'[^K-M]'

TABLE E-2 POSIX Metacharacters

734 Oracle Database 11g PL/SQL Programming

As you’ve seen in this section, metacharacters have many uses. Unfortunately, not all can
be shown in this primer. You will find broader examples combining these metacharacters into
meaningful regular expressions in the section “Using Regular Expressions” later in this appendix.

Metasequences
Metasequences are characters combined with backslashes, like those in Table E-3. The backslash
strips the special nature of other metacharacters, like parentheses or a “.”. They also add
metacharacteristics to ordinary characters like the “<” (less than symbol) or “>” (greater than
symbol) in some programming languages.

NOTE
Oracle 11g does not support the “\<” (word beginning) or “\>” (word
ending) metasequences. This means you may need to leverage the
LTRIM and RTRIM functions.

Oracle 11g doesn’t support some popular regular expression metasequences. While Oracle
sources have made no formal statement of how they plan to improve regular expressions, you can
be certain that they will do so.

Metacharacter Name Type Description
- dash Range It acts as a range operator, but only when it is inside

a character class. This limited context makes the “-
” a character-class metacharacter. Please check the
section “Character Classes” for more information on
this metacharacter.

? question mark Repetition It makes the preceding character optional in a
matching solution. In other words, there may or
may not be the preceding character in a string. The
following regular expression checks for an American
or British spelling using this metacharacter:
'colou?r'

* asterisk or star Repetition It matches any instance of zero to many characters.
Thus it functions like a combination of “.” and “?”
for any character because it matches any character
or no character.

+ plus Repetition It matches at least once or many times the preceding
character. Returning to an early regular expression
example that chooses between two alternatives,
like 't(o|oo)', it finds to or too in a string.
You can now rewrite it as the regular expression
't(o|o+)', which works for to, too, or tooooo.

TABLE E-2 POSIX Metacharacters (continued)

Appendix E: Regular Expression Primer 735

Metasequence Name Type Description
\n backreference POSIX It matches the nth preceding subexpression. You

raise an ORA-12727 when the backreference
exceeds the number of subexpressions. Oracle
11g requires you to enclose all subexpressions
in parentheses.

\d digit Perl It is a metasequence equal to the portable
character class [[:digit:]] and matches
any digit.

\D nondigit Perl It is a metasequence equal to the portable
character class [^[:digit:]] and matches
any non-digit.

\w word character Perl It is a metasequence equal to the portable
character class [[:alnum:]] and matches
any word character.

\W nonword character Perl It is a metasequence equal to the portable
character class [^[:alnum:]] and matches
any non-word character.

\s whitespace character Perl It is a metasequence equal to the portable
character class [[:space:]] and matches
any whitespace character.

\S nonwhitespace
character

Perl It is a metasequence equal to the portable
character class [^[:space:]] and matches
any non-whitespace.

\A beginning of string Perl It is a metasequence that matches the beginning
of a new string. It does not find the beginnings
of new lines when you enable multiple-
line searches with the match_type_flag
covered in the section “REGEXP_COUNT
Function.”

\Z end of string Perl It is a metasequence that matches the end of a
new string. Like the \A metasequence, it does
not find the ends of lines when you enable
multiple-line searches.

\z end of string Perl It is a metasequence that matches the end of
a new string regardless of how you’ve set the
match_type_flag value.

TABLE E-3 Oracle 11g Supported POSIX and Perl Metasequences

Literals
Regular expression literal values are simply string literals as discussed in Chapter 3. They may
consist of one to many characters. Regular expressions can be explicit in providing the full text
of a literal string, or they can use pattern matching sequences.

736 Oracle Database 11g PL/SQL Programming

Oracle 11g Regular Expression Implementation
PL/SQL and SQL began supporting these text search and comparison operations in the Oracle 10g
database release. The Oracle 11g database supports IEEE Portable Operating System Interface (POSIX)
standard draft 1003.2/D11.2, and Unicode Regular Expression Guidelines of the Unicode Consortium.
Oracle 11g extends matching capabilities for multilingual data beyond the POSIX standard. This
release also adds support for the common Perl regular expression extensions that are not covered
in and don’t conflict with the POSIX standard.

Oracle 11g introduces a restrictive subordinate expression to the REGEXP_INSTR (regular
expression in-string) and REGEXP_SUBSTR (regular expression substring) functions, which were
introduced in Oracle 10g. Oracle 11g also adds the REGEXP_COUNT (regular expression count)
function.

Oracle 11g supports regular expressions against variable-length strings, like the CHAR, CLOB,
NCHAR, NCLOB, NVARCHAR2, and VARCHAR2 character datatypes. It does not support using
regular expressions with the LONG datatype. Oracle recommends that you migrate LONG datatypes
to CLOB datatypes. After all, the LONG datatype is only provided as a convenience for backward
compatibility.

There are five regular expression functions in Oracle 11g. The following subsections define
them. Rather than summarize formal parameter definitions when they occur more than once,
they’re repeated in each function description. The exception is the match_type_flag value,
which is covered once in the REGEXP_COUNT function subsection. Hopefully, this choice makes
the appendix an easier spot reference for you. You can find examples by skipping to the section
“Using Regular Expressions” later in this appendix.

REGEXP_COUNT Function
The REGEXP_COUNT function is new in Oracle 11g. It lets you count the number of times a
specific pattern is found in a string. It has the prototype

REGEXP_COUNT(source_string, pattern [, start_position [, match_type_flag]])

The source_string can be any character expression, provided the datatype is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. You may recall from Chapter 6 that an
expression can be a string literal or a function return value that meets the datatype requirement.
The character expression can also be a column value or bind variable. For example, you could
use the :new.column_name as a source_string value in a database trigger. See Chapter 10
for more information on database triggers.

The pattern value can be any valid regular expression, but the length must be less than or
equal to 512 characters. POSIX regular expressions are supported in Oracle 11g. You must prepend
any apostrophe with a single quote because you pass the pattern value as an actual parameter
into a function call. Alternatively, you can reset the quote identifier in your session. Appendix B
shows you how to substitute another backquoting identifier for the default apostrophe.

The start_position value is an integer expression, whose default value is 1. It is not
uncommon to find a starting point inside the string by calling the REGEXP_INSTR function as
an expression for this actual parameter.

The match_type_flag value is a string literal. The string may contain either an “i” or a
“c”, and one or more of the following: “n”, “m”, or “x”. Collectively, they override the default
matching behavior. The default matching behavior performs as follows:

Appendix E: Regular Expression Primer 737

It uses the NLS_SORT parameter and is generally case-sensitive matching. It is always
case sensitive matching (by default) when the NLS_SORT parameter is a western
European character set.

It restricts the “.” (dot or period) so that it doesn’t match a newline return.

It treats the strings as a single line, which means the caret (^) and dollar sign ($) refer to
the beginning and ending of the string, respectively.

It matches whitespace characters against whitespace characters.

Table E-4 qualifies the override flags for the match_type_flag parameter. This table applies
to all five of the regular expression functions.

You might wonder why it was so important to add the REGEXP_COUNT function in Oracle 11g.
The answer is quite straightforward. If you want to handle the occurrences of results individually
rather than collectively, counting them lets you create a dynamic range FOR loop. Conversely, it
eliminates the need for you to loop through a string counting the occurrences of a pattern match.
The function typically solves the latter more frequently than the former. You can find an example
demonstrating this behavior in the section “Using Regular Expressions.”

REGEXP_INSTR Function
The REGEXP_INSTR function is enhanced in Oracle 11g. You can now use a restricting subordinate
expression. The REGEXP_INSTR function lets you find a position index value inside a string. You use
it to find a starting point inside a string, and it is known as the regular expression in-string function.

The prototype for the function is

REGEXP_INSTR(source_string, pattern [, start_position [, occurrence
 [, return_option [, match_type_flag [, subexpression]]]]])

The new subexpression parameter lets you do priority searching on subexpressions. As qualified
in the section “Introduction to Regular Expression Introductions,” a subexpression matches the

■

■

■

■

Match Type Flag Description
i Sets the search to case-insensitive matching, overriding the NLS_SORT

parameter where necessary.
c Sets the search to case-sensitive matching, overriding the NLS_SORT

parameter where necessary.
n Enables the “.” (dot or period) to truly match any character, including a

newline character.
m Enables the search to recognize multiple lines inside a string. This ensures

that the caret (^) and dollar sign ($) work as they normally do in scripting
languages.

x Sets the search to ignore whitespace characters.

TABLE E-4 List of Possible Match Type Flag Values

738 Oracle Database 11g PL/SQL Programming

value on either the left or the right of the “|” metacharacter. The “|” metacharacter acts like a
logical OR operator. For example, you can use a pattern of “col(o|ou)r” when you want all
strings matching either color (American English) or colour (British English). The subexpression is the
(o|ou). If you read the introduction, you should know that you really don’t require a subexpression
in this case. You can accomplish the same thing with “colou?r” because the question mark (?)
treats the character that precedes it as optional.

Single-Dimension Character Array
A string is actually a single-dimensional character array. Oracle defines these character arrays
by using the database character set. It also lets you override the default character set and build
them to your own specifications. This means that you could have an array of elements where
each element is one, two, or three bytes, depending on how you configured it.

Whether stored in one, two, or three bytes, a string is really stored like an array. If you
insert the word SAMPLE into a variable or column using a fixed- or variable-length character
datatype, you actually store the following:

Index Value Character Value
1 S

2 A

3 M

4 P

5 L

6 E

This index uses a 1-based numbering system to index the characters of your string. The
index lets you find and parse strings.

The source_string can be any character expression, provided the datatype is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. You may recall from Chapter 6 that an
expression can be a string literal or a function return value that meets the datatype requirement.
The character expression can also be a column value or a bind variable. For example, you could
use the :new.column_name as a source_string value in a database trigger. See Chapter 10
for more information on database triggers.

The pattern value can be any valid regular expression, but the length must be less than or
equal to 512 characters. POSIX regular expressions are supported in Oracle 11g. You must prepend
any apostrophe with a single quote because you pass the pattern value as an actual parameter
into a function call. Alternatively, you can reset the quote identifier in your session or for a single
assignment (as described in the “Alternative Backquoting” sidebar).

The start_position value is an integer expression, whose default value is 1. It is not
uncommon to find a starting point inside the string by calling the REGEXP_INSTR function as
an expression for this actual parameter.

The occurrence value is an integer expression, whose default value is 1. If you want another
occurrence, you must provide a value. Override values are typically defined by business rules.

The return_option value is an integer expression. The default value is 0, which represents
the position or index of the beginning of the first substring matched by the pattern. You can override
this value by using a 1, which instructs the function to return the character after the substring that
matches the pattern.

Appendix E: Regular Expression Primer 739

The match_type_flag value is a string literal. The string may contain either an “i” or a
“c”, and one or more of the following: “n”, “m”, or “x”. Collectively, they override the default
matching behavior. The subsection “REGEXP_COUNT Function” describes the default and
overriding matching behaviors (refer back to Table E-3).

The subexpression value is zero by default. This means that it returns only those values
that match the complete set of subexpressions. You can specify a value between 1 and 9 when
the subexpression returns a positive integer. Then, the values matching only that subexpression
are returned.

REGEXP_LIKE Function
The REGEXP_LIKE function lets you find a regular expression match inside a string. You use it in
lieu of the old LIKE comparison operator.

The prototype for the function is

REGEXP_LIKE(source_string, pattern [, match_type_flag])

The source_string can be any character expression, provided the datatype is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. You may recall from Chapter 6 that an
expression can be a string literal or a function return value that meets the datatype requirement.
The character expression can also be a column value or bind variable. For example, you could
use the :new.column_name as a source_string value in a database trigger. See Chapter 10
for more information on database triggers.

The pattern value can be any valid regular expression, but the length must be less than or
equal to 512 characters. POSIX regular expressions are supported in Oracle 11g. You must prepend
any apostrophe with a single quote because you pass the pattern value as an actual parameter
into a function call. Alternatively, you can reset the quote identifier in your session. Appendix B
shows you how to substitute another backquoting identifier for the default apostrophe.

Alternative Backquoting
Alternative backquoting lets you substitute another character for the default string delimiting
apostrophe. It is done by using a “q” as a quote substitution flag. An example of alternative
backquoting follows:

DECLARE
 sample VARCHAR2(40);
BEGIN
 sample := q'!Q's are the quoting trick!!';
 dbms_output.put_line(sample);
END;
/

The “q’!” and “!’” act as delimiters. They reassign the backquoting role from an
apostrophe to an exclamation mark. More or less, these form metasequences. You can
assign a string with an apostrophe to a VARCHAR2 variable when the metasequences
delimit it. You should also note that the exclamation mark (!) doesn’t require backquoting
inside the delimited string. It prints

Q's are the quoting trick!

740 Oracle Database 11g PL/SQL Programming

The match_type_flag value is a string literal. The string may contain either an “i” or a
“c”, and one or more of the following: “n”, “m”, or “x”. Collectively, they override the default
matching behavior. The subsection “REGEXP_COUNT Function” contains the default and
overriding matching behaviors (See Table E-3).

REGEXP_REPLACE Function
The REGEXP_REPLACE function lets you find and replace a substring inside of a string. The
prototype for the function is

REGEXP_REPLACE(source_string, pattern , replace_string [, start_position
 [, occurrence [, match_type_flag]]])

The source_string can be any character expression, provided the datatype is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. You may recall from Chapter 6 that an
expression can be a string literal or a function return value that meets the datatype requirement.
The character expression can also be a column value or bind variable. For example, you could
use the :new.column_name as a source_string value in a database trigger. See Chapter 10
for more information on database triggers.

The pattern value can be any valid regular expression, but the length must be less than or
equal to 512 characters. POSIX regular expressions are supported in Oracle 11g. You must prepend
any apostrophe with a single quote because you pass the pattern value as an actual parameter
into a function call. Alternatively, you can reset the quote identifier in your session. Appendix B
shows you how to substitute another backquoting identifier for the default apostrophe.

The replace_string can be any character expression, provided the datatype is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. If the replace_string is a CLOB or NCLOB
datatype, then Oracle 11g truncates the string to 32KB.

The start_position value is an integer expression, whose default value is 1. It is not
uncommon to find a starting point inside the string by calling the REGEXP_INSTR function as
an expression for this actual parameter.

The occurrence value is an integer expression, whose default value is 1. If you want another
occurrence, you must provide a value. Override values are typically defined by business rules.

The match_type_flag value is a string literal. The string may contain either an “i” or a
“c”, and one or more of the following: “n”, “m”, or “x”. Collectively, they override the default
matching behavior. The subsection “REGEXP_COUNT Function” contains the default and
overriding matching behaviors (found in Table E-3).

REGEXP_SUBSTR Function
The REGEXP_SUBSTR function is enhanced in Oracle 11g. You can now use a restricting
subordinate expression. The REGEXP_SUBSTR function lets you find a substring inside a string.

The prototype for the function is

REGEXP_SUBSTR(source_string, pattern [, start_position [, occurrence
 [, match_type_flag [, subexpression]]]]])

The new subexpression lets you do priority searching on subexpressions. A quick refresher of
what this means is found in the section “REGEXP_INSTR Function”.

The source_string can be any character expression, provided the datatype is a CHAR,
CLOB, NCHAR, NCLOB, NVARCHAR2, or VARCHAR2. You may recall from Chapter 6 that an
expression can be a string literal or a function return value that meets the datatype requirement.
The character expression can also be a column value or bind variable. For example, you could

Appendix E: Regular Expression Primer 741

use the :new.column_name as a source_string value in a database trigger. See Chapter 10
for more information on database triggers.

The pattern value can be any valid regular expression, but the length must be less than or
equal to 512 characters. POSIX regular expressions are supported in Oracle 11g. You must prepend
any apostrophe with a single quote because you pass the pattern value as an actual parameter
into a function call. Alternatively, you can reset the quote identifier in your session. Appendix B
shows you how to substitute another backquoting identifier for the default apostrophe.

The start_position value is an integer expression, whose default value is 1. It is not
uncommon to find a starting point inside the string by calling the REGEXP_INSTR function as
an expression for this actual parameter.

The occurrence value is an integer expression, whose default value is 1. If you want another
occurrence, you must provide a value. Override values are typically defined by business rules.

The return_option value is an integer expression. The default value is 0, which represents
the position or index of the beginning of the first substring matched by the pattern. You can override
this value by using a 1, which instructs the function to return the character after the substring that
matches the pattern.

The match_type_flag value is a string literal. The string may contain either an “i” or a
“c”, and one or more of the following: “n”, “m”, or “x”. Collectively, they override the default
matching behavior. The “REGEXP_COUNT Function” subsection contains the default and
overriding matching behaviors (found in Table E-3).

The subexpression value is zero by default. This means that it returns only those values
that match the complete set of subexpressions. You can specify a value between 1 and 9 when
the subexpression returns a positive integer. Then, the values matching only that subexpression
are returned.

Using Regular Expressions
This section provides some examples of how you can use regular expression. The prototypes for
the function are not repeated from the prior section. The examples are small and rely on the
paragraph found in the sidebar.

Sample Search String
The following XHTML fragment serves as a search string for these example programs:

“The prologue, spoken by Galadriel, shows the Dark Lord Sauron forging the One
Ring which he can use to conquer the lands of Middle-earth through his enslavement of
the bearers of the Rings of Power. The Rings of Power are powerful magical rings given
to individuals from the races of Elves, Dwarves and Men. A Last Alliance of Elves and
Men is formed to counter Sauron and his forces at the foot of Mount Doom, but Sauron
himself appears to kill Elendil, the king of the Mannish kingdom of Gondor. Just afterward,
Isildur grabs his father’s broken sword Narsil, and slashes at Sauron’s hand. The stroke
cuts off Sauron’s fingers, separating him from the Ring and vanquishing his army. However,
because Sauron’s life is bound in the Ring, he is not completely defeated until the Ring
itself is destroyed. Isildur takes the Ring and succumbs to its temptation, refusing to
destroy it, but he is later ambushed and killed by orcs and the Ring is lost in the river into
which Isildur fell.<p />”

You can download the seed_regular_expression.sql script from the publisher’s
web site to build the table and seed this string.

742 Oracle Database 11g PL/SQL Programming

REGEXP_COUNT Function
The new REGEXP_COUNT function lets you count the number of times a specific pattern is found
in a string. Three examples are provided; they count the number of title-case (where only the first
letter is capitalized), lowercase, and case-insensitive “the” words in the sample string.

Title Case Count
The following query counts the number of title-case “The” words followed by a whitespace. The
whitespace avoids counting any other words, like Theory, They, or There, found in the sample story.

SELECT REGEXP_COUNT(story_thread, 'The ') AS "Title Case"
FROM sample_regexp;

It returns an integer value of 3. There is also the possibility that with a different string, you
could return an incorrect count if there were a word ending in a title case “The” followed by
a space. Logic tells you that it is unlikely. You see how to address that possibility in the case-
insensitive search later in this section.

Lowercase Count
The next query counts number of lowercase “the” words preceded and followed by a whitespace.
As discussed, the whitespaces avoid counting any words that begin with the pattern, like theory,
they, or there. The whitespace before “the” rules out words that end in the pattern, like routhe
(which means sorrow). Ironically, sorrow is what you might feel with regular expressions when
you overlook a pattern-matching possibility.

SELECT REGEXP_COUNT(story_thread, ' the ', 1, 'c') AS "Lowercase"
FROM sample_regexp;

This function call uses the optional start_position and match_type_flag values to perform
a case-sensitive search. The values provided as actual parameters are actually the default values.

You can reference these formal parameters in the section “REGEXP_COUNT Function,”which
appears earlier in this appendix. Table E-4 qualifies the valid list of values for these parameters.
The case-sensitive search also requires that you enter the regular expression pattern in lowercase
characters to find lowercase “the ” words. This query returns an integer value of 15 from the
sidebar string.

NOTE
The regular expression functions are defined as interfaces in the
STANDARD package, and they did not support named or mixed
notation at the time of this writing against Oracle 11g Release 1.

Case-Insensitive Count
The first query that follows counts the number of lowercase “the” words starting a line or else
preceded by or followed by a whitespace. As discussed in the prior sections, the trailing whitespace
avoids counting any words that begin with the pattern but aren’t the correct word, like Theory,
They, or There. The leading whitespace prevents counting words that end in the pattern, like routhe
(which means sorrow). The combination of leading and trailing line, punctuation, or whitespace
avoids counting “the” from inside the word father. Unfortunately, the leading whitespace also
eliminates the first “The” word because it is preceded by a double quote.

Appendix E: Regular Expression Primer 743

This is where patterns, subexpressions, and metacharacters solve a common searching problem.
The second query that follows looks for a case-insensitive “the” word that may be at the beginning
of a line, immediately preceded by a double quote, or preceded by a whitespace. At the same
time, the pattern will look for a “the” word that is followed by a dash, colon, comma, semicolon,
or whitespace.

There are two approaches to solving this problem. One lets you accept the default matching
behavior, and the other requires you to override the default matching behavior.

This one uses the default matching properties:

SELECT REGEXP_COUNT(
 story_thread
 ,'((^| +)|(["'']))(T|t)he(([-:,\.;])|(+|$))') AS "Case-insensitive"
FROM sample_regexp;

It accomplishes case-insensitive searches provided there are no capitals other than “T” in the “the”
words. The pattern uses parentheses to create a subexpression. The subexpression checks for an
uppercase or lowercase “T”. This type of subexpression is sometimes labeled as an alternation.
Alternation is a regular expression term that means you choose between two alternatives.

The foregoing expression also uses two character classes. One qualifies a double or single quote
(please note that it is backquoted by an apostrophe because this is Oracle). The other qualifies a
dash, colon, comma, (backquoted) period, or semicolon. Both character classes are options inside
subexpressions. The “((^| +)|(["'']))” subexpression says that either one or the other nested
subexpression is true. The first nested subexpression condition is met when the first character is
the beginning of a line or one or more whitespaces. The second nested subexpression checks for
a single or double quote.

The next “(([-:,\.;])|(+|$))” subexpression examines the trailing character. The first
nested subexpression condition is met when the trailing character of the “the” word is a dash,
colon, period, or semicolon. Alternatively, the other nested subexpression condition is met when
the trailing characters are one or more whitespaces or the end-of-line marker.

A simpler approach leverages the match_type_flag available as part of the function. As
shown in Table E-4, the “i” string designates case-insensitive searching. It has the following
implementation:

SELECT REGEXP_COUNT(
 story_thread
 ,'((^| +)|([“'']))the(([-:,\.;])|(+|$))', 1, 'i') AS "Case-insensitive"
FROM sample_regexp;

Both of these patterns yield a count of 18 words.
This section has demonstrated several approaches that show you how to use the REGEXP_

COUNT function. The caveat is always the same, whether it is PL/SQL, SQL, or regular expression
programming—know what you want, rule out what you don’t want, and look for the simplest way
to do it.

REGEXP_INSTR Function
The REGEXP_INSTR function lets you find a position index value inside a string. You use it to find a
starting point inside a string, or the position immediate after the pattern. You set the return_option
to 0 when you want the starting point and 1 when you want the position immediately after the
ending point of the pattern.

744 Oracle Database 11g PL/SQL Programming

The following example finds the starting and ending positions for the first occurrence of the
proper noun Sauron in the sample story:

SELECT REGEXP_INSTR(story_thread,'sauron',1,1,0,'i') AS "Begin"
, REGEXP_INSTR(story_thread,'sauron',1,1,1,'i') - 1 AS "End"
FROM sample_regexp;

This returns the following starting and ending values:

 Begin End
---------- ----------
 57 62

This has demonstrated how to find starting and ending points in strings. Together these two
values let you parse a substring from a string. The function becomes more useful as the complexity
of your pattern search grows.

REGEXP_LIKE Function
The REGEXP_LIKE function lets you find a regular expression match inside a string. You use it in
lieu of the old LIKE comparison operator. The following example searches the sample string for a
line beginning “a last alliance of elves and men”.

SELECT sample_regexp_id
FROM sample_regexp
WHERE REGEXP_LIKE(story_thread,' ?a last alliance of elves and men ?','i');

The effectiveness of this search is that you can apply it against a CHAR, CLOB, NCHAR, NCLOB,
NVARCHAR2, or VARCHAR2 datatype. The search is case insensitive and actually returns the row’s
primary key value. You should note that it uses “?” (question mark) characters to make the
whitespaces before and after the string optional.

REGEXP_REPLACE Function
The REGEXP_REPLACE function lets you find and replace a substring inside of a string. The
following example replaces all occurrences of Sauron with Sauroman, which may disconcert
some dedicated Tolkien fans. No sacrilege is intended to a great piece of fiction.

-- This is found in regexp_replace.sql on the publisher's web site.
DECLARE
 container VARCHAR2(4000);
 beginning NUMBER := 1;
 ending NUMBER;
 -- Define a cursor to recover correct story thread.
 CURSOR c IS
 SELECT story_thread
 FROM sample_regexp
 WHERE REGEXP_LIKE(story_thread,'a last alliance of elves and men ?','i');
BEGIN
 OPEN c;
 LOOP
 FETCH c INTO container;
 EXIT WHEN c%NOTFOUND;

Appendix E: Regular Expression Primer 745

 -- Set the ending range.
 ending := REGEXP_COUNT(container
 ,'((^| +)|([“'']))Sauron(([-:,\.;])|(+|$))',1,'i');
 -- Replace all instances one at a time.
 FOR i IN beginning..ending LOOP
 container := REGEXP_REPLACE(container,'Sauron','Sauroman',beginning,i);
 END LOOP;
 dbms_output.put_line(container);
 END LOOP;
END;
/

The search pattern counts the number of times Sauron appears in the string. It does that by
looking for a starting line metacharacter, whitespace, or punctuation mark before the word literal—
Sauron. Afterward, it looks for a punctuation mark, whitespace, or end-of-line metacharacter. The
combination of subexpressions and nested subexpressions lets you check for alternatives, which
means either this or that.

The anonymous block replaces all occurrences of Sauron with Sauroman by calling the
REGEXP_REPLACE function. If you’re familiar with Perl, this approach is cumbersome but
works. You have now seen how to use the REGEXP_REPLACE function.

REGEXP_SUBSTR Function
The REGEXP_SUBSTR function lets you find a substring inside a string. The following sample
finds the first 50 complete words and punctuation beginning at position 53 in the data column.

SELECT LTRIM(REGEXP_SUBSTR(story_thread
 ,'((^| +)|(["'']))([[:alpha:]]+(([-:,\.'';])|(+|$))+\.?){1,5}'
 ,53,1,'i')) AS substring
FROM sample_regexp
WHERE REGEXP_LIKE(story_thread,' ?a last alliance of elves and men ?','i');

It returns the following substring:

SUBSTRING

Sauron forging the One Ring

The starting position is in the middle of the word prior to Sauron. The interval captures the first
five whole words that start at or after position 53 in the story_thread column value. If you set
the start point as 1 and the maximum interval value to a number greater than the number of
words in the string, this pattern returns an entire string.

Like the prior patterns, this pattern uses a compound subexpression to check for (a) either a
beginning line metacharacter or whitespace, or (b) a quotation character at the beginning of the
string. It then checks for an optional alphabetical string by using a POSIX portable character class.
Finally, it uses another compound subexpression to check for (a) punctuation characters or (b) either
a whitespace or end-of-line metacharacter.

Two search principles are demonstrated in the regular expression. First, the pattern uses a
backquoted “.” (period) to find the beginning of another word before using the plus metacharacter
to repeat the matching behavior (check Table E-2 for more information on it). Second, the
apostrophes are backquoted by other single quotes because the single quote is an identifier
in an Oracle 11g database.

746 Oracle Database 11g PL/SQL Programming

This section has presented the last regular expression function, and it has demonstrated how
to capture a substring from a string using regular expressions. These features are nice for large
character strings but critical for quick pattern analysis of CLOB datatypes.

Summary
This appendix has explained regular expressions and shown you how to use regular expressions
to search text. You should also have learned why centralizing matching logic in the Oracle 11g
database helps you avoid middle-tier string processing.

APPENDIX
F

Wrapping PL/SQL
Code Primer

747

748 Oracle Database 11g PL/SQL Programming

racle 11g provides the capability to wrap or obfuscate your PL/SQL stored programs.
Wrapping your code encapsulates the business logic of your applications from
prying eyes by hiding the source code. It converts the clear text in the database
to an unreadable stream of data. You can obfuscate the clear text by using the
command line wrap utility or by calling the CREATE_WRAPPED procedure or

WRAP function found in the DBMS_DDL package.

You should wrap only the implementation details. This means you should wrap only functions,
procedures, package bodies, and type bodies. You enable developers to use your code by leaving
the package specification and the type specification. They just won’t know how it performs the
task, only what actual parameters they can submit and expect back from functions or type methods.
You should ensure that you comment the specification with any helpful information to take
advantage of wrapped code units, especially procedures because they don’t define a direct return
type like functions.

This appendix is organized into the following sections:

Limitations of wrapping PL/SQL

Using the wrap command-line utility

Using DBMS_DDL package to wrap PL/SQL

 WRAP function

 CREATE_WRAPPED procedure

The limitations imposed by wrapping are qualified first, then how to wrap using the command
line, and finally the built-in procedure and function of the DBMS_DDL package.

Limitations of Wrapping PL/SQL
There are three limits to generically wrapping PL/SQL code in the database. First, you cannot
wrap the source code of a database trigger, but you can reduce the logic to a single call to a
wrapped stored function or procedure. Second, wrapping does not detect syntax or semantic
errors, like missing tables or views; in this respect it differs from normal compilation. Wrapped
code units manifest run-time errors for missing tables or views, like Native Dynamic SQL (NDS)
statements. Third, wrapped code is only forward compatible for import into the database. This
means that you can import a wrapped module built by an Oracle 10g database into an 11g
database but not vice versa.

While it is difficult to decipher passwords in wrapped code, it isn’t impossible. Oracle
recommends that you don’t embed passwords in wrapped program units.

There are specific errors generated by the method that you choose to wrap your code. The
limitations are explained in the next two subsections.

Limitations of the PL/SQL Wrap Utility
The wrap utility is parsed by the PL/SQL compiler, not by the SQL*Plus compiler. This means that
you cannot include SQL*Plus DEFINE notation inside wrapped program units. Also, most comments
are removed when wrapped.

■

■

■

■

■

O

Appendix F: Wrapping PL/SQL Code Primer 749

Limitations of the DBMS_DDL.WRAP Function
When you invoke DBMS_SQL.PARSE with a datatype that is a VARCHAR2A or VARCHAR2S and
the text exceeds 32,767 bytes, you must set the LFFLG parameter to false. If you fail to do so, the
DBMS_SQL.PARSE adds newline characters to the wrapped unit and corrupts it.

Using the Wrap Command-Line Utility
The wrap command-line utility works with files. This is a critical point because the utility wraps
everything in the file. When you use the wrap utility, package specifications and type definitions
should be in different physical files from their respective package bodies and type bodies. As
discussed earlier, you should wrap only the implementation details, not the published specifications.

The prototype for the wrap utility is

wrap iname=input_file[{.sql |.ext}] [oname=output_file[{.plb |.ext}]

You can qualify the input and output files as relative or canonical filenames. Canonical filenames
start at the root mount point in Linux or Unix and from a logical file system reference in Microsoft
Windows. The default file extensions are .sql for input files and .plb for output files. You do
not need to provide either extension if you are prepared to accept the default values, but you
must provide overriding values when they differ.

The example works when the wrap command runs from the same directory as the input and
output files:

wrap iname=input_file.sql oname=output_file.plb

After you wrap the files, you can then run them into the database. The compilation process will
not raise exceptions when there are missing table or view dependencies because there is no
syntax, semantic, or dependency checking during compilation of wrapped program units. They
compile because the SQL DDL commands to CREATE [OR REPLACE] functions, procedures,
package specifications and bodies, and type definitions and bodies are scrambled into a form
understood by the PL/SQL compiler.

The CREATE [OR REPLACE] TRIGGER statement and anonymous-block DECLARE, BEGIN,
and END keywords are not obfuscated. Comments inside the header declaration and C-style
multiple-line comments, delimited by /* and */, are also not obfuscated.

Using the DBMS_DDL Command-Line Utility
The DBMS_DDL package contains an overloaded WRAP function and overloaded CREATE_
WRAPPED procedure. You can use either to create a wrapped stored programming unit. The
subsections cover both.

The WRAP Function
The WRAP function is an overloaded function that accepts a DDL statement as a single variable-
length string of 32,767 or fewer bytes, a table of strings 256 bytes in length, or a table of strings
32,767 bytes in length. You supply lower and upper bounds for the table of strings when the
actual parameter is a table of strings. The lower bound is always 1, and the upper bound is the
maximum number of rows in the collection of strings.

750 Oracle Database 11g PL/SQL Programming

The first prototype supports using a single input parameter:

DBMS_DDL.WRAP(ddl VARCHAR2) RETURN VARCHAR2
DBMS_DDL.WRAP(ddl DBMS_SQL.VARCHAR2S) RETURN VARCHAR2S
DBMS_DDL.WRAP(ddl DBMS_SQL.VARCHAR2A) RETURN VARCHAR2A

You can use this function to wrap a stored program unit as follows:

DECLARE
 source VARCHAR2(32767);
 result VARCHAR2(32767);
BEGIN
 source := 'CREATE FUNCTION one RETURN NUMBER IS BEGIN RETURN 1; END;';
 result := DBMS_DDL.WRAP(ddl => source);
 EXECUTE IMMEDIATE result;
END;
/

The program defines a DDL string, obfuscates it into the result variable, and then uses Native
Dynamic SQL (NDS) to create the obfuscated function in the database. You can see the function
specification by using the SQL*Plus DESCRIBE command.

FUNCTION one RETURNS NUMBER

Any attempt to inspect its detailed operations will yield an obfuscated result. You can test this
by querying the stored function implementation in the TEXT column of the USER_SOURCE table,
like the following:

SQL> COLUMN text FORMAT A80 HEADING "Source Text"
SQL> SET PAGESIZE 49999
SQL> SELECT text FROM user_source WHERE name = 'ONE';

The following output is returned:

FUNCTION one wrapped
a000000
369
abcd
… et cetera …

The function can be rewritten to use a table of strings, as follows:

DECLARE
 source DBMS_SQL.VARCHAR2S;
 result DBMS_SQL.VARCHAR2S;
BEGIN
 source(1) := 'CREATE FUNCTION two RETURN NUMBER IS ';
 source(2) := ' BEGIN RETURN 2;';
 source(3) := ' END;';
result := DBMS_DDL.WRAP(ddl => source, lb => 1, ub => source.COUNT);

 FOR i IN 1..result.COUNT LOOP
 stmt := stmt || result(i);

Appendix F: Wrapping PL/SQL Code Primer 751

 END LOOP;
 EXECUTE IMMEDIATE stmt;
END;
/

The actual table input and return value must be either the DBMS_SQL.VARCHAR2S or
DBMS_SQL.VARCHAR2A datatype. The former holds strings up to 256 bytes, while the latter
holds strings up to 32,767 bytes. Any other datatype raises a PLS-00306 exception because the
actual parameter doesn’t match the datatype of the formal parameter.

The statement is built by concatenating the strings from the table. It then calls the obfuscated
SQL DDL statement and creates the two function. You can see the function specification by using
the SQL*Plus DESCRIBE command.

SQL> DESCRIBE two
FUNCTION two RETURNS NUMBER

This section has demonstrated how to use the DBMS_DDL.WRAP command. The next section
shows you how to use the CREATE_WRAPPED procedure.

The CREATE_WRAPPED Procedure
The CREATE_WRAPPED function is an overloaded function that accepts a DDL statement as a single
variable-length string of 32,767 or fewer bytes, a table of strings 256 bytes in length, or a table of
strings 32,767 bytes in length. You supply lower and upper bounds for the table of strings when
the actual parameter is a table of strings. The lower bound is always 1, and the upper bound is the
maximum number of rows in the collection of strings.

The prototypes support using a single input parameter or table of strings:

DBMS_DDL.CREATE_WRAPPED(ddl VARCHAR2) RETURN VARCHAR2
DBMS_DDL.CREATE_WRAPPED(ddl DBMS_SQL.VARCHAR2S) RETURN VARCHAR2S
DBMS_DDL.CREATE_WRAPPED(ddl DBMS_SQL.VARCHAR2A) RETURN VARCHAR2A

You can use this anonymous block to test the wrapping procedure:

BEGIN
dbms_ddl.create_wrapped(

 'CREATE OR REPLACE FUNCTION hello_world RETURN STRING AS '
 ||'BEGIN '
 ||' RETURN ''Hello World!''; '
 ||'END;');
END;
/

After creating the function, you can query it by using the following SQL*Plus column
formatting and query:

SQL> COLUMN message FORMAT A20 HEADING "Message"
SQL> SELECT hello_world AS message FROM dual;

Message

Hello World!

752 Oracle Database 11g PL/SQL Programming

You can describe the function to inspect its signature and return type:

SQL> DESCRIBE hello_world
FUNCTION hello_world RETURNS VARCHAR2

Any attempt to inspect its detailed operations will yield an obfuscated result. You can test this
by querying stored function implementation in the TEXT column of the USER_SOURCE table, like
the following:

SQL> COLUMN text FORMAT A80 HEADING "Source Text"
SQL> SET PAGESIZE 49999
SQL> SELECT text FROM user_source WHERE name = 'HELLO_WORLD';

The following output is returned:

FUNCTION hello_world wrapped
a000000
369
abcd
… et cetera …

The procedure can be rewritten to use a table of strings, as follows:

DECLARE
 source DBMS_SQL.VARCHAR2S;
 stmt VARCHAR2(4000);
BEGIN
 source(1) := 'CREATE FUNCTION hello_world2 RETURN VARCHAR2 IS ';
 source(2) := ' BEGIN RETURN 2;';
 source(3) := ' END;';

DBMS_DDL.CREATE_WRAPPED(ddl => source, lb => 1, ub => source.COUNT);
END;

/

You don’t have to use Native Dynamic SQL to build the function when you call the CREATE_WRAPPED
procedure. This is because the CREATE_WRAPPED procedure builds the stored program for you,
unlike the WRAP function, which only returns the wrapped string or table of strings.

Summary
This appendix has shown you how to hide the implementation details of your PL/SQL stored
programming units. You’ve seen how to use the command-line wrap utility and the built-in
CREATE_WRAPPED procedure and WRAP function from the DBMS_DDL package. You should
remember to only hide the implementation details, not the package specifications and object
type definitions.

APPENDIX
G

PL/SQL Hierarchical
Profiler Primer

753

754 Oracle Database 11g PL/SQL Programming

racle 11g introduces the PL/SQL hierarchical profiler. The profiler lets you capture
the dynamic execution performance of your PL/SQL programs. It divides PL/SQL
execution times into two parts: SQL statement execution times and PL/SQL program
unit execution times.

A hierarchical profiler provides you with more insight than a nonhierarchical profiler. A
nonhierarchical profiler only reports how much time a module consumed. A hierarchical profiler
tells you which program called what subroutine, and how many times the subroutine was called.
The PL/SQL hierarchical profiler stores results in a set of hierarchical profiler tables. It divides the
data by subprogram units, including the relationship between calling and called subroutines, and
it further subdivides execution time by the SQL statement versus PL/SQL execution segments.

This appendix describes the PL/SQL hierarchical profiler and demonstrates how to configure
and use it. Coverage of the profiler is organized in the following sections:

Configuring the schema

Collecting profile data

Understanding profiler output

Using the plshprof command-line utility

The sections are organized sequentially, but you can jump directly to the information required
provided the schema is configured.

Configuring the Schema
The first step to configure the PL/SQL hierarchical profiler is building the tables in the SYS
schema. You do this by connecting to the database as the privileged user.

You connect from the command line:

sqlplus sqlplus '/ as sysdba'

As the privileged user, you now build the supplemental data catalog tables required to support
the PL/SQL hierarchical profiler. The following runs the dbmshptab.sql script:

SQL> @?/rdbms/admin/dbmshptab.sql

The script hopefully raises some exceptions for missing tables, which you can ignore. The
PL/SQL hierarchical profiler uses the DBMS_HPROF package, which is invalid until you create
the tables. Figure G-1 depicts the tables and their relationships, but you should remember that
they’re owned by SYS unless you grant SELECT permissions to development schemas or you
rerun the dbmshptab.sql against the target plsql schema.

If you don’t rerun the script against the target plsql schema, you won’t be able to analyze
your output. Therefore, you should connect to the plsql schema and rerun this command:

SQL> @?/rdbms/admin/dbmshptab.sql

The section “Understanding Profiler Data” has more detail on the three tables that support
the profiler. It is necessary to understand this material if you want to build your own analytical
modeling capability.

■

■

■

■

O

Appendix G: PL/SQL Hierarchical Profiler Primer 755

After creating the tables, you grant execute permission on the package to your target schema,
create a profiler virtual directory, and grant read and write permissions on the directory to your
target schema. You execute these commands as SYSDBA:

GRANT EXECUTE ON dbms_hprof TO plsql;
CREATE OR REPLACE DIRECTORY profiler_dir AS '/tmp/';
GRANT READ, WRITE ON DIRECTORY profiler_dir TO plsql;

You do not need to create a synonym because the Oracle 11g database seeds a public synonym
for the DBMS_HPROF package. This is also true for the DBMSHP_RUNNUMBER sequence created
when you build the PL/SQL hierarchical profiler repository. Verify that you can see the package
by connecting as the plsql user, and describing the package:

SQL> DESCRIBE dbms_hprof
FUNCTION ANALYZE RETURNS NUMBER
 Argument Name Type In/Out Default?
 -------------------------- ----------------------- ------ --------

 LOCATION VARCHAR2 IN
 FILENAME VARCHAR2 IN
 SUMMARY_MODE BOOLEAN IN DEFAULT
 TRACE VARCHAR2 IN DEFAULT
 SKIP BINARY_INTEGER IN DEFAULT
 COLLECT BINARY_INTEGER IN DEFAULT
 RUN_COMMENT VARCHAR2 IN DEFAULT
PROCEDURE START_PROFILING

FIGURE G-1 PL/SQL hierarchical profiler tables

756 Oracle Database 11g PL/SQL Programming

 Argument Name Type In/Out Default?
 -------------------------- ----------------------- ------ --------
 LOCATION VARCHAR2 IN DEFAULT
 FILENAME VARCHAR2 IN DEFAULT
 MAX_DEPTH BINARY_INTEGER IN DEFAULT
PROCEDURE STOP_PROFILING

The DBMS_HPROF package has two procedures for starting and stopping data collection, and
one function for gathering and analyzing data. The next section explains how to use these methods.

Collecting Profiler Data
Collecting data from the PL/SQL hierarchical profiler requires that you configure the database, as
covered in the prior section. Then, you must start the profiler, run your test, and stop the profiler.
You stop it because running it constantly consumes unnecessary database resources.

In order to collect data from the profiler, you’ll need to build a test case. This test case requires
that you’ve run the video store code scripts found in the introduction to this book. The
test_profiler.sql script creates the code components, starts the profiler, runs the test, and
stops the profiler. It will also verify that you got all the configuration steps correct because it’ll fail
if it can’t call the package methods or write a file to your /tmp directory.

The first step in this test requires that you build a glue_string function that will be called
for every row of a cursor statement. The function definition follows:

-- This is found in test_profiler.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION glue_strings
(string1 VARCHAR2, string2 VARCHAR2) RETURN VARCHAR2(2000) IS
 new_string VARCHAR2(2000);
BEGIN
 IF string1 IS NOT NULL THEN
 IF string2 IS NOT NULL THEN
 new_string := string1 || ': ' || string2;
 ELSE
 new_string := string1;
 END IF;
 ELSE
 IF string2 IS NOT NULL THEN
 new_string := string2;
 END IF;
 END IF;

RETURN new_string;
END glue_strings;
/

The function is designed to take two strings and concatenate them, provided one or the other
isn’t a null value. When one is a null value, the not-null value is returned. Naturally, a null is
returned when both inputs are null because the new_string variable is declared not defined,
and all declared scalar variables are initialized with a null value by default.

The next component for the test is a quantity_onhand procedure. It takes two formal
parameters by value, and two by reference. Both IN OUT mode parameters are nested table
collections (see Chapter 6 for details on collections).

Appendix G: PL/SQL Hierarchical Profiler Primer 757

The collections require you to define two user-defined SQL datatypes, like

CREATE OR REPLACE TYPE varchar2_table IS TABLE OF VARCHAR2(2000);
/
CREATE OR REPLACE TYPE number_table IS TABLE OF NUMBER;
/

TIP
Oracle 11g allocates 1,999 bytes when you declare a VARCHAR2
variable of 1,999 bytes regardless of the physical size of your data.
Large variable-length strings should always be defined 2,000 bytes
or greater because their size is dynamically allocated.

The procedure is

-- This is found in test_profiler.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE quantity_onhand
(item_title IN VARCHAR2
, item_rating_agency IN VARCHAR2
, item_titles IN OUT VARCHAR2_TABLE
, quantities IN OUT NUMBER_TABLE) IS
 -- Define counter variable.
 counter NUMBER := 1;
 -- Define dynamic cursor.
 CURSOR c
 (item_title_in VARCHAR2
 , item_rating_agency_in VARCHAR2) IS
 SELECT glue_strings(item_title,item_subtitle) AS full_title
 , COUNT(*) AS quantity_on_hand
 FROM item
 WHERE REGEXP_LIKE(item_title,item_title_in)
 AND item_rating_agency = item_rating_agency_in
 GROUP BY glue_strings(item_title,item_subtitle)
 , item_rating_agency;
BEGIN
 -- Read cursor and assign column values to parallel arrays.
 FOR i IN c (item_title,item_rating_agency) LOOP
 item_titles.EXTEND;
 item_titles(counter) := i.full_title;
 quantities.EXTEND;
 quantities(counter) := i.quantity_on_hand;
 counter := counter + 1;
 END LOOP;
END;
/

You assign row-by-row values to the nested table collections, but production systems would
use a BULK COLLECT (as qualified in Chapter 4). The counter variable indexes the nested table
collections because the FOR loop i variable is a pointer referencing the rows returned by the
cursor.

758 Oracle Database 11g PL/SQL Programming

Another alternative would involve using a system reference cursor, which you’d explicitly
open inside the procedure. While none is presented in the book, you can find a system reference
cursor example on the publisher’s web site, named test_profiler_with_cursor.sql.

NOTE
When a system reference cursor replaces a set of parallel collections,
the IN OUT mode SYS_REFCURSOR is passed back to the calling
program as a pointer to the internal cursor work area.

As mentioned, the glue_strings function runs for all returned rows. The anonymous-block
program starts the profiler as the first action in the execution block, and it stops the profiler as the
last action.

The following testing program runs the quantity_onhand procedure once:

-- This is found in test_profiler.sql on the publisher's web site.
DECLARE
 -- Input values.
 item_title VARCHAR2(30) := 'Harry Potter';
 item_rating_agency VARCHAR2(4) := 'MPAA';
 -- Output values.
 full_title VARCHAR2_TABLE := varchar2_table();
 rating_agency NUMBER_TABLE := number_table();
BEGIN
 -- Start PL/SQL hierarchical profiler.

dbms_hprof.start_profiling('PROFILER_DIR','harry.txt');

 -- Call reference cursor.
 quantity_onhand(item_title,item_rating_agency,full_title,rating_agency);

 -- Loop through parallel collections until all records are read.
 FOR i IN 1..full_title.COUNT LOOP
 dbms_output.put(full_title(i));
 dbms_output.put(rating_agency(i));
 END LOOP;

 -- Stop PL/SQL hierarchical profiler.
dbms_hprof.stop_profiling;

END;
/

If everything is configured correctly, you will now find a harry.txt file in your /tmp directory.
The file should have 235 lines in it.

You can simply call a stored procedure or function between the START_PROFILING and
STOP_PROFILING procedures, as an alternative to testing anonymous-block programs like the
example. At this point all the data is external to the database and in the raw analyze file.

The next section will demonstrate how you interpret the profiler’s output.

Understanding Profiler Data
There are three ways to interpret the PL/SQL profiler output. You can review the raw output file,
analyze the data in the analysis tables, or create hierarchical queries of the analytical data. The
next three subsections explore these data analysis tools.

Appendix G: PL/SQL Hierarchical Profiler Primer 759

Reading the Raw Output
The raw output is really designed to be read by the analyzer component of the PL/SQL hierarchical
profiler. However, you can derive some information before you analyze it by leveraging the indicator
codes from Table G-1. A small snapshot from the raw harry.txt file is

P#X 1
P#R
P#C SQL."".""."__sql_fetch_line17" #17
P#X 27
P#R
P#C PLSQL."SYS"."DBMS_OUTPUT"::11."PUT"#5892e4d73b579470 #77
P#X 1
P#R
P#C PLSQL."SYS"."DBMS_OUTPUT"::11."PUT"#5892e4d73b579470 #77
P#X 1
P#R
P#C PLSQL."SYS"."DBMS_OUTPUT"::11."PUT_LINE"#5892e4d73b579470 #109
P#X 1
P#R
P#C SQL."".""."__sql_fetch_line17" #17
P#X 23
P#R

While you can discern what the lines do when you know the indicator codes, it is harder to
draw the relationship and statistic information out from the raw data than from the analyzed data.

The PL/SQL hierarchical profiler tracks several operations as if they were functions with
names and namespaces, as shown in Table G-2. The list of tracked operations doesn’t appear
comprehensive at writing. It is likely that other tracked operations may be added by Oracle later.

NOTE
This conclusion is drawn from testing that has produced gaps between
parent and child keys in the DBMSHP_PARENT_CHILD_INFO_RUNS
table.

The tracked operations show up as functions in your raw and filtered output, and they often
bridge like a parent between a grandparent and a grandchild.

Indicator Description
P#C Indicates a call to a subprogram, and it is known as a call event.
P#R Indicates a return from a subprogram to a calling program, and it is known as a

return event.
P#X Indicates the elapsed time between the preceding and following events.
P#! Indicates a comment in the analyzed file.

TABLE G-1 Raw PL/SQL Hierarchical Profiler Data

760 Oracle Database 11g PL/SQL Programming

Defining the PL/SQL Profiler Tables
The PL/SQL hierarchical profiler tables are created when you run the dbmshptab.sql script,
which is found in the $ORACLE_HOME/rdbms/admin directory. It must be run against the SYS
schema and any user schema where you want to collect profiler data. This is required because
the DBMS_HPROF package uses invoker rights (you can read more about invoker rights in
Chapters 6 and 9).

Earlier Figure G-1 shows the UML depiction of these tables and their relationships. Tables
G-3, G-4, and G-5 list the columns, datatypes, and column descriptions for the analysis tables.

The DBMSHP_RUNS table contains information only about the execution of the
DBMS_HPROF.ANALYZE function. The DBMSHP_FUNCTION_INFO table contains information
about executed functions, and the DBMSHP_PARENT_CHILD_INFO table has the hierarchical
relationship between executed functions.

Function Name Tracked Operation Namespace
__anonymous_block Anonymous-block PL/SQL execution PL/SQL
__dyn_sql_exec_lineline# Dynamic SQL statement call made at

a specific line number in a program
SQL

__pkg_init Initialization code from a package
specification or body

PL/SQL

__plsql_vm PL/SQL Virtual Machine (VM) call PL/SQL
__sql_fetch_lineline# SQL FETCH statement occurring at a

designated line number in a program
SQL

__static_sql_exec_lineline# SQL statement happening at a
specific line number in a program

SQL

TABLE G-2 Operations Tracked by the PL/SQL Hierarchical Profiler

Name Datatype Description
RUNID NUMBER A surrogate primary key generated from

the DBMSHP_PROFILER sequence
RUN_TIMESTAMP TIMESTAMP Timestamp set when you run the

DBMS_HPROF.ANALYZE function
RUN_COMMENT VARCHAR2(2047) User comment that you provide when

calling the DBMS_HPROF.ANALYZE
function

TOTAL_ELAPSED_TIME INTEGER The elapsed time for the analysis
process called by the DBMS_HPROF.
ANALYZE function

TABLE G-3 DBMSHP_RUNS Table Descriptions

Appendix G: PL/SQL Hierarchical Profiler Primer 761

The RUNID maps straight across to the DBMSHP_PARENT_CHILD_INFO table as the same
column name. The SYMBOLID column maps to both the PARENTSYMID and CHILDSYMID
columns. When you recursively join these structures, you should ensure you join the tables on
the SYMBOLID and PARENTSYMID columns. The section “Querying the Analyzed Data” contains
an example of this type of join.

This section has explained the three tables that show you how to interpret the PL/SQL profiler
output, review the raw output file, and analyze data. The analysis discussion has shown you how
to create hierarchical queries that profile the analytical data.

Name Datatype Description
RUNID NUMBER A foreign key from the DBMSHP_RUNS table

and it is part of a composite primary key.
The RUNID and SYMBOLID columns define
the primary key for the table.

SYMBOLID NUMBER The execution sequence ID value. The
SYMBOLID is unique when combined with
the RUNID column value, and together they
define a composite primary key for this table.

OWNER VARCHAR2(32) Owner of the module called.
MODULE VARCHAR2(2047) The module name contains a subprogram,

like a package name such as DBMS_LOB,
DBMS_SQL, or a user-defined package.

TYPE VARCHAR2(32) The module type defines the source of
the module. Some examples are package,
procedure, or function.

FUNCTION VARCHAR2(4000) A subprogram name or operation (like
those in Table G-1) tracked by the PL/SQL
hierarchical profiler.

LINE# NUMBER The line number where the function is
defined in the schema owner module.

HASH RAW(32) Hash code for the subprogram signature,
which is unique for any run of the
DBMS_HPROF.ANALYZE function.

NAMESPACE VARCHAR2(32) Namespace of subprogram, which can be
either SQL or PL/SQL.

SUBTREE_ELAPSED_TIME INTEGER Elapsed time, in microseconds, for
subordinate tree program, excluding time
spent in descendant subprograms.

FUNCTION_ELAPSED_TIME INTEGER Elapsed time, in microseconds, for function
subprogram, excluding time spent in
descendant subprograms.

CALLS INTEGER The number of calls to a subprogram.

TABLE G-4 DBMSHP_FUNCTION_INFO Table Descriptions

762 Oracle Database 11g PL/SQL Programming

Querying the Analyzed Data
A recursive query is the best way to get meaningful results. The following query captures the
nesting of method names and uses SQL*Plus column formatting to organize the output:

-- This is found in query_profiler.sql on the publisher's web site.
COL method_name FORMAT A30
COL function_name FORMAT A24
COL subtree_elapsed_time FORMAT 99.90 HEADING "Subtree|Elapsed|Time"
COL function_elapsed_time FORMAT 99.90 HEADING "Function|Elapsed|Time"
COL calls FORMAT 99 HEADING "Calls"

SELECT RPAD(' ',level*2,' ')||dfi.owner||'.'||dfi.module AS method_name
, dfi.function AS function_name
, (dpci.subtree_elapsed_time/1000) AS subtree_elapsed_time
, (dpci.function_elapsed_time/1000) AS function_elapsed_time
, dpci.calls
FROM dbmshp_parent_child_info dpci
, dbmshp_function_info dfi
WHERE dpci.runid = dfi.runid
AND dpci.parentsymid = dfi.symbolid
AND dpci.runid = 4
CONNECT
BY PRIOR dpci.childsymid = dpci.parentsymid -- Child always connects on left.
START
WITH dpci.parentsymid = 1;

This yields the following output:

Name Datatype Description

RUNID NUMBER A surrogate primary key generated from the DBMSHP_
PROFILER sequence.

PARENTSYMID NUMBER The execution sequence ID value. The PARENTSYMID is
unique when combined with the RUNID column value,
and together they define a composite foreign key that
maps to the DBMSHP_FUNCTION_INFO table RUNID and
SYMBOLID columns.

CHILDSYMID NUMBER The execution sequence ID value. The CHILDSYMID is
unique when combined with the RUNID column value,
and together they define a composite foreign key that
maps to the DBMSHP_FUNCTION_INFO table RUNID and
SYMBOLID columns.

SUBTREE_ELAPSED_TIME INTEGER Elapsed time, in microseconds, for subordinate tree program,
excluding time spent in descendant subprograms.

FUNCTION_ELAPSED_TIME INTEGER Elapsed time, in microseconds, for function subprogram,
excluding time spent in descendant subprograms.

CALLS INTEGER The number of calls to a child row that is identified by a
composite key of RUNID and CHILDSYMID columns.

TABLE G-5 DBMSHP_PARENT_CHILD_INFO_RUNS Table Descriptions

Appendix G: PL/SQL Hierarchical Profiler Primer 763

-- This is output from the query_profiler.sql script on the publisher's web site.
 Subtree Function
 Elapsed Elapsed
METHOD_NAME FUNCTION_NAME Time Time Calls
------------------------------ ------------------------ ------- -------- -----
 . __plsql_vm .04 .04 11
 PLSQL.GLUE_STRINGS GLUE_STRINGS .00 .00 0
 PLSQL.QUANTITY_ONHAND QUANTITY_ONHAND .29 .05 1
 PLSQL.QUANTITY_ONHAND QUANTITY_ONHAND.C .24 .24 1
 PLSQL.QUANTITY_ONHAND QUANTITY_ONHAND .12 .03 11
 SYS.DBMS_OUTPUT PUT_LINE .02 .02 11
 SYS.DBMS_OUTPUT PUT_LINE .06 .05 11
 SYS.DBMS_OUTPUT PUT .02 .02 1
 PLSQL.QUANTITY_ONHAND QUANTITY_ONHAND 3.27 3.19 1

9 rows selected.

This subsection has demonstrated an approach to querying the PL/SQL profiler table data. It
has also introduced you the details of leveraging recursive SQL queries in Oracle 11g.

This section has shown you how to interpret the PL/SQL profiler output, review the raw output
file, and analyze data. The analysis discussion has shown you how to create hierarchical queries
that profile the analytical data.

The next section demonstrates how to generate a web page report equivalent.

Using the plshprof Command-Line Utility
The plshprof command-line utility lets you generate simple HTML reports. You have the option
of generating a report from one or two sets of analyzed data. You’ll find the plshprof utility in
the $ORACLE_HOME/bin/ directory.

The plshprof utility has several command options that let you generate different report
types. Table G-6 lists the available command-line options.

You can generate an output report by using the following syntax:

$ plshprof -output /tmp/magic /tmp/harry.txt

It echoes the following to the console when generating the file:

PLSHPROF: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0
[8 symbols processed]
[Report written to '/tmp/magic.html']

Option Description Default

-collect count Collects the information for count calls. You should only use this in
combination with the –trace symbol option.

1

-output filename Sets the output filename. Don’t include an extension, because you
could end up with a strange file name, like magic.htm.html.

filename.html or
tracefile.html

-skip count Skips the first count calls. You should only use this in combination
with the –trace symbol option.

0

-summary Prints only the elapsed time. None

-trace symbol Specifies the function name of the tree root. Not applicable

TABLE G-6 plshprof Command-Line Options

764 Oracle Database 11g PL/SQL Programming

This generates an index web page magic.html. You use this page to navigate to the other
generated web reports.

magic_2c.html magic.html magic_nsc.html magic_tc.html
magic_2f.html magic_md.html magic_nsf.html magic_td.html
magic_2n.html magic_mf.html magic_nsp.html magic_tf.html
magic_fn.html magic_ms.html magic_pc.html magic_ts.html

The magic.html in Figure G-2 demonstrates the list of reports produced by the plshprof
utility. You can write a wrapper to read and store these into CLOB columns in the database or as
external files accessible to your web server. Alternatively, you can simply generate them to the
/tmp directory, browse them individually, and then remove them from the file system.

This section has demonstrated how to use the plshprof command-line utility. It generates a set
of effective analysis tools that you should examine before attempting to write your own.

Summary
This appendix has explained what the PL/SQL hierarchical profiler does and shown you how to
configure and use it.

FIGURE G-2 Sample plshprof index web page

APPENDIX
H

PL/Scope

765

766 Oracle Database 11g PL/SQL Programming

ew to Oracle 11g, PL/Scope is a compiler-driven tool. It collects and organizes data
about user-defined identifiers from PL/SQL source code. Identifiers can be reserved
words, predefined identifiers, quoted identifiers, user-defined variables, subroutines,
or user-defined types. Chapter 3 covers identifiers in PL/SQL.

The PL/Scope data is stored in static data dictionary views. These views contain declaration,
definition, reference, call, and assignment of identifiers. They also provide the location of each
usage in the source code.

This appendix covers:

Configuring PL/Scope data collection

Viewing PL/Scope collected data

You should also note that Oracle SQL*Developer can access PL/Scope data.

Configuring PL/Scope Data Collection
The default behavior of PL/Scope is disabled. You enable PL/Scope by setting the PLSCOPE_SETTINGS
parameter to the “IDENTIFIERS:ALL” value. This parameter can be set at the database and
session levels. Only identifiers set while this parameter is enabled are captured
by PL/Scope routines.

You enable PL/Scope for a session using the following syntax:

ALTER SESSION SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL'

Once you enable PL/Scope, it runs until the session ends or the database is altered back to the
default. It is only intended for development databases, and Oracle doesn’t recommend enabling
it for production databases.

After you enable PL/Scope, you should monitor its impact on the SYSAUX tablespace. You
can query the space consumed by using the following query:

SELECT space_usage_kbytes
FROM v$sysaux_occupants
WHERE occupant_name = 'PL/SCOPE'

NOTE
PL/Scope only works in an Oracle 11g database, but you can activate
it during upgrade by running the utlirplscope.sql script in
UPGRADE mode.

Viewing PL/Scope Collected Data
PL/Scope collected data is available by three methods. You can query static data dictionary views,
use the PL/SQL Web Application demonstration tool, or write your own web-based application to
profile the data.

■

■

N

Appendix H: PL/Scope 767

PL/Scope only captures identifiers when the PLSCOPE_SETTINGS parameter is set to the
“IDENTIFIERS:ALL” value. You can enable it from any SQL Developer session. It stores
identifiers by the signature of individual stored programming units, and overloaded signatures
are treated as unique identifier contexts.

NOTE
PL/Scope does not collect identifiers for wrapped program units.

You can query the ALL_IDENTIFIERS, DBA_IDENTIFIERS, or USER_IDENTIFIERS
views. The definition of the ALL_* and DBA_* views include the owner, while the USER_* view
doesn’t. The definition of these views is

Name Null? Type
------------------------------- -------- ----------------------------
OWNER NOT NULL VARCHAR2(30)
NAME VARCHAR2(30)
SIGNATURE VARCHAR2(32)
TYPE VARCHAR2(18)
OBJECT_NAME NOT NULL VARCHAR2(30)
OBJECT_TYPE VARCHAR2(13)
USAGE VARCHAR2(11)
USAGE_ID NUMBER
LINE NUMBER
COL NUMBER
USAGE_CONTEXT_ID NUMBER

The predelivered HTML-based demonstration tool runs using the PL/SQL Web Toolkit. You’ll
find it as the $ORACLE_HOME/plsql/demo/plscopedemo.sql script. This script requires you
to build a wrapper web page or configure the Oracle HTTP Server (OHS), which is covered in
Chapter 16.

SQL*Developer lets you enable PL/Scope by right-clicking the connection name in the
Connections navigator display. Then, you select Toggle PL/Scope Identifier Collection. This sets
the session PLSCOPE_SETTINGS parameter to the IDENTIFIERS:ALL value. Viewing the data
still requires a manual query or implementing your own web page.

PL/Scope collects the identifiers listed in Table H-1. The supported datatypes are base types
defined by the STANDARD package. Labels have their unique context in PL/Scope, while iterators
are only available when they are the index of a FOR loop. The ANYDATA and XMLType datatypes
are examples of the OPAQUE type. PL/Scope treats object attributes, local variables, package
variables (defined in the package specification), and record structures as VARIABLE datatypes.
Also, PL/Scope does not resolve base object names for synonyms, which leaves you to query the
*_SYNONYMS view.

768 Oracle Database 11g PL/SQL Programming

Summary
This section has covered how PL/Scope collects and organizes data about user-defined identifiers.
It has demonstrated how to collect and view PL/Scope data.

ASSOCIATIVE_ARRAY FORMAL OUT RECORD

BFILE FUNCTION REFCURSOR

BLOB INTERVAL SUBTYPE

BOOLEAN ITERATOR SYNONYM

CHARACTER LABEL TIME

CLOB LIBRARY TIMESTAMP

CONSTANT NESTED TABLE TRIGGER

CURSOR NUMBER UROWID

DATE OBJECT VARRAY

EXCEPTION OPAQUE VARIABLE

FORMAL IN PACKAGE

FORMAL IN OUT PROCEDURE

TABLE H-1 Identifiers Collected by PL/Scope

APPENDIX
I

PL/SQL Reserved Words
and Keywords

769

770 Oracle Database 11g PL/SQL Programming

ertain identifiers or words are critical to building programming languages. PL/SQL
divides these critical words into two groups: reserved words and keywords.
They are listed in the data dictionary with each release, and can be found in
the V$RESERVED_WORDS view.

Lexical symbols are also listed as reserved words in the view. They are covered in Chapter 3
and are not part of this appendix.

It appears that some reserved words, like BEGIN and EXCEPTION, are missing the ‘Y’ in the
RESERVED column of V$RESERVED_WORDS view. Other reserved words, like ELSIF and OUT,
are missing completely from the view. Also, various editions of the Oracle Database PL/SQL
Language Reference differ on the list elements and contents of the view.

Table I-1 lists reserved words and keywords together alphabetically for reference. Where
words were missing from the view, they’ve been added in to the table.

C

Start Reserved Words and Keywords

A ABORT, ACCESS, ACCESSED, ACCOUNT, ACTIVATE, ADD, ADMIN, ADMINISTER,
ADMINISTRATOR, ADVISE, ADVISOR, AFTER, ALIAS, ALL, ALLOCATE, ALLOW, ALL_
ROWS, ALTER, ALWAYS, ANALYZE, ANCILLARY, AND, AND_EQUAL, ANTIJOIN, ANY,
APPEND, APPLY, ARCHIVE, ARCHIVELOG, ARRAY, AS, ASC, ASSOCIATE, AT, ATTRIBUTE,
ATTRIBUTES, AUDIT, AUTHENTICATED, AUTHENTICATION, AUTHID, AUTHORIZATION, AUTO,
AUTOALLOCATE, AUTOEXTEND, AUTOMATIC, AVAILABILITY

B BACKUP, BATCH, BECOME, BEFORE, BEGIN, BEGIN_OUTLINE_DATA, BEHALF, BETWEEN, BFILE,
BIGFILE, BINARY_DOUBLE, BINARY_DOUBLE_INFINITY, BINARY_DOUBLE_NAN, BINARY_FLOAT,
BINARY_FLOAT_INFINITY, BINARY_FLOAT_NAN, BINDING, BITMAP, BITMAPS, BITMAP_TREE,
BITS, BLOB, BLOCK, BLOCKS, BLOCKSIZE, BLOCK_RANGE, BODY, BOTH, BOUND, BROADCAST,
BUFFER, BUFFER_CACHE, BUFFER_POOL, BUILD, BULK, BY, BYPASS_RECURSIVE_CHECK,
BYPASS_UJVC, BYTE

C CACHE, CACHE_CB, CACHE_INSTANCES, CACHE_TEMP_TABLE, CALL, CANCEL, CARDINALITY,
CASCADE, CASE, CAST, CATEGORY, CERTIFICATE, CFILE, CHAINED, CHANGE, CHAR,
CHARACTER, CHAR_CS, CHECK, CHECKPOINT, CHILD, CHOOSE, CHUNK, CIV_GB, CLASS,
CLEAR, CLOB, CLONE, CLOSE, LOSE_CACHED_OPEN_CURSORS, CLUSTER, CLUSTERING_
FACTOR, COALESCE, COARSE, COLLECT, COLUMN, COLUMNS, COLUMN_STATS, COLUMN_
VALUE, COMMENT, COMMIT, COMMITTED, COMPACT, COMPATIBILITY, COMPILE, COMPLETE,
COMPOSITE_LIMIT, COMPRESS, COMPUTE, CONFORMING, CONNECT, CONNECT_BY_ISCYCLE,
CONNECT_BY_ISLEAF, CONNECT_BY_ROOT, CONNECT_TIME, CONSIDER, CONSISTENT,
CONSTRAINT, CONSTRAINTS, CONTAINER, CONTENT, CONTENTS, CONTEXT, CONTINUE,
CONTROLFILE, CONVERT, CORRUPTION, COST, CPU_COSTING, CPU_PER_CALL, CPU_PER_
SESSION, CREATE, CREATE_STORED_OUTLINES, CROSS, CUBE, CUBE_GB, CURRENT,
CURRENT_DATE, CURRENT_SCHEMA, CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER,
CURSOR, CURSOR_SHARING_EXACT, CURSOR_SPECIFIC_SEGMENT, CYCLE

D DANGLING, DATA, DATABASE, DATAFILE, DATAFILES, DATAOBJNO, DATE, DATE_MODE, DAY,
DBA, DBA_RECYCLEBIN, DBMS_STATS, DBTIMEZONE, DB_ROLE_CHANGE, DDL, DEALLOCATE,
DEBUG, DEC, DECIMAL, DECLARE, DECREMENT, DECRYPT, DEFAULT, DEFERRABLE,
DEFERRED, DEFINED, DEFINER, DEGREE, DELAY, DELETE, DEMAND, DENSE_RANK, DEQUEUE,
DEREF, DEREF_NO_REWRITE, DESC, DETACHED, DETERMINES, DICTIONARY, DIMENSION,
DIRECTORY, DISABLE, DISABLE_RPKE, DISASSOCIATE, DISCONNECT, DISK, DISKGROUP,
DISKS, DISMOUNT, DISTINCT, DISTINGUISHED, DISTRIBUTED, DML, DML_UPDATE,
DOCUMENT, DOMAIN_INDEX_NO_SORT, DOMAIN_INDEX_SORT, DOUBLE, DOWNGRADE, DRIVING_
SITE, DROP, DUMP, DYNAMIC, DYNAMIC_SAMPLING, DYNAMIC_SAMPLING_EST_CDN

TABLE I-1 Reserved Word and Keyword List

Appendix I: PL/SQL Reserved Words and Keywords 771

Start Reserved Words and Keywords

E EACH, ELEMENT, ELIMINATE_JOIN, ELIMINATE_OBY, ELIMINATE_OUTER_JOIN, ELSE,
ELSIF, EMPTY, ENABLE, ENCRYPT, ENCRYPTION, END, END_OUTLINE_DATA, ENFORCE,
ENFORCED, ENQUEUE, ENTERPRISE, ENTRY, ERROR, ERRORS, ERROR_ON_OVERLAP_TIME,
ESCAPE, ESTIMATE, EVALNAME, EVALUATION, EVENTS, EXCEPT, EXCEPTION, EXCHANGE,
EXCLUDING, EXCLUSIVE, EXECUTE, EXEMPT, EXISTS, EXPAND_GSET_TO_UNION, EXPIRE,
EXPLAIN, EXPLOSION, EXPORT, EXPR_CORR_CHECK, EXTENDS, EXTENT, EXTENTS,
EXTERNAL, EXTERNALLY, EXTRACT

F FACT, FAILED, FAILED_LOGIN_ATTEMPTS, FAILGROUP, FALSE, FAST, FBTSCAN, FIC_
CIV, FIC_PIV, FILE, FILTER, FINAL, FINE, FINISH, FIRST, FIRST_ROWS, FLAGGER,
FLASHBACK, FLOAT, FLOB, FLUSH, FOLLOWING, FOR, FORCE, FORCE_XML_QUERY_REWRITE,
FOREIGN, FREELIST, FREELISTS, FREEPOOLS, FRESH, FROM, FULL, FUNCTION, FUNCTIONS

G GATHER_PLAN_STATISTICS, GBY_CONC_ROLLUP, GENERATED, GLOBAL, GLOBALLY, GLOBAL_
NAME, GLOBAL_TOPIC_ENABLED, GRANT, GROUP, GROUPING, GROUPS, GROUP_BY, GUARANTEE,
GUARANTEED, GUARD

H HASH, HASHKEYS, HASH_AJ, HASH_SJ, HAVING, HEADER, HEAP, HIERARCHY, HIGH,
HINTSET_BEGIN, HINTSET_END, HOUR, HWM_BROKERED

I ID, IDENTIFIED, IDENTIFIER, IDENTITY, IDGENERATORS, IDLE_TIME, IF, IGNORE,
IGNORE_OPTIM_EMBEDDED_HINTS, IGNORE_WHERE_CLAUSE, IMMEDIATE, IMPORT, IN,
INCLUDE_VERSION, INCLUDING, INCREMENT, INCREMENTAL, INDEX, INDEXED, INDEXES,
INDEXTYPE, INDEXTYPES, INDEX_ASC, INDEX_COMBINE, INDEX_DESC, INDEX_FFS,
INDEX_FILTER, INDEX_JOIN, INDEX_ROWS, INDEX_RRS, INDEX_SCAN, INDEX_SKIP_SCAN,
INDEX_SS, INDEX_SS_ASC, INDEX_SS_DESC, INDEX_STATS, INDICATOR, INFINITE,
INFORMATIONAL, INITIAL, INITIALIZED, INITIALLY, INITRANS, INLINE, INLINE_
XMLTYPE_NT, INNER, INSERT, INSTANCE, INSTANCES, INSTANTIABLE, INSTANTLY,
INSTEAD, INT, INTEGER, INTERMEDIATE, INTERNAL_CONVERT, INTERNAL_USE,
INTERPRETED, INTERSECT, INTERVAL, INTO, INVALIDATE, IN_MEMORY_METADATA,
IS, ISOLATION, ISOLATION_LEVEL, ITERATE, ITERATION_NUMBER

J JAVA, JOB, JOIN

K KEEP, KERBEROS, KEY, KEYS, KEYSIZE, KEY_LENGTH, KILL

L LAST, LATERAL, LAYER, LDAP_REGISTRATION, LDAP_REGISTRATION_ENABLED, LDAP_
REG_SYNC_INTERVAL, LEADING, LEFT, LENGTH, LESS, LEVEL, LEVELS, LIBRARY, LIKE,
LIKE2, LIKE4, LIKEC, LIKE_EXPAND, LIMIT, LINK, LIST, LOB, LOCAL, LOCALTIME,
LOCALTIMESTAMP, LOCAL_INDEXES, LOCATION, LOCATOR, LOCK, LOCKED, LOG, LOGFILE,
LOGGING, LOGICAL, LOGICAL_READS_PER_CALL, LOGICAL_READS_PER_SESSION, LOGOFF,
LOGON, LONG

M MAIN, MANAGE, MANAGED, MANAGEMENT, MANUAL, MAPPING, MASTER, MATCHED,
MATERIALIZE, MATERIALIZED, MAX, MAXARCHLOGS, MAXDATAFILES, MAXEXTENTS,
MAXIMIZE, MAXINSTANCES, MAXLOGFILES, MAXLOGHISTORY, MAXLOGMEMBERS, MAXSIZE,
MAXTRANS, MAXVALUE, MEASURES, MEMBER, MEMORY, MERGE, MERGE_AJ, MERGE_CONST_ON,
MERGE_SJ, METHOD, MIGRATE, MIN, MINEXTENTS, MINIMIZE, MINIMUM, MINUS, MINUS_
NULL, MINUTE, MINVALUE, MIRROR, MLSLABEL, MODE, MODEL, MODEL_COMPILE_SUBQUERY,
MODEL_DONTVERIFY_UNIQUENESS, MODEL_DYNAMIC_SUBQUERY, MODEL_MIN_ANALYSIS, MODEL_
NO_ANALYSIS, MODEL_PBY, MODEL_PUSH_REF, MODIFY, MONITORING, MONTH, MOUNT, MOVE,
MOVEMENT, MULTISET, MV_MERGE

TABLE I-1 Reserved Word and Keyword List (continued)

772 Oracle Database 11g PL/SQL Programming

TABLE I-1 Reserved Word and Keyword List (continued)

Start Reserved Words and Keywords

N NAME, NAMED, NAN, NATIONAL, NATIVE, NATURAL, NAV, NCHAR, NCHAR_CS, NCLOB,
NEEDED, NESTED, NESTED_TABLE_FAST_INSERT, NESTED_TABLE_GET_REFS, NESTED_TABLE_
ID, NESTED_TABLE_SET_REFS, NESTED_TABLE_SET_SETID, NETWORK, NEVER, NEW, NEXT,
NLS_CALENDAR, NLS_CHARACTERSET, NLS_COMP, NLS_CURRENCY, NLS_DATE_FORMAT, NLS_
DATE_LANGUAGE, NLS_ISO_CURRENCY, NLS_LANG, NLS_LANGUAGE, NLS_LENGTH_SEMANTICS,
NLS_NCHAR_CONV_EXCP, NLS_NUMERIC_CHARACTERS, NLS_SORT, NLS_SPECIAL_CHARS,
NLS_TERRITORY, NL_AJ, NL_SJ, NO, NOAPPEND, NOARCHIVELOG, NOAUDIT, NOCACHE,
NOCOMPRESS, NOCPU_COSTING, NOCYCLE, NODELAY, NOFORCE, NOGUARANTEE, NOLOGGING,
NOMAPPING, NOMAXVALUE, NOMINIMIZE, NOMINVALUE, NOMONITORING, NONE, NOORDER,
NOOVERRIDE, NOPARALLEL, NOPARALLEL_INDEX, NORELY, NOREPAIR, NORESETLOGS,
NOREVERSE, NOREWRITE, NORMAL, NOROWDEPENDENCIES, NOSEGMENT, NOSORT, NOSTRICT,
NOSWITCH, NOT, NOTHING, NOTIFICATION, NOVALIDATE, NOWAIT, NO_ACCESS, NO_
BASETABLE_MULTIMV_REWRITE, NO_BUFFER, NO_CARTESIAN, NO_CPU_COSTING, NO_
ELIMINATE_JOIN, NO_ELIMINATE_OBY, NO_ELIMINATE_OUTER_JOIN, NO_EXPAND, NO_
EXPAND_GSET_TO_UNION, NO_FACT, NO_FILTERING, NO_INDEX, NO_INDEX_FFS, NO_INDEX_
SS, NO_MERGE, NO_MODEL_PUSH_REF, NO_MONITORING, NO_MULTIMV_REWRITE, NO_ORDER_
ROLLUPS, NO_PARALLEL, NO_PARALLEL_INDEX, NO_PARTIAL_COMMIT, NO_PRUNE_GSETS,
NO_PULL_PRED, NO_PUSH_PRED, NO_PUSH_SUBQ, NO_PX_JOIN_FILTER, NO_QKN_BUFF,
NO_QUERY_TRANSFORMATION, NO_REF_CASCADE, NO_REWRITE, NO_SEMIJOIN, NO_SET_TO_
JOIN, NO_SQL_TUNE, NO_STAR_TRANSFORMATION, NO_STATS_GSETS, NO_SWAP_JOIN_INPUTS,
NO_TEMP_TABLE, NO_UNNEST, NO_USE_HASH, NO_USE_HASH_AGGREGATION, NO_USE_MERGE,
NO_USE_NL, NO_XML_QUERY_REWRITE, NULL, NULLS, NUMBER, NUMERIC, NVARCHAR2

O OBJECT, OBJNO, OBJNO_REUSE, OF, OFF, OFFLINE, OID, OIDINDEX, OLD, OLD_PUSH_
PRED, ON, ONLINE, ONLY, OPAQUE, OPAQUE_TRANSFORM, OPAQUE_XCANONICAL, OPCODE,
OPEN, OPERATOR, OPTIMAL, OPTIMIZER_FEATURES_ENABLE, OPTIMIZER_GOAL, OPTION,
OPT_ESTIMATE, OPT_PARAM, OR, ORA_ROWSCN, ORDER, ORDERED, ORDERED_PREDICATES,
ORDINALITY, ORGANIZATION, OR_EXPAND, OUT, OUTER, OUTLINE, OUTLINE_LEAF, OUT_OF_
LINE, OVER, OVERFLOW, OVERFLOW_NOMOVE, OVERLAPS, OWN

P PACKAGE, PACKAGES, PARALLEL, PARALLEL_INDEX, PARAMETERS, PARENT, PARITY,
PARTIALLY, PARTITION, PARTITIONS, PARTITION_HASH, PARTITION_LIST, PARTITION_
RANGE, PASSING, PASSWORD, PASSWORD_GRACE_TIME, PASSWORD_LIFE_TIME, PASSWORD_
LOCK_TIME, PASSWORD_REUSE_MAX, PASSWORD_REUSE_TIME, PASSWORD_VERIFY_FUNCTION,
PATH, PATHS, PCTFREE, PCTINCREASE, PCTTHRESHOLD, PCTUSED, PCTVERSION, PERCENT,
PERFORMANCE, PERMANENT, PFILE, PHYSICAL, PIV_GB, PIV_SSF, PLAN, PLSQL_CCFLAGS,
PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_OPTIMIZE_LEVEL, PLSQL_WARNINGS, POINT,
POLICY, POST_TRANSACTION, POWER, PQ_DISTRIBUTE, PQ_MAP, PQ_NOMAP, PREBUILT,
PRECEDING, PRECISION, PRECOMPUTE_SUBQUERY, PREPARE, PRESENT, PRESERVE,
PRESERVE_OID, PRIMARY, PRIOR, PRIVATE, PRIVATE_SGA, PRIVILEGE, PRIVILEGES,
PROCEDURE, PROFILE, PROGRAM, PROJECT, PROTECTED, PROTECTION, PUBLIC, PULL_PRED,
PURGE, PUSH_PRED, PUSH_SUBQ, PX_GRANULE, PX_JOIN_FILTER

Q QB_NAME, QUERY, QUERY_BLOCK, QUEUE, QUEUE_CURR, QUEUE_ROWP, QUIESCE, QUOTA

R RANDOM, RANGE, RAPIDLY, RAW, RBA, RBO_OUTLINE, READ, READS, REAL, REBALANCE,
REBUILD, RECORDS_PER_BLOCK, RECOVER, RECOVERABLE, RECOVERY, RECYCLE,
RECYCLEBIN, REDUCED, REDUNDANCY, REF, REFERENCE, REFERENCED, REFERENCES,
REFERENCING, REFRESH, REF_CASCADE_CURSOR, REGEXP_LIKE, REGISTER, REJECT, REKEY,
RELATIONAL, RELY, REMOTE_MAPPED, RENAME, REPAIR, REPLACE, REQUIRED, RESET,
RESETLOGS, RESIZE, RESOLVE, RESOLVER, RESOURCE, RESTORE, RESTORE_AS_INTERVALS,
RESTRICT, RESTRICTED, RESTRICT_ALL_REF_CONS, RESUMABLE, RESUME, RETENTION,
RETURN, RETURNING, REUSE, REVERSE, REVOKE, REWRITE, REWRITE_OR_ERROR, RIGHT,
ROLE, ROLES, ROLLBACK, ROLLING, ROLLUP, ROW, ROWDEPENDENCIES, ROWID, ROWNUM,
ROWS, ROW_LENGTH, RULE, RULES

Appendix I: PL/SQL Reserved Words and Keywords 773

TABLE I-1 Reserved Word and Keyword List (continued)

Start Reserved Words and Keywords

S SALT, SAMPLE, SAVEPOINT, SAVE_AS_INTERVALS, SB4, SCALE, SCALE_ROWS, SCAN,
SCAN_INSTANCES, SCHEDULER, SCHEMA, SCN, SCN_ASCENDING, SCOPE, SD_ALL, SD_
INHIBIT, SD_SHOW, SECOND, SECURITY, SEED, SEGMENT, SEG_BLOCK, SEG_FILE, SELECT,
SELECTIVITY, SEMIJOIN, SEMIJOIN_DRIVER, SEQUENCE, SEQUENCED, SEQUENTIAL,
SERIALIZABLE, SERVERERROR, SESSION, SESSIONS_PER_USER, SESSIONTIMEZONE,
SESSIONTZNAME, SESSION_CACHED_CURSORS, SET, SETS, SETTINGS, SET_TO_JOIN,
SEVERE, SHARE, SHARED, SHARED_POOL, SHRINK, SHUTDOWN, SIBLINGS, SID, SIMPLE,
SINGLE, SINGLETASK, SIZE, SKIP, SKIP_EXT_OPTIMIZER, SKIP_UNQ_UNUSABLE_IDX,
SKIP_UNUSABLE_INDEXES, SMALLFILE, SMALLINT, SNAPSHOT, SOME, SORT, SOURCE,
SPACE, SPECIFICATION, SPFILE, SPLIT, SPREADSHEET, SQL, SQLLDR, SQL_TRACE,
STANDALONE, STANDBY, STAR, START, STARTUP, STAR_TRANSFORMATION, STATEMENT_ID,
STATIC, STATISTICS, STOP, STORAGE, STORE, STREAMS, STRICT, STRING, STRIP,
STRUCTURE, SUBMULTISET, SUBPARTITION, SUBPARTITIONS, SUBPARTITION_REL,
SUBQUERIES, SUBSTITUTABLE, SUCCESSFUL, SUMMARY, SUPPLEMENTAL, SUSPEND, SWAP_
JOIN_INPUTS, SWITCH, SWITCHOVER, SYNONYM, SYSAUX, SYSDATE, SYSDBA, SYSOPER,
SYSTEM, SYSTIMESTAMP, SYS_DL_CURSOR, SYS_FBT_INSDEL, SYS_OP_BITVEC, SYS_OP_
CAST, SYS_OP_ENFORCE_NOT_NULL$, SYS_OP_EXTRACT, SYS_OP_NOEXPAND, SYS_OP_
NTCIMG$, SYS_PARALLEL_TXN, SYS_RID_ORDER

T TABLE, TABLES, TABLESPACE, TABLESPACE_NO, TABLE_STATS, TABNO, TEMPFILE,
TEMPLATE, TEMPORARY, TEMP_TABLE, TEST, THAN, THE, THEN, THREAD, THROUGH, TIME,
TIMEOUT, TIMESTAMP, TIMEZONE_ABBR, TIMEZONE_HOUR, TIMEZONE_MINUTE, TIMEZONE_
OFFSET, TIMEZONE_REGION, TIME_ZONE, TIV_GB, TIV_SSF, TO, TOPLEVEL, TO_CHAR,
TRACE, TRACING, TRACKING, TRAILING, TRANSACTION, TRANSITIONAL, TREAT, TRIGGER,
TRIGGERS, TRUE, TRUNCATE, TRUSTED, TUNING, TX, TYPE, TYPES, TZ_OFFSET

U UB2, UBA, UID, UNARCHIVED, UNBOUND, UNBOUNDED, UNDER, UNDO, UNDROP, UNIFORM,
UNION, UNIQUE, UNLIMITED, UNLOCK, UNNEST, UNPACKED, UNPROTECTED, UNQUIESCE,
UNRECOVERABLE, UNTIL, UNUSABLE, UNUSED, UPDATABLE, UPDATE, UPDATED, UPD_
INDEXES, UPD_JOININDEX, UPGRADE, UPSERT, UROWID, USAGE, USE, USER, USERS, USER_
DEFINED, USER_RECYCLEBIN, USE_ANTI, USE_CONCAT, USE_HASH, USE_HASH_AGGREGATION,
USE_MERGE, USE_NL, USE_NL_WITH_INDEX, USE_PRIVATE_OUTLINES, USE_SEMI, USE_
STORED_OUTLINES, USE_TTT_FOR_GSETS, USE_WEAK_NAME_RESL, USING

V VALIDATE, VALIDATION, VALUE, VALUES, VARCHAR, VARCHAR2, VARRAY, VARYING,
VECTOR_READ, VECTOR_READ_TRACE, VERSION, VERSIONS, VIEW

W WAIT, WALLET, WELLFORMED, WHEN, WHENEVER, WHERE, WHITESPACE, WITH, WITHIN,
WITHOUT, WORK, WRAPPED, WRITE

X XID, XMLATTRIBUTES, XMLCOLATTVAL, XMLELEMENT, XMLFOREST, XMLNAMESPACES,
XMLPARSE, XMLPI, XMLQUERY, XMLROOT, XMLSCHEMA, XMLSERIALIZE, XMLTABLE,
XMLTYPE, X_DYN_PRUNE

Y YEAR, YES

Z ZONE

The following reserved_key_word.sql script lets you query and format the contents from
the V$RESERVED_WORDS view:

DECLARE
 -- Define and declare collection.
 TYPE alpha_key IS TABLE OF CHARACTER;
 code ALPHA_KEY := alpha_key('A','B','C','D','E','F','G','H','I','J'

774 Oracle Database 11g PL/SQL Programming

 ,'K','L','M','N','O','P','Q','R','S','T'
 ,'U','V','W','X','Y','Z');

 -- Define a single character indexed collection.
 TYPE list IS TABLE OF VARCHAR2(2000)
 INDEX BY VARCHAR2(1);

 -- Define two collections.
 reserved_word LIST;
 key_word LIST;

 -- Define cursor.
 CURSOR c IS
 SELECT keyword
 , reserved
 , res_type
 , res_attr
 , res_semi
 FROM v$reserved_words
 ORDER BY keyword;

 -- Define a local function.
 FUNCTION format_list (list_in LIST) RETURN BOOLEAN IS
 -- Declare control variables.
 current VARCHAR2(1);
 element VARCHAR2(2000);
 status BOOLEAN := TRUE;
 BEGIN
 -- Read through an alphabetically indexed collection.
 FOR i IN 1..list_in.COUNT LOOP
 IF i = 1 THEN
 current := list_in.FIRST;
 element := list_in(current);
 ELSE
 IF list_in.NEXT(current) IS NOT NULL THEN
 current := list_in.NEXT(current);
 element := list_in(current);
 END IF;
 END IF;
 dbms_output.put_line('['||current||'] ['||element||']');
 END LOOP;
 RETURN status;
 END format_list;
BEGIN
 -- Initialize reserved word and keyword collections.
 FOR i IN 1..code.LAST LOOP
 FOR j IN c LOOP
 IF code(i) = UPPER(SUBSTR(j.keyword,1,1))
 AND (j.reserved = 'Y' OR j.res_type = 'Y' OR
 j.res_attr = 'Y' OR j.res_semi 'Y') THEN
 IF reserved_word.EXISTS(code(i)) THEN

Appendix I: PL/SQL Reserved Words and Keywords 775

 reserved_word(code(i)) := reserved_word(code(i)) || ', ' || j.keyword;
 ELSE
 reserved_word(code(i)) := j.keyword;
 END IF;
 ELSIF code(i) = UPPER(SUBSTR(j.keyword,1,1)) AND j.reserved = 'N' THEN
 IF key_word.EXISTS(code(i)) THEN
 key_word(code(i)) := key_word(code(i)) || ', ' || j.keyword;
 ELSE
 key_word(code(i)) := j.keyword;
 END IF;
 END IF;
 END LOOP;
 END LOOP;
 -- Print both lists.
 IF format_list(reserved_word) AND format_list(key_word) THEN
 NULL;
 END IF;
END;
/

Summary
The reserved word and keyword tables are alphabetized for you to browse them quickly. You can
also recheck for changes with the reserved_key_word.sql script.

This page intentionally left blank

APPENDIX
J

PL/SQL Built-in
Functions

777

778 Oracle Database 11g PL/SQL Programming

racle 11g provides a number of built-in functions for working with character strings,
dates, and numbers. It also provides you with datatype conversion functions. This
appendix covers these functions as well as functions for both object reference
and error management. Last, it includes a miscellaneous section. These functions
initialize large objects, perform advanced comparisons, and audit system

environment variables.

Alphabetically indexed, the built-in functions are organized by type. Only a subset of all
functions is listed in this appendix. These should be the more frequently used functions in your
programs. Small example programs demonstrate how to use the built-in functions in PL/SQL:

Character

Datatype conversion

Error reporting

Miscellaneous

Number

The built-in functions are a library of utilities to help you solve problems. They are often an
underutilized resource for many developers.

Character Functions
Character functions actually cover characters and strings. They are extremely useful when you
want to concatenate, parse, replace, or sort characters and strings. Appendix E covers the regular
expression functions that are also mentioned briefly in some of these descriptions.

ASCII Function
The ASCII function returns an ASCII encoding number for a character. The following sample
evaluates the first character of the string:

DECLARE
 text VARCHAR2(10) := 'Hello';
BEGIN
 IF ASCII(SUBSTR(text,1,1)) = 72 THEN
 dbms_output.put_line('The first character of the string is [H].');
 END IF;
END;
/

The ASCII-encoded English alphabet starts with an uppercase A, which has an ASCII value of
65. The lowercase letter a has a value of 97. Therefore, the uppercase H has a value of 72 as the
eighth letter in the encoding sequence. The program prints

The first character of the string is [H].

This function can be used when you are searching strings for encoding matches. You’ll find it
useful when multiple encoding schemas have been used over time in the database.

■

■

■

■

■

O

Appendix J: PL/SQL Built-in Functions 779

ASCIISTR Function
The ASCIISTR function returns an ASCII encoding string for a character. The following sample
evaluates the fourth character of the string, which is a French ê that is a Unicode character:

DECLARE
 text VARCHAR2(10) := 'forêt';
BEGIN
 dbms_output.put_line(ASCIISTR(SUBSTR(text,4,1)));
END;
/

The circumflex-annotated ê renders as a \xxxx character stream because it is a Unicode
character. The quartet following the backslash represents a UTF-16 code unit. The string printed is

\00EA

This is a convenient function to convert strings into ASCII values, which lets you check if
they contain Unicode characters. Enclosing the source and result strings as arguments to regular
expression functions lets you compare whether the result contains more backslashes than the
source string. This comparison would identify Unicode characters in strings.

CHR Function
The CHR function returns the binary equivalent character for an ASCII integer in the database
character set or national character set. The latter behavior requires that you use USING NCHAR_
CS, as shown in the prototype:

CHR(n [USING NCHAR_CS])

The following demonstrates sending a line break in the midst of a string through the standard
out procedure, DBMS_OUTPUT.PUT_LINE. There is a convenient way to force a line break in the
midst of an output string.

DECLARE
 text1 VARCHAR2(10) := 'Title';
 text2 VARCHAR2(10) := 'Content';
BEGIN
 dbms_output.put_line(text1||CHR(10)||text2);
END;
/

It prints

Title
Content

The CHR function also lets you embed extended characters into your programs. This is useful
when they are constrained by ASCII encoding.

CONCAT Function
The CONCAT function concatenates two strings into one, and it is equivalent to using the
concatenation operator (||). The prototype is

CONCAT(string1, string2)

780 Oracle Database 11g PL/SQL Programming

When the datatypes of the strings differ, the function implicitly adopts the broadest one. This
means that this function adheres to the traditional implicit casting model, which demands no
precision be lost.

The following demonstrates the function:

DECLARE
 text1 VARCHAR2(10) := 'Hello ';
 text2 VARCHAR2(10) := 'There!';
BEGIN
 dbms_output.put_line(CONCAT(text1,text2));
END;
/

It prints

Hello There!

This function really presents an alternative syntax to the standard concatenation operator. You
should use it when it makes your code more readable.

INITCAP Function
The INITCAP function is very handy when you want to convert a string to title case. Title case is
a convention where the first letter of every word is capitalized while all other letters are in lowercase.
The function takes a string and returns a converted string.

The following demonstrates the function:

DECLARE
 text VARCHAR2(12) := 'hello world!';
BEGIN
 dbms_output.put_line(INITCAP(text));
END;
/

It prints

Hello World!

This function would be handy if you were searching for Java source files in a database
repository, provided they adhere to the title case convention. You could also use it if you write
a parser for data entry, like customer contact notes. There is also a NLS_INITCAP function that
works with different character sets.

INSTR Function
The INSTR function lets you find the position where a substring starts in a string. You also can
find the starting position by using INSTRB when the string is encoded in bytes, INSTRC when the
string contains Unicode complete characters, or either INSTR2 or INSTR4 functions for backward
compatibility with UCS2 and UCS4 code points.

UCS2 provides backward compatibility like the UTF16 character set, which is a variable-length
character encoding standard. UCS2 fails, however, to use surrogate pairs and is actually a fixed-
length character encoding standard that uses 16 bits to store characters. UCS4 is a fixed-length
character encoding variant of UCS2; it encodes in 32-bit chunks.

The prototype for the INSTR family of functions is

Appendix J: PL/SQL Built-in Functions 781

INSTR(target_string, search_string [, position [, occurrence]])

You search the target string looking for the search string, like looking in a haystack for a pin.
The position is 1 or the beginning of the string unless you specify another positive integer. You
may only provide occurrence when you have provided a position value. The occurrence must
also be a positive integer value. The regular expression REGEXP_INSTR function is a natural
alternative to this function. Appendix E contains definitions of the regular expression functions.

All of the INSTR function variations work the same way: they take a string and calculate its
length as a return value.

The following demonstrates the INSTR variation of the functions:

DECLARE
 text VARCHAR2(12) := 'Hello World!';
BEGIN
 dbms_output.put_line('Start ['||INSTR(text,'World',1)||']');
END;
/

It prints

Start [7]

The INSTR functions are useful when you want to parse strings into substrings in a looping
structure. The INSTR and INSTRC are the safest with all character types except byte-allocated
strings. Use the INSTRB for byte strings.

LENGTH Function
The LENGTH function lets you calculate the length of a string by using character units. A variant
LENGTHB calculates the length of a string in bytes, and LENGTHC uses Unicode complete characters.
You also have the LENGTH2 and LENGTH4 functions that count using UCS2 and UCS4 code points.

UCS2 provides backward compatibility like the UTF16 character set, which is a variable-length
character encoding standard. UCS2 fails however to use surrogate pairs, and is actually a fixed-
length character encoding standard that uses 16 bits to store characters. UCS4 is a fixed-length
character encoding variant of UCS2; it encodes in 32-bit chunks.

All of the LENGTH function variations work the same way: they take a string and calculate its
length as a return value.

The following demonstrates the LENGTH variation of the functions:

DECLARE
 text VARCHAR2(12) := 'Hello World!';
BEGIN
 dbms_output.put_line('Length ['||LENGTH(text)||']');
END;
/

It prints

Length [12]

The LENGTH functions are useful when you want to parse strings into substrings. You should
probably stick to using LENGTH or LENGTHC when writing production code, and should avoid
LENGTHB because it only counts the number of bytes.

782 Oracle Database 11g PL/SQL Programming

LOWER Function
The LOWER function lets you demote a string to match a lowercase string literal. There is also
NLS_LOWER for Unicode strings. This is convenient when you don’t know the case of stored data.

The following demonstrates the function:

DECLARE
 text VARCHAR2(12) := 'Hello World!';
BEGIN
 dbms_output.put_line(LOWER(text));
END;
/

It prints

hello world!

This function and the UPPER function let you easily enter and match string literals against values
of unknown case in database columns. There is no processing difference between demoting strings
to lowercase and promoting strings to uppercase. You should pick one and use it consistently.

LPAD Function
The LPAD function lets you add a character one or more times at the beginning of a string. The
prototype is

LPAD(output_string, output_length, padding_character)

The following demonstrates how you left-pad a string. The output length sets the new length
of the string and pads with copies of the padding character until the string reaches the new length.
The number of padding characters is equal to the output length minus the number of characters in
the beginning output string.

DECLARE
 output VARCHAR2(10) := 'Wowie';
 whitespace VARCHAR2(1) := ' ';
BEGIN
 dbms_output.put_line('['||LPAD(output,10,whitespace)||']');
END;
/

It prints

[Wowie]

The square brackets ensure that padded whitespace prints because the procedure
DBMS_OUTPUT.PUT_LINE normally removes leading whitespace. Other characters are not
impacted by the paring of strings before printing them.

LTRIM Function
The LTRIM function lets you remove a set of characters from the beginning of a string. The
prototype is

LTRIM(base_string, set_of_values)

Appendix J: PL/SQL Built-in Functions 783

The LTRIM function imposes a limit on what is trimmed from a string. The set of values must
contain all values from the beginning of the string to where you want to pare it. If any character in
that stream is missing, the trimming stops at that point.

The following demonstrates the LTRIM function:

DECLARE
 comment VARCHAR2(12) := 'Wowie Howie!';
BEGIN
 dbms_output.put_line('['||LTRIM(comment,' eiwoWo')||']');
END;
/

The example contains all the characters to remove the first word plus an extra o. It cannot
remove the o because the H is not found in the set. So it only removes the first word and
whitespace, printing

[Howie!]

A second o is unnecessary because the function trims all instances of any character in the set
provided there is no intervening character not found in the set. This has shown you how to trim
the leading part of a string. You can also trim the right side of a string with the RTRIM function
covered later in this appendix.

REPLACE Function
The REPLACE function lets you search and replace a substring in any CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB string. It returns the modified string. The prototype is

REPLACE(base_string, search_string, replace_string)

The following demonstrates how to use the function:

DECLARE
 base_string VARCHAR2(40) := 'The Republican President said ...';
 search_string VARCHAR2(40) := 'Republican';
 replace_string VARCHAR2(40) := 'Democratic';
BEGIN
 dbms_output.put_line(REPLACE(base_string,search_string,replace_string));
END;
/

It prints

The Democratic President said ...

The word “Democratic” has been substituted for the word “Republican.” You should ensure
that you’re using uniform character sets for all actual parameters because the REPLACE function
is sensitive to character set.

RPAD Function
Like the LPAD function, the RPAD function lets you add a character one or more times to a string.
The difference is that RPAD adds the characters to the end of the string. The prototype is

RPAD(output_string, output_length, padding_character)

784 Oracle Database 11g PL/SQL Programming

The following demonstrates right-padding a string:

DECLARE
 output VARCHAR2(10) := 'Wowie';
 whitespace VARCHAR2(1) := ' ';
BEGIN
 dbms_output.put_line('['||RPAD(output,10,whitespace)||']');
END;
/

It prints

[Wowie]

The square brackets highlight the padded whitespace. While the procedure DBMS_OUTPUT.
PUT_LINE removes leading whitespace, it does not remove trailing whitespace.

RTRIM Function
The RTRIM function lets you remove a set of characters from the end of a string. The prototype is

RTRIM(base_string, set_of_values)

The RTRIM function imposes a limit on what is trimmed from a string. The set of values must
contain all values from the end of the string to where you want to pare it. If any character in that
stream is missing, the trimming stops at that point.

The following demonstrates the RTRIM function:

DECLARE
 comment VARCHAR2(12) := 'Wowie Howie!';
BEGIN
 dbms_output.put_line('['||RTRIM(comment,' Howie!')||']');
END;
/

The example contains all the characters to remove the first word, but the characters “owie”
are found twice in the string. Also, there is no intervening character not found in the set.
Therefore, this function pares more than what you might expect, printing:

[W]

This has shown you how to trim the trailing part of a string. It has also shown you that one
character can be removed multiple times, provided there is no intervening character not found
in the set of values.

You can also trim the left side of a string with the LTRIM function covered earlier in this
appendix. Trimming characters more than once also applies to the LTRIM function.

UPPER Function
The UPPER function lets you demote a string to match a lowercase string literal. There is also
NLS_UPPER for Unicode strings. This is convenient when you don’t know the case of stored data.

The following demonstrates the function:

Appendix J: PL/SQL Built-in Functions 785

DECLARE
 text VARCHAR2(12) := 'Hello World!';
BEGIN
 dbms_output.put_line(UPPER(text));
END;
/

It prints

HELLO WORLD!

This function and the LOWER function let you easily enter and match string literals against
values of unknown case in database columns. There is no processing difference between
promoting strings to uppercase and demoting them to lowercase. You should pick one and
use it consistently.

Datatype Conversion
Datatype conversion is simply casting. Casting is the process of taking a variable defined as
one datatype and changing it to another datatype. Implicit casting makes the change for you
automatically but only works when the rules are simple and well understood. Explicit casting
lets you instruct the programming language how to assign one datatype to another when no
rule applies without instructions.

Datatype conversion is often done implicitly in PL/SQL. Unlike other strongly typed programming
languages, PL/SQL does implicit conversions even when there is a potential loss of precision. For
example, you can assign a complex number in a NUMBER datatype to a SIMPLE_INTEGER datatype
and lose any values to the right of the decimal point. Chapter 2 provides an example of this type
of implicit conversion.

The datatype conversion functions are useful when you want to make a conversion that
requires you to provide instructions. You have to manually convert strings to dates when strings
don’t adhere to default format mask conventions. Likewise, some specialized types require you
to take specific actions before you can convert data.

These examples focus on demonstrating how to use these functions. You’ll notice that there
are no conversions between user-defined object types and standard types. You should include
conversion methods in your object type definitions.

CAST Function
The CAST function is very useful because it converts built-in datatypes to another built-in datatype,
or collection-typed variables to another collection-typed variable. The CAST function does have
some limits; for instance, it uses only the default date conversion format mask, as discussed in
Chapter 3. Unlike most functions, this function works with all but the LONG, LONG RAW, ROWID,
and UROWID built-in datatypes. CAST also limits how it casts data from BLOB and CLOB types
into a RAW datatype because it relies on an implicit database behavior. You raise an exception
when CAST tries to convert a large object into a RAW type when it is too large to fit inside a RAW
datatype.

There are two prototypes—one for scalar built-in variables and another for collections. The
scalar variable built-in prototype is

CAST(type1_variable_name AS type2_variable_name)

786 Oracle Database 11g PL/SQL Programming

and the collection prototype is

CAST(MULTISET(subquery)) AS collection_type_variable_name)

The following program shows how to cast a date to a string:

DECLARE
 source DATE := TO_DATE('30-SEP-07');
 target VARCHAR2(24);
BEGIN
 target := CAST(source AS VARCHAR2);
 dbms_output.put_line(target);
END;
/

This type of usage is exactly the same in both SQL and PL/SQL contexts, but the MULTISET
context is restricted to SQL statements. If you attempt to use a CAST function with a MULTISET and
subquery as a right operand, you raise a PLS-00405 exception. However, you can embed these
in SQL statements inside your PL/SQL blocks.

The CAST operation inside a query statement requires that you cast to a SQL datatype, like a
collection of scalar variables. This leaves you with a choice between varrays and nested tables.
You should use nested tables because they are easier to manage and don’t require incremental
conversion with the TABLE function call (see Chapter 7).

This creates a nested table of strings as a SQL datatype:

CREATE TYPE collection IS TABLE OF VARCHAR2(5);

/

You should create a table or view because the MULTISET operator disallows queries that use
set operators, like INTERSECT, MINUS, UNION, and UNION ALL. It raises a PLS-00605 exception
when set operators are found in the subquery.

The following builds a sample table:

CREATE TABLE casting (num VARCHAR2(5));

Next, you can insert into the table the English ordinal numbers “one,” “two,” “three,” to
“nine” by using the table fabrication pattern:

INSERT INTO casting
(SELECT 'One' FROM dual UNION ALL
 SELECT 'Two' FROM dual UNION ALL
 SELECT 'Three' FROM dual UNION ALL
 SELECT 'Four' FROM dual UNION ALL
 SELECT 'Five' FROM dual UNION ALL
 SELECT 'Six' FROM dual UNION ALL
 SELECT 'Seven' FROM dual UNION ALL
 SELECT 'Eight' FROM dual UNION ALL
 SELECT 'Nine' FROM dual);

The sample program demonstrates how to use the CAST and MULTISET functions together:

Appendix J: PL/SQL Built-in Functions 787

DECLARE
 counter NUMBER := 1;
BEGIN
 FOR i IN (SELECT CAST(MULTISET(SELECT num FROM casting) AS COLLECTION) AS rs
 FROM casting) LOOP
 dbms_output.put_line(i.rs(counter));
 counter := counter + 1;
 END LOOP;
END;
/

This prints the ordinal number words in a list. The CAST function returns a collection of items.
Unfortunately, you also need to match a collection structure to the row structure of the query. You
use this type of structure to return nested table contents from tables.

CONVERT Function
The CONVERT function converts a string from one character set to another. It has the following
prototype:

CONVERT(string, destination_character_set, source_character_set)

Table Fabrication
Sometimes you want to create data without building a temporary table. There are two
alternatives to avoid building temporary tables that can fragment your database. One is to
build run-time views, which are aliased queries inside the FROM clause. This approach works
when the data can be queried from one or more real tables. The other approach leverages
the UNION ALL set operator to join a series of related data. This approach, known as data
or table fabrication, lets you build data in a query when it doesn’t exist in your database.

The following uses table fabrication to multiply the number of returned rows:

SELECT alias.counter
FROM (SELECT 1 AS counter FROM dual UNION ALL
 SELECT 2 AS counter FROM dual) alias;

It returns two rows because the run-time view contains two fabricated rows, and prints

COUNTER

 1
 2

There are two caveats about table fabrication. You must ensure the list of SELECT
clause columns return the same datatype, and you must provide matching aliases for any
literals or expressions in any column position. These are the same rules imposed by set
operators in any query.

788 Oracle Database 11g PL/SQL Programming

The following demonstrates converting the French word forêt (forest in English) from the
AL32UTF8 to UTF8 character set:

DECLARE
 text VARCHAR2(10) := 'forêt';
BEGIN
 dbms_output.put_line(CONVERT(text,'AL32UTF8','UTF8'));
END;
/

This prints the same forêt, but it now takes three bytes of storage rather than two bytes. You
will find this function handy when you work in multiple character sets.

TO_CHAR Function
The TO_CHAR function lets you do several types of conversion. You can convert CLOB, DATE,
NCHAR, NCLOB, NUMBER, or TIMESTAMP datatypes to VARCHAR2 datatypes. This function is
overloaded and has two prototypes. The prototype for string datatypes is

TO_CHAR({clob_type | nchar_type | nclob_type})

The alternative prototype for dates, numbers, and times is

TO_CHAR({date_type | timestamp_type | number_type} [, format_make [, nls_param]])

The subsections demonstrate converting other types of strings to character strings, dates to
characters strings, and numbers to character strings. The date and number subsections also have
two examples each: one with the native National Language Support (NLS) character set of the
instance, and one that overrides the instance default.

Converting a String to a Character String
The following demonstrates converting a CLOB datatype to a CHAR datatype:

DECLARE
 big_string CLOB := 'Not really that big, eh?';
BEGIN
 dbms_output.put_line(TO_CHAR(big_string));
END;
/

Finding the Character Set of a Database Instance
You can log in as a privileged user, like SYSTEM, and run the following query:

SELECT value$ FROM sys.props$ WHERE name = 'NLS_CHARACTERSET';

More often than not folks are disappointed when they look in the V$PARAMETER view
for the character set. The V$PARAMETER view does contain most of the configuration
values for the database instance. The miscellaneous section demonstrates how you can
implement a function to read the character set in the EMPTY_BLOB function section.

Appendix J: PL/SQL Built-in Functions 789

Converting a Date to a Character String
The following demonstrates converting a DATE to a CHAR:

DECLARE
 today DATE := SYSDATE;
BEGIN
 dbms_output.put_line(TO_CHAR(today,'Mon DD, YYYY'));
END;
/

While your date will reflect the current system date, this prints the day this was written:

Sep 27, 2007

When you add the National Language Support (NLS) parameter to the function, you can
override the NLS setting for the database. The following resets the NLS_DATE_LANGUAGE
parameter to French:

DECLARE
 today DATE := SYSDATE;
BEGIN
 dbms_output.put_line(TO_CHAR(today,'Mon DD, YYYY'
 ,'NLS_DATE_LANGUAGE = FRENCH'));
END;
/

This then prints the date in the French style, which adds a period after the abbreviation of the
month, like

Sept. 27, 2007

Converting a Number to a Character String
Converting numbers to characters works much like dates. The following illustrates converting a
number to a formatted dollar amount in American English:

DECLARE
 amount NUMBER := 2.9;
BEGIN
 dbms_output.put_line(TO_CHAR(amount,'$9,999.90'));
END;
/

The format mask says print a digit if found when there’s a 9 and always print a zero when
there is no value. The format mask substitutes a zero, since there is no value in the hundredths
placeholder, printing:

$2.90

Adding the NLS parameter, you can now format the currency return in Euros:

DECLARE
 amount NUMBER := 2.9;
BEGIN
 dbms_output.put_line(TO_CHAR(amount,'9,999.90L'

790 Oracle Database 11g PL/SQL Programming

 ,'nls_currency = EUR'));
END;
/

This prints

2.90EUR

This section has demonstrated how to use the TO_CHAR function to convert national language
and large object strings to character strings, and dates, timestamps, and numbers to character
strings. The format masks only cover characters in those specific positions. You need to expand
the format mask when dealing with larger numbers.

TO_CLOB Function
The TO_CLOB function lets you convert NCLOB column datatype or other character types to
character large objects. You can convert CHAR, NCHAR, NVARCHAR2, and VARCHAR2 datatypes
to NCLOB types.

The prototype for this is

TO_CLOB({char_type | nchar_type | nclob_type | nvarchar2_type | varchar2_type})

The following converts a string to CLOB and then uses the TO_CHAR to reconvert for printing
by the DBMS_OUTPUT.PUT_LINE procedure:

DECLARE
 initial_string VARCHAR2(2000) := 'Not really required. :-)';
BEGIN
 dbms_output.put_line(TO_CHAR(TO_CLOB(initial_string)));
END;
/

This is a handy function when you’re moving an array of strings into a CLOB variable. It also
lets you move NLS large objects columns into a standard format for your programs.

TO_DATE Function
The TO_DATE function lets you convert strings to dates. The prototype for this is

TO_DATE(string_type [, format_make [, nls_param]])

The following program demonstrates converting a string through implicit conversion:

DECLARE
 target DATE;
BEGIN

target := '29-SEP-94';
 dbms_output.put_line('Back to a string ['||TO_CHAR(target)||']');
END;
/

The implicit cast works because the default format mask for a date is DD-MON-RR or DD-MON-YYYY.
When the string or source is not in that format, you must provide a format mask to cast the string
into a date.

Appendix J: PL/SQL Built-in Functions 791

The next example explicitly casts a string by providing a format mask:

DECLARE
 target DATE;
BEGIN
 target := TO_DATE('September 29, 1994 10:00 A.M.'
 ,'Month DD, YYYY HH:MI A.M.');
 dbms_output.put_line('Back to a string ['||TO_CHAR(target)||']');
END;
/

The A.M. formatting option is a mask available in some National Language Support (NLS)
languages, like American English. It is not supported in French because the appropriate format
mask in that language is AM. If you apply an unsupported format mask, you raise an ORA-01855
exception.

The following example demonstrates overriding the default of language:

DECLARE
 target DATE;
BEGIN
 target := TO_DATE('Septembre 29, 1994 10:00 AM'
 ,'Month DD, YYYY HH:MI AM'
 ,'NLS_DATE_LANGUAGE = French');
 dbms_output.put_line('Back to a string ['
 || TO_CHAR(target
 ,'Month DD, YYYY HH:MI AM'
 ,'NLS_DATE_LANGUAGE = French')||']');
END;
/

The nature of converting to a date from a string is a virtual mirror to reversing the process, as
should be clearly seen in the example. The TO_DATE function is frequently used in PL/SQL.

TO_LOB Function
The TO_LOB function lets you convert LONG or LONG RAW column datatypes to large objects.
However, there are restrictions on how you can use this function. It can only be used to convert
your LONG datatypes to large objects when used in an INSERT statement as a SELECT list
element of a subquery.

The prototype for this is

TO_LOB({long_type | long_raw_type})

There are several steps to build a small test case to examine this function. You need to create
source and destination tables and seed the source with data.

CREATE TABLE source
(source_id NUMBER
, source LONG);

INSERT INTO source
VALUES
(1, 'A not so long string');

792 Oracle Database 11g PL/SQL Programming

CREATE TABLE target
(target_id NUMBER
, target CLOB);

After you’ve done that, you can build an anonymous block to transfer the LONG column
values to a CLOB column in the new table. The following demonstrates that along with a query
of the moved contents.

DECLARE
 CURSOR c IS SELECT target_id, target FROM target;
BEGIN
 INSERT INTO target
 SELECT source_id, TO_LOB(source) FROM source;
 FOR i IN c LOOP
 dbms_output.put_line('Clob value ['||TO_CHAR(i.target)||']');
 END LOOP;
END;
/

This is a handy function for data migration. If this were a real character large object value,
you’d need to read chunks of the column inside a loop. The latter is best done with a combination
of the LENGTH and SUBSTR (substring) functions.

TO_NCHAR Function
The TO_NCHAR function lets you do several types of conversion. You can convert CHAR, CLOB,
DATE, NCLOB, NUMBER, or TIMESTAMP datatypes to NVARCHAR2 datatypes. This function is
overloaded and has two prototypes. The prototype for string datatypes is

TO_NCHAR({clob_type | nchar_type | nclob_type})

The alternative prototype for dates, numbers, and times is

TO_NCHAR({date_type | timestamp_type | number_type}
 [, format_make [, nls_param]])

The examples in the TO_CHAR function description also work with the TO_NCHAR function.
You can modify those to qualify how the TO_NCHAR function works.

TO_NCLOB Function
The TO_NCLOB function lets you convert CLOB column datatype or other character types to
character large objects. You can convert CHAR, NCHAR, NVARCHAR2, and VARCHAR2 datatypes
to CLOB types.

The prototype for this is

TO_NCLOB({clob_type | char_type | nchar_type | nvarchar2_type | varchar2_type})

The examples in the TO_NCLOB function description also work with the TO_NCLOB function.
You can modify those to qualify how the TO_NCLOB function works.

Appendix J: PL/SQL Built-in Functions 793

TO_NUMBER Function
The TO_NUMBER function lets you convert an expression into a numeric value. The expression
can be a BINARY_DOUBLE, CHAR, NCHAR, NVARCHAR2, or VARCHAR2 datatype. You can also
use the NLS_NUMERIC_CHARACTERS or NLS_CURRENCY parameters for National Language
Support (NLS).

The prototype for this is

TO_NUMBER(expression [, format_mask [, nls_param]])

The example converts a formatted string to a number by using a format mask:

DECLARE
 source VARCHAR2(38) := '$9,999.90';

Alternative Migration Strategy for LONG and LONG RAW columns
While the Oracle Database SQL Language Reference 11g Release 1 doesn’t mention that
you can use the TO_LOB in any other context than an INSERT statement, you can. More
often than not you don’t want to move a large table to a new table and then rename it as
part of a single column migration.

You can solve the problem by adding a CLOB column to the table and using the TO_LOB
function in an update statement. Like the INSERT statement limitation, the TO_LOB must
be part of a SELECT list in a subquery. This type of movement from one column to another
in the same row requires a correlated subquery. This is how you synchronize the two copies
of the same table to work on the same row.

You would alter the source table with the following syntax:

ALTER TABLE source ADD (new_source CLOB);

Then, you migrate the data with the following UPDATE statement:

UPDATE source outer
SET outer.new_source =
 (SELECT TO_LOB(inner.source)
 FROM source inner
 WHERE outer.source_id = inner.source_id);

Cleanup is easy; drop the old column:

ALTER TABLE source DROP COLUMN source;

Then, you can rename the new_source to source, which will map to the original
column. The command is

ALTER TABLE source RENAME COLUMN new_source TO source;

This works well after you’ve developed the new code that expects a CLOB, not a LONG
or LONG RAW column. It has the advantage of not moving the balance of columns while
migrating away from the obsolete data types.

794 Oracle Database 11g PL/SQL Programming

BEGIN
 dbms_output.put_line(TO_NUMBER(source,'$9,999.99'));
END;
/

The program prints a number without a hundredth placeholder:

9999.9

You can also use NLS formatting like that shown in the TO_CHAR function examples, or use it
this way:

DECLARE
 source VARCHAR2(38) := '9,999.90EUR';
BEGIN
 dbms_output.put_line(TO_NUMBER(source,'9G999D99L','nls_currency = EUR'));
END;
/

It also prints

9999.9

The G stands for comma, D for decimal point (or period), and L for string qualifying the currency
format. There is no dollar symbol leading a currency expression when you use a ISO currency
string like USA, JPY, EUR. The string provided as the value of nls_currency must also match
the value in the original string.

TO_TIMESTAMP Function
The TO_TIMESTAMP function lets you convert a string expression into a timestamp. The
prototype for this is

TO_TIMESTAMP(expression [, format_mask [, nls_param]])

The example demonstrates a call to the TO_TIMESTAMP function:

DECLARE
 source TIMESTAMP := TO_TIMESTAMP('30-SEP-07 15:17:04','DD-MON-YYYY HH24:MI:SS');
BEGIN
 dbms_output.put_line(TO_CHAR(source,'Mon DD, YYYY HH:MI:SS AM'));
END;
/

This is similar to the behavior of the TO_DATE expression. It is useful to note that there is also
the TO_TIMESTAMP_TZ function when you work with multiple time zones.

Error Reporting
The error reporting functions only work in the exception block of PL/SQL program units. The
SQLCODE function returns the code number for the error, like ORA-01422. The SQLERRM
function returns the error code and a brief message. The messages are defined by language, and
you should note that in some earlier releases, some language translations have had incomplete
message files.

Appendix J: PL/SQL Built-in Functions 795

Chapter 5 covers exception handling and contains additional examples that you may find
useful. These two sections summarize the utility of the SQLCODE and SQLERRM functions.

SQLCODE Function
The SQL code error returns the Oracle error number for standard exceptions and a 1 for user-defined
exceptions. You can also raise a user-defined custom error and exception message by calling the
RAISE_APPLICATION_ERROR function. This section demonstrates all three approaches.

The following program generates a standard exception:

DECLARE
 a NUMBER;
 b CHAR := 'A';
BEGIN
 a := b;
EXCEPTION
 WHEN others THEN
 dbms_output.put_line('SQLERRM ['||SQLERRM||']');
END;
/

It prints to console

SQLERRM [ORA-06502: PL/SQL: numeric or value error: character to number ...

The next program generates a user-defined exception number:

DECLARE
 e EXCEPTION;
BEGIN
 RAISE e;
EXCEPTION
 WHEN others THEN
 dbms_output.put_line('SQLCODE ['||SQLCODE||']');
END;
/

It generates the following because user-defined exceptions always return 1:

SQLCODE [1]

The RAISE_APPLICATION_ERROR function lets you define a user exception number and
exception. The SQLCODE value works for user-defined exceptions exactly as it does for standard
exceptions.

SQLERRM Function
The SQLERRM mirrors the behaviors of the SQLCODE with the exception of the value returned.
SQLERRM returns the error code and a default message. The message files are read from a generic
message file in the $ORACLE_HOME/rdbms/mesg directory. The message files are found in the
oraus.msg file for American English exception messages. They are language-specific files when
you install Oracle in a different language. You can also evaluate error message in Linux or Unix
by using the oerr utility.

796 Oracle Database 11g PL/SQL Programming

You execute oerr utility by providing the three-character error type and five-number error
message, like

oerr ora 01422

The oerr utility treats the case of the three-character error type string as case insensitive.
Unfortunately, it isn’t available on the Windows operating system port of the database.

The SQLERRM function works the same for standard or user-defined exceptions. It reads the
message file. The next program demonstrates raising a user-defined exception:

DECLARE
 e EXCEPTION;
BEGIN
 RAISE e;
EXCEPTION
 WHEN others THEN
 dbms_output.put_line('SQLERRM ['||SQLERRM||']');
END;
/

This program generates the following:

SQLERRM [User-Defined Exception]

You can use an EXCEPTION_INIT PRAGMA (a precompiler instruction) to map a user-defined
exception to a standard Oracle exception. The standard exception message related to the SQLCODE
value is printed when you map a user-defined exception:

The next program demonstrates mapping a related standard exception message to a user-
defined exception:

DECLARE
 e EXCEPTION;
 PRAGMA EXCEPTION_INIT(e,-01422);
BEGIN
 RAISE e;
EXCEPTION
 WHEN others THEN
 dbms_output.put_line('SQLERRM ['||SQLERRM||']');
END;
/

It prints the following output:

SQLERRM [ORA-01422: exact fetch returns more than requested number of rows]

You can use the RAISE_APPLICATION_ERROR function when you require a specialized
error message. Unfortunately, this function limits you to an exception range between –20,001
and –21,999. If you use any number outside that range, you’ll raise an ORA-20000 exception.

The following demonstrates the SQLERRM result for a user-defined exception message:

BEGIN
 RAISE_APPLICATION_ERROR(-20001,'An overriding user-defined error message.');
EXCEPTION

Appendix J: PL/SQL Built-in Functions 797

 WHEN others THEN
 dbms_output.put_line('SQLERRM ['||SQLERRM||']');
END;
/

Raising the following to console:

SQLERRM [ORA-20001: An overriding user-defined error message.]

This section has demonstrated how you can use standard and user-defined exception
messages. You’ve learned that you can only return standard messages unless you call the
RAISE_APPLICATION_ERROR function.

Miscellaneous
These miscellaneous functions initialize large objects, perform advanced comparisons, and audit
system environment variables. They are very powerful features in the PL/SQL language.

The BFILENAME, EMPTY_BLOB, and EMPTY_CLOB functions initialize large objects. The
BFILENAME function defines a data structure for an external file. The others initialize a large
object, respectively BLOB and CLOB datatypes.

Advanced comparisons are conditional evaluations. They are performed by COALESCE, DECODE,
GREATEST, LEAST, NANVL, NULLIF, and NVL. COALESCE uses short-circuit analysis to find the
first not-null value in a set. If all values in a set are null, COALESCE returns null. DECODE
performs if-then-else and if-then-elsif-then-else logic. GREATEST finds the highest character,
string, or number in a set of like datatypes. LEAST finds the lowest value in a set. NANVL
substitutes a default number when not a number is returned but only applies to types using native
operating system math libraries. NULLIF returns a null when its two actual parameters are equal.
NVL substitutes another value when the first actual parameter is null; it requires both actual
parameters to be the same datatype.

The balance of the functions audit system environment variables. They are DUMP, NLS_
CHARSET_DECL_LEN, NLS_CHARSET_ID, NLS_CHARSET_NAME, SYS_CONTEXT, SYS_GUID,
UID, USER, USERENV, and VSIZE. DUMP and VSIZE inspect the physical size of datatypes.
Oracle’s National Language Support (NLS) represents how Oracle databases manage different
character sets. As discussed in Chapter 3, Oracle supports two Unicode character sets: AL32UTF8
and UTF8. It also supports numerous other character sets. NLS is the umbrella term for all
character sets. NLS_CHARSET_DECL_LEN, NLS_CHARSET_ID, and NLS_CHARSET_NAME let
you discover the physical storage details of NLS character sets. The remaining functions audit
database session information.

This section covers the large objects, comparison, and four system environment functions:
DUMP, SYS_CONTEXT, USERENV, and VSIZE. Rather than create separate nesting levels, those
covered are simply presented alphabetically. The descriptions qualify their purpose in the PL/SQL
language.

BFILENAME Function
The BFILENAME function is used to insert or update a reference to an externally stored binary
large object. It takes two parameters: a virtual directory path and a filename. Unfortunately, it
makes no effort to validate whether the virtual directory or file exists. This is because you may
build the reference before creating the virtual directory mapping or placing the file in the target
location. It returns a binary file locator.

798 Oracle Database 11g PL/SQL Programming

The following prototype demonstrates that you call the function with two strings; the first is
limited to 30 characters and the second to 4,000 characters:

BFILENAME('virtual_directory','physical_file')

NOTE
Operating systems generally confine the fully qualified path to a value
smaller than 4,000 characters.

You can find the mapping of virtual directories to the external file system in the
DBA_DIRECTORIES view. The view is available when you are the privileged user SYSTEM or
have been granted the DBA role privilege, which actually inherits the privilege through the
SELECT_CATALOG_ROLE.

The following query lets you find the virtual directories and their physical server mapping:

SELECT owner
, directory_name
, directory_path
FROM dba_directories;

All virtual directories are owned by the SYS schema. You cannot access the contents from a
cursor inside a stored program unit because the privilege exists through a role. Chapter 8 shows
you how to query the contents of the table inside a stored procedure, which requires that the SYS
schema grant SYSTEM the SELECT privilege on the DBA_DIRECTORIES view.

When you don’t have the SELECT privilege, you are limited to using the DBMS_LOB package
for access to the information inside a BFILE column. You can verify whether the file exists on the
server by using the DBMS_LOB.FILEEXISTS function and get the physical size by using the
DBMS_LOB.GETLENGTH function. The next program assumes you build the following table:

CREATE TABLE sample (sample_id NUMBER, sample_bfile BFILE);

Then, you insert a record like this:

INSERT INTO sample
VALUES (1, BFILENAME('VIRTUAL_DIRECTORY','file_name.ext'));

You can also use the BFILENAME function in the SET clause of an UPDATE statement to
change either the virtual directory or the filename. These external files are read-only datatypes,
and you update data as part of maintenance programs that manipulate their location or names.

This program will now read the column and return a physical size for a file, or a message that
the file was not found:

DECLARE
file_locator BFILE;

BEGIN
 SELECT sample_bfile INTO file_locator FROM sample WHERE sample_id = 1;
 IF dbms_lob.fileexists(file_locator) = 1 THEN
 dbms_output.put_line(dbms_lob.getlength(file_locator));
 ELSE
 dbms_output.put_line('No file found.');
 END IF;
END;
/

Appendix J: PL/SQL Built-in Functions 799

The DBMS_LOB.FILEEXISTS function was built to work in both SQL and PL/SQL. Since
SQL does not support a native Boolean datatype, the function returns a 1 when it finds a file and
0 when it fails.

The next program illustrates creating a binary file locator outside of a database column, then
reading the locator to find the filename with the DBMS_LOB.FILEGETNAME function:

DECLARE
 alias VARCHAR2(255);
 filename VARCHAR2(255);
BEGIN
 dbms_lob.filegetname(BFILENAME('virtual_dir','file_name.gif'),alias,filename);
 dbms_output.put_line(filename);
END;
/

It prints

file_name.gif

This section has demonstrated how to use the BFILENAME function. You will use it when
you store files externally from the database. They must be no larger than the maximum file size
supported by the operating system. They are typically files like .gif, .jpg, or .png image files,
sound recording files, Flash components, et cetera.

COALESCE Function
The COALESCE function uses short-circuit analysis to find the first not-null value in a set. Short-
circuit evaluation means that it stops searching when a not-null value is returned. COALESCE
returns null when all values evaluate as nulls.

The COALESCE prototype that works with scalar variables of the same datatype is

COALESCE(arg1, arg2 [, arg3 [, arg(n+1)]])

The following demonstrates the function using a collection of strings:

DECLARE
 TYPE list IS TABLE OF VARCHAR2(5);
 ord LIST := list('One','','Three','','Five');
BEGIN
 dbms_output.put_line(COALESCE(ord(1),ord(2),ord(3),ord(4),ord(5)));

END;

/

The function prints the first not-null element in the collection:

One

You can put a loop around the COALESCE function to perform the function repeatedly.
Alternatively, you can use a FOR loop, nested IF statement, and NVL function call to print only
not-null values. They consume roughly the same resources, but the latter may be clearer to most
programmers.

800 Oracle Database 11g PL/SQL Programming

DECODE Function
The DECODE function performs if-then-else and if-then-else-if-then-else logic in SQL statements. It
is known as a pseudocolumn, and you can also use it inside your PL/SQL programs. The prototype
for an if-then-else statement is

DECODE(evaluation_expression, comparison_expression
 , true_expression, false_expression);

The alternate prototype for if-then-else-if-then-else is

DECODE(evaluation_expression, comparison_expression1, true_expression1
 , comparison_expression2, true_expression2
 , comparison_expression(n+1), true_expression(n+1)

, comparison false_expression);

The following illustrates an if-then-else DECODE function:

DECLARE
 a NUMBER := 94;
 b NUMBER := 96;
 c VARCHAR2(20);
BEGIN
 SELECT DECODE(a,b,'Match.','Don''t match.') INTO c FROM dual;
 dbms_output.put_line(c);
END;
/

It prints the following because the numbers are unequal:

Don't match.

The following program shows the case logic of a multiple if-then-else statement:

DECLARE
 redsox NUMBER := 96;
 yankees NUMBER := 94;
 division NUMBER := 96;
 headline VARCHAR2(30);
BEGIN
 SELECT DECODE(division,yankees,'Yankees clinch pennant.'
 ,redsox,'Red Sox clinch pennant.'
 ,'Tied Again!')
 INTO headline
 FROM dual;
 dbms_output.put_line(headline);
END;
/

While using static values, you should see the potential. Examine when you can resolve
procedural questions in your SQL statements, and do it when it simplifies the program!

Appendix J: PL/SQL Built-in Functions 801

DUMP Function
The DUMP function examines the datatype and real length of registered datatypes. It returns a
value that is independent of the database or session character set. You can only use the DUMP
function inside a SQL statement.

The following block demonstrates how to find the real size of a LONG RAW variable:

DECLARE
buffer LONG RAW := HEXTORAW('42'||'41'||'44');

 detail VARCHAR2(100);
BEGIN
 SELECT DUMP(buffer) INTO detail FROM dual;
 dbms_output.put_line(detail);
END;
/

It prints the data catalog number for a LONG RAW, the length of the data value, and the ASCII
values of the original hexadecimal values:

Typ=23 Len=3: 66,65,68

You may not use this too often, but when you’re trying to figure out why something is broken
and the error message and web hits are limited, it may be very helpful. It certainly helps when
working with the DBMS_LOB package and raw streams, as covered in the next section, on the
EMPTY_BLOB function.

EMPTY_BLOB Function
The EMPTY_BLOB function lets you initialize a database column with an empty BLOB datatype.
This is important because large objects have three possible states: they are null, empty, or
populated. The DBMS_LOB package fails by raising an ORA-22275 exception when you attempt
to work with a null BLOB column. The error is raised because there is no valid locator found in
the column for null values.

The DBMS_LOB package fails by raising an ORA-01403 exception when you have an empty
BLOB. This is more meaningful than the invalid LOB locator message that you’ll receive when the
column isn’t initialized, and you can always append to an empty BLOB column. In some cases,
using a default value during table creation may be a viable solution, but generally there are good
reasons to leave a BLOB column null until you want to use it.

The next program assumes you build the following table:

CREATE TABLE sample (sample_id NUMBER, sample_blob BLOB);

Then, you insert a record like this:

INSERT INTO sample (sample_id) VALUES (1);

You’ll need to configure your database as noted in the “Deploying a Character Set Function”
sidebar. The following program demonstrates how to update a BLOB column in an existing row:

DECLARE
 amount BINARY_INTEGER := 100;

802 Oracle Database 11g PL/SQL Programming

 buffer LONG RAW := HEXTORAW('43'||'44'||'5E');
 character_set VARCHAR2(12);
 offset INTEGER := 1;
 source BLOB;
 -- Convert character length to byte length.
 FUNCTION byte_length(n BINARY_INTEGER) RETURN BINARY_INTEGER IS
 al32utf8 BINARY_INTEGER := 2;
 utf8 BINARY_INTEGER := 3;
 BEGIN
 -- Find database instance character set.
 SELECT value
 INTO character_set
 FROM nls_database_parameters
 WHERE parameter = 'NLS_CHARACTERSET';
 -- Branch sizing for Unicode.
 IF character_set = 'AL32UTF8' THEN
 RETURN n / al32utf8;
 ELSIF character_set = 'UTF8' THEN
 RETURN n / utf8;
 END IF;
 END byte_length;
BEGIN
 -- Change column value in existing row.
 UPDATE sample2
 SET sample_blob = empty_blob()
 WHERE sample_id = 1
 RETURNING sample_blob INTO source;
 -- Append to empty BLOB column.

dbms_lob.writeappend(source,BYTE_LENGTH(LENGTH(buffer)),buffer);
 -- Read new content from column.
 SELECT sample_blob INTO source FROM sample2 WHERE sample_id = 1;

dbms_lob.read(source,amount,offset,buffer);
 dbms_output.put_line(buffer);
END;
/

The UPDATE statement uses the RETURNING INTO clause to create a transactional opening
to the BLOB column. The source variable is the opening, and it lets you change the contents of
the BLOB column. The target variable of the RETURNING INTO clause acts as an implicit bind
variable that you can see by peeking into the SGA. The local byte_length function divides any
Unicode character set length to arrive at the byte code length. You would need to modify that
function when using other multibyte character sets. If you fail to convert the byte-width of the
BLOB variable, you raise an ORA-21560 error. This happens because the amount parameter is
larger than the actual number of bytes in the buffer parameter of the DBMS_LOB.WRITEAPPEND
function.

TIP
If you try to update a row that doesn’t exist with the DBMS_LOB.
WRITEAPPEND procedure, you’ll raise an ORA-22275 exception that
means an invalid LOB locator is specified in the function call. This
actually means there is no row where you can insert the LOB value.

Appendix J: PL/SQL Built-in Functions 803

You can also replace the character_set function and simplify the program by using the
VSIZE function. VSIZE returns the size in bytes of expressions returned in SQL statements. The
alternative local function would be

FUNCTION byte_length(n LONG RAW) RETURN BINARY_INTEGER IS
 realsize BINARY_INTEGER;
 BEGIN

SELECT VSIZE(n) INTO realsize FROM dual;
 RETURN realsize;
END byte_length;

You also change the call, eliminating the nested call to the LENGTH function, in this way:

dbms_lob.writeappend(source,BYTE_LENGTH(buffer),buffer);

Clearly, this is simpler than dealing with the character sets. It also makes the case that you can
leverage SQL-only built-in functions to do difficult things easily.

This has demonstrated how to use the EMPTY_BLOB function in an update. You can also use
it the same way in the VALUES clause of an INSERT statement, or as default column value when
creating a table or altering a table to include a BLOB column.

NOTE
The DBMS_LOB package also raises ORA-06502 errors, typically
without much explanation beyond pointing to line numbers that vary
between releases. These errors are most often raised by passing a null
value into one of the IN or IN OUT mode parameters of the DBMS_LOB
functions or procedures.

Deploying a Character Set Function
As demonstrated in the update of a BLOB column, the user-defined character_set function
lets you determine the character set of the database in a restricted privilege schema. This is
critical when you need the real byte count for BLOB, RAW, or LONG RAW datatypes.

The first step requires that you connect as the privileged user SYS as the SYSDBA. There
you can grant privileges to the SYS.PROPS$ table, like

GRANT SELECT ON props$ TO SYSTEM;

Then, you can compile the following function in the SYSTEM schema (don’t forget to
connect as the SYSTEM user):

CREATE OR REPLACE FUNCTION character_set RETURN VARCHAR2 IS
 -- Return variable.
 characterset VARCHAR2(20);
 -- Explicit cursors are always recommended.
 CURSOR c IS
 SELECT value$ FROM sys.props$ WHERE name = 'NLS_CHARACTERSET';
BEGIN
 OPEN c;
 FETCH c INTO characterset;
 CLOSE c;
 RETURN characterset;

804 Oracle Database 11g PL/SQL Programming

EMPTY_CLOB Function
The EMPTY_CLOB function works like the EMPTY_BLOB function. It lets you initialize a database
column with an empty CLOB datatype. This is important because large objects have three possible
states: they are null, empty, or populated. The DBMS_LOB package fails by raising an ORA-22275
exception when you attempt to work with a null CLOB column. The error is raised because there
is no valid locator found in the column for null values.

The DBMS_LOB package fails by raising an ORA-01403 exception when you have an empty
CLOB. This is more meaningful than the invalid LOB locator message that you’ll receive when the
column isn’t initialized, and you can always append to an empty CLOB column. In some cases,
using a default value during table creation may be a viable solution, but generally there are good
reasons to leave a CLOB column null until you want to use it.

The next program assumes you build the following table:

CREATE TABLE sample (sample_id NUMBER, sample_clob CLOB);

Then, you insert a record like this:

INSERT INTO sample (sample_id) VALUES (1);

The following demonstrates how to update a CLOB column in an existing row:

DECLARE
 amount BINARY_INTEGER := 100;
 buffer VARCHAR2(2000) := 'Something is better than nothing.';
 offset INTEGER := 1;
 source CLOB;
BEGIN
 UPDATE sample
 SET sample_clob = empty_clob()

END character_set;
/

You grant execute privileges on this function to schemas that require access to the
database character set. The following grants that privilege to the PLSQL schema:

GRANT EXECUTE ON character_set TO plsql;

After granting the privilege to the target schema, you should connect to the PLSQL
schema and create a synonym or alias that points to the SYSTEM.CHARACTER_SET
function. You use the following syntax:

CREATE SYNONYM character_set FOR system.character_set;

This lets the local schema return the string representing the character set as an expression.
This approach is what lets you update a BLOB column in a multibyte character set. It eliminates
that nasty ORA-21560 because the LENGTH function returns the number of bytes required
by the character set, not raw storage. Using it properly, this function lets you deal with the
real length of binary streams. You can also use the DUMP function to find the real length for
byte streams.

Appendix J: PL/SQL Built-in Functions 805

 WHERE sample_id = 1
 RETURNING sample_clob INTO source;
 -- Check that the source is empty.
 IF NVL(dbms_lob.getlength(source),0) = 0 THEN
 dbms_lob.writeappend(source,LENGTH(buffer),buffer);
 END IF;
 -- Read the first 2,000 characters of the CLOB.
 dbms_lob.read(source,amount,offset,buffer);
 dbms_output.put_line(buffer);
END;
/

This has demonstrated how to use the EMPTY_CLOB function in an update. You can also use
it the same way in the VALUES clause of an INSERT statement, or as a default column value
when creating a table or altering a table to include a CLOB column.

NOTE
An ORA-21560 exception is raised by the WRITEAPPEND procedure
when the second actual parameter is a null value or zero.

GREATEST Function
The GREATEST function lets you check which of two values is the greatest. This works with scalar
datatypes, like dates, numbers, and strings. The prototype is

GREATEST(variable1, variable2)

The GREATEST function requires that both actual parameters have the same data type, and it
returns the least value in that datatype. Comparing the number of winning games by the Boston
Red Sox and New York Yankees for the 2007 season shows 96 games wins the division pennant
for the Boston Red Sox:

BEGIN
 dbms_output.put_line(GREATEST(96,94));
END;
/

Alternatively, you can compare two dates like the dates that Sammy Sosa hit 600 career
homeruns against the date that Alexander Rodriguez hit 500 career homeruns. The following
program uses the TO_CHAR function to demonstrate that the return type is actually a date against
which you can apply a format mask:

DECLARE
 rodriguez DATE := '04-AUG-07';
 sosa DATE := '20-JUN-07';
BEGIN
 dbms_output.put_line(TO_CHAR(GREATEST(rodriguez,sosa),'Mon DD, YYYY'));
END;
/

This prints the later date:

Aug 04, 2007

806 Oracle Database 11g PL/SQL Programming

Although the earlier examples were small, the string comparison highlights using the
GREATEST function as a key element implementing a traditional descending bubble sort. The
local swap procedure is quite simple as a pass-by-reference procedure, which leaves the array
resorted upon successful completion of the program.

The bubble sort uses a set of nested loops, which lets you compare the first element against
all elements in the collection, leaving the greatest element first, or in descending order.

DECLARE
 TYPE namelist IS TABLE OF VARCHAR2(12);
 names NAMELIST := namelist('Bonds','Aaron','Ruth','Mayes');
 -- Local swap procedure.
 PROCEDURE swap (a IN OUT VARCHAR2, b IN OUT VARCHAR2) IS
 c VARCHAR2(12);
 BEGIN
 c := b;
 b := a;
 a := c;
 END swap;
BEGIN
 FOR i IN 1..names.COUNT LOOP
 FOR j IN 1..names.COUNT LOOP
 IF names(i) = GREATEST(names(i),names(j)) THEN

swap(names(i),names(j));
 END IF;
 END LOOP;
 END LOOP;
 FOR i IN 1..names.COUNT LOOP
 dbms_output.put_line(names(i));
 END LOOP;
END;
/

The example prints the descending ordered surnames of the top four career homerun hitters:

Ruth
Mayes
Bonds
Aaron

You could also accomplish the same sorting by replacing the GREATEST comparison with the
following line:

IF names(i) < names(j) THEN

You do need to watch the behavior of both Unicode and differing character sets when you do
comparisons. The CONVERT function can help you ensure that comparisons are between like
character sets.

These examples have demonstrated the versatility of the GREATEST function. They’re
revisited in the description of the LEAST function.

LEAST Function
The LEAST function lets you check which of two values is the least. This works with scalar
datatypes, like dates, numbers, and strings. The prototype is

Appendix J: PL/SQL Built-in Functions 807

LEAST(variable1, variable2)

The LEAST function requires that both actual parameters have the same data type, and it
returns the least value in that datatype. Comparing the number of winning games by the Boston
Red Sox and New York Yankees for the 2007 season shows 94 games loses the division pennant
for the New York Yankees:

BEGIN
 dbms_output.put_line(LEAST(96,94));
END;
/

Alternatively, you can compare two dates like the dates that Sammy Sosa hit 600 career
homeruns against the date that Alexander Rodriguez hit 500 career homeruns. The following
program uses the TO_CHAR function to demonstrate that the return type is actually a date against
which you can apply a format mask:

DECLARE
 rodriguez DATE := '04-AUG-07';
 sosa DATE := '20-JUN-07';
BEGIN
 dbms_output.put_line(TO_CHAR(LEAST(rodriguez,sosa),'Mon DD, YYYY'));
END;
/

This prints the earlier date:

Jun 20, 2007

Although the earlier examples were small, the string comparison highlights using the LEAST
function as a key element implementing a traditional bubble sort. The local swap procedure is
quite simple as a pass-by-reference procedure, which leaves the array resorted upon successful
completion of the program.

The bubble sort uses a set of nested loops, which lets you compare the first element against
all elements in the collection, leaving the least element first, or in an ascending alphabetical list.

DECLARE
 TYPE namelist IS TABLE OF VARCHAR2(12);
 names NAMELIST := namelist('Sarah','Joseph','Elise','Ian','Ariel'
 ,'Callie','Nathan','Spencer','Christianne');
 -- Local swap procedure.
 PROCEDURE swap (a IN OUT VARCHAR2, b IN OUT VARCHAR2) IS
 c VARCHAR2(12);
 BEGIN
 c := b;
 b := a;
 a := c;
 END swap;
BEGIN
 FOR i IN 1..names.COUNT LOOP
 FOR j IN 1..names.COUNT LOOP
 IF names(i) = LEAST(names(i),names(j)) THEN

swap(names(i),names(j));

808 Oracle Database 11g PL/SQL Programming

 END IF;
 END LOOP;
 END LOOP;
 FOR i IN 1..names.COUNT LOOP
 dbms_output.put_line(names(i));
 END LOOP;
END;
/

This reorders the names in the collection to an ascending alphabetized list:

Ariel
Callie
Christianne
Elise
Ian
Joseph
Nathan
Sarah
Spencer

You could also accomplish the same sorting by replacing the LEAST comparison with the
following line:

IF names(i) < names(j) THEN

You do need to watch the behavior of both Unicode and differing character sets when you
do comparisons. The CONVERT function can help you ensure that comparisons are between like
character sets.

These examples have demonstrated the versatility of the LEAST function. They’re revisited in
the description of the GREATEST function.

NANVL Function
The NANVL function substitutes a default value when a BINARY_DOUBLE or BINARY_FLOAT is
not a number (NaN). This allows trapping an operating system math library return value of NaN.

The prototype is

NANVL(evaluation_parameter, substitution_parameter)

The primary substitution value is zero, as illustrated in the following program:

DECLARE
 bad_number BINARY_DOUBLE := 'NaN';
 default_number BINARY_DOUBLE := 0;
BEGIN
 dbms_output.put_line(NANVL(bad_number,default_number));
END;
/

You can substitute a BINARY_FLOAT and it works the same way. This is a useful approach
when performing math-intensive calculations.

Appendix J: PL/SQL Built-in Functions 809

NULLIF Function
The NULLIF function substitutes a null value when two actual parameters are found equal. This is
equivalent to returning a null when two values match.

The prototype is

NULLIF(evaluation_parameter1, evaluation_parameter2)

The primary substitution value is zero, as illustrated in the following program:

DECLARE
 harry_potter VARCHAR2(10) := 'Gryffindor';
 ron_weasley VARCHAR2(10) := 'Gryffindor';
 cedric_diggory VARCHAR2(10) := 'Hufflepuff';
BEGIN
 IF NULLIF(harry_potter,ron_weasley) IS NULL THEN
 dbms_output.put_line('Same house!');
 END IF;
 IF NULLIF(harry_potter,cedric_diggory) IS NOT NULL THEN
 dbms_output.put_line('Different houses!');
 END IF;
END;
/

The first IF statement calls the NULLIF function with two members of J.K. Rowling’s Harry
Potter series that share the same house. It returns a null because the house values are equal. The
second IF statement returns a not-null value because the houses differ, and it is checking whether
the logical expression is not null. There are many opportunities to use this type of comparison,
and now you know how to do it.

NVL Function
The NVL function substitutes a default value when the primary value is null. The prototype for the
function is

NVL(evaluation_parameter, default_substitution_parameter)

The NVL function works well in conditional statements. It removes the possibility that
comparison values are null. The following program demonstrates a NVL function:

DECLARE
 condition BOOLEAN;
BEGIN
 IF NOT NVL(condition,FALSE) THEN
 dbms_output.put_line('It''s False!');
 END IF;
END;
/

The condition variable is not initialized and therefore a null value. The conditional logic
would fail if the NVL function was left out because a null value is not true or false. The NVL
function converts all null values to false, making the statement true and printing the result.

810 Oracle Database 11g PL/SQL Programming

SYS_CONTEXT Function
The SYS_CONTEXT function returns information about the system environment or an environment
you’ve established by using the DBMS_SESSION.SET_CONTEXT. It replaces the USERENV legacy
function and provides many more options using the USERENV context.

The prototype is

SYS_CONTEXT('context_namespace','parameter'[,'length'])

It raises an ORA-02003 when you submit an invalid parameter value, but only a null value if
you submit a non-existent context namespace. Table J-1 lists the valid parameters for the USERENV
context, and Table J-2 lists the deprecated parameters for the same context. All calls to the
SYS_CONTEXT function return a VARCHAR2 variable that has a default maximum length of
256 bytes. You can override the size of return strings by providing a valid integer value between
1 and 4,000.

TABLE J-1 SYS_CONTEXT Predefined Parameters for the USERENV Namespace

Parameter Return Value
ACTION The ACTION parameter identifies the position in the module. You use the DBMS_

APPLICATION_INFO package to set the value.

AUDITED_CURSORID The AUDITED_CURSORID parameter returns the cursor ID of the SQL statement
that triggered an audit event. It is not a valid value when you’re using fine-grain
auditing, and it returns a null then.

AUTHENTICATED_IDENTITY The AUTHENTICATED_IDENTITY parameter returns the authenticated identity in
a format that differs by type of authentication, like Kerberos, SSL, password, OS,
Radius, proxy, or SYSDBA/SYSOPER.

AUTHENTICATION_DATA The AUTHENTICATION_DATA parameter contains the value used to authenticate
the user, which may be a X.503 certificate.

AUTHENTICATION_METHOD The AUTHENTICATED_METHOD parameter returns the authenticated method, like
Kerberos, SSL, password, OS, Radius, proxy, or background process.

BG_JOB_ID The BG_JOB_ID parameter returns the current session identifier when established
by a background database process.

CLIENT_IDENTIFIER The CLIENT_IDENTIFIER parameter returns an identifier set by calling the
SET_IDENTIFIER procedure from the DBMS_SESSION package, the OCI_
ATTR_CLIENT_IDENTIFIER attribute, or the setClientIdentifier method of the
Java class Oracle.jdbc.OracleConnection.

CLIENT_INFO The CLIENT_INFO parameter returns a 64-byte character string set by calling the
SET_CLIENT_INFO procedure of the DBMS_APPLICATION_INFO package.

CURRENT_BIND The CURRENT_BIND parameter returns bind variables or fine-grain auditing.

CURRENT_EDITION_NAME The CURRENT_EDITION_NAME parameter returns the edition in use by the
current session.

CURRENT_EDITION_ID The CURRENT_EDITION_ID parameter returns the identifier of the edition in use
by the current session.

CURRENT_SCHEMA The CURRENT_SCHEMA parameter returns the current schema name, which you
can change by calling the ALTER SESSION SET CURRENT_SCHEMA statement.

CURRENT_SCHEMAID The CURRENT_SCHEMAID parameter returns the current schema identifier, which
you can change by calling the ALTER SESSION SET CURRENT_SCHEMA
statement.

Appendix J: PL/SQL Built-in Functions 811

Parameter Return Value
CURRENT_SQL or
CURRENT_SQLn

The CURRENT_SQL parameter returns the first 4K bytes of the current SQL
statement that triggered fine-grain auditing. You use CURRENT_SQLn (where n is
an integer) to get the next 4K bytes of the current SQL statement.

CURRENT_SQL_LENGTH The CURRENT_SQL_LENGTH parameter returns the byte length of the SQL
statement that triggered a fine-grain auditing event.

DB_DOMAIN The DB_DOMAIN parameter returns the database initialization parameter of the
same name when it is set.

DB_NAME The DB_NAME parameter returns the database initialization parameter of the same
name when it is set.

DB_UNIQUE_NAME The DB_UNIQUE_NAME parameter returns the database initialization parameter of
the same name when it is set.

ENTRYID The ENTRYID parameter returns the current audit entry number. This sequence
value is shared between regular and fine-grain auditing and cannot be used in
distributed scope.

ENTERPRISE_IDENTITY The ENTERPRISE_IDENTITY parameter returns the user’s enterprise-wide
identity, which is an OID value set as the DN value.

FG_JOB_ID The FG_JOB_ID parameter returns the current session identifier when established
by a foreground database process.

GLOBAL_CONTEXT_MEMORY The GLOBAL_CONTEXT_MEMORY parameter returns the number being used in the
SGA by the globally accessed context.

GLOBAL_UID The GLOBAL_UID parameter returns the current session identifier when
established by a background database process.

HOST The HOST parameter returns the machine hostname value.

IDENTIFICATION_TYPE The IDENTIFICATION_TYPE parameter returns the method used to establish the
current session, as follows:

LOCAL when identified by password
EXTERNAL when identified externally
GLOBAL SHARED when identified globally
GLOBAL PRIVATE when identified globally by DN

INSTANCE The INSTANCE parameter returns the identification number of the current instance.

INSTANCE_NAME The INSTANCE_NAME parameter returns the name of the current instance.

IP_ADDRESS The IP_ADDRESS parameter returns the IP address for the server or virtual
machine running the instance.

ISDBA The ISDBA parameter returns true when the current user has DBA privileges and
false when that user does not.

LANG The LANG parameter returns the ISO abbreviation for the language name.

LANGUAGE The LANGUAGE parameter returns the language and territory currently in use and
the character set separated by a period.

MODULE The MODULE parameter returns the application name set by the SET_MODULE
procedure in the DBMS_APPLICATION_INFO package.

NETWORK_PROTOCOL The NETWORK_PROTOCOL parameter returns network protocol value for a
connection.

TABLE J-1 SYS_CONTEXT Predefined Parameters for the USERENV Namespace (continued)

812 Oracle Database 11g PL/SQL Programming

Parameter Return Value
NLS_CALENDAR The NLS_CALENDAR parameter returns the current session’s calendar.

NLS_CURRENCY The NLS_CURRENCY parameter returns the current session’s currency.

NLS_DATE_FORMAT The NLS_DATE_FORMAT parameter returns the current session’s default date
format.

NLS_DATE_LANGUAGE The NLS_DATE_LANGUAGE parameter returns the current session’s language for
expressing dates.

NLS_SORT The NLS_SORT parameter returns the current session’s linguistic sort basis or the
default BINARY.

NLS_TERRITORY The NLS_TERRITORY parameter returns the current session’s territory.

OS_USER The OS_USER parameter returns the operating system user account that initiated
the current database session.

POLICY_INVOKER The POLICY_INVOKER parameter returns the invoker of a row-level security
(RLS) policy function.

PROXY_ENTERPRISE_IDENTITY The PROXY_ENTERPRISE_IDENTITY parameter returns the Oracle Internet
Directory DN when the proxy user is an enterprise user.

PROXY_GLOBAL_UID The PROXY_GLOBAL_UID parameter returns the global user identifier from
Oracle Internet Directory for Enterprise User Security (EUS) proxy users or null
for all other proxy users.

PROXY_USER The PROXY_USER parameter returns the user name of the database user who
opened the current session on behalf of the SESSION_USER.

PROXY_USERID The PROXY_USERID parameter returns the user identifier of the database user
who opened the current session on behalf of the SESSION_USER.

SERVER_HOST The SERVER_HOST parameter returns the server host name.

SERVICE_NAME The SERVICE_NAME parameter returns the service host name.

SESSION_EDITION_NAME The SESSION_EDITION_NAME parameter returns the edition in use by the
current session.

SESSION_EDITION_ID The SESSION_EDITION_ID parameter returns the edition identifier in use by the
current session.

SESSION_USER The SESSION_USER parameter returns the schema for Enterprise users, and the
database user name by which the current session is authenticated.

SESSION_USERID The SESSION_USERID parameter returns the database user identifier by which
the current session is authenticated.

SESSIONID The SESSIONID parameter returns the auditing session identifier.

SID The SID parameter returns the session number, which is different than the session
identifier.

STATEMENTID The STATEMENTID parameter returns the number of the SQL statement audited
in a given session. This attribute cannot be used in distributed scope.

TERMINAL The TERMINAL parameter returns the server host name.

TABLE J-1 SYS_CONTEXT Predefined Parameters for the USERENV Namespace (continued)

Appendix J: PL/SQL Built-in Functions 813

You call the SYS_CONTEXT function as follows:

BEGIN
 dbms_output.put_line(SYS_CONTEXT('USERENV','HOST'));
END;
/

It returns the server’s hostname value as a 256-byte string. This section has demonstrated the
SYS_CONTEXT function, which replaces the legacy USERENV function.

USERENV Function
The USERENV function returns information about the system environment. It is a legacy function
replaced by the SYS_CONTEXT function covered earlier in this section. Table J-3 lists the available
parameters you can call by using the USERENV function.

While you can use the function in SQL statements, the following demonstrates using the
USERENV function in a PL/SQL block:

BEGIN
 dbms_output.put_line(USERENV('TERMINAL'));
END;
/

It prints the hostname for the machine, like

MCLAUGHLIN-DEV

The following sets the V$SESSION view CLIENT_INFO column:

CALL dbms_application_info.set_client_info('Restricted');

You can query the contents by using the USERENV function, and it returns the case-sensitive
word: Restricted. It is demonstrated in the following block:

BEGIN
 dbms_output.put_line(USERENV('CLIENT_INFO'));
END;
/

Parameter Return Value
CURRENT_USER Use the SESSION_USER parameter instead.
CURRENT_USERID Use the SESSION_USERID parameter instead.
EXTERNAL_NAME This parameter returned the name of the external user. You should

use the AUTHENTICATED_IDENTITY or ENTERPRISE_IDENTITY
parameter in lieu of EXTERNAL_NAME because they return superior
information about the external user.

TABLE J-2 SYS_CONTEXT Deprecated Parameters for the USERENV Namespace

814 Oracle Database 11g PL/SQL Programming

This section has shown you how to use the USERENV function. It is a legacy function that
appears in Oracle Applications code and other third-party applications, but you should use the
new SYS_CONTEXT function in your own code. SYS_CONTEXT provides you access to more
information.

VSIZE Function
The VSIZE function lets examine the real length of registered datatypes. It returns a value that is
independent of the database or session character set. You can only use the VSIZE function inside
a SQL statement.

The following block demonstrates how to find the real size of a LONG RAW variable:

DECLARE
buffer LONG RAW := HEXTORAW('42'||'41'||'44');

 detail VARCHAR2(100);

Return Type Parameter Description of Return Value
VARCHAR2 CLIENT_INFO The CLIENT_INFO parameter returns a string up to 64

bytes long. It contains one or more values set by using
the built-in DBMS_APPLICATION_INFO package. You
should note that this context column is used by third-
party applications.

NUMBER ENTRYID The ENTRYID parameter is a sequence value shared
between both regular and fine-grain audit records. You
cannot use this attribute in distributed queries.

VARCHAR2 ISDBA The ISDBA parameter returns an uppercase true or
false, depending on whether the current user has DBA
privileges.

VARCHAR2 LANG The LANG parameter returns an uppercase string for the
ISO language abbreviation.

VARCHAR2 LANGUAGE The LANGUAGE parameter returns an uppercase string
containing the language and territory, a dot, and the
character set for the database. An example of the
output is:
AMERICAN_AMERICA.AL32UTF8

NUMBER SESSIONID The SESSIONID parameter returns the auditing
session identifier and cannot be used in distributed
transactions.

VARCHAR2 TERMINAL The TERMINAL parameter returns the operating
system identifier for the terminal running the current
session. If you use it in a distributed environment
SELECT statement, it returns the identifier for the
local transaction. The parameter cannot be used by
distributed INSERT, UPDATE, or DELETE statements.

TABLE J-3 USERENV Function Parameters

Appendix J: PL/SQL Built-in Functions 815

BEGIN
 SELECT VSIZE(buffer) INTO detail FROM dual;
 dbms_output.put_line(detail);
END;
/

It prints the length of the data value:

3

You may not use this too often, but when you’re trying to figure out why something is broken
and the error message and web hits are limited, it may be very helpful. It certainly helps when
working with the DBMS_LOB package and raw streams, as covered in the section on the
EMPTY_BLOB function.

Number
The number built-in functions provide key typical mathematical functions. Aside from the
trigonometric functions, you should find FLOOR and CEIL useful when you want to find a
bottom and upper integer limit for a range of complex (fractional) numbers. Also, ROUND lets
you round complex numbers to their nearest integer, and TRUNC lets you strip the values to
the right of the decimal place.

You’ll also find functions for modulo mathematics and exponentiation. When you understand
what’s available, it should increase your options while writing PL/SQL programs.

CEIL Function
The CEIL function lets you round any real number to the next higher integer. You can use it as
follows:

DECLARE
 n NUMBER := 4.44;
BEGIN
 dbms_output.put_line('Ceiling ['||CEIL(n)||']');
END;
/

It prints

Ceiling [5]

This is handy when you’re trying to group things into whole units.

FLOOR Function
The FLOOR function lets you truncate any remaining fraction from a number, returning the whole
integer value. You can use it as follows:

DECLARE
 n NUMBER := 4.44;
BEGIN
 dbms_output.put_line('Flooring ['||FLOOR(n)||']');
END;
/

816 Oracle Database 11g PL/SQL Programming

It prints

Flooring [4]

This is handy when you’re trying to group things into whole units.

MOD Function
The MOD function lets you find the remainder of a division operation, like the REMAINDER function.
It returns a zero when there is no remainder and the integer of any remainder when one exists.

The prototype is

MOD(dividend, divisor)

You can use it as follows:

DECLARE
 n NUMBER := 16;
 m NUMBER := 3;
BEGIN
 dbms_output.put_line('Mode ['||MOD(n,m)||']');
END;
/

It prints

Mode [1]

The MOD function uses the FLOOR function in the calculation. It is designed to work with
positive integers. You will get non-classical modulo arithmetic results when either number is
negative. You should use the REMAINDER function for classic modulo results when either
number has a negative value or the divisor is a real number.

POWER Function
The POWER function doubles for the exponential operator, **. It is really your preference whether
you use the POWER function or the exponential operator, but you should pick one and stick with
it. There’s power in writing code consistently (:-)).

The prototype of the POWER function is

POWER(base_number, exponent)

The following example demonstrates cubing a number:

DECLARE
 n NUMBER := 3;
 m NUMBER := 3;
BEGIN
 dbms_output.put_line('Cube of ['||n||'] is ['||POWER(n,m)||']');
END;
/

This prints

Cube of [3] is [27]

Appendix J: PL/SQL Built-in Functions 817

While the math libraries work well when you square or cube numbers, they do produce
rounding errors when calculating cube roots, like the following:

DECLARE
 n NUMBER := 27;

Modulo Arithmetic
Modulo arithmetic is a system of integer math. It is designed on the principle that numbers
wrap around, like a clock. An example is how sixty seconds becomes a minute, and then
the seconds reset to zero. It comes from the work of Carl Friedrich Gauss, which was first
published in 1801.

The example does a bit of casting to demonstrate clock arithmetic by leveraging the
system clock function—SYSDATE:

DECLARE
 c_time INTEGER;
 e_time INTEGER;
 n_time INTEGER;
 s_time INTEGER;
BEGIN
 LOOP
 s_time := MOD(TO_NUMBER(TO_CHAR(SYSDATE,'SS')),60); -- Use the MOD function.
 IF c_time IS NULL THEN
 c_time := s_time;
 e_time := s_time - 1;
 n_time := s_time;
 dbms_output.put_line('['||TO_CHAR(SYSDATE,'MI:SS')||']['||s_time||']');
 ELSE
 n_time := s_time;
 IF n_time <> c_time THEN
 dbms_output.put_line('['||TO_CHAR(SYSDATE,'MI:SS')||']['||s_time||']');
 c_time := n_time;
 END IF;
 END IF;
 IF c_time = e_time THEN
 EXIT;
 END IF;
 END LOOP;
END;
/

This prints 59 values. It starts with the current time and ends 59 seconds later with the
twenty-four-hour clock value and modulo integer result. The following displays the rows
immediately before and after the wrapping between minutes:

[53:58][58]
[53:59][59]
[54:00][0]
[54:01][1]
[54:02][2]

Modulo arithmetic lets you time events to the minute or hour with a divisor of 60. You
can time events to the half-minute by using a divisor of 30, or to the quarter-minute by
using a divisor of 15. As you explore your application needs, it is likely that you’ll have
several occasions to use the MOD function.

818 Oracle Database 11g PL/SQL Programming

 m NUMBER := 1/3;
BEGIN
 dbms_output.put_line('Cube of ['||n||'] is ['||POWER(n,m)||']');
END;
/

This prints

Cube root of [27] is [2.99999999999999999999999999999999999998]

While it should print 3, it doesn’t. The math error is generally not significant because you can
use the ROUND function to get the whole number cube root, like

ROUND(POWER(n,m),0)

You get three when you change the datatypes from NUMBER to BINARY_DOUBLE because the
latter uses the server’s local math libraries. The same program written with a BINARY_DOUBLE
datatype prints

Cube root of [2.7E+001] is [3.0E+000]

You should consider using datatypes tied to the server math libraries when they’re scientific in
nature, like finding cube roots.

REMAINDER Function
The REMAINDER function lets you find the remainder of a division operation, like the MOD function.
It returns a zero when there is no remainder and the integer of any remainder when one exists.

The prototype is

REMAINDER(dividend, divisor)

The REMAINDER function behaves differently whether the dividend and divisor are NUMBER
or data types linked to the local math libraries, like BINARY_FLOAT and BINARY_DOUBLE. More
or less, the results are slightly more meaningful with BINARY_FLOAT and BINARY_DOUBLE
because you get a NaN (not a number) when the divisor is zero. You get a numeric or value error
(PLS-06502) when the actual parameters are NUMBER datatypes.

You can use it as follows:

DECLARE
 n NUMBER := 16;
 m NUMBER := 3;
BEGIN
 dbms_output.put_line('Remainder ['||REMAINDER(n,m)||']');
END;
/

It prints

Remainder [1]

Appendix J: PL/SQL Built-in Functions 819

The difference between the REMAINDER and MOD functions can best be shown using a real
number as the divisor. This program uses both functions:

DECLARE
 n NUMBER := 16;
 m NUMBER := 3.24;
BEGIN
 dbms_output.put_line('Remainder ['||REMAINDER(n,m)||']');
 dbms_output.put_line('Remainder ['||MOD(n,m)||']');
END;
/

There are two perspectives on this problem. One divides the dividend by the divisor and
returns either a positive integer as the remainder or zero. This works when the dividend and
divisor are positive integers. The MOD function uses this method; when the divisor is 3.24 and the
dividend is 4, there are four whole 3.24 values, or 12.96, in 16. The divisor minus the dividend
times 4 yields a remainder of 3.04.

The other perspective approximates the least remainder of the division. This means that when
the remainder is greater than half the dividend, it looks for the next whole division value. The
remainder in this case is the difference between what the number is and what the next higher
number would be without a remainder. The REMAINDER function uses the same divisor but finds
the closest possible result, or the world as it should be. From this perspective, there should be five
whole 3.24 values or 16.2 in the dividend, which leaves a remainder of –0.2.

More likely than not, you’ll use MOD more frequently than REMAINDER because application
programming is dealing with reality. In the rare cases, the other fits. You now know why the
REMAINDER function works the way it does.

Summary
This appendix has enumerated PL/SQL built-in functions. The examples should enable you to
immediately leverage these functions in your programs.

This page intentionally left blank

#include <stdio.h>, 460
$ (dollar sign), 733, 737
$$ symbol, 12, 104
$AGTCTL_ADMIN, 457
$APL_ENV_FILE, 452, 470
$CLASSPATH, 467
$ELSE, 12, 104
$ELSIF, 12, 104
$END, 12, 104
$ERROR, 12, 104
$IF, 12, 104
$LD_LIBRARY_PATH, 452, 470, 473
$THEN, 12, 104
$TNS_ADMIN, 457
%FOUND, 35, 114

cursor attribute, 116
%ISOPEN, 35, 114
%NOTFOUND, 35, 114, 119
%ROWCOUNT, 35, 113, 114, 119
%ROWTYPE pseudotypes, 6, 61, 82, 324
%TYPE pseudotypes, 6, 60, 82, 324
& (ampersand), 27
* (asterisk), 734
@ (at symbol), 28, 593
[] (square brackets), 730
[..] (sqaure brackets with periods), 732
[::] (square brackets with colons), 730
^ (caret), 733, 737
{m, } (at least), 733
{m, n} (between), 733
{m} (exact), 733
| (or bar), 733
+ (plus), 734
+ metacharacter, 731
\ (backslash), 734

Index

- (dash), 730, 734
. (dot), 733, 737
? (question mark), 734, 738
() (parentheses), 733

AA

abstraction, 477
Access Control Lists (ACLs), 369, 539
ACCESS_INTO_NULL, 141
ACID-compliant transactions, 573
addition operator, 50
AFTER clause, 360
Agent Control utility, 457
aggregate tables, 179, 182, 183
agtctl, 457–458
AL16UTF16, 73, 74, 81
AL32UTF8 character set, 788
alerts. See DBMS_ALERT
ALL_ARGUMENTS, 341
ALTER_PARAM(), 23
alternation, 743
alternatives, 743
anchored record types, 82
anchoring composite variables, 61
anchoring strongly typed system reference cursors, 61
anchoring variables, 60
AND operator, 93
anonymous authentication, 548–550
anonymous blocks, 8, 26–27, 29, 55

nested, 89–90
anti-joins, 622
API, 354, 476
APPEND procedure, 302
application programming interface. See API

821

822 Oracle Database 11g PL/SQL Programming

architecture
database triggers, 346–348
Dynamic SQL, 382–383
external procedures, 447–449
extproc, 447–449
Java, 507–510
Oracle Database 11g, 572–577
packages, 315–319
PL/SQL, 6–7
PL/SQL web server, 535–539

Archiver (ARCn), 573, 574
arrays, 60, 83
ASCII function, 778
ASCIISTR function, 779
assignment model and language, 30
assignment operators, 46
association operator, 47
associative array datatypes, 86–87, 210, 211, 238–245
attribute chaining, 487
attribute indicator, 47
attributes, 479
AUTHID, 10, 59, 175, 195, 322, 336
automatic recompilation, 339
automatic subprogam inlining, 17–18
autonomous programs, 190
autonomous transactions, 172

add_user function, 189
AUTONOMOUS_TRANSACTION, 158–160
AUTONOMOUS_TRANSACTION PRAGMA, 332

BB

backquoting, 14
REGEXP_COUNT function, 736
REGEXP_LIKE function, 739
REGEXP_SUBSTR function, 741, 745

base types, 60
BEFORE clause, 360
BETWEEN operator, 94
BFILENAME function, 79, 272, 278, 797–799
BFILEs, 79–80, 266, 282–298, 709

accessing, 718–727
Binary Files. See BFILES
Binary Large Objects. See BLOBs
BINARY_DOUBLE datatype, 808, 818
BINARY_FLOAT datatype, 808
BINARY_FLOAT_INFINITY, 76
BINARY_FLOAT_MAX_NORMAL, 76
BINARY_FLOAT_MAX_SUBNORMAL, 76
BINARY_FLOAT_MIN_NORMAL, 76
BINARY_FLOAT_MIN_SUBNORMAL, 76
BINARY_FLOAT_NAN, 76
BINARY_INTEGER, 75–76, 239
bind variables, 47

OCI8, 660–662
REGEXP_COUNT function, 736

REGEXP_INSTR function, 738
REGEXP_LIKE function, 739
REGEXP_SUBSTR function, 740
SQL*Plus interface, 597–598

BIND_ARRAY, 405
BIND_VARIABLE, 405
BIND_VARIABLE_CHAR, 406
BIND_VARIABLE_RAW, 406
BIND_VARIABLE_ROWID, 406
black boxes, 316, 319

See also stored programs
BLOB datatypes, 702
BLOB_DEDUPLICATE_REGION, 298–299
BLOB_DUPLICATE_REGION_TAB, 298
BLOBs, 80, 266, 275–280, 709
block label, 112, 113
block structure, 55–59
blueprints, 477
Boolean datatype, 63–64
Boolean literals, 53–54
buffer, 62
built-in packages, 11
BULK COLLECT, 757
BULK COLLECT INTO, 123–127, 386
bulk processing, 401
bulk statements, 122–123

CC

C shared libraries, 459–465
CALL statement, 38, 39, 167, 168
calling subroutines, 172–174
canonical directory path, 272, 278
canonical filename, 272, 278, 290–298
canonical path, 282–283, 284
canonical path names, 290–298
CARDINALITY operator, 246, 248
cascading triggers, 345
case sensitivity, 6, 50
CASE statements, 32–33, 101–104
CASE_NOT_FOUND, 102, 141
CAST function, 54, 70, 222, 785–787
casting, 692
CEIL function, 815
CHAR, 65–66
CHARACTER, 65–66
character classes, 730–732, 743
character datatypes, 65
character functions, 778

See also individual functions
Character Large Objects. See CLOBs
character literals, 52–53
character sets, finding the character set of a database

instance, 788
character string delimiter, 49
character_set functions, deploying, 803–804

Index 823

character-class metacharacters, 730
CHARTOROWID, 67
check constraints, 153, 605
Checkpoint (CKPT), 573, 574
CHR function, 779
CLASSPATH, 510, 511, 687
CLIENT_INFO, 336, 367, 369
client-side driver, 510–511
CLOB datatypes, 702

and regular expressions, 746
CLOB locator, 389
CLOB_DEDUPLICATE_REGION, 300
CLOBs, 80–81, 266–274, 709

writing and accessing, 710–718
CLOSE procedure, 300
CLOSE statement, 116, 117
CLOSE_CURSOR, 406
closing expression, 49
closing guilllemet, 49
closing multiple-line comment delimiter, 49
COALESCE function, 799
collating elements, 732
collation classes, 732
Collection API, 252–263
COLLECTION_IS_NULL, 141, 254, 256
collections, 82, 83–87, 208–209

set operators, 245–252
types, 210–212

collections of records, 124
COLUMN_VALUE, 407
COLUMN_VALUE_CHAR, 407
COLUMN_VALUE_LONG, 407–408
COLUMN_VALUE_RAW, 408
COLUMN_VALUE_ROWID, 408
comments, 54–55
COMMIT statement, 40, 152
Common Gateway Interface (CGI), 536
COMPARE function, 306–307
comparison operators, 48, 93–96

PHP, 641
compilation errors, 132–136
compile-time flags, 12, 104
compile-time warnings, 11
component selector, 48, 111
composite datatypes, 82–87
composite variables, 57, 60, 82

anchoring, 61
compound triggers, 2:18, 345, 365–370
compound variables, 57
CONCAT function, 779–780
concatenation indicator, 48
concrete factory pattern, 501, 503
conditional compilation, 12, 104–105
conditional exits, 120
conditional structures, 31–33

PHP, 640–643

CONFIGURE_POOL(), 23
conjunction operator, 97
connection scalability, 21
console, outputting to, 62
CONSTANT, 321
constrained subtypes, 60
constructors, 84, 85
context areas, 87, 111, 116
CONTINUE statement, 18, 106, 108, 109,

112, 113
CONTINUE WHEN statement, 106, 109
CONVERT function, 787–788, 806, 808
CONVERTTOBLOB procedure, 302
CONVERTTOCLOB procedure, 302–303
COPY procedure, 303
COUNT, 86, 87, 214, 226
COUNT method, 252, 255
CREATE event, 377
CREATE_PIPE, 423
CREATE_WRAPPED procedure, 748, 751–752
CREATETEMPORARY function, 310–311
critical errors, 152, 153–158
cross joins, 620
cross-session PL/SQL function result cache, 18
CSV files, 653–655
CURRENT_USER, 10, 175, 195, 322, 336
cursor FOR LOOP statements, 110–111
cursor index, 111
CURSOR_ALREADY_OPEN, 141
cursors, 8, 56

DD

Data Access Descriptor (DAD), 536, 543
data catalogs, 573
Data Control Language. See DCL
Data Manipulation Language. See DML
Data Query Language. See DQL
data repositories, 572–573
Database Access Descriptor (DAD), 537
Database Configuration Assistant (DBCA), 534, 537
database event triggers, 43, 345, 374–375
database links, 337
Database Resident Connection Pooling (DRCP), 21
database triggers, 42–43, 152–160

architecture, 346–348
overview, 344–346
restrictions, 375–378

Database Writer (DBWn), 573, 574
datatype conversion, 785

converting a date to a character string, 789
converting a number to a character string,

789–790
converting a string to a character string, 788
See also individual functions

datatypes, mapping, 530–532

824 Oracle Database 11g PL/SQL Programming

DATE, 69–70
date literals, 54
db_block_size, 79, 267, 275, 307
DB_LINK, 337, 465
DBA_ARGUMENTS, 341
DBA_CPOOL_INFO, 22
DBA_DIRECTORIES view, 798
DBMS_ALERT, 419, 436–443
DBMS_APPLICATION_INFO, 336, 369
DBMS_AQ, 418
DBMS_AQADM, 418
DBMS_ASSERT package, 384, 385
DBMS_CONNECTION_POOL, 22
DBMS_CRYPTO, 11
DBMS_DDL package, 748, 749–752
DBMS_DDL.WRAP function, limitations of, 749
DBMS_EPG, 543
DBMS_HPROF package, 754, 755, 756
DBMS_JAVA package, 466, 508, 509, 510, 686
DBMS_LOB package, 79, 266, 284, 298, 801, 815

package constants, 299
package exceptions, 300, 301

DBMS_MONITOR, 11
DBMS_PIPE, 419, 420–436
DBMS_SCHEDULER, 11
DBMS_SQL package, 7, 19, 393–394

definition, 403–415
dynamic statements, 394–398
grants and privileges, 394
methods of operation, 395

DBMS_SQL.PARSE, 749
DBMS_UTILITY, 146
DBMSHP_FUNCTION_INFO table, 760, 761
DBMSHP_PARENT_CHILD_INFO table, 760, 762
DBMSHP_RUNNUMBER, 755
DBMSHP_RUNS table, 760
DCL, 360, 600, 628
DDL, 604

case-sensitive table and column names, 607–609
dynamic DDL statements, 383–384
event attribute functions, 349–350
events, 349
managing tables and constraints, 605–609
managing views, 609–612
sequences, 612–615
set operators, 610–612
stored programs, 612
triggers, 42, 345, 348–360
user-defined types, 616–617

DEC, 77
DECIMAL, 77
declaration block errors, 139–140
declaration blocks, 8, 55, 316
DECLARE block, 361
declaring variables, 8, 55
DECODE function, 800

DEFAULT, 29
default format masks, 54, 70
default selectors, 102
DEFINE_ARRAY, 408–409
DEFINE_COLUMN, 409
DEFINE_COLUMN_CHAR, 409
DEFINE_COLUMN_LONG, 409
DEFINE_COLUMN_RAW, 409–410
DEFINE_COLUMN_ROWID, 410
DEFINER, 10, 322
definer rights, 10, 59, 195

vs. invoker rights, 335–338
defining variables, 8, 55
DELETE method, 253, 255–256
DELETE statements, 85, 86, 87, 129, 627–628
deletion anomalies, 627
delimiters, 46–51
densely populated lists, 83
DESCRIBE_COLUMNS procedure, 404, 410
DESCRIBE_COLUMNS2 procedure, 404, 410
DESCRIBE_COLUMNS3 procedure, 404, 410–411
descriptors, 267, 275
DETERMINISTIC clause, 10, 59, 176–178
division operator, 50
DLLs, 447, 459
DML

dynamic DML statements, 384–385
statements, 113
triggers, 42, 345, 360–365

DMS
DELETE statements, 627–628
INSERT statements, 624–626
UPDATE statements, 626–627

DOUBLE PRECISION, 78
double-precision, 76
DO-WHILE loop, 643, 695
downcasting, 693
DQL, 600

join behaviors, 619–624
overview, 617–618
queries, 618–624

dropjava utility, 527
DUMP function, 801
DUP_VAL_ON_INDEX, 141
dynamic assignments, 139
dynamic authentication, 547–548
dynamic explicit cursors, 120–122
dynamic link libraries. See DLLs
Dynamic SQL, architecture, 382–383
dynamic SQL enhancements, 19

EE

ELSE blocks, 102
ELSIF reserved word, 92
embedded objects, 478

Index 825

emctl program, 579
EMPTY operator, 246, 248
empty_blob, 80
EMPTY_BLOB function, 801–804, 815
empty_clob, 80, 81
EMPTY_CLOB function, 268, 804–805
encapsulation, 477
ENQUOTE_LITERAL function,

384, 385
ENQUOTE_NAME function, 385
Enterprise Management utility, 579
ENV parameter, 452, 454, 470
equijoins, 619, 621
ERASE procedure, 303
error reporting, 794–795

See also individual functions
error stack formatting, 150–152
EXCEPTION, 143, 144
EXCEPTION block, 366
exception handling blocks, 9, 58, 136
exception stack functions, 146–152
EXCEPTION_INIT, 144, 328
EXCEPTION_INIT PRAGMA, 796
exclusionary notation, 20, 173–174
EXECUTE function, 411
EXECUTE privilege, 315, 336
EXECUTE statement, 39, 168
EXECUTE_AND_FETCH, 411
execution blocks, 8, 57, 316
EXISTS method, 253, 256–257
exit criteria, 106
EXIT statement, 106
EXIT WHEN statement, 106
explicit conversions, 60
explicit cursors, 110, 116–122, 125
exponential operator, 51
expressions

function calls as expressions, 99
PL/SQL, 167
SQL, 167

EXTEND method, 85, 148, 214, 227, 253,
258–259

extern command, 447
external procedures, 5, 446–447

See also extproc
extproc

agent, 447, 449
architecture, 447–449
defining Oracle Net Services configuration,

449–456
multithreaded extproc agent,

456–459
EXTPROC_CONNECTION_DATA, 451
EXTPROC_DLLS, 452, 461, 470
EXTRACT function, 70

FF

FALSE, 53–54
FETCH BULK COLLECT INTO statement, 388
FETCH statement, 116, 123, 125
FETCH_ROWS, 411
FIFO queues, 419, 432, 448
FILECLOSE procedure, 309
FILEEXISTS function, 309–310
FILEGETNAME, 79, 310
FILEISOPEN function, 310
FILEISOPEN procedure, 310
finally block, 696
FIRECLOSEALL procedure, 309
FIRST method, 243, 253, 259–260
fixed-point numbers, 77
flexible parameter passing, 646–647
FLOAT, 78
floating-point numbers, 77, 78
FLOOR function, 815–816
FOR EACH ROW clause, 360
FOR loop, 34–35, 109–111, 644, 695
FORALL statements, 127–129
FOREACH loop, 644
foreign key constraints, 153, 605
foreign key values, 218
FORMAT_ERROR_BACKTRACE, 150
forward referencing, 315–317, 327, 332
fractional exponent, 51
FRAGMENT_DELETE procedure, 303
FRAGMENT_INSERT procedure, 303
FRAGMENT_MOVE procedure, 303
FRAGMENT_REPLACE procedure, 304
FREETEMPORARY function, 311
functions, 174–175

creation options, 176–186

GG

<F128>-<F255D>G option, 460
GET command, 593
GET_COMPILER_OPTION, 509
GET_DUPLICATED_REGIONS procedure, 307
GET_STORAGE_LIMIT, 266, 308
GETCHUNKSIZE function, 307
GETLENGTH function, 308
GETOPTIONS function, 308
getter function, 332
getters, 483–485
global variables, 639
globally scoped variables, 639
GOTO command, 366
GOTO statement, 112, 113
grant options, 358
GRANT_PERMISSION, 510
grants, 336–337

826 Oracle Database 11g PL/SQL Programming

greater-than operator, 48
greater-than or equal comparison operator, 48
GREATEST function, 805–806
guard on entry loop, 106
guard on exit loop, 106

HH

HEXTORAW function, 67
hierarchical profiler. See PL/SQL hierarchical profiler
host variable indicator, 47
HTF, 551
HTP, 551

II

IANA, 295
identifiers, 51–52
IEEE 754-format datatype, 76–77
IF statements, 31–32
if statements, 98
if-then-else statements, 99–100
if-then-elsif-then-else statements, 101
img tag, 295
implicit conversions, 60
implicit cursors, 110, 113–116
IN mode parameter, 170, 518
IN operator, 94
IN OUT mode parameter, 169, 170
inclusion operator, 97
increment interval, 108
indentity comparison operator, 48
Inf, 76
infinite loop, 106, 112
inheritance, 495–500
INITCAP function, 780
initializing objects, 267
inlining, 17–18

subroutine calls, 201
inner joins, 620
INSERT statements, 127–128, 270, 276, 624–626
insertion anomalies, 624
instead of triggers, 42, 345, 370–373
INSTR function, 308, 780–781
INSTR2 function, 780
INSTR4 function, 780
INSTRB function, 780
INSTRC function, 780
INT, 77
INTEGER, 77
Internet Assigned Numbers Authority. See IANA
interpreted programming environment, 4
intersession communication, 418

comparing approaches, 419
permanent or semipermanent structures, 418–419

INTERVAL DATE TO SECOND, 71
INTERVAL DAY TO SECOND, 70
INTERVAL YEAR TO MONTH, 70, 71
intervals, 70–72
INTO clause, 38, 39, 167, 386
INVALID_CURSOR, 141
INVALID_NUMBER, 141
INVALID_USERENV_PARAMETER, 145
invoker rights, 10, 59, 195

vs. definer rights, 335–338
IS A SET operator, 95
IS EMPTY operator, 94
IS NULL operator, 94
IS_OPEN, 411–412
ISOPEN function, 300–301
ISSECUREFILE function, 304
ISTEMPORARY function, 311
item separator, 49
iterative structures, 33–36, 105–106

PHP, 643–644

JJ

Java, 689
access modifiers, 690
architecture, 507–510, 686–687
assignment operators, 692–693
class, 689
class files stored in the Oracle database, 702
class libraries, 512–513, 526–530
class names, 509
conditional and iterative structures, 693–695
configuring the Oracle Java environment, 687–689
default, 689
DO-WHILE loop, 695
execution control, 509
extending the database catalog, 721
extends clause, 689
interactive interface, 507
interfaces, 689
internal server Java functions, 513–518
internal server Java objects, 521–526
internal server Java procedures, 518–521
iterative statements, 694
Java archive (JAR) files, 690
language basics, 689–692
leveraging Java libraries, 712
libraries, 690
FOR loop, 695
method definitions, 695–696
and Microsoft Windows, 688
Object class, 689
packages, 690
primitive data types, 691
private, 689

Index 827

protected, 689
public, 689
reading and displaying images, 718–721
reserved word list, 691
resolvers, 510
resource storage, 509
security and permissions, 510
shared libraries, 465–469
switch statements, 694
threading, 510
try-catch blocks, 696–697
WHILE loop, 695

java (executable), 512, 687, 688
file dependency error, 719

Java Database Connectivity (JDBC), 510, 513, 686
architecture, 686–687
comparative syntax, 698
testing a client-side or thin-driver connection,

697–702
thick connection, 513
thin driver, 510–511

Java libraries, publishing, 506
Java Server Pages (JSPs), 550
Java Virtual Machines (JVMs), 323, 686

new features, 506–507
JAVA$OPTIONS, 509
javac (executable), 512, 687, 688
java.math.*, 697
java.policy, 686
java.security, 686
java.sql.*, 697
JDBC. See Java Database Connectivity (JDBC)
join behaviors, 619–624
JServlets, 686
just-in-time (JIT) compiler, 507
JVMs. See Java Virtual Machines (JVMs)

KK

KEY parameter, 450, 451, 454
keywords, 51

list, 770–773
script, 773–775

LL

large objects, 79–82, 266, 709–710
LAST method, 253, 260
LAST_ERROR_POSITION, 412
LAST_ROW_COUNT, 412
LAST_ROW_ID, 412
LAST_SQL_FUNCTION_CODE, 412
lazy compile, 339
LD_LIBRARY_PATH, 511, 702
LEAST function, 806–808

left operand, 30
LENGTH function, 79, 781
LENGTH2 function, 781
LENGTH4 function, 781
LENGTHB function, 781
LENGTHC function, 781
less-than operator, 48
less-than or equal comparision operator, 48
level of purity, 176
LFFLG parameter, 749
LIBRARY clause, 465
LIKE operator, 95, 744

REGEXP_LIKE function, 739
LIMIT, 84–85, 123, 125, 217
LIMIT method, 253, 260–261
list delimiter, 49
listener.ora, 449, 585, 586, 587
lists, 83
literal values, 52–54, 735
LOADBLOBFROMFILE procedure, 305
LOADCLOBFROMFILE procedure, 305
LOADFROMFILE procedure, 305
loadjava utility, 468, 514–515
LOBs. See large objects
local data, 171
locators, 267, 275
Log Writer (LGWR), 573, 574
LOGIN_DENIED, 141
LONG, 66–67

alternative migration strategy for, 793
LONG RAW, 66–67

alternative migration strategy for, 793
LONG_RAW, 801, 814
LONGNAME, 508
loop index, 106
loopback, 337
LOWER function, 782
LPAD function, 782
lsnrctl utility, 588
LTRIM function, 782–783

MM

MAP member function, 488–490
mapping Oracle types, 530–532
match_type_flag parameter, 737, 743
materialized views, 178
MAXPIPESIZE, 423
MEMBER OF operator, 95, 246, 248
metacharacters, 730, 732–734
Microsoft Windows

and Java, 688
services, 577

middle-tier thickdriver, 511
MIME content-type, 295

828 Oracle Database 11g PL/SQL Programming

mixed notation, 20, 173
MOD function, 816
mod_perl, 536
mod_plsql, 536, 540–541, 544–545
modularization, 476
modules, 476
modulo arithmetic, 816
morphing, 494
multiple branching statements, 92
multiple transaction scopes, 41–42
multiple-hierarchy object tree, 6
multiple-line comments, 54–55
multiple-row implicit cursors, 115–116
multiplication operator, 51
multiprocess connection pool, 21–23
MULTISET, 786
MULTISET EXCEPT operator, 246, 249
MULTISET INTERSECT operator, 246, 249
MULTISET UNION operator, 246, 249–250
multivalued columns, 218
mutating tables, 376–377

NN

NAME parameter, 470
named blocks, 9, 58
named notation, 20, 173
named-block functions, 9, 58, 174
named-block procedures, 10, 59, 194–195
NaN, 76
NANVL function, 808
National Character Large Objects. See NCLOBs
National Language Support (NLS), 797
native compilation, 23
NATIVE constant, 403
Native Dynamic SQL (NDS), 7, 19, 271, 277, 383

dynamic statements, 383–385
dynamic statements with an unknown number of

inputs, 391–393
dynamic statements with input and output

variables, 400–403
dynamic statements with input variables, 398–400
dynamic statements with inputs, 386–388
dynamic statements with inputs and outputs,

388–391
and wrapped code, 748, 750

NATURAL, 75
natural keys, 218
NATURALN, 75
NCHAR, 73–74
NCLOBs, 81–82, 266–274, 709
negation operator, 48
NESTED TABLE, 210, 211
nested tables, 83, 85–86, 225–238
newline, 737
NEXT method, 243

NEXT_ITEM_TYPE, 423
NEXT(n) method, 253, 261
NLS_COMP parameter, 238, 245
NLS_INITCAP function, 780
NLS_SORT parameter, 238, 245, 732
NLS_UPPER, 784
NO_DATA_FOUND, 138, 141, 254
NO_DATA_NEEDED, 141
NoClassDefFoundError, 513
NOCOPY hint, 58–59, 171
NOCOPY hints, 9
non-critical errors, 152, 158–160
non-equijoins, 619, 621
non-recursive programs, 190
NOOP function, 385
normalization, 217–218
not null constraints, 605
NOT operator, 96, 101
NOT_LOGGED_ON, 142
notation calls, mixed name and position, 19–21
not-equal comparison operator, 48
NULL, 53–54
NULLIF function, 809
NUMBER datatype, 77–78, 818
number datatypes, 13
number functions, 815

See also individual functions
NUMERIC, 77
numeric literals, 53
numeric overflow error, 75, 78
NVARCHAR2, 74
NVL function, 70, 72, 93, 94, 809

OO

object body, 477
implementing, 481–483
implementing collection object bodies, 500–504

object type collections, 500–504
object types, 60, 477
object-oriented (OO) programming, 476
object-oriented analysis and design (OOAD), 477
object-relational model, 6
objects

comparing, 487–494
declaring, 479–481
overview, 478–479

OCI_ATTR_CHARSET_FORM, 462
OCI_ATTR_CHARSET_ID, 462
OCI_IND_NOTNULL, 462
OCI_IND_NULL, 462
oerr utility, 795–796
ojdbc5.jar, 510
ojdbc6.jar, 510
ojvmjava utility, 507
OPEN clause, 187

Index 829

OPEN procedure, 284, 301–302
OPEN statement, 116, 121
OPEN_CURSOR, 412
opening expression, 49
opening guillemet, 49
opening multiple-line comment delimiter, 49
OR operator, 96
ORA_CLIENT_IP_ADDRESS, 350–351
ORA_DATABASE_NAME, 351
ORA_DES_ENCRYPTED_PASSWORD, 351
ORA_DICT_OBJ_NAME, 351
ORA_DICT_OBJ_NAME_LIST, 351–352
ORA_DICT_OBJ_OWNER, 352
ORA_DICT_OBJ_OWNER_LIST, 352
ORA_DICT_OBJ_TYPE, 352
ORA_GRANTEE, 352–353
ORA_INSTANCE_NUM, 353
ORA_IS_ALTER_COLUMN, 353–354
ORA_IS_DROP_COLUMN, 354
ORA_IS_SERVERERROR, 354–355
ORA_LOGIN_USER, 355
ORA_PARTITION_POS, 355
ORA_PRIVILEGE_LIST, 355–356
ORA_REVOKEE, 356
ORA_SERVER_ERROR, 356
ORA_SERVER_ERROR_DEPTH, 356
ORA_SERVER_ERROR_MSG, 356–357
ORA_SERVER_ERROR_NUM_PARAMS, 357
ORA_SERVER_ERROR_PARAM, 357
ORA_SQL_TXT, 357
ORA_SYSEVENT, 357
ORA_WITH_GRANT_OPTON, 358
ORA-00001, 141
ORA-00036, 367
ORA-00051, 142
ORA-00903, 387
ORA-00928, 399
ORA-00932, 222, 710
ORA-00947, 127, 128
ORA-01001, 141
ORA-01006, 399, 400
ORA-01008, 387
ORA-01012, 142
ORA-01017, 141
ORA-01403, 141, 801, 804
ORA-01410, 142
ORA-01422, 115, 142
ORA-01426, 75, 78
ORA-01476, 143
ORA-01722, 141
ORA-01725, 143
ORA-01756, 398
ORA-01776, 370
ORA-01779, 370
ORA-02003, 145
ORA-02331, 231

ORA-04062, 341
ORA-04082, 361
ORA-04095, 361
ORA-04098, 377
ORA-06500, 142
ORA-06501, 142
ORA-06502, 66, 67, 68, 143, 243, 399, 553, 803
ORA-06504, 142
ORA-06511, 141, 325
ORA-06512, 136
ORA-06519, 325
ORA-06522, 473
ORA-06530, 141
ORA-06531, 141, 214, 226
ORA-06532, 142, 185
ORA-06533, 142, 214, 226
ORA-06547, 391
ORA-06548, 141
ORA-06576, 318
ORA-06577, 170
ORA-06592, 141
ORA-12725, 733
ORA-12727, 735
ORA-14551, 168, 174, 189
ORA-17002, 511, 702
ORA-20000, 796
ORA-21000, 145
ORA-21560, 301, 802, 804, 805
ORA-22275, 301, 304, 801, 802, 804
ORA-22285, 301
ORA-22286, 301
ORA-22287, 301
ORA-22288, 301
ORA-22289, 300, 301, 309
ORA-22290, 301
ORA-22889, 305
ORA-22913, 220
ORA-22925, 301
ORA-22992, 338
ORA-23322, 423, 425, 429
ORA-29533, 509
ORA-29536, 516
ORA-29537, 527
ORA-29549, 528
ORA-30625, 142
ORA-43856, 308
ORA-43857, 306
ORA-44002, 385
ORA-44004, 384
Oracle Call Interface (OCI8), 124, 125, 447, 686–687

bind variables, 660–662
binding functions, 663–664
collections, 668–670
connections, 659–660
driver, 511
externally stored CFILE and BFILE types, 681

830 Oracle Database 11g PL/SQL Programming

large object descriptor function, 674
large objects, 674–681
libraries, 513
PL/SQL index-by tables, 662–668
SQL object type creation functions, 669
system reference cursors, 670–674

Oracle Database 10g, new features, 11–16
Oracle Database 11g

architecture, 572–577
instance architecture, 575
internal connection instances, 518
Listener architecture, 576
new features, 17–24
roles and privileges, 590
starting and stopping Microsoft Windows

operations, 582–585
starting and stopping Unix or Linux operations,

578–581
Oracle HTTP Server (OHS), 534

architecture, 536–537
configuring as a standalone, 539–543

Oracle JVM, 508
See also Java Virtual Machines (JVMs)

Oracle Listener, starting and stopping, 585–590
Oracle Process Management and Notification

(OPMN) utility, 543
Oracle server-side internal driver, 511
Oracle XML Database Server, 534

architecture, 537–539
oracle.jdbc.pool.*, 697
oracle.sql.*, 697
oraus.msg, 795
ORDER member function, 491–494
OTHERS, 28, 138, 143
OUT mode parameter, 169, 170
outer joins, 620
overloading, 318–319
overriding behavior, 495
OVERRIDING member function, 497
OWA_CACHE, 551
OWA_COOKIE, 552
OWA_CUSTOM, 552
OWA_IMAGE, 552
OWA_OPT_LOCK, 552
OWA_PATTERN, 552
OWA_SEC, 552
OWA_TEXT, 552
OWA_UTIL, 552

PP

PACK_MESSAGE, 424
PACK_MESSAGE_RAW, 424
PACK_MESSAGE_ROWID, 424
package-only scope, 315

packages, 40
architecture, 315–319
body, 328–334
checking dependencies, 339–340
components, 327, 332–334
finding, validating, and describing, 338–339
specification, 319–327
timestamp vs. signature validation methods,

340–341
types, 324–327, 331–332
variables, 322–324, 330–331

parallel arrays, 401
parallel collections, 123, 124
PARALLEL_ENABLE clause, 10, 59, 178–179
PARSE, 412–413
parsing, 132

differences between SQL and PL/SQL statements,
665–666

pass-by reference functions, 646
pass-by-reference functions, 166, 192–194
pass-by-reference procedures, 166, 200–206
pass-by-reference subroutines, 9, 58
pass-by-value functions, 166, 186–192, 645–646
pass-by-value procedures, 166, 195–200
pass-by-value subroutines, 9, 58
PATH, 511, 687
PDF files, 266, 275, 296
persistent objects, 478, 490
pfile.ora, 341
PGA, 87, 111, 116, 123
PHP

architecture, 632–633
assignment and operation assignment operators,

636–637
command-line scripting, 635
commenting code, 635–636
comparison operators, 641
configuring the Oracle and Apache environment,

682–684
defining, declaring, and naming variables,

636–640
defining and using conditional structures,

640–643
defining and using functions, 644–647
defining and using iterative structures, 643–644
defining and using objects, 648–652
defining scripting tags, 634–635
flexible parameter passing, 646–647
global variables, 639
globally scoped variables, 639
if statements, 641–642
importance of PHP 5, 633
object operators, 648–650
OCI8 bind variables, 660–662
OCI8 collections, 668–670
and OCI8 connections, 659–660

Oracle Call Interface (OCI8) (continued)

Index 831

OCI8 large objects, 674–681
OCI8 library externally stored CFILE and BFILE

types, 681
OCI8 PL/SQL index-by tables, 662–668
OCI8 system reference cursors, 670–674
and Oracle, 633
overview, 631
parsing differences between SQL and PL/SQL

statements, 665–666
pass-by reference functions, 646
pass-by-value functions, 645–646
predefined variables, 639, 640
reading, writing, and uploading files, 653–658
run-time errors and exceptions, 652–653
switch statements, 642–643
Zend Technologies, 631

PIPELINED clause, 10, 59, 176, 179–184
pipelined results, 183
PIPENAME, 423
pipes, 419
PLS_INTEGER, 75, 78–79, 110, 239
PLS-00049, 399
PLS-00103, 134, 135
PLS-00154, 496
PLS-00157, 322
PLS-00222, 239
PLS-00230, 170
PLS-00235, 518
PLS-00254, 388
PLS-00302, 50
PLS-00306, 94, 95, 239
PLS-00307, 318, 401, 480
PLS-00311, 479
PLS-00363, 170, 189, 321
PLS-00371, 328
PLS-00405, 786
PLS-00410, 496
PLS-00452, 177
PLS-00455, 327
PLS-00494, 123
PLS-00510, 78
PLS-00567, 216, 230
PLS-00630, 322
PLS-00639, 74
PLS-00653, 183
PLS-00658, 480
PLS-00671, 497
PLS-00708, 328
PLS-00999, 322
PLS-06592, 102
PL/Scope, 24, 766

activating, 766
configuring data collection, 766
identifiers collected, 768
viewing collected data, 766–767

PLSCOPE_SETTINGS parameter, 766, 767

plshprof command-line utility, 23, 763–764
PL/SQL

architecture, 6–7
as a Black Art, 5
block structure, 8–10, 26–29
conditional structures, 31–33
database triggers, 42–43
delimiters, 46–51
history, 4–5
iterative structures, 33–36
library wrapper, 462–465, 473–474
packages, 40
procedures, 38–40
stored functions, 37–38
transaction scope, 40–42
variables, assignments and operators, 29–30
versions, 4
web server architecture, 535–539
web-enabled procedures and PSPs, 550
web-enabled stored procedures, 550–559

PL/SQL calls, 19–20
PL/SQL compiler, optimization of, 13
PL/SQL hierarchical profiler, 23, 754

collecting profiler data, 756–758
configuring the schema, 754–756
defining tables, 760–762
plshprof command-line utility, 763–764
querying the analyzed data, 762–763
reading the raw output, 759–760
tables, 755

PL/SQL Server Pages (PSPs), 550, 559–568
PL/SQL tables, 210
PL/SQL Web Toolkit, 535
PLSQL_CCFLAGS, 278
plsql_code_type, 75
PLSQL_OPTIMIZE_LEVEL, 201
PNG images, 296
pointers, 87
polymorphing, 494
polymorphism, 494–500
portable character classes, 730, 731, 732
Portable Document Format. See PDF files
Portable Operating System Interface (POSIX), 736

REGEXP_INSTR function, 738
REGEXP_LIKE function, 739
REGEXP_SUBSTR function, 741

positional notation, 20, 173
POSITIVE, 75
POSITIVEN, 75
POSIX. See Portable Operating System Interface

(POSIX)
POWER function, 816–818
PRAGMA, 41, 144, 155, 176
PRAGMA INLINE, 201, 202
precision, 63, 77
precompiler instruction, 41, 176

832 Oracle Database 11g PL/SQL Programming

predefined errors, 136
in the STANDARD package, 141–143

pre-defined identifiers, 52
predefined variables, 639, 640
primary key constraints, 153, 605
primitives, 6, 60
PRIOR(n) method, 254, 261–262
PRIVATE, 423
privileges, 590
procedures, 38–40, 194–195
Process Global Area. See PGA
Process Monitor (PMON), 573, 574
PROGRAM parameter, 450, 452
PROGRAM_ERROR, 142
programs, 573
pseudo-binding, 660
publish-and-subscribe paradigm, 419
PURGE, 424

QQ

QUALIFIED_SQL_NAME function, 384, 385
queries, DQL, 618–624
query work areas, 87, 111, 116
quoted identifier delimiter, 50
quoted identifiers, 52
quoting, 14

See also backquoting

RR

RAISE statement, 139
RAISE_APPLICATION_ERROR function, 143, 146,

795, 796
range FOR LOOP statements, 110
range index, 110
READ procedure, 308–309
read-only parameters, 170
readSQL method, 524
read-write parameter, 170
REAL, 78
RECEIVE_MESSAGE, 424
records, 60, 82
recursive functions, 190–192
reference cursors, 34, 60
REGEXP_COUNT function, 736–737, 742–743
REGEXP_INSTR function, 737–739, 743–744, 781
REGEXP_LIKE function, 739–740, 744
REGEXP_REPLACE function, 363, 744–745
REGEXP_SUBSTR function, 740–741, 745–746
REGISTER, 437
regular expressions, 14, 269, 730

character classes, 730–732
collation classes, 732
enhancement, 24

implementing in Oracle 11g, 736–741
literal values, 735
metacharacters, 732–734
metasequences, 734–735
using, 741–746

RELIES_ON clause, 184, 185
REMAINDER function, 818–819
remote access indicator, 48
remote calls, 337–338
remote_dependencies_mode, 341
REMOVE, 437
REMOVE_PIPE, 424–425
REMOVEALL, 437
repeat until loop block, 105
repeat until loops, 106
REPLACE clause, 361
REPLACE function, 783
reserved words, 51

Java reserved word list, 691
list, 770–773
script, 773–775

RESET_BUFFER, 425
RESET_COMPILER_OPTION, 509
RESTORE_DEFAULTS(), 23
RESTRICT_REFERENCES, 176
result sets, 87
RESULT_CACHE clause, 10, 59, 184–186
RETURNING INTO clause, 386, 389, 390, 802
right operand, 30, 167
RNDS, 177
RNPS, 177
roles, 590
ROLLBACK statement, 40, 152
ROUND function, 818
row pointer, 111
row returns, mixing and matching, 627
ROWID, 67
ROWIDTOCHAR, 67
row-level triggers, 360, 362–365
ROWTYPE_MISMATCH, 142
RPAD function, 783–784
RTRIM function, 784
run-time errors and exceptions, 132, 136–140,

652–653

SS

SAVEPOINT statement, 40, 152
scalar collections, 123–124
scalar datatypes, 63–79
scalar variables, 57, 60

accessing, 702–709
scale, 63, 77
SCHEMA_NAME function, 385
schema-level programs, 322

Index 833

searched CASE statements, 103–104
SecureFiles, 280–282, 305, 308
SELECT INTO statement, 114
SELECT statements, 123, 125

clauses, 618–619
SELECT_CATALOG_ROLE, 798
selectors, 101, 102, 103
SELF, 464, 479
SELF_IS_NULL, 142
SEND_MESSAGE, 425
sequences, 612–615

direct sequence calls in SQL statements, 24
sequential control, 112
SERIALLY_REUSABLE_PRAGMA, 321, 323, 329
SERVER key, 22
SERVEROUTPUT variable, 27, 62
server-side includes, 536
server-tier thick driver, 511
Service Oriented Architecture (SOA), 539
session_max_open_files, 79
session-level variables, 47

See also bind variables
sessions, 418
SET clause, 128
SET operator, 246, 250–251
set operators, 14, 245–252, 610–612
SET_CLIENT_INFO, 369
SET_COMPILER_OPTION, 509
SET_DEFAULTS, 437–438
SETOPTIONS procedure, 305–306
setter procedure, 332
setters, 483–485
SGA, 579, 583
shared libraries, 447, 459–465

C, 459–465
Java, 465–469
troubleshooting, 470–474

<F128>-shared option, 460
short-circuit evaluation, 96
SHORTNAME, 508
shutdown abort

Microsoft Windows, 583
Unix or Linux, 580

shutdown immediate
Microsoft Windows, 583
Unix or Linux, 580

shutdown normal
Microsoft Windows, 583
Unix or Linux, 580

shutdown transactional
Microsoft Windows, 583
Unix or Linux, 580

sibling subtypes, 496
SID_LIST_LISTENER, 450
SID_NAME parameter, 450, 454

SIGNAL, 438
signature, 430
signature model, 340–341
simple CASE statements, 102–103
simple loop statements, 106–109
simple loops, 35–36
SIMPLE_INTEGER datatype, 24, 75
SIMPLE_SQL_NAME function, 385
single branching statements, 92
single comment operator, 49
single transaction scope, 41
single-dimension character array, 738
single-line comments, 54–55
single-precision, 76
single-row implicit cursors, 114–115
Singleton design pattern, 332
SMALLINT, 77
SPACE_ERROR_INFO, 358
sparsely populated lists, 83, 86–87
spfile.ora, 341
sprintf() function, 660
SQL

ANSI SQL standards, 601
datatypes, 601–604
overview, 600

SQL call notation, 21, 174
SQL injection attacks, 384, 385
SQL scope, 183
SQL*Plus interface, 590–592

bind variables, 597–598
command-line interface, 592–597
session-level variables, 591–592

SQL_OBJECT_NAME function, 385
SQLCODE function, 137, 139, 141, 144, 795
SQLData interface, 522, 524, 526
SQLERRM function, 137, 138, 146, 795–796
sqlnet.ora, 281, 585, 590
src element, 295
stack tracing errors, 14–16
standalone objects, 478
STANDARD package, 52, 136, 141, 145, 377
startup mount

Microsoft Windows, 584
Unix or Linux, 580–581

startup nomount
Microsoft Windows, 584
Unix or Linux, 580

startup open
Microsoft Windows, 584
Unix or Linux, 581

statement terminator, 51
statement-level triggers, 360, 361–362
static authentication, 546–547
static explicit cursors, 117–120
static member methods, 485–487

834 Oracle Database 11g PL/SQL Programming

STORAGE_ERROR, 142
stored functions, 37–38
stored programs, 612

See also black boxes
STRING, 68
string literals, 53
strings, 65
strongly typed reference cursors, 61, 88, 670
structures, 8, 56, 60, 82
subclasses, 494

declaring, 495–497
implementing, 497–500

subexpressions, 733
SUBMULTISET operator, 247, 251–252
SUBSCRIPT_BEYOND_COUNT, 142, 254
SUBSCRIPT_OUTSIDE_LIMIT, 142, 254
substitution indicator, 47
substitution variables, 27
SUBSTR function, 309
subtraction operator, 51
subtypes, 60
superclasses, 494
supertypes, 60
surrogate key, 218
synchronized collections, 124
synonyms, 336–337
SYS_CONTEXT function, 810–813
SYS_INVALID_ROWID, 67, 142
SYS_REFCURSOR, 187, 758
SYSDATE, 69
SYSDBA role, 579, 583
system event triggers, 43, 345, 374–375
System Global Area. See SGA
System Monitor (SMON), 573, 574
system reference cursors, 87–89, 187–190
system triggers, 377–378
SYSTIMESTAMP, 69, 72

TT

TABLE function, 786
table-level triggers, 360
tables, fabrication, 787
this, 479
thread of execution, 172
time literals, 54
TIMEOUT_ON_RESOURCE, 142
TIMESTAMP, 72–73
timestamp model, 340–341
timing points, 365
TNS-12541, 452, 456
tnsnames.ora, 22, 449, 585, 587–588
tnsping utility, 451–452, 455
TO_CHAR function, 788–790

TO_CLOB function, 790
TO_CURSOR_NUMBER, 413
TO_DATE function, 54, 70, 790–791
TO_LOB function, 791–792
TO_NCHAR function, 792
TO_NCLOB function, 792
TO_NUMBER function, 793–794
TO_REFCURSOR, 414
TO_TIMESTAMP function, 794
tokenizing, 421
TOO_MANY_ROWS, 142
transaction scope, 40–42, 172
transient objects, 478
transitive dependency, 218
Transparent Data Encryption (TDE), 280
TREAT function, 499
triggers. See database triggers
TRIM method, 254, 262–263
TRIM procedure, 306
TRUE, 53–54
TRUNC function, 70
TRUST, 176, 177
try-catch blocks, 696–697
type evolution, 500

UU

unary operators, 695
unconstrained subtypes, 60
UNDER keyword, 495
unicode characters and strings, 73–74
unique constraints, 153, 605
UNIQUE_SESSION_NAME, 426
Unix pipes, 419
unnamed blocks, 8, 55
UNPACK_MESSAGE, 426
UNPACK_MESSAGE_RAW, 426
UNPACK_MESSAGE_ROWID, 426
UPDATE OF clause, 361
UPDATE statements, 128, 270–271, 276–277, 390,

626–627
UPPER function, 784–785
UROWID, 67
USER_ARGUMENTS, 341
user-defined datatypes, 52
user-defined exceptions, 143

declaring, 144–145
dynamic, 145–146

user-defined subroutines, 52
user-defined types, 616–617
user-defined variables, 52
USERENV function, 813–814
USERENV_COMMITSCN_ERROR, 143
USING clause, 236, 386, 389, 391

Index 835

UTF16 character set, 780, 781
UTF8 character set, 81, 788
UTF8 encoding, 73, 74
UTL_FILE, 467

VV

V$CPOOL_CC_STATS, 22
V$CPOOL_STAT, 22
v$parameter view, 281
V$RESERVED_WORDS, 76
V$SESSION, 336, 369
V6 constant, 403
V7 constant, 403
VALUE_ERROR, 138, 143, 254
VALUES clause, 127
VARCHAR, 68
VARCHAR2, 68–69
VARCHAR2A datatype, 413, 749
VARCHAR2S datatype, 413, 749
variable scope, 89–90
VARIABLE_VALUE, 414
VARIABLE_VALUE_CHAR, 414
VARIABLE_VALUE_RAW, 414
VARIABLE_VALUE_ROWID, 415
variables, 60–63

anchoring, 60
VARRAY, 83–85, 180, 210, 215
varrays, 212–225
VARYING ARRAY, 215
virtual directories, 282–290
VSIZE function, 462, 814–815

WW

WAITONE, 438–439
WalletManager, 281

weakly typed reference cursors, 61, 88, 670
WHEN blocks, 28, 101, 102, 136, 143
WHEN clause, 360, 361, 366
WHERE clause, 128, 129
WHILE loop, 36, 108, 111–113, 644, 695
whitespace character, 737
who-audit columns, 353–354
WITH CONTEXT, 464
WNDS, 177
WNPS, 177
WPG_DOCLOAD, 552
WRAP function, 748, 749–751
wrap utility

limitations of, 748
using, 749

wrappers, 133
wrapping PL/SQL, 748–752

stored programs, 16
WRITE procedure, 306
WRITEAPPEND procedure, 269, 306
write-only parameters, 170
writeSQL method, 524

XX

XML DB Listener, 543
XML DB Server, configuring, 543–550
XML Developer Kit (XDK), 539
XML Repository, 539
XMLType tables, 539

ZZ

ZERO_DIVIDE, 143

FREE SUBSCRIPTION

YOU MUST ANSWER ALL TEN QUESTIONS BELOW.

100103

Yes, please send me a FREE subscription to Oracle Magazine. NO
To receive a free subscription to Oracle Magazine, you must fill out the entire card, sign it, and date it
(incomplete cards cannot be processed or acknowledged). You can also fax your application to +1.847.763.9638.
Or subscribe at our Web site at otn.oracle.com/oraclemagazine

n a m e t i t l e

c o m p a n y e - m a i l a d d r e s s

s t r e e t / p . o . b o x

c i t y / s t a t e / z i p o r p o s t a l c o d e t e l e p h o n e

c o u n t r y f a x

s i g n a t u r e (r e q u i r e d) d a t e

x

From time to time, Oracle Publishing allows
our partners exclusive access to our e-mail
addresses for special promotions and
announcements. To be included in this pro-
gram, please check this circle.

Oracle Publishing allows sharing of our
mailing list with selected third parties. If you
prefer your mailing address not to be
included in this program, please check here.
If at any time you would like to be removed
from this mailing list, please contact
Customer Service at +1.847.647.9630 or send
an e-mail to oracle@halldata.com.

W H A T I S T H E P R I M A R Y B U S I N E S S
A C T I V I T Y O F Y O U R F I R M A T T H I S
L O C A T I O N ? (check one only)
▫ 01 Aerospace and Defense Manufacturing
▫ 02 Application Service Provider
▫ 03 Automotive Manufacturing
▫ 04 Chemicals, Oil and Gas
▫ 05 Communications and Media
▫ 06 Construction/Engineering
▫ 07 Consumer Sector/Consumer Packaged Goods
▫ 08 Education
▫ 09 Financial Services/Insurance
▫ 10 Government (civil)
▫ 11 Government (military)
▫ 12 Healthcare
▫ 13 High Technology Manufacturing, OEM
▫ 14 Integrated Software Vendor
▫ 15 Life Sciences (Biotech, Pharmaceuticals)
▫ 16 Mining
▫ 17 Retail/Wholesale/Distribution
▫ 18 Systems Integrator, VAR/VAD
▫ 19 Telecommunications
▫ 20 Travel and Transportation
▫ 21 Utilities (electric, gas, sanitation, water)
▫ 98 Other Business and Services

W H I C H O F T H E F O L L O W I N G B E S T
D E S C R I B E S Y O U R P R I M A R Y J O B
F U N C T I O N ? (check one only)
C o r p o r a t e M a n a g e m e n t / S t a f f
▫ 01 Executive Management (President, Chair,

CEO, CFO, Owner, Partner, Principal)
▫ 02 Finance/Administrative Management

(VP/Director/ Manager/Controller,
Purchasing, Administration)

▫ 03 Sales/Marketing Management
(VP/Director/Manager)

▫ 04 Computer Systems/Operations Management
(CIO/VP/Director/ Manager MIS, Operations)

I S / I T S t a f f
▫ 05 Systems Development/

Programming Management
▫ 06 Systems Development/ Programming Staff
▫ 07 Consulting
▫ 08 DBA/Systems Administrator
▫ 09 Education/Training
▫ 10 Technical Support Director/Manager
▫ 11 Other Technical Management/Staff
▫ 98 Other

W H A T I S Y O U R C U R R E N T P R I M A R Y
O P E R A T I N G P L A T F O R M ? (select all that apply)
▫ 01 Digital Equipment UNIX
▫ 02 Digital Equipment VAX VMS
▫ 03 HP UNIX

▫ 04 IBM AIX
▫ 05 IBM UNIX
▫ 06 Java
▫ 07 Linux
▫ 08 Macintosh
▫ 09 MS-DOS
▫ 10 MVS
▫ 11 NetWare
▫ 12 Network Computing
▫ 13 OpenVMS
▫ 14 SCO UNIX
▫ 15 Sequent DYNIX/ptx
▫ 16 Sun Solaris/SunOS
▫ 17 SVR4
▫ 18 UnixWare
▫ 19 Windows
▫ 20 Windows NT
▫ 21 Other UNIX
▫ 98 Other
99 ▫ None of the above

D O Y O U E V A L U A T E , S P E C I F Y ,
R E C O M M E N D , O R A U T H O R I Z E T H E
P U R C H A S E O F A N Y O F T H E F O L L O W I N G ?
(check all that apply)
▫ 01 Hardware
▫ 02 Software
▫ 03 Application Development Tools
▫ 04 Database Products
▫ 05 Internet or Intranet Products
99 ▫ None of the above

I N Y O U R J O B , D O Y O U U S E O R P L A N T O
P U R C H A S E A N Y O F T H E F O L L O W I N G
P R O D U C T S ? (check all that apply)
S o f t w a r e
▫ 01 Business Graphics
▫ 02 CAD/CAE/CAM
▫ 03 CASE
▫ 04 Communications
▫ 05 Database Management
▫ 06 File Management
▫ 07 Finance
▫ 08 Java
▫ 09 Materials Resource Planning
▫ 10 Multimedia Authoring
▫ 11 Networking
▫ 12 Office Automation
▫ 13 Order Entry/Inventory Control
▫ 14 Programming
▫ 15 Project Management
▫ 16 Scientific and Engineering
▫ 17 Spreadsheets
▫ 18 Systems Management
▫ 19 Workflow

H a r d w a r e
▫ 20 Macintosh
▫ 21 Mainframe
▫ 22 Massively Parallel Processing
▫ 23 Minicomputer
▫ 24 PC
▫ 25 Network Computer
▫ 26 Symmetric Multiprocessing
▫ 27 Workstation
P e r i p h e r a l s
▫ 28 Bridges/Routers/Hubs/Gateways
▫ 29 CD-ROM Drives
▫ 30 Disk Drives/Subsystems
▫ 31 Modems
▫ 32 Tape Drives/Subsystems
▫ 33 Video Boards/Multimedia
S e r v i c e s
▫ 34 Application Service Provider
▫ 35 Consulting
▫ 36 Education/Training
▫ 37 Maintenance
▫ 38 Online Database Services
▫ 39 Support
▫ 40 Technology-Based Training
▫ 98 Other
99 ▫ None of the above

W H A T O R A C L E P R O D U C T S A R E I N U S E
A T Y O U R S I T E ? (check all that apply)
O r a c l e E - B u s i n e s s S u i t e
▫ 01 Oracle Marketing
▫ 02 Oracle Sales
▫ 03 Oracle Order Fulfillment
▫ 04 Oracle Supply Chain Management
▫ 05 Oracle Procurement
▫ 06 Oracle Manufacturing
▫ 07 Oracle Maintenance Management
▫ 08 Oracle Service
▫ 09 Oracle Contracts
▫ 10 Oracle Projects
▫ 11 Oracle Financials
▫ 12 Oracle Human Resources
▫ 13 Oracle Interaction Center
▫ 14 Oracle Communications/Utilities (modules)
▫ 15 Oracle Public Sector/University (modules)
▫ 16 Oracle Financial Services (modules)
S e r v e r / S o f t w a r e
▫ 17 Oracle9i
▫ 18 Oracle9i Lite
▫ 19 Oracle8i
▫ 20 Other Oracle database
▫ 21 Oracle9i Application Server
▫ 22 Oracle9i Application Server Wireless
▫ 23 Oracle Small Business Suite

T o o l s
▫ 24 Oracle Developer Suite
▫ 25 Oracle Discoverer
▫ 26 Oracle JDeveloper
▫ 27 Oracle Migration Workbench
▫ 28 Oracle9i AS Portal
▫ 29 Oracle Warehouse Builder
O r a c l e S e r v i c e s
▫ 30 Oracle Outsourcing
▫ 31 Oracle Consulting
▫ 32 Oracle Education
▫ 33 Oracle Support
▫ 98 Other
99 ▫ None of the above

W H A T O T H E R D A T A B A S E P R O D U C T S A R E
I N U S E A T Y O U R S I T E ? (check all that apply)
▫ 01 Access ▫ 08 Microsoft Access
▫ 02 Baan ▫ 09 Microsoft SQL Server
▫ 03 dbase ▫ 10 PeopleSoft
▫ 04 Gupta ▫ 11 Progress
▫ 05 IBM DB2 ▫ 12 SAP
▫ 06 Informix ▫ 13 Sybase
▫ 07 Ingres ▫ 14 VSAM
▫ 98 Other
99 ▫ None of the above

W H A T O T H E R A P P L I C A T I O N S E R V E R
P R O D U C T S A R E I N U S E A T Y O U R S I T E ?
(check all that apply)
▫ 01 BEA
▫ 02 IBM
▫ 03 Sybase
▫ 04 Sun
▫ 05 Other

D U R I N G T H E N E X T 1 2 M O N T H S , H O W
M U C H D O Y O U A N T I C I P A T E Y O U R
O R G A N I Z A T I O N W I L L S P E N D O N
C O M P U T E R H A R D W A R E , S O F T W A R E ,
P E R I P H E R A L S , A N D S E R V I C E S
F O R Y O U R L O C A T I O N ? (check only one)
▫ 01 Less than $10,000
▫ 02 $10,000 to $49,999
▫ 03 $50,000 to $99,999
▫ 04 $100,000 to $499,999
▫ 05 $500,000 to $999,999
▫ 06 $1,000,000 and over

W H A T I S Y O U R C O M P A N Y ’ S Y E A R L Y
S A L E S R E V E N U E ? (please choose one)
▫ 01 $500, 000, 000 and above
▫ 02 $100, 000, 000 to $500, 000, 000
▫ 03 $50, 000, 000 to $100, 000, 000
▫ 04 $5, 000, 000 to $50, 000, 000
▫ 05 $1, 000, 000 to $5, 000, 000

1

2

3

4

8

9

10

6

5

7

	Contents
	Introduction
	Oracle PL/SQL Overview
	Basic Block Structure

	Chapter 2 PL/SQL Basics

	Copyright © 2008 by The McGraw-Hill Companies, Inc:
	 Click here for terms of use:

	Acknowledgments:
	Introduction:
	Part I: PL/SQL Fundamentals:
	1 Oracle PL/SQL Overview:
	Architecture:
	Basic Block Structures:
	Oracle 10g New Features:
	Oracle 11g New Features:
	2 PL/SQL Basics:
	Oracle PL/SQL Block Structure:
	Variables, Assignments, and Operators:
	Control Structures:
	Stored Functions, Procedures, and Packages:
	Database Triggers:
	Summary:
	3 Language Fundamentals:
	Character and Lexical Units:
	Block Structures:
	Variable Types:
	Variable Scope:
	4 Control Structures:
	Conditional Statements:
	Iterative Statements:
	Cursor Structures:
	Bulk Statements:
	5 Error Management:
	Exception Types and Scope:
	Exception Management Built-in Functions:
	User-Defined Exceptions:
	Exception Stack Functions:
	Database Trigger Exception Management:
	Part II: PL/SQL Programming:
	6 Functions and Procedures:
	Function and Procedure Architecture:
	Transaction Scope:
	Calling Subroutines:
	Functions:
	Procedures:
	7 Collections:
	Collection Types:
	Collection Set Operators:
	Collection API:
	8 Large Objects:
	Character Large Objects: CLOB and NCLOB Datatypes:
	Binary Large Objects: BLOB Datatype:
	SecureFiles:
	Binary Files: BFILE Datatype:
	DBMS_LOB Package:
	9 Packages:
	Package Architecture:
	Package Specification:
	Package Body:
	Definer vs:
	 Invoker Rights:

	Managing Packages in the Database Catalog:
	10 Triggers:
	Introduction to Triggers:
	Database Trigger Architecture:
	Data Definition Language Triggers:
	Data Manipulation Language Triggers:
	Compound Triggers:
	Instead-of Triggers:
	System or Database Event Triggers:
	Trigger Restrictions:
	Part III: PL/SQL Advanced Programming:
	11 Dynamic SQL:
	Dynamic SQL Architecture:
	Native Dynamic SQL (NDS):
	DBMS_SQL Package:
	12 Intersession Communication:
	Introducing Intersession Communication:
	The DBMS_PIPE Built-in Package:
	DBMS_ALERT Built-in Package:
	13 External Procedures:
	Introducing External Procedures:
	Working with External Procedures:
	Troubleshooting the Shared Library:
	14 Object Types:
	Objects Basics:
	Inheritance and Polymorphism:
	Implementing Collection Object Bodies:
	15 Java Libraries:
	Oracle 11g JVM New Features:
	Java Architecture:
	Oracle Java Connection Types:
	Building Java Class Libraries in Oracle:
	Mapping Oracle Types:
	16 Web Application Development:
	PL/SQL Web Server Architecture:
	Configuring the Standalone Oracle HTTP Server:
	Configuring the XML DB Server:
	Comparing Web-Enabled PL/SQL Procedures and PSPs:
	Creating Web-Enabled PL/SQL Stored Procedures:
	Building and Accessing PL/SQL Server Pages (PSPs):
	Part IV: Appendixes:
	A: Oracle Database Administration Primer:
	Oracle Database Architecture:
	Starting and Stopping the Oracle Database:
	Starting and Stopping the Oracle Listener:
	Oracle Roles and Privileges:
	Accessing and Using the SQL*Plus Interface:
	B: Oracle Database SQL Primer:
	Oracle SQL*Plus Datatypes:
	Data Definition Language (DDL):
	Data Query Language (DQL):
	Data Manipulation Language (DML):
	Data Control Language (DCL):
	C: PHP Primer:
	History and Background:
	Developing Web Programming Solutions:
	D: Oracle Database Java Primer:
	Java and JDBC Architecture:
	Configuring the Oracle Java Environment:
	Java Programming Language Primer:
	Testing a Client-Side or Thin-Driver JDBC Connection:
	Accessing Scalar Variables:
	Writing and Accessing Large Objects:
	E: Regular Expression Primer:
	Introduction to Regular Expressions:
	Oracle 11g Regular Expression Implementation:
	Using Regular Expressions:
	F: Wrapping PL/SQL Code Primer:
	Limitations of Wrapping PL/SQL:
	Using the Wrap Command-Line Utility:
	Using the DBMS_DDL Command-Line Utility:
	G: PL/SQL Hierarchical Profiler Primer:
	Configuring the Schema:
	Collecting Profiler Data:
	Understanding Profiler Data:
	Using the plshprof Command-Line Utility:
	H: PL/Scope:
	Configuring PL/Scope Data Collection:
	Viewing PL/Scope Collected Data:
	I: PL/SQL Reserved Words and Keywords:
	J: PL/SQL Built-in Functions:
	Character Functions:
	Datatype Conversion:
	Error Reporting:
	Miscellaneous:
	Number:
	Index:

