
Frank Ableson
Charlie Collins
Robi Sen
FOREWORD BY DICK WALL

M A N N I N G

Unlocking

Unlocking Android

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Unlocking Android
A DEVELOPER’S GUIDE

W. FRANK ABLESON
CHARLIE COLLINS

ROBI SEN

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

 To Nikki
 —W.F.A.

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor Tom Cirtin
Manning Publications Co. Copyeditor: Linda Recktenwald
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-933988-67-2
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com

brief contents
PART 1 WHAT IS ANDROID? — THE BIG PICTURE.............................. 1

1 ■ Targeting Android 3

2 ■ Development environment 32

PART 2 EXERCISING THE ANDROID SDK ... 57

3 ■ User interfaces 59

4 ■ Intents and services 97

5 ■ Storing and retrieving data 126

6 ■ Networking and web services 167

7 ■ Telephony 195

8 ■ Notifications and alarms 211

9 ■ Graphics and animation 226

10 ■ Multimedia 251

11 ■ Location, location, location 266

PART 3 ANDROID APPLICATIONS... 293

12 ■ Putting it all together–the Field Service Application 295

13 ■ Hacking Android 341
v

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xx
about the cover illustration xxiv

PART 1 WHAT IS ANDROID? — THE BIG PICTURE 1

1 Targeting Android 3
1.1 Introducing Android 4

The Android platform 4 ■ In the market for an Android? 6
Licensing Android 10

1.2 Stacking up Android 11
Probing Android’s foundation 12

1.3 Booting Android development 14
Android’s good Intent-ions 14 ■ Activating Android 18
AndroidManifest.xml 25 ■ Mapping applications to processes 26

1.4 An Android application 27
1.5 Summary 30
vii

Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTSviii
2 Development environment 32
2.1 The Android SDK 33

The application programming interface 33 ■ Core Android packages 33
Optional packages 34

2.2 Fitting the pieces together 35
Java Perspective 36 ■ DDMS Perspective 38 ■ Command-Line tools 40

2.3 Building an Android application in Eclipse 42
Android Project Wizard 43 ■ Android sample application code 43
Building the application 48

2.4 The Android Emulator 50
Skins 50 ■ Network speed 51 ■ Emulator profiles 53

2.5 Debugging 55
2.6 Summary 56

PART 2 EXERCISING THE ANDROID SDK...........................57

3 User interfaces 59
3.1 Creating the Activity 60

Creating an Activity class 62 ■ Exploring Activity lifecycle 67

3.2 Working with views 70
Exploring common views 71 ■ Using a ListView 73 ■ Multitasking
with Handler and Message 77 ■ Creating custom views 78
Understanding layout 80 ■ Handling focus 82 ■ Grasping events 83

3.3 Using resources 84
Supported resource types 85 ■ Referencing resources in Java 85
Defining views and layouts through XML resources 87
Externalizing values 89 ■ Providing animations 92

3.4 Understanding the AndroidManifest file 93
3.5 Summary 95

4 Intents and services 97
4.1 Working with Intent classes 98

Defining intents 99 ■ Intent resolution 102 ■ Matching a custom
URI 105 ■ Using Android-provided activities 109

4.2 Listening in with broadcast receivers 110
Overloading the Intent concept 110 ■ Creating a receiver 112
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTS ix
4.3 Building a Service 113
Dual-purpose nature of a Service 113 ■ Creating a background
task Service 114

4.4 Performing Inter-Process Communication 117
Android Interface Definition Language 117 ■ Exposing a
remote interface 120 ■ Binding to a Service 120 ■ Starting
versus binding 122 ■ Service lifecycle 123 ■ Binder and
Parcelable 124

4.5 Summary 125

5 Storing and retrieving data 126
5.1 Using preferences 127

Working with SharedPreferences 127 ■ Preference access
permissions 130

5.2 Using the filesystem 134
Creating files 134 ■ Accessing files 135 ■ Files as raw
resources 136 ■ XML file resources 137 ■ External storage via
an SD card 139

5.3 Persisting data to a database 143
Building and accessing a database 143 ■ Using the sqlite3 tool 148

5.4 Working with ContentProvider classes 149
Understanding URI representations and manipulating records 151
Creating a ContentProvider 158

5.5 Summary 165

6 Networking and web services 167
6.1 An overview of networking 169

Networking basics 169 ■ Clients and servers 171

6.2 Checking the network status 172
6.3 Communicating with a server socket 173
6.4 Working with HTTP 176

Simple HTTP and java.net 177 ■ Robust HTTP with HttpClient 179
Creating an HTTP and HTTPS helper 181

6.5 Web services 186
POX—Putting it together with HTTP and XML 187 ■ REST 189
To SOAP or not to SOAP, that is the question 193

6.6 Summary 194
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTSx
7 Telephony 195
7.1 Telephony background and terms 197

7.2 Accessing telephony information 198
Retrieving telephony properties 198 ■ Obtaining phone state
information 200

7.3 Interacting with the phone 202
Using intents to make calls 202 ■ Helpful phone number–related
utilities 204 ■ Intercepting calls 205

7.4 Working with messaging: SMS 206
Sending SMS messages 207 ■ Receiving SMS messages 209

7.5 Summary 210

8 Notifications and alarms 211
8.1 Introducing Toast 212

8.2 Introducing notifications 215

8.3 Alarms 219
Alarm example 219

8.4 Summary 225

9 Graphics and animation 226
9.1 Drawing graphics in Android 226

Drawing with XML 228

9.2 Animations 231
Programmatically creating an animation 233 ■ Introducing
OpenGL for embedded systems 237

9.3 Summary 250

10 Multimedia 251
10.1 Introduction to multimedia and OpenCORE 252

10.2 Playing audio 253

10.3 Playing video 254

10.4 Capturing media 257
Understanding the camera 257 ■ Capturing audio 262

10.5 Summary 265
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTS xi
11 Location, location, location 266
11.1 Simulating your location within the emulator 268

Sending in your coordinates with the DDMS tool 268 ■ The GPS
Exchange Format 270 ■ The Google Earth Keyhole Markup
Language 273

11.2 Using LocationManager and LocationProvider 274
Accessing location data with LocationManager 275 ■ Using a
LocationProvider 277 ■ Receiving location updates with
LocationListener 279

11.3 Working with maps 281
Extending MapActivity 282 ■ Using a MapView 283 ■ Placing
data on a map with an Overlay 285

11.4 Converting places and addresses with Geocoder 289
11.5 Summary 291

PART 3 ANDROID APPLICATIONS 293

12 Putting it all together–the Field Service Application 295
12.1 Field Service Application requirements 296

Basic requirements 297 ■ Data model 298 ■ Application
architecture and integration 299

12.2 Android application tour 300
Application flow 300 ■ Code road map 302
AndroidManifest.xml 303

12.3 Android code 304
Splash Activity 304 ■ FieldService Activity, part 1 306 ■ FieldService
Activity, part 2 308 ■ Settings 309 ■ Data structures 311

12.4 Digging deeper into the code 319
RefreshJobs 319 ■ ManageJobs 323 ■ ShowJob 325 ■ CloseJob 329

12.5 Server code 336
Dispatcher user interface 336 ■ Database 337 ■ PHP dispatcher
code 337 ■ PHP mobile integration code 338

12.6 Summary 339
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTSxii
13 Hacking Android 341
13.1 The Android/Linux:junction 342

Tool chain 342 ■ Building an application 343 ■ Installing and
running the application 344 ■ Build script 346

13.2 A better way 347
The static flag, revisited 347 ■ Linking 349 ■ Exit, not return 351
Startup code 352

13.3 What time is it? 355
Daytime Server application 355 ■ daytime.c 355 ■ The SQLite
database 358 ■ Building and running Daytime Server 360

13.4 Daytime Client 362
Activity 362 ■ Socket client 363 ■ Testing Daytime Client 364

13.5 Summary 365

appendix A Installing the Android SDK 367
appendix B Signing and installing applications on an Android device 375

index 383

Licensed to Deborah Christiansen <pedbro@gmail.com>

foreword
The mobile phone and portable device handset are currently undergoing a transfor-
mation caused by several different factors. For one, portable devices are getting more
powerful and capable of performing tasks that would have been hard to imagine a few
short years ago. Many of us carry a portable device that is capable of everything from
using the World Wide Web to watching movies to playing 3D games--and it can even
make phone calls! For another, consumers are becoming more savvy and demanding
about what they want such a device to do. A third part of the convergence is that por-
table devices now form a bigger market for software and applications developers than
larger computing platforms, and delivery of applications to those devices is often eas-
ier and more streamlined than to larger ones.

 The next generation of phones already includes hardware graphics acceleration,
wireless connectivity, data access plans, GPS, hardware expansion and connectivity,
touch screens, and so on. Operating systems and applications are being written to take
advantage of these new capabilities and the delivery of these applications is undergo-
ing a quiet revolution by putting consumers in control of what their device will do,
and connecting developers and consumers with a minimum of fuss and overhead.
Consumers get the software they want, and developers get access to a potentially enor-
mous market for their products.

 Underlying this transformation is a trend toward more openness. Openness in the
capabilities of the devices and how they can be harnessed, openness for the applica-
tions that can be developed and brought to market, openness in the collaboration
among handset manufacturers, network carriers and software providers. Granted,
xiii

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/UnlockingAndroid
http://www.manning.com/UnlockingAndroid
http://www.manning.com/ableson
http://www.manning.com/ableson

FOREWORDxiv
there is still room for improvement, but I believe no next-generation mobile platform
embodies this spirit of openness more than Android.

 Android is an operating system born of an alliance of 30 organizations from across
the mobile devices industry—hardware manufacturers, carriers, and software compa-
nies—committed to bringing a better mobile phone to market. The result is an oper-
ating system and application development environment capable of running on
multiple devices, providing a consistent and feature rich environment for developers.
The larger Android ecosystem will eventually include multiple handsets, myriad appli-
cations and components to harness or build on, and multiple distribution channels
(including the already available Android marketplace).

 Writing applications for Android is in some ways akin to enterprise- or container-
based development. Instead of a view of the world where your application runs and at
some point quits, Android provides a way for your application to integrate itself into
the larger Android environment. This environment is based on Java tools and skills,
shortening the learning curve and bringing the ease and security of development in a
managed language. Android lets you run services in the background, and provides
components and data services that can share or be shared with other applications.

 In short, Android is a great environment for application developers and this
book will help you take full advantage of it. The authors skillfully guide you—from
the development tools, through the architecture, basic and advanced APIs—and on
to advanced topics like native application development. Unlocking Android is a valu-
able and useful guide to developing your own applications for this new and exciting
open platform.

 DICK WALL, SOFTWARE ENGINEER,
 FORMER ANDROID ADVOCATE FOR GOOGLE,

 AND JAVA POSSE CO-HOST
Licensed to Deborah Christiansen <pedbro@gmail.com>

preface
The first mobile applications I had the opportunity to work with were inventory con-
trol programs used in retail and manufacturing settings. The “terminals,” as we called
them at the time, were heavy and expensive. They had big antennas, lots of clunky
keys, grayscale LCD displays, and they looked like they came straight from the set of a
science fiction movie.

 From that austere beginning, my mobile horizons expanded when the Palm
Pilot™ became the craze in the mid to late 1990s. My first significant PalmOS™ proj-
ect was to develop an IrDA™ communications library for an application which printed
Calendars, Contacts, and Task-lists. Back then the “hip” printers had an IrDA™ port
and it was cool to “beam” your business card to someone. Ironically, I always enjoyed
designing and writing the software more than using the devices themselves.

 Fast forward ten years, and I have had the privilege of working on some very chal-
lenging and engaging mobile software projects for numerous clients along the way.
Much of my career to date can be traced back to relationships stemming from my
early mobile development experiences—and what a blessing it has been for me. I just
love the question, “would it be possible to…?” And more often than not, the answer
has been “Yes!” What I particularly enjoy is helping change the way a business operates
or the way problems are solved through the application of mobile software. Mobile
technology can and will continue to change the way we live, work and play…and this
brings me to Android and this book.

 In the fall of 2007 I was speaking with my friend Troy Mott, who happens to also be
an editor for Manning, the publisher of this book. Troy and I were discussing the
xv

Licensed to Deborah Christiansen <pedbro@gmail.com>

PREFACExvi
mobile marketplace, something we have done for years. We started kicking around
the idea of writing a book on Android. The challenge was that Android didn’t really
exist. Yet. We knew from some of the preliminary information that the platform prom-
ised to be open, capable, and popular. We felt that those ingredients could make for
an interesting and valuable topic, so we began thinking about what that book might
look like, taking it on faith that the platform would actually come to fruition.

 Before long we convinced ourselves (and Manning) that this was a good idea and
the work began in early 2008. Beyond the usual challenges of putting a book together,
we had the additional obstacle that our subject matter has been in a steady, though
unpredictable, state of change over the past year. In essence we’ve written this book
two times because the SDK has been changed multiple times and Android-equipped
phones have become available, accelerating the interest and demand for the plat-
form. Every time a significant change occurred, we went back and revisited portions of
the book, sometimes rewriting entire chapters to accommodate the latest develop-
ments in the Android platform.

 I say “we” because in the process of writing this book, Troy and I decided to share
the fun and brought in two experienced authors to contribute their expertise and
enthusiasm for this platform. It has been a pleasure getting to know and working with
both Charlie Collins and Robi Sen.

 While I focused on the first and third parts of the book, Charlie and Robi wrote
part 2 which covers the important fundamentals of writing Android applications.
Thanks to their contributions I enjoyed the freedom to express my vision of what
Android means to the mobile space in the first part of the book and then to work on a
couple of more advanced applications at the end of the book.

 We hope that you enjoy reading this book and that it proves to be a valuable resource
for years to come as together we contribute to the future of the Android platform.

 FRANK ABLESON
Licensed to Deborah Christiansen <pedbro@gmail.com>

acknowledgments
Naïvely, we thought this book would be completed a year ago. Boy, did we learn a
thing or two about what it takes to write a technical book! There were some tense
times during the writing of this book, particularly during the conference calls when
we were trying to decide how to navigate the numerous SDK updates and indefinite
timelines of Android releases. Thankfully those decisions were made, and made well,
by the team at Manning.

 In particular we’d like to acknowledge and thank those at Manning who helped
bring this book about. First, Troy Mott, our acquisitions editor, who was there from
the beginning, from the “what if” stages, through helping push us over the goal line;
Tom Cirtin, our book editor, who provided input on structure and content; Karen
Tegtmeyer, who did all the big and little things to bring the project together; and Mar-
jan Bace, our publisher, whose influence is felt in many places in the book. Marjan
always wanted to hear what reviewers didn’t like in the book—so we could make it bet-
ter and satisfy our readers. It wasn’t easy, but together, we got it done.

 Once the book was “done,” the next round of work began and special thanks need
to go to three individuals: Linda Recktenwald, our copyeditor who made our content
readable in cases where it went either “too geek” or where the geek in us tried to be
“too literary;” Elizabeth Martin, our proofreader who added the common sense to the
project as well as a terrific sense of humor and encouraging attitude; and Jesse Dailey,
our technical proofreader who jumped in and validated our technical work, balanced
out the xml indentations, and made the text more readable. Of course there were
many more folks behind the scenes at Manning who did the heavy lifting to bring this
book to print, and we are indebted to each and every one of them.
xvii

Licensed to Deborah Christiansen <pedbro@gmail.com>

ACKNOWLEDGMENTSxviii
 Thanks also to Dick Wall, who played the dual role of reviewing our work and writ-
ing the foreword. And special thanks to the other reviewers who took time out of their
busy schedules to read our manuscript at different times during its development:
Bruno Lowagie, Hannu Terävä, Maxim Yudin, Dierk König, Michael Martin, Charles
Hudson, Gabor Paller, Scott Webster, Aleksey Nudelman, Horaci Macias, Andrew
Oswald, Kevin P. Galligan, Chris Gray, and Tyson S. Maxwell.

 Lastly, we want to thank the thoughtful and encouraging MEAP subscribers who
provided feedback along the way; the book is better thanks to their contributions.

FRANK ABLESON

I would like to thank Charlie Collins, Robi Sen, and Troy Mott for their contributions,
collaboration, and endurance on this project! And to my wife Nikki and children,
Julia, Tristan, Natalie, Aidan and Liam—it’s done! In particular, I want to thank my
son Tristan who was a steady source of encouragement throughout this process,
enthusiastically asking how it was going and spurring me toward the finish. Lastly, I
would like to thank Barry Quiner and Michael Petrin for their consistent encourage-
ment and friendship.

CHARLIE COLLINS

To begin, I would like to thank my coauthors, Frank Ableson and Robi Sen, who
worked diligently on this project from the start, and who welcomed me into the fold.
It’s finally a book, guys; thanks, and congratulations. Additionally, I would like to reit-
erate my gratitude to everyone at Manning.

 I would also like to thank the Open Handset Alliance, and the entire Android
team. Having an open, yet concise and focused, mobile platform such as Android is a
huge plus for the technological world, and for users. It’s not perfect, yet, but it’s a
long race and the approach and collaboration can’t be underestimated. Along the
same lines I would like to thank all of the other contributors to the open tools I used
to work on this project, including: Ubuntu Linux, OpenOffice, Eclipse, Subversion,
GIMP, and Java.

 I also want to thank my friends and family, who once again put up with my taking
huge amounts of time away from our shared activities to work on a “tech” book. Many
of the people I care about the most will probably read this book up to about, well,
here—if they ever pick it up at all. If you are one of those people, thanks. Specifically,
my wife Erin, and my daughters Skylar and Delaney, were always supportive and even
feigned excitement at the right times to keep me going. My parents Earl and Margaret
Farmer were instrumental as always. My mountain biking/fishing/engine building
buddy Mike Beringson put up with more than his share of “Sorry, I can’t make it” phone
calls. And, my neighbors in the cul-de-sac crew also helped get me through it: the
Cheathams, the Thomspons, the Crowders, and the Haffs—thanks again to everyone.
Licensed to Deborah Christiansen <pedbro@gmail.com>

ACKNOWLEDGMENTS xix
ROBI SEN

I would like to thank Troy Mott and the team—and everyone at Manning Publica-
tions—for their hard work making this book something worth reading. I would like to
thank my coauthors, Frank and Charlie, who were great to work with and very under-
standing when I was the one holding things up. I would also like to thank Jesse Dailey
for his technical edits on this book but for assistance with the OpenGL ES samples in
chapter 9.

 Finally I would like to thank my family who, more of than I liked, had to do without
me while I worked on my chapters.
Licensed to Deborah Christiansen <pedbro@gmail.com>

about this book
Unlocking Android doesn’t fit nicely into the camp of “introductory text,” nor is it a
highly detailed reference manual. The text has something to offer for both the com-
plete Android novice and the experienced developer who is looking to sell his or her
application in the Android Market. This book covers important beginner topics such
as “What is Android” and installing and using the development environment. The text
then advances to practical working examples of core programming topics any devel-
oper will be happy to have at the ready on the reference shelf. The final part of the
book presents a pair of advanced application topics including a field service applica-
tion with a web-based server side. The final chapter presents an out-of- the-box Native
C application discussion and example.

 The book is meant to be read from start to finish—and doing so will be of great
value, as the chapters are laid out to build upon one another. However, if you are look-
ing for a collection of practical, working samples, this title will also provide great value
to you, particularly in part 2, where major subsystems and topics are broken down with
practical examples.

The Audience
Unlocking Android is written for professional programmers and hobbyists alike. Many
of the concepts can be absorbed without specific Java language knowledge, though
the most value will be found by readers with Java programming skills because Android
application programming requires them. A reader with C, C++, or C# programming
knowledge will be able to follow the examples.
xx

Licensed to Deborah Christiansen <pedbro@gmail.com>

ABOUT THIS BOOK xxi
 Prior Eclipse experience is helpful, but not required. There are a number of good
resources available on Java and Eclipse to augment the content of this book.

Roadmap
This book is divided into three parts. Part 1 contains introductory material about the
platform and development environment. Part 2 takes a close look at the fundamental
skills required for building Android applications. Part 3 presents a larger scope appli-
cation and a Native C Android application.
PART 1: THE ESSENTIALS

Part 1 introduces the Android platform including the architecture and setting up the
development environment.

 Chapter 1 delves into the background and positioning of the Android platform,
including comparisons to other popular platforms such as BlackBerry, iPhone, and
Windows Mobile. After an introduction to the platform, the balance of the first chap-
ter introduces the high-level architecture of Android applications and the operating
system environment.

 Chapter 2 takes you on a step-by-step development exercise teaching you the ropes
of using the Android development environment, including the key tools and concepts
for building an application. If you have never used Eclipse or have never written an
Android application, this chapter will prepare you for the next part of the book.
PART 2: THE PROGRAMMING ENVIRONMENT

Part 2 includes an extensive survey of key programming topics in the Android envi-
ronment.

 Chapter 3 covers the fundamental Android UI components, including View and
Layout. We also review the Activity in further detail. These are the basic building
blocks of screens and applications on the Android platform. Along the way we also
touch on other basic concepts such as handling external resources, dealing with
events, and the lifecycle of an Android application.

 Chapter 4 expands on the concepts we learned in chapter 3 and we delve into the
Android Intent to demonstrate interaction between screens, activities, and entire
applications. Also we introduce and utilize the Service, which brings background
processes into the fold.

 Chapter 5 incorporates methods and strategies for storing and retrieving data
locally. The chapter examines use of the filesystem, databases, the SD card, and
Android specific entities such as the SharedPreferences and ContentProvider
classes. At this point we begin combining fundamental concepts with more real-world
details, such as handling application state, using a database for persistent storage, and
working with SQL.

 Chapter 6 deals with storing and retrieving data over the network. Here we include
a networking primer before delving into using raw networking concepts such as sock-
ets on Android. From there we progress to using HTTP, and even exploring web ser-
vices (such as REST and SOAP).
Licensed to Deborah Christiansen <pedbro@gmail.com>

ABOUT THIS BOOKxxii
 Chapter 7 covers telephony on the Android platform. We touch on basics such as
originating and receiving phone calls, as well as more involved topics such as working
with SMS. Along the way we also cover telephony properties and helper classes.

 Chapter 8 looks at how to work with Notifications and Alarms. In this chapter we
look at how to notify users of various events such as receiving a SMS message as well as
how to manage and set alarms.

 Chapter 9 deals with the basics of Androids Graphics API as well as more advanced
concepts such as working with the OpenGL ES library for creating sophisticated 2D
and 3D graphics. We will also touch upon animation.

 Chapter 10 looks at Androids support for multimedia and we will cover both play-
ing multimedia as well as using the camera and microphone to record our own multi-
media files.

 Chapter 11 introduces Location-based services as we look at an example that com-
bines many of the concepts from the earlier parts of the book in a mapping applica-
tion. Here we learn about using the mapping APIs on Android, including different
location providers and properties that are available, how to build and manipulate map
related screens, and how to work with location related concepts within the emulator.
PART 3: BRINGING IT ALL TOGETHER

Part 3 contains two chapters, both of which build upon knowledge from earlier in the
text with a focus on bringing a larger application to fruition.

 Chapter 12 demonstrates an end-to-end Field Service Application. The application
includes server communications, persistent storage, multiple Activity navigation,
menus, and signature capture.

 Chapter 13 explores the world of native C language applications. The Android SDK
is limited to the Java language although native applications may be written for
Android. This chapter walks you through examples of building C language applica-
tions for Android including the use of built-in libraries and TCP socket communica-
tions as a Java application connects to our C application.
THE APPENDICES

The appendices contain additional information which didn’t fit with the flow of the
main text. Appendix A is a step-by-step guide to installing the development environ-
ment. This appendix, along with chapter 2, provides all the information needed to
build an Android application. Appendix B demonstrates how to create an applica-
tion for the Android Market—an important topic for anyone looking to sell an appli-
cation commercially.

Code Conventions
All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. For most listings, the code is annotated to point out the key con-
cepts, and numbered bullets are sometimes used in the text to provide additional
information about the code. We have tried to format the code so that it fits within the
available page space in the book by adding line breaks and using indentation care-
fully. Sometimes, however, very long lines will include line-continuation markers.
Licensed to Deborah Christiansen <pedbro@gmail.com>

ABOUT THIS BOOK xxiii
 Source code for all the working examples is available from www.manning.com/
UnlockingAndroid or http://www.manning.com/ableson. A readme.txt file is pro-
vided in the root folder and also in each chapter folder; the files provide details on
how to install and run the code. Code examples appear throughout this book. Longer
listings will appear under clear listing headers while shorter listings will appear
between lines of text. All code is set in a special font to clearly differentiate it.

Software Requirements
Developing applications for Android may be done from the Windows XP/Vista envi-
ronment, a Mac OS X (Intel only) environment or a Linux environment. Appendix A
includes a detailed description of setting up the Eclipse environment along with the
Android Developer Tools plug-in for Eclipse.

Author Online
Purchase of Unlocking Android includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/UnlockingAndroid
or www.manning.com/ableson. This page provides information on how to get on the
forum once you’re registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/ableson
www.manning.com/UnlockingAndroid
www.manning.com/UnlockingAndroid
http://www.manning.com/UnlockingAndroid
www.manning.com/ableson

about the cover illustration
The illustration on the cover of Unlocking Android is taken from a French book of dress
customs, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for plea-
sure was a relatively new phenomenon at the time and illustrated guides such as this
one were popular, introducing both the tourist as well as the armchair traveler to the
inhabitants of other regions of the world, as well as to the regional costumes and uni-
forms of France.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s countries and regions just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other, and when members of a
social class or a trade or a tribe could be easily distinguished by what they were wear-
ing. This was also a time when people were fascinated by foreign lands and faraway
places, even though they could not travel to these exotic destinations themselves.

 Dress codes have changed since then and the diversity by region and tribe, so rich
at the time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a world of cul-
tural and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on native and tribal costumes from two centu-
ries ago brought back to life by the pictures from this travel guide.

xxiv

Licensed to Deborah Christiansen <pedbro@gmail.com>

Part 1

What is Android?
—The Big Picture

Android promises to be a market-moving technology platform—not just
because of the functionality available in the platform but because of how the
platform has come to market. Part 1 of this book brings you into the picture as a
developer of the open source Android platform.

 We begin with a look at the Android platform and the impact it has on each
of the major “stakeholders” in the mobile marketplace (chapter 1). We then
bring you on board to developing applications for Android with a hands-on tour
of the Android development environment (chapter 2).

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Targeting Android
You’ve heard about Android. You’ve read about Android. Now it is time to begin
Unlocking Android.

 Android is the software platform from Google and the Open Handset Alliance
that has the potential to revolutionize the global cell phone market. This chapter
introduces Android—what it is, and importantly, what it is not. After reading this
chapter you will have an understanding of how Android is constructed, how it com-
pares with other offerings in the market and its foundational technologies, plus
you’ll get a preview of Android application architecture. The chapter concludes
with a simple Android application to get things started quickly.

 This introductory chapter answers basic questions about what Android is and
where it fits. While there are code examples in this chapter, they are not very in-
depth—just enough to get a taste for Android application development and to con-
vey the key concepts introduced. Aside from some context-setting discussion in the
introductory chapter, this book is about understanding Android’s capabilities and

This chapter covers:
■ Examining Android, the open source mobile platform
■ Activating Android
■ Rapidly changing smartphones
3

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.Handango.com
http://www.Handango.com
http://www.Handango.com

4 CHAPTER 1 Targeting Android
will hopefully inspire you to join the effort to unlock the latent potential in the cell
phone of the future.

1.1 Introducing Android
Android is the first open source mobile application platform that has the potential to
make significant inroads in many markets. When examining Android there are a
number of technical and market-related dimensions to consider. This first section
introduces the platform and provides context to help you better understand Android
and where it fits in the global cell phone scene.

 Android is the product of primarily Google, but more appropriately the Open
Handset Alliance. Open Handset Alliance is an alliance of approximately 30 organiza-
tions committed to bringing a “better” and “open” mobile phone to market. A quote
taken from its website says it best: “Android was built from the ground up with the
explicit goal to be the first open, complete, and free platform created specifically for
mobile devices.” As discussed in this section, open is good, complete is good; “free”
may turn out to be an ambitious goal. There are many examples of “free” in the com-
puting market that are free from licensing, but there is a cost of ownership when tak-
ing support and hardware costs into account. And of course, “free” cell phones come
tethered to two-year contracts, plus tax. No matter the way some of the details play
out, the introduction of Android is a market-moving event, and Android is likely to
prove an important player in the mobile software landscape.

 With this background of who is behind Android and the basic ambition of the
Open Handset Alliance, it is time to understand the platform itself and how it fits in
the mobile marketplace.

1.1.1 The Android platform

Android is a software environment built for mobile devices. It is not a hardware plat-
form. Android includes a Linux kernel-based OS, a rich UI, end-user applications,
code libraries, application frameworks, multimedia support, and much more. And,
yes, even telephone functionality is included! While components of the underlying OS
are written in C or C++, user applications are built for Android in Java. Even the built-
in applications are written in Java. With the exception of some Linux exploratory
exercises in chapter 13, all of the code examples in this book are written in Java using
the Android SDK.

 One feature of the Android platform is that there is no difference between the
built-in applications and applications created with the SDK. This means that powerful
applications can be written to tap into the resources available on the device. Figure 1.1
demonstrates the relationship between Android and the hardware it runs on. The
most notable feature of Android may be that it is an open source platform; missing
elements can and will be provided by the global developer community. Android’s
Linux kernel–based OS does not come with a sophisticated shell environment, but
because the platform is open, shells can be written and installed on a device. Likewise,
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.Handango.com
http://www.manning.com/catalog/java
http://www.manning.com/catalog/java
http://www.manning.com/catalog/java

5Introducing Android
multimedia codecs can be supplied by third-party
developers and do not need to rely on Google or
anyone else to provide new functionality. That is
the power of an open source platform brought to
the mobile market.

 The mobile market is a rapidly changing land-
scape with many players with diverging goals.
Consider the often-at-odds relationship among
mobile operators, mobile device manufacturers,
and software vendors. Mobile operators want to
lock down their networks, controlling and meter-
ing traffic. Device manufacturers want to differen-
tiate themselves with features, reliability, and
price points. Software vendors want unfettered
access to the metal to deliver cutting-edge appli-
cations. Layer onto that a demanding user base,
both consumer and corporate, that has become
addicted to the “free phone” and operators who
reward churn but not customer loyalty. The
mobile market becomes not only a confusing
array of choices but also a dangerous fiscal exer-
cise for the participants, such as the cell phone
retailer who sees the underbelly of the industry and just wants to stay alive in an end-
less sea of change. What users come to expect on a mobile phone has evolved rapidly.
Figure 1.2 provides a glimpse of the way we view mobile technology and how it has
matured in a few short years.

With all of that as a backdrop, creating a successful mobile platform is clearly a non-
trivial task involving numerous players. Android is an ambitious undertaking, even for
Google, a company of seemingly boundless resources and moxie. If anyone has the
clout to move the mobile market, it is Google and its entrant into the mobile market-
place, Android.

Platform vs. device
Throughout the book, wherever code must be tested or exercised on a device, a soft-
ware-based emulator is employed. See chapter 2 for information on how to set up
and use the Android Emulator.

The term platform refers to Android itself—the software—including all of the binaries,
code libraries, and tool chains. This book is focused on the Android platform. The An-
droid emulators available in the SDK are simply one of many components of the An-
droid platform.

1 2 3

4 5 6

7 8 9

* 0 #

Custom & built-in
applications

written in Java

Dalvik virtual machine

Linux kernel

Android Software Environment

Figure 1.1 Android is software only.
Leveraging its Linux kernel to interface
with the hardware, you can expect
Android to run on many different devices
from multiple cell phone manufacturers.
Applications are written in Java.
Licensed to Deborah Christiansen <pedbro@gmail.com>

6 CHAPTER 1 Targeting Android
The next section begins and ends the “why and where of Android” to provide some
context and set the perspective for Android’s introduction to the marketplace. After
that, it’s on to exploring and exploiting the platform itself!

1.1.2 In the market for an Android?

Android promises to have something for everyone. Android looks to support a variety
of hardware devices, not just high-end ones typically associated with expensive “smart-
phones.” Of course, Android will run better on a more powerful device, particularly
considering it is sporting a comprehensive set of computing features. The real ques-
tion is how well Android can scale up and down to a variety of markets and gain mar-
ket and mind share. This section provides conjecture on Android from the
perspective of a few existing players in the marketplace. When talking about the cellu-
lar market, the place to start is at the top, with the carriers, or as they are sometimes
referred to, mobile operators.
MOBILE OPERATORS

Mobile operators are in the business, first and foremost, of selling subscriptions to
their services. Shareholders want a return on their investment, and it is hard to imag-
ine an industry where there is a larger investment than in a network that spans such
broad geographic territory. To the mobile operator, cell phones are—at the same
time—a conduit for services, a drug to entice subscribers, and an annoyance to sup-
port and lock down.

 The optimistic view of the mobile operator’s response to Android is that it is
embraced with open arms as a platform to drive new data services across the excess
capacity operators have built into their networks. Data services represent high pre-
mium services and high-margin revenues for the operator. If Android can help drive
those revenues for the mobile operator, all the better.

Pager

Phone

Organizer

Laptop

No internet access

Portable music player

Phone

Organizer

Laptop

Limited internet access

Portable music player

Phone

Laptop

Modest internet access

MP3 support

Smartphone

Laptop optional

The maturing mobile experience

Figure 1.2 The mobile
worker can be pleased with
the reduction in the number of
devices that need to be toted.
Mobile device functionality
has converged at a very rapid
pace. The laptop computer is
becoming an optional piece
of travel equipment.
Licensed to Deborah Christiansen <pedbro@gmail.com>

7Introducing Android
 The pessimistic view of the mobile operator’s response to Android is that the oper-
ator feels threatened by Google and the potential of “free wireless,” driven by advertis-
ing revenues and an upheaval of the market. Another challenge with mobile
operators is that they want the final say on what services are enabled across their net-
work. Historically, one of the complaints of handset manufacturers is that their
devices are handicapped and not exercising all of the features designed into them
because of the mobile operator’s lack of capability or lack of willingness to support
those features. An encouraging sign is that there are mobile operators involved in the
Open Handset Alliance.

 Enough conjecture; let’s move on to a comparison of Android and existing cell
phones on the market today.
ANDROID VS. THE FEATURE PHONES

The overwhelming majority of cell phones on the market are the consumer flip phones
and feature phones. These are the phones consumers get when they walk into the
retailer and ask what can be had for “free”; these are the “I just want a phone” custom-
ers. Their primary interest is a phone for voice communications and perhaps an
address book. They might even want a camera. Many of these phones have additional
capabilities such as mobile web browsing, but because of a relatively poor user experi-
ence, these features are not employed heav-
ily. The one exception is text messaging,
which is a dominant application no matter
the classification of device. Another increas-
ingly in-demand category is location-based
services, or as it is typically known, GPS.

 Android’s challenge is to scale down to
this market. Some of the bells and whistles in
Android can be left out to fit into lower-end
hardware. One of the big functionality gaps
on these lower-end phones is the web experi-
ence. Part of this is due to screen size, but
equally challenging is the browser technol-
ogy itself, which often struggles to match the
rich web experience of the desktop com-
puter. Android features the market-leading
WebKit browser engine, which brings desk-
top compatible browsing to the mobile
arena. Figure 1.3 demonstrates the WebKit
in action on Android. If this can be effec-
tively scaled down to the feature phones, it
would go a long way toward penetrating this
end of the market.

Figure 1.3 Android’s built-in browser technol-
ogy is based on Webkit’s browser engine.
Licensed to Deborah Christiansen <pedbro@gmail.com>

8 CHAPTER 1 Targeting Android
NOTE The WebKit (http://www.webkit.org) browser engine is an open source
project that powers the browser found in Macs (Safari) and is the engine
behind Mobile Safari, the browser found on the iPhone. It is not a stretch
to say that the browser experience is what makes the iPhone popular, so
its inclusion in Android is a strong plus for Android’s architecture.

Software at this end of the market generally falls into one of two camps:

■ Qualcomm’s BREW environment —BREW stands for Binary Runtime Environment
for Wireless. For a high-volume example of BREW technology, consider Verizon’s
Get It Now–capable devices, which run on this platform. The challenge to the
software developer desiring to gain access to this market is that the bar to get an
application on this platform is very high because everything is managed by the
mobile operator, with expensive testing and revenue-sharing fee structures. The
upside to this platform is that the mobile operator collects the money and dis-
burses it to the developer after the sale, and often these sales are recurring
monthly. Just about everything else is a challenge to the software developer, how-
ever. Android’s open application environment is more accessible than BREW.

■ J2ME, or Java Micro Edition, is a very popular platform for this class of device.
The barrier to entry is much lower for software developers. J2ME developers will
find a “same but different” environment in Android. Android is not strictly a
J2ME-compatible platform; however, the Java programming environment found
in Android is a plus for J2ME developers. Also, as Android matures, it is very
likely that J2ME support will be added in some fashion.

Gaming, a better browser, and anything to do with texting or social applications pres-
ent fertile territory for Android at this end of the market.

 While the masses carry the feature phones described in this section, Android’s
capabilities will put Android-capable devices into the next market segment with the
higher-end devices, as discussed next.
ANDROID VS. THE SMARTPHONES

The market leaders in the smartphone race are Windows Mobile/SmartPhone and
BlackBerry, with Symbian (huge in non-U.S. markets), iPhone, and Palm rounding out
the market. While we could focus on market share and pros versus cons of each of the
smartphone platforms, one of the major concerns of this market is a platform’s ability
to synchronize data and access Enterprise Information Systems for corporate users.
Device-management tools are also an important factor in the Enterprise market. The
browser experience is better than with the lower-end phones, mainly because of larger
displays and more intuitive input methods, such as a touch screen or a jog dial.

 Android’s opportunity in this market is that it promises to deliver more perfor-
mance on the same hardware and at a lower software acquisition cost. The challenge
Android faces is the same challenge faced by Palm—scaling the Enterprise walls.
BlackBerry is dominant because of its intuitive email capabilities, and the Microsoft
platforms are compelling because of tight integration to the desktop experience and
overall familiarity for Windows users. Finally, the iPhone has enjoyed unprecedented
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.webkit.org

9Introducing Android
success as an intuitive yet capable consumer device with a tremendous wealth of avail-
able software applications.

 The next section poses an interesting question: can Android, the open source
mobile platform, succeed as an open source project?
ANDROID VS. ITSELF

Perhaps the biggest challenge of all is Android’s commitment to open source. Coming
from the lineage of Google, Android will likely always be an open source project, but
in order to succeed in the mobile market, it must sell millions of units. Android is not
the first open source phone, but it is the first from a player with the market-moving
weight of Google leading the charge.

 Open source is a double-edged sword. On one hand, the power of many talented
people and companies working around the globe and around the clock to push the ball
up the hill and deliver desirable features is a force to be reckoned with, particularly in
comparison with a traditional, commercial approach to software development. This is
a trite topic unto itself by now, because the benefits of open source development are
well documented. The other side of the open source equation is that, without a central-
ized code base that has some stability, Android could splinter and not gain the critical
mass it needs to penetrate the mobile market. Look at the Linux platform as an alter-
native to the “incumbent” Windows OS. As a kernel, Linux has enjoyed tremendous
success: it is found in many operating systems, appliances such as routers and switches,
and a host of embedded and mobile platforms such as Android. Numerous Linux dis-
tributions are available for the desktop, and ironically, the plethora of choices has held
it back as a desktop alternative to Windows. Linux is arguably the most successful open
source project; as a desktop alternative to Windows, it has become splintered and that
has hampered its market penetration from a product perspective. As an example of the
diluted Linux market, here is an abridged list of Linux distributions:

■ Ubuntu
■ openSUSE
■ Fedora (Red Hat)
■ Debian
■ Mandriva (formerly Mandrake)
■ PCLinuxOS
■ MEPIS
■ Slackware
■ Gentoo
■ Knoppix

The list contains a sampling of the most popular Linux desktop software distributions.
How many people do you know who use Linux as their primary desktop OS, and if so,
do they all use the same version? Open source alone is not enough; Android must stay
focused as a product and not get diluted in order to penetrate the market in a mean-
ingful way. This is the classic challenge of the intersection between commercialization
Licensed to Deborah Christiansen <pedbro@gmail.com>

10 CHAPTER 1 Targeting Android
and open source. This is Android’s challenge, among others, because Android needs
to demonstrate staying power and the ability scale from the mobile operator to the
software vendor, and even at the grass-roots level to the retailer. Becoming diluted
into many distributions is not a recipe for success for such a consumer product as a
cell phone.

 The licensing model of open source projects can be sticky. Some software licenses
are more restrictive than others. Some of those restrictions pose a challenge to the
open source label. At the same time, Android licensees need to protect their invest-
ment, so licensing is an important topic for the commercialization of Android.

1.1.3 Licensing Android

Android is released under two different open source licenses. The Linux kernel is
released under the GPL (GNU General Public License), as is required for anyone licens-
ing the open source OS kernel. The Android platform, excluding the kernel, is licensed
under the Apache Software License (ASL). While both licensing models are open
source–oriented, the major difference is that the Apache license is considered friend-
lier toward commercial use. Some open source purists may find fault with anything but
complete openness, source code sharing, and noncommercialization; the ASL attempts
to balance the open source goals with commercial market forces. If there is not a finan-
cial incentive to deliver Android-capable devices to the market, devices will never
appear in the meaningful volumes required to adequately launch Android.

Selling applications
A mobile platform is ultimately valuable only if there are applications to use and enjoy
on that platform. To that end, the topic of buying and selling applications for Android
is important and gives us an opportunity to highlight a key difference between Android
and the iPhone. The Apple AppStore contains software titles for the iPhone. However,
Apple’s somewhat draconian grip on the iPhone software market requires that all ap-
plications be sold through its venue. This results in a challenging environment for
software developers who might prefer to make their application available through mul-
tiple channels.

Contrast Apple’s approach to application distribution with the freedom an Android de-
veloper enjoys to ship applications via traditional venues such as freeware and share-
ware and commercially through various marketplaces, including a developer’s very
own website! For software publishers desiring the focus of an on-device shopping ex-
perience, Google has launched the Android Market. For software developers who al-
ready have titles for other platforms such as Windows Mobile, Palm, or BlackBerry,
traditional software markets such as Handango (http://www.Handango.com) also
support selling Android applications. This is important because consumers new to An-
droid will likely visit sites like Handango because that may be where they first pur-
chased one of their favorite applications for their prior device.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.Handango.com

11Stacking up Android
The high-level, touchy-feely portion of the book has now concluded! The remainder
of this book is focused on Android application development. Any technical discussion
of a software environment must include a review of the layers that compose the envi-
ronment, sometimes referred to as a stack because of the layer-upon-layer construc-
tion. The next section begins a high-level breakdown of the components of the
Android stack.

1.2 Stacking up Android
The Android stack includes an impressive array of features for mobile applications.
In fact, looking at the architecture alone, without the context of Android being a
platform designed for mobile environments, it would be easy to confuse Android
with a general computing environment. All of the major components of a comput-
ing platform are here and read like a Who’s Who of the open source commu-
nity. Here is a quick run-down of some of the prominent components of the
Android stack:

■ A Linux kernel provides a foundational hardware abstraction layer as well as
core services such as process, memory, and file-system management. The kernel
is where hardware-specific drivers are implemented—capabilities such as Wi-Fi
and Bluetooth are found here. The Android stack is designed to be flexible,
with many optional components which largely rely on the availability of specific
hardware on a given device. These include features like touch screens, cameras,
GPS receivers, and accelerometers.

■ Prominent code libraries include:
– Browser technology from WebKit—the same open source engine powering

Mac’s Safari and the iPhone’s Mobile Safari browser
– Database support via SQLite an easy-to-use SQL database
– Advanced graphics support, including 2D, 3D, animation from SGL, and

OpenGL ES
– Audio and video media support from Packet Video’s OpenCore
– SSL capabilities from the Apache project

■ An array of managers providing services for:
– Activities and views
– Telephony
– Windows
– Resources
– Location-based services

■ The Android runtime provides:
– Core Java packages for a nearly full-featured Java programming environ-

ment. Note that this is not a J2ME environment.
– The Dalvik virtual machine employs services of the Linux-based kernel to

provide an environment to host Android applications.
Licensed to Deborah Christiansen <pedbro@gmail.com>

12 CHAPTER 1 Targeting Android
Both core applications and third-party
applications (such as the ones built in
this book) run in the Dalvik virtual
machine, atop the components just
introduced. The relationship among
these layers can be seen in figure 1.4.

TIP Android development requires
Java programming skills, without
question. To get the most out of
this book, please be sure to
brush up on your Java program-
ming knowledge. There are
many Java references on the
internet, and there is no shortage of Java books on the market. An excellent
source of Java titles can be found at http://www.manning.com/catalog/java.

Now that the obligatory stack diagram is shown and the layers introduced, let’s look
further at the runtime technology that underpins Android.

1.2.1 Probing Android’s foundation

Android is built on a Linux kernel and an advanced, optimized virtual machine for its
Java applications. Both technologies are crucial to Android. The Linux kernel compo-
nent of the Android stack promises agility and portability to take advantage of numer-
ous hardware options for future Android-equipped phones. Android’s Java
environment is key: it makes Android very accessible to programmers because of both
the number of Java software developers and the rich environment that Java program-
ming has to offer. Mobile platforms that have relied on less-accessible programming
environments have seen stunted adoption because of a lack of applications as develop-
ers have shied away from the platform.
BUILDING ON THE LINUX KERNEL

Why use Linux for a phone? Using a full-featured platform such as the Linux kernel
provides tremendous power and capabilities for Android. Using an open source foun-
dation unleashes the capabilities of talented individuals and companies to move the
platform forward. This is particularly important in the world of mobile devices, where
products change so rapidly. The rate of change in the mobile market makes the gen-
eral computer market look slow and plodding. And, of course, the Linux kernel is a
proven core platform. Reliability is more important than performance when it comes
to a mobile phone, because voice communication is the primary use of a phone. All
mobile phone users, whether buying for personal use or for a business, demand voice
reliability, but they still want cool data features and will purchase a device based on
those features. Linux can help meet this requirement.

 Speaking to the rapid rate of phone turnover and accessories hitting the market,
another advantage of using Linux as the foundation of the Android platform stack is

Hardware device with specific capabilities such as
GPS, camera, Bluetooth, etc.

Linux kernel, including device drivers

Android runtime: Java via Dalvik VM

Libraries: graphics, media, database,
communications, browser engine, etc.

Application managers: windows, content, activities,
telephony, location, notifications, etc.

User applications: Contacts, phone, browser, etc.

Figure 1.4 The Android stack offers an impressive
array of technologies and capabilities.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/catalog/java

13Stacking up Android
that it provides a hardware abstraction layer, letting the upper levels remain
unchanged despite changes in the underlying hardware. Of course, good coding prac-
tices demand that user applications fail gracefully in the event a resource is not avail-
able, such as a camera not being present in a particular handset model. As new
accessories appear on the market, drivers can be written at the Linux level to provide
support, just as on other Linux platforms.

 User applications, as well as core Android applications, are written in the Java pro-
gramming language and are compiled into byte codes. Byte codes are interpreted at
runtime by an interpreter known as a virtual machine.
RUNNING IN THE DALVIK VIRTUAL MACHINE

The Dalvik virtual machine is an example of the needs of efficiency, the desire for a
rich programming environment, and even some intellectual property constraints col-
liding, with innovation as a result. Android’s Java environment provides a rich applica-
tion platform and is very accessible because of the popularity of the Java language
itself. Also, application performance, particularly in a low-memory setting such as is
found in a mobile phone, is paramount for the mobile market. However this is not the
only issue at hand.

 Android is not a J2ME platform. Without commenting on whether this is ultimately
good or bad for Android, there are other forces at play here. There is a matter of Java
virtual machine licensing from Sun Microsystems. From a very high level, Android’s
code environment is Java. Applications are written in Java, which is compiled to Java
bytecodes and subsequently translated to a similar but different representation called
dex files. These files are logically equivalent to Java bytecodes, but they permit Android
to run its applications in its own virtual machine that is both (arguably) free from
Sun’s licensing clutches and an open platform upon which Google, and potentially
the open source community, can improve as necessary.

NOTE It is too early to tell whether there will be a big battle between the Open
Handset Alliance and Sun over the use of Java in Android. From the
mobile application developer’s perspective, Android is a Java environ-
ment; however, the runtime is not strictly a Java virtual machine. This
accounts for the incompatibilities between Android and “proper” Java
environments and libraries.

The important things to know about the Dalvik virtual machine are that Android
applications run inside it and that it relies on the Linux kernel for services such as
process, memory, and filesystem management.

 After this discussion of the foundational technologies in Android, it is time to
focus on Android application development. The remainder of this chapter discusses
high-level Android application architecture and introduces a simple Android applica-
tion. If you are not comfortable or ready to begin coding, you might want to jump to
chapter 2, where we introduce the development environment step by step.
Licensed to Deborah Christiansen <pedbro@gmail.com>

14 CHAPTER 1 Targeting Android
1.3 Booting Android development
This section jumps right into the fray of Android development to focus on an impor-
tant component of the Android platform, then expands to take a broader view of how
Android applications are constructed. An important and recurring theme of Android
development is the Intent. An Intent in Android describes what you want to do. This
may look like “I want to look up a contact record,” or “Please launch this website,” or
“Show the Order Confirmation Screen.” Intents are important because they not only
facilitate navigation in an innovative way as discussed next, but they also represent the
most important aspect of Android coding. Understand the Intent, understand Android.

NOTE Instructions for setting up the Eclipse development environment are
found in appendix A. This environment is used for all examples in this
book. Chapter 2 goes into more detail on setting up and using the devel-
opment tools.

The code examples in this chapter are primarily for illustrative pur-
poses. Classes are referenced and introduced without necessarily naming
specific Java packages. Subsequent chapters take a more rigorous
approach to introducing Android-specific packages and classes.

The next section provides foundational information about why Intents are impor-
tant, then describes how Intents work. Beyond the introduction of the Intent, the
remainder of this chapter describes the major elements of Android application devel-
opment leading up to and including the first complete application.

1.3.1 Android’s good Intent-ions

The power of Android’s application framework lies in the way in which it brings a
web mindset to mobile applications. This doesn’t mean the platform has a powerful
browser and is limited to clever JavaScript and server-side resources, but rather it
goes to the core of how the Android platform itself works and how the user of the
platform interacts with the mobile device. The power of the internet, should one be
so bold to reduce it to a single statement, is that everything is just a click away. Those
clicks are known to the user as Uniform Resource Locators (URLs), or alternatively,
Uniform Resource Identifiers (URIs). The use of effective URIs permits easy and
quick access to the information users need and want every day. “Send me the link”
says it all.

 Beyond being an effective way to get access to data, why is this URI topic important,
and what does it have to do with Intents? The answer is a nontechnical but crucial
response: the way in which a mobile user navigates on the platform is crucial to its commercial
success. Platforms that replicate the desktop experience on a mobile device are accept-
able to only a small percentage of hard-core power users. Deep menus, multiple taps,
and clicks are generally not well received in the mobile market. The mobile application,
more than in any other market, demands intuitive ease of use. While a consumer may
purchase a device based on cool features enumerated in the marketing materials,
instruction manuals are almost never touched. The ease of use of the UI of a computing
Licensed to Deborah Christiansen <pedbro@gmail.com>

15Booting Android development
environment is highly correlated with its market penetration. UIs are also a reflection
of the platform’s data access model, so if the navigation and data models are clean and
intuitive, the UI will follow suit. This section introduces the concept of Intents and
IntentFilters, Android’s innovative navigation and triggering mechanism. Intents
and IntentFilters bring the “click on it” paradigm to the core of mobile application
use (and development!) for the Android platform.

■ An Intent is a declaration of need.
■ An IntentFilter is a declaration of capability and interest in offering assis-

tance to those in need.
■ An Intent is made up of a number of pieces of information describing the

desired action or service. This section examines the requested action and,
generically, the data that accompanies the requested action.

■ An IntentFilter may be generic or specific with respect to which Intents it
offers to service.

The action attribute of an Intent is typically a verb, for example: VIEW, PICK, or EDIT.
A number of built-in Intent actions are defined as members of the Intent class.
Application developers can create new actions as well. To view a piece of information,
an application would employ the following Intent action:

android.content.Intent.ACTION_VIEW

The data component of an Intent is expressed in the form of a URI and can be virtu-
ally any piece of information, such as a contact record, a website location, or a refer-
ence to a media clip. Table 1.1 lists some URI examples.

The IntentFilter defines the relationship between the Intent and the application.
IntentFilters can be specific to the data portion of the Intent, the action portion,
or both. IntentFilters also contain a field known as a category. A category helps clas-
sify the action. For example, the category named CATEGORY_LAUNCHER instructs
Android that the Activity containing this IntentFilter should be visible in the
main application launcher or home screen.

 When an Intent is dispatched, the system evaluates the available Activitys, Ser-
vices, and registered BroadcastReceivers (more on these in the next section) and
dispatches the Intent to the most appropriate recipient. Figure 1.5 depicts this rela-
tionship among Intents, IntentFilters, and BroadcastReceivers.

Table 1.1 Intents employ URIs, and some of the commonly employed URIs in Android are listed here.

Type of Information URI Data

Contact lookup content://contacts/people

Map lookup/search Geo:0,0?q=23+Route+206+Stanhope+NJ

Browser launch to a specific website http://www.google.com/
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.google.com/

16 CHAPTER 1 Targeting Android
IntentFilters are often defined in an application’s AndroidManifest.xml with the
<intent-filter> tag. The AndroidManfest.xml file is essentially an application
descriptor file, discussed later in this chapter.

 A common task on a mobile device is the lookup of a specific contact record for
the purpose of initiating a call, sending an SMS (Short Message Service), or looking
up a snail-mail address when you are standing in line at the neighborhood pack-and-
ship store. A user may desire to view a specific piece of information, say a contact
record for user 1234. In this case, the action is ACTION_VIEW and the data is a specific
contact record identifier. This is accomplished by creating an Intent with the action
set to ACTION_VIEW and a URI that represents the specific person of interest.

 Here is an example of the URI for use with the android.content.Intent.
ACTION_VIEW action:

content://contacts/people/1234

Here is an example of the URI for obtaining a list of all contacts, the more generalized
URI of

content://contacts/people

Here is a snippet of code demonstrating the PICKing of a contact record:

Intent myIntent = new Intent(Intent.ACTION_PICK,Uri.parse("content://contacts/
people"));

startActivity(myIntent);

This Intent is evaluated and passed to the most appropriate handler. In this case, the
recipient would likely be a built-in Activity named com.google.android.phone.
Dialer. However, the best recipient of this Intent may be an Activity contained in the
same custom Android application (the one you build), a built-in application as in this
case, or a third-party application on the device. Applications can leverage existing

For hire: View, Edit, Browse any Contacts (IntentFilter)

For hire: Take a ride on the
Internet (IntentFilter)

For hire: Find anything on
the map! (IntentFilter)

Help me: Find a Person
(Intent)

Help me: Find an
address on the map
(Intent)

Android application # 1

Android application # 2 (BroadcastReceiver)

Android application # 3 (BroadcastReceiver)

startActivity(Intent);

Or

startActivity(Intent,identifier);

Or

startService(Intent);
For hire: Custom action on custom data (IntentFilter)

Android application # 4 (BroadcastReceiver)

Figure 1.5 Intents are distributed to Android
applications, which register themselves by way of the
IntentFilter, typically in the AndroidManifest.xml file.
Licensed to Deborah Christiansen <pedbro@gmail.com>

17Booting Android development
functionality in other applications by creating and dispatching an Intent requesting
existing code to handle the Intent rather than writing code from scratch. One of the
great benefits of employing Intents in this manner is that it leads to the same UIs being
used frequently, creating familiarity for the user. This is particularly important for mobile
platforms where the user is often neither tech-savvy nor interested in learning multiple ways to
accomplish the same task, such as looking up a contact on the phone.

 The Intents we have discussed thus far are known as implicit Intents, which rely
on the IntentFilter and the Android environment to dispatch the Intent to the
appropriate recipient. There are also explicit Intents, where we can specify the exact
class we desire to handle the Intent. This is helpful when we know exactly which
Activity we want to handle the Intent and do not want to leave anything up to
chance in terms of what code is executed. To create an explicit Intent, use the over-
loaded Intent constructor, which takes a class as an argument, as shown here:

public void onClick(View v) {
try {
startActivityForResult(new Intent(v.getContext(),RefreshJobs.class),0);
} catch (Exception e) {
. . .
}
}

These examples show how an Android application creates an Intent and asks for it to
be handled. Similarly, an Android application can be deployed with an IntentFilter,
indicating that it responds to Intents already created on the system, thereby publish-
ing new functionality for the platform. This facet alone should bring joy to indepen-
dent software vendors (ISVs) who have made a living by offering better contact
manager and to-do list management software titles for other mobile platforms.

 Intent resolution, or dispatching, takes place at runtime, as opposed to when the
application is compiled, so specific Intent-handling features can be added to a
device, which may provide an upgraded or more desirable set of functionality than the
original shipping software. This runtime dispatching is also referred to as late binding.

The power and the complexity of Intents
It is not hard to imagine that an absolutely unique user experience is possible with
Android because of the variety of Activitys with specific IntentFilters installed
on any given device. It is architecturally feasible to upgrade various aspects of an An-
droid installation to provide sophisticated functionality and customization. While this
may be a desirable characteristic for the user, it can be a bit troublesome for some-
one providing tech support and having to navigate a number of components and ap-
plications to troubleshoot a problem.

Because of this potential for added complexity, this approach of ad hoc system patch-
ing to upgrade specific functionality should be entertained cautiously and with one’s
eyes wide open to the potential pitfalls associated with this approach.
Licensed to Deborah Christiansen <pedbro@gmail.com>

18 CHAPTER 1 Targeting Android
Thus far this discussion of Intents has focused on the variety of Intents that cause UI
elements to be displayed. There are also Intents that are more event driven than task-
oriented, as the earlier contact record example described. For example, the Intent
class is also used to notify applications that a text message has arrived. Intents are a
very central element to Android and will be revisited on more than one occasion.

 Now that Intents have been introduced as the catalyst for navigation and event
flow on Android, let’s jump to a broader view and discuss the Android application life-
cycle and the key components that make Android tick. The Intent will come into bet-
ter focus as we further explore Android throughout this book.

1.3.2 Activating Android

This section builds on the knowledge of the Intent and IntentFilter classes intro-
duced in the previous section and explores the four primary components of Android
applications as well as their relation to the Android process model. Code snippets are
included to provide a taste of Android application development. More in-depth exam-
ples and discussion are left for later chapters.

NOTE A particular Android application may not contain all of these elements,
but it will have at least one of these elements and could in fact have all of
them.

ACTIVITY

An application may or may not have a UI. If it has a UI, it will have at least one Activity.
 The easiest way to think of an Android Activity is to relate a visible screen to an

Activity, as more often than not there is a one-to-one relationship between an Activ-
ity and a UI screen. An Android application will often contain more than one Activity.
Each Activity displays a UI and responds to system- and user-initiated events. The
Activity employs one or more Views to present the actual UI elements to the user.
The Activity class is extended by user classes, as shown in listing 1.1.

package com.msi.manning.chapter1;

import android.app.Activity;
import android.os.Bundle;

public class activity1 extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }
}

The Activity class B is part of the android.app Java package, found in the Android
runtime. The Android runtime is deployed in the android.jar file. The class
activity1 C extends the class Activity. For more examples of using an Activity,
please see chapter 3. One of the primary tasks an Activity performs is the display of

Listing 1.1 A very basic Activity in an Android application

Activity class importB

C
Activity class extension
implementation

Set up the UID
Licensed to Deborah Christiansen <pedbro@gmail.com>

19Booting Android development
UI elements, which are implemented as Views and described in XML layout files D.
Chapter 3 goes into more detail on Views and Resources.

 Moving from one Activity to another is accomplished with the startActivity()
method or the startActivityForResult() method when a synchronous call/result
paradigm is desired. The argument to these methods is the Intent.

The Activity represents a very visible application component within Android. With
assistance from the View class covered in chapter 3, the Activity is the most common
type of Android application. The next topic of interest is the Service, which runs in
the background and does not generally present a direct UI.
SERVICE

If an application is to have a long lifecycle, it should be put into a Service. For exam-
ple, a background data synchronization utility running continuously should be imple-
mented as a Service.

 Like the Activity, a Service is a class provided in the Android runtime that
should be extended, as seen in listing 1.2, which sends a message to the Android log
periodically.

package com.msi.manning.chapter1;

import android.app.Service;
import android.os.IBinder;
import android.util.Log;

public class service1 extends Service implements Runnable {
public static final String tag = "service1";
 private int counter = 0;
 @Override
 protected void onCreate() {
 super.onCreate();
 Thread aThread = new Thread (this);
 aThread.start();
 }

Listing 1.2 A simple example of an Android Service

You say Intent; I say Intent
The Intent class is used in similar sounding but very different scenarios.

There are Intents used to assist in navigation from one activity to the next, such as
the example given earlier of VIEWing a contact record. Activities are the targets of
these kinds of Intents used with the startActivity or startActivityForResult
methods.

Services can be started by passing an Intent to the startService method.

BroadcastReceivers receive Intents when responding to systemwide events such
as the phone ringing or an incoming text message.

Service importB

Log importC Extending the
Service class

D

Initialization in the
onCreate method

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

20 CHAPTER 1 Targeting Android
 public void run() {
 while (true) {
 try {
 Log.i(tag,"service1 firing : # " + counter++);
 Thread.sleep(10000);
 } catch(Exception ee) {
 Log.e(tag,ee.getMessage());
 }
 }
 }

@Override
public IBinder onBind(Intent intent) {
return null;
}

}

This example requires that the package android.app.Service B be imported. This
package contains the Service class. This example also demonstrates Android’s log-
ging mechanism C, which is useful for debugging purposes. Many of the examples in
the book include using the logging facility. Logging is discussed in chapter 2. The
service1 class D extends the Service class. This class also implements the Runnable
interface to perform its main task on a separate thread. The onCreate E method of
the Service class permits the application to perform initialization-type tasks. The
onBind() method F is discussed in further detail in chapter 4 when the topic of inter-
process communication in general is explored.

 Services are started with the startService(Intent) method of the abstract
Context class. Note that, again, the Intent is used to initiate a desired result on the
platform.

 Now that the application has a UI in an Activity and a means to have a long-
running task in a Service, it is time to explore the BroadcastReceiver, another form
of Android application that is dedicated to processing Intents.
BROADCASTRECEIVER

If an application wants to receive and respond to a global event, such as the phone
ringing or an incoming text message, it must register as a BroadcastReceiver. An
application registers to receive Intents in either of two manners:

■ The application may implement a <receiver> element in the AndroidMan-
fest.xml file, which describes the BroadcastReceiver’s class name and enumer-
ates its IntentFilters. Remember, the IntentFilter is a descriptor of the
Intent an application wants to process. If the receiver is registered in the
AndroidManifest.xml file, it does not have to be running in order to be trig-
gered. When the event occurs, the application is started automatically upon
notification of the triggering event. All of this housekeeping is managed by the
Android OS itself.

■ An application may register at runtime via the Context class’s registerRe-
ceiver method.

Binding to the ServiceF
Licensed to Deborah Christiansen <pedbro@gmail.com>

21Booting Android development
Like Services, BroadcastReceivers do not have a UI. Of even more importance, the
code running in the onReceive method of a BroadcastReceiver should make no
assumptions about persistence or long-running operations. If the BroadcastReceiver
requires more than a trivial amount of code execution, it is recommended that the
code initiate a request to a Service to complete the requested functionality.

NOTE The familiar Intent class is used in the triggering of BroadcastReceiv-
ers; the use of these Intents is mutually exclusive from the Intents used
to start an Activity or a Service, as previously discussed.

A BroadcastReceiver implements the abstract method onReceive to process incom-
ing Intents. The arguments to the method are a Context and an Intent. The method
returns void, but a handful of methods are useful for passing back results, including
setResult, which passes back to the invoker an integer return code, a String return
value, and a Bundle value, which can contain any number of objects.

 Listing 1.3 is an example of a BroadcastReceiver triggering upon an incoming
text message.

package com.msi.manning.unlockingandroid;

import android.content.Context;
import android.content.Intent;
import android.content.IntentReceiver;
import android.util.Log;

public class MySMSMailBox extends BroadcastReceiver {
public static final String tag = "MySMSMailBox";

@Override
public void onReceive(Context context, Intent intent) {
 Log.i(tag,"onReceive");
 if (intent.getAction().equals("android.provider.Telephony.SMS_RECEIVED")) {
 Log.i(tag,"Found our Event!");
 }
}

Looking at listing 1.3 we find a few items to discuss. The class MySMSMailBox extends
the BroadcastReceiver class B. This subclass approach is the most straightforward
way to employ a BroadcastReceiver. Note the class name MySMSMailBox, as it will be
used in the AndroidManifest.xml file, shown in listing 1.4. The tag variable C is used
in conjunction with the logging mechanism to assist in labeling messages sent to the
console log on the emulator. Using a tag in the log enables filtering and organizing
log messages in the console. Chapter 2 discusses the log mechanism in further detail.
The onReceive method D is where all of the work takes place in a BroadcastRe-
ceiver—this method must be implemented. Note that a given BroadcastReceiver
can register multiple IntentFilters and can therefore be instantiated for an arbitrary
number of Intents.

 It is important to make sure to handle the appropriate Intent by checking the
action of the incoming Intent, as shown in E. Once the desired Intent is received,

Listing 1.3 A sample IntentReceiver

Extending
BroadcastReceiver

B

C Tag used in logging

D onReceive method

E
Check Intent’s

actionF
Write
to log
Licensed to Deborah Christiansen <pedbro@gmail.com>

22 CHAPTER 1 Targeting Android
carry out the specific functionality required. A common task in an SMS-receiving
application would be to parse the message and display it to the user via a Notification
Manager display. In this snippet, we simply record the action to the log F.

 In order for this BroadcastReceiver to fire and receive this Intent, it must be
listed in the AndroidManifest.xml file, as shown in listing 1.4. This listing contains the
elements required to respond to an incoming text message.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.unlockingandroid">
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 <application android:icon="@drawable/icon">
 <activity android:name=".chapter1" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".MySMSMailBox" >
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED" />
 </intent-filter>
 </receiver>
 </application>
</manifest>

Certain tasks within the Android platform require the application to have a designated
privilege. To give an application the required permissions, the <uses-permission> tag
is used B. This is discussed in detail later in this chapter in the AndroidManifest.xml
section. The <receiver> tag contains the class name of the class implementing
the BroadcastReceiver. In this example the class name is MySMSMailBox, from the pack-
age com.msi.manning.unlockingandroid. Be sure to note the dot that precedes the
name C. The dot is required. If your application is not behaving as expected, one of the
first places to check is your Android.xml file, and look for the dot! The IntentFilter
is defined in the <intent-filter> tag. The desired action in this example is
android.provider.Telephony.SMS_RECEIVED D. The Android SDK enumerates the
available actions for the standard Intents. In addition, remember that user applications
can define their own Intents as well as listen for them.

 Now that we have introduced Intents and the Android classes that process or
handle Intents, it’s time to explore the next major Android application topic, the
ContentProvider, Android’s preferred data-publishing mechanism.
CONTENT PROVIDER

If an application manages data and needs to expose that data to other applications
running in the Android environment, a ContentProvider should be implemented.
Alternatively, if an application component (Activity, Service, or Broadcast-
Receiver) needs to access data from another application, the other application’s

Listing 1.4 AndroidManifest.xml

BRequired permission

Receiver tag;
note the “.”

C IntentFilter
definition

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

23Booting Android development
ContentProvider is used. The ContentProvider implements a standard set of
methods to permit an application to access a data store. The access may be for read
and/or write operations. A ContentProvider may provide data to an Activity or
Service in the same containing application as well as an Activity or Service con-
tained in other applications.

 A ContentProvider may use any form of data storage mechanism available on the
Android platform, including files, SQLite databases, or even a memory-based hash
map if data persistence is not required. In essence, the ContentProvider is a data
layer providing data abstraction for its clients and centralizing storage and retrieval
routines in a single place.

 Directly sharing files or databases is discouraged on the Android platform and is
further enforced by the Linux security system, which prevents ad hoc file access from
one application space to another without explicitly granted permissions.

 Data stored in a ContentProvider may be of traditional data types such as integers
and strings. Content providers can also manage binary data such as image data. When
binary data is retrieved, suggested practice is to return a string representing the file-
name containing the binary data. In the event a filename is returned as part of a
ContentProvider query, the file should not be accessed directly, but rather you
should use the helper class, ContentResolver’s openInputStream method, to access
the binary data. This approach negates Linux process/security hurdles as well as
keeps all data access normalized through the ContentProvider. Figure 1.6 outlines
the relationship among ContentProviders, data stores, and their clients.

 A ContentProvider’s data is accessed through the familiar Content URI. A
ContentProvider defines this as a public static final String. For example, an applica-
tion might have a data store managing material safety data sheets. The Content URI
for this ContentProvider might look like this:

public static final Uri CONTENT_URI =
Uri.parse("content://com.msi.manning.provider.unlockingandroid/datasheets");

Testing SMS
The emulator has a built-in set of tools for manipulating certain telephony behavior
to simulate a variety of conditions, such as in and out of network coverage and plac-
ing phone calls. This section’s example demonstrated another feature of the emula-
tor, the receipt of an SMS message.

To send an SMS message to the emulator, telnet to port 5554 (the port # may vary
on your system), which will connect to the emulator and issue the following command
at the prompt:

sms send <sender's phone number> <body of text message>

To learn more about available commands, type help from the prompt.

These tools are discussed in more detail in chapter 2.
Licensed to Deborah Christiansen <pedbro@gmail.com>

24 CHAPTER 1 Targeting Android
From this point, accessing a ContentProvider is similar to using Structured Query Lan-
guage (SQL) in other platforms, though a complete SQL statement is not employed. A
query is submitted to the ContentProvider, including the columns desired and
optional Where and Order By clauses. For those familiar with parameterized queries in
SQL, parameter substitution is even supported. Results are returned in the Cursor class,
of course. A detailed ContentProvider example is provided in chapter 5.

NOTE In many ways, a ContentProvider acts like a database server. While an
application could contain only a ContentProvider and in essence be a
database server, a ContentProvider is typically a component of a larger
Android application that hosts at least one Activity, Service, and/or
BroadcastReceiver.

This concludes the brief introduction to the major Android application classes.
Gaining an understanding of these classes and how they work together is an impor-
tant aspect of Android development. Getting application components to work
together can be a daunting task. For example, have you ever had a piece of software
that just didn’t work properly on your computer? Perhaps it was copied and not
installed properly. Every software platform has environmental concerns, though they
vary by platform. For example, when connecting to a remote resource such as a
database server or FTP server, which username and password should you use?
What about the necessary libraries to run your application? These are all topics
related to software deployment. Each Android application requires a file named

SQLite Data file XML Virtual connection to remote store

Android application #1

Activity 1.1

Activity 1.2

ContentProvider A

Android application #2

Activity 2.1

Android application #3

Activity 3.1

Figure 1.6 The content provider is the data tier for Android applications and is the
prescribed manner in which data is accessed and shared on the device.
Licensed to Deborah Christiansen <pedbro@gmail.com>

25Booting Android development
AndroidManifest.xml, which ties together the necessary pieces to run an Android
application on a device.

1.3.3 AndroidManifest.xml

The previous sections introduced the common elements of an Android application.
To restate: an Android application will contain at least one Activity, Service, Broad-
castReceiver, or ContentProvider. Some of these elements will advertise the
Intents they are interested in processing via the IntentFilter mechanism. All of
these pieces of information need to be tied together in order for an Android applica-
tion to execute. The “glue” mechanism for this task of defining relationships is the
AndroidManifest.xml file.

 The AndroidManifest.xml file exists in the root of an application directory and
contains all of the design-time relationships of a specific application and Intents.
AndroidManfest.xml files act as deployment descriptors for Android applications.
Listing 1.5 is an example of a very simple AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.unlockingandroid">
 <application android:icon="@drawable/icon">
 <activity android:name=".chapter1" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Looking at this simple AndroidManifest.xml, we see that the manifest element contains
the obligatory namespace as well as the Java package name B containing this applica-
tion. This application contains a single Activity, with a class name of chapter1 C. Note
also the @string syntax. Anytime an @ symbol is used in an AndroidManifest.xml file, it
is referencing information stored in one of the resource files. In this case, the label
attribute is obtained from the app_name string resource defined elsewhere in the appli-
cation. Resources are discussed in further detail later in chapter 3. This application’s
lone Activity contains a single IntentFilter definition D. The IntentFilter used
here is the most common IntentFilter seen in Android applications. The action
android.intent.action.MAIN indicates that this is an entry point to the application.
The category android.intent.category.LAUNCHER places this Activity in the
launcher window, as shown in figure 1.7. It is possible to have multiple Activity ele-
ments in a manifest file (and thereby an application), with more than one of them visible
in the launcher window.

 In addition to the elements used in this sample manifest file, other common tags
include:

Listing 1.5 AndroidManifest.xml file for a very basic Android application

B Package name

CApplication name

DIntentFilter definition
Licensed to Deborah Christiansen <pedbro@gmail.com>

26 CHAPTER 1 Targeting Android
■ The <service> tag represents a Service.
The attributes of the service tag include
its class and label. A Service may also
include the <intent-filter> tag.

■ The <receiver> tag represents a Broad-
castReceiver, which may or may not
have an explicit <intent-filter> tag.

■ The <uses-permission> tag tells An-
droid that this application requires cer-
tain security privileges. For example, if
an application requires access to the con-
tacts on a device, it requires the following
tag in its AndroidManifest.xml file:

<uses-permission android:name=
"android.permission.READ_CONTACTS" />

We revisit the AndroidManifest.xml file a num-
ber of times throughout the book because we
need to add more detail for certain elements.

 Now that you have a basic understanding of
the Android application and the AndroidMan-
ifest.xml file, which describes its components,
it’s time to discuss how and where it actually
executes. The next section discusses the rela-
tionship between an Android application and
its Linux and Dalvik virtual machine runtime.

1.3.4 Mapping applications to processes

Android applications each run in a single Linux
process. Android relies on Linux for process
management, and the application itself runs in an instance of the Dalvik virtual
machine. The OS may need to unload, or even kill, an application from time to time to
accommodate resource allocation demands. There is a hierarchy or sequence the sys-
tem uses to select the victim of a resource shortage. In general, the rules are as follows:

■ Visible, running activities have top priority.
■ Visible, nonrunning activities are important, because they are recently paused

and are likely to be resumed shortly.
■ A running service is next in priority.
■ The most likely candidates for termination are processes that are empty

(loaded perhaps for performance-caching purposes) or processes that have
dormant Activitys.

It’s time to wrap up this chapter with a simple Android application.

Figure 1.7 Applications are listed in the
launcher based on their IntentFilter.
In this example, the application “Where Do
You Live” is available in the LAUNCHER
category.
Licensed to Deborah Christiansen <pedbro@gmail.com>

27An Android application
1.4 An Android application
This section presents a simple Android application demonstrating a single Activity,
with one View. The Activity collects data, a street address to be specific, and creates
an Intent to find this address. The Intent is ultimately dispatched to Google Maps.
Figure 1.8 is a screen shot of the application running on the emulator. The name of
the application is Where Do You Live.

ps -a
The Linux environment is complete, including process management. It is possible to
launch and kill applications directly from the shell on the Android platform. However,
this is largely a developer’s debugging task, not something the average Android handset
user is likely to be carrying out. It is nice to have for troubleshooting application issues.
It is unheard of on commercially available mobile phones to “touch the metal” in this
fashion. For more in-depth exploration of the Linux foundations of Android, see chapter 13.

Figure 1.8 This Android application demonstrates a simple Activity and Intent.
Licensed to Deborah Christiansen <pedbro@gmail.com>

28 CHAPTER 1 Targeting Android

As previously introduced, the AndroidManifest.xml file contains the descriptors for
the high-level classes of the application. This application contains a single Activity
named AWhereDoYouLive. The application’s AndroidManifest.xml file is shown in list-
ing 1.6.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.unlockingandroid">
 <application android:icon="@drawable/icon">
 <activity android:name=".AWhereDoYouLive" android:label="@string/

app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The sole Activity is implemented in the file AWhereDoYouLive.java, presented in
listing 1.7.

package com.msi.manning.unlockingandroid;

// imports omitted for brevity

public class AWhereDoYouLive extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 final EditText addressfield = (EditText) findViewById(R.id.address);
 final Button button = (Button) findViewById(R.id.launchmap);
 button.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View view) {
 try {
 String address = addressfield.getText().toString();
 address = address.replace(' ', '+');
 Intent geoIntent = new Intent(android.content.Intent.ACTION_VIEW,
Uri.parse("geo:0,0?q=" + address));
 startActivity(geoIntent);
 } catch (Exception e) {
 …
 }
 }
 });
 }
}

In this example application, the setContentView method B creates the primary UI,
which is a layout defined in main.xml in the /res/layout directory. The EditText view

Listing 1.6 AndroidManifest.xml for the Where Do You Live application

Listing 1.7 Implementing the Android Activity in AWhereDoYouLive.java

Set up GUIB
CReference

Edit field

Reference
buttonD

GInitiate lookup
F

Prepare
Intent E

Get
address
Licensed to Deborah Christiansen <pedbro@gmail.com>

29An Android application
collects information, which is in this case an address. The EditText view is a text box
or edit box in generic programming parlance. The findViewById method C con-
nects the resource identified by R.id.address to an instance of the EditText class.

 A Button object is connected to the launchmap UI element, again using the find-
ViewById method D. When this button is clicked, the application obtains the entered
address by invoking the getText method of the associated EditText E.

 Once the address has been retrieved from the UI, we need to create an Intent to
find the entered address. The Intent has a VIEW action, and the data portion repre-
sents a geographic search query, as seen in F.

 Finally, the application asks Android to perform the Intent, which ultimately
results in the mapping application displaying the chosen address. This is accom-
plished with a call to the startActivity method G.

 Resources are precompiled into a special class known as the R class, as shown in
listing 1.8. The final members of this class represent UI elements. Note that you
should never modify the R.java file manually, as it is automatically built every time the
underlying resources change.

/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.msi.manning.unlockingandroid;

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int icon=0x7f020000;
 }
 public static final class id {
 public static final int address=0x7f050000;
 public static final int launchmap=0x7f050001;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040000;
 }
}

Android resources are covered in greater depth in chapter 3.
 The primary screen of this application is defined as a LinearLayout view, as shown

in listing 1.9. It is a single layout containing one label, one text entry element, and
one button control.

Listing 1.8 R.java contains the R class, which has UI element identifiers
Licensed to Deborah Christiansen <pedbro@gmail.com>

30 CHAPTER 1 Targeting Android
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Please enter your home address."
 />
<EditText
 android:id="@+id/address"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
android:autoText="true"
/>
<Button
 android:id="@+id/launchmap"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Show Map"
 />
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Unlocking Android, Chapter 1."
 />
</LinearLayout>

Note the use of the @ symbol in this resource’s id attribute B and C. This causes the
appropriate entries to be made in the R class via the automatically generated R.java
file. These R class members are used in the calls to findViewById(), as shown previ-
ously, to tie the UI elements to an instance of the appropriate class.

 A strings file and icon round out the resources in this simple application. The
strings.xml for this application is shown in listing 1.10. The strings.xml file is used to
localize string content.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Where Do You Live</string>
</resources>

This concludes our first Android application.

1.5 Summary
This chapter has introduced the Android platform and briefly touched on market
positioning, including what Android is up against as a newcomer to the mobile mar-
ketplace. Android is such a new platform that there are sure to be changes and

Listing 1.9 Main.xml defines the UI elements for our sample application

Listing 1.10 strings.xml

ID assignment
for EditText

B

ID assignment
for Button

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

31Summary
announcements as it matures and more and varied hardware hits the market. New
platforms need to be adopted and flexed to identify the strengths and expose the
weaknesses so they can be improved. Perhaps the biggest challenge for Android is to
navigate the world of the mobile operators and convince them that Android is good
for business. Fortunately with Google behind it, Android should have some ability to
flex its muscles, and we’ll see significant inroads with device manufacturers and carri-
ers alike.

 In this chapter we examined the Android stack and discussed its relationship with
Linux and Java. With Linux at its core, Android is a formidable platform, especially
for the mobile space. While Android development is done in the Java programming
language, the runtime is executed in the Dalvik virtual machine, as an alternative to
the Java virtual machine from Sun. Regardless of the VM, Java coding skills are an
important aspect of Android development. The bigger issue is the degree to which
existing Java libraries can be leveraged.

 We also examined the Android Intent class. The Intent is what makes Android
tick. It is responsible for how events flow and which code handles them, and it pro-
vides a mechanism for delivering specific functionality to the platform, enabling third-
party developers to deliver innovative solutions and products for Android. The main
application classes of Activity, Service, ContentProvider, and BroadcastReceiver
were all introduced with a simple code snippet example for each. Each of these appli-
cation classes interacts with Intents in a slightly different manner, but the core facility
of using Intents and using content URIs to access functionality and data combine to
create the innovative and flexible Android environment. Intents and their relation-
ship with these application classes are unpacked and unlocked as we progress through
this book.

 The AndroidManifest.xml descriptor file ties all of the details together for an
Android application. It includes all of the information necessary for the application to
run, what Intents it can handle, and what permissions the application requires.
Throughout this book, the AndroidManifest.xml file will be a familiar companion as
new elements are added and explained.

 Finally, this chapter provided a taste of Android application development with a
very simple example tying a simple UI, an Intent, and Google Maps into one seamless
user experience. This is just scratching the surface of what Android can do. The next
chapter takes a deeper look into the Android SDK to learn more about what is in the
toolbox to assist in Unlocking Android.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Development
 environment
This chapter introduces the Android Development Tools chain and provides a
hands-on guide to using them as we walk through creating, testing, and debugging
a sample application. Upon completing this chapter, you will be familiar with using
Eclipse and the Android Development Tools plug-in, navigating the Android SDK
and its tools, running Android applications in the emulator, and debugging your
application. With these skills in hand, we will look at the Java packages provided in
the SDK to better equip you to embrace the development topics introduced later in
this book as you prepare to develop your own Android applications.

 The core task for a developer when embracing a new platform is getting an
understanding of the SDK with its various components. Let’s start by examining the
core components of the Android SDK, then transition into using the included tools
to build and debug an application.

This chapter covers:
■ Installing the Android SDK
■ Using Eclipse for Android development
■ Fitting it together with the Android Emulator
■ Running and debugging an Android application
32

Licensed to Deborah Christiansen <pedbro@gmail.com>

33The Android SDK
2.1 The Android SDK
The Android SDK is a freely available download from Google. The first thing you
should do before going any further in this chapter is make sure you have the Android
SDK installed along with Eclipse and the Android plug-in for Eclipse, also known as
the Android Development Tools, or simply ADT. The Android SDK is required to build
Android applications, and Eclipse is the preferred development environment for this
book. You can download the Android SDK from http://code.google.com/android/
download.html.

TIP The Android download page has instructions for installing the SDK, or
you can refer to appendix A of this book for detailed information on
installing the required development tools.

As in any development environment, becoming familiar with the class structures is
helpful, so having the documentation at hand as a reference is a good idea. The
Android SDK includes HTML-based documentation, which primarily consists of Java-
doc-formatted pages describing the available packages and classes. The Android SDK
documentation is found in the /doc directory under your SDK installation. Because of
the rapidly changing nature of this new platform, you may want to keep an eye out for
any changes to the SDK. The most up-to-date Android SDK documentation is available
at http://code.google.com/android/documentation.html.

2.1.1 The application programming interface

The Java environment of Android can be broken down into a handful of key sections.
Once you have an understanding of each of these areas, the Javadoc reference mate-
rial that ships with the SDK becomes a real tool and not just a pile of seemingly unre-
lated material. You may recall that Android is not a strictly J2ME software
environment; however, there is some commonality between the Android platforms
and other Java development platforms. The next few sections review some of the Java
packages in the Android SDK and where they can be used. The remaining chapters
provide a deeper look into using many of these programming interfaces.

2.1.2 Core Android packages

If you have developed in Java previously, you will recognize many familiar Java pack-
ages for core functionality. These include packages such as:

■ java.lang —Core Java language classes.
■ java.io —Input/output capabilities.
■ java.net —Network connections.
■ java.util —Utility classes. This package includes the Log class used to write to

the LogCat.
■ java.text —Text-handling utilities.
■ java.math —Math and number-manipulation classes.
■ javax.net —Network classes.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/download.html
http://code.google.com/android/download.html
http://code.google.com/android/documentation.html

34 CHAPTER 2 Development environment
■ javax.security —Security-related classes.
■ javax.xml —DOM-based XML classes.
■ org.apache.* —HTTP-related classes.
■ org.xml —SAX-based XML classes.

There are additional Java classes. Generally speaking, there is minimal focus in this
book on core packages listed here, because our primary concern is Android develop-
ment. With that in mind, let’s look at the Android-specific functionality found in the
Android SDK.

 Android-specific packages are very easy to identify because they start with android
in the package name. Some of the more important packages include:

■ android.app—Android application model access
■ android.content—Accessing and publishing data in Android
■ android.net—Contains the Uri class, used for accessing various content
■ android.graphics—Graphics primitives
■ android.opengl—OpenGL classes
■ android.os—System-level access to the Android environment
■ android.provider—ContentProvider-related classes
■ android.telephony—Telephony capability access
■ android.text—Text layout
■ android.util—Collection of utilities for text manipulation, including XML
■ android.view—UI elements
■ android.webkit—Browser functionality
■ android.widget—More UI elements

Some of these packages are absolutely core to Android application development,
including android.app, android.view, and android.content. Other packages are
used to varying degrees depending on the type of applications being constructed.

2.1.3 Optional packages

Not every Android device will have the same hardware and mobile connectivity capa-
bilities, so some elements of the Android SDK are optional. Some devices will support
these features, and others not. It is important that an application degrade gracefully if
a feature is not available on a specific handset. Java packages to pay special attention
to include those that rely on specific, underlying hardware and network characteris-
tics, such as location-based services including GPS and wireless technologies such as
Bluetooth, IrDA, and Wi-Fi (802.11).

 This quick introduction to the Android SDK’s programming interfaces is just
that—quick and at a glance. Upcoming chapters go into the class libraries in further
detail, so we’ll focus now on the tools required to build Android applications.

 Before building an actual Android application, let’s examine how the Android SDK
and its components fit into the Eclipse environment.
Licensed to Deborah Christiansen <pedbro@gmail.com>

35Fitting the pieces together
2.2 Fitting the pieces together
After installing the Android SDK along with the ADT plug-in for Eclipse, we’re ready to
explore the development environment. Figure 2.1 depicts the typical Android devel-
opment environment, including both real hardware and the useful Android Emula-
tor. While not the exclusive tool required for Android development, Eclipse can play
a big role in Android development not only because it provides a rich Java compila-
tion and debugging environment, but also because with the ADTs under Eclipse, we
can manage and control virtually all aspects of testing our Android applications
directly from the Eclipse IDE.

 The key features of the Eclipse environment as it pertains to Android application
development include:

■ Rich Java development environment including Java source compilation, class
autocompletion, and integrated Javadoc

■ Source-level debugging
■ Android Emulator profile management and launch
■ The Dalvik Debug Monitoring Service (DDMS)

– Thread and heap views
– Emulator filesystem management
– Data and voice network control
– Emulator control
– System and application logging

Eclipse supports the concept of perspectives, where the layout of the screen has a set
of related windows and tools. The windows and tools included in an Eclipse perspec-
tive are known as views. When developing Android applications, there are two Eclipse

Development environment (laptop)

Eclipse open source IDE

•Coding

•Debugging

Android Development Tools (plug-in)
•SDK

•Emulator profile configuration

•Emulator launch

•Process & file system viewing

•Log viewing

Android Emulator
•Multiple skins

•Network connectivity options

•Integrated with Eclipse via
Android Development Tools plug-
in

Command-Line tools
•File transfer tools

•GSM simulation tester

SDK documentation

Android Device
•Physical phone hardware

Figure 2.1
The development
environment for
building Android
applications, including
the popular open
source Eclipse IDE
Licensed to Deborah Christiansen <pedbro@gmail.com>

36 CHAPTER 2 Development environment
perspectives of primary interest to us: the Java Perspective and the Dalvik Debug Mon-
itoring Service Perspective. Beyond those two, the Debug Perspective is also available
and useful when debugging an Android application. To switch between the available
perspectives in Eclipse, use the Open Perspective menu, found under the Window
menu in the Eclipse IDE. Let’s examine the features of the Java and DDMS Perspectives
and how they can be leveraged for Android development.

2.2.1 Java Perspective

The Java Perspective is where you will spend most of
your time while developing Android applications. The
Java Perspective boasts a number of convenient views for
assisting in the development process. The Package
Explorer view allows us to see the Java projects in our
Eclipse Workspace. Figure 2.2 shows the Package Ex-
plorer listing some of the sample projects for this book.

 The Java Perspective is where you will edit your Java
source code. Every time your source file is saved, it is
automatically compiled by Eclipse’s Java Developer
Tools (JDT) in the background. You need not worry
about the specifics of the JDT; the important thing to
know is that it is functioning in the background to make
your Java experience as seamless as possible. If there is
an error in your source code, the details will show up in
the Problems view of the Java Perspective. Figure 2.3 has
an intentional error in the source code to demonstrate
the functionality of the Problems view. You can also put
your mouse over the red x to the left of the line contain-
ing the error for a tool-tip explanation of the problem.

 One of the very powerful features of the Java Per-
spective in Eclipse is the integration between the source code and the Javadoc view.
The Javadoc view updates automatically to provide any available documentation about
a currently selected Java class or method, as shown in figure 2.4, where the Javadoc
view displays information about the Activity class.

TIPS This chapter just scratches the surface in introducing the powerful
Eclipse environment. If you want to learn more about Eclipse, you might
consider reading Eclipse in Action A Guide for Java Developers, by David Gal-
lardo, Ed Burnette, and Robert McGovern, published by Manning and
available online at http://www.manning.com/.

It is easy to get the views in the current perspective into a layout that may
not be desirable. If this occurs, you have a couple of choices to restore
the perspective to a more useful state. The first option is to use the Show
View menu under the Window menu to display a specific view. Alterna-
tively, you can select the Reset Perspective menu to restore the perspec-
tive to its default settings.

Figure 2.2 The Package
Explorer allows us to browse the
elements of our Android projects.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/

37Fitting the pieces together
Figure 2.3 The Problems view shows any errors in your source code.

Figure 2.4 The Javadoc view provides context-sensitive documentation, in this case for the Activity
class.
Licensed to Deborah Christiansen <pedbro@gmail.com>

38 CHAPTER 2 Development environment
In addition to the JDT, which compiles Java source files, the ADTs automatically com-
pile Android-specific files such as layout and resource files. We’ll learn more about the
underlying tools later in this chapter and again in chapter 3, but now it’s time to have
a look at the Android-specific perspective found in the DDMS.

2.2.2 DDMS Perspective

The DDMS Perspective provides a dashboard-like view into the heart of a running
Android device, or in our case, a running Android Emulator. Figure 2.5 shows the
emulator running the Chapter2 sample application.

 We’ll walk through the details of the application, including how to build the appli-
cation and how to start it running in the Android Emulator, but first let’s see what we
can learn from the DDMS to continue the discussion of the tools available to us for
Android development. The Devices view shows a single emulator session, titled emula-
tor-tcp-5555. This means that there is a connection to the Android Emulator at
TCP/IP port 5555. Within this emulator session, five processes are running. The one
of interest to us is com.manning.unlockingandroid, with a process id of 616.

TIP Unless you are testing a peer-to-peer application, you will typically have
only a single Android Emulator session running at a time. It is possible to
have multiple instances of the Android Emulator running concurrently
on a single development machine.

Logging is an essential tool in software development, and that brings us to the LogCat
view of the DDMS Perspective. This view provides a glimpse at system and application

Figure 2.5 Perspective with an application running in the Android Emulator
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://manning.com/ableson

39Fitting the pieces together
logging taking place in the Android Emulator. In figure 2.5, a filter has been set up for
looking at entries with a tag of Chapter2. Using a filter on the LogCat is a helpful
practice, because it can reduce the noise of all the logging entries and allow us to
focus on our own application’s entries. In this case, there are four entries in the list
matching our filter criteria. We’ll look at the source code soon to see how we get our
messages into the log. Note that these log entries have a column showing the process
id, or PID, of the application contributing the log entry. As expected, the PID for our
log entries is 616, matching our running application instance in the emulator.

 The File Explorer view is shown in the upper right of figure 2.5. User applications,
that is, the ones you and I write, are deployed with a file extension of .apk and are
stored in the /data/app directory of the Android device. The File Explorer view also
permits filesystem operations such as copying files to and from the Android Emulator
as well as removing files from the emulator’s filesystem. Figure 2.6 shows the process
of deleting a user application from the /data/app directory.

 Obviously, being able to casually browse the filesystem of our mobile phone is a great
convenience. This is a nice feature to have for mobile development, where we are often
relying on cryptic pop-up messages to help us along in the application development
and debugging process. With easy access to the filesystem, we can work with files and
readily copy them to and from our development computer platform as necessary.

 In addition to exploring a running application, the DDMS Perspective provides
tools for controlling the emulated environment. For example, the Emulator Control
view allows the testing of various connectivity characteristics for both voice and data
networks, such as simulating a phone call or receiving an incoming SMS. Figure 2.7
demonstrates sending an SMS message to the Android Emulator.

 The DDMS provides quite a bit of visibility into, and control over, the Android
Emulator and is a handy tool for evaluating our Android applications. Before we move
on to building and testing Android applications, it is helpful to understand what is
happening behind the scenes and enabling the functionality of the DDMS.

Figure 2.6 Deleting applications from the emulator by highlighting the application file and clicking the
delete button
Licensed to Deborah Christiansen <pedbro@gmail.com>

40 CHAPTER 2 Development environment
2.2.3 Command-Line tools

The Android SDK ships with a collection of command-line tools, which are located in
the tools subdirectory of your Android SDK installation. While Eclipse and the ADTs
provide a great deal of control over our Android development environment, some-
times it is nice to exercise greater control, particularly when considering the power
and convenience that scripting can bring to a development platform. We are going to
explore two of the command-line tools found in the Android SDK.

TIP It is a good idea to add the tools directory to your search path. For exam-
ple, if your Android SDK is installed to c:\software\google\androidsdk, you
can add the Android SDK to your path by performing the following oper-
ation in a command window on your Windows computer:

set path=%path%;c:\software\google\androidsdk\tools;

Or use the following command for Mac OS X and Linux:

export PATH=$PATH:/path_to_Android_SDK_directory/tools

ANDROID ASSET PACKAGING TOOL

You may be wondering just how files such as the layout file main.xml get processed
and exactly where the R.java file comes from. Who zips up the application file for us
into the apk file? Well, you may have already guessed, but it is the Android Asset Pack-
aging Tool, or as it is called from the command line, aapt. This is a versatile tool that
combines the functionality of pkzip or jar along with an Android-specific resource
compiler. Depending on the command-line options provided to it, aapt wears a num-
ber of hats and assists with our design-time Android development tasks. To learn the
functionality available in aapt, simply run it from the command line with no argu-
ments. A detailed usage message is written to the screen.

 While aapt helps with design-time tasks, another tool, the Android Debug Bridge,
assists us at runtime to interact with the Android Emulator.

Figure 2.7 Sending a test
SMS to the Android Emulator
Licensed to Deborah Christiansen <pedbro@gmail.com>

41Fitting the pieces together
ANDROID DEBUG BRIDGE

The Android Debug Bridge (adb) utility permits us to interact with the Android Emu-
lator directly from the command line or script. Have you ever wished you could navi-
gate the filesystem on your smartphone? Well, now you can with the adb! The adb
works as a client/server TCP-based application. While there are a couple of back-
ground processes that run on the development machine and the emulator to enable
our functionality, the important thing to understand is that when we run adb, we get
access to a running instance of the Android Emulator. Here are a couple of examples
of using adb. First, let’s look to see if we have any available Android Emulator sessions
running:

adb devices<return>

This command will return a list of available
Android Emulators; for example, figure 2.8
shows adb locating two running emulator
sessions.

 Let’s connect to the first Android Emu-
lator session and see if our application is
installed. We connect with the syntax adb
shell. This is how we would connect if we
had a single Android Emulator session active, but because there are two emulators
running, we need to specify an identifier to connect to the appropriate session:

adb –d 1 shell

Figure 2.9 shows off the Android filesystem and demonstrates looking for a specific
installed application, namely our Chapter2 sample application, which we’ll be build-
ing in the next section.

 This capability can be very handy when we want to remove a specific file from the
emulator’s filesystem, kill a process, or generally interact with the operating environ-
ment of the Android Emulator. If you download an application from the internet, for
example, you can use the adb command to install an application. For example,

adb shell install someapplication.apk

installs the application named someapplication to the Android Emulator. The file is cop-
ied to the /data/app directory and is accessible from the Android application

Figure 2.9 Using the
shell command, we
can browse Android’s
filesystem.

Figure 2.8 The adb tool provides interaction
at runtime with the Android Emulator.
Licensed to Deborah Christiansen <pedbro@gmail.com>

42 CHAPTER 2 Development environment
launcher. Similarly, if you desire to remove an application, you can run adb to remove
an application from the Android Emulator. For example, if you desire to remove the
Chapter2.apk sample application from a running emulator’s filesystem, you can exe-
cute the following command from a terminal or Windows command window:

adb shell rm /data/app/Chapter2.apk

Mastering the command-line tools in the Android SDK is certainly not a requirement
of Android application development, but having an understanding of what is available
and where to look for capabilities is a good skill to have in your toolbox. If you need
assistance with either the aapt or adb command, simply enter the command at the
terminal, and a fairly verbose usage/help page is displayed. Additional information
on the tools may be found in the Android SDK documentation.

TIP The Android filesystem is a Linux filesystem. While the adb shell com-
mand does not provide a very rich shell programming environment as is
found on a desktop Linux or Mac OS X system, basic commands such as
ls, ps, kill, and rm are available. If you are new to Linux, you may bene-
fit from learning some very basic shell commands.

One other tool you will want to make sure you are familiar with is telnet. Telnet allows
you to connect to a remote system with a character-based UI. In this case, the remote
system you connect to is the Android Emulator’s console. You can accomplish this
with the following command:

telnet localhost 5554

In this case, localhost represents your local development computer where the
Android Emulator has been started because the Android Emulator relies on your
computer’s loopback IP address of 127.0.0.1. Why port 5554? Recall when we
employed adb to find running emulator instances that the output of that command
included a name with a number at the end. The first Android Emulator can generally
be found at IP port 5555. No matter which port number the Android Emulator is
using, the Android Emulator’s console may be found at a port number equaling 1 less.
For example, if the Android Emulator is running and listed at port 5555, the console
is at port 5554.

 Using a telnet connection to the emulator provides a command-line means for
configuring the emulator while it is running and testing telephony features such as
calls and text messages.

 It is time to write an Android application to exercise the development environ-
ment we have been discussing.

2.3 Building an Android application in Eclipse
We are going to build a simple application that gives us the opportunity to modify the
UI, provides a little application logic, then executes the application in the Android
Emulator. More complex applications are left for later chapters—our focus here is on
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/hatcher/
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.manning.com/loughran/

43Building an Android application in Eclipse
the development tools. Building an Android application is not too much different
from creating other types of Java applications in the Eclipse IDE. It all starts with
choosing File > New and selecting an Android application as the build target.

 Like many development environments, Eclipse provides for a wizard interface to
ease the task of creating a new application. We’ll use the Android Project Wizard to
get off to a quick start in building an Android application.

2.3.1 Android Project Wizard

The most straightforward manner to create an Android application is to utilize the ser-
vices of the Android Project Wizard, which is part of the ADT plug-in. The wizard pro-
vides a simple means to define the Eclipse project name and location, the Activity
name corresponding to the main UI class, as well as a name for the application. Of
importance also is the Java package name under which the application is created. Once
this application is created, it is easy to add new classes to the project.

NOTE In this example, we are creating a brand-new project in the Eclipse work-
space. This same wizard may be used to import source code from another
developer, such as the sample code for this book. Note also that the spe-
cific screens may vary over time as the Android tools mature.

Figure 2.10 demonstrates the creation of a
new project named Chapter2 using the
wizard.

TIP You will want the package name of
your applications to be unique
from one application to the next.

Clicking Finish creates our sample appli-
cation. At this point, the application
compiles and is capable of running on
the emulator—no further development
steps are required. Of course, what fun
would an empty project be? Let’s flesh
out this sample application, our Android
Tip Calculator.

2.3.2 Android sample application code

The Android Application Wizard takes
care of a number of important elements in the Android application structure, includ-
ing the Java source files, the default resource files, and the AndroidManifest.xml
file. Looking at the Package Explorer view in Eclipse we can see all of the elements
of this application. Here’s a quick description of the elements included in our sam-
ple application:

Figure 2.10 Using the Android Project Wizard,
it is easy to create an empty Android application,
ready for customization.
Licensed to Deborah Christiansen <pedbro@gmail.com>

44 CHAPTER 2 Development environment
■ The src folder contains two Java source files automatically created by the wizard.
■ ChapterTwo.java contains the main Activity for the application. We will mod-

ify this file to add our sample application’s tip calculator functionality.
■ R.java contains identifiers for each of the UI resource elements in the applica-

tion. It is important that you never modify this file directly, as it automatically
regenerates every time a resource is modified, and any manual changes you
make will be lost the next time the application is built.

■ Android.jar contains the Android runtime Java classes. This is a reference to
the android.jar file found in the Android SDK.

■ The res folder contains all of the Android resource files, including:
■ Drawables contains image files such as bitmaps and icons. The wizard includes a

default Android icon named icon.png.
■ Layout contains an xml file called main.xml. This file contains the UI elements

for the primary view of our Activity. We will modify this file but we will not be
making any significant or special changes—just enough to accomplish our mea-
ger UI goals for our Tip Calculator. UI elements such as Views are covered in
detail in chapter 3. It is not uncommon for an Android application to have mul-
tiple xml files in the Layout section.

■ Values contains the strings.xml file. This file is used for localizing string values
such as the application name and other strings used by your application. It con-
tains all of the applications in this book

■ AndroidManifest.xml represents the deployment information for this project.
While AndroidManifest.xml files can become somewhat complex, this chapter’s
manifest file can run without modification because no special permissions
are required.

Now that we know what is in the project, let’s review how we are going to modify the
application. Our goal with the Android Tip Calculator is to permit our user to enter
the price of a meal, then select a button to calculate the total cost of the meal, tip
included. To accomplish this, we need to modify two files, ChapterTwo.java and the UI
layout file, main.xml. Let’s start with the UI changes by adding a few new elements to
the primary View, as shown in listing 2.1.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Chapter 2 Android Tip Calculator"

Listing 2.1 Main.xml contains UI elements

Static TextViewB
Licensed to Deborah Christiansen <pedbro@gmail.com>

45Building an Android application in Eclipse
 />
<EditText
 android:id="@+id/mealprice"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
/>
<Button
android:id="@+id/calculate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Calculate Tip"
 />
<TextView
 android:id="@+id/answer"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text=""
 />

</LinearLayout>

The layout for this application is very straightforward. The overall layout is a vertical,
linear layout with only four elements. A static TextView displays the title of the appli-
cation B. An EditText collects the price of the meal for this Tip Calculator applica-
tion C. The EditText element has an attribute of type android:id, with a value of
mealprice D. When a UI element contains the android:id attribute, it permits us to
manipulate this element from our code. We accomplish this by adding this element’s
id attribute to the R.java file as a unique member of the R class. This identifying value
is used in the findViewById method, shown in listing 2.2. If a UI element is static,
such as the TextView B, and does not need to be set or read from our application
code, the android:id attribute is not required.

 A button named calculate E is added to the view. Note that this element also has
an android:id attribute because we will want to capture click events.

 A TextView named answer F is provided for displaying our total cost, including
tip. Again, this element has an id because we will need to update it during runtime.

 When we save the file main.xml, the file is processed by the ADT plug-in, compiling
the resources and generating an updated R.java file. Try it for yourself. Modify one of
the id values in the main.xml file, save the file, then open R.java to have a look at the
constants generated there. Remember not to modify the R.java file directly, because
all of your changes will be lost! If you conduct this experiment, be sure to change the
values back as they are listed here to make sure the rest of the project will compile as-
is. Provided we have not introduced any syntactical errors into our main.xml file, our
UI file is complete.

TIP Through the maturation of the still very young Android Development
Tools, the plug-ins for Eclipse have offered increasingly useful resource
editors for manipulating the layout xml files. This means that you do not
need to rely on editing the xml files directly.

EditText definitionC

D Assign an id

Button definition,
including id

E

TextView with an idF
Licensed to Deborah Christiansen <pedbro@gmail.com>

46 CHAPTER 2 Development environment
It is time to turn our attention to the file ChapterTwo.java to implement the desired
Tip Calculator functionality. ChapterTwo.java is shown in listing 2.2. Note that we
omitted some imports for brevity. You can download the complete source code from
the Manning website at http://manning.com/ableson.

package com.manning.unlockingandroid;

import com.manning.unlockingandroid.R;

import android.app.Activity;
import java.text.NumberFormat;
import android.util.Log;
// some imports omitted

public class ChapterTwo extends Activity {
 public static final String tag = "Chapter2";
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 final EditText mealpricefield =
 (EditText) findViewById(R.id.mealprice);
 final TextView answerfield =
 (TextView) findViewById(R.id.answer);

 final Button button = (Button) findViewById(R.id.calculate);
 button.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 Try {
 //Perform action on click
 Log.i(tag,"onClick invoked.");
 // grab the meal price from the UI
 String mealprice =
 mealpricefield.getText().toString();
 Log.i(tag,"mealprice is [" + mealprice + "]");
 String answer = "";

 // check to see if the meal price includes a "$"
 if (mealprice.indexOf("$") == -1) {
 mealprice = "$" + mealprice;
 }

 float fmp = 0.0F;
 // get currency formatter
 NumberFormat nf =
 java.text.NumberFormat.getCurrencyInstance();

 // grab the input meal price
 fmp = nf.parse(mealprice).floatValue();

 // let's give a nice tip -> 20%
 fmp *= 1.2;
 Log.i(tag,"Total Meal Price (unformatted) is [" + fmp + "]");
 // format our result

Listing 2.2 ChapterTwo.java implements the Tip Calculator logic

Package nameB

Required importsC

Reference EditText
for mealprice

D

E

Set up
onClick
Listener

Log entryF

Get meal priceg
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://manning.com/ableson

47Building an Android application in Eclipse
 answer = "Full Price, Including 20% Tip: " + nf.format(fmp);

 // display the answer
 answerfield.setText(answer);

 Log.i(tag,"onClick complete.");
 } catch (java.text.ParseException pe) {
 Log.i(tag,"Parse exception caught");
 answerfield.setText("Failed to parse amount?");
 } catch (Exception e){
 Log.e(tag,"Failed to Calculate Tip:" + e.getMessage());
 e.printStackTrace();
 answerfield.setText(e.getMessage());
 }
 }
 });
 }
}

Let’s examine this sample application, step-by-step. Like all but the most trivial Java
applications, this class contains a statement identifying which package it belongs to:
com.manning.unlockingandroid B. This line containing the package name was gen-
erated by the Application Wizard.

 We import the com.manning.unlockingandroid.R class to gain access to the defi-
nitions used by the UI. Note that this step is not actually required because the R class is
part of the same application package; however, it is helpful to include this import
because it makes our code easier to follow. Also note that there are some built-in UI
elements in the R class. Some are introduced later in the book as part of sample appli-
cations.

 A number of imports are necessary c to resolve class names in use; most of the
import statements have been omitted from this code listing for the sake of brevity. One
import that is shown here contains the definition for the java.text.NumberFormat
class, which is used to format and parse currency values.

 Another import shown is for the android.util.Log class, which is employed to
make entries to the log. Calling static methods of the Log class adds entries to the log.
Entries in the log may be viewed via the LogCat view of the DDMS Perspective. When
making entries to the log, it is helpful to put a consistent identifier on a group of
related entries using a common string, commonly referred to as the tag. We can filter
on this string value so we don’t have to sift through the hundreds and thousands of
LogCat entries to find our few debugging or informational messages.

 We connect the UI element containing mealprice to a class-level variable of type
EditText d by calling the findViewById method, passing in the identifier for the
mealprice, as defined by our automatically generated R class, found in R.java. With
this reference, we can access the user’s input and manipulate the meal price data as
entered by the user. Similarly, we connect the UI element for displaying the calculated
answer back to the user, again by calling the findViewById method.

 To know when to calculate the tip amount, we need to obtain a reference to the
Button so we can add an event listener. We want to know when the button has been

h
Display full price,
including tip

i Catch parse error
Licensed to Deborah Christiansen <pedbro@gmail.com>

48 CHAPTER 2 Development environment
clicked. We accomplish this by adding a new OnClickListener method named
onClick e.

 When the onClick method is invoked, we add the first of a few log entries using
the static i() method of the Log class f. This method adds an entry to the log with an
Information classification. The Log class contains methods for adding entries to the
log for different levels, including Verbose, Debug, Information, Warning, and Error.

 Now that we have a reference to the mealprice UI element, we can obtain the text
entered by our user with the getText() method of the EditText class g. In preparation
for formatting the full meal price, we obtain a reference to the static currency formatter.

 Let’s be somewhat generous and offer a 20 percent tip. Then, using the formatter,
let’s format the full meal cost, including tip. Next, using the setText() method of the
TextView UI element named answerfield, we update the UI to tell the user the total
meal cost h.

 Because this code might have a problem with improperly formatted data, it is a
good practice to put code logic into Try/Catch blocks to keep our application behav-
ing when the unexpected occurs i.

 There are additional files in this sample project, but in this chapter we are con-
cerned only with modifying the application enough to get custom functionality work-
ing. You will notice that as soon as we save our source files, the Eclipse IDE compiles
the project source files in the background. If there are any errors, they are listed in
the Problems view of the Java Perspective as well as marked in the left-hand margin
with a small red x to draw our attention to them.

TIP Using the command-line tools found in the Android SDK, you can create
batch builds of your applications without the use of the IDE. This
approach is useful for software shops with a specific configuration-
management function and a desire to conduct automated builds. In
addition to the Android-specific build tools found under the tools subdi-
rectory of your Android SDK installation, you will also require a Java
Developer Kit (JDK) version 5.0 or later in order to complete command-
line application builds. Automating builds of Android applications is
beyond the scope of this book; however, you can learn more about the
topic of build scripts by reading two Manning titles on the topic: Java
Development with Ant by Erik Hatcher and Steve Loughran found at http:
//www.manning.com/hatcher/ and Ant in Action, Second Edition of Java
Development with Ant, by Steve Loughran and Erik Hatcher, found at
http://www.manning.com/loughran/.

Assuming there are no errors in the source files, our classes and UI files will compile
properly. But what needs to happen before our project can be run and tested in the
Android Emulator?

2.3.3 Building the application

At this point, our application has compiled and is actually ready to be run on the
device. Let’s look deeper at what happens after the compilation step. We don’t need
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/hatcher/
http://www.manning.com/hatcher/
http://www.manning.com/loughran/

49Building an Android application in Eclipse
to perform these steps because the ADTs handle these steps for us, but it is helpful to
understand what is happening behind the scenes.

 Recall that despite the compile-time reliance upon Java, Android applications do
not run in a Java virtual machine. Instead, the Android SDK employs the Dalvik virtual
machine. This means that Java bytecodes created by the Eclipse compiler must be con-
verted to the .dex file format for use in the Android runtime. The Android SDK has
tools to perform these steps, but the ADT takes care of all of this for us transparently.

 The Android SDK contains tools that convert the project files into a file ready to
run on the Android Emulator. Figure 2.11 depicts the generalized flow of source files
in the Android build process. If you recall from our earlier discussion of Android SDK
tools, the tool used at design time is aapt. Application resource xml files are processed
by aapt, with the R.java file created as a result—remember that we need to refer to the
R class for user-interface identifiers when connecting our code to the UI. Java source
files are first compiled to class files by our Java environment, typically Eclipse and the
JDT. Once compiled, they are then converted to dex files to be ready for use with
Android’s Dalvik virtual machine. Surprisingly, the project’s xml files are converted to
a binary representation, not text as you might expect. However, the files retain their
.xml extension on the device.

 The converted xml files, a compiled form of the non-layout resources including
the Drawables and Values, and the dex file (classes.dex) are packaged by the aapt tool
into a file with a naming structure of projectname.apk. The resulting file can be read
with a pkzip-compatible reader, such as WinRAR or WinZip, or the Java archiver, jar.
Figure 2.12 show this chapter’s sample application in WinRAR.

 We are finally ready to run our application on the Android Emulator! It is impor-
tant to become comfortable with working in an emulated environment when doing
any serious mobile software development. There are many good reasons to have a
quality emulator available for development and testing. One simple reason is that hav-
ing multiple real devices with requisite data plans is a very expensive proposition. A

*.java

layout.xml

*.class

R.java

*.dex

application.apk
file

Android-
Manifest.xml

Figure 2.11 The ADT employs tools from the Android SDK to convert source files
to a package ready to run on an Android device or emulator.
Licensed to Deborah Christiansen <pedbro@gmail.com>

50 CHAPTER 2 Development environment
single device may be hundreds of dollars alone. If the Open Handset Alliance has its
way, Android will find its way onto multiple carriers with numerous devices, often with
varying capabilities. Having one of every device is impractical for all but the develop-
ment shops with the largest of budgets. For the rest of us, a device or two and the
Android Emulator will have to suffice. Let’s focus on the strengths of emulator-based
mobile development.

2.4 The Android Emulator
While the best test of an application is running it on the hardware for which it was
designed, an emulator often makes the job of the developer much easier. Working in an
emulated environment permits a more rapid compile, run, and debug iterative cycle
than is typically available when testing on a real hardware device. Taking the time to
sync, or copy, an application to a real device typically takes longer than starting an emu-
lator session. Also, it is easier to clean the filesystem of an emulator than performing the
same maintenance operation on a real device. When you add in the capability of script-
ing commands to/from the emulator, it becomes an option worthy of investigation.

 Beyond being a faster tool than working with a real device, the emulator tool must
consider physical characteristics of a device, primarily the screen dimensions, input
devices, and network connectivity.

2.4.1 Skins

Not all mobile devices are equally equipped, so it is important to be able to accommo-
date and test varying device characteristics in an emulated environment. The Android
SDK comes with an emulator with distinct skins. The skins represent different hardware
layouts as well as portrait and landscape orientations. Figure 2.13 shows two emulator
views: one in portrait with a hidden QWERTY keypad, the other in landscape mode with
a visible keyboard. The skins found with your SDK may vary from those shown here.

 Not only is it important to understand and accommodate how the device looks, it is
important to understand what connectivity options a device is able to offer. Have you
ever tested a mobile application in an area where there is excellent data coverage only
to find out that the location where the application is deployed in the field often has
only marginal data service? The ability to test this condition in the confines of our

Figure 2.12 The Android application file format is pzip compatible.
Licensed to Deborah Christiansen <pedbro@gmail.com>

51The Android Emulator
development environment gives a real advantage to the application developer. Fortu-
nately, the Android Emulator permits this kind of testing, as shown in the next section.

2.4.2 Network speed

Network speed simulation is a key element of mobile software development. This fea-
ture is helpful because the actual user experience will vary during real-world use, and
it is important that mobile applications degrade gracefully in the absence of a reliable
network connection. The Android Emulator provides for a rich set of emulation tools
for testing various network conditions and speeds. Table 2.1 lists the available network
speed and latency conditions available in the Android Emulator.

Table 2.1 The Android Emulator supports a variety of network speed options.

Network Speed Network Latency

Full speed (Use the development environment’s full internet connection) None—no latency introduced

GSM GPRS

HSCSD EDGE

GPRS UMTS

EDGE

UMTS

HSPDA

Figure 2.13 The
Android SDK includes
multiple emulator
skins for testing a
variety of device
configurations.
Licensed to Deborah Christiansen <pedbro@gmail.com>

52 CHAPTER 2 Development environment
The higher-speed network environment found in the Android Emulator is welcome
when testing core features of our applications. This is because functional test cases
are often run hundreds or even thousands of times before releasing a product. If we
had to compile the application, sync the application to the device, and run our
application over a wireless data network, the testing time would add up quickly,
reducing the number of tests performed in a given amount of time and elevating
the associated costs. Worse yet, the challenges of mobile data connectivity testing
may entice us to minimize application testing in the first place! Considering that
most software development timeframes are aggressive, every moment counts, so a
quality emulator environment is valuable for rapid and cost-effective mobile applica-
tion development activities. Also, it is important to consider that there may be usage
charges for voice and data consumption on a mobile communications plan. Imag-
ine paying by the kilobyte for every downloaded data packet when testing a new
streaming audio player!

 The Android SDK contains a command-line program named, appropriately,
emulator, which runs the Android Emulator. There are many command-line switches
available in the Android Emulator, permitting us to customize the emulator’s envi-
ronment: how it looks and behaves. Some of these options are exposed in the
Eclipse IDE via the ADT plug-in. The majority of our focus is on employing the

Emulator vs. simulator
You may hear the words emulator and simulator thrown about interchangeably.
While they have a similar purpose—testing applications without the requirement of
real hardware—those words should be used with care. A simulator tool works by
creating a testing environment that behaves as close to 100 percent of the same
manner as the real environment; however, it is just an approximation of the real
platform. But this does not mean that the code targeted for a simulator will run on a
real device, because it is compatible only at the source-code level. Simulator code
is often written to be run as a software program running on a desktop computer
with Windows DLLs or Linux libraries that mimic the application programming inter-
faces (APIs) available on the real device. In the build environment, you typically se-
lect the CPU type for a target, and that is often x86/Simulator. In an emulated
environment, the target of our projects is compatible at the binary level. The code
we write works on an emulator as well as the real device. Of course, some aspects
of the environment differ in terms of how certain functions are implemented on an
emulator. For example, a network connection on an emulator will run through your
development machine’s network interface card, whereas the network connection on
a real phone runs over the wireless connection such as a GPRS, EDGE or EVDO net-
work. Emulators are preferred because they more reliably prepare us for running our
code on real devices. Fortunately, the environment available to Android developers
is an emulator, not a simulator.
Licensed to Deborah Christiansen <pedbro@gmail.com>

53The Android Emulator
Android Emulator from Eclipse, but you are encouraged to examine the command-
line options available in the emulator because they will undoubtedly be of value as
you progress to building more complex Android applications and your application
testing requirements grow.

2.4.3 Emulator profiles

At this point, our sample application, the Android Tip Calculator, has compiled suc-
cessfully. We now want to run our application in the Android Emulator.

TIP If you have had any trouble building the sam-
ple application, now would be a good time to
go back and clear up any syntax errors pre-
venting the application from building. In
Eclipse you can easily see errors because they
are marked with a red x next to the project
source file and on the offending line(s). If you
continue to have errors, make sure that your
build environment is set up correctly. Refer to
appendix A of this book for details on config-
uring the build environment.

Our approach is to create a new Android Emulator
profile so we can easily reuse our test environment
settings. Our starting place is the Open Run Dialog
menu in the Eclipse IDE, as shown in figure 2.14. As
new releases of Eclipse become available, these
screen shots may vary slightly from your personal
development environment.

 We want to create a new launch configuration, as
shown in figure 2.15. To begin this process, highlight
the Android Application entry in the list to the left,
and click the New Launch Configuration button,
shown circled in red in figure 2.15.

 We now want to give our launch configuration a
name that we can readily recognize. We are going to
have quite a few of these launch configurations on
the menu, so give the name something unique and
easy to identify. The sample is titled Android Tip
Calculator, as shown in figure 2.16. There are three
tabs with options to configure, the first allowing the
selection of the project and the first Activity in the
project to launch.

Figure 2.14 Creating a new launch
configuration for testing our Android
application

Figure 2.15 Select the Android
Application run template.
Licensed to Deborah Christiansen <pedbro@gmail.com>

54 CHAPTER 2 Development environment
The next tab permits the selection of the desired
skin, which includes the screen layout, the net-
work speed, and the network latency. In addition,
any command-line parameters desired can be
passed through to the emulator, as shown in fig-
ure 2.17. When writing Android applications,
keep in mind that the application may be run on
different size screens, because not all devices
have the same physical characteristics. This set-
ting in the Android Emulator launch configura-
tion is a great way to test an application’s
handling of different screen sizes and layouts.

 The third tab permits us to put this configura-
tion on the favorites menu in the Eclipse IDE for
easy access, as shown in figure 2.18. We can select
Run and/or Debug. Let’s make both selections,
since it makes for easier launching when we want
to test or debug the application.

 We’re now ready to start the Android Emula-
tor to test our Tip Calculator application, so we
select our new launch configuration from the
favorites menu, as shown in figure 2.19.

 The Android Tip Calculator should now
be running in the Android Emulator! Go ahead;
test it out. But wait, what if there is a prob-
lem with the code but we’re not sure where? It’s
time to have a brief look at debugging an An-
droid application.

Figure 2.16 Setting up the Android
Emulator launch configuration

Figure 2.19 Starting this chapter’s sample
application, Android Tip Calculator

Figure 2.17 Selecting the operating
characteristics of the Android Emulator

Figure 2.18 Adding this launch
configuration to the toolbar menu
Licensed to Deborah Christiansen <pedbro@gmail.com>

55Debugging
2.5 Debugging
Debugging an application is a skill no programmer can survive without, and fortunately
it is a straightforward task to debug an Android application under Eclipse. The first step
to take is to switch to the Debug Perspective in the Eclipse IDE. Remember, switching
from one perspective to another takes place by using the Open Perspective submenu
found under the Window menu. Starting an Android application for debugging is just
as simple as running the application. Instead of selecting the application from the favor-
ites run menu, use the favorites debug menu instead. This is the menu item with a pic-
ture of an insect (that is, a “bug”). Remember, when we set up the launch configuration,
we added this configuration to both the run and the favorites debug menus.

 The Debug Perspective gives us debugging capabilities similar to other develop-
ment environments, including the ability to single step into, or over, method calls and
peer into variables to examine their value. Breakpoints can be set by double-clicking
in the left margin on the line of interest. Figure 2.20 demonstrates stepping through
the Android Tip Calculator project and the resulting values showing up in the LogCat
view. Note that full meal price, including tip, has not yet been displayed on the
Android Emulator, because that line has not yet been reached.

 Now that we’ve gone through a complete cycle of building an Android applica-
tion and we have a good foundational understanding of using the Android develop-
ment tools, we’re ready to move on to digging in and Unlocking Android application
development by learning about each of the fundamental aspects of building
Android applications.

Figure 2.20 The Debug Perspective permits line-by-line stepping through of an Android application.
Licensed to Deborah Christiansen <pedbro@gmail.com>

56 CHAPTER 2 Development environment
2.6 Summary
This chapter introduced the Android SDK and offered a glance at the Android SDK’s
Java packages in order to get you familiar with the contents of the SDK from a class
library perspective. We introduced the key development tools for Android application
development including the Eclipse IDE and the ADT plug-in as well as some of the
behind-the-scenes tools available in the SDK.

 While building out the Android Tip Calculator, this chapter’s sample application,
we had the opportunity to navigate between the relevant perspectives in the Eclipse
IDE. We used the Java Perspective to develop our application and both the DDMS Per-
spective and the Debug Perspective to interact with the Android Emulator while our
application was running. A working knowledge of the Eclipse IDE’s perspectives will
be very helpful as you progress to build out the sample applications and study the
development topics in the remainder of this book.

 We discussed the Android Emulator and some of its fundamental permutations
and characteristics. Employing the Android Emulator is a good practice because of
the benefits of using emulation for testing and validating mobile software applications
in a consistent and cost-effective manner.

 From here, the book moves on to dive deeper into the core elements of the
Android SDK and Android application development. The next chapter continues this
journey with a discussion of the fundamentals of the Android UI.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Part 2

Exercising
 the Android SDK

The Android SDK provides a rich set of functionality enabling developers to
create a wide range of applications. In part 2 we systematically examine the major
portions of the Android SDK, including practical examples in each chapter.

 We start off with a look at the application lifecycle and user interfaces (chap-
ter 3), graduating to Intents and Services (chapter 4). No platform discussion is
complete without a thorough examination of the available persistence and stor-
age methods (chapter 5) and in today’s connected world, we cannot overlook
core networking and web services skills (chapter 6).

 Because the Android platform is a telephone, among other things, we take a
look at the telephony capabilities of the platform (chapter 7). Next we move on
to notifications and alarms (chapter 8). Android graphics and animation are
covered (chapter 9) as well as multimedia (chapter 10).

 Part 2 concludes with a look at the location-based services available to the
Android developer (chapter 11).

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

User interfaces
With our introductory tour of the main components of the Android platform and
development environment complete, it is time to look more closely at the funda-
mental Android concepts surrounding activities, views, and resources. Activities are
essential because, as you learned in chapter 1, they make up the screens of your
application and play a key role in the all-important Android application lifecycle.
Rather than allowing any one application to wrest control of the device away from
the user and from other applications, Android introduces a well-defined lifecycle to
manage processes as needed. This means it is essential to understand not only how
to start and stop an Android Activity but also how to suspend and resume one.
Activities themselves are made up of subcomponents called views.

 Views are what your users will see and interact with. Views handle layout, pro-
vide text elements for labels and feedback, provide buttons and forms for user
input, and draw graphics to the screen. Views are also used to register interface

In this chapter:
■ Understanding activities and views
■ Exploring the Activity lifecycle
■ Working with resources
■ Defining the AndroidManifest.xml
59

Licensed to Deborah Christiansen <pedbro@gmail.com>

60 CHAPTER 3 User interfaces
event listeners, such as those for touch-screen controls. A hierarchical collection of
views is used to “compose” an Activity. You are the conductor, an Activity is your
symphony, and View objects are your musicians.

 Musicians need instruments, so we will stretch this analogy a bit further to bring
Android resources into the mix. Views and other Android components make use of
strings, colors, styles, and graphics, which are compiled into a binary form and made
available to applications as resources. The automatically generated R.java class, which
was introduced in chapter 1, provides a reference to individual resources and is the
bridge between binary references and source. The R class is used, for example, to grab
a string or a color and add it to a View. The relationship among activities, views, and
resources is depicted in figure 3.1.

 Along with the components you use to build an application—views, resources, and
activities—Android includes the manifest file you were introduced to in chapter 1,
AndroidManifest. xml. This XML file
describes where your application begins,
what its permissions are, and what activ-
ities (and services and receivers, which
you will see in the next two chapters) it
includes. Because this file is central to
every Android application, we are going
to address it further in this chapter, and
we will come back to it frequently in later
parts of the book. The manifest is the
one-stop shop for the platform to boot
and manage your application.

 Overall, if you have done any devel-
opment involving UIs of any kind on any
platform, the concepts activities, views,
and resources represent may be some-
what familiar or intuitive, at least on a
fundamental level. The way these con-
cepts are implemented in Android is,
nevertheless, somewhat unique—and
this is where we hope to shed some
light. Here we will be introducing a sam-
ple application that we will use to walk
through these concepts, beginning with
getting past the theory and into the
code to build an Activity.

3.1 Creating the Activity
Over the course of this chapter and the next, we will be building a sample application
that allows the user to search for restaurant reviews based on location and cuisine. This
application, RestaurantFinder, will also allow the user to call, visit the website of, or map

Activity

View (text input)

View (image)

View (selection input)

View (map)

View (text label)

View (button)

Resources

Manifest
 (application definition, activities, permissions, intents)

Figure 3.1 High-level diagram of Activity, View,
resources, and manifest relationship showing that
activities are made up of views, and views use
resources.
Licensed to Deborah Christiansen <pedbro@gmail.com>

61Creating the Activity
directions to a selected restaurant. We chose this application as a starting point because
it has a very clear and simple use case and because it involves many different parts of the
Android platform. This will allow us to cover a lot of ground fast—as well as, we hope,
having the side benefit of being actually useful on your phone!

 To create this application we will need three basic screens to begin with:

■ A criteria screen where a user enters parameters to search for restaurant reviews
■ A list-of-reviews screen that shows paged results that match the specified criteria
■ A detail page that shows the review details for a selected review item

Recall from chapter 1 that a screen is roughly analogous to an Activity, so that
means we will need three Activity classes. When complete, the three screens for our
RestaurantFinder application will look like what is shown in figure 3.2.

 Our first step in exploring activities and views will be to build the RestaurantFinder
ReviewCritiera screen. From there, we will move on to the others. Along the way we
will highlight many aspects of designing and implementing your Android UI.

Figure 3.2 RestaurantFinder application screen shots, showing three Activitys: ReviewCriteria,
ReviewList, and ReviewDetail
Licensed to Deborah Christiansen <pedbro@gmail.com>

62 CHAPTER 3 User interfaces
3.1.1 Creating an Activity class

To create a screen we will be extending the android.app.Activity base class, as we
did in chapter 1, and overriding the key methods it defines. Listing 3.1 shows the first
portion of the RestaurantFinder ReviewCriteria class.

public class ReviewCriteria extends Activity {

 private static final int MENU_GET_REVIEWS = Menu.FIRST;
 private Spinner cuisine;
 private Button grabReviews;
 private EditText location;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 this.setContentView(R.layout.review_criteria);

 this.location = (EditText)
 findViewById(R.id.location);
 this.cuisine = (Spinner)
 findViewById(R.id.cuisine);
 this.grabReviews = (Button)
 findViewById(R.id.get_reviews_button);

 ArrayAdapter<String> cuisines =
 new ArrayAdapter<String>(this, R.layout.spinner_view,
 getResources().
 getStringArray(R.array.cuisines));
 cuisines.setDropDownViewResource(
 R.layout.spinner_view_dropdown);
 this.cuisine.setAdapter(cuisines);

 this.grabReviews.setOnClickListener(
 new OnClickListener() {

 public void onClick(View v) {
 handleGetReviews();
 }
 });
 }

The ReviewCriteria class extends android.app.Activity B, which does a number
of very important things: it gives our application a context, because Activity itself
extends android.app.ApplicationContext; it brings the Android lifecycle methods
into play; it gives the framework a hook to start and run your application; and it pro-
vides a container into which View elements can be placed.

 Because an Activity represents an interaction with the user, it needs to provide com-
ponents on the screen. This is where views come into play. In our ReviewCriteria class
we have referenced three views in the code: location, cuisine, and grabReviews C.
Location is a type of View known as an EditText, a basic text-entry component. Next,
cuisine is a fancy select list component, known in Android terms as a Spinner, and
grabReviews is a Button.

Listing 3.1 The first half of the ReviewCriteria Activity class

Extend android.app.ActivityB

Define ViewsC

Override onCreate()D

E
Define layout with
setContentView

Inflate views
from XML

F

Define
ArrayAdapter
instance

G

H
Set View for
dropdownUse AdapterI

J
Add Button
OnClickListener
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/android/view/View.html
http://code.google.com/android/reference/android/view/View.html

63Creating the Activity
 View elements such as these are placed within an Activity using a particular lay-
out to create a screen. Layout and views can be defined directly in code or in a layout
XML resource file. You will learn more about views as we progress through this section,
and we will focus specifically on layout in section 3.2.5.

After an Activity, complete with necessary views, is started, the lifecycle takes over
and the onCreate() method is invoked D. This is one of a series of important lifecy-
cle methods the Activity class provides. Every Activity will override onCreate(),
where component initialization steps are invoked, though not every Activity will
need to override other lifecycle methods. The Activity lifecycle is worthy of an in-
depth discussion of its own, and for that reason we will explore these methods further,
in section 3.1.2.

 Once inside the onCreate() method, the setContentView() method is where you
will normally associate an XML layout file E. We say normally, because you do not have
to use an XML file at all; you can instead define all of your layout and View configura-
tion in code, as Java objects. Nevertheless, it is often easier, and better practice by
decoupling, to use an XML layout resource for each Activity. An XML layout file
defines View objects, which are laid out in a tree, and can then be set into the Activ-
ity for use.

 Layout and view details, defined in XML or in code, are also topics we will address
in later sections of this chapter. Here we simply need to stress that views are typically
defined in XML and then are set into the Activity and “inflated.” Views that need some
runtime manipulation, such as binding to data, can then be referenced in code and cast
to their respective subtypes F. Views that are static, those you don’t need to interact with
or update at runtime, like labels, do not need to be referenced in code (they show up
on the screen, because they are part of the View tree as defined in the XML, but need
no explicit setup in code). Going back to the screen shots in figure 3.1, you will notice
that the ReviewCriteria screen has two labels as well as the three inputs we have already
discussed. These labels are not present in the code; they are defined in the
review_criteria.xml file that you will see when we discuss XML-defined resources.

 The next area of our ReviewCriteria Activity is where we bind data to our select
list views, the Spinner objects. Android employs a handy “adapter” concept to link
views that contain collections with data. Basically an Adapter is a collection handler

Location as an EditText View
Why are we using an EditText View for the location field in the ReviewCriteria
Activity when Android includes technology that could be used to derive this value
from the current physical location of the device (or allow the user to select it using a
Map, rather than type it in)? Good eye, but we are doing this intentionally here. We
want this early example to be complete and nontrivial but not too complicated. You
will learn more about using the location support Android provides and MapViews in
later chapters.
Licensed to Deborah Christiansen <pedbro@gmail.com>

64 CHAPTER 3 User interfaces
that returns each item in the collection as a View. Android provides many basic adapt-
ers: ListAdapter, ArrayAdapter, GalleryAdapter, CursorAdapter, and more. You can
also easily create your own Adapter, a technique we will use when we discuss creating
custom views in section 3.2. Here we are using an ArrayAdapter that is populated with
our Context (this), a View element defined in an XML resource file, and an array
representing the data (also defined as a resource in XML—which you will learn more
about in section 3.3) G. When we create the ArrayAdapter we define the View to be
used for the element shown in the Spinner before it is selected; after it is selected it
uses the View defined in the drop-down H. Once our Adapter and its View elements
are defined, we set it into the Spinner object I.

 The last thing this initial Activity demonstrates is our first explicit use of event
handling. UI elements in general support many types of events, which you will learn
more about in section 3.2.7. In this case we are using an OnClickListener with our
Button, in order to respond when the button is clicked J.

 After the onCreate() method is complete, with the binding of data to our Spinner
views, we have menu buttons (which are different than on-screen Button views, as you
shall see) and associated actions. We show how these are implemented in the last part
of ReviewCriteria in listing 3.2.

. . .

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0, ReviewCriteria.MENU_GET_REVIEWS, 0,
 R.string.menu_get_reviews).setIcon(
 android.R.drawable.ic_menu_more);
 return true;
 }

@Override
public boolean onMenuItemSelected(int featureId, MenuItem item) {
 switch (item.getItemId()) {
 case MENU_GET_REVIEWS:
 handleGetReviews();
 return true;
 }
 return super.onMenuItemSelected(featureId, item);
 }

 private void handleGetReviews() {
 if (!validate()) {
 return;
 }

 RestaurantFinderApplication application =
 (RestaurantFinderApplication)
 getApplication();
 application.setReviewCriteriaCuisine(
 this.cuisine.getSelectedItem().toString());
 application.setReviewCriteriaLocation(
 this.location.getText().toString());

 Intent intent =

Listing 3.2 The second half of the ReviewCriteria Activity class

B
Create options
menu

C
Respond when
menu item selected

D
Define method to
process reviews

Use Application
object for state

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/view-gallery.html
http://code.google.com/android/reference/view-gallery.html

65Creating the Activity
 new Intent(Constants.INTENT_ACTION_VIEW_LIST);
 startActivity(intent);
 }

 private boolean validate() {
 boolean valid = true;
 StringBuilder validationText = new StringBuilder();
 if ((this.location.getText() == null) ||
 this.location.getText().toString().equals("")) {
 validationText.append(getResources().getString(
 R.string.location_not_supplied_message));
 valid = false;
 }
 if (!valid) {
 newAlertDialog.Builder(this).
 setTitle(getResources().getString(R.string.alert_label)).
 setMessage(validationText.toString()).
 SetPositiveButton("Continue",
 new android.content.DialogInterface.
 OnClickListener() {
 public void onClick(
 DialogInterface dialog, int arg1) {
 // do nothing, show alert is enough
 }
 }).show();
 validationText = null;
 }
 return valid;
 }
}

The menu items at the bottom of the Activity screens in figure 3.2 are all created
using the onCreateOptionsMenu() method B. Here we are using the Menu class
add() method to create a single MenuItem element B. We are passing a group ID, an
ID, an order, and a text resource reference to create the menu item. We are also
assigning to the menu item an icon with the setIcon method. The text and the
image are externalized from the code, again using Android’s concept of resources.
The MenuItem we have added duplicates the on-screen Button with the same label for
the “Get reviews” purpose.

Create IntentF

G Start Activity

Use AlertDialog H

I
Respond to
button click

Using the Menu vs. on-screen buttons
We have chosen to use the Menu here, in addition to the on-screen buttons. Though
either (or both) can work in many scenarios, you need to consider whether the menu,
which is invoked by pressing the Menu button on the device and tapping a selection
(button and a tap) is appropriate for what you are doing, or whether an on-screen but-
ton (single tap) is more appropriate. Generally on-screen buttons should be tied to UI
elements (a search button for a search form input, for example), and menu items
should be used for screen-wide actions (submitting a form, performing an action like
create, save, edit, or delete). Because all rules need an exception, if you have the
screen real estate, it may be more convenient for users to have on-screen buttons
for actions as well (as we have done here). The most important thing to keep in mind
with these types of UI decisions is to be consistent. If you do it one way on one
screen, use that same approach on other screens.
Licensed to Deborah Christiansen <pedbro@gmail.com>

66 CHAPTER 3 User interfaces
In addition to creating the menu item, we add support to react and perform an action
when the item is selected. This is done in the onMenuItemSelected() event method C,
where we parse the ID of the multiple possible menu items with a case/switch state-
ment. When the MENU_GET_REVIEWS item is determined to have been selected, we then
call the handleGetReviews method D. This method puts the user’s selection state in the
Application object E and sets up to call the next screen. We have moved this logic into
its own method because we are using it from multiple places, from our on-screen Button
and again from our MenuItem.

 The Application object is used internally by Android for many purposes, and it
can be extended, as we have done with RestaurantFinderApplication (which
includes a few member variables in JavaBean style), to store global state information.
We will reference this object again in other activities to retrieve the information we are
storing here. There are several ways to pass objects back and forth between activities;
using Application is one of them. You can also use public static members and Intent
extras with Bundle objects. In addition, you can use the provided SQLite database, or
you can implement your own ContentProvider and store data there. We will cover
more about state, and data persistence in general, including all these concepts, in
chapter 5. The important thing to take away here is that at this point we are using the
Application object to pass state between activities.

 After we store the criteria state we fire off an action in the form of an Android
Intent F. We touched on intents in chapter 1, and we will delve into them further in
the next chapter, but basically we are asking another Activity to respond to the
user’s selection of a menu item by calling startActivity(Intent intent) G.

Also notable within the ReviewCriteria example is that we are using an Alert-
Dialog H. Before we allow the next Activity to be invoked, we call a simple vali-
date() method that we have created, where we display a pop-up-style alert dialog to
the user if the location has not been specified. Along with generally demonstrating
the use of AlertDialog, this demonstrates how a button can be made to respond to
a click event with an OnClickListener() I.

 With that we have covered a good deal of material and have completed Review-
Criteria, our first Activity. Now that this class is fully implemented, we next need to

Using startActivity vs. startActivityForResult
The most common way to invoke an Activity is by using the startActivity()
method, but there is also another method you will see used in specific instanc-
es—startActivityForResult(). Both pass control to a different Activity. The
difference with regard to startActivityforResult is that it returns a value to the
current Activity when the Activity being invoked is complete. It in effect allows
you to chain activities and expect callback-style responses (you get the response by
implementing the onActivityResult() method).
Licensed to Deborah Christiansen <pedbro@gmail.com>

67Creating the Activity
take a closer look at the all-important Android Activity lifecycle and how it relates to
processes on the platform.

3.1.2 Exploring Activity lifecycle

Every process running on the Android platform is placed on a stack. When you use an
Activity in the foreground, the system process that hosts that Activity is placed at
the top of the stack, and the previous process (the one hosting whatever Activity was
previously in the foreground) is moved down one notch. This is a key point to under-
stand. Android tries to keep processes running as long as it can, but it can’t keep every
process running forever because, after all, system resources are finite. So what hap-
pens when memory starts to run low or the CPU gets too busy?
UNDERSTANDING HOW PROCESSES AND ACTIVITIES RELATE

When the Android platform decides it needs to reclaim resources, it goes through a
series of steps to prune processes (and the activities they host). It decides which ones
to get rid of based on a simple set of priorities:

1 The process hosting the foreground Activity is the most important.
2 Any process hosting a visible but not foreground Activity is next in line.
3 Any process hosting a background Activity is next in line.
4 Any process not hosting any Activity (or Service or BroadcastReceiver),

known as an empty process, is last in line.

A very useful tool for development and debugging, especially in the context of pro-
cess priority, is the Android Debug Bridge (adb), which you first met in chapter 1.
You can see the state of all the running processes in the emulator by issuing the fol-
lowing command:

adb shell dumpsys activity

This command will output a lot of information about all the running processes,
including the package name, PID, foreground or background status, the current pri-
ority, and more.

 Because a user can elect to change directions at just about any time—make a
phone call, change the screen orientation, respond to an SMS message, decide to stop

The Builder pattern
You may have noticed the usage of the Builder pattern when we added parameters
to the AlertDialog we created in the ReviewCriteria class. If you are not familiar
with this approach, basically each of the methods invoked, such as AlertDia-
log.setMessage() and AlertDialog.setTitle(), returns a reference to itself
(this), which means we can continue chaining method calls. This avoids either an
extra-long constructor with many parameters or the repetition of the class reference
throughout the code. Intents make use of this handy pattern too; it is something you
will see time and time again in Android.
Licensed to Deborah Christiansen <pedbro@gmail.com>

68 CHAPTER 3 User interfaces
using your wonderful stock market analysis application and start playing Android
Poker—which in turn can affect overall system resources, all Activity classes have to
be able to handle being stopped and shut down at any time. If the process your
Activity is in falls out of the foreground, it is eligible to be killed (it’s not up to you;
it’s up to the platform, based on resources and priorities).

 To manage this environment, Android applications, and the Activity classes they
host, have to be designed a bit differently than what you may be used to. Using a series
of event-related callback type methods the Activity class defines, you can set up and
tear down state gracefully. The Activity subclasses that you implement (as you saw a
bit of with ReviewCriteria in the previous section) override a set of lifecycle methods
to make this happen. As we discussed in section 3.1.1, every Activity has to imple-
ment the onCreate() method. This is the starting point of the lifecycle. In addition to
onCreate(), most activities will also want to implement the onPause() method, where
data and state can be persisted before the hosting process potentially falls out
of scope.

 The lifecycle methods that the Activity class provides are called in a specific
order by the platform as it decides to create and kill processes. Because you, as an
application developer, cannot control the processes, you have to rely on your use of
the callback lifecycle methods to control state in your Activity classes as they come
into the foreground, move into the background, and fall away altogether. This is a
very significant, and clever, part of the overall Android platform. As the user makes
choices, activities are created and paused in a defined order by the system as it starts
and stops processes.
ACTIVITY LIFECYCLE

Beyond onCreate() and on-
Pause(), Android provides
other distinct stages, each of
which is a part of a particular
phase of the life of an Activ-
ity class. The most com-
monly encountered methods
and the phases for each part
of the lifecycle are shown in
figure 3.3.

 Each of the lifecycle meth-
ods Android provides has a
distinct purpose, and each
happens during part of the
foreground, visible, or entire
lifecycle phase.

onCreate()

onStart()

onDestroy()

onRestart()

onResume()

onStop()

onPause()

Foreground phase

Visible phase

Entire lifecycle

Figure 3.3 Android Activity lifecycle diagram, showing the
methods involved in the foreground and background phases
Licensed to Deborah Christiansen <pedbro@gmail.com>

69Creating the Activity
■ In the foreground phase, the Activity is viewable on the screen and on top of
everything else (when the user is interacting with the Activity to perform a task).

■ In the visible phase, the Activity is on the screen, but it may not be on top and
interacting with the user (when a dialog or floating window is on top of the
Activity, for example).

■ The entire lifecycle phase refers to the methods that may be called when the
application is not on the screen, before it is created, and after it is gone prior to
being shut down.

Table 3.1 provides further information about the lifecycle phases and outlines the
main high-level related methods on the Activity class.

Beyond the main high-level lifecycle methods outlined in table 3.1, there are further
finer-grained methods that are available as well. Methods such as onPostCreate and
onPostResume aren’t normally needed, so we won’t go into detail on them, but be
aware that they exist if you need that level of control (see the Activity Javadoc for
full method details).

 As for the main lifecycle methods that you will use the majority of the time, it is very
important to be aware that onPause() is the last opportunity you have to clean up and
save state information. The processes that host your Activity classes will not be killed
by the platform until after the onPause() method has completed, but they may be killed
thereafter. This means the system will attempt to run through all of the lifecycle methods
every time, but if resources are spiraling out of control (as determined by the platform),
a fire alarm may be sounded and the processes that are hosting activities that are beyond
the onPause() method may be killed at any point. Any time your Activity is moved to
the background, onPause() is called. Before your Activity is completely removed,

Table 3.1 Android Activity main lifecycle methods and purpose

Method Purpose

onCreate() Called when the Activity is created. Setup is done here, Also provided is access
to any previously stored state in the form of a Bundle.

onRestart() Called if the Activity is being restarted, if it is still in the stack, rather than starting
new.

onStart() Called when the Activity is becoming visible on the screen to the user.

onResume() Called when the Activity starts interacting with the user. (This is always called,
whether starting or restarting.)

onPause() Called when the Activity is pausing or reclaiming CPU and other resources. This
method is where state should be saved so that when an Activity is restarted it
can start from the same state it had when it quit.

onStop() Called to stop the Activity and transition it to a nonvisible phase and subse-
quent lifecycle events.

onDestroy() Called when an Activity is being completely removed from system memory. Hap-
pens either because onFinish() is directly invoked or the system decides to stop
the Activity to free up resources.
Licensed to Deborah Christiansen <pedbro@gmail.com>

70 CHAPTER 3 User interfaces
onDestroy() is not guaranteed to have been called (it probably will be called, under
normal circumstances, but not always).

 The onPause() method is definitely where you need to save persistent state.
Whether that persistent state is specific to your application (such as user preferences)
or global shared information (such as the contacts database), onPause() is where you
need to make sure all the loose ends are tied up—every time. We will discuss how to
save data in chapter 5, but here the important thing is to know when and where that
needs to happen.

NOTE In addition to persistent state there is one more aspect you should be
familiar with, and that is instance state. Instance state refers to the state of
the UI itself. The onSave-InstanceState() Activity method is called
when an Activity may be destroyed, so that at a future time the inter-
face state can be restored. This method is used by the platform to handle
the view state processing in the vast majority of cases. This means you
normally don’t have to mess with it. Nevertheless, it is important to know
that it is there and that the Bundle it saves is handed back to the onCre-
ate() method when an Activity is restored. If you need to customize
the view state, you can, by overriding this method, but don’t confuse this
with the more common general lifecycle methods.

Managing activities with lifecycle events in this way, through parent processes the plat-
form controls, allows Android to do the heavy lifting, deciding when things come into
and out of scope, relieving applications of the burden themselves, and ensuring a
level playing field. This is a key aspect of the platform that varies somewhat from many
other application development environments. In order to build robust and responsive
Android applications you have to pay careful attention to the lifecycle.

 Now that we have some background in place concerning the Activity lifecycle
and have created our first screen, we will next further investigate views and fill in some
more detail.

3.2 Working with views
Though it is a bit cliché, it is true that views are the building blocks of the UI of an Android
application. Activities, as we have seen, contain views, and View objects represent ele-
ments on the screen and are responsible for interacting with users through events.

 Every Android screen contains a hierarchical tree of View elements. These views
come in a variety of shapes and sizes. Many of the views you will need on a day-to-day
basis are provided for you as part of the platform—basic text elements, input ele-
ments, images, buttons, and the like. In addition, you can create your own composite
and/or custom views when the need arises. Views can be placed into an Activity
(and thus on the screen) either directly in code or through the use of an XML
resource that is later “inflated” at runtime.

 In this section we will discuss fundamental aspects of views: the common views that
Android provides, custom views that can be created as needed, layout in relation to
views, and event handling. We won’t address views defined in XML here, because that
will be covered in section 3.3 as part of a larger resources discussion. Here we begin
with the common View elements Android provides by taking a short tour of the API.
Licensed to Deborah Christiansen <pedbro@gmail.com>

71Working with views
3.2.1 Exploring common views

Android provides a healthy set of View objects in the android.view package. These
objects range from familiar constructs like the EditText, Spinner, and TextView that
we have already seen in action to more specialized widgets such as AnalogClock, Gal-
lery, DatePicker, TimePicker, and VideoView. For a quick glance at some of the
more eye-catching views, check out the sample page in the Android documentation:
http://code.google.com/android/reference/view-gallery.html.

 The class diagram in figure 3.4 provides a high-level snapshot of what the overall
View API looks like. This diagram shows how the specializations fan out and includes
many, but not all, of the View-derived classes.

View
AnalogClock

MapView

ImageView

ProgressBar

SurfaceView

TextView

ViewGroup

AbsoluteLayoutFrameLayoutLinearLayout

AdapterView

RelativeLayout

RadioGroup

TableLayout

TabWidget

DatePicker

TimePicker

ScaleLayout

Ticker

ScrollView

ListView

GridView

Spinner

Gallery
WebView

DialerFilter

TwoLineListItem

Button
EditText

DigitalClock

CheckBox

RadioButton

CompoundButton
ImageButton

ViewAnimator

Chronometer

VideoView

ViewStub

CheckedTextView

TableRow

ZoomControls

Figure 3.4 A class diagram of the Android View API, showing the root View class and specializations
from there; notice that ViewGroup classes, such as layouts, are also a type of View.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/view-gallery.html

72 CHAPTER 3 User interfaces
As is evident from the diagram in figure 3.4 (which is not comprehensive), the View
API has quite a few classes. ViewGroup, a special subclass of View related to layout, is a
subclass of View, as are other elements such as TextView. Everything is ultimately a
View, even the layout classes (which extend ViewGroup).

 Of course, everything that extends View has access to the base class methods. These
methods allow you to perform important UI-related operations, such as setting the
background, setting the minimum height and width, setting padding, setting and
enabling events (like clickable and focusable), setting layout parameters, and more.
Table 3.2 includes an example of some of the methods available on the root View class.

Beyond the base class, each View subclass typically adds a host of refined methods to
further manipulate its respective state, such as what is shown for TextView in table 3.3.

 Using the combination of the base class methods with the subtype methods, you
can see that you can set layout, padding, focus, events, gravity, height, width, colors,
and basically everything you might need. Using these methods in code, or their coun-
terpart attributes in the android: namespace in XML when defining views in XML
(something you will see done in section 3.3), is how you manipulate a View element.
Each View element you use has its own path through the API and therefore a particu-
lar set of methods available; for details on all the methods see the Android Javadocs:
http://code.google.com/android/reference/android/view/View.html.

Table 3.2 A subset of methods in the base Android View API

Method Purpose

setBackgroundColor(int color) Set the background color.

setBackgroundDrawable(Drawable d) Set the background draw-
able (image).

setMinimumHeight(int minHeight) Set the minimum height (par-
ent may override).

setMinimumWidth(int minWidth) Set the minimum width (par-
ent may override).

setPadding(int left, int right, int top, int bottom) Set the padding.

setClickable(boolean c) Set whether or not element
is clickable.

setFocusable(boolean f) Set whether or not element
is focusable.

setOnClickListener(OnClickListener l) Set listener to fire when click
event occurs.

setOnFocusChangeListener(OnFocusChangeListener l) Set listener to fire when
focus event occurs.

setLayoutParams(ViewGroup.LayoutParams l) Set the LayoutParams
(position, size, and more).
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/android/view/View.html

73Working with views
When you couple the wide array of classes with the rich set of methods available from
the base View class on down, the Android View API can quickly seem intimidating.
Thankfully, despite the initial impression, many of the concepts involved quickly
become evident, and usage becomes more intuitive as you move from View to View
(because they all are specializations on the same object at the core). So even though
the “747 cockpit” analogy could be applied, once you start working with Android you
should be able to earn your wings fairly quickly.

 Though our RestaurantFinder application will not use many of the views listed in
our whirlwind tour here, these are still useful to know about, and many of them will be
used in later examples throughout the book. The next thing we will focus on is a bit
more detail concerning one of the most common nontrivial View elements, specifi-
cally the ListView component.

3.2.2 Using a ListView

On the ReviewList Activity of the RestaurantFinder application, shown in fig-
ure 3.2, you can see a different type of View than the simple user inputs and labels we
have used up to this point—this screen presents a scrollable list of choices for the user
to choose from.

 This Activity is using a ListView component to display a list of review data that
is obtained from calling the Google Base Atom API using HTTP (we will refer to this
as a “web service,” even though it is not technically SOAP or any other formal stan-
dard). After we make the HTTP call, by appending the user’s criteria to the required
Google Base URL, we will then parse the results with the Simple API for XML (SAX)
and create a List of reviews. The details of XML parsing won’t be our focus
here—that will come in chapter 11—and neither will the use of the network itself,
which is covered in chapter 6, but the views we will build based on the data we get
back will be. The resulting List will be used to populate our screen’s list of items to
choose from.

 The code in listing 3.3 shows how we create and use a ListView to represent this
list of items to choose from on an Activity screen.

Table 3.3 Further View methods for the TextView subclass

Method Purpose

setGravity(int gravity) Set alignment gravity: top, bottom, left, right, and more.

setHeight(int height) Set height dimension.

setWidth(int width) Set width dimension.

setTypeFace(TypeFace face) Set typeface.

setText(CharSequence text) Set text.
Licensed to Deborah Christiansen <pedbro@gmail.com>

74 CHAPTER 3 User interfaces
public class ReviewList extends ListActivity {

 private static final int MENU_CHANGE_CRITERIA = Menu.FIRST + 1;
 private static final int MENU_GET_NEXT_PAGE = Menu.FIRST;
 private static final int NUM_RESULTS_PER_PAGE = 8;

 private TextView empty;
 private ProgressDialog progressDialog;
 private ReviewAdapter reviewAdapter;
 private List<Review> reviews;

 private final Handler handler = new Handler() {
 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 if ((reviews == null) || (reviews.size() == 0)) {
 empty.setText("No Data");
 } else {
 reviewAdapter = new ReviewAdapter(ReviewList.this, reviews);
 setListAdapter(reviewAdapter);
 }
 }
 };

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.setContentView(R.layout.review_list);
 this.empty = (TextView)
 findViewById(R.id.empty);

 ListView listView = getListView();
 listView.setItemsCanFocus(false);
 listView.setChoiceMode(ListView.CHOICE_MODE_SINGLE);
 listView.setEmptyView(this.empty);
 }

 @Override
 protected void onResume() {
 super.onResume();
 RestaurantFinderApplication application =
 (RestaurantFinderApplication) getApplication();
 String criteriaCuisine = application.getReviewCriteriaCuisine();
 String criteriaLocation = application.getReviewCriteriaLocation();

 int startFrom = getIntent().getIntExtra(
 Constants.STARTFROM_EXTRA, 1);
 loadReviews(criteriaLocation,
 criteriaCuisine, startFrom);
 }

 // onCreateOptionsMenu omitted for brevity

. . .

The ReviewList Activity extends ListActivity B, which is used to host a List-
View. The default layout of a ListActivity is a full screen, centered list of choices for
the user to select from. A ListView is similar in concept to a Spinner; in fact, they are
both subclasses of AdapterView, as you saw in the class diagram in figure 3.4. This
means that ListView, like Spinner, also uses an Adapter to bind to data. In this case

Listing 3.3 First half of the ReviewList Activity class, showing a ListView

Extend ListActivityB

Use ReviewAdapterC

Back Adapter with ListD

E
Use Handler
for messages

Use resourced-
defined layout

F

G
Define TextView
for empty

Set properties
for ListView

H

Use Application
for global state

I

Use Intent extraJ

Load review data1)
Licensed to Deborah Christiansen <pedbro@gmail.com>

75Working with views
we are using a custom ReviewAdapter class C. You will learn more about Review-
Adapter in the next section, when we discuss custom views. The important part here is
that we are using an Adapter for our ListView (even though it’s a custom adapter),
and we use a List of Review objects to populate the Adapter D.

 Because we don’t yet have the data to populate the list, which we will get from a
web service call in another Thread, we need to include a Handler to allow for fetching
data and updating the UI to occur in separate steps E. Don’t worry too much about
these concepts here, as they will make more sense shortly when we discuss them while
looking at the second half of ReviewList in listing 3.4.

 After our ListView and its data are declared, we move on to the typical
onCreate() tasks we have already seen, including using a layout defined in a resources
XML file F. This is significant with respect to ListActivity because a ListView with
the ID name “list” is required if you want to customize the layout, as we have done (the
ID name is in the layout XML file, which you will see in section 3.3.3). If you don’t pro-
vide a layout, you can still use ListActivity and ListView; you just get the system
default. We are also defining an element that will be used to display the message “No
Data” if our List backing our View has no elements G. We also set several specific
properties on the ListView, using its customization methods, such as whether or not
the list items themselves are focusable, how many elements can be selected at a time,
and what View to use when the list is empty H.

 After we set up the View elements needed on the Activity, we get the criteria to
make our web service call from the Review object we placed in the Application from
the ReviewCriteria Activity I. Here we also use an Intent extra to store a primitive
int for page number J. We pass all the criteria data (criteriaLocation, criteria-
Cuisine, and startFrom) into the loadReviews() method 1), which eventually makes
our web service call to populate our data list. This method, and several others that show
how we deal with items in the list being clicked on, are shown in the second half of the
ReviewList class, in listing 3.4.

 . . .

 @Override
 public boolean onMenuItemSelected(int featureId, MenuItem item) {
 Intent intent = null;
 switch (item.getItemId()) {
 case MENU_GET_NEXT_PAGE:
 intent = new Intent(Constants.INTENT_ACTION_VIEW_LIST);
 intent.putExtra(Constants.STARTFROM_EXTRA,
 getIntent().getIntExtra(Constants.STARTFROM_EXTRA, 1)
 + ReviewList.NUM_RESULTS_PER_PAGE);
 startActivity(intent);
 return true;
 case MENU_CHANGE_CRITERIA:
 intent = new Intent(this, ReviewCriteria.class);
 startActivity(intent);
 return true;
 }

Listing 3.4 The second half of the ReviewList Activity class

Override onMenuItemSelected B

C
Increment startFrom

Intent extra
Licensed to Deborah Christiansen <pedbro@gmail.com>

76 CHAPTER 3 User interfaces
 return super.onMenuItemSelected(featureId, item);
 }

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 RestaurantFinderApplication application =
 (RestaurantFinderApplication) getApplication();
 application.setCurrentReview(this.reviews.get(position));

 Intent intent = new Intent(Constants.INTENT_ACTION_VIEW_DETAIL);
 intent.putExtra(Constants.STARTFROM_EXTRA, getIntent().getIntExtra(
 Constants.STARTFROM_EXTRA, 1));
 startActivity(intent);
 }

 private void loadReviews(String location, String cuisine,
 int startFrom) {

 final ReviewFetcher rf = new ReviewFetcher(location,
 cuisine, “ALL”, startFrom,
 ReviewList.NUM_RESULTS_PER_PAGE);

 this.progressDialog =
 ProgressDialog.show(this, " Working...",
 " Retrieving reviews", true, false);

 new Thread() {
 public void run() {
 reviews = rf.getReviews();
 handler.sendEmptyMessage(0);
 }
 }.start();
 }
}

This Activity has a menu item that allows the user to get the next page of results or
change the list criteria. To support this we have to implement the onMenuItemSe-
lected method B. If the MENU_GET_NEXT_PAGE menu item is selected, we then define
a new intent to reload the screen with an incremented startFrom value (and we use
the getExtras() and putExtras() intent methods to do this) C.

 After the menu-related methods, we see a special onListItemClick() method D.
This method is used to respond when one of the list items in a ListView is clicked.
Here we use the position of the clicked item to reference the particular Review item
the user chose, and we set this into the Application for later usage in the Review-
Detail Activity (which we will begin to implement in section 3.3) E. After we have
the data set, we then call the next Activity (including the startFrom extra) F.

 Lastly in the ReviewList class we have the loadReviews() method, which,
strangely enough, loads reviews G. This method is significant for several reasons. First
it sets up the ReviewFetcher class instance, which will be used to call out to the
Google Base API over the network and return a List of Review objects H (again, net-
working details are in chapter 6). Then it invokes the ProgressDialog.show()
method to show the user we are retrieving data I. Finally it sets up a new Thread J,
within which the ReviewFetcher is used, and the earlier Handler we saw in the first
half of ReviewList is sent an empty message 1). If you refer back to when the Handler

Override
onListItemClick

D

F
Pass startFrom
extra value

E

Get Application
object and set

state

G
Create loadReviews
method

H

Instantiate
ReviewFetcher
instance

I Show ProgressDialog

J
Make web
service call

1) Update handler
Licensed to Deborah Christiansen <pedbro@gmail.com>

77Working with views
was established, in listing 3.3, you can see that is where, when the message is received,
we dismiss the ProgressDialog, populate the Adapter our ListView is using, and call
setListAdapter() to update the UI. The setListAdapter()method will iterate the
Adapter it is handed and display a returned View for every item.

 With the Activity created and set up and the Handler being used to update the
Adapter with data, we now have a second screen in our application. The next thing we
need to do is fill in some of the gaps surrounding working with handlers and different
threads. These concepts are not view-specific but are worth a small detour at this point
because you will want to use these classes when trying to perform tasks related to
retrieving and manipulating data needed for the UI.

3.2.3 Multitasking with Handler and Message

The Handler is the Swiss army knife of messaging and scheduling operations for
Android. This class allows you to queue tasks to be run on different threads and allows
you schedule tasks using Message and Runnable objects.

 The Android platform monitors the responsiveness of applications and kills those
that are considered nonresponsive. An Application Not Responding (ANR) event is de-
fined as no response to a user input for five seconds. (A user touches the screen, or press-
es a key, or the like, and your application must respond). So does this mean your code
always has to complete within five seconds? No, of course not, but the main UI thread
does have to respond within that time frame. To keep the main UI thread snappy, any
long-running tasks, such as retrieving data over the network or getting a large amount
of data from a database or complicated calcula-
tions, should be performed in a separate thread.

 Getting tasks into a separate thread, then
getting results back to the main UI thread is
where the Handler, and related classes, come
into play. When a Handler is created, it is associ-
ated with a Looper. A Looper is a class that con-
tains a MessageQueue and processes Message or
Runnable objects that are sent via the Handler.

 In the Handler usage, shown in listings 3.3
and 3.4, we created a Handler with a no-argu-
ment constructor. With this approach, the Han-
dler is automatically associated with the Looper
of the current running thread, typically the main
UI thread. The main UI thread, which is created
by the process of the running application, is an
instance of a HandlerThread, which is basically an
Android Thread specialization that provides a
Looper. The key parts involved in this arrange-
ment are depicted in the diagram in figure 3.5.

MainUIThread
(HandlerThread)

Looper

MessageQueue

Handler myHandler = new Handler() {
 public void handleMessage (Message m) {
 updateUIHere();
 }
};

new Thread() {
 public void run() {
 doStuff();
 Message m = myHandler.obtainMessage();
 Bundle b = new Bundle();
 b.putString("key", "value");
 m.setData(b);
 myHandler.sendMessage(m);
 }
}.start();

Figure 3.5 Usage of the Handler
class with separate threads, and the
relationship of HandlerThread,
Looper, and MessageQueue
Licensed to Deborah Christiansen <pedbro@gmail.com>

78 CHAPTER 3 User interfaces
 When implementing a Handler you will have to provide a handleMessage(Message
m) method. This method is the hook that lets you pass messages. When you create a
new Thread, you can then call one of several sendMessage methods on Handler from
within that thread’s run method, as our examples and diagram demonstrate. Calling
sendMessage puts your message on the MessageQueue, which the Looper maintains.

 Along with sending messages into handlers, you can also send Runnable objects
directly, and you can schedule things to be run at different times in the future. You
send messages and post runnables. Each of these concepts supports methods such as
sendEmptyMessage(int what), which we have already used, and the counterparts
sendEmptyMessageAtTime(int what, long time) and sendEmptyMessageDelayed(int
what, long delay). Once it is in the queue, your message is processed as soon as pos-
sible (unless you schedule or delay it using the respective send or post method).

 You will see more of Handler and Message in other examples throughout the book,
and we will cover more detail in some instances, but the main point to remember
when you see these classes is that they are used to communicate between threads and
for scheduling.

 Getting back to our RestaurantFinder application and more directly view-oriented
topics, we next need to elaborate on the ReviewAdapter our RestaurantFinder
ReviewList screen now uses, after it is populated with data from a Message. This
adapter returns a custom View object for each data element it processes.

3.2.4 Creating custom views

Though you can often get away with simply using the views that are provided with
Android, there may also be situations, like the one we are now facing, where you need
a custom view to display your own object in a unique way.

 In the ReviewList screen we used an Adapter of type ReviewAdapter to back our
ListView. This is a custom Adapter that contains a custom View object, ReviewList-
View. A ReviewListView is what our ReviewList Activity displays for every row of
data it contains. The Adapter and View are shown in listing 3.5.

public class ReviewAdapter extends BaseAdapter {

 private final Context context;
 private final List<Review> reviews;

 public ReviewAdapter(Context context, List<Review> reviews) {
 this.context = context;
 this.reviews = reviews;
 }

 @Override
 public int getCount() {
 return this.reviews.size();
 }

 @Override
 public Object getItem(int position) {
 return this.reviews.get(position);
 }

Listing 3.5 The ReviewAdapter and inner ReviewListView classes

Extend BaseAdapterB
Include Context and
List<Review>

C

Override basic
Adapter methods

D

Override Adapter
getView

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

79Working with views
 @Override
 public long getItemId(int position) {
 return position;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 Review review = this.reviews.get(position);
 return new ReviewListView(this.context, review.name, review.rating);
 }

 private final class ReviewListView extends LinearLayout {

 private TextView name;
 private TextView rating;

 public ReviewListView(Context context, String name, String rating) {

 super(context);
 setOrientation(LinearLayout.VERTICAL);

 LinearLayout.LayoutParams params = new LinearLayout.LayoutParams(
 ViewGroup.LayoutParams.WRAP_CONTENT,
 ViewGroup.LayoutParams.WRAP_CONTENT);
 params.setMargins(5, 3, 5, 0);

 this.name = new TextView(context);
 this.name.setText(name);
 this.name.setTextSize(16f);
 this.name.setTextColor(Color.WHITE);
 this.addView(this.name, params);

 this.rating = new TextView(context);
 this.rating.setText(rating);
 this.rating.setTextSize(16f);
 this.rating.setTextColor(Color.GRAY);
 this.addView(this.rating, params);
 }
 }
}

The first thing to note in ReviewAdapter is that it extends BaseAdapter B. Base-
Adapter is an Adapter implementation that provides basic event-handling support.
Adapter itself is an interface in the android.Widget package that provides a way to
bind data to a View with some common methods. This is often used with collections of
data, such as we saw with Spinner and ArrayAdapter in listing 3.1. Another common
usage is with a CursorAdapter, which returns results from a database (something we
will see in chapter 5). Here we are creating our own Adapter, because we want it to
return a custom View.

 Our ReviewAdapter class accepts two parameters in the constructor and sets those
values to two simple member objects: Context and List<Review> C. Then this class
goes on to implement the straightforward required Adapter interface methods that re-
turn a count, an item, and an ID (we just use the position in the collection as the ID) D.
The next Adapter method we have to implement is the important one, getView(). This
is where the Adapter will return any View we create for a particular item in the collection
of data it is supporting. Within this method we get a particular Review object based on
the position/ID, and then we create an instance of a custom ReviewListView object to
return as the View E.

D
Override basic
Adapter methods

EOverride
Adapter
getView

F

Define
custom inner
View class

Set layout in codeG

H Instantiate
TextView
members

Add TextView to treeI
Licensed to Deborah Christiansen <pedbro@gmail.com>

80 CHAPTER 3 User interfaces
 ReviewListView itself, which extends LinearLayout (something you will learn
more about in section 3.2.4), is an inner class inside ReviewAdapter (since we will
never use it outside of returning a view from ReviewAdapter) F. Within it we see an
example of setting layout and View details in code, rather than in XML. Here we set
the orientation, parameters, and margin for our layout G. Then we populate the sim-
ple TextView objects that will be children of our new View and represent data H.
Once these are set up via code, we add them to the parent container (in this case the
parent is our custom class ReviewListView) I. This is where the data binding hap-
pens—the bridge to the View from data. Another important thing to note about this is
that we have created not only a custom View but a composite one as well. That is, we
are using simple existing View objects in a particular layout to construct a new type of
reusable View, which shows the detail of a selected Review object on screen, as shown
in figure 3.2.

 Our ReviewListView object, while custom, is admittedly (and intentionally) fairly
simple. In many cases you will be able to create custom views by combining existing
views in this manner. Nevertheless, you should also be aware that you can go deeper
and extend the View class itself. Then you can implement core methods as needed.
Using this approach you have access to the lifecycle methods of a View (not an Activ-
ity as we have already covered, but an individual View). These include onMeasure(),
onLayout(), onDraw(), onVisibilityChanged(), and others. Though we don’t need
that level of control here, you should be aware that extending View gives you a great
deal of power to create custom components.

 Now that you have seen how we get the data for our reviews and what the Adapter
and custom View we are using look like, the next thing we need to do is take a closer
look at a few more aspects of views, including layout.

3.2.5 Understanding layout

One of the most significant aspects of creating your UI and designing your screens is
understanding layout. In Android, screen layout is defined in terms of ViewGroup and
LayoutParams objects. ViewGroup is a View that contains other views (has children)
and also defines and provides access to the layout.

 On every screen all the views are placed in a hierarchical tree, so every element has
children, and somewhere at the root is a ViewGroup. All the views on the screen sup-
port a host of attributes that pertain to background color, color, and so on. We
touched on many of these attributes in section 3.2.2 when we discussed the methods
on the View class. Dimensions—width and height—and other properties such as rela-
tive or absolute placement and margins are based on the LayoutParams a view
requests and what the parent—based on its type, its own dimensions, and the dimen-
sions of all of its children—can accommodate.

 The main ViewGroup classes are shown in the class diagram you saw in figure 3.4.
The diagram in figure 3.6 expands on this class structure to show the specific Layout-
Params inner classes of the view groups and layout properties each type provides.
Licensed to Deborah Christiansen <pedbro@gmail.com>

81Working with views
 As figure 3.6 shows, the base ViewGroup.LayoutParams class are height and
width. From there an AbsoluteLayout type with AbsoluteLayout.LayoutParams
allows you to specify the exact X and Y coordinates of the child View objects
placed within.

 As an alternative to absolute layout, you can use the FrameLayout, LinearLayout,
and RelativeLayout subtypes, which all support variations of LayoutParams that are
derived from ViewGroup.MarginLayoutParams. A FrameLayout is intended to simply
frame one child element, such as an image. A FrameLayout does support multiple
children, but all the items are pinned to the top left—meaning they will overlap each
other in a stack. A LinearLayout aligns child elements in either a horizontal or a ver-
tical line. Recall that we used a LinearLayout in code in our ReviewListView in list-
ing 3.5. There we created our View and its LayoutParams directly in code. And, in our
previous Activity examples, we used a RelativeLayout in our XML layout files that
was inflated into our code (again, we will cover XML resources in detail in section 3.3).
A RelativeLayout specifies child elements relative to each other (above, below,
toLeftOf, and so on).

AbsoluteLayout

AbsoluteLayout.LayoutParams
x (position)
y (position)

FrameLayout

FrameLayout.LayoutParams
gravity

LinearLayout

LinearLayout.LayoutParams
gravity
weight

ViewGroup

RelativeLayout

RelativeLayout.LayoutParams
above
below
alignLeft
alignRight
toLeftOf
toRightOf
centerHorizontal
centerVertical

ViewGroup.MarginLayoutParams
marginBottom
marginLeft
marginRight
marginTop

ViewGroup.LayoutParams
height
width

Figure 3.6 Common ViewGroup
classes with LayoutParams and
properties provided
Licensed to Deborah Christiansen <pedbro@gmail.com>

82 CHAPTER 3 User interfaces
So the container is a ViewGroup, and a ViewGroup supports a particular type of Lay-
outParams. Child View elements are then added to the container and must fit into the
layout specified by their parents. A key concept to grasp is that even though a child
View has to lay itself out based on its parents’ LayoutParams, it can also specify a differ-
ent layout for its own children. This design creates a very flexible palette upon which
you can construct just about any type of screen you desire.

 For each dimension of the layout a view needs to provide, based on the Layout-
Params of its parents, it specifies one of three values:

■ An exact number
■ FILL_PARENT

■ WRAP_CONTENT

The FILL_PARENT constant means take up as much space in that dimension as the par-
ent does (subtracting padding). WRAP_CONTENT means take up only as much space as is
needed for the content within (adding padding). A child View therefore requests a size,
and the parent makes a decision. In this case, unlike what happens sometimes with
actual kids, the children have to listen—they have no choice, and they can’t talk back.

 Child elements do keep track of what size they initially asked to be, in case layout is
recalculated when things are added or removed, but they cannot force a particular
size. Because of this View elements have two sets of dimensions, the size and width
they want to take up (getMeasuredWidth() and getMeasuredHeight()) and the
actual size they end up after a parent’s decision (getWidth() and getHeight()).

 Layout takes place in a two-step process: first measurements are taken, using the
LayoutParams, then items are placed on the screen. Components are drawn to the
screen in the order they are found in the layout tree: parents first, then children (par-
ents end up behind children, if they overlap in positioning).

 Layout is a big part of understanding screen design with Android. Along with plac-
ing your View elements on the screen, you need to have a good grasp of focus and
event handling in order to build effective applications.

3.2.6 Handling focus

Focus is like a game of tag; one and only one component on the screen is always “it.”
All devices with UIs support this concept. When you are turning the pages of a book,
your focus is on one particular page (or even word or letter) at a time. Computer
interfaces are no different. Though there may be many different windows and widgets
on a particular screen, only one has the current focus and can respond to user input.
An event, such as movement of the mouse, a mouse click, or keyboard press, may trig-
ger the focus to shift to another component.

 In Android focus is handled for you by the platform a majority of the time. When a
user selects an Activity, it is invoked and the focus is set to the foreground View.
Internal Android algorithms then determine where the focus should go next (who
should be tagged) based on events (buttons being clicked, menus selected, services
returning callbacks, and so on). You can override the default behavior and provide
Licensed to Deborah Christiansen <pedbro@gmail.com>

83Working with views
hints about where specifically you want the focus to go using the following View class
methods (or their counterparts in XML):

■ nextFocusDown

■ nextFocusLeft

■ nextFocusRight

■ nextFocusUp

Views can also indicate a particular focus type, DEFAULT_FOCUS or WEAK_FOCUS, to set
the priority of focus they desire, themselves (default) versus their descendants (weak).
In addition to hints, such as UP, DOWN, and WEAK, you can use the View.requestFocus()
method directly, if need be, to indicate that focus should be set to a particular View at
a given time. Manipulating the focus manually should be the exception rather than
the rule (the platform logic generally does what you would expect).

 Focus gets changed based on event-handling logic using the OnFocusChange-
Listener object and related setOnFocusChangedListener() method. This takes us
into the world of event handling in general.

3.2.7 Grasping events

Events are used for changing the focus and for many other actions as well. We have
already implemented several onClickListener() methods for buttons in listing 3.2.
Those OnClickListener instances were connected to button presses. The events they
were indicating were “Hey, somebody pressed me.” This is exactly the same pro-
cess that focus events go through when announcing or responding to OnFocus-
Change events.

 Events have two halves: the component raising the event and the component (or
components) that responds to the event. These two halves are variously known as
Observable and Observer in design pattern terms (or sometimes subject and
observer). Figure 3.7 is a class diagram of the relationships in this pattern.

 An Observable component provides a way for Observer instances to register.
When an event occurs, the Observable notifies all the observers that something has
taken place. The observers can then respond to that notification however they see fit.
Interfaces are typically used for the various types of events in a particular API.

registerObserver() : void
unregisterObserver(): void
notifyObserver(): void

observerCollection : Collection<Observer> (Listeners)
Observable (Source)

notify() : void

Observer
(Listener)

ObserverImpl
ObserveableImpl

For observer in
observerCollection:

notifyObserver()

*0..1

Figure 3.7 A class diagram depicting the Observer design
pattern. Each Observable component has zero to many
Observers, which can be notified of changes when
necessary.
Licensed to Deborah Christiansen <pedbro@gmail.com>

84 CHAPTER 3 User interfaces
With regard to an Android Button the two halves are represented as follows:

■ Observable—Button.setOnClickListener(OnClickListener listener)

■ Observer—listener.onClick(View v)

This pattern comes into play in terms of Android View items in that many things are
Observable and allow other components to attach and listen for events. For example,
most of the View class methods that begin with on are related to events:
onFocusChanged(), onSizeChanged(), onLayout(), onTouchEvent(), and the like.
Similarly, the Activity lifecycle methods we have already discussed—onCreate(),
onFreeze(), and such—are also event-related (on a different level).

 Events happen in the UI and all over the platform. For example, when an incom-
ing phone call occurs or a GPS-based location changes based on physical move-
ment, many different reactions may occur down the line; many components may
want to be notified when the phone rings or when the location changes (not just
one and not just the UI). Views support events on many levels. When an interface
event comes in (a user pressed a button, or scrolled, or selected a portion of a win-
dow), it is dispatched to the appropriate view. In general, click events, keyboard
events, touch events, and focus events are the main types of events you will deal with
in the UI.

 One very important aspect of the View in Android is that the interface is single-
threaded. If you are calling a method on a View, you have to be on the UI thread. This
is, again, why we used a Handler in listing 3.3—to get data outside of the UI thread
and notify the UI thread to update the View via the setMessage() event.

 We are admittedly discussing events here on a fairly broad level, to make sure that
the overarching concepts are clear. We do this because we cannot cover all of the
event methods in the Android APIs in one chapter. Yet you will see events in examples
throughout the book and in your day-to-day experiences with the platform. We will
call out event examples when necessary, and we will cover them in more detail as we
come to specific examples.

 Our coverage of events in general, and how they relate to layout, rounds out the
majority of our discussion of views, but we still have one notable related concept to
tackle, resources. Views are closely related to resources, but they also go beyond the
UI. In the next section we will address all the aspects of resources, including XML-
defined views.

3.3 Using resources
We have mentioned Android resources in several areas up to now, and they were ini-
tially introduced in chapter 1. Here we will revisit resources with more depth in order
to expand on this important topic and to begin completing the third and final Activ-
ity in RestaurantFinder—the ReviewDetail screen.

 When you begin working with Android you will quickly notice many references to
a class named R. This class was introduced in chapter 1, and we have used it in our pre-
vious Activity examples in this chapter. This is the Android resources reference
Licensed to Deborah Christiansen <pedbro@gmail.com>

85Using resources
class. Resources are non-code items that are included with your project automatically
by the platform.

 To begin looking at resources we will first discuss how they are classified into types
in Android, and then we will work on examples of each type.

3.3.1 Supported resource types

In source, resources are kept in the res directory and can be one of several types:

■ res/anim —XML representations of frame-by-frame animations
■ res/drawable —.png, .9.png, and .jpg images
■ res/layout —XML representations of View objects
■ res/values —XML representations of strings, colors, styles, dimensions, and arrays
■ res/xml —User-defined XML files (that are also compiled into a binary form)
■ res/raw —Arbitrary and uncompiled files that can be added

Resources are treated specially in Android because they are typically compiled into an
efficient binary type (with the noted exception of items that are already binary and
the raw type, which is not compiled). Animations, layouts and views, string and color
values, and arrays can all be defined in an XML format on the platform. These XML
resources are then processed by the aapt tool, which we met in chapter 2, and com-
piled. Once resources are in compiled form they are accessible in Java through the
automatically generated R class.

3.3.2 Referencing resources in Java

The first portion of the ReviewDetail Activity, shown in listing 3.6, reuses many of
the Activity tenets we have already learned and uses several subcomponents that
come from R.java, the Android resources class.

public class ReviewDetail extends Activity {

 private static final int MENU_CALL_REVIEW = Menu.FIRST + 2;
 private static final int MENU_MAP_REVIEW = Menu.FIRST + 1;
 private static final int MENU_WEB_REVIEW = Menu.FIRST;

 private String imageLink;
 private String link;
 private TextView location;
 private TextView name;
 private TextView phone;
 private TextView rating;
 private TextView review;
 private ImageView reviewImage;

 private Handler handler = new Handler() {
 public void handleMessage(Message msg) {
 if ((imageLink != null) && !imageLink.equals("")) {
 try {
 URL url = new URL(imageLink);
 URLConnection conn = url.openConnection();
 conn.connect();
 BufferedInputStream bis = new

BufferedInputStream(conn.getInputStream());

Listing 3.6 First portion of ReviewDetail showing multiple uses of the R class

Define inflatable
View items

B

Use Handler
to get image

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

86 CHAPTER 3 User interfaces
 Bitmap bm = BitmapFactory.decodeStream(bis);
 bis.close();
 reviewImage.setImageBitmap(bm);
 } catch (IOException e) {
 // log and or handle here
 }
 } else {
 reviewImage.setImageResource(R.drawable.no_review_image);
 }
 }
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 this.setContentView(R.layout.review_detail);

 this.name =
 (TextView) findViewById(R.id.name_detail);
 this.rating =
 (TextView) findViewById(R.id.rating_detail);
 this.location =
 (TextView) findViewById(R.id.location_detail);
 this.phone =
 (TextView) findViewById(R.id.phone_detail);
 this.review =
 (TextView) findViewById(R.id.review_detail);
 this.reviewImage =
 (ImageView) findViewById(R.id.review_image);

 RestaurantFinderApplication application =
 (RestaurantFinderApplication) getApplication();
 Review currentReview = application.getCurrentReview();

 this.link = currentReview.link;
 this.imageLink = currentReview.imageLink;
 this.name.setText(currentReview.name);
 this.rating.setText(currentReview.rating);
 this.location.setText(currentReview.location);
 this.review.setText(currentReview.content);

 if ((currentReview.phone != null) && !currentReview.phone.equals("")) {
 this.phone.setText(currentReview.phone);
 } else {
 this.phone.setText("NA");
 }
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0, ReviewDetail.MENU_WEB_REVIEW, 0,

R.string.menu_web_review).setIcon(
 android.R.drawable.ic_menu_info_details);
 menu.add(0, ReviewDetail.MENU_MAP_REVIEW, 1,

R.string.menu_map_review).setIcon(
 android.R.drawable.ic_menu_mapmode);
 menu.add(0, ReviewDetail.MENU_CALL_REVIEW, 2,

R.string.menu_call_review).setIcon(
 android.R.drawable.ic_menu_call);
 return true;
 }

 . . . remainder of this class is in Chapter 4, when we discuss Intents

Set layout using
setContentView()

D

Inflate
views using
findViewById()

E

Use String
and Drawable
resources

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

87Using resources
In the ReviewDetail class we are first defining View components that we will later ref-
erence from resources B. From there we see a Handler that is used to perform a net-
work call to populate an ImageView based on a URL. This doesn’t relate to resources but
is included here for completeness. Don’t worry too much about the details of this here,
as it will be covered more when we specifically discuss networking in chapter 5 C. After
the Handler, we set the layout and View tree using setContentView(R.layout.review_
detail) D. This maps to an XML layout file at src/res/layout/review_detail.xml. Next
we also reference some of the View objects in the layout file directly through resources
and corresponding IDs E.

 Views that are defined in XML are inflated by parsing the XML and injecting the
corresponding code to create the objects for you. This is handled automatically by the
platform. All of the View and LayoutParams methods we have discussed previously
have counterpart attributes in the XML format. This inflation approach is one of the
most important aspects of View-related resources, and it makes them very convenient
to use and reuse. We will examine the layout file we are referring to here and the spe-
cific views it contains more closely in the next section.

 You reference resources in code, such as we are here, through the automatically
generated R class. The R class is made up of static inner classes (one for each resource
type) that hold references to all of your resources in the form of an int value. This
value is a constant pointer to an object file through a resource table (which is con-
tained in a special file the aapt tool creates and the R file utilizes).

 The last reference to resources in listing 3.6 is for the creation of our menu items F.
For each of these we are referencing a String for text from our own local resources, and
we are also assigning an icon from the android.R.drawable resources namespace. You
can qualify resources in this way and reuse the platform drawables: icons, images, bor-
ders, backgrounds, and so on. You will likely want to customize much of your own appli-
cations and provide your own drawable resources, which you can do, but the platform
resources are also available if you need them (and they are arguably the better choice
in terms of consistency for the user, if you are calling out to well-defined actions as we
are here: map, phone call, and web page).

 We will cover how all the different resource types are handled and where they are
placed in source in the next several sections. The first types of resources we will look at
more closely are those of layouts and views.

3.3.3 Defining views and layouts through XML resources

As we have noted in several earlier sections, views and layout can be, and often are,
defined in XML rather than in Java code. Defining views and layout as resources in this
way makes them easier to work with, decoupled from the code, and in some cases
reusable in different contexts.

 View resource files are placed in the res/layout source directory. The root of these
XML files is usually one of the ViewGroup layout subclasses we have already discussed:
RelativeLayout, LinearLayout, FrameLayout, and so on. Within these root elements
are child XML elements that represent the view/layout tree.
Licensed to Deborah Christiansen <pedbro@gmail.com>

88 CHAPTER 3 User interfaces
 An important thing to understand here is that resources in the res/layout direc-
tory don’t have to be layouts. You can define a single TextView in a layout file the same
way you might define an entire tree starting from an AbsoluteLayout. Yes, this makes
the layout name and path potentially confusing, but that is how it is set up. (It might
make more sense to have separate res/layout and res/view directories, but that might
be confusing too, so just keep in mind that res/layout is useful for more than layout.)

 You can have as many XML layout/view files as needed, all defined in the res/lay-
out directory. Each View is then referenced in code based on the type and ID. Our lay-
out file for the ReviewDetail screen, review_detail.xml, which is shown in listing 3.7,
is referenced in the Activity code as R.layout.review_detail—which is a pointer
to the RelativeLayout parent View object in the file.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_horizontal"
 android:padding="10px"
 android.setVerticalScrollBarEnabled="true"
 >

 <ImageView android:id="@+id/review_image"
 android:layout_width="100px"
 android:layout_height="100px"
 android:layout_marginLeft="10px"
 android:layout_marginBottom="5px" />

 <TextView android:id="@+id/name_detail"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/review_image"
 android:layout_marginLeft="10px"
 android:layout_marginBottom="5px"
 style="@style/intro_blurb" />

 <TextView android:id="@+id/rating_label_detail"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/name_detail"
 android:layout_marginLeft="10px"
 android:layout_marginBottom="5px"
 style="@style/label"
 android:text="@string/rating_label" />

 . . . remainder of file omitted for brevity

</RelativeLayout>

In this file we are using a RelativeLayout B. This is the ViewGroup at the root of the
View tree. LayoutParams are then also defined in XML using the android:

layout_[attribute] convention (where [attribute] refers to a layout attribute) C.
Along with layout, other View-related attributes can also be defined in XML with

Listing 3.7 XML layout resource file for review_detail.xml

Define root View elementB

Define
LayoutParams

C

D
Define View
parameters in XML

E
Include child
element with ID

Reference another
resource

F

G
Reference a
style for a View
Licensed to Deborah Christiansen <pedbro@gmail.com>

89Using resources
counterpart XML attributes to the methods available in code, such as android:
padding, which is analogous to setPadding() D.

 After the RelativeLayout parent itself is defined, the child View elements are
added. Here we are using an ImageView and multiple TextView components. Each of
the components is given an ID using the form android:id="@+id/[name]" E. When
an ID is established in this manner, an int reference is defined in the resource table
and named with the specified name. This allows other components to reference the
ID by the friendly textual name.

 Once views are defined as resources, the Activity method findViewById() can
be used to obtain a reference to a particular View using the name. That View can then
be manipulated in code. For example, in listing 3.6 we grabbed the rating TextView
as follows:

rating = (TextView) findViewById(R.id.rating_detail).

This inflates and hands off the rating_detail element we saw in listing 3.7. Note that
child views of layout files end up as id type in R.java (they are not R.layout.name;
rather they are R.id.name, even though they are required to be placed in the res/lay-
out directory).

 The properties for the View object are all defined in XML, and this includes the
layout. Because we are using a RelativeLayout we use attributes that place one View
relative to another, such as below or toRightOf. This is done with the android:
layout_below="@id/[name] syntax F. The @id syntax is a way to reference other
resource items from within a current resource file. Using this approach you can refer-
ence other elements defined in the file you are currently working on or other ele-
ments defined in other resource files.

 Some of our views represent labels, which are shown on the screen as is and are
not manipulated in code, such as rating_label_detail. Others we will populate at
runtime; these don’t have a text value set, such as name_detail. The elements that
we do know the values of, the labels, are defined with references to external-
ized strings.

 The same approach is applied with regard to styles, using the syntax
style="@style/[stylename]" G. Strings, styles, and colors are themselves defined as
resources in another type of resource file.

3.3.4 Externalizing values

It is fairly common practice in the programming world to externalize string literals
from code. In Java this is done with a ResourceBundle or a properties file. Externaliz-
ing references to strings in this way allows the value of a component to be stored and
updated separately from the component itself, away from code.

 Android includes support for values resources that are subdivided into several
groups: animations, arrays, styles, strings, dimensions, and colors. Each of these items
is defined in a specific XML format and made available in code as references from the
Licensed to Deborah Christiansen <pedbro@gmail.com>

90 CHAPTER 3 User interfaces
R class, just like layouts, views, and drawables. For the RestaurantFinder application we
are using externalized strings, as shown in listing 3.8, strings.xml.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name_criteria">RestaurantFinder – Criteria</string>
 <string name="app_name_reviews">RestaurantFinder - Reviews</string>
 <string name="app_name_review">RestaurantFinder - Review</string>
 <string name="app_short_name">Restaurants</string>

 <string name="menu_get_reviews">Get reviews</string>
 <string name="menu_web_review">Get full review</string>
 <string name="menu_map_review">Map location</string>
 <string name="menu_call_review">Call restaurant</string>
 <string name="menu_change_criteria">Change review criteria</string>
 <string name="menu_get_next_page">Get next page of results</string>

 <string name="intro_blurb_criteria">Enter review criteria</string>
 <string name="intro_blurb_detail">Review details</string>

 . . . remainder omitted for brevity

</resources>

As is evident from the strings.xml example, this is very straightforward. This file uses a
<string> element with a name attribute B for each string value you need. We have
used this file for the application name, menu buttons, labels, and alert validation mes-
sages. This format is known as simple value in Android terms. This file is placed in
source at the res/values/strings.xml location. In addition to strings, colors and dimen-
sions can be defined in the same way.

 Dimensions are placed in dimens.xml and defined with the <dimen> element:
<dimen name=dimen_name>dimen_value</dimen>. Dimensions can be expressed in
any of the following units:

■ pixels (px)
■ inches (in)
■ millimeters (mm)
■ points (pt)
■ density-independent pixels (dp)
■ scale-independent pixels (sp)

Colors can be defined in colors.xml and are defined with the <color> element: <color
name=color_name>#color_value</color>. Colors values are expressed in RGB codes.
Color and dimension files are also placed in the res/values source location.

 Although we haven’t defined separate colors and dimensions for the Restaurant-
Finder application, we are using several styles, which we referenced in listing 3.7. The
style definitions are shown in listing 3.9. This is where we move beyond a simple value
layout to a specific style XML structure (although styles are still placed in source in the
res/values directory, which can be confusing).

Listing 3.8 Externalized strings for the RestaurantFinder application, strings.xml

B

Using a string
element with a
name attribute
Licensed to Deborah Christiansen <pedbro@gmail.com>

91Using resources
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="intro_blurb">
 <item name="android:textSize">22sp</item>
 <item name="android:textColor">#ee7620</item>
 <item name="android:textStyle">bold</item>
 </style>

 <style name="label">
 <item name="android:textSize">18sp</item>
 <item name="android:textColor">#ffffff</item>
 </style>

 <style name="edit_text">
 <item name="android:textSize">16sp</item>
 <item name="android:textColor">#000000</item>
 </style>

 . . . remainder of file omitted for brevity
</resources>

The Android styles approach is a similar concept to using Cascading Style Sheets
(CSS) with HTML. Styles are defined in styles.xml and then referenced from other
resources or code. Each <style> element B has one or more <item> children that
define a single setting C. Styles are made up of the various View settings: sizes, colors,
margins, and such. Styles are very helpful because they facilitate easy reuse and the
ability to make changes in one place. Styles are applied in layout XML files by associat-
ing a style name with a particular View component, such as style="@style/
intro_blurb" (note that in this case style is not prefixed with the android:
namespace; it is a custom local style and not one provided by the platform).

 Styles can be taken one step further and used as themes. While a style refers to a
set of attributes applied to a single View element, themes refer to a set of attributes
being applied to an entire screen. Themes can be defined in exactly the same <style>
and <item> structure as styles are. To apply a theme you simply associate a style with
an entire Activity, such as: android:theme="@android:style/[stylename]".

 Along with styles and themes, Android supports a specific XML structure for defin-
ing arrays as a resource as well. Arrays are placed in source in res/values/arrays.xml
and are helpful for defining collections of constant values, such as the cuisines we
used to pass to our ArrayAdapter back in listing 3.1. Listing 3.10 shows how these
arrays are defined in XML.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <array name="cuisines">
 <item>ANY</item>
 <item>American</item>
 <item>Barbeque</item>
 <item>Chinese</item>
 <item>French</item>

Listing 3.9 Values resource defining reusable styles, styles.xml

Listing 3.10 Arrays.xml used for defining cuisines and ratings

Use a <style> elementB

Use an
<item> element

C

Define <array> elementsB

C Define array <item> elements
Licensed to Deborah Christiansen <pedbro@gmail.com>

92 CHAPTER 3 User interfaces
 <item>German</item>
 <item>Indian</item>
 <item>Italian</item>
 <item>Mexican</item>
 <item>Thai</item>
 <item>Vegetarian</item>
 <item>Kosher</item>
 </array>
</resources>

Arrays are defined as resources using an <array> element with a name attribute B and
include any number of <item> child elements C to define each array member. You
can access arrays in code using the syntax shown in listing 3.1: String[] ratings =
getResources().getStringArray(R.array.ratings).

 Raw files and XML are also supported through resources. Using the res/raw and
res/xml directories, respectively, you can package these file types with your applica-
tion and access them through either Resources.openRawResource(int id) or
Resources.getXml(int id).

 Going past simple values for strings, colors, and dimensions and more involved but
still straightforward structures for styles, arrays, raw files, and raw XML, the next type
of resources we need to explore are animations.

3.3.5 Providing animations

Animations are more complicated than other Android resources but are also the most
visually impressive. Android allows you to define animations that can rotate, fade,
move, or stretch graphics or text. While you don’t want to go overboard with a con-
stantly blinking animated shovel, an initial splash or occasional subtle animated effect
can really enhance your UI.

 Animation XML files are placed in the res/anim source directory. There can be
more than one anim file, and, as with layouts, you reference the respective animation
you want by name/id. Android supports four types of animations:

■ <alpha>—Defines fading, from 0.0 to 1.0 (0.0 being transparent)
■ <scale>—Defines sizing, X and Y (1.0 being no change)
■ <translate>—Defines motion, X and Y (percentage or absolute)
■ <rotate>—Defines rotation, pivot from X and Y (degrees)

In addition, Android provides several attributes that can be used with any animation type:

■ duration—Duration in milliseconds
■ startOffset—Offset start time in milliseconds
■ interpolator—Used to define a velocity curve for speed of animation

Listing 3.11 shows a very simple animation that can be used to scale a View.

<?xml version="1.0" encoding="utf-8"?>
<scale xmlns:android="http://schemas.android.com/apk/res/android"

Listing 3.11 Example of an animation defined in an XML resource, scaler.xml

Use <scale> animation B
Licensed to Deborah Christiansen <pedbro@gmail.com>

93Understanding the AndroidManifest file
 android:fromXScale="0.5"
 android:toXScale="2.0"
 android:fromYScale="0.5"
 android:toYScale="2.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="700"
 android:duration="400"
 android:fillBefore="false" />

In code you can reference and use this animation with any View object (TextView, for
example) as follows:

view.startAnimation(AnimationUtils.loadAnimation(this, R.anim.scaler));.

This will scale B the view element up in size on both the X and Y axes. Though we do
not have any animations in the RestaurantFinder sample application by default, to see
this work you can simply add the startAnimation method to any view element in the
code and reload the application. Animations can come in handy, so you should be aware
of them. We will cover animations and other graphics topics in detail in chapter 9.

 With our journey through Android resources now complete, we next need to
address the final aspect of RestaurantFinder we have yet to cover, the AndroidMani-
fest.xml manifest file, which is required for every Android application.

3.4 Understanding the AndroidManifest file
As you learned in chapter 1, Android requires a manifest file for every applica-
tion—AndroidManifest.xml. This file, which is placed in the root directory of the proj-
ect source, describes the application context and any supported activities, services,
intent receivers, and/or content providers, as well as permissions. You will learn more
about services, intents, and intent receivers in the next chapter and about content
providers in chapter 5. For now the manifest for our RestaurantFinder sample applica-
tion, as shown in listing 3.11, contains only the <application> itself, an <activity>
element for each screen, and several <uses-permission> elements.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 <application android:icon="@drawable/restaurant_icon_trans"
 android:label="@string/app_short_name"

android:name="RestaurantFinderApplication"
 android:allowClearUserData="true"
 android:theme="@android:style/Theme.Black">

 <activity android:name="ReviewCriteria"
 android:label="@string/app_short_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

Listing 3.12 The RestaurantFinder AndroidManifest.xml file

Include <manifest> declaration B

Include RestaurantFinder-
Application declaration

C

Define Review-
Criteria Activity

D

EDefine MAIN LAUNCHER Intent filter
Licensed to Deborah Christiansen <pedbro@gmail.com>

94 CHAPTER 3 User interfaces
 <activity android:name="ReviewList"
 android:label="@string/app_name_reviews">
 <intent-filter>
 <category
 android:name="android.intent.category.DEFAULT" />
 <action
 android:name="com.msi.manning.restaurant.VIEW_LIST" />
 </intent-filter>
 </activity>

 <activity android:name="ReviewDetail"
 android:label="@string/app_name_review">
 <intent-filter>
 <category
 android:name="android.intent.category.DEFAULT" />
 <action
 android:name="com.msi.manning.restaurant.VIEW_DETAIL" />
 </intent-filter>
 </activity>

 </application>

 <uses-permission android:name="android.permission.CALL_PHONE" />
 <uses-permission android:name="android.permission.INTERNET" />
</manifest>

In the RestaurantFinder descriptor file we first see the root <manifest> element dec-
laration, which includes the application’s package declaration and the Android
namespace B. Then we see the <application> element with both the name and icon
attributes defined C. You don’t have to include the name attribute here unless you
want to extend the default Android Application object to provide some global state
to your application (which we did to store the Review object each screen is operating
on). The icon is also optional; if not specified, a system default is used to represent
your application on the main menu.

 After the application itself is defined, we see the child <activity> elements within.
These, obviously, define each Activity the application supports D (note that the mani-
fest file can use Android resources as well, such as with @string/app_name). As was not-
ed when discussing activities in general, one Activity in every application is the starting
point; this Activity has the <intent-filter> action MAIN and category LAUNCHER des-
ignation E. This tells the Android platform how to start an application from the
Launcher, meaning this Activity will be placed in the main menu on the device.

 Past the ReviewCriteria Activity we see another <activity> designation for
ReviewList F. This Activity also includes an <intent-filter>, but for our own
action, com.msi.manning.chapter3.VIEW_LIST G. This tells the platform that this
Activity should be invoked for this “intent.” You will learn more about exactly how
this works in the next chapter. Last in our manifest we have a <uses-permission> H
element. This also relates to intents and tells the platform that this application needs
the CALL_PHONE permission. (We discussed several aspects of security in chapter 2, and
we will touch on this in various contexts throughout the book.)

 The RestaurantFinder sample application uses a fairly basic manifest file with three
activities and a series of intents. This is not a comprehensive example, of course, but
all of the elements an Android manifest supports are shown in table 3.4 for reference.

Define ReviewList Activity F

Define custom Intent filterG

Add permissions H
Licensed to Deborah Christiansen <pedbro@gmail.com>

95Summary
Wrapping up the description of the manifest file completes our discussion of views,
activities, resources, and in general working with UIs in Android.

3.5 Summary
A big part of the Android platform revolves around the UI and the concepts of activi-
ties and views. In this chapter we explored these concepts in detail and worked on a
sample application to demonstrate them. In relation to activities we addressed the
concepts and methods involved, and we covered the all-important lifecycle events the
platform uses to manage them. With regard to views we looked at common and cus-
tom types, attributes that define layout and appearance, and focus and events.

 In addition, we looked at how Android handles various types of resources, from
simple types to more involved layouts, arrays, and animations—and how these relate
to, and are used within, views and activities. We also explored the AndroidMani-
fest.xml application descriptor and how it brings all these pieces together to define an
Android application.

Table 3.4 Supported AndroidManifest.xml elements and their descriptions

Element Position Description

<manifest> root Defines application package and Android
namespace

<uses-permission> root Requests a security permission

<permission> root Declares a security permission

<instrumentation> root Declares a test instrumentation component

<application> root Defines an application, class name, label, icon, or
theme (one per manifest)

<activity> child of <application> Defines an Activity class

<intent-filter> child of <activity> Declares the Intents an Activity supports

<action> child of <intent-filter> Intent action

<category> child of <intent-filter> Intent category

<data> child of <intent-filter> Intent MIME type, URI scheme, URI authority, or
URI path

<meta-data> child of <activity> General metadata, accessible via Compo-
nentInfo.metaData

<receiver> root Defines an IntentReceiver, responds to
Intents (also supports <intent-filter>
children)

<service> root Defines a background Service (also supports
<intent-filter> children)

<provider> root Defines a ContentProvider to manage persis-
tent data for access by other applications
Licensed to Deborah Christiansen <pedbro@gmail.com>

96 CHAPTER 3 User interfaces
 This chapter has provided a good foundation for general Android UI develop-
ment; next we need to go deeper into the concepts of Intent and IntentReceiver
classes, the communication layer that Android activities and other components use.
We will cover these items, along with longer-running Service processes and the
Android Inter-Process Communication (IPC) system involving the Binder, in chapter
4, where we will also complete the RestaurantFinder application.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Intents and services
The canonical Android application comprises Activity and View objects on the
front end and Intent and Service objects on the back end. As we discussed in
chapter 3, activities are roughly comparable to UI screens, and views are UI compo-
nents. When a user interacts with a screen, that screen usually represents a task,
such as display a list of choices and allow selection, gather information through
form input, or display graphics and data. Once each screen is finished with its indi-
vidual job, it usually hands off to another component to perform the next task.

 In Android terms, “hand off to another component” is done with an Intent. We
introduced this concept and term in chapter 1, and we saw some limited amounts
of Intent-related code in our examples in chapter 3. In this chapter we are going
to expand on the details, including looking more closely at what exactly an Intent
is and how it is resolved and matched with an IntentFilter. Along the way we will
complete the RestaurantFinder application we started in chapter 3, finishing up

This chapter covers:
■ Working with intents and intent filters
■ Listening in with broadcast receivers
■ Building Services
■ Performing Inter-Process Communication and AIDL
97

Licensed to Deborah Christiansen <pedbro@gmail.com>

98 CHAPTER 4 Intents and services
the code and elaborating on the Intent classes involved. RestaurantFinder uses
Intent objects internally, to go from Activity to Activity, and also calls on intents
from Android built-in applications—to phone a restaurant, map directions to a restau-
rant, and visit a restaurant review web page.

 After we complete the RestaurantFinder application, we will move on to another
sample application in this chapter—WeatherReporter. WeatherReporter will make use
of the Yahoo! Weather API to retrieve weather data and display it, along with weather
alerts, to the user on the Android platform. Through the course of the Weather-
Reporter application we will exercise intents in a new way, using a BroadcastReceiver
and a Service.

 A BroadcastReceiver, as the name implies, also deals with intents but is used to
catch broadcasts to any number of interested receivers, rather than to signal a particu-
lar action from an Activity. Services are background processes, rather than UI
screens, but they are also invoked with a call to action, an Intent.

 Lastly in this chapter, in relation to services, we will examine the Android mecha-
nism for making Inter-Process Communication (IPC) possible using Binder objects
and the Android Interface Definition Language (AIDL). Android provides a high-
performance way for different processes to pass messages among themselves. This is
important because every application runs within its own isolated process (for security
and performance purposes, owing to the Linux heritage of the platform). To enable
communication between components in different processes, something services often
need to do, the platform provides a path via a specified IPC approach.

 The first thing we need to cover is the basic means to perform an action from
within any component; this means focusing on Intent details.

4.1 Working with Intent classes
Intent classes are the communications network of the applications on the Android
platform. In many ways the Android architecture is similar to larger Service-Oriented
Architecture (SOA) approaches in that each Activity makes a type of Intent call to
get something done, without knowing exactly what the receiver of the Intent may be.

 In an ideal situation you don’t care how a particular task gets performed; rather,
you care that it is done and is completed to your requirements. That way, you can
divide up what you need to get done at a particular time—your intent—and concen-
trate on the problem you are trying to solve, rather than worrying about specific
underlying implementation details.

 Intent classes are late binding, and this is one of the things that makes them a bit
different from what you might be used to. This means they are mapped and routed to
a component that can handle a specified task at runtime rather than at build or com-
pile time. One Activity tells the platform, “I need a map to Langtry, TX, US,” and
another component, one the platform determines is capable, handles the request and
returns the result. With this approach, individual components are decoupled and can
be modified, enhanced, and maintained without requiring changes to a larger appli-
cation or system.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/

99Working with Intent classes
 With that concept and the advantages the design intends in mind, here we will
look at exactly how an Intent is defined in code, how an Intent is invoked by an
Activity, how Intent resolution takes place using IntentFilter classes, and some
intents that are built into the platform ready for you to take advantage of.

4.1.1 Defining intents

Intents are made up of three primary pieces of information—action, categories, and
data—and include an additional set of optional elements. An action is simply a String,
as is a category, and data is defined in the form of a Uri object. A Uri is a generic URI
(as defined by RFC 3986) which includes a scheme, an authority, and optionally a path
(you will find out more about these parts in the next section). Table 4.1 lays out all of
the components of an Intent object.

Intent definitions typically express a combination of action, data, and attributes such
as category. This designation is used by the system as a sort of language to resolve
exactly which class should be used to fill the request.

 When a component such as an Activity wants to call upon an Intent, it can do so
in one of two ways:

■ Implicit Intent invocation
■ Explicit Intent invocation

An implicit Intent invocation is one in which the platform determines which compo-
nent is the best to run the Intent. This happens through a process of Intent resolution
using the action, data, and categories. We will explore this resolution process in detail
in the next section. An explicit Intent invocation is one in which the code directly spec-
ifies which component should handle the Intent. Explicit invocation is done by spec-
ifying either the Class or ComponentName of the receiver (where ComponentName is a
String for the package and a String for the class).

Table 4.1 Intent elements and description

Intent
element

Description

Extras Extra data to pass to the Intent that is in the form of a Bundle

Component Specifies an explicit package and class to use for Intent, optional, normally
inferred from action, type, and categories

Type Specifies an explicit MIME type (as opposed to being parsed from a URI)

Category Additional metadata about Intent (for example,
android.intent.category.LAUNCHER)

Data Data to work with expressed as a URI (for example, content://contacts/1)

Action Fully qualified String indicating action (for example,
android.intent.action.MAIN)
Licensed to Deborah Christiansen <pedbro@gmail.com>

100 CHAPTER 4 Intents and services
 To explicitly invoke an Intent, you can use the following form: Intent(Context ctx,
Class cls). With this approach you can short-circuit all the Android Intent-resolution
wiring and directly pass in an Activity or Service class reference to handle the Intent.
While this approach is convenient and fast, and therefore sometimes arguably appropriate,
it also introduces tight coupling that may be a disadvantage later.

 In listing 4.1 we show the final portion of the ReviewDetail Activity from the
RestaurantFinder sample application. This listing shows several implicit Intent invo-
cations. (We began this application in chapter 3; the first half of this class is shown in
listing 3.6.)

@Override
public boolean onMenuItemSelected(int featureId, MenuItem item) {
 Intent intent = null;
 switch (item.getItemId()) {
 case MENU_WEB_REVIEW:
 if ((this.link != null) && !this.link.equals("")) {
 intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse(this.link));
 startActivity(intent);
 } else {
 new AlertDialog.Builder(this)
 setTitle(getResources()
 .getString(R.string.alert_label))
 .setMessage(R.string.no_link_message)
 .setPositiveButton("Continue",
 new OnClickListener() {
 public void onClick(DialogInterface dialog,
 int arg1) {
 }
 }).show();
 }
 return true;
 case MENU_MAP_REVIEW:
 if ((this.location.getText() != null)
 && !this.location.getText().equals("")) {
 intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("geo:0,0?q=" +
 this.location.getText().toString()));
 startActivity(intent);
 } else {
 new AlertDialog.Builder(this)
 .setTitle(getResources()
 .getString(R.string.alert_label))
 .setMessage(R.string.no_location_message)

 .setPositiveButton("Continue", new OnClickListener() {
 public void onClick(DialogInterface dialog,
 int arg1) {
 }
 }).show();
 }

Listing 4.1 Second portion of the ReviewDetail, demonstrating Intent invocation

B Declare an Intent

Set Intent for
web menu item

C

D
Use
StartActivity(intent)

E
Set Intent for
map menu item
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/android/content/Intent.html

101Working with Intent classes
 return true;
 case MENU_CALL_REVIEW:
 if ((this.phone.getText() != null)
 && !this.phone.getText().equals("")
 && !this.phone.getText().equals("NA")) {
 String phoneString =
 parsePhone(this.phone.getText().toString());
 intent = new Intent(Intent.ACTION_CALL,
 Uri.parse("tel:" + phoneString));
 startActivity(intent);
 } else {
 new AlertDialog.Builder(this)
 .setTitle(getResources()
 .getString(R.string.alert_label))
 .setMessage(R.string.no_phone_message)
 .setPositiveButton("Continue", new OnClickListener() {
 public void onClick(DialogInterface dialog,
 int arg1) {
 }
 }).show();
 }
 return true;
 }
 return super.onMenuItemSelected(featureId, item);
 }

The Review object that the ReviewDetail Activity displays to the user contains the
address and phone number for a restaurant and a link to the full online review. Using
this Activity the user can choose, through the menu, to display a map with direc-
tions to the restaurant, call the restaurant, or view the full review in a web browser. To
allow all of these actions to take place, ReviewDetail uses built-in Android applica-
tions, through implicit Intent calls.

 First, an Intent class instance is initialized to null B, so it can later be used by the
various menu cases. Then, if the MENU_WEB_REVIEW menu button is selected by the user,
we create a new instance of the Intent variable by passing in an action and some data C.
For the action we are using the String constant Intent.ACTION_VIEW. The value of this
constant is android.app.action.VIEW, a fully qualified String including the package
so as to be unique. The Intent class has a host of constants like this that represent com-
mon actions, for example, Intent.ACTION_EDIT, Intent.ACTION_INSERT, and Intent.
ACTION_DELETE. Various activities and services use these same values when they declare
they support a particular Intent (and you can reuse these constants, too, where appli-
cable; see the Android Javadocs for a complete list of what is available: http://
code.google.com/android/reference/android/content/Intent.html).

 After the action is declared, the data comes into play. In this case we are using
Uri.parse(link) to specify a Uri (where link is an HTTP URL). The parse(String
s) method simply parses the parts of a URI and creates a Uri object. This Uri is used
in the resolution process we will cover next. Basically, the type can be derived from the
Uri, or else the scheme, authority, and path themselves can be used. This allows the
correct component to answer the startActivity(Intent i) request D and render

F
Set Intent for
call menu item
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/android/content/Intent.html
http://code.google.com/android/reference/android/content/Intent.html

102 CHAPTER 4 Intents and services
the resource identified by the Uri. As you can see, we haven’t directly declared any
particular Activity or Service for the Intent; we are simply saying we want to VIEW
http://somehost/somepath. This is the late-binding aspect in action. When it comes
to a web URL, it’s pretty obvious how this works, but the same concept is applied in
Android with many other built-in data types (and you can define your own when nec-
essary, as you shall see).

 The next menu item ReviewDetail handles is for the MENU_MAP_REVIEW case,
where we see the Intent reinitialized to use the Intent.ACTION_VIEW again, but this
time with a different type of Uri being parsed: "geo:0,0?q=" + street_address E.
This combination of VIEW and geo scheme invokes a different Intent, this time within
the built-in maps application. And finally, we see the MENU_MAP_CALL case, where the
Intent is reinitialized again, this time to make a phone call using the Intent.
ACTION_CALL and the tel: Uri scheme F.

 Through those simple statements, our RestaurantFinder application is using implicit
Intent invocation to allow the user to phone or map the restaurant selected or to view
the full review web page. These menu buttons are shown in the screen shot in figure 4.1.

 To get the menu buttons on the ReviewDetail activity of the RestaurantFinder sam-
ple application to work, we did not have to code all the functionality ourselves; we simply
had to leverage the existing applications Android provides by telling the platform our
intentions. Those last steps complete the
RestaurantFinder application, which
can now search for reviews, allow the
user to select a particular review from a
list, display a detailed review, and use
additional built-in applications to find
out more about a selected restaurant.

 You will learn more about all of the
built-in apps and action-data pairs in
section 4.1.3. Now we turn our focus to
more detail on the Intent-resolution
process, where we will uncover more
about Intent action and data.

4.1.2 Intent resolution

Three types of Android components can register to be Intent handlers: Activity,
BroadcastReceiver, and Service. These components typically register with the plat-
form to be the destination for particular intent types using the <intent-filter> ele-
ment in the AndroidManifest.xml file, as we have seen.

 Each <intent-filter> element is parsed into an IntentFilter object. When a
package is installed on the platform, the components within are registered, including
the Intent filters. Once the platform has a registry of Intent filters, it basically knows
how to map any Intent requests that come in to the correct installed Activity,
BroadcastReceiver, or Service.

Figure 4.1 The menu buttons on the
RestaurantFinder sample application,
used for invoking respective intents
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://groups.google.com/group/android-developers/browse_thread/thread/fa2848e31636af70
http://groups.google.com/group/android-developers/browse_thread/thread/fa2848e31636af70
http://somehost/somepath

103Working with Intent classes
 When an Intent is requested, resolution takes place through the registered filters,
using the action, data, and categories of the Intent. There are two basic rules about
matching Intent to IntentFilter that you should be aware of:

■ The action and category must match.
■ If specified, the data type must match, or the combination of data scheme and

authority and path must match.

In the next few sections we will explore these aspects in greater detail, as they are par-
amount to understanding how Intent classes work.
ACTION AND CATEGORIES

The action and category parts are pretty simple. These boil down to String objects,
one for the action, potential multiples for the categories. If the action is not specified
in the IntentFilter, it will then match any action coming from an Intent (all actions
work). With categories, the IntentFilter is a superset. An IntentFilter can have
additional categories beyond what an Intent specifies to match but must have at least
what the Intent specifies. Also, unlike with an action, an IntentFilter with no cate-
gories will match only an Intent with no categories (it is not treated as a wildcard). So
first, action and category specifications have to match.

 Before we move on to the next matching component, data, it’s important to under-
stand that data is optional. You can work with action and category alone, and in many
cases that suffices. This is, for example, the technique we used in the ReviewList
Activity we built in chapter 3. There the IntentFilter was defined (in the manifest
XML), as shown in listing 4.2.

<activity android:name="ReviewList" android:label="@string/app_name">
 <intent-filter>
 <category android:name="android.intent.category.DEFAULT" />
 <action android:name="com.msi.manning.restaurant.VIEW_LIST" />
 </intent-filter>
</activity>

To match the filter declared in listing 4.2, we used the following Intent in code
(where Constants.INTENT_ACTION_VIEW_LIST is the String com.msi.manning.

restaurant.VIEW_LIST):

Intent intent = new Intent(Constants.INTENT_ACTION_VIEW_LIST);
startActivity(intent);

NOTE The DEFAULT category designation on an Activity means that the
Activity should be present as an option for the default action—center
button press—for a particular type of data. This is usually specified in an
IntentFilter, but it does not typically need to be present in an Intent
(the filter will still match; categories are a superset).

Listing 4.2 Manifest declaration of ReviewList Activity with intent-filter
Licensed to Deborah Christiansen <pedbro@gmail.com>

104 CHAPTER 4 Intents and services
DATA

After the action and categories are resolved,
Intent data comes into play. The data can be
either an explicit MIME type or a combina-
tion of scheme, authority, and path. Either of
these data forms can be derived from a Uri.
The Uri shown in figure 4.2 is an example of
using scheme, authority, and path.

 As opposed to scheme, authority, and path, using an explicit MIME type within a
Uri looks like the following:

content://com.google.provider.NotePad/notes

You might reasonably ask how this is differentiated from scheme/authority/path,
because those elements are really still there. The answer is the content:// scheme.
That indicates a type override to the platform. The type itself is defined in the mani-
fest of the package supplying the content provider. We will look at more details con-
cerning content providers later in this chapter.

 When IntentFilter classes are defined, they set the boundaries for what they will
match in terms of type, scheme, authority, and path. A somewhat convoluted resolu-
tion path follows:

1 If scheme is present and type is not present, intents with any type will match.
2 If type is present and scheme is not present, intents with any scheme will match.
3 If neither scheme nor type is present, only intents with neither scheme nor type

will match.
4 If an authority is specified, a scheme must also be specified.
5 If a path is specified, a scheme and authority must also be specified.

The majority of times what you are matching will be fairly straightforward, but as you
can see, with these rules and multiple levels of authorities and schemes, it can get
complicated. To boil down Intent resolution, think of Intent and IntentFilter as
separate pieces of the same puzzle. When you call an Intent in an Android applica-
tion, the system resolves the Activity or Service (or BroadcastReceiver) to handle
your request through this resolution process using the action, categories, and data
(type or scheme, authority, and path) provided. The system searches all the pieces of
the puzzle it has until it finds one that meshes with the one you have just handed it,
and then it snaps those pieces together to make the late-binding connection.

 A more involved example of this matching is shown in figure 4.3. There you can
see that an IntentFilter is defined with an action, the default category, and a combi-
nation of scheme and authority (leaving out the path so that any path will match). An
example of an Intent that would match this filter is also shown, in this case using a
Uri that is passed in by the next sample application we will build, WeatherReporter.

 The IntentFilter shown in figure 4.3 matches with the action, category, and
data (extracted from the Uri passed in) of the Intent being used. This Intent and
filter come from the next sample application we are going to begin working on, a

weather:// com.msi.manning/loc?zip=12345

scheme authority path

Figure 4.2 The portions of a URI that are used
in Android, showing scheme, authority, and path
Licensed to Deborah Christiansen <pedbro@gmail.com>

105Working with Intent classes
weather-reporting and -alerting application.
This application will carry us through the
remaining concepts in this chapter and into
the next.

4.1.3 Matching a custom URI

The concept behind WeatherReporter, the
next sample application we will build, is that
it will make use of the Yahoo! Weather API to
retrieve weather data and display it to the
user on the Android platform. Optionally
this application will also alert users of severe
weather for locations they have indicated
they are interested in (based on either the
current location of the device or the speci-
fied postal code).

 Within this project you will see how a cus-
tom URI can be defined and registered with a
matching Intent filter to allow any other
application to invoke a weather report
through an Intent. (Defining and publish-
ing an Intent in this way allows other applica-
tions to easily use our application.) When
complete, the main screen of the WeatherRe-
porter application will look like what is shown
in figure 4.4.

IntentFilter

 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="weather" android:host="com.msi.manning" />
</intent-filter>

Intent

intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("weather://com.msi.manning/loc?zip=12345");

Figure 4.3 Example Intent and IntentFilter matching
using a filter defined in XML

Figure 4.4 The main screen in the sample
WeatherReporter application showing the
weather forecast for the current location
and a check box to indicate whether alerts
should be enabled
Licensed to Deborah Christiansen <pedbro@gmail.com>

106 CHAPTER 4 Intents and services
 To begin this application we first have to cover basics, such as the manifest file.
Although we have already explored manifest files in previous chapters, here we will fill
in details for this application, and we will further reinforce how Intent filters are
defined in XML. The manifest for WeatherReporter is shown in listing 4.3.

<?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.weather">
 <application android:icon="@drawable/weather_sun_clouds_120"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Black"
 android:allowClearUserData="true">

 <activity android:name="ReportViewSavedLocations"
 android:label="@string/app_name_view_saved_locations" />

 <activity android:name="ReportSpecifyLocation"
 android:label=
 "@string/app_name_specify_location" />

 <activity android:name="ReportViewDetail"
 android:label="@string/app_name_view_detail">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="weather"
 android:host="com.msi.manning" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="weather"
 android:host="com.msi.manning" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <receiver android:name=".service.WeatherAlertServiceReceiver">
 <intent-filter>
 <action android:name=
 "android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>

 <service android:name=".service.WeatherAlertService" />

 </application>

 <uses-permission
 android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <uses-permission android:name=

Listing 4.3 The Android manifest file for the WeatherReporter application

Define
activities

B

Define a receiver C

Define a
service

D

Include necessary permissions E
Licensed to Deborah Christiansen <pedbro@gmail.com>

107Working with Intent classes
 "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission

android:name=
 "android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
 <uses-permission android:name="android.permission.INTERNET" />

</manifest>

In the WeatherReporter manifest we have three activities defined B. The most inter-
esting is the ReportViewDetail Activity, which we will show a portion of in listing 4.4.
This Activity has multiple Intent filters defined that match it, including one denoting
it is the MAIN LAUNCHER, and one with the weather://com.msi.manning scheme and
authority shown in figures 4.2 and 4.3. This is the custom URI our application supports.

 You can use any combination of scheme, authority, and path—as we have here—or
you can use an explicit MIME type. We will find out more about MIME types and how
they are processed in chapter 5, where will look specifically at how to work with data
sources and use an Android concept known as a ContentProvider.

 After these activities we use the <receiver> element in the manifest file to refer to
a BroadcastReceiver class C. We will uncover what a BroadcastReceiver is all about
in section 4.2, but the important part for now is that an <intent-filter> is also used
here to associate an Intent—in this case for the BOOT_COMPLETED action. With this
association we are telling the platform to invoke the WeatherAlertServiceReceiver
class after the boot-up sequence is completed.

 In our manifest we also have a Service definition D. You will see how this Service
is built, and how it is used with our WeatherReporter application to poll for severe
weather alerts in the background, in section 4.3. The last thing in our manifest is a
series of permissions the application requires E.

 With the foundation for our sample application in place via the manifest, the next
thing we need to look at is the onStart method of main Activity WeatherReporter
will use, which is shown in listing 4.4. This is where data from the Uri that matches the
Intent filter is parsed and used to display a weather report.

@Override
public void onStart() {
 super.onStart();
 this.dbHelper = new DBHelper(this);
 this.deviceZip = WeatherAlertService.deviceLocationZIP;

 if ((getIntent().getData() != null)
 && (getIntent().getData().getEncodedQuery() != null)
 && (getIntent().getData().getEncodedQuery().length() > 8)) {
 String queryString =
 getIntent().getData().getEncodedQuery();
 this.reportZip = queryString.substring(4, 9);
 this.useDeviceLocation = false;
 } else {
 this.reportZip = this.deviceZip;
 this.useDeviceLocation = true;

Listing 4.4 onStart method of the ReportViewDetail Activity

Include necessary permissions E

Establish
database helper

B Get device
location
postal code

C

D
Parse
Intent data
Licensed to Deborah Christiansen <pedbro@gmail.com>

108 CHAPTER 4 Intents and services
 }

 this.savedLocation = this.dbHelper.get(this.reportZip);
 this.deviceAlertEnabledLocation =
 this.dbHelper.get(DBHelper.DEVICE_ALERT_ENABLED_ZIP);

 if (this.useDeviceLocation) {
 this.currentCheck.setText(R.string.view_checkbox_current);
 if (this.deviceAlertEnabledLocation != null) {
 this.currentCheck.setChecked(true);
 } else {
 this.currentCheck.setChecked(false);
 }
 } else {
 this.currentCheck.setText(R.string.view_checkbox_specific);
 if (this.savedLocation != null) {
 if (this.savedLocation.alertenabled == 1) {
 this.currentCheck.setChecked(true);
 } else {
 this.currentCheck.setChecked(false);
 }
 }
 }
 loadReport(this.reportZip);
}

The complete ReportViewDetail Activity can be obtained by grabbing the source
code in its entirety from http://www.manning.com/UnlockingAndroid. In the por-
tion of the class shown in listing 4.4, the onStart method, we are focusing on parsing
data from the Uri passed in as part of the Intent that invokes the Activity.

 First in this class snippet we are establishing a database helper object B. This will
be used to query a local SQLite database that stores user-specified location data. We
will show more about how data is handled in general, and the details of this helper
class, in chapter 5.

 In this method we are also obtaining the postal code of the current device location
from a LocationManager in the WeatherAlertService class (defaulting to 94102, San
Francisco, CA) C. This is significant because it’s important to understand that we
want our application to be location-aware. We want the location of the device (wher-
ever it is) to be the default weather report and alert location. As the user travels with
the phone, this location should automatically be updated. We will cover more about
location and LocationManager in chapter 11. For now, note that the device location is
returned to us here as a postal code.

 After obtaining the device location, we move on to the key aspect of obtaining Uri
data from an Intent. We are parsing the Uri passed in to obtain the queryString and
embedded postal code to use for the user’s specified location D. if this location is
present, we use it; if not, we default to the device location postal code.

 Once we have determined the postal code to use, we move on to set the status
of the check box that indicates whether or not alerts should be enabled for the loca-
tion being displayed E. We have two kinds of alerts: one for the device location
(wherever that location may be at a given time) and another for the user’s specified
saved locations.

E
Set status of
alert-enabled
check box

E
Set status of
alert-enabled
check box

Load weather reportF
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/UnlockingAndroid

109Working with Intent classes
 Finally, we call the loadReport method, which is used to make the call out to the
Yahoo! Weather API to obtain data, and then we use a Handler to send a Message to
update the needed UI View elements F. These details are not shown in this code por-
tion, because we are focusing on Intent handling in this section, but the pattern is
the same one used in previous listings.

 The key with this Activity is the way it is registered in the manifest to receive
weather://com.msi.manning intents and then parses the path of the URI for data.
This allows any application to invoke this Activity without knowing any details other
than the URI. This is the separation-of-responsibilities pattern the Android platform
design encourages at work (the late binding).

 Now that you’ve seen the manifest and pertinent details of the main Activity class
for the WeatherReporter application we will be building in the next few sections, and
we have covered a good bit about how Intent and IntentFilter classes work
together to wire up calls between components in general, we will take a look at some
of the built-in Android applications that work the same way. These enable you to
launch activities by simply passing in the correct URI.

4.1.4 Using Android-provided activities

Another way to get a feel for how Intent resolution works in Android and how URIs
are used is to explore the built-in Activity support. Android ships with a very useful
set of core applications that provide access via the formats shown in table 4.2.

Table 4.2 Common Android application Intent action and Uri combinations and the purpose of each

Action Uri Description

Intent.ACTION_VIEW geo:latitude,longitude Opens the maps application to the
specified latitude and longitude

Intent.ACTION_VIEW geo:0,0?q=street+address Opens the maps application to the
specified address

Intent.ACTION_CALL tel:phone_number Opens the phone application and
calls the specified number

Intent.ACTION_DIAL tel:phone_number Opens the phone application and
dials (but does not call) the speci-
fied number

Intent.ACTION_DIAL voicemail: Opens the phone application and
dials (but does not call) the voice-
mail number

Intent.ACTION_VIEW http://web_address Opens the browser application to
the specified URL

Intent.ACTION_VIEW https://web_address Opens the browser application to
the specified URL

Intent.ACTION_WEB_SEARCH plain_text Opens the browser application and
use Google Search
Licensed to Deborah Christiansen <pedbro@gmail.com>

110 CHAPTER 4 Intents and services
Using the actions and URIs shown in table 4.2, you can hook into the built-in maps
application, phone application, or browser application. These powerful applications
are very easy to invoke using the correct Intent. We used several of these in the last
chapter with our RestaurantFinder application. Android also includes support for
another construct, the ContentProvider, which also uses a form of a URI to provide
access to data. You will learn more about this system, which is what exposes the con-
tacts and media parts of the Android system, in chapter 5.

 By comparing the actions and URIs for the built-in Android applications, you can
get a feel for the fact that some applications use a Uri that is parsed into a type (con-
tacts, media), and others use the scheme, or scheme and authority, or scheme and
authority and path—the various ways to match data discussed in section 4.1.2.

 With a handle on the basics of resolution and a quick look at built-in intents out of
the way, we need to get back to our WeatherReporter sample application. The next
thing we will discuss is another usage for the Intent concept, namely, using a
BroadcastReceiver.

4.2 Listening in with broadcast receivers
Another way to use an Intent involves sending a broadcast to any interested receiver.
There are many reasons an application may want to broadcast an event; for example,
when an incoming phone call or text message is received. In this section we will take a
look at how events are broadcast and how they are captured using a BroadcastReceiver.

 Here we will continue working through the WeatherReporter sample application
we began in the previous section. One of the most important parts of the Weather-
Reporter application will be its ability to display alerts to the user when severe weather
is in the forecast for a location where the user has indicated interest. We will need a
background process that checks the weather and sends any needed alerts. This is
where the Android Service concept will come into play. We won’t be creating the
actual Service class until section 4.3, but we need a way to get the platform running
the Service as soon as it boots up, and this is where we will use an Intent broadcast.

4.2.1 Overloading the Intent concept

As you have seen, Intent objects are used to go from Activity to Activity in an
Android application. While this is the main use of intents in Android, it is not the only
one. Intents are also used to broadcast events to any configured receiver using one of
several methods available from the Context class, as shown in table 4.3.

Table 4.3 Methods for broadcasting intents

Method Description

sendBroadcast(Intent intent) Simple form for broadcasting an Intent.

sendBroadcast(Intent intent, String
receiverPermission)

Broadcasts an Intent with a permission String
that receivers must declare to receive the broadcast.
Licensed to Deborah Christiansen <pedbro@gmail.com>

111Listening in with broadcast receivers
When broadcasting intents you are basically reusing the Intent concept to send an event
in the background. Though the Intent class is used, it is used differently than when
invoking foreground Activity paths. A broadcast Intent does not invoke an Activity
(though a BroadcastReceiver can do so after the event is received, if necessary).

 Another important aspect with Intent broadcasts is how permissions are handled.
When you broadcast an Intent, you can optionally specify a permission. Permissions are
something we addressed in chapter 1. They basically are String declarations that can
be used when making a broadcast that require receivers to declare the same permission.

 Broadcasting an Intent itself is fairly straightforward; you use the Context object
to throw it on the wire, and interested receivers will catch it. Android provides a set of
platform-related Intent broadcasts that use this approach. When the time zone on
the platform changes, when the device completes booting, or when a package is
added or removed, for example, the system broadcasts an event using an Intent.
Some of the specific Intent broadcasts the platform provides are shown in table 4.4.

sendStickyBroadcast(Intent intent) Broadcasts an Intent that hangs around a short
time after it is sent so that receivers can retrieve
data. Applications using this must declare the
BROADCAST_STICKY permission.

sendOrderedBroadcast(Intent
intent, String receiverPermission)

Broadcasts an Intent call to the receivers one-
by-one serially.

sendOrderedBroadcast(Intent
intent, String receiverPermission,
BroadcastReceiver resultReceiver,
Handler scheduler, int initialCode,
String initialData, Bundle
initialExtras)

Broadcasts an Intent and gets a response back
by implementing your own BroadcastReceiver
for the broadcast (and passing it in). All receivers
can append data that will be returned in the
BroadcastReceiver. When using this method,
the receivers are called serially.

Table 4.4 Provided Android platform broadcast actions

Action Description

ACTION_TIME_TICK Sent every minute to indicate that time is ticking

ACTION_TIME_CHANGED Sent when the user changes the time on the device

ACTION_TIMEZONE_CHANGED Sent when the user changes the time zone on the device

ACTION_BOOT_COMPLETED Sent when the platform completes booting

ACTION_PACKAGE_ADDED Sent when a package is added to the platform

ACTION_PACKAGE_REMOVED Sent when a package is removed from the platform

ACTION_BATTERY_CHANGED Sent when the battery charge level or charging state changes

Table 4.3 Methods for broadcasting intents (continued)

Method Description
Licensed to Deborah Christiansen <pedbro@gmail.com>

112 CHAPTER 4 Intents and services
The other half of broadcasting events is the receiving end. To register to receive an
Intent broadcast, you implement a BroadcastReceiver. This is where we are going
to implement a receiver that will catch the platform-provided BOOT_COMPLETED
Intent in order to start the weather alert service we will create for the Weather-
Reporter application.

4.2.2 Creating a receiver

Because the weather alert Service we want to create needs to be running in the back-
ground whenever the platform itself is running, we need a way to start it when the
platform boots. To do this, we will create a BroadcastReceiver that listens for the
BOOT_COMPLETED Intent broadcast.

 The BroadcastReceiver base class provides a series of methods that allow for get-
ting and setting a result code, result data (in the form of a String), and an extras Bun-
dle. In addition, there are a series of lifecycle-related methods that correspond to the
lifecycle events of a receiver; you will learn more about these as we progress through
this section.

 Associating a BroadcastReceiver with an IntentFilter can be done in code or in
the manifest XML file. Once again the XML usage is often easier and thus more com-
mon. This is the way we did it for WeatherReporter in listing 4.3, where we associated
the BOOT_COMPLETED broadcast with the WeatherAlertServiceReceiver class. This
class is shown in listing 4.5.

public class WeatherAlertServiceReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(Intent.ACTION_BOOT_COMPLETED)) {
 context.startService(new Intent(context,
 WeatherAlertService.class));
 }
 }
}

When creating your own Intent broadcast receiver you extend the BroadcastRe-
ceiver class Android provides B and implement the abstract onReceive(Context c,
Intent i) method C. Within this method we are starting the WeatherAlertService.
This Service class, which we will create next, is started using the Context.start-
Service(Intent i, Bundle b) method D.

 Keep in mind that receiver class instances have a very short, specific lifecycle. When
the onReceive(Context c, Intent i) method is complete, the instance and process
that invoked the receiver are no longer needed and may be killed by the system. Because
of this, you can’t perform any asynchronous operations in a BroadcastReceiver, such
as binding to a Service or showing a dialog. Alternatively, you can start a Service, as
we have done here, and leave it running in the background. (Binding to a Service is
different than starting one; we will cover this distinction in the next section.)

Listing 4.5 The WeatherAlertServiceReceiver BroadcastReceiver class

DStart WeatherAlertService

C
Override

onReceive

BExtend BroadcastReceiver
Licensed to Deborah Christiansen <pedbro@gmail.com>

113Building a Service
 Now that our receiver is starting the WeatherAlertService, which will run in the
background and warn users of severe weather in the forecast with a Notification-
based alert, we need to delve into the realm of the Android Service concept itself.

4.3 Building a Service
In the typical Android application you create Activity classes and move from screen
to screen using Intent calls. This is the approach we introduced in chapter 1 and
used in other previous chapters. This works for the canonical Android screen-to-
screen foreground application but is not applicable for a longer-running background
process—for that you need a Service.

 The Service we will work with here is the WeatherAlertService we sent an
Intent request for in the WeatherAlertServiceReceiver in listing 4.4. This Service
sends an alert to the user when there is severe weather in a location in which the user
has indicated an interest. This alert will be displayed in any application, in the form of
a Notification, by the background Service if severe weather is detected. The notifi-
cations we will send are shown in the screen shot in figure 4.5.

One key aspect of Android Service classes we need to cover prior to jumping in and
implementing one is their dual-purpose nature. Something like the duality of man
(you know, the “Jungian Thing”); services lead a double life.

4.3.1 Dual-purpose nature of a Service

In Android a Service is intended to serve two purposes: running a background task
or exposing a remotable object for Inter-Process Communication (IPC). We will
explore both of these purposes for a Service in turn. Although we are going to build
separate Service instances for each purpose, you can also build one Service that
serves both purposes, if needed.

Figure 4.5
The Notification-based alert the
WeatherAlertService displays
to the user when severe weather is
detected in the forecast
Licensed to Deborah Christiansen <pedbro@gmail.com>

114 CHAPTER 4 Intents and services
 A background task is typically a process that does not involve direct user interac-
tion or any type of UI. This of course is a perfect fit for polling for severe weather. As
far as exposing a remotable object for IPC, we will see how that works, and why it is
necessary, in section 4.4.1. There we will build another Service that walks through
creating and exposing a remotable object.

 As we have already discussed briefly, and we will explain more about here as we go,
a Service can either be started or bound or both. Starting a Service relates to the
background task aspect. Once started, a Service runs until it is explicitly stopped
(you will learn more about this in section 4.4, where we discuss the overall lifecycle of
a Service). Binding to a Service involves using a ServiceConnection object to con-
nect and get a remotable reference.

 Creating the WeatherAlertService itself, which serves the first type of Service
purpose and enables our background weather checks, is where we will focus next.

4.3.2 Creating a background task Service

The WeatherAlertService background task-focused Service, which is started when the
device is booted via the BroadcastReceiver previously discussed, is shown in listing 4.6.

public class WeatherAlertService extends Service {

 private static final String LOC = "LOC";
 private static final String ZIP = "ZIP";
 private static final long ALERT_QUIET_PERIOD = 10000;
 private static final long ALERT_POLL_INTERVAL = 15000;

 public static String deviceLocationZIP = "94102";

 private Timer timer;
 private DBHelper dbHelper;
 private NotificationManager nm;

 private TimerTask task = new TimerTask() {
 public void run() {
 List<Location> locations = dbHelper.getAllAlertEnabled();
 for (Location loc : locations) {
 WeatherRecord record = loadRecord(loc.zip);
 if (record.isSevere()) {
 if ((loc.lastalert +
 WeatherAlertService.ALERT_QUIET_PERIOD)
 < System.currentTimeMillis()) {
 loc.lastalert = System.currentTimeMillis();
 dbHelper.update(loc);
 sendNotification(loc.zip, record);
 }
 }
 }

 . . . device location alert block omitted for brevity
 }
 };

 private Handler handler = new Handler() {
 public void handleMessage(Message msg) {

Listing 4.6 WeatherAlertService class, used to register locations and send alerts

Extend ServiceB

Define
constants for
polling intervals

C

Get locations with
alerts enabled

D

E
Fire alert
if severe
Licensed to Deborah Christiansen <pedbro@gmail.com>

115Building a Service
 notifyFromHandler((String) msg.getData()
 .get(WeatherAlertService.LOC), (String) msg.getData()
 .get(WeatherAlertService.ZIP));
 }
 };

 @Override
 public void onCreate() {
 this.dbHelper = new DBHelper(this);
 this.timer = new Timer();
 this.timer.schedule(this.task, 5000,
 WeatherAlertService.ALERT_POLL_INTERVAL);
 this.nm = (NotificationManager)
 getSystemService(Context.NOTIFICATION_SERVICE);
 }

 . . . onStart with LocationManager and LocationListener \
 omitted for brevity

 @Override
 public void onDestroy() {
 super.onDestroy();
 this.dbHelper.cleanup();
 }

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 private WeatherRecord loadRecord(String zip) {
 final YWeatherFetcher ywh = new YWeatherFetcher(zip, true);
 return ywh.getWeather();
 }

 private void notifyFromHandler(String location, String zip) {
 Uri uri = Uri.parse("weather://com.msi.manning/loc?zip=" + zip);
 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(this, Intent.FLAG_ACTIVITY_NEW_TASK,
 intent,PendingIntent.FLAG_ONE_SHOT);
 final Notification n =
 new Notification(R.drawable.severe_weather_24,
 "Severe Weather Alert!",
 System.currentTimeMillis());
 n.setLatestEventInfo(this, "Severe Weather Alert!",
 location, pendingIntent);
 this.nm.notify(Integer.parseInt(zip), n);
 }

 private void sendNotification(String zip, WeatherRecord record) {
 Message message = Message.obtain();
 Bundle bundle = new Bundle();
 bundle.putString(WeatherAlertService.ZIP, zip);
 bundle.putString(WeatherAlertService.LOC, record.getCity()
 + ", " + record.getRegion());
 message.setData(bundle);
 this.handler.sendMessage(message);
 }
}

F
Call notify method
from handler

Set up databaseG

Set up notification
manager

H

Clean up database
connection

I

Return null
from onBind

J

1) Load a
weather
record

Include helper for handler 1!

Include helper for
notification

1@
Licensed to Deborah Christiansen <pedbro@gmail.com>

116 CHAPTER 4 Intents and services
The first thing of note in the WeatherAlertService class is the fact that it extends
Service B. This is the same approach we have seen with activities and receivers:
extend the base class, implement the abstract methods, and override the lifecycle
methods as needed.

 After the initial class declaration a series of member variables is defined. The first of
these are constants that represent intervals for polling for severe weather and a quiet
period C. These are significant because we have set a very low threshold for polling dur-
ing development—severe weather alerts will spam the emulator often because of this
setting. In production this would be throttled back to once every 6 or 12 hours or such.

 Next is a TimerTask variable that we will use to do the polling and get all of the
user’s saved locations that have alerting enabled, through a database call D. We will
learn the specifics of using a database in Android in the next chapter, where we will
finish out the WeatherReporter application and focus on data; here we are going to
stay on track with our Service discussion.

 Once we have the saved locations, we parse each one and load the weather report.
If the report shows severe weather in the forecast, we update the time of the last alert
field and call a helper method to initiate a Notification being sent E. After we pro-
cess the user’s saved locations, we get the device’s alert location from the database using
a special postal code designation. The process of polling and sending an alert is
repeated for the device current location—as opposed to saved specific locations—if the
user has this feature enabled. The device location itself is obtained via a LocationMan-
ager. We have omitted the device location–related details here to stay focused, but com-
plete details on Android location-related facilities are covered in chapter 11.

 After our TimerTask is set up, we have a Handler member variable. This variable will
be used later, using the same technique as in previous listings, to receive a Message object
that is fired from a non-UI-related thread and then react. In this case, when the message
is received, we call a helper method that instantiates and displays a Notification F.

 Beyond our member variables we come to the Service lifecycle methods that we have
overridden, starting with onCreate. Inside this method we set up our database helper
object G and a NotificationManager H. Again, we will cover data in the next chapter.
(Alert and notification details are specifically addressed in chapter 8.) After onCreate
we see onDestroy, which is where we clean up our database connection I. Service class-
es have these lifecycle methods so we can control how resources are allocated and deal-
located, similarly to Activity classes; in section 4.4.5 we will address this in more depth.

 After the lifecycle-related methods we implement the required onBind method J.
This method returns an IBinder, which is generally what other components that call
into Service methods use for communication. Service classes, as we discussed in sec-
tion 4.3.1, can serve two purposes: first to run background processes and second for
binding to enable IPC. Our weather alert Service is only performing a background
task, not enabling IBinder/Binder-based IPC. Therefore, this class returns a null for
onBind. We will delve into the binding and IPC aspect of a Service in section 4.4.

 Next we see the implementations of our own helper type methods. First we have
loadRecord, which is where we call out to the Yahoo! Weather API via YWeather-
Fetcher 1). (How this works in terms of networking specifics will be covered in
Licensed to Deborah Christiansen <pedbro@gmail.com>

117Performing Inter-Process Communication
chapter 6.) Then we have sendNotification, which sets up a Message with location
details to pass into our earlier declared Handler 1!. The way this method uses the han-
dler ensures that processing time to get weather data doesn’t hang the main UI thread.
Lastly we see the notifyFromHandler method that is invoked from the Handler; this fires
off a Notification with Intent objects that will call back into WeatherReporter if the
user clicks on the Notification 1@.

Now that we have discussed what services are for, have created a Service class, and
have previously seen a service started via a BroadcastReceiver, we need to cover a bit
more detail about the IPC process in Android and other Service details related to it,
such as starting versus binding and lifecycle.

4.4 Performing Inter-Process Communication
Communication between application components in different processes is made pos-
sible in Android by a specific IPC approach. This, again, is necessary because each
application on the platform runs in its own process, and processes are intentionally
separated from one another. In order to pass messages and objects between processes,
you have to use the Android IPC path.

 To begin exploring this path we are first going to build a small, focused sample
application to examine the means to generate a remote interface using AIDL, and
then we will connect to that interface through a proxy that we will expose using a Ser-
vice (the other Service purpose). Along the way we will expand on the IBinder and
Binder concepts Android uses to pass messages and types during IPC.

4.4.1 Android Interface Definition Language

Android provides its own Interface Definition Language that you can use to create
IDL files. These files then become the input to the aidl tool, which Android also
includes. This tool is used to generate a Java interface and inner Stub class that you
can, in turn, use to create a remotely accessible object.

 AIDL files have a specific syntax that allows you to define methods, with return types
and parameters (you cannot define static fields, unlike with a typical Java interface). In

A warning about long-running services
We are starting a Service for our sample application here and then leaving it run-
ning in the background. Our service is designed to have a minimal footprint (when
the polling is tuned), but in general long-running services are strongly discouraged.
If your use case doesn’t require it, you should make sure to stop any services you
have started when your application exits. If you do require a long-running service,
you may want to give the user the option of using it or not (a preference). Services
are a bit of a paradox in this sense; they are for background tasks, but background
is not intended to mean forever. For more discussion on this topic see the Android
developers forum: http://groups.google.com/group/android-developers/browse_
thread/thread/fa2848e31636af70.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://groups.google.com/group/android-developers/browse_thread/thread/fa2848e31636af70
http://groups.google.com/group/android-developers/browse_thread/thread/fa2848e31636af70

118 CHAPTER 4 Intents and services
the basic AIDL syntax you define your package, imports, and interface just like you would
in Java, as shown in listing 4.7.

package com.msi.manning.binder;

interface ISimpleMathService {
 int add(int a, int b);
 int subtract(int a, int b);
 String echo(in String input);
}

The package B, import statements (of which we have none here), and interface C
constructs in AIDL are straightforward—they are analogous to regular Java. When you
define methods, you must specify a directional tag for all nonprimitive types with each
parameter (in, out, or inout). Primitives are allowed only as in and are therefore
treated as in by default (and thus don’t need the tag). This directional tag is used by
the platform to generate the necessary code for marshaling and unmarshaling
instances of your interface across IPC boundaries. It’s better to go in only one direc-
tion where you can, for performance reasons, so try to use only what you really need.

 In this case we have declared an interface named ISimpleMathService that
includes methods D that perform addition, subtraction, and echoing a String. This
is an oversimplified example, of course, but it does demonstrate the approach.

 When using AIDL you also have to be aware that only certain types are allowed;
these types are shown in table 4.5.

 Once you have defined your interface methods with return types and parameters
with directional tags in the AIDL format, you then invoke the aidl tool to generate a

Listing 4.7 An example .aidl remote interface definition language file

Table 4.5 Android IDL allowed types

Type Description
Import

Required

Java primitives boolean, byte, short, int, float, double,
long, char.

No

String java.lang.String. No

CharSequence java.lang.CharSequence. No

List Can be generic; all types used in collection must be one of IDL
allowed. Ultimately implemented as an ArrayList.

No

Map Can be generic, all types used in collection must be one of IDL
allowed. Ultimately implemented as a HashMap.

No

Other AIDL interfaces Any other AIDL-generated interface type. Yes

Parcelable objects Objects that implement the Android Parcelable interface (more
about this in section 4.4.3).

Yes

Define the packageB
Declare the interface nameC

Describe a methodD
Licensed to Deborah Christiansen <pedbro@gmail.com>

119Performing Inter-Process Communication
Java interface that represents your AIDL specification. From the command line you
can invoke [ANDROID_HOME]/tools/aidl to see the options and syntax for this tool.
Generally you just need to point it at your .aidl file, and it will emit a Java interface of
the same name. If you use the Eclipse plug-in, it will automatically invoke the aidl tool
for you (it recognizes .aidl files and invokes the tool).

 The interface that gets generated through AIDL includes an inner static abstract
class named Stub that extends Binder and implements the outer class interface. This
Stub class represents the local side of your remotable interface. Stub also includes an
asInterface(IBinder binder) method that returns a remote version of your interface
type. Callers can use this method to get a handle on the remote object and from there
invoke remote methods. The AIDL process generates a Proxy class (another inner
class, this time inside Stub) that is used to wire up the plumbing and return to callers
from the asInterface method. The diagram in figure 4.6 depicts this IPC local/
remote relationship.

 Once you have all of the generated parts involved, create a concrete class that
extends from Stub and implements your interface. You then expose this interface to
callers through a Service.

AIDL file

IWeatherAlertService.aidl

AIDL
tool

Generated Java interface
IWeatherAlertService.java

Generated inner static abstract Stub
IWeatherAlertService.Stub

Generated inner static Proxy
IWeatherAlertService.Stub.Proxy

IWeatherAlertService asInterface(IBinder b)
IBinder asBinder()
boolean onTransact(int code, Parcel data,
Parcel reply, int flags)

IWeatherAlertService.Stub
IWeatherAlertService asInterface(IBinder b)
IBinder asBinder()
boolean onTransact(int code, Parcel data,
Parcel reply, int flags)

IWeatherAlertService.Stub.Proxy

addAlertLocation(String zip)
IWeatherAlertService

LOCAL object
Stub

Stub.asInterface() returns
REMOTE object (Proxy)

onTransact()

REMOTE object
Proxy

Caller uses "asInterface" to
get reference to a remote
object - Proxy is returned

transact()

Figure 4.6 Diagram
of the Android AIDL
process
Licensed to Deborah Christiansen <pedbro@gmail.com>

120 CHAPTER 4 Intents and services
4.4.2 Exposing a remote interface

The glue in all of the moving parts of AIDL that we have discussed up to now is the
point where a remote interface is exposed—via a Service. In Android parlance,
exposing a remote interface through a Service is known as publishing.

 To publish a remote interface you create a class that extends Service and returns
an IBinder through the onBind(Intent intent) method within. The IBinder that
you return here is what clients will use to access a particular remote object. As we dis-
cussed in the previous section, the AIDL-generated Stub class (which itself extends
Binder) is usually used to extend from and return an implementation of a remotable
interface. This is usually what is returned from a Service class’s onBind method—and
hence this is how a remote interface is exposed to any other process that can bind to a
Service. All of this is shown in listing 4.8, where we implement and publish the
ISimpleMathService we created in the previous section.

public class SimpleMathService extends Service {

 private final ISimpleMathService.Stub binder =
 new ISimpleMathService.Stub() {
 public int add(int a, int b) {
 return a + b;
 }
 public int subtract(int a, int b) {
 return a - b;
 }
 public String echo (String input) {
 return "echo " + input;
 }
 };

 @Override
 public IBinder onBind(Intent intent) {
 return this.binder;
 }
}

A concrete instance of the generated AIDL Java interface is required to return an
IBinder to any caller than binds to a Service. The way to create an implementation is
to implement the Stub class that the aidl tool generates B. This class, again, imple-
ments the AIDL interface and extends Binder. Once the IBinder is established, it is
then simply returned from the onBind method C.

 Now that we have seen where a caller can hook into a Service and get a reference
to a remotable object, we need to walk through finishing that connection by binding
to a Service from an Activity.

4.4.3 Binding to a Service

When an Activity class binds to a Service, which is done using the Context.
bindService(Intent i, ServiceConnection connection, int flags) method, the

Listing 4.8 A Service implementation that exposes an IBinder remotable object

B
Implement the
remote interface

Return an IBinder
representing the
remotable object

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

121Performing Inter-Process Communication
ServiceConnection object that is passed in is used to send several callbacks, from the
Service back to the Activity. One significant callback happens when the binding pro-
cess completes. This callback comes in the form of the onServiceConnected (Compo-
nentName className, IBinder binder) method. The platform automatically injects
the IBinder onBind result (from the Service being bound to) into this method, mak-
ing this object available to the caller. We show how this works in code in listing 4.9.

public class ActivityExample extends Activity {

 private ISimpleMathService service;
 private boolean bound;

 . . . View element declarations omitted for brevity

 private ServiceConnection connection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder iservice) {
 service = ISimpleMathService.Stub.asInterface(iservice);
 Toast.makeText(ActivityExample.this,
 "connected to Service", Toast.LENGTH_SHORT).show();
 bound = true;
 }
 public void onServiceDisconnected(ComponentName className) {
 service = null;
 Toast.makeText(ActivityExample.this,
 "disconnected from Service", Toast.LENGTH_SHORT).show();
 bound = false;
 }
 };

 @Override
 public void onCreate(Bundle icicle) {
 . . . View element inflation omitted for brevity

 this.addButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 try {
 int result = service.add(
 Integer.parseInt(inputa.getText().toString()),
 Integer.parseInt(inputb.getText().toString()));
 output.setText(String.valueOf(result));
 } catch (DeadObjectException e) {
 Log.e("ActivityExample", "error", e);
 } catch (RemoteException e) {
 Log.e("ActivityExample", "error", e);
 }
 }
 });

 . . . subtractButton, similar to addButton, omitted for brevity
 }

 @Override
 public void onStart() {
 super.onStart();

Listing 4.9 Binding to a Service within an Activity

Define remote interface type variableB

DInclude
ServiceConnection

implementation
C Define bound state boolean

React to onServiceConnected callbackE

FEstablish remote interface type

GReact to onServiceDisconnected callback

H
Use remote object

for operations
Licensed to Deborah Christiansen <pedbro@gmail.com>

122 CHAPTER 4 Intents and services
 if (!bound) {
 this.bindService(
 new Intent(ActivityExample.this,
 SimpleMathService.class),
 connection,
 Context.BIND_AUTO_CREATE);
 }
 }

 @Override
 public void onPause() {
 super.onPause();
 if (bound) {
 bound = false;
 this.unbindService(connection);
 }
 }
}

In order to use the remotable ISimpleMathService we defined in AIDL, we declare a
variable of the generated Java interface type B. Along with this service variable, we
include a boolean to keep track of the current state of the binding C.

 We next see the ServiceConnection object D, which is essential to the binding
process. This object is used with Context methods to bind and unbind. When a Ser-
vice is bound, the onServiceConnected callback is fired E. Within this callback the
remote IBinder reference is returned and can be assigned to the remotable type F.
After the connection-related callback there is a similar onServiceDisconnected call-
back that is fired when a Service is unbound G.

 Once the connection is established and the remote IBinder is in place, it can be
used to perform the operations it defines H. Here we are using the add, subtract,
and echo methods we created in AIDL in listing 4.7.

 With this class we see the Activity lifecycle methods that are now familiar. In
onStart we establish the binding using bindService I, and in onPause we use
unbindService J. A Service that is bound but not started can itself be cleaned up by
the system to free up resources. If we don’t unbind these, resources might unnecessar-
ily hang around.

 A Service, as you have seen and will learn more about next, is invoked using
an Intent. Here again, explicit or implicit Intent invocation can be used. Signifi-
cantly, any application (with the correct permissions) can call into a Service and
bind to it, returning the IBinder to perform operations—it need not be an Activ-
ity in the same application as the Service (this is how applications in different pro-
cesses communicate).

 That brings us to the difference between starting a Service and binding to one
and what the implications are for each usage.

4.4.4 Starting versus binding

Again, Services serve two purposes in Android, and you can use them as you have
now seen in two corresponding ways:

Perform bindingI

Perform unbindingJ
Licensed to Deborah Christiansen <pedbro@gmail.com>

123Performing Inter-Process Communication
■ Starting—Context.startService(Intent service, Bundle b)
■ Binding—Context.bindService(Intent service, ServiceConnection c, int

flag)

Starting a Service tells the platform to launch it in the background and keep it run-
ning, without any particular connection to any other Activity or application. We
used the WeatherReportService in this manner to run in the background and issue
severe weather alerts.

 Binding to a Service, as we did with our sample SimpleMathService, is how you
get a handle to a remote object and call methods defined there from an Activity. As
we have discussed, because every Android application is running in its own process,
using a bound Service (which returns an IBinder through ServiceConnection) is
how you pass data between processes.

 Marshaling and unmarshaling remotable objects across process boundaries is fairly
complicated. This is the reason the AIDL process has so many moving parts. Fortu-
nately you don’t generally have to deal with all of the internals; you can instead stick
to a simple recipe that will enable you to create and use remotable objects:

1 Define your interface using AIDL, in the form of an [INTERFACE_NAME].aidl
file; see listing 4.7.

2 Generate a Java interface for your .aidl file (automatic in Eclipse).
3 Extend from the generated [INTERFACE_NAME].Stub class and implement your

interface methods; see listing 4.8.
4 Expose your interface to clients through a Service and the Service

onBind(Intent i) method; see listing 4.8.
5 Bind to your Service with a ServiceConnection to get a handle to the remot-

able object, and use it; see listing 4.9.

Another important aspect of the Service concept to be aware of, and one that is
affected by whether or not a Service is bound or started or both, is the lifecycle.

4.4.5 Service lifecycle

Along with overall application lifecycle that we introduced in chapter 2 and the
Activity lifecycle that we discussed in detail in chapter 3, services also have their own
well-defined process phases. Which parts of the Service lifecycle are invoked is
affected by how the Service is being used: started, bound, or both.
SERVICE-STARTED LIFECYCLE

If a Service is started by Context.startService(Intent service, Bundle b), as
shown in listing 4.5, it runs in the background whether or not anything is bound to it.
In this case, if it is needed, the Service onCreate() method will be called, and then
the onStart(int id, Bundle args) method will be called. If a Service is started
more than once, the onStart(int id, Bundle args) method will be called multiple
times, but additional instances of the Service will not be created (still needs only one
stop call).
Licensed to Deborah Christiansen <pedbro@gmail.com>

124 CHAPTER 4 Intents and services
 The Service will continue to run in the background until it is explicitly stopped by
the Context.stopService() method or its own stopSelf() method. You should also
keep in mind that the platform may kill services if resources are running low, so your
application needs to be able to react accordingly (restart a service automatically, func-
tion without it, and the like).
SERVICE-BOUND LIFECYCLE

If a Service is bound by an Activity calling Context.bindService(Intent service,
ServiceConnection connection, int flags), as shown in listing 4.9, it will run as
long as the connection is established. An Activity establishes the connection using
the Context and is responsible for closing it as well.

 When a Service is only bound in this manner and not also started, its onCreate()
method is invoked, but onStart(int id, Bundle args) is not used. In these cases the
Service is eligible to be stopped and cleaned up by the platform when no longer bound.
SERVICE-STARTED AND -BOUND LIFECYCLE

If a Service is both started and bound, which is allowable, it will basically keep run-
ning in the background, similarly to the started lifecycle. The only real difference is
the lifecycle itself. Because of the starting and binding, both onStart(int id, Bundle
args) and onCreate() will be called.
CLEANING UP WHEN A SERVICE STOPS

When a Service is stopped, either explicitly after having been started or implicitly
when there are no more bound connections (and it was not started), the onDestroy()
method is invoked. Inside onDestroy() every Service should perform final cleanup,
stopping any spawned threads and the like.

 Now that we have shown how a Service is implemented, how one can be used
both in terms of starting and binding, and what the lifecycle looks like, we need to
take a closer look at details of remotable data types when using Android IPC and IDL.

4.4.6 Binder and Parcelable

The IBinder interface is the base of the remoting protocol in Android. As you have
seen, you don’t implement this interface directly; rather you typically use AIDL to gen-
erate an interface that contains a Stub Binder implementation.

 The key to the IBinder and Binder–enabling IPC, once the interfaces are defined
and implemented, is the IBinder.transact() method and corresponding Binder.
onTransact() method. Though you don’t typically work with these internal methods
directly, they are the backbone of the remoting process. Each method you define
using AIDL is handled synchronously through the transaction process (enabling the
same semantics as if the method were local).

 All of the objects you pass in and out, through the interface methods you define
using AIDL, use the transact process. These objects must be Parcelable in order to be
able to be placed inside a Parcel and moved across the local/remote process barrier
in the Binder transaction methods.

 The only time you need to worry about something being Parcelable is when you
want to send a custom object through Android IPC. If you use the default allowable
Licensed to Deborah Christiansen <pedbro@gmail.com>

125Summary
types in your interface definition files—primitives, String, CharSequence, List, and
Map—everything is automatically handled. If you need to use something beyond those,
only then do you need to implement Parcelable.

 The Android documentation describes what methods you need to implement to
create a Parcelable class. The only tricky part of doing this is remembering to create
an .aidl file for each Parcelable interface. These .aidl files are different from those
you use to define Binder classes themselves; for these you need to remember not to
generate from the aidl tool. Trying to use the aidl tool won’t work, and it isn’t
intended to work. The documentation states these files are used “like a header in C,”
and so they are not intended to be processed by the aidl tool.

 Also, when considering creation of your own Parcelable types, make sure you
really need them. Passing complex objects across the IPC boundary in an embedded
environment is an expensive operation and should be avoided if possible (not to men-
tion that manually creating these types is fairly tedious).

 Rounding out our IPC discussion with a quick overview of Parcelable completes
our tour of Android Intent and Service usage.

4.5 Summary
In this chapter we covered a broad swath of Android territory. We first focused on the
Intent abstraction, defining what intents are, how they are resolved using Intent-
Filter objects, and what some built-in platform-provided Intent handlers are. We
also addressed explicit Intent invocation versus implicit Intent invocation and the
reasons you might choose one type over another. In that discussion we completed the
RestaurantFinder sample application.

 After we covered the basics of Intent classes, we moved on to a new sample appli-
cation, WeatherReporter. Within the scope of this application, we explored the con-
cept of a BroadcastReceiver and an Android Service. We used the receiver to start
the Service, and we designed the Service to send notification alerts for severe
weather events. Along with Service implementation details we covered the difference
between starting and binding services and the moving parts behind the Android IPC
system, which uses the Android IDL process.

 Through looking at all these components in several complete examples, you
should now have a good idea of the basic foundation of these concepts. In the next
chapter we will build on this foundation a bit further by looking at the various means
Android provides to retrieve and store data, including using preferences, the file sys-
tem, databases, and creating a ContentProvider.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Storing and
 retrieving data
Anytime you are developing software, one of the most common and basic con-
structs you have to deal with is the means to store and retrieve data. It’s all about
the data after all. Though there are many ways to pipe data into and out of various
languages and technologies, there are typically only a few ways to persist it: in mem-
ory structures, the filesystem, databases, and network services.

 Like other technologies, Android has its own concepts for getting and sharing
data in applications, yet these concepts are ultimately implemented using famil-
iar approaches (for the most part). Android provides access to the filesystem, has
support for a local relational database through SQLite, and includes a Shared-
Preferences object and preferences system that allows you to store simple key-
value pairs within applications.

This chapter covers:
■ Storing and retrieving data with SharedPreferences
■ Using the filesystem
■ Working with a SQLite database
■ Accessing and building a ContentProvider
126

Licensed to Deborah Christiansen <pedbro@gmail.com>

127Using preferences
 In this chapter we are going to take a tour of each of the local data-related mecha-
nisms (we will examine the network possibilities in chapter 6). We will start with pref-
erences and create a small sample application to exercise those concepts. From there
we will create another sample application to examine using the filesystem to store
data, both internal to our application and external using the platform’s SD card sup-
port. Then we will look at creating and accessing a database. To do this we will take a
closer look at some of the code and concepts from the WeatherReporter application
we created in chapter 4, which uses SQLite.

 Beyond the basics, Android also includes its own construct that allows applications
to share data through a clever URI-based approach called a ContentProvider. This
technique combines several other Android concepts, such as the URI-based style of
intents and the Cursor result set seen in SQLite, to make data accessible across differ-
ent applications. To demonstrate how this works we will create another small sample
application that uses built-in providers, then we will walk through the steps required
to create a ContentProvider on our own.

 We begin with the easiest form of data storage and retrieval Android provides,
preferences.

5.1 Using preferences
When moving from Activity to Activity in Android it is very handy to be able to
save some global application state in a SharedPreferences object. Here we will discuss
how you can set data into a preferences object and how you can later retrieve it. Also,
we will discuss how to make preferences private to your application or accessible to
other applications on the same device.

5.1.1 Working with SharedPreferences

You access a SharedPreferences object through the Context you are working in.
Many Android classes have a reference to, or themselves extend from, Context. For
example, Activity and Service both extend Context.

 Context includes a getSharedPreferences(String name, int accessMode) method
that allows you to get a preferences handle. The name you specify indicates the file that
backs the preferences you are interested in. If no such file exists when you try to get pref-
erences, one is automatically created using the passed-in name. The access mode refers
to what permissions you want to allow.

 Listing 5.1 is an example Activity that demonstrates allowing the user to enter
input and then storing that data through SharedPreferences objects with different
access modes.

package com.msi.manning.chapter5.prefs;

// imports omitted for brevity

public class SharedPrefTestInput extends Activity {

Listing 5.1 Storing SharedPreferences using different modes
Licensed to Deborah Christiansen <pedbro@gmail.com>

128 CHAPTER 5 Storing and retrieving data
 public static final String PREFS_PRIVATE = "PREFS_PRIVATE";
 public static final String PREFS_WORLD_READ = "PREFS_WORLD_READABLE";
 public static final String PREFS_WORLD_WRITE = "PREFS_WORLD_WRITABLE";
 public static final String PREFS_WORLD_READ_WRITE =
 "PREFS_WORLD_READABLE_WRITABLE";

 public static final String KEY_PRIVATE = "KEY_PRIVATE";
 public static final String KEY_WORLD_READ = "KEY_WORLD_READ";
 public static final String KEY_WORLD_WRITE = "KEY_WORLD_WRITE";
 public static final String KEY_WORLD_READ_WRITE =
 "KEY_WORLD_READ_WRITE";

 . . . view element variable declarations omitted for brevity

 private SharedPreferences prefsPrivate;
 private SharedPreferences prefsWorldRead;
 private SharedPreferences prefsWorldWrite;
 private SharedPreferences prefsWorldReadWrite;

 @Override
 public void onCreate(Bundle icicle) {

 .. view inflation omitted for brevity

 this.button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 boolean valid = validate();
 if (valid) {
 prefsPrivate =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_PRIVATE,
 Context.MODE_PRIVATE);
 prefsWorldRead =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_READ,
 Context.MODE_WORLD_READABLE);
 prefsWorldWrite =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_WRITE,
 Context.MODE_WORLD_WRITEABLE);
 prefsWorldReadWrite =
 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_READ_WRITE,
 Context.MODE_WORLD_READABLE
 + Context.MODE_WORLD_WRITEABLE);

 Editor prefsPrivateEditor =
 prefsPrivate.edit();
 Editor prefsWorldReadEditor =
 prefsWorldRead.edit();
 Editor prefsWorldWriteEditor =
 prefsWorldWrite.edit();
 Editor prefsWorldReadWriteEditor =
 prefsWorldReadWrite.edit();

 prefsPrivateEditor.putString(
 SharedPrefTestInput.KEY_PRIVATE,

Declare
SharedPreferences
variables

B

Use different
modes

D Use Context.
getShared-
Preferences
for
references

C

Get SharedPreferences
Editor

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

129Using preferences
 inputPrivate.getText.toString());
 prefsWorldReadEditor.putString(
 SharedPrefTestInput.KEY_WORLD_READ,
 inputWorldRead.getText().toString());

 prefsWorldWriteEditor.putString(
 SharedPrefTestInput.KEY_WORLD_WRITE,
 inputWorldWrite.getText().toString());
 prefsWorldReadWriteEditor.putString(
 SharedPrefTestInput.KEY_WORLD_READ_WRITE,
 inputWorldReadWrite.getText().toString());

 prefsPrivateEditor.commit();
 prefsWorldReadEditor.commit();
 prefsWorldWriteEditor.commit();
 prefsWorldReadWriteEditor.commit();

 Intent intent =
 new Intent(SharedPrefTestInput.this,
 SharedPrefTestOutput.class);
 startActivity(intent);
 }
 }
 });
 }

 . . . validate omitted for brevity
}

Once you have a SharedPreferences variable B, you may assign a reference through
the Context C. Note that for each SharedPreferences object we are getting, we are
using a different constant value for the access mode, and in some cases we are even
adding modes (modes are of int type) D. Modes specify whether or not the prefer-
ences should be private, world readable, world writable, or a combination.

 After you have preferences, you can then get an Editor handle in order to start
manipulating values E. With the Editor you can set String, boolean, float, int, and
long types as key-value pairs F. This limited set of types can be restrictive, and it is why
we extended the Context in chapter 3 to store some application state in the form of a
complex object rather than using preferences. Even with this restriction, though,
often preferences are adequate, and as you can see they are simple to use.

 After you have stored data with an Editor, which creates an in-memory Map, you
have to remember to call commit() to persist it to the preferences backing file G.
After data is committed, you can get it from a SharedPreferences object even easier
than storing it. Listing 5.2 is an example Activity from the same application (same
package) that gets and displays the data that was stored in listing 5.1.

package com.msi.manning.chapter5.prefs;

// imports omitted for brevity

Listing 5.2 Getting SharedPreferences data stored in the same application

Store values
with editor

F

Commit changes
with editoreferences
variables

G

Licensed to Deborah Christiansen <pedbro@gmail.com>

130 CHAPTER 5 Storing and retrieving data
public class SharedPrefTestOutput extends Activity {

 . . . view element variable declarations omitted for brevity

 private SharedPreferences prefsPrivate;
 private SharedPreferences prefsWorldRead;
 private SharedPreferences prefsWorldWrite;
 private SharedPreferences prefsWorldReadWrite;

 . . . onCreate omitted for brevity

 @Override
 public void onStart() {
 super.onStart();
 this.prefsPrivate =
 getSharedPreferences(SharedPrefTestInput.PREFS_PRIVATE,
 Context.MODE_PRIVATE);
 this.prefsWorldRead =
 getSharedPreferences(SharedPrefTestInput.PREFS_WORLD_READ,
 Context.MODE_WORLD_READABLE);
 this.prefsWorldWrite =
 getSharedPreferences(SharedPrefTestInput.PREFS_WORLD_WRITE,
 Context.MODE_WORLD_WRITEABLE);
 this.prefsWorldReadWrite =

 getSharedPreferences(
 SharedPrefTestInput.PREFS_WORLD_READ_WRITE,
 Context.MODE_WORLD_READABLE
 + Context.MODE_WORLD_WRITEABLE);

 this.outputPrivate.setText(this.prefsPrivate.getString(
 SharedPrefTestInput.KEY_PRIVATE, "NA"));
 this.outputWorldRead.setText(this.prefsWorldRead.getString(
 SharedPrefTestInput.KEY_WORLD_READ, "NA"));
 this.outputWorldWrite.setText(this.prefsWorldWrite.getString(
 SharedPrefTestInput.KEY_WORLD_WRITE, "NA"));
 this.outputWorldReadWrite.setText(this.prefsWorldReadWrite.getString(
 SharedPrefTestInput.KEY_WORLD_READ_WRITE,
 "NA"));
 }
}

To get SharedPreferences values that we have previously stored, we again declare
variables B and assign references C. Once these are in place, we can simply get val-
ues using methods such as getString(String key, String default) D.

 So, as you can see, setting and getting preferences is very straightforward. The only
potential flies in the ointment are the access modes, which we will focus on next.

5.1.2 Preference access permissions

SharedPreferences can be opened or created with any combination of several Con-
text mode constants. Because these values are int types, they can be added together,
as we did in listings 5.1 and 5.2, to combine permissions. The supported mode con-
stants are as follows:

Declare
SharedPreferences
variables

B

Assign
SharedPreferences

variables

C

Get values D
Licensed to Deborah Christiansen <pedbro@gmail.com>

131Using preferences
■ Context.MODE_PRIVATE (value 0)
■ Context.MODE_WORLD_READABLE (value 1)
■ Context.MODE_WORLD_WRITEABLE (value 2)

These modes allow you to finely tune who has access to what preference. If we take a
look at the filesystem on the emulator, after having created SharedPreferences
objects (which themselves create XML files to persist the data), we can see how this
works using a Linux-based filesystem.

 Figure 5.1 is a screen shot of the Android Eclipse plug-in File Explorer view; it shows
the Linux-level permissions for the SharedPreferences XML files that were created in
listing 5.1 (these were automatically created for us when we used SharedPreferences).

 The quick and dirty version of how Linux file permissions work is that each file (or
directory) has a type and three sets of permissions represented by a drwxrwxrwx nota-
tion. The first character indicates the type (d means directory, - means regular file type,
and symbolic links and other things can be represented using the type as well). After the
type, the three sets of rwx represent read, write, and/or execute permissions for user,
group, and other, in that order. So looking at this notation we can tell which files are
accessible by the user they are owned by, or by the group they belong to, or by other.

SharedPreferences XML files are placed in the /data/data/PACKAGE_NAME/
shared_prefs path on the filesystem. Every application or package (each .apk file) has
its own user ID (unless you use sharedUserId in the manifest, which allows you to
share the user ID, but that’s a special exception). When an application creates files
(including SharedPreferences), they are owned by that application’s user ID. To
allow other applications to access these files, the other permissions have to be set (as

Figure 5.1 The Android File Explorer view showing preferences file permissions

Directories with the other x permission
Directory permissions can be confusing. The important thing to remember with regard
to Android, though, is that each package directory is created with the other x permis-
sion. This means anyone can search and list the files in the directory. This, in turn,
means that Android packages have directory-level access to one another’s
files—from there the file-level access determines file permissions.
Licensed to Deborah Christiansen <pedbro@gmail.com>

132 CHAPTER 5 Storing and retrieving data
shown in figure 5.2, where one of our preferences files has no outside permissions,
one of our files is world-readable, one is world-readable and -writable, and one is
world-writable).

 The tricky part with getting access to the files of one application from another,
even when they have accessible permissions, is the starting path. The path is built
from the Context. So, to get files from another application you have to know and use
that application’s Context. An example of this is shown in listing 5.3, where we get the
SharedPreferences we set in listing 5.1 again, this time from a different application
(different .apk and different package).

package com.other.manning.chapter5.prefs;

. . . imports omitted for brevity

public class SharedPrefTestOtherOutput extends Activity {

 . . . constants and variable declarations omitted for brevity

 . . . onCreate omitted for brevity

 @Override
 public void onStart() {
 super.onStart();
 Context otherAppsContext = null;
 try {
 otherAppsContext =
 createPackageContext("com.msi.manning.chapter5.prefs",
 Context.MODE_WORLD_WRITEABLE);
 } catch (NameNotFoundException e) {
 // log and or handle
 }

 this.prefsPrivate =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_PRIVATE, 0);
 this.prefsWorldRead =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_WORLD_READ, 0);
 this.prefsWorldWrite =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_WORLD_WRITE, 0);
 this.prefsWorldReadWrite =
 otherAppsContext.getSharedPreferences(
 SharedPrefTestOtherOutput.PREFS_WORLD_READ_WRITE, 0);

 this.outputPrivate.setText(
 this.prefsPrivate.getString(
 SharedPrefTestOtherOutput.KEY_PRIVATE, "NA"));
 this.outputWorldRead.setText(
 this.prefsWorldRead.getString(
 SharedPrefTestOtherOutput.KEY_WORLD_READ, "NA"));
 this.outputWorldWrite.setText(
 this.prefsWorldWrite.getString(
 SharedPrefTestOtherOutput.KEY_WORLD_WRITE, "NA"));

Listing 5.3 Getting SharedPreferences data stored in a different application

Use a different packageB

C
Get another
application’s context

Use
otherAppsContext

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

133Using preferences
 this.outputWorldReadWrite.setText(
 this.prefsWorldReadWrite.getString(
 SharedPrefTestOtherOutput.KEY_WORLD_READ_WRITE,"NA"));
 }
}

To get to the SharedPreferences one application has defined from another application
in a different package B, we must use the createPackageContext(String context-
Name, int mode) method C. Once we have a reference to the other application’s
Context, we can use the same names for the SharedPreferences objects the other appli-
cation created (we do have to know the names) to access those preferences D.

 With these examples we now have one application that sets and gets Shared-
Preferences and a second application (in a different package, with a different .apk
file) that gets the preferences set by the first. The composite screen shot shown in fig-
ure 5.2 demonstrates what this looks like (where NA is the preferences we could not
access from the second application, due to permissions).

Figure 5.2 Two
separate applications
getting and setting
SharedPreferences
Licensed to Deborah Christiansen <pedbro@gmail.com>

134 CHAPTER 5 Storing and retrieving data
The way SharedPreferences are backed by XML files on the Android filesystem and
use permission modes leads us to the next method of storing and retrieving data, the
filesystem itself.

5.2 Using the filesystem
As you have seen, Android has a filesystem that is based on Linux and supports mode-
based permissions. There are several ways you can access this filesystem. You can cre-
ate and read files from within applications, you can access raw files that are included
as resources, and you can work with specially compiled custom XML files. In this sec-
tion we will take a tour of each approach.

5.2.1 Creating files

You can easily create files in Android and have them stored in the filesystem under the
data path for the application in which you are working. Listing 5.4 demonstrates how
you get a FileOutputStream handle and how you write to it to create a file.

public class CreateFile extends Activity {

 private EditText createInput;
 private Button createButton;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.create_file);

 this.createInput =
 (EditText) this.findViewById(R.id.create_input);
 this.createButton =
 (Button) this.findViewById(R.id.create_button);

 this.createButton.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 FileOutputStream fos = null;
 try {
 fos = openFileOutput("filename.txt",
 Context.MODE_PRIVATE);
 fos.write(createInput.getText().toString().getBytes());
 } catch (FileNotFoundException e) {
 Log.e("CreateFile", e.getLocalizedMessage());
 } catch (IOException e)

{
 Log.e("CreateFile", e.getLocalizedMessage());
 } finally {
 if (fos != null) {
 try {
 fos.flush();
 fos.close();
 } catch (IOException e) {
 // swallow

Listing 5.4 Creating a file in Android from an Activity

Use
openFileOutput

B

C
Write data
to stream

Flush and
close stream

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

135Using the filesystem
 }
 }
 }
 startActivity(
 new Intent(CreateFile.this, ReadFile.class));
 }
 });
 }
}

Android provides a convenience method on Context to get a FileOutputStream
reference, openFileOutput(String name, int mode) B. Using this method you
can create a stream to a file. That file will ultimately be stored at the data/data/
[PACKAGE_NAME]/files/file.name path on the platform. Once you have the stream,
you can write to it as you would with typical Java C. After you have finished with a
stream you have to remember to flush it and close it to cleanup D.

 Reading from a file within an application context (that is, within the package path
of the application) is also very simple; in the next section we will show how this can be
done.

5.2.2 Accessing files

Similarly to openFileOutput, the Context also has a convenience openFileInput
method. This method can be used to access a file on the filesystem and read it in, as
shown in listing 5.5.

public class ReadFile extends Activity {

 private TextView readOutput;
 private Button gotoReadResource;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.read_file);

 this.readOutput =
 (TextView) this.findViewById(R.id.read_output);

 FileInputStream fis = null;
 try {
 fis = this.openFileInput("filename.txt");
 byte[] reader = new byte[fis.available()];
 while (fis.read(reader) != -1) {}
 this.readOutput.setText(new String(reader));
 } catch (IOException e) {
 Log.e("ReadFile", e.getMessage(), e);
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {

Listing 5.5 Accessing an existing file in Android from an Activity

Use openFileInput
for stream

B

C
Read data
from stream

Clean up when
finished

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

136 CHAPTER 5 Storing and retrieving data
 // swallow
 }
 }
 }

 . . . goto next Activity via startActivity omitted for brevity
 }
}

Getting a FileInputStream, in order to read in a file from the filesystem, is the mirror
opposite of getting a FileOutputStream. For input you use openFileInput(String
name, int mode) to get the stream B, and then you read in the file as with standard
Java C (in this case we are filling the byte reader byte array). Once you have finished,
you need to close the stream properly to avoid hanging onto resources D.

 With openFileOutput and openFileInput you can write to and read from any file
within the files directory of the application package within which you are working.
Also, much like the access modes and permissions we discussed in the previous sec-
tions, you can access files across different applications if the permissions allow it and if
you know the full path to the file (you know the package to establish the path from
the other application’s context).

Along with creating files from within your application, you can push and pull files to the
platform, using the adb (Android Debug Bridge) tool (which you met in chapters 1
and 2). You can optionally put such files in the directory for your application; once they
are there you can read these files just like you would any other file. Keep in mind,
though, outside of development-related use you won’t usually be pushing and pulling
files. Rather you will be creating and reading files from within the application or work-
ing with files that are included with an application as a raw resource, as you will see next.

5.2.3 Files as raw resources

If you want to include raw files with your application of any form, you can do so using
the res/raw resources location. We discussed resources in general in chapter 3, but we
did not drill down into raw files there, so we could group this data storage and access
approach with others here. When you place a file in the res/raw location, it is not
compiled by the platform but is available as a raw resource, as shown in listing 5.6.

Running a bundle of apps with the same user ID
Though it is the exception rather than rule, there are times when setting the user ID
your application runs as can be extremely useful (most of the time it’s fine to allow
the platform to select a unique ID for you). For instance, if you have multiple applications
that need to store data among one another, but you also want that data to not be ac-
cessible outside that group of applications, you may want to set the permissions to
private and share the UID to allow access. You can allow a shared UID by using the
sharedUserId attribute in your manifest: android:sharedUserId="YourFancyID".
Licensed to Deborah Christiansen <pedbro@gmail.com>

137Using the filesystem
public class ReadRawResourceFile extends Activity {

 private TextView readOutput;
 private Button gotoReadXMLResource;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.read_rawresource_file);

 this.readOutput =
 (TextView) this.findViewById(R.id.readrawres_output);

 Resources resources = this.getResources();
 InputStream is = null;
 try {
 is = resources.openRawResource(R.raw.people);
 byte[] reader = new byte[is.available()];
 while (is.read(reader) != -1) {}
 this.readOutput.setText(new String(reader));
 } catch (IOException e) {
 Log.e("ReadRawResourceFile", e.getMessage(), e);
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }

 . . . goto next Activity via startActivity omitted for brevity

 }
}

Getting raw resources is very similar to getting files. You get a handle to an Input-
Stream, and you can use that stream to assign to a raw reference later B. You call
Context.getResources() to get the Resources reference for your current applica-
tion’s context, and then you call openRawResource(int id) to link to the particular
item you want C. The id will automatically be available from the R class if you place
your asset in the res/raw directory. Raw resources don’t have to be text files, even
though that’s what we are using here. They can be images, documents—you name it.

 The significance with raw resources is that they are not precompiled by the plat-
form, and they can refer to any type of raw file. The last type of file resource we need
to discuss is the res/xml type—which is compiled by the platform into an efficient
binary type that you need to access in a special manner.

5.2.4 XML file resources

The terms can get confusing when talking about XML resources in Android circles. This
is because XML resources can mean resources in general that are defined in XML, such as
layout files, styles, arrays, and the like, or it can specifically mean res/xml XML files.

Listing 5.6 Accessing a noncompiled raw file from res/raw

Hold raw resource
with InputStream

B

C
Use getResources().
openRawResource()
Licensed to Deborah Christiansen <pedbro@gmail.com>

138 CHAPTER 5 Storing and retrieving data
 In this section we will be dealing with res/xml XML files. These files are treated a
bit differently than other Android resources. They are different from raw files in that
you don’t use a stream to access them because they are compiled into an efficient
binary form when deployed, and they are different from other resources in that they
can be of any custom XML structure
that you desire.

 To demonstrate this concept we are
going to use an XML file that defines
multiple <person> elements and uses
attributes for firstname and last-

name—people.xml. We will then grab
this resource and display the elements
within it on screen in last-name, first-
name order, as shown in figure 5.3.

 Our data file for this process, which
we will place in res/xml in source, is
shown in listing 5.7.

<people>
 <person firstname="John" lastname="Ford" />
 <person firstname="Alfred" lastname="Hitchcock" />
 <person firstname="Stanley" lastname="Kubrick" />
 <person firstname="Wes" lastname="Anderson" />
</people>

Once a file is in the res/xml path, it will be automatically picked up by the platform (if
you are using Eclipse) and compiled into a resource asset. This asset can then be
accessed in code by parsing the binary XML format Android supports, as shown in list-
ing 5.8.

public class ReadXMLResourceFile extends Activity {

 private TextView readOutput;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.read_xmlresource_file);

 this.readOutput = (TextView)
 this.findViewById(R.id.readxmlres_output);

 XmlPullParser parser = this.getResources().getXml(R.xml.people);
 StringBuffer sb = new StringBuffer();

 try {
 while (parser.next() != XmlPullParser.END_DOCUMENT) {

Listing 5.7 A custom XML file included in res/xml

Listing 5.8 Accessing a compiled XML resource from res/xml

Parse XML with
XMLPullParser

B

Walking the
XML tree

C

Figure 5.3 The example ReadXMLResource-
File Activity created in listing 5.8, which
reads a res/xml resource file
Licensed to Deborah Christiansen <pedbro@gmail.com>

139Using the filesystem
 String name = parser.getName();
 String first = null;
 String last = null;
 if ((name != null) && name.equals("person")) {
 int size = parser.getAttributeCount();
 for (int i = 0; i < size; i++) {
 String attrName =
 parser.getAttributeName(i);
 String attrValue =
 parser.getAttributeValue(i);
 if ((attrName != null)
 && attrName.equals("firstname")) {
 first = attrValue;
 } else if ((attrName != null)
 && attrName.equals("lastname")) {
 last = attrValue;
 }
 }
 if ((first != null) && (last != null)) {
 sb.append(last + ", " + first + "\n");
 }
 }
 }
 this.readOutput.setText(sb.toString());
 } catch (Exception e) {
 Log.e(“ReadXMLResourceFile”, e.getMessage(), e);
 }

 . . . goto next Activity via startActivity omitted for brevity
 }
}

To process a binary XML resource you use an XmlPullParser B. This class can walk
though the XML tree SAX style. The parser provides an event type represented by an
int for each element it encounters, such as DOCDECL, COMMENT, START_DOCUMENT,
START_TAG, END_TAG, END_DOCUMENT, and so on. Using the next() method you can
retrieve the current event type value and compare it to event constants in the class C.
Each element encountered has a name, a text value, and an optional set of attributes.
You can walk through the document as we are here by getting the attributeCount D
for each item and grabbing the name and value E. We are traversing the nodes of a
resource-based XML file here with a pull parser; you will see more types of XML pars-
ing in later examples. (SAX is specifically covered in chapter 13.)

 Apart from local file storage on the device filesystem, you have another option that
is more appropriate for certain types of content, writing to an external SD card
filesystem.

5.2.5 External storage via an SD card

One of the advantages the Android platform provides over some other similar device
competitors is that it offers access to an available Secure Digital (SD) flash memory
card. Ultimately, it is possible that not every Android device will have an SD card, but

Get attributeCount
for element

D

E
Get attribute
name and value
Licensed to Deborah Christiansen <pedbro@gmail.com>

140 CHAPTER 5 Storing and retrieving data
the good news is that if the device does have it, the platform supports it and provides
an easy way for you to use it.

Using the SD card makes a lot of sense if you are dealing with large files or when you
don’t necessarily need to have permanent secure access to certain files. Obviously, if
you are working with image data, audio files, or the like, you will want to store these
on the SD card. The built-in internal filesystem is stored on the system memory, which
is limited on a small mobile device—you don’t typically want to throw snapshots of
Grandma on the device itself if you have other options (like an SD card). On the other
hand, for application-specialized data that you do need to be permanent and for
which you are concerned about secure access, you should use the internal filesystem
(or an internal database).

 The SD card is impermanent (the user can remove it), and SD card support on
most devices, including Android-powered devices, supports the FAT (File Allocation
Table) filesystem. That’s important to remember because it will help you keep in mind
that the SD card doesn’t have the access modes and permissions that come from the
Linux filesystem.

 Using the SD card when you need it is fairly basic. The standard java.io.File and
related objects can be used to create and read (and remove) files on the /sdcard path
(assuming that path is available, which you do need to check, also using the standard
File methods). Listing 5.9 is an example of checking that the /sdcard path is present,
creating another subdirectory therein, then writing and subsequently reading file data
at that location.

public class ReadWriteSDCardFile extends Activity {

 private TextView readOutput;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.read_write_sdcard_file);

 this.readOutput = (TextView)
 this.findViewById(R.id.readwritesd_output);

 String fileName = "testfile-"
 + System.currentTimeMillis() + ".txt";

Listing 5.9 Using standard java.io.File techniques with an SD card

SD cards and the emulator
In order to work with an SD card image in the Android Emulator, you will first need to
use the mksdcard tool provided to set up your SD image file (you will find this execut-
able in the tools directory of the SDK). After you have created the file, you will need
to start the emulator with the -sdcard <path_to_file> option in order to have the
SD image mounted.

Establish filenameB
Licensed to Deborah Christiansen <pedbro@gmail.com>

141Using the filesystem
 File sdDir = new File("/sdcard/");
 if (sdDir.exists() && sdDir.canWrite()) {
 File uadDir = new File(sdDir.getAbsolutePath()
 + "/unlocking_android");
 uadDir.mkdir();
 if (uadDir.exists() && uadDir.canWrite()) {
 File file = new File(uadDir.getAbsolutePath()
 + "/" + fileName);
 try {
 file.createNewFile();
 } catch (IOException e) {
 // log and or handle
 }

 if (file.exists() && file.canWrite()) {
 FileOutputStream fos = null;
 try {
 fos = new FileOutputStream(file);
 fos.write("I fear you speak upon the rack,"
 + "where men enforced do speak "
 + "anything.".getBytes());
 } catch (FileNotFoundException e) {
 Log.e(ReadWriteSDCardFile.LOGTAG, "ERROR", e);
 } catch (IOException e) {
 Log.e(ReadWriteSDCardFile.LOGTAG, "ERROR", e);
 } finally {
 if (fos != null) {
 try {
 fos.flush();
 fos.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 } else {
 // log and or handle - error writing to file
 }

 } else {
 // log and or handle -
 // unable to write to /sdcard/unlocking_android
 }
 } else {
 Log.e("ReadWriteSDCardFile.LOGTAG",
 "ERROR /sdcard path not available (did you create "
 + " an SD image with the mksdcard tool,"
 + " and start emulator with -sdcard "
 + <path_to_file> option?");
 }

 File rFile =
 new File("/sdcard/unlocking_android/" + fileName);
 if (rFile.exists() && rFile.canRead()) {
 FileInputStream fis = null;
 try {
 fis = new FileInputStream(rFile);

C
Get /sdcard directory
reference

Instantiate File for pathD

E

Use
mkdir()
to create
directory

F

Get
reference
to FileG

Create
file

Write with
FileInputStream

H

Use new File
object for
reading

I

Licensed to Deborah Christiansen <pedbro@gmail.com>

142 CHAPTER 5 Storing and retrieving data
 byte[] reader = new byte[fis.available()];
 while (fis.read(reader) != -1) {
 }
 this.readOutput.setText(new String(reader));
 } catch (IOException e) {
 // log and or handle
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 // swallow
 }
 }
 }
 } else {
 this.readOutput.setText(
 "Unable to read/write sdcard file, see logcat output");
 }
 }
}

The first thing we need to do in the ReadWriteSDCardFile class is to establish a file-
name for the file we want to create B. We have done this by appending a timestamp so
as to create a unique file each time this example application is run. After we have the
filename, we create a File object reference to the /sdcard directory C. From there we
create a File reference to a new subdirectory, /sdcard/unlocking_android D (in Java
both files and directories can be represented by the File object). After we have the sub-
directory reference we call mkdir() to ensure it is created if it does not already exist E.

 With the structure we need in place, we follow a similar pattern for the actual file.
We instantiate a reference File object F, and we call createFile() to create a file on
the filesystem G. Once we have the File, and we know it exists and we are allowed to
write to it (recall files on the sdcard will be world writable by default because it’s using
a FAT filesystem), we then use a FileInputStream to write some data into the file H.

 After we create the file and have data in it, we create another File object with the
full path to read the data back I. Yes, we could use the same File object handle that
we had when creating the file, but for the purposes of the example we wanted to
explicitly demonstrate starting with a fresh File. With the File reference we then cre-
ate a FileOutputStream and read back the data that was earlier stored in the file J.

 As you can see, working with files on the SD card is pretty much standard
java.io.File fare. This does entail a good bit of boilerplate Java code to make a
robust solution, with permissions and error checking every step of the way and log-
ging about what is happening, but it is still simple and powerful. If you need to do a
lot of File handling, you will probably want to create some simple local utilities for
wrapping the mundane tasks so you don’t have to repeat them over and over again
(opening files, writing to them, creating them, and so on). You may want to look at
using or porting something like the Apache commons.io package, which includes a
FileUtils class that handles these types of tasks and more.

J
Read with
FileOutputStream
Licensed to Deborah Christiansen <pedbro@gmail.com>

143Persisting data to a database
 The SD card example completes our exploration in this section, where we have
seen that there are various ways to store different types of file data on the Android
platform. If you have static elements that are predefined you can use res/raw, if you
have XML files you can use res/xml. You can also work directly with the filesystem by
creating, modifying, and retrieving data in files (either in the local internal filesystem
or on the SD card if available.

 Another way to deal with data, one that may be more appropriate for many situa-
tions (such as when you need to share relational data across applications), is through
the use of a database.

5.3 Persisting data to a database
One nice convenience that the Android platform
provides is the fact that a relational database is built
in. SQLite doesn’t have all of the features of larger
client/server database products, but it does cover
just about anything you might need for local data
storage, while being easy to deal with and quick.

 In this section we are going to cover working
with the built-in SQLite database system, from cre-
ating and querying a database to upgrading and
working with the sqlite3 tool that is available in the
Android Debug Bridge (adb) shell. Once again we
will do this in the context of the WeatherReporter
application we began in chapter 4. This application
uses a database to store the user’s saved locations
and persists user preferences for each location. The
screen shot shown in figure 5.4 displays this saved
data for the user to select from; when the user
selects a location, data is retrieved from the data-
base and a location weather report is shown.

 To see how this comes together we will begin
with what it takes to create the database Weather-
Reporter uses.

5.3.1 Building and accessing a database

To use SQLite you have to know a bit about SQL usage in general. If you need to brush
up on the background of the basic commands—CREATE, INSERT, UPDATE, DELETE, and
SELECT—then you may want to take a quick look at the SQLite documentation (http:
//www.sqlite.org/lang.html).

 For our purposes we are going to jump right in and build a database helper class that
our application will use. We are creating a helper class so that the details concerning cre-
ating and upgrading our database, opening and closing connections, and running

Figure 5.4 The WeatherReporter
Saved Locations screen, which pulls
data from a SQLite database
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.sqlite.org/lang.html
http://www.sqlite.org/lang.html

144 CHAPTER 5 Storing and retrieving data
through specific queries are all encapsulated in one place and not otherwise exposed
or repeated in our application code. This is so our Activity and Service classes can
later use simple get and insert methods, with specific bean objects representing our
model, or Collections rather than database-specific abstractions (such as the Android
Cursor object that represents a query result set). You can think of this class as a miniature
Data Access Layer (DAL).

 The first part of our DBHelper class, which includes a few inner classes you will
learn about, is shown in listing 5.10.

public class DBHelper {

 public static final String DEVICE_ALERT_ENABLED_ZIP = "DAEZ99";
 public static final String DB_NAME = "w_alert";
 public static final String DB_TABLE = "w_alert_loc";
 public static final int DB_VERSION = 3;

 private static final String CLASSNAME = DBHelper.class.getSimpleName();
 private static final String[] COLS = new String[]
 { "_id", "zip", "city", "region", "lastalert", "alertenabled" };

 private SQLiteDatabase db;
 private final DBOpenHelper dbOpenHelper;

 public static class Location {
 public long id;
 public long lastalert;
 public int alertenabled;
 public String zip;
 public String city;
 public String region;

 . . . Location constructors and toString omitted for brevity
 }

 private static class DBOpenHelper extends
 SQLiteOpenHelper {

 private static final String DB_CREATE = "CREATE TABLE "
 + DBHelper.DB_TABLE
 + " (_id INTEGER PRIMARY KEY, zip TEXT UNIQUE NOT NULL,”
 + “city TEXT, region TEXT, lastalert INTEGER, “
 + “alertenabled INTEGER);";

 public DBOpenHelper(Context context, String dbName, int version) {
 super(context, DBHelper.DB_NAME, null, DBHelper.DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 try {
 db.execSQL(DBOpenHelper.DB_CREATE);
 } catch (SQLException e) {

Listing 5.10 Portion of the DBHelper class showing the DBOpenHelper inner class

Use constants for
database properties B

C
Define inner
Location bean

Define inner
DBOpenHelper class

D

Define SQL
query for
database
creation

E

Override helper
callbacks

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

145Persisting data to a database
 Log.e(Constants.LOGTAG, DBHelper.CLASSNAME, e);
 }
 }

 @Override
 public void onOpen(SQLiteDatabase db) {
 super.onOpen(db);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS " + DBHelper.DB_TABLE);
 this.onCreate(db);
 }
 }

Within our DBHelper class we first have a series of constants that define important
static values relating to the database we want to work with, such as database name,
database version, and table name B. Then we show several of the most important
parts of the database helper class that we have created for the WeatherReporter appli-
cation, the inner classes.

 The first inner class is a simple Location bean that is used to represent a user’s
selected location to save C. This class intentionally does not have accessors and muta-
tors, because these add overhead and we don’t really need them when we will use this
bean only within our application (we won’t expose it). The second inner class is a
SQLiteOpenHelper implementation D.

 Our DBOpenHelper inner class extends SQLiteOpenHelper, which is a class that
Android provides to help with creating, upgrading, and opening databases. Within
this class we are including a String that represents the CREATE query we will use to
build our database table; this shows the exact columns and types our table will have
E. The data types we are using are fairly self-explanatory; most of the time you will
use INTEGER and TEXT types, as we have (if you need more information about the
other types SQLite supports, please see the documentation: http://www.sqlite.org/
datatype3.html). Also within DBOpenHelper we are implementing several key SQLite-
OpenHelper callback methods, notably onCreate and onUpgrade (onOpen is also sup-
ported, but we aren’t using it) F. We will explain how these callbacks come into play
and why this class is so helpful in the second part of our DBHelper (the outer class),
which is shown in listing 5.11.

public DBHelper(Context context) {
 this.dbOpenHelper = new DBOpenHelper(context, "WR_DATA", 1);
 this.establishDb();
 }

 private void establishDb() {
 if (this.db == null) {

Listing 5.11 Portion of the DBHelper class showing convenience methods

F Override
helper
callbacks

B

Create
DBOpenHelper

instance

Provide
establishDb

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.sqlite.org/datatype3.html
http://www.sqlite.org/datatype3.html

146 CHAPTER 5 Storing and retrieving data
 this.db = this.dbOpenHelper.getWritableDatabase();
 }
 }

 public void cleanup() {
 if (this.db != null) {
 this.db.close();
 this.db = null;
 }
 }

 public void insert(Location location) {
 ContentValues values = new ContentValues();
 values.put("zip", location.zip);
 values.put("city", location.city);
 values.put("region", location.region);
 values.put("lastalert", location.lastalert);
 values.put("alertenabled", location.alertenabled);
 this.db.insert(DBHelper.DB_TABLE, null, values);
 }

 public void update(Location location) {
 ContentValues values = new ContentValues();
 values.put("zip", location.zip);
 values.put("city", location.city);
 values.put("region", location.region);
 values.put("lastalert", location.lastalert);
 values.put("alertenabled", location.alertenabled);
 this.db.update(DBHelper.DB_TABLE, values, "_id=" + location.id, null);
 }

 public void delete(long id) {
 this.db.delete(DBHelper.DB_TABLE, "_id=" + id, null);
 }

 public void delete(String zip) {
 this.db.delete(DBHelper.DB_TABLE, "zip='" + zip + "'", null);
 }

 public Location get(String zip) {
 Cursor c = null;
 Location location = null;
 try {
 c = this.db.query(true, DBHelper.DB_TABLE, DBHelper.COLS,
 "zip = '" + zip + "'", null, null, null, null,
 null);
 if (c.getCount() > 0) {
 c.moveToFirst();
 location = new Location();
 location.id = c.getLong(0);
 location.zip = c.getString(1);
 location.city = c.getString(2);
 location.region = c.getString(3);
 location.lastalert = c.getLong(4);
 location.alertenabled = c.getInt(5);
 }
 } catch (SQLException e) {

D
Provide cleanup
method

Provide
convenience

insert, update,
delete, get

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

147Persisting data to a database
 Log.v(Constants.LOGTAG, DBHelper.CLASSNAME, e);
 } finally {
 if (c != null && !c.isClosed()) {
 c.close();
 }
 }
 return location;
 }

 public List<Location> getAll() {
 ArrayList<Location> ret = new ArrayList<Location>();
 Cursor c = null;
 try {
 c = this.db.query(DBHelper.DB_TABLE, DBHelper.COLS, null,
 null, null, null, null);
 int numRows = c.getCount();
 c.moveToFirst();
 for (int i = 0; i < numRows; ++i) {
 Location location = new Location();
 location.id = c.getLong(0);
 location.zip = c.getString(1);
 location.city = c.getString(2);
 location.region = c.getString(3);
 location.lastalert = c.getLong(4);
 location.alertenabled = c.getInt(5);
 if (!location.zip.equals(DBHelper.DEVICE_ALERT_ENABLED_ZIP)) {
 ret.add(location);
 }
 c.moveToNext();
 }
 } catch (SQLException e) {
 Log.v(Constants.LOGTAG, DBHelper.CLASSNAME, e);
 } finally {
 if (c != null && !c.isClosed()) {
 c.close();
 }
 }
 return ret;
 }

 . . . getAllAlertEnabled omitted for brevity
}

Our DBHelper class contains a member-level variable reference to a SQLiteDatabase
object, as we saw in listing 5.10 (the first half of this class). This object is the Android
database workhorse. It is used to open database connections, to execute SQL state-
ments, and more.

 Then the DBOpenHelper inner class we also saw in the first part of the DBHelper
class listing is instantiated inside the constructor B. From there the dbOpenHelper is
used, inside the establishDb method if the db reference is null, to call openDatabase
with the current Context, database name, and database version C. This establishes db
as an instance of SQLiteDatabase through DBOpenHelper.

Provide additional
get methods

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

148 CHAPTER 5 Storing and retrieving data
 Although you can also just open a database connection directly on your own, using
the open helper in this way invokes the provided callbacks and makes the process easier.
With this technique, when we try to open our database connection, it is automatically
created or upgraded (or just returned), if necessary, through our DBOpenHelper. While
using a DBOpenHelper entails extra steps up front, once you have it in place it is
extremely handy when you need to modify your table structure (you can simply incre-
ment your version and do what you need to do in the onUpgrade callback—without this
you would have to manually alter and/or remove and re-create your existing structure).

 Another important thing to provide in a helper class like this is a cleanup
method D. This method is used by callers who can invoke it when they pause, in
order to close connections and free up resources.

 After the cleanup method we then see the raw SQL convenience methods that
encapsulate the operations our helper provides. In this class we have methods to
insert, update, delete and get data E. We also have a few additional specialized get
and get all methods F. Within these methods you get a feel for how the db object is
used to run queries. The SQLiteDatabase class itself has many convenience methods,
such as insert, update, and delete—which we are wrapping—and it provides direct
query access that returns a Cursor over a result set.

Typically you can get a lot of mileage and utility from basic steps relating to the
SQLiteDatabase class, as we have here, and by using it you can create a very useful and
fast data-storage mechanism for your Android applications. The final thing we need to
discuss with regard to databases is the sqlite3 tool, which you can use to manipulate
data outside your application.

5.3.2 Using the sqlite3 tool

When you create a database for an application in Android, the files for that database
are created on the device in the /data/data/[PACKAGE_NAME]/database/db.name
location. These files are SQLite proprietary, but there is a way to manipulate, dump,
restore, and otherwise work with your databases through these files in the ADB
shell—the sqlite3 tool.

 This tool is accessible through the shell; you can get to it by issuing the following
commands on the command line (remember to use your own package name; here we
are using the package name for the WeatherReporter sample application):

Databases are package private
Unlike the SharedPreferences we saw earlier, you can’t make a database
WORLD_READABLE. Each database is accessible only by the package in which it was
created—this means accessible only to the process that created it. If you need to
pass data across processes, you can use AIDL/Binder (as in chapter 4) or create a
ContentProvider (as we will discuss next), but you can’t use a database directly
across the process/package boundary.
Licensed to Deborah Christiansen <pedbro@gmail.com>

149Working with ContentProvider classes
cd [ANDROID_HOME]/tools
adb shell
sqlite3 /data/data/com.msi.manning.chapter4/databases/w_alert.db

Once you are in the shell prompt (you have the #), you can then issue sqlite3 com-
mands; .help should get you started (if you need more, see the tool’s documentation:
http://www.sqlite.org/sqlite.html). From the tool you can issue basic commands,
such as SELECT or INSERT, or you can go further and CREATE or ALTER tables. This tool
comes in handy for basic poking around and troubleshooting and to .dump and .load
data. As with many command-line SQL tools, it takes some time to get used to the for-
mat, but there is no better way to back up or load your data. (If you need that facil-
ity—in most cases with mobile development you really shouldn’t have a huge
database. Keep in mind that this tool is available only through the development shell;
it’s not something you will be able to use to load a real application with data.)

 Now that we have shown how to use the SQLite support provided in Android, from
creating and accessing tables to store data, to investigating databases with the pro-
vided tools in the shell, the next thing we need to cover is the last aspect of handling
data on the platform, and that is building and using a ContentProvider.

5.4 Working with ContentProvider classes
A ContentProvider is used in Android to share data between different applications.
We have already discussed the fact that each application runs in its own process (nor-
mally), and data and files stored there are not accessible by other applications by
default. We have explained that you can make preferences and files available across
application boundaries with the correct permissions and if each application knows the
context/path. Nevertheless, that is a limited solution for related applications that
already know details about one another. In contrast, with a ContentProvider you can
publish and expose a particular data type for other applications to use to query, add,
update, and delete, and those applications don’t need to have any prior knowledge of
paths or resources or even know who or what is providing the content.

 The canonical ContentProvider example in Android is the contacts list—the list
of name, address, and phone information stored in the phone. You can access this
data from any application using a specific URI, content://contacts/people/, and a
series of methods provided by the Activity and ContentResolver classes to retrieve
and store data. You will learn more about ContentResolver as we explore provider
details. One other data-related concept that a ContentProvider brings along with it
is the Cursor, the same object we used previously when dealing with SQLite data-
base result sets. Cursor is also returned by the provider query methods you will learn
about shortly.

 In this section we are going to build several small sample applications to help us look
at all of the ContentProvider angles. First we will build a single Activity-based appli-
cation, which we are calling ProviderExplorer, that will work with the built-in contacts
database to query, add, update, and delete data. Then we will create another applica-
tion that implements its own ContentProvider and includes a similar explorer-type
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.sqlite.org/sqlite.html

150 CHAPTER 5 Storing and retrieving data
Activity to manipulate that data as well. Along with covering these fundamentals, we
will discuss other built-in providers on the platform beyond contacts.

 The ProviderExplorer application we are going to build here will ultimately have one
large scrollable screen, which is depicted in figure 5.5. Keep in mind that we are focus-
ing on covering all the bases in one Activity—exposing all of the ContentProvider

ContentProvider leaks a Cursor
Returning a Cursor is one of the quirks of a ContentProvider. Exposing a Cursor
from a ContentProvider is a fairly “leaky” abstraction, and it makes for an incon-
sistent API, as you shall learn. Cursor is part of the android.database package, which
implies you are working with database records and binds you to certain database con-
cepts when you get results. Yet the entire idea behind a ContentProvider is supposed
to be that it is backend agnostic. That is to say you should be able to implement a
ContentProvider and not use a database to get and store data within it if the situation
warrants (the current Android documentation contradicts itself on this point; in one
place it says not using a database is possible, and in another it says it is not). Currently,
regardless of the merits or demerits, you will need to learn to deal with Cursor-based
results and SQL constructs when working with ContentProvider calls.

Figure 5.5 ProviderExplorer sample application that uses the contact’s ContentProvider
Licensed to Deborah Christiansen <pedbro@gmail.com>

151Working with ContentProvider classes
operations in a single place—rather than on aesthetics or usability (this application is
downright ugly, but that’s intentional—at least this time).

 To begin we will explore the syntax of URIs and the combinations and paths used
to perform different types of operations with the ContentProvider and Content-
Resolver classes.

5.4.1 Understanding URI representations and manipulating records

Each ContentProvider is required to expose a unique CONTENT_URI that is used to
identify the content type it will handle. This URI is used in one of two forms, singular
or plural, as shown in table 5.1, to query data.

The URI concept comes into play whether or not you are querying data or adding or
deleting it, as you shall see. To get familiar with this process we will take a look at the
basic CRUD data-manipulation methods and see how they are carried out with the
contacts database and respective URIs.

 We will step through each task to highlight the details: create, read, update, and
delete. To do this concisely we will build one Activity in the ProviderExplorer exam-
ple application that performs all of these actions. In the next few sections we will take
a look at different parts of this Activity to focus on each task.

 The first thing we need to do is set up a bit of scaffolding for the contacts provider
we will be using; this is done in the first portion of listing 5.12, the start of the Provi-
derExplorer class.

public class ProviderExplorer extends Activity {

 private EditText addName;
 private EditText addPhoneNumber;
 private EditText editName;
 private EditText editPhoneNumber;
 private Button addContact;
 private Button editContact;

 private long contactId;

 private class Contact {
 public long id;
 public String name;
 public String phoneNumber;

 public Contact(long id, String name, String phoneNumber) {

Table 5.1 ContentProvider URI variations for different purposes

URI Purpose

content://contacts/people/ Return List of all people from provider registered to
handle content://contacts

content://contacts/people/1 Return or manipulate single person with ID 1 from
provider registered to handle content://contacts

Listing 5.12 Start of Activity that sets up needed inner classes

Include inner
Contact bean

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

152 CHAPTER 5 Storing and retrieving data

s
 this.id = id;
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

 @Override
 public String toString() {
 return this.name + "\n" + this.phoneNumber;
 }
 }

 private class ContactButton extends Button {
 public Contact contact;

 public ContactButton(Context ctx, Contact contact) {
 super(ctx);
 this.contact = contact;
 }
 }

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.provider_explorer);

 this.addName = (EditText) this.findViewById(R.id.add_name);
 this.addPhoneNumber =
 (EditText) this.findViewById(R.id.add_phone_number);
 this.editName =
 (EditText) this.findViewById(R.id.edit_name);
 this.editPhoneNumber =
 (EditText) this.findViewById(R.id.edit_phone_number);

 this.addContact =
 (Button) this.findViewById(R.id.add_contact_button);
 this.addContact.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 ProviderExplorer.this.addContact();
 }
 });
 this.editContact =
 (Button) this.findViewById(R.id.edit_contact_button);
 this.editContact.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 ProviderExplorer.this.editContact();
 }
 });
 }

To start out the ProviderExplorer Activity we are creating a simple inner bean class
to represent a Contact record (this is not a comprehensive representation, but it does
capture the fields we are interested in here) B. Then we include another inner class
to represent a ContactButton C. This class extends Button and includes a reference
to a particular Contact.

 After we have the add and edit buttons established, we create anonymous
OnClickListener implementations D that call the respective add and edit methods
when a button is clicked E.

Extend Button with
ContactButton

C

D Create
anonymou
click
listeners

ECall addContact
and editContact
Licensed to Deborah Christiansen <pedbro@gmail.com>

153Working with ContentProvider classes
 That rounds out the setup-related tasks for ProviderExplorer. The next thing we
need to implement is the onStart method, which adds more buttons dynamically for
populating edit data and deleting data. This is shown in listing 5.13.

 @Override
 public void onStart() {
 super.onStart();
 List<Contact> contacts = this.getContacts();

 LinearLayout.LayoutParams params =
 new LinearLayout.LayoutParams(200,
 android.view.ViewGroup.LayoutParams.WRAP_CONTENT);

 if (contacts != null) {
 LinearLayout editLayout =
 (LinearLayout)
 this.findViewById(R.id.edit_buttons_layout);
 LinearLayout deleteLayout =
 (LinearLayout)
 this.findViewById(R.id.delete_buttons_layout);
 params.setMargins(10, 0, 0, 0);

 for (Contact c : contacts) {

 ContactButton contactEditButton =
 new ContactButton(this, c);
 contactEditButton.setText(c.toString());
 editLayout.addView(contactEditButton, params);
 contactEditButton.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 ContactButton view = (ContactButton) v;
 editName.setText(view.contact.name);
 editPhoneNumber.setText(view.contact.phoneNumber);
 contactId = view.contact.id;
 }
 });

 ContactButton contactDeleteButton =
 new ContactButton(this, c);
 contactDeleteButton.setText("Delete " + c.name);
 deleteLayout.addView(contactDeleteButton, params);
 contactDeleteButton.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 ContactButton view = (ContactButton) v;
 contactId = view.contact.id;
 deleteContact();
 }
 });
 }
 } else {
 LinearLayout layout =
 (LinearLayout)
 this.findViewById(R.id.edit_buttons_layout);
 TextView empty = new TextView(this);
 empty.setText("No current contacts");

Listing 5.13 onStart portion of the ProviderExplorer Activity

Get list of
contacts

B

C
Create
dynamic
layouts

Create dynamic
buttons

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

154 CHAPTER 5 Storing and retrieving data
 layout.addView(empty, params);
 }
 }

The onStart method makes a call to the getContacts method B. This method,
which you will see in listing 5.14, returns a List of current Contact objects from the
Android contacts database. Once we have the current contacts, we loop through them
and dynamically create a layout in code for edit and delete, respectively C. After we
have the layout within it, we create a few view objects, including a ContactButton to
populate an edit form and a button to delete a record D. Each button is then manu-
ally added to its respective LinearLayout we have referenced through R.java.

 Once our onStart method is in place, we have a View to display all the current con-
tacts and all of the buttons, static and dynamic, that we need in order to be able to add,
edit, and delete contact data. From there we need to implement the methods to perform
these actions—this is where we will use a ContentResolver and other related classes.

 Initially we need to populate our display of current contacts, and to do that we
need to query for (read) data.
QUERYING DATA

The Activity class has a managedQuery method that is used to make calls into regis-
tered ContentProvider classes. When we create our own ContentProvider in sec-
tion 5.5.3, we will show how a provider is registered with the platform; for now we are
going to focus on calling existing providers. Each provider is required to advertise (or
publish, in Android terms) the CONTENT_URI it supports. To query the contacts pro-
vider, as we are doing in listing 5.14, we have to know this URI and then get a Cursor
by calling managedQuery.

 private List<Contact> getContacts() {
 List<Contact> results = null;
 long id = 0L;
 String name = null;
 String phoneNumber = null;
 String[] projection = new String[]
 { Contacts.People._ID,
 Contacts.People.NAME,
 Contacts.People.NUMBER };
 ContentResolver resolver = this.getContentResolver();
 Cursor cur = resolver.query(Contacts.People.CONTENT_URI,
 projection, null, null,
 Contacts.People.DEFAULT_SORT_ORDER);
 while (cur.moveToNext()) {
 if (results == null) {
 results = new ArrayList<Contact>();
 }
 id = cur.getLong(cur.getColumnIndex(BaseColumns._ID));
 name = cur.getString(cur.getColumnIndex(PeopleColumns.NAME));
 phoneNumber =
 cur.getString(cur.getColumnIndex(PhonesColumns.NUMBER));

Listing 5.14 Query details for ContentProvider in the ProviderExplorer Activity

Make
projection

B Get
ContentResolver
reference

C

Get Cursor
from
resolver

D

E
Walk results and
populate data
Licensed to Deborah Christiansen <pedbro@gmail.com>

155Working with ContentProvider classes
 results.add(new Contact(id, name, phoneNumber));
 }
 return results;
 }

The Android contacts database is really a composite of several types of data. A contact
includes details of a person (name, company, photo, and the like), one or more
phone numbers (each of which has a number, type, label, and such), and other infor-
mation. A ContentProvider typically supplies all the details of the URI and the types it
supports as constants in a class. In the android.provider package, there is Contacts
class that corresponds to the contacts provider. This class has nested inner classes that
represent People and Phones. In additional inner classes in those, there are constants
that represent fields or columns of data for each type. This structure with all the inner
classes can be mind bending at times, but the bottom line is that Contacts data ends
up in multiple tables, and the values you need to query and manipulate this data come
from the inner classes for each type.

 The columns we will be using to get and set data are defined in these classes. Here
we are going to work with only the people and phones parts of contacts. We start by
creating a projection of the columns we want to return as a String array B. Then we
get a reference to the ContentResolver we will use C. Using the resolver, we obtain a
Cursor object D. Once we have the Cursor, which represents the rows in the data we
have returned, we iterate over it to create our contact objects E.

The query method on the ContentResolver class also lets you pass in additional argu-
ments to narrow the results. Specifically, where we passed null, null in listing 5.14,
you can alternatively pass in a filter to narrow the rows you want to return in the form
of an SQL WHERE clause and optional replacement tokens for that Where clause
(injected at each ?). This is somewhat typical SQL usage, so it’s easy to work with. The
downside comes when you aren’t using a database to back your ContentProvider.
This is where the abstraction leaks like a sieve—though it might be possible to not use
a database for a data source, you still have to handle SQL statements in your provider
implementation, and you must require that anyone who uses your provider also has to
deal with SQL constructs.

Managed Cursor
To obtain a Cursor reference you can also use the managedQuery method of the
Activity class. A managed Cursor is automatically cleaned up when your Activity
pauses, and it is also restarted when it starts. It is a Cursor instance that has its
state maintained by the platform in conjunction with the Activity lifecycle. This is
very helpful, in most cases. If you just need to retrieve data within an Activity, you
will want to use a managed Cursor as opposed to a ContentResolver. (We are not
using one in the last example, because there we need to do more than retrieve data,
and we want to focus on the provider/resolver components.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

156 CHAPTER 5 Storing and retrieving data
 Now that we have covered how to query for data to return results, we look at insert-
ing new data—adding a row.
INSERTING DATA

In listing 5.15 we show the next part of the ProviderExplorer class, the addContact
method. This is used with the add form elements in our Activity to insert a new row
of data into the contacts-related tables.

private void addContact() {
 ContentResolver resolver = this.getContentResolver();
 ContentValues values = new ContentValues();

 values.put(Contacts.People.NAME,
 this.addName.getText().toString());
 Uri personUri =
 Contacts.People.createPersonInMyContactsGroup(
 resolver, values);

 values.clear();
 Uri phoneUri = Uri.withAppendedPath(personUri,
 Contacts.People.Phones.CONTENT_DIRECTORY);
 values.put(Contacts.Phones.TYPE, Phones.TYPE_MOBILE);
 values.put(Contacts.Phones.NUMBER,
 this.addPhoneNumber.getText().toString());

 resolver.insert(phoneUri, values);

 this.startActivity(new Intent(this, ProviderExplorer.class));
}

The first thing to see in the addContact method is that we are getting a ContentRe-
solver reference B and using a ContentValues object to map column names with
values C. This is an Android-specific type of map object. After we have our variables
in place, we use the special createPersonInMyContactsGroup helper method on the
Contacts.People class to both insert a record and return the Uri D. This method
uses the resolver for us, under the covers, and performs an insert. The Contacts class
structure has a few helper methods sprinkled throughout (see the Javadocs). These
are used to cut down on the amount of code you have to know and write to perform
common tasks, such as adding a contact to the My Contacts group (the built-in group
that the phone displays by default in the contacts app).

 After we have created a new contact People record, we append new data to that
existing Uri in order to create a phone record associated with the same person E.
This is a nice touch that the API provides. You can often append and/or build onto
an existing Uri in order to access different aspects of the data structure. After we
have the Uri and have reset and updated the values object, we directly insert a
phone record this time, using the ContentResolver insert method (no helper for
this one) F.

 After adding data, we need to look at how to update or edit existing data.

Listing 5.15 Insert details for ContentProvider in the ProviderExplorer Activity

B

Get
ContentResolver
handle

C
Use ContentValues
for query values

D
Use Contacts helper
to create person

E
Append person
Uri for phone Uri

Insert data using resolverF
Licensed to Deborah Christiansen <pedbro@gmail.com>

157Working with ContentProvider classes
UPDATING DATA

To update a row of data you first obtain a Cursor row reference to it and then use the
update-related Cursor methods. This is shown in listing 5.16.

private void editContact() {
 ContentResolver resolver = this.getContentResolver();
 ContentValues values = new ContentValues();

 Uri personUri = Contacts.People.CONTENT_URI.buildUpon()
 .appendPath(Long.toString(this.contactId)).build();

 values.put(Contacts.People.NAME,
 this.editName.getText().toString());
 resolver.update(personUri, values, null, null);

 values.clear();
 Uri phoneUri = Uri.withAppendedPath(personUri,
 Contacts.People.Phones.CONTENT_DIRECTORY + "/1");
 values.put(Contacts.Phones.NUMBER,
 this.editPhoneNumber.getText().toString());
 resolver.update(phoneUri, values, null, null);

 this.startActivity(new Intent(this, ProviderExplorer.class));
}

In updating data, we start with the standard People.CONTENT_URI and append a spe-
cific ID path to it using UriBuilder B. UriBuilder is a very helpful class that uses the
builder pattern to allow you to construct and access the components of a Uri object.
After we have the URI ready, we update the values data C and call resolver.update
to make the update happen D. As you can see, the update process when using a
ContentResolver is pretty much the same as the create process—with the noted
exception that the update method allows you to again pass in a WHERE clause and
replacement tokens (SQL style).

 For this example, after we have updated the person’s name, we need to once again
obtain the correct Uri to also update the associated phone record. We do this by again
appending additional Uri path data to an object we already have, and we slap on the
specific ID we want E. Outside of example purposes there would be more work to do
here in order to determine which phone record for the contact needs to be updated
(here we are using ID 1 as a shortcut).

 Although we are updating only single records based on a specific URI, keep in
mind that you can update a set of records using the nonspecific form of the URI and
the WHERE clause.

 Lastly, in our look at manipulating data through a ContentProvider, we need to
implement our delete method.
DELETING DATA

To delete data we will return to the ContentResolver object we used to insert data.
This time we will call the delete method, as seen in listing 5.17.

Listing 5.16 Update details for ContentProvider in the ProviderExplorer Activity

Append to an
existing Uri

B

Update values
to change data

C

D
Call
resolver.update

E
After updated,
get Uri
Licensed to Deborah Christiansen <pedbro@gmail.com>

158 CHAPTER 5 Storing and retrieving data
 private void deleteContact() {
 Uri personUri = Contacts.People.CONTENT_URI;
 personUri = personUri.buildUpon().
 appendPath(Long.toString(contactId)).build();
 getContentResolver().delete(personUri, null, null);

 startActivity(new Intent(this, ProviderExplorer.class));
 }
}

The delete concept is pretty simple, once you have the rest of the process in hand.
Again we use the UriBuilder approach to set up a Uri for a specific record B, and
then we obtain a ContentResolver reference, this time inline with our delete
method call C.

After having seen how the built-in contacts provider works, you may also want to
check out the android.provider package in the Javadocs, as it lists more built-in pro-
viders. Now that we have covered a bit about using a built-in provider and have the
CRUD fundamentals under our belt, we will look at the other side of the coin—creat-
ing a ContentProvider.

5.4.2 Creating a ContentProvider

In this section we are going to build a provider that will handle data responsibilities
for a generic Widget object we will define. This object is simple, with a name, type, cat-
egory, and other members, and intentionally generic, so we can focus on the how here
and not the why. (The reasons why you might implement a provider in real life are
many; for the purposes of this example, our type will be the mythical Widget.)

 To create a ContentProvider extend that class and implement the required
abstract methods. We will show how this is done specifically in a moment. Before get-
ting to that, it is a good idea to first define a provider constants class that defines the
CONTENT_URI and MIME_TYPE your provider will support. In addition, you can place
the column names your provider will handle here in one class (or you can use multi-
ple nested inner classes as the built-in contacts system does—we find a flatter
approach to be easier to understand).

Listing 5.17 Delete details for ContentProvider in the ProviderExplorer Activity

Use UriBuilder
to append path

B

CCall getContentResolver.delete

What if the content changes after the fact?
When you use a ContentProvider, which by definition is accessible by any applica-
tion on the system, and you make a query, you are getting only the current state
of the data back. The data could change after your call, so how do you stay up to
date? To be notified when a Cursor changes, you can use the ContentObserver API.
ContentObserver supports a set of callbacks that are invoked when data changes.
Cursor has register and unregister methods for ContentObserver objects.
Licensed to Deborah Christiansen <pedbro@gmail.com>

159Working with ContentProvider classes
DEFINING A CONTENT_URI AND MIME_TYPE

In listing 5.18, as a prerequisite to extending the ContentProvider class for a custom
provider, we have defined needed constants for our Widget type.

public final class Widget implements BaseColumns {

 public static final String MIME_DIR_PREFIX =
 "vnd.android.cursor.dir";
 public static final String MIME_ITEM_PREFIX =
 "vnd.android.cursor.item";
 public static final String MIME_ITEM = "vnd.msi.widget";
 public static final String MIME_TYPE_SINGLE =
 MIME_ITEM_PREFIX + "/" + MIME_ITEM;
 public static final String MIME_TYPE_MULTIPLE =
 MIME_DIR_PREFIX + "/" + MIME_ITEM;

 public static final String AUTHORITY =
 "com.msi.manning.chapter5.Widget";
 public static final String PATH_SINGLE = "widgets/#";
 public static final String PATH_MULTIPLE = "widgets";
 public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/" + PATH_MULTIPLE);

 public static final String DEFAULT_SORT_ORDER = "updated DESC";

 public static final String NAME = "name";
 public static final String TYPE = "type";
 public static final String CATEGORY = "category";
 public static final String CREATED = "created";
 public static final String UPDATED = "updated";
}

In our Widget-related provider constants class we first extend the BaseColumns class
from Android B. This gives our class a few base constants such as _ID. Next we define
the MIME_TYPE prefix for a set of multiple items C and a single item D. This is out-
lined in the Android documentation; the convention is that vnd.android.cursor.dir
represents multiple items, and vnd.android.cursor.item represents a single item.
Thereafter we define a specific MIME item and combine it with the single and multi-
ple paths to create two MIME_TYPE representations E.

 Once we have the MIME details out of the way, we define the authority F and path
for both single G and multiple H items that will be used in the CONTENT_URI callers
we will pass in to use our provider. The multiple-item URI is ultimately the one that
callers will start from and the one we publish (they can append specific items from
there) I.

 After taking care of all the other details, we define column names that represent
the variable types in our Widget object, which are also going to fields in the database
table we will use J. Callers will use these constants to get and set specific fields. That
leads us to the next part of the process, extending ContentProvider.

Listing 5.18 WidgetProvider constants, including columns and URI

Extend BaseColumnsB

C
Define MIME prefix
for multiple items

D

Define
MIME
prefix
for
single
item

Define MIME
type E

Define authority F
G Define path for

single item

H
Define path for
multiple items

Define
columns

J

I

Define
ultimate

CONTENT_URI
Licensed to Deborah Christiansen <pedbro@gmail.com>

160 CHAPTER 5 Storing and retrieving data
EXTENDING CONTENTPROVIDER

In listing 5.19 we show the beginning of our ContentProvider implementation class,
WidgetProvider. In this part of the class we do some housekeeping relating to the
database we will use and the URI we are supporting.

public class WidgetProvider extends ContentProvider {

 private static final String CLASSNAME =
 WidgetProvider.class.getSimpleName();
 private static final int WIDGETS = 1;
 private static final int WIDGET = 2;
 public static final String DB_NAME = "widgets_db";
 public static final String DB_TABLE = "widget";
 public static final int DB_VERSION = 1;

 private static UriMatcher URI_MATCHER = null;
 private static HashMap<String, String> PROJECTION_MAP;

 private SQLiteDatabase db;

 static {
 WidgetProvider.URI_MATCHER = new UriMatcher(UriMatcher.NO_MATCH);
 WidgetProvider.URI_MATCHER.addURI(Widget.AUTHORITY,
 Widget.PATH_MULTIPLE, WidgetProvider.WIDGETS);
 WidgetProvider.URI_MATCHER.addURI(Widget.AUTHORITY,
 Widget.PATH_SINGLE, WidgetProvider.WIDGET);

 WidgetProvider.PROJECTION_MAP = new HashMap<String, String>();
 WidgetProvider.PROJECTION_MAP.put(BaseColumns._ID, "_id");
 WidgetProvider.PROJECTION_MAP.put(Widget.NAME, "name");
 WidgetProvider.PROJECTION_MAP.put(Widget.TYPE, "type");
 WidgetProvider.PROJECTION_MAP.put(Widget.CATEGORY, "category");
 WidgetProvider.PROJECTION_MAP.put(Widget.CREATED, "created");
 WidgetProvider.PROJECTION_MAP.put(Widget.UPDATED, "updated");
 }

 private static class DBOpenHelper extends SQLiteOpenHelper {
 private static final String DB_CREATE = "CREATE TABLE "
 + WidgetProvider.DB_TABLE
 + " (_id INTEGER PRIMARY KEY, name TEXT UNIQUE NOT NULL,”
 + "type TEXT, category TEXT, updated INTEGER, created”
 + "INTEGER);";

 public DBOpenHelper(Context context) {
 super(context, WidgetProvider.DB_NAME, null,
 WidgetProvider.DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 try {
 db.execSQL(DBOpenHelper.DB_CREATE);
 } catch (SQLException e) {
 // log and or handle
 }

Listing 5.19 The first portion of the WidgetProvider ContentProvider

B
Extend
ContentProvider

Define database
constants

C

Use UriMatcherD

E
Include
projection Map

F
Use SQLiteDatabase
reference

G
Create and

open database
Licensed to Deborah Christiansen <pedbro@gmail.com>

161Working with ContentProvider classes
 }

 @Override
 public void onOpen(SQLiteDatabase db) {
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS "
 + WidgetProvider.DB_TABLE);
 this.onCreate(db);
 }
 }

 @Override
 public boolean onCreate() {
 DBOpenHelper dbHelper = new DBOpenHelper(this.getContext());
 this.db = dbHelper.getWritableDatabase();

 if (this.db == null) {
 return false;
 } else {
 return true;
 }
 }

 @Override
 public String getType(Uri uri) {
 switch (WidgetProvider.URI_MATCHER.match(uri)) {
 case WIDGETS:
 return Widget.MIME_TYPE_MULTIPLE;
 case WIDGET:
 return Widget.MIME_TYPE_SINGLE;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 }

Our provider extends ContentProvider, which defines the methods we will need to
implement B. Then we use several database-related constants to define the database
name and table we will use C. After that we include a UriMatcher D, which we will
use when matching types in a moment, and a projection Map for field names E.

 We include a reference to a SQLiteDatabase object; this is what we will use to store
and retrieve the data that our provider handles F. This database is created, opened,
and upgraded using a SQLiteOpenHelper in an inner class G. We have used this
helper pattern before, when we worked directly with the database in listing 5.14. The
onCreate method of our provider is where the open helper is used to set up the data-
base reference H.

 After our setup-related steps we come to the first method a ContentProvider
requires us to implement, getType I. This method is used by the provider to resolve
each passed-in Uri to determine if it is supported and if so which type of data the cur-
rent call is requesting (a single item or the entire set). The MIME_TYPE String we
return here is based on the constants we defined in our Widget class.

Override onCreateH

Implement
getType method

I

Licensed to Deborah Christiansen <pedbro@gmail.com>

162 CHAPTER 5 Storing and retrieving data
 The next steps we need to cover are the remaining required methods to imple-
ment to satisfy the ContentProvider contract. These methods, which are shown in list-
ing 5.20, correspond to the CRUD-related activities used with the contacts provider in
the previous section: query, insert, update, and delete.

 @Override
 public Cursor query(Uri uri, String[] projection,
 String selection, String[] selectionArgs,
 String sortOrder) {
 SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();
 String orderBy = null;

 switch (WidgetProvider.URI_MATCHER.match(uri)) {
 case WIDGETS:
 queryBuilder.setTables(WidgetProvider.DB_TABLE);
 queryBuilder.setProjectionMap(WidgetProvider.PROJECTION_MAP);
 break;
 case WIDGET:
 queryBuilder.setTables(WidgetProvider.DB_TABLE);
 queryBuilder.appendWhere("_id="
 + uri.getPathSegments().get(1));
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 if (TextUtils.isEmpty(sortOrder)) {
 orderBy = Widget.DEFAULT_SORT_ORDER;
 } else {
 orderBy = sortOrder;
 }

 Cursor c = queryBuilder.query(this.db, projection,
 selection, selectionArgs, null, null,
 orderBy);
 c.setNotificationUri(
 this.getContext().getContentResolver(), uri);
 return c;
 }

 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {
 long rowId = 0L;
 ContentValues values = null;

 if (initialValues != null) {
 values = new ContentValues(initialValues);
 } else {
 values = new ContentValues();
 }

 if (WidgetProvider.URI_MATCHER.match(uri) !=
 WidgetProvider.WIDGETS) {
 throw new IllegalArgumentException("Unknown URI " + uri);

Listing 5.20 The second portion of the WidgetProvider ContentProvider

Use query builder B

C
Set up query
based on URI

Perform query
to get Cursor

D

E
Set notification
Uri on Cursor

F
Use ContentValues
in insert method
Licensed to Deborah Christiansen <pedbro@gmail.com>

163Working with ContentProvider classes
 }

 Long now = System.currentTimeMillis();

 . . . omit defaulting of values for brevity

 rowId = this.db.insert(WidgetProvider.DB_TABLE, "widget_hack",
 values);

 if (rowId > 0) {
 Uri result = ContentUris.withAppendedId(Widget.CONTENT_URI,
 rowId);
 this.getContext().getContentResolver().notifyChange(result,
 null);
 return result;
 }
 throw new SQLException("Failed to insert row into " + uri);
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 int count = 0;
 switch (WidgetProvider.URI_MATCHER.match(uri)) {
 case WIDGETS:
 count = this.db.update(WidgetProvider.DB_TABLE, values,
 selection, selectionArgs);
 break;
 case WIDGET:
 String segment = uri.getPathSegments().get(1);
 String where = "";
 if (!TextUtils.isEmpty(selection)) {
 where = " AND (" + selection + ")";
 }
 count = this.db.update(WidgetProvider.DB_TABLE, values,
 "_id=" + segment + where, selectionArgs);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 this.getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }

 @Override
 public int delete(
 Uri uri, String selection, String[] selectionArgs) {
 int count;

 switch (WidgetProvider.URI_MATCHER.match(uri)) {
 case WIDGETS:
 count = this.db.delete(WidgetProvider.DB_TABLE, selection,
 selectionArgs);
 break;
 case WIDGET:
 String segment = uri.getPathSegments().get(1);
 String where = "";
 if (!TextUtils.isEmpty(selection)) {

G Call database insert HGet Uri to return

I Notify listeners data was inserted

J
Provide update
method

Provide delete
method

1)
Licensed to Deborah Christiansen <pedbro@gmail.com>

164 CHAPTER 5 Storing and retrieving data
 where = " AND (" + selection + ")";
 }
 count = this.db.delete(WidgetProvider.DB_TABLE,
 "_id=" + segment + where, selectionArgs);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 this.getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }
}

In the last part of our WidgetProvider class we show how the ContentProvider meth-
ods are implemented. These are the same methods but a different provider that we
called earlier in our ProviderExplorer example.

 First we use a SQLQueryBuilder inside the query method to append the projection
map passed in B and any SQL clauses, along with the correct URI based on our match-
er C, before we make the actual query and get a handle on a Cursor to return D.

 At the end of the query method we use the setNotificationUri method to set the
returned Uri to be watched for changes E. This is an event-based mechanism that
can be used to keep track of when Cursor data items are changed, regardless of how
changes are made.

 Next we see the insert method, where the passed-in ContentValues object is vali-
dated and populated with default values if not present F. After the values are ready,
we call the database insert method G and get the resulting Uri to return with the
appended ID of the new record H. After the insert is complete, another notification
system is in use, this time for ContentResolver. Here, since we have made a data
change, we are informing the ContentResolver what happened so that any registered
listeners can be updated I.

 After the insert method is complete, we come to the update J and delete meth-
ods 1). These repeat many of the concepts we have already used. First they match
the Uri passed in to a single element or the set, then they call the respective update
and delete methods on the database object. Again, at the end of these methods we
notify listeners that the data has changed.

 Implementing the needed provider methods completes our class. This provider,
which now serves the Widget data type, can be used from any application to query,
insert, update, or delete data, once we have registered it as a provider with the plat-
form. This is done using the application manifest, which we will look at next.
PROVIDER MANIFESTS

In order for the platform to be aware of the content providers that are available
and what data types they represent, they must be defined in an application manifest
file and installed on the platform. The manifest for our provider is shown in list-
ing 5.21.

Licensed to Deborah Christiansen <pedbro@gmail.com>

165Summary
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.chapter5.widget">
 <application android:icon="@drawable/icon"
 android:label="@string/app_short_name">
 <activity android:name=".WidgetExplorer"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <provider android:name="WidgetProvider"
 android:authorities=
 "com.msi.manning.chapter5.Widget" />
 </application>
</manifest>

The significant part of the manifest concerning content provider support is the <pro-
vider> element B. This is used to define the class that implements the provider and
associate a particular authority with that class.

A completed project that is capable of inserting, retrieving, updating, and deleting
records rounds out our exploration of using and building ContentProvider classes.
And with that, we have also now demonstrated many of the ways to store and retrieve
data on the Android platform.

5.5 Summary
From a simple SharedPreferences mechanism that saves data backed by files to file
storage itself, databases, and finally the concept of a ContentProvider, Android pro-
vides myriad ways for applications to retrieve and store data.

 As we discussed in this chapter, several of these means are intended to be used across
application and process boundaries, and several aren’t. Here we showed that Shared-
Preferences can be created with a permissions mode, allowing the flexibility to keep
things private, or can be shared globally with read-only or read-write permissions.

Listing 5.21 WidgetProvider AndroidManifest.xml file

Use provider element to
define class and authority

B

Additional ContentProvider manifest properties
The properties of a ContentProvider, which are configurable in the manifest, are
capable of configuring several important settings beyond the basics, such as specific
permissions, initialization order, multiprocess capability, and more. While most Con-
tentProvider implementations won’t be required to delve into these details, they
are still good to be aware of. For complete and up-to-date ContentProvider proper-
ties, see the following Android documentation page: http://code.google.com/an-
droid/reference/android/R.styleable.html - AndroidManifestProvider.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/android/R.styleable.html - AndroidManifestProvider
http://code.google.com/android/reference/android/R.styleable.html - AndroidManifestProvider

166 CHAPTER 5 Storing and retrieving data
Preferences are stored as simple XML files in a specific path on the device per applica-
tion, as are other file resources you can create and read yourself. The filesystem, which
we also looked at in this chapter, is good for handling some levels of application-local
state and data persistence but not appropriate for more broad-reaching goals.

 After filesystem access, the next level of storage Android provides is a relational
database system based on SQLite. This system is lightweight, speedy, and very capable,
but again, as you saw here, it is intended only for local data persistence within a single
application. Beyond storing and retrieving data locally you can still use a database, but
you need to expose an interface through a Service (as we explained in chapter 4) or
a ContentProvider. Providers, which we covered in this chapter, expose data types
and operations through a URI-based approach.

 In this chapter we examined each of the data paths available to an Android appli-
cation. We did this by using several small, focused sample applications to utilize pref-
erences and the filesystem, and we looked at more of the WeatherReporter sample
application that we began in the last chapter. This Android application uses a SQLite
database to access and persist data.

 Expanding our Android horizons beyond data and beyond foundational concepts
we have already looked at in earlier chapters, such as views, intents, and services, we
will move on to general networking in the next chapter. There we will cover network-
ing basics and the networking APIs Android provides, and we will expand on the data
concepts we have covered here to include the network itself as a data source.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Networking
 and web services
Every mobile provider supports voice and data networks of one or more types. The
interesting part with an Android-enabled device is really the data network, along
with the power to link the data available on the network to interesting applications.
Those applications can then be built with the open Intent- and Service-based
approach you learned about in previous chapters. That approach combines built-in
(or custom) intents, such as fully capable web browsing, with access to hardware
components, such as a 3D graphics subsystem, a GPS receiver, a camera, removable
storage, and more. This combination of open platform, hardware capability, soft-
ware architecture, and access to network data makes Android so compelling.

This chapter covers:
■ Networking basics
■ Determining network status
■ Using the network to retrieve and store data
■ Working with web services
167

Licensed to Deborah Christiansen <pedbro@gmail.com>

168 CHAPTER 6 Networking and web services
 This is not to say that the voice network is not also important (and we will cover
telephony explicitly in chapter 7), but rather it is simply an admittance that voice is
almost a commodity, and data is where we will focus when talk about the network.

 In terms of the data network, Android provides access in several ways: mobile
Internet Protocol (IP) networks, Wi-Fi, and Bluetooth. Here we are going to concen-
trate on getting our Android applications to communicate using IP network data, with
several different approaches. We will cover a bit of networking background, and then
we will deal with Android specifics as we explore communication with the network
using sockets and higher-level protocols such as Hypertext Transfer Protocol (HTTP).

 Android provides a portion of the java.net package and the org.apache.http-
client package to support basic networking. Other related packages such as
android.net address internal networking details and general connectivity properties.
We will encounter all of these packages as we progress though networking scenarios in
this chapter.

 In terms of connectivity properties, we will look at using the ConnectivityManager
class to determine when the network connection is active and what type of connection
it is (mobile or Wi-Fi). From there we will make use of the network in various ways
with sample applications.

 One caveat to this networking chapter is that we won’t be digging into the details con-
cerning the Android Wi-Fi or Bluetooth APIs. Bluetooth is an important technology for
close-range wireless networking between devices, but the related Android APIs are not
yet finalized (even in the 1.0 SDK). Bluetooth is supported on Android devices, but in
a limited capacity at present, and is not available in the Android Emulator. Wi-Fi, on the
other hand, does have a good existing API but also doesn’t have an emulation layer.
Because the emulator doesn’t distinguish the type of network you are using and doesn’t
know anything about either Bluetooth or Wi-Fi, and because we think the importance
lies more in how you use the network, we are not going to cover these APIs. If you want
more information on the Wi-Fi APIs please see the Android documentation (http://
code.google.com/android/reference/android/net/wifi/package-summary.html).

 Getting back to what we will address here, the aptly named sample application for
this chapter, NetworkExplorer, will look at ways to communicate with the network in
Android and will include some handy utilities. Ultimately this application will have
multiple screens that exercise different networking techniques, as shown in figure 6.1.

 After we cover general IP networking with regard to Android, we will discuss turn-
ing the server side into a more robust API itself by using web services. On this topic we
will work with Plain Old XML over HTTP (POX) and Representational State Transfer
(REST). And, we will discuss the Simple Object Access Protocol (SOAP). We will
address the pros and cons of the various approaches and why you might want to
choose one method over another for an Android client.

 Before we delve into the details of networked Android applications, we will begin
with an overview of networking basics. If you are already well versed in general net-
working, you can certainly skip ahead to section 6.2, but it is important to have this
foundation if you think you need it, and we promise to keep it short.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/android/net/wifi/package-summary.html
http://code.google.com/android/reference/android/net/wifi/package-summary.html

169An overview of networking
6.1 An overview of networking
A group of interconnected computers is a network. Over time, networking has grown
from something that was once available only to governments and large organizations
to the almost ubiquitous and truly amazing internet. Though the concept is sim-
ple—allow computers to communicate—networking does involve some advanced
technology. We won’t get into great detail here, though we will cover the core tenets as
a background to the general networking we will do in the remainder of this chapter.

6.1.1 Networking basics

A large percentage of the time the APIs you will use to program Android applications
will abstract the underlying network details. This is good. The APIs and the network
protocols themselves are designed so that you can focus on your application and not
worry about routing and reliable packet delivery and so on.

Figure 6.1 The NetworkExplorer
application we will build to cover
networking topics
Licensed to Deborah Christiansen <pedbro@gmail.com>

170 CHAPTER 6 Networking and web services
 Nevertheless, it helps to have some understanding of the way a network works so
that you can better design and troubleshoot your applications. To that end, here we
are going to blaze through some general networking concepts, with a Transmission
Control Protocol/Internet Protocol (TCP/IP) bent. We will begin with nodes, layers,
and protocols.
NODES

The basic idea behind a network is that data is sent between connected devices with
particular addresses. Connections can be made over wire, over radio waves, and so on.
Each addressed device is known as a node. A node can be a mainframe, a PC, a fancy
toaster, or any other device with a network stack and connectivity, such as an Android-
enabled handheld.
LAYERS AND PROTOCOLS

Protocols are a predefined and agreed-upon set of rules for communication. Proto-
cols are often layered on top of one another because they handle different levels of
responsibility. For example, in the TCP/IP stack, which is used for the majority of web
traffic of all kinds and with Android, the main layers are:

■ The Link Layer (including physical device address resolution protocols such as
ARP and RARP and more)

■ The Internet Layer (including IP itself, which has multiple versions, and the
ping protocol, ICMP, among others)

■ The Transport Layer (where different types of delivery protocols such as TCP
and UDP are found)

■ The Application Layer (which includes familiar protocols such as HTTP, FTP,
SMTP, IMAP, POP, DNS, SSH, and SOAP)

Layers are an abstraction of the different levels of a network protocol stack. The low-
est level, the Link Layer, is concerned with physical devices and physical addresses.
The next level, the Internet Layer, is concerned with addressing and general data
details. After that, the Transport Layer is concerned with delivery details. And, finally,
the top-level Application Layer protocols, which make use of the stack beneath them,
are application specific for sending files or email or viewing web pages.
IP

IP is in charge of the addressing system and delivering data in small chunks known as
packets. Packets, known in IP terms as datagrams, define how much data can go in
each chunk, where the boundaries for payload versus header information are, and
the like. IP addresses tell where each packet is from (its source) and where it’s going
(its destination).

 IP addresses come in different sizes depending on the version of the protocol
being used, but by far the most common at present is the 32-bit address. 32-bit IP
addresses (IPv4) are typically written using a decimal notation that separates the 32
bits into four sections, each representing 8 bits (an octet), such as 74.125.45.100.

 Certain IP address classes have special roles and meaning. For example, 127 always
identifies a loopback or local address on every machine; this class does not communicate
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://code.google.com/apis/gdata/auth.html
http://code.google.com/apis/gdata/auth.html

171An overview of networking
with any other devices (it can be used internally, on a single machine only). Addresses
that begin with 10 or 192 are not routable, meaning they can communicate with other
devices on the same local network segment but cannot connect to other segments.
Every address on a particular network segment must be unique or collisions may occur
and it gets ugly.

 The routing of packets on an IP network—how packets traverse the network and
go from one segment to another—is handled by routers. Routers speak to each other
using IP addresses and other IP-related information.
TCP AND UDP

TCP and UDP are different types of delivery protocols that are commonly used with TCP/
IP. TCP is reliable, and UDP is fire and forget. What does this mean? It means that TCP
includes extra data to guarantee the order of packets and to send back an acknowledg-
ment once a packet is received (the common analogy is certified mail: the sender gets
a receipt that shows the letter was delivered and signed for and therefore knows the
recipient got the message). UDP, on the other hand, doesn’t provide any ordering or
acknowledgment (it’s more like a regular letter: it’s cheaper and faster to send, but you
basically hope the recipient gets it—you don’t know for sure).
APPLICATION PROTOCOLS

Once a packet is sent and delivered, an application takes over. To send an email mes-
sage, for example, SMTP defines a rigorous set of procedures that have to take place.
You have to say hello in a particular way and introduce yourself; then you have to sup-
ply from and to information, followed by a message body in a particular format. Simi-
larly, HTTP defines the set of rules for the internet—which methods are allowed (GET,
POST, PUT, DELETE) and how the overall request/response system works between a cli-
ent and a server.

 When working with Android, and Java-related APIs in general, you won’t typically
need to delve into the details of any of the lower-level protocols, but you may need to
know the major differences we have outlined here for troubleshooting, and you will
need to be well versed in IP addressing. In addition, you should also know a bit more
about clients and servers and how connections are established using ports.

6.1.2 Clients and servers

Anyone who has ever used a web browser is familiar with the client/server computing
model. Data, in one format or another, is stored on a centralized, powerful server. Cli-
ents then connect to that server using a designated protocol (such as HTTP) to
retrieve the data and work with it.

 This pattern is of course much older than the web, and it has been applied for
everything from completely dumb terminals connecting to mainframes to modern
desktop applications that connect to a server for only a portion of their purpose (such
as with iTunes, which is primarily a media organizer and player but also has a store
where customers can connect to the server to get new content). In any case, the con-
cept is the same: the client makes a type of request to the server and the server
responds. This is the same model that the majority of Android applications, at least
Licensed to Deborah Christiansen <pedbro@gmail.com>

172 CHAPTER 6 Networking and web services
those that use a server side at all, generally follow (Android applications typically end
up as the client).

 In order to handle many client requests, often for different purposes, coming in
nearly simultaneously to a single IP address, modern server operating systems use the
concept of ports. Ports are not physical; they are simply a representation of a particular
area of the computer’s memory. A server can “listen” on multiple designated ports at a
single address; for example, one port for sending email, one port for web traffic, two
ports for file transfer, and so on. Every computer with an IP address also supports a range
of thousands of ports to enable multiple “conversations” to happen at the same time.

 Ports are divided into three ranges:

■ Well Known Ports —0 through 1023
■ Registered Ports —1024 through 49151
■ Dynamic and/or Private Ports —49152 through 65535

The Well Known Ports are all published and are just that, well known. HTTP is port 80
(and HTTP Secure, or HTTPS, is port 443), FTP is ports 20 (control) and 21 (data),
SSH is port 22, SMTP is port 25, and so on.

 Beyond the Well Known Ports, the Registered Ports are still controlled and pub-
lished but for more specific purposes. Often these ports are used for a particular
application or company; for example, MySQL is port 3306 (by default). For a complete
list of Well Known and Registered Ports, see the ICANN port-numbers document:
http://www.iana.org/assignments/port-numbers.

 The Dynamic or Private Ports are intentionally unregistered because they are used
by the TCP/IP stack to facilitate communication. These ports are dynamically regis-
tered on each computer and used in the conversation. Dynamic port 49500, for exam-
ple, might be used to handle sending a request to a web server and dealing with the
response. Once the conversation is over, the port is reclaimed and can be reused,
locally, for any other data transfer.

 Clients and servers therefore communicate as nodes with addresses, using ports,
on a network that supports various protocols. The protocols involved with Android
are based on the IP network the platform is designed to participate in and involve the
TCP/IP family. Before we can build a full-on client/server Android application using
the network, we need to handle the prerequisite task of determining the state of
the connection.

6.2 Checking the network status
Android provides a host of utilities to determine the device configuration and
the status of various services, including the network. You will typically use the
ConnectivityManager class to determine whether there is network connectivity
and to get notifications of network changes. Listing 6.1, a portion of the main
Activity in the NetworkExplorer application, demonstrates basic usage of the
ConnectivityManager.

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.iana.org/assignments/port-numbers

173Communicating with a server socket
@Override
public void onStart() {
 super.onStart();

 ConnectivityManager cMgr = (ConnectivityManager)
 this.getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo netInfo = cMgr.getActiveNetworkInfo();
 this.status.setText(netInfo.toString());
}

This short and sweet example shows that you can get a handle to the Connectivity-
Manager through the context’s getSystemService method by passing the
CONNECTIVITY_SERVICE constant B. Once you have the manager, you can obtain net-
work information via the NetworkInfo
object C. The toString method of the
NetworkInfo object returns the output
shown in figure 6.2.

 Of course you won’t normally just
display the String output from Network-
Info, but this does give you a quick glance
at what is available. More often you will
use the isAvailable or isConnected
methods (which return a boolean value),
or you will directly query the NetworkInfo.State using the getState method.
NetworkInfo.State is an enum that defines the coarse state of the connection, the pos-
sible values are: CONNECTED, CONNECTING, DISCONNECTED, and DISCONNECTING. The
NetworkInfo object also provides access to more detailed information but you won’t
normally need more than the basic state (unless of course you have a special use case,
such as if you are writing a network state management application).

 Once you know that you are connected, either via mobile or Wi-Fi, you can use the
IP network. For the purposes of our NetworkExplorer application, we are going to
start with the most rudimentary IP connection, a raw socket, and work our way up to
HTTP and web services.

6.3 Communicating with a server socket
A server socket is a stream that you can read or write raw bytes to, at a specified IP
address and port. This lets you deal with data and not worry about media types, packet
sizes, and so on. This is yet another network abstraction intended to make the job of
the programmer a bit easier. The philosophy that sockets take on, that everything
should look like file I/O to the developer, comes from the POSIX family of standards
and has been adopted by most major operating systems in use today.

 We will move on to higher levels of network communication in a bit, but first we
will start with a raw socket. For that we need a server listening on a particular port.
The EchoServer code shown in listing 6.2 fits the bill. This isn’t an Android-specific

Listing 6.1 The onStart method of the NetworkExplorer main Activity

Obtain manager
from Context

B

C
Get
NetworkInfo

Figure 6.2 The output of the NetworkInfo
toString method.
Licensed to Deborah Christiansen <pedbro@gmail.com>

174 CHAPTER 6 Networking and web services
class; rather it’s just an oversimplified server that can run on any host machine with
Java. We’ll later connect to it from an Android client.

public final class EchoServer extends Thread {

 private static final int PORT = 8889;

 private EchoServer() {}

 public static void main(String args[]) {
 EchoServer echoServer = new EchoServer();
 if (echoServer != null) {
 echoServer.start();
 }
 }

 public void run() {
 try {
 ServerSocket server = new ServerSocket(PORT, 1);

 while (true) {
 Socket client = server.accept();
 System.out.println("Client connected");

 while (true) {

 BufferedReader reader =
 new BufferedReader(new InputStreamReader(
 client.getInputStream()));
 System.out.println("Read from client");
 String textLine = reader.readLine() + "\n";

 if (textLine.equalsIgnoreCase("EXIT\n")) {
 System.out.println("EXIT invoked, closing client");
 break;
 }

 BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(
 client.getOutputStream()));
 System.out.println("Echo input to client");
 writer.write("ECHO from server: "
 + textLine, 0, textLine.length() + 18);
 writer.flush();
 }
 client.close();
 }
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

The EchoServer class we are using is fairly basic Java I/O. It extends Thread and
implements run B, so that each client that connects can be handled in its own con-
text. Then we use a ServerSocket C to listen on a defined port. Each client is then

Listing 6.2 A simple echo server for demonstrating socket usage

Implement
run to start

B

Use
java.net.ServerSocket

C

D
Use java.net.Socket
for each client

Read input with
BufferedReader

E

FEXIT, break the loop

G
Send echo with
BufferedWriter
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/apis/gdata/
http://code.google.com/apis/gdata/

175Communicating with a server socket
an implementation of a Socket D. The client input is fed into a BufferedReader
that each line is read from E. The only special consideration this simple server has
is that if the input is EXIT, it breaks the loops and exits F. If the input does not
prompt an exit, the server echoes the input back to the client’s OuputStream with a
BufferedWriter G.

 This is a good, albeit intentionally very basic, representation of what a server does.
It handles input, usually in a separate thread, then responds to the client based on the
input. To try out this server before using Android, you can telnet to the specified port
(after the server is running, of course) and type some input; if all is well it will echo
the output.

 To run the server you need to invoke it locally with Java. It has a main method, so it
will run on its own; start it from the command line or from your IDE. Be aware that
when you connect to a server from the emulator, this or any other, you need to con-
nect to the IP address of the host you run the server process on, not the loopback
(not 127.0.0.1). The emulator thinks of itself as 127.0.0.1, so use the non-loopback
address of the server host when you attempt to connect from Android. (You can find
out the IP address of the machine you are on from the command line by entering
ifconfig on Linux or Mac and ipconfig on Windows.)

 The client portion of this example is where NetworkExplorer itself begins, with the
callSocket method of the SimpleSocket Activity shown in listing 6.3.

public class SimpleSocket extends Activity {

 . . . View variable declarations omitted for brevity

 @Override
 public void onCreate(final Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.simple_socket);

 . . . View inflation omitted for brevity

 this.socketButton.setOnClickListener(new OnClickListener() {

 public void onClick(final View v) {
 socketOutput.setText("");
 String output = callSocket(
 ipAddress.getText().toString(),
 port.getText().toString(),
 socketInput.getText().toString());
 socketOutput.setText(output);
 }
 });
 }

 private String callSocket(String ip, String port, String socketData) {
 Socket socket = null;
 BufferedWriter writer = null;
 BufferedReader reader = null;
 String output = null;

Listing 6.3 An Android client invoking a raw socket server resource, the echo server

Use callSocket
method

B

C Set view output
Licensed to Deborah Christiansen <pedbro@gmail.com>

176 CHAPTER 6 Networking and web services
 try {
 socket = new Socket(ip, Integer.parseInt(port));
 writer = new BufferedWriter(
 new OutputStreamWriter(
 socket.getOutputStream()));
 reader = new BufferedReader(
 new InputStreamReader(
 socket.getInputStream()));

 String input = socketData;
 writer.write(input + "\n", 0, input.length() + 1);
 writer.flush();

 output = reader.readLine();
 this.socketOutput.setText(output);

 // send EXIT and close
 writer.write("EXIT\n", 0, 5);
 writer.flush();

 . . . catches and reader, writer, and socket closes omitted for brevity
 . . . onCreate omitted for brevity

 return output;
 }

Here we use the onCreate method to call a private helper callSocket method B
and set the output to a TextView C. Within the callSocket method we create a
Socket to represent the client side of our connection D, and we establish a writer
for the input E and a reader for the output F. With the housekeeping taken care
of, we then write to the socket G, which communicates with the server, and get the
output value to return H.

 A socket is probably the lowest-level networking usage in Android you will encoun-
ter. Using a raw socket, while abstracted a great deal, still leaves many of the details up
to you (especially server-side details, threading, and queuing). Although you may run
up against situations in which either you have to use a raw socket (the server side is
already built) or you elect to use one for one reason or another, higher-level solutions
such as leveraging HTTP normally have decided advantages.

6.4 Working with HTTP
As we discussed in the previous section, you can use a raw socket to transfer IP data to
and from a server with Android. This is an important approach to be aware of so that
you know you have that option and so that you understand a bit about the underlying
details. Nevertheless, you may want to avoid this technique where possible and instead
take advantage of existing server products to send your data. The most common way
to do this is to use a web server and leverage HTTP.

 Here we are going to take a look at making HTTP requests from an Android client
and sending them to an HTTP server. We will let the HTTP server handle all the socket
details, and we will focus on our client Android application.

 The HTTP protocol itself is fairly involved. If you are unfamiliar with it and or want
the complete details, they are readily available via RFCs (such as for version 1.1:

D
Create client
Socket

Establish BufferedWriter for inputE

Establish BufferedReader for outputF

G
Write to
socket

H
Get socket
output
Licensed to Deborah Christiansen <pedbro@gmail.com>

177Working with HTTP
http://www.w3.org/Protocols/rfc2616/rfc2616.html). The short story is that the pro-
tocol is stateless and involves several different methods that allow users to make
requests to servers, and those servers return responses. The entire web is, of course,
based on HTTP. Beyond the most basic concepts, there are ways to pass data into and
out of requests and responses and to authenticate with servers. Here we are going to
use some of the most common methods and concepts to talk to network resources
from Android applications.

 To begin we will retrieve data using HTTP GET requests to a simple HTML page
using the standard java.net API. From there we will look at using the Android-included
Apache HttpClient API. After we use HttpClient directly to get a feel for it, we will also
make a helper class, HttpRequestHelper, that we can use to simplify the process and
encapsulate the details. This class—and the Apache networking API in general—has a
few advantages over rolling your own networking with java.net, as we shall see. Once
the helper class is in place, we will use it to make additional HTTP and HTTPS
requests, both GET and POST, and we will look at basic authentication.

 Our first HTTP request will be an HTTP GET call using a HttpUrlConnection.

6.4.1 Simple HTTP and java.net

The most basic HTTP request method is a GET. In this type of request any data that is sent
is embedded in the URL using the query string. The next class in our NetworkExplorer
application, which is shown in listing 6.4, has an Activity that demonstrates this.

public class SimpleGet extends Activity {

 . . . other portions of onCreate omitted for brevity

 this.getButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 getOutput.setText("");
 String output =
 getHttpResponse(getInput.getText().toString());
 if (output != null) {
 getOutput.setText(output);
 }
 }
 });
 };
 . . .

 private String getHttpResponse(String location) {
 String result = null;
 URL url = null;

 try {
 url = new URL(location);
 } catch (MalformedURLException e) {
 // log and or handle
 }

Listing 6.4 The SimpleGet Activity showing java.net.UrlConnection

B

Invoke
getHttpResponse

method

Construct URL
object

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.w3.org/Protocols/rfc2616/rfc2616.html

178 CHAPTER 6 Networking and web services
 if (url != null) {
 try {
 HttpURLConnection urlConn =
 (HttpURLConnection) url.openConnection();
 BufferedReader in =
 new BufferedReader(
 new InputStreamReader(
 urlConn.getInputStream()));
 String inputLine;

 int lineCount = 0; // limit lines for example
 while ((lineCount < 10)
 && ((inputLine = in.readLine()) != null)) {
 lineCount++;
 result += "\n" + inputLine;
 }

 in.close();
 urlConn.disconnect();

 } catch (IOException e) {
 // log and or handle
 }
 } else {
 // log and or handle
 }
 return result;
 }
}

In order to get an HTTP response and show the first few lines of it in our SimpleGet
class, we are calling a getHttpResponse method that we have built B. Within this
method we construct a java.net.URL object C, which takes care of many of the details
for us, and then we open a connection to a server using an HttpURLConnection D.

 We then use a BufferedReader E to read data from the connection one line at a
time F. Keep in mind that as we are doing this, we are using the same thread as the UI
and therefore blocking the UI. This isn’t a good idea. We are doing this here only to
demonstrate the network operation; we will explain more about how to use a separate
thread for this shortly. Once we have the data, we append it to the result String that
our method returns G, and we close the reader and the connection H. Using the
plain and simple java.net support that has been ported to Android this way provides
quick and dirty access to HTTP network resources.

 Communicating with HTTP this way is fairly easy, but it can quickly get cumber-
some when you need to do more than just retrieve simple data, and, as noted, the
blocking nature of the call is bad form. We could get around some of the problems
with this approach on our own by spawning separate threads and keeping track of
them and by writing our own small framework/API structure around that concept for
each HTTP request, but we don’t have to. Fortunately, Android provides another set of
APIs in the form of the Apache HttpClient library that abstract the java.net classes fur-
ther and that are designed to offer more robust HTTP support and help handle the
separate-thread issue.

Open
connection using
HttpURLConnection

D

Create BufferedReader
for output

E

Read dataF

Append to resultG

Close reader
and connection

H

Licensed to Deborah Christiansen <pedbro@gmail.com>

179Working with HTTP
6.4.2 Robust HTTP with HttpClient

To get started with HttpClient we are going to look at using core classes to perform
HTTP GET and POST method requests. Here we will concentrate on making network
requests in a Thread separate from the UI, using a combination of the Apache
ResponseHandler and Android Handler (for different but related purposes, as we
shall see). Listing 6.5 shows our first example of using the HttpClient API.

. . . .

private final Handler handler = new Handler() {
 public void handleMessage(Message msg) {
 progressDialog.dismiss();
 String bundleResult =
 msg.getData().getString("RESPONSE");
 output.setText(bundleResult);
 }
 };

. . . onCreate omitted for brevity

private void performRequest() {
 final ResponseHandler<String> responseHandler =
 new ResponseHandler<String>() {
 public String handleResponse(HttpResponse response) {
 StatusLine status = response.getStatusLine();
 HttpEntity entity = response.getEntity();
 String result = null;
 try {
 result = StringUtils.inputStreamToString(
 entity.getContent());
 Message message = handler.obtainMessage();
 Bundle bundle = new Bundle();
 bundle.putString("RESPONSE", result);
 message.setData(bundle);
 handler.sendMessage(message);
 } catch (IOException e) {
 // log and or handle
 }
 return result;
 }
 };

 this.progressDialog =
 ProgressDialog.show(this, "working . . .",
 "performing HTTP request");

 new Thread() {
 public void run() {
 try {
 DefaultHttpClient client = new DefaultHttpClient();
 HttpGet httpMethod =
 new HttpGet(
 urlChooser.getSelectedItem().toString());

Listing 6.5 Apache HttpClient with Android Handler and Apache ResponseHandler

Create Android
Handler

B

Use Handler
to update UI

C

Create
ResponseHandler
for asynchronous
HTTP

D

E

Implement
onResponse

callback

F
Get HTTP response
payload

Use a separate
Thread for HTTP call

Create
HttpGet
object
Licensed to Deborah Christiansen <pedbro@gmail.com>

180 CHAPTER 6 Networking and web services
 client.execute(
 httpMethod, responseHandler);
 } catch (ClientProtocolException e) {
 // log and or handle
 } catch (IOException e) {
 // log and or handle
 }
 }
 }.start();
 }

The first thing we do in our initial HttpClient example is create a Handler that we can
send messages to from other threads B. This is the same technique we have used in
previous examples, and it is used to allow background tasks to send Message objects to
hook back into the main UI thread C. After we create an Android Handler, we also cre-
ate an Apache ResponseHandler D. This class can be used with HttpClient HTTP
requests to pass in as a callback point. When an HTTP request that is fired by HttpCli-
ent completes, it will call the onResponse method (if a ResponseHandler is used) E.
When the response does come in, we then get the payload using the HttpEntity the
API returns F. This in effect allows the HTTP call to be made in an asynchronous man-
ner—we don’t have to block and wait the entire time between when the request is fired
and when it completes. The relationship of the request, response, Handler, Response-
Handler, and separate threads is diagrammed in figure 6.3.

 Now that you have seen HttpClient at work and understand the basic approach,
the next thing we will do is encapsulate a few of the details into a convenient helper
class so that we can call it over and over without having to repeat a lot of the setup.

Execute HTTP
with HttpClient

Apache HttpClient

execute(method, responseHandler)
HTTP request

HTTP response

HTTP
server

Apache ResponseHandler

handleResponse(httpResponse)

Android Handler

sendMessage(message)
onMessage(message)

Non UI Thread - network request

UI Thread - UI updates Figure 6.3 HttpClient,
ResponseHandler, and Android
Handler relationship diagram
Licensed to Deborah Christiansen <pedbro@gmail.com>

181Working with HTTP
6.4.3 Creating an HTTP and HTTPS helper

The next Activity in our NetworkExplorer application, which is shown in listing 6.6,
is a lot more straightforward and pure Android focused than our other HTTP-related
classes up to this point. This is made possible by the helper class we mentioned previ-
ously, which hides some of the complexity (we will examine the helper class itself after
we look at this first class that uses it).

public class ApacheHTTPViaHelper extends Activity {

 . . . other member variables omitted for brevity

 private final Handler handler = new Handler() {
 public void handleMessage(Message msg) {
 progressDialog.dismiss();
 String bundleResult = msg.getData().getString("RESPONSE");
 output.setText(bundleResult);
 }
 };

 @Override
 public void onCreate(final Bundle icicle) {
 super.onCreate(icicle);

 . . . view inflation and setup omitted for brevity

 this.button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 output.setText("");
 performRequest(
 urlChooser.getSelectedItem().toString());
 }
 });
 };

 . . . onPause omitted for brevity

 private void performRequest(String url) {

 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(
 this.handler);

 this.progressDialog =
 ProgressDialog.show(this, "working . . .",
 "performing HTTP request");

 new Thread() {
 public void run() {
 HTTPRequestHelper helper = new
 HTTPRequestHelper(responseHandler);
 helper.performGet(url, null, null, null);
 }
 }.start();
 }
}

Listing 6.6 Using Apache HttpClient via a custom HttpRequestHelper

Create a
Handler

B

C
Update UI
from Handler

Call local
performRequest

D

Get ResponseHandler
from RequestHelper

E

Instantiate RequestHelper
with ResponseHandler

F

G
Perform HTTP
via helper
Licensed to Deborah Christiansen <pedbro@gmail.com>

182 CHAPTER 6 Networking and web services
First in this class we create another Handler B, and from within it we simply update a
UI TextView based on data in the Message C. Further in the code, in the onCreate
method, we call a local performRequest method when the “go” button is clicked, and
we pass a selected String representing a URL D.

 Inside the performRequest method we use a static convenience method to return an
HttpClient ResponseHandler, passing in our Android Handler, which it will use E. We
will examine the helper class next to get a look at exactly how this works, but the impor-
tant part for now is that the ResponseHandler is created for us by the static method. With
the ResponseHandler instance taken care of, we instantiate an HttpRequestHelper
instance F and use it to make a simple HTTP GET call (passing in only the String
URL) G. Similar to our previous example, when the request completes, the Response-
Handler will fire the onResponse method, and therein our Handler will be sent a Mes-
sage completing the process.

 The example Activity in listing 6.6 is fairly clean and simple, and it’s asynchro-
nous and doesn’t block the UI thread. The heavy lifting is taken care of by HttpClient
itself and by the setup our custom HttpRequestHelper makes possible. The first part
of the all-important HttpRequestHelper, which we will explore in three sections, is
shown in listing 6.7.

public class HTTPRequestHelper {

 private static final int POST_TYPE = 1;
 private static final int GET_TYPE = 2;
 private static final String CONTENT_TYPE = "Content-Type";
 public static final String MIME_FORM_ENCODED =
 "application/x-www-form-urlencoded";
 public static final String MIME_TEXT_PLAIN = "text/plain";

 private final ResponseHandler<String> responseHandler;

 public HTTPRequestHelper(ResponseHandler<String> responseHandler) {
 this.responseHandler = responseHandler;
 }

 public void performGet(String url, String user, String pass,
 final Map<String, String> additionalHeaders) {
 performRequest(null, url, user, pass,
 additionalHeaders, null, HTTPRequestHelper.GET_TYPE);
 }

 public void performPost(String contentType, String url,
 String user, String pass,
 Map<String, String> additionalHeaders,
 Map<String, String> params) {
 performRequest(contentType, url, user, pass,
 additionalHeaders, params, HTTPRequestHelper.POST_TYPE);
 }

 public void performPost(String url, String user, String pass,
 Map<String, String> additionalHeaders,

Listing 6.7 The first part of the HttpRequestHelper class

Require
ResponseHandler

to construct

B

C

Provide
simple GET
method

Provide simple
POST methods

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

183Working with HTTP
 Map<String, String> params) {
 performRequest(HTTPRequestHelper.MIME_FORM_ENCODED,
 url, user, pass,
 additionalHeaders, params, HTTPRequestHelper.POST_TYPE);
 }

 private void performRequest(
 String contentType,
 String url,
 String user,
 String pass,
 Map<String, String> headers,
 Map<String, String> params,
 int requestType) {

 DefaultHttpClient client = new DefaultHttpClient();

 if ((user != null) && (pass != null)) {
 client.getCredentialsProvider().setCredentials(
 AuthScope.ANY,
 new UsernamePasswordCredentials(user, pass));
 }

 final Map<String, String> sendHeaders =
 new HashMap<String, String>();
 if ((headers != null) && (headers.size() > 0)) {
 sendHeaders.putAll(headers);
 }
 if (requestType == HTTPRequestHelper.POST_TYPE) {
 sendHeaders.put(HTTPRequestHelper.CONTENT_TYPE, contentType);
 }
 if (sendHeaders.size() > 0) {
 client.addRequestInterceptor(
 new HttpRequestInterceptor() {
 public void process(
 final HttpRequest request, final HttpContext context)
 throws HttpException, IOException {
 for (String key : sendHeaders.keySet()) {
 if (!request.containsHeader(key)) {
 request.addHeader(key,
 sendHeaders.get(key));
 }
 }
 }
 });
 }

 . . . POST and GET execution in listing 6.8
 }

The first thing of note in the HttpRequestHelper class is that a ResponseHandler is
required to be passed in as part of the constructor B. This ResponseHandler will be
used when the HttpClient request is ultimately invoked. After the constructor, we see
a public HTTP GET-related method C and several different public HTTP POST-related
methods D. Each of these methods is a wrapper around the private performRequest
method that can handle all the HTTP options E. The performRequest method

D
Provide simple
POST methods

Handle combinations
in private method

E
Instantiate
DefaultHttpClient

F

Add credentials
if needed

G

Use Interceptor for
request headers

H

Licensed to Deborah Christiansen <pedbro@gmail.com>

184 CHAPTER 6 Networking and web services
supports a content-type header value, URL, username, password, Map of additional
headers, similar Map of request parameters, and request method type.

 Inside the performRequest method a DefaultHttpClient is instantiated F. Next,
we check to see if the user and pass method parameters are present, and if so we set
the request credentials with a UsernamePasswordCredentials type (HttpClient sup-
ports several types of credentials, see the Javadocs for details) G. At the same time we
set the credentials, we also set an AuthScope. The scope represents which server, port,
authentication realm, and authentication scheme the credentials supplied are appli-
cable for.

 You can set these as fine or coarse grained as you want; we are using the default
ANY scope that matches anything. What we notably have not set in all of this is the spe-
cific authentication scheme to use. HttpClient supports various schemes, including
basic authentication, digest authentication, and a Windows-specific NTLM scheme.
Basic authentication, meaning simple username/password challenge from the server,
is the default. (Also, if you need to, you can use a preemptive form login for form-
based authentication—just submit the form you need and get the token or session ID
and so on.)

 After the security is out of the way, we use an HttpRequestInterceptor to add
HTTP headers H. Headers are name/value pairs, so this is pretty easy. Once we have
all of these properties that apply regardless of our request method type, we then add
further settings that are specific to the method. Listing 6.8, the second part of our
helper class, shows the POST- and GET-specific settings and the execute method.

 . . .

 if (requestType == HTTPRequestHelper.POST_TYPE) {
 HttpPost method = new HttpPost(url);
 List<NameValuePair> nvps = null;
 if ((params != null) && (params.size() > 0)) {
 nvps = new ArrayList<NameValuePair>();
 for (String key : params.keySet()) {
 nvps.add(new BasicNameValuePair(key,
 params.get(key)));
 }
 }
 if (nvps != null) {
 try {
 method.setEntity(
 new UrlEncodedFormEntity(nvps, HTTP.UTF_8));
 } catch (UnsupportedEncodingException e) {
 // log and or handle
 }
 }
 execute(client, method);

 } else if (requestType == HTTPRequestHelper.GET_TYPE) {
 HttpGet method = new HttpGet(url);
 execute(client, method);

Listing 6.8 The second part of the HttpRequestHelper class

Handle POST
requests

B

C
Create HttpPost
object

D
Add name/value
parameters

Call execute
method

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

185Working with HTTP
 }

 . . .

 private void execute(HttpClient client, HttpRequestBase method) {
 BasicHttpResponse errorResponse =
 new BasicHttpResponse(
 new ProtocolVersion("HTTP_ERROR", 1, 1),
 500, "ERROR");
 try {
 client.execute(method, this.responseHandler);
 } catch (Exception e) {
 errorResponse.setReasonPhrase(e.getMessage());
 try {
 this.responseHandler.handleResponse(errorResponse);
 } catch (Exception ex) {
 // log and or handle
 }
 }
 }

When the specified request is a POST type B, we create an HttpPost object to deal
with it C. Then we add POST request parameters, which are another set of name/
value pairs and are built with the BasicNameValuePair object D. After adding the
parameters we are ready to perform the request, which we do with our local private
execute method using the method object and the client E.

 Our execute method sets up an error response handler (we want to return a
response, error or not, so we set this up in case) F and wraps the HttpClient execute
method, which requires a method object (either POST or GET in our case, preestab-
lished) and a ResponseHandler as input G. If we don’t get an exception when we
invoke HttpClient execute, all is well and the response details are placed into the
ResponseHandler. If we do get an exception, we populate the error handler and pass
it through to the ResponseHandler.

 We call the local private execute method with the established details for either a
POST or a GET request. The GET method is handled similarly to the POST, but we don’t
set parameters (with GET requests we expect parameters encoded in the URL itself).
Right now our class supports only POST and GET (which cover 98 percent of the
requests we generally need), but it certainly could be easily expanded to support
other HTTP method types.

 The final part of the request helper class, shown in listing 6.9, takes us back to the
first example that used the helper, as it outlines exactly what the convenience getRe-
sponseHandlerInstance method returns (constructing our helper requires a Respon-
seHandler, and this method returns a default one).

 public static ResponseHandler<String>
 getResponseHandlerInstance(final Handler handler) {
 final ResponseHandler<String> responseHandler =
 new ResponseHandler<String>() {

Listing 6.9 The final part of the HttpRequestHelper class

Set up an
error handler

F

G
Call HttpClient
execute

B
Require Handler
parameter
Licensed to Deborah Christiansen <pedbro@gmail.com>

186 CHAPTER 6 Networking and web services
 public String handleResponse(final HttpResponse response) {
 Message message = handler.obtainMessage();
 Bundle bundle = new Bundle();
 StatusLine status = response.getStatusLine();
 HttpEntity entity = response.getEntity();
 String result = null;
 if (entity != null) {
 try {
 result = StringUtils.inputStreamToString(
 entity.getContent());
 bundle.putString(
 "RESPONSE", result);
 message.setData(bundle);
 handler.sendMessage(message);
 } catch (IOException e) {
 bundle.putString("
 RESPONSE", "Error - " + e.getMessage());
 message.setData(bundle);
 handler.sendMessage(message);
 }
 } else {
 bundle.putString("RESPONSE", "Error - "
 + response.getStatusLine().getReasonPhrase());
 message.setData(bundle);
 handler.sendMessage(message);
 }
 return result;
 }
 };
 return responseHandler;
 }
}

As we discuss the getResponseHandlerInstance method of our helper, we should
note that although we find it helpful, it’s entirely optional. You can still make use of
the helper class without using this method. To do so, construct your own Response-
Handler and pass it in to the helper constructor—which is a perfectly plausible case.
The getResponseHandlerInstance method builds a convenient default Response-
Handler that hooks in a Handler via a parameter B and parses the response as a
String C. The response String is sent back to the caller using the Handler Bundle
and Message pattern we have seen used time and time again to pass messages between
threads in our Android screens.

 With the gory HttpRequestHelper details out of the way, and having already
explored basic usage, we will next turn to more involved uses of this class in the con-
text of web service calls.

6.5 Web services
The term web services means many different things depending on the source and the
audience. To some it’s a nebulous marketing term that is never pinned down; to oth-
ers it’s a very rigid and specific set of protocols and standards. We are going to tackle it

Get response
content as String

C

Put result value into Bundle

Set Bundle as data
into Message

Send Message
via Handler
Licensed to Deborah Christiansen <pedbro@gmail.com>

187Web services
as a general concept, without defining it to death, but not leaving it entirely unde-
fined either.

 Web services is a means of exposing an API over a technology-neutral network end-
point. It’s a means to call a remote method or operation not tied to a specific platform
or vendor and get a result. By this definition POX over the network POX is included,
so is REST, and so is SOAP—and really so is any other method of exposing operations
and data on the wire in a neutral manner.

 POX, REST, and SOAP are by far the most common web services around, so they are
where we will focus in this section. Each provides a general guideline for accessing
data and exposing operations, each in a more rigorous manner than the previous,
respectively. POX basically exposes chunks of XML over the wire, usually over HTTP.
REST is a bit more detailed in that it uses the concept of resources to define data and
then manipulates them with different HTTP methods using a URL-style approach
(much like the Android Intent system in general, which we have explored in previous
chapters). SOAP is the most formal of them all, imposing strict rules about types of
data, transport mechanisms, and security.

 All of these approaches have advantages
and disadvantages, and these differences are
amplified on a mobile platform like Android.
Though we can’t possibly cover all the details
here, we will touch on the differences as we
discuss each of these concepts. We will exam-
ine the use of a POX approach to return
recent posts from the del.icio.us API, and we
will then look at using REST with the Google
Data AtomPub API. Up first is what is proba-
bly the most ubiquitous type of web service in
use on the internet today, and therefore one
you will come across again and again when
connecting Android applications—POX.

6.5.1 POX—Putting it together
with HTTP and XML

To work with POX we are going to make net-
work calls to the popular del.icio.us online
social bookmarking site. We will specify a
username and password to log in to an
HTTPS resource and return a list of recent
posts, or bookmarks. This service returns raw
XML data, and we will then parse it into a Jav-
aBean-style class and display it as shown in
figure 6.4.

Figure 6.4 The del.icio.us recent posts
screen from the NetworkExplorer application
Licensed to Deborah Christiansen <pedbro@gmail.com>

188 CHAPTER 6 Networking and web services
 Listing 6.10 shows the del.icio.us login and HTTPS POST Activity code from our
NetworkExplorer application.

public class DeliciousRecentPosts extends Activity {

 private static final String CLASSTAG =
DeliciousRecentPosts.class.getSimpleName();

 private static final String URL_GET_POSTS_RECENT =
 "https://api.del.icio.us/v1/posts/recent?";

 . . . member var declarations for user, pass, output,
 and button (Views) omitted for brevity,

 private final Handler handler = new Handler() {
 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 String bundleResult = msg.getData().getString("RESPONSE");
 output.setText(parseXMLResult(bundleResult));
 }
 };

 @Override
 public void onCreate(final Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.delicious_posts);

 . . . inflate views omitted for brevity

 this.button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 output.setText("");
 performRequest(user.getText().toString(),
 pass.getText().toString());
 }
 });
 };

 . . . onPause omitted for brevity

 private void performRequest(String user, String pass) {
 this.progressDialog = ProgressDialog.show(this,
 "working . . .", "performing HTTP post to del.icio.us");

 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(this.handler);

 new Thread() {
 public void run() {
 HTTPRequestHelper helper =
 new HTTPRequestHelper(responseHandler);
 helper.performPost(URL_GET_POSTS_RECENT,
 user, pass, null, null);
 }
 }.start();
 }

 private String parseXMLResult(String xmlString) {
 StringBuilder result = new StringBuilder();

Listing 6.10 The del.icio.us HTTPS POX API with authentication from an Activity

Include
del.icio.us URL

B

Provide Handler
to update UI

C

D

Call local performRequest
with user and passttpClient
execute

Use helper
for HTTP

E

Parse XML
String result

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

189Web services
 try {

 SAXParserFactory spf = SAXParserFactory.newInstance();
 SAXParser sp = spf.newSAXParser();
 XMLReader xr = sp.getXMLReader();
 DeliciousHandler handler = new DeliciousHandler();
 xr.setContentHandler(handler);
 xr.parse(new InputSource(new StringReader(xmlString)));

 List<DeliciousPost> posts = handler.getPosts();
 for (DeliciousPost p : posts) {
 result.append("\n" + p.getHref());
 }
 } catch (Exception e) {
 // log and or handle
 }
 return result.toString();
 }

To utilize a POX service we need to know a little bit about it, beginning with the URL
endpoint B. To call the del.icio.us service we will again use a Handler to update the
UI C, and we will use the HttpRequestHelper we previously built and walked through
in the last section. In this example we again have many fewer lines of code than if we
did not use the helper (lines of code we would likely be repeating in different Activ-
ity classes). With the helper instantiated we call the performRequest method with a
username and password D. This method, via the helper, will log in to del.icio.us and
return an XML chunk representing the most recently bookmarked items E. To turn
the raw XML into useful types we then also include a parseXMLResult method F.
Parsing XML is a subject in its own right, and therefore we will cover it in more detail
in chapter 13, but the short takeaway with this method is that we walk the XML struc-
ture with a parser and return our own DeliciousPost data beans for each record.
That’s it—that’s using POX to read data over HTTPS.

 Building on the addition of XML to HTTP, above and beyond POX, is the REST
architectural principle, which we will explore next.

6.5.2 REST

While we look at REST, we will also try to pull in another useful concept in terms of
Android development: working with the various Google Data APIs (http://
code.google.com/apis/gdata/). We used the GDATA APIs for our RestaurantFinder
review information in chapter 3, but there we didn’t authenticate, and we didn’t get
into the details of networking or REST. Here we will uncover the details as we perform
two distinct tasks: authenticate and retrieve a Google ClientLogin token and retrieve
the Google Contacts data for a specified user. Keep in mind that as we work with the
GDATA APIs in any capacity, we will be using a REST-style API.

 The main concepts with REST are that you specify resources in a URI form and you
use different protocol methods to perform different actions. The Atom Publishing
Protocol (AtomPub) defines a REST-style protocol, and the GDATA APIs are an imple-
mentation of AtomPub (with some Google extensions). As noted, the entire Intent
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/apis/gdata/
http://code.google.com/apis/gdata/

190 CHAPTER 6 Networking and web services
approach of the Android platform is a lot like REST. A URI such as content://
contacts/1 is in the REST style. It includes a path that identifies the type of data and a
particular resource (contact number 1).

 That URI does not say what to do with contact 1, however. In REST terms that’s
where the method of the protocol comes into the picture. For HTTP purposes REST
utilizes various methods to perform different tasks: POST (create, update, or in special
cases delete), GET (read), PUT (create, replace), and DELETE (delete). True HTTP REST
implementations use all the HTTP method types and resources to construct APIs.

 In the real world you will find very few true REST implementations. It is much more
common to see a REST-style API. That means an API that doesn’t typically use the HTTP
DELETE method (many servers, proxies, and so on have trouble with DELETE) and over-
loads the more common GET and POST methods with different URLs for different tasks
(by encoding a bit about what is to be done in the URL, or as a header or parameter,
rather than relying strictly on the method). In fact, though many people refer to the
GDATA APIs as REST, they are technically only REST-like, not true REST. That’s not nec-
essarily a bad thing; the idea is ease of use of the API rather than pattern purity. All in
all, REST is a very popular architecture or style, because it’s easy yet powerful.

 Listing 6.11 is a quick example that focuses on the network aspects of authentica-
tion with GDATA to obtain a ClientLogin token and using that token with a subse-
quent REST-style request to obtain Contacts data by including an email address as a
resource.

public class GoogleClientLogin extends Activity {

 private static final String URL_GET_GTOKEN =
 "https://www.google.com/accounts/ClientLogin";
 private static final String URL_GET_CONTACTS_PREFIX =
 "http://www.google.com/m8/feeds/contacts/";
 private static final String URL_GET_CONTACTS_SUFFIX = "/full";
 private static final String GTOKEN_AUTH_HEADER_NAME = "Authorization";
 private static final String GTOKEN_AUTH_HEADER_VALUE_PREFIX =
 "GoogleLogin auth=";
 private static final String PARAM_ACCOUNT_TYPE = "accountType";
 private static final String PARAM_ACCOUNT_TYPE_VALUE =
 "HOSTED_OR_GOOGLE";
 private static final String PARAM_EMAIL = "Email";
 private static final String PARAM_PASSWD = "Passwd";
 private static final String PARAM_SERVICE = "service";
 private static final String PARAM_SERVICE_VALUE = "cp";
 private static final String PARAM_SOURCE = "source";
 private static final String PARAM_SOURCE_VALUE =
 "manning-unlockingAndroid-1.0";

 private String tokenValue;

 . . . View member declarations omitted for brevity

 private final Handler tokenHandler = new Handler() {

Listing 6.11 Using the Google Contacts AtomPub API with authentication

Create Handler
token request

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

191Web services
 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 String bundleResult = msg.getData().getString("RESPONSE");
 String authToken = bundleResult;
 authToken = authToken.substring(authToken.indexOf("Auth=")
 + 5, authToken.length()).trim();
 tokenValue = authToken;
 GtokenText.setText(authToken);
 }
 };

 private final Handler contactsHandler =
 new Handler() {
 public void handleMessage(final Message msg) {
 progressDialog.dismiss();
 String bundleResult = msg.getData().getString("RESPONSE");
 output.setText(bundleResult);
 }
 };

 . . . onCreate and onPause omitted for brevity

 private void getToken(String email, String pass) {
 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(
 this.tokenHandler);

 this.progressDialog = ProgressDialog.show(this,
 "working . . .", "getting Google ClientLogin token");

 new Thread() {
 public void run() {
 HashMap<String, String> params =
 new HashMap<String, String>();
 params.put(GoogleClientLogin.PARAM_ACCOUNT_TYPE,
 GoogleClientLogin.PARAM_ACCOUNT_TYPE_VALUE);
 params.put(GoogleClientLogin.PARAM_EMAIL, email);
 params.put(GoogleClientLogin.PARAM_PASSWD, pass);
 params.put(GoogleClientLogin.PARAM_SERVICE,
 GoogleClientLogin.PARAM_SERVICE_VALUE);
 params.put(GoogleClientLogin.PARAM_SOURCE,
 GoogleClientLogin.PARAM_SOURCE_VALUE);

 HTTPRequestHelper helper =
 new HTTPRequestHelper(responseHandler);
 helper.performPost(HTTPRequestHelper.MIME_FORM_ENCODED,
 GoogleClientLogin.URL_GET_GTOKEN,
 null, null, null, params);
 }
 }.start();
 }

 private void getContacts(String email, String token) {
 final ResponseHandler<String> responseHandler =
 HTTPRequestHelper.getResponseHandlerInstance(
 this.contactsHandler);

 this.progressDialog = ProgressDialog.show(this,

C
Set
tokenValue

Create Handler for
contacts request

D

Implement
getToken

E

Include
necessary
parameters
for
ClientLogin

F

G
Perform POST
to get token

H
Implement
getContacts
Licensed to Deborah Christiansen <pedbro@gmail.com>

192 CHAPTER 6 Networking and web services
 "working . . .", "getting Google Contacts");

 new Thread() {
 public void run() {
 HashMap<String, String> headers =
 new HashMap<String, String>();
 headers.put(GoogleClientLogin.GTOKEN_AUTH_HEADER_NAME,
 GoogleClientLogin.GTOKEN_AUTH_HEADER_VALUE_PREFIX
 + token);

 String encEmail = email;
 try {
 encEmail = URLEncoder.encode(encEmail,
 "UTF-8");
 } catch (UnsupportedEncodingException e) {
 // log and or handle
 }
 String url =
 GoogleClientLogin.URL_GET_CONTACTS_PREFIX + encEmail
 + GoogleClientLogin.URL_GET_CONTACTS_SUFFIX;

 HTTPRequestHelper helper = new
 HTTPRequestHelper(responseHandler);
 helper.performGet(url, null, null, headers);
 }
 }.start();
 }
}

After a host of constants that represent various String values we will use with the
GDATA services, we have several Handler instances in this class, beginning with
a tokenHandler B. This handler updates a UI TextView when it receives a message,
like the previous similar examples we have seen, and updates a non–UI member
tokenValue variable that other portions of our code will use C. The next Handler we
have is the contactsHandler that will be used to update the UI after the contacts
request D.

 Beyond the handlers we have the getToken method E. This method includes all
the required parameters for obtaining a ClientLogin token from the GDATA servers
(http://code.google.com/apis/gdata/auth.html) F. After the setup to obtain the
token, we make a POST request via the request helper G.

 Once the token details are taken care of, we have the getContacts method H.
This method uses the token obtained via the previous method as a header I. After
you have the token you can cache it and use it with all subsequent requests (you don’t
need to re-obtain the token every time). Next we encode the email address portion of
the Contacts API URL J, and we make a GET request for the data—again using the
HttpRequestHelper 1).

 With this approach we are making several network calls (one as HTTPS to get the
token and another as HTTP to get data) using our previously defined helper class.
When the results are returned from the GDATA API, we parse the XML block and
update the UI.

I
Add token
as header

Encode email
address in URL

J

Make GET request
for Contacts

1)
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/apis/gdata/auth.html

193Web services
Now that we have explored some REST-style networking, the last thing we need to dis-
cuss with regard to HTTP and Android is SOAP. This topic comes up frequently in dis-
cussions of networking mobile devices, but sometimes the forest gets in the way of the
trees in terms of framing the real question.

6.5.3 To SOAP or not to SOAP, that is the question

SOAP is a powerful protocol that has many uses. We would be remiss if we didn’t at
least mention that while it’s possible, it’s not generally recommended on a small,
embedded device like a smartphone, regardless of the platform. The question within
the limited resources environment Android inhabits is really more one of should it be
done rather than can it be done.

 Surely some experienced developers, who may have been using SOAP for years on
other devices, are snarling at this sentiment right now. To those of you in that camp
we would ask you to bear with us as we try to explain. The things that make SOAP great
are its support for strong types (via XML Schema), its support for transactions, its secu-
rity and encryption, its support for message orchestration and choreography, and all
the related WS-* standards. These things are invaluable in many server-oriented com-
puting environments, whether or not they involve the enterprise. And these things
add a great deal of overhead, especially on a small, embedded device. In fact, in many
situations where people use SOAP on embedded devices, they often don’t bother with
the advanced features—and they use plain XML with the overhead of an envelope at
the end of the day anyway. On an embedded device you will often get better perfor-
mance, and a simpler design, by using a REST- or POX-style architecture and avoiding
the overhead of SOAP.

 There are, of course, some situations where it makes sense to investigate using
SOAP directly with Android. In the case where you need to talk to existing SOAP ser-
vices that you have no control over, SOAP might make sense. Also, if you already have
J2ME clients for existing SOAP services, you may be able to port those in a limited set
of cases. Yet, either of these approaches makes it easier on only you, the developer,
and has either no effect or a negative one in terms of performance on the user. Even
when you are working with existing SOAP services, remember that you can often write
a POX/REST-style proxy for SOAP services on the server side and call that from
Android, rather than using SOAP directly from Android.

 If you feel like SOAP is still the right choice, you can use one of several ports of the
kSOAP toolkit (http://ksoap2.sourceforge.net/), which is specially designed exactly

GDATA ClientLogin and CAPTCHA
While we have included a working ClientLogin example here, we have also skipped
over an important part—CAPTCHA. Google may optionally require a CAPTCHA with the
ClientLogin approach. To fully support ClientLogin you need to handle that re-
sponse and display the CAPTCHA to the user, then resend a token request with the
user’s entered CAPTCHA value. For details see the GDATA documentation.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://ksoap2.sourceforge.net/

194 CHAPTER 6 Networking and web services
for SOAP on an embedded Java device. Keep in mind, though, even the kSOAP docu-
mentation states, “SOAP introduces some significant overhead for web services that
may be problematic for mobile devices. If you have full control over the client and the
server, a REST-based architecture may be more adequate.” In addition, you may be
able to write your own parser for simple SOAP services that don’t use fancy SOAP fea-
tures and just use a POX approach that includes the SOAP XML portions you require
(you can always roll your own, even with SOAP).

 All in all, in our minds the answer to the question is not to use SOAP on Android,
even though you can. Our discussion of SOAP, even though we don’t advocate it,
rounds out our more general web services discussion, and that wraps up our network-
ing coverage.

6.6 Summary
In this chapter we started with a brief lesson on the background of basic networking con-
cepts, from nodes and addresses to layers and protocols. With that general background
in place, we covered details concerning obtaining network status information and
showed several different ways to work with the IP networking capabilities of the platform.

 In terms of networking we looked at using basic sockets and the java.net package.
Then we also examined the included Apache HttpClient API. HTTP is one of the most
common, and most important, networking resources available to the Android plat-
form. Using HttpClient we covered a lot of territory in terms of different request
types, parameters, headers, authentication, and more. Beyond basic HTTP we also
extended into the concepts of POX and REST, and we discussed a bit of SOAP—all of
which use HTTP as the transport mechanism.

 Now that we have covered a good deal of the networking possibilities, and hope-
fully given you at least a glint of an idea of what you can do with server-side APIs and
integration with Android, we are going to turn to another very important part of the
Android world—telephony.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Telephony
With an Android device you can surf the web, store and retrieve data locally, access
networks, access location information, use many types of applications, and—get
this— actually make phone calls.

 After all is said and done, one of the most fundamental components of the plat-
form is the mobile phone. Dialing out, receiving calls, sending and receiving text and
multimedia messages, and other related telephony services are all available. The add-
ed bonus with Android is that all of these items are accessible to developers through
simple-to-use APIs and built-in applications that make use of intents and services. You
can use the telephony support Android provides quite easily, and you can combine
it and embed it in your own applications (as you have seen in previous examples).

 In this chapter we will examine a bit of telephony background and cover terms
involved with a mobile device. We will move on to basic Android telephony pack-
ages, which will take us through handling calls using built-in Intent actions and

This chapter covers:
■ Making and receiving phone calls
■ Capturing call-related events
■ Obtaining phone and service information
■ Using SMS
195

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/devel/security.html
http://code.google.com/android/devel/security.html
http://code.google.com/android/devel/security.html

196 CHAPTER 7 Telephony
examining the TelephonyManager and PhoneStateListener classes. The Intent
actions are what you will use on a day-to-day basis to initiate phone calls in your appli-
cations. TelephonyManager is, on the other hand, not related to making calls but
rather is used to retrieve all kinds of telephony-related data, such as the state of the
voice network, the device’s own phone number, and Subscriber Identity Module (SIM)
card details. Using TelephonyManager is also how you attach a PhoneStateListener,
which can alert you when call or phone network states change.

 Once we have basic telephony APIs in hand, we will move on to working with
another very common mobile phone feature—sending and receiving SMS messages.
Android provides intents and built-in applications for handling SMS messages as well
as APIs that allow you to send SMS messages and be notified when SMS messages are
received.

 We will also touch on emulator features that allow you to send in test calls and/or
messages to exercise your applications.

 We are once again going to use a sample application to carry us through the con-
cepts related to the material in this chapter. We will be building a TelephonyExplorer
application to demonstrate dialing the phone, obtaining phone and service state
information, adding listeners to the phone state, and working with SMS. Our Telepho-
nyExplorer application will have several basic screens, as shown in figure 7.1.

Figure 7.1 TelephonyExplorer main screen, showing all the related activities the sample application
performs
Licensed to Deborah Christiansen <pedbro@gmail.com>

197Telephony background and terms
TelephonyExplorer, as you can see from the screen shot, is not pretty, nor is it very prac-
tical outside of learning the concepts and API details involved. This application is fo-
cused on touching the telephony-related APIs while remaining simple and uncluttered.

 Before we begin to build TelephonyExplorer, the first thing we first need to clarify
what telephony is and learn the terminology.

7.1 Telephony background and terms
This basic information about telephony may not be new to experienced mobile devel-
opers (if that describes you, feel free to skip to the next section), but it’s important to
clarify terms and set out some background for those who are new to these concepts.

 First, telephony is a general term that refers to the details surrounding electronic
voice communications over telephone networks. Our scope is, of course, the mobile
telephone network that Android devices will participate in, specifically the Global Sys-
tem for Mobile Communications (GSM) network.

NOTE Telephone The term telephone means “speech over a distance.” The Greek
roots are tele, which means “distant,” and phone, which means “speech.”

GSM is a cellular telephone network. Devices communicate over radio waves and spec-
ified frequencies using the cell towers that are common across the landscape. This
means the GSM standard has to define a few important things, such as identities for
devices and “cells,” along with all of the rules for making communications possible.

 We won’t delve into the underlying details of GSM, but it’s important to know that
it’s the standard that the Android stack currently uses to support voice calls—and
it’s the most widely used standard in the world across carriers and devices, Android
or otherwise. All GSM devices use a SIM card to store all the important network and
user settings.

 A SIM card is a small, removable, and secure smart card. Every device that operates
on a GSM network has specific unique identifiers, which are stored on the SIM card:

■ Integrated Circuit Card ID (ICCID) —Identifies a SIM card (also known as a SIM
Serial Number, or SSN).

■ International Mobile Equipment Identity (IMEI) —Identifies a physical device. (The
number is usually printed underneath the battery).

■ International Mobile Subscriber Identity (IMSI) —Identifies a subscriber (and the
network that subscriber is on).

■ Location Area Identity (LAI) —Identifies the region the device is in within a pro-
vider network.

■ Authentication Key (Ki) —A 128-bit key used to authenticate a SIM card on this
provider network. A 128-bit key.

These numbers are important for the obvious reasons that they are used to validate
and authenticate a SIM card itself, the device it is in, and the subscriber on the net-
work (and across networks if need be).
Licensed to Deborah Christiansen <pedbro@gmail.com>

198 CHAPTER 7 Telephony
 Along with storing unique identifiers and authentication keys, SIM cards often are
capable of storing user contacts and SMS messages. This is convenient for users
because they can move their SIM card to a new device and carry along contact and
message data easily. At present there are no public APIs for interacting with the SIM
card on an Android device directly, though this may become possible in the future.
(At present, the platform handles the SIM interaction, and developers can get read-
only access via the telephony APIs).

 The basic background for working with the Android telephony packages really is
that short and simple. You need to know that you are working with a GSM network,
and then you need to be aware that you may come across terms like IMSI and IMEI,
which are stored on the SIM. Getting at this information, and more, is done with the
TelephonyManager class.

7.2 Accessing telephony information
Android provides a very informative manager class that supplies information about
many telephony-related details on the device. Using this class, TelephonyManager, you
can access many of the GSM/SIM properties we have already discussed, and you can
obtain phone network state information and updates.

 Attaching an event listener to the phone, in the form of a PhoneStateListener,
which is done via the manager, is how you can make your applications aware of when
phone service is and is not available and when calls are started, in progress, or ending,
and more.

 Here we are going to examine several
parts of the TelephonyExplorer example
application to look at both of these classes
and concepts, starting with obtaining a
TelephonyManager instance and using it
to query useful telephony information.

7.2.1 Retrieving telephony properties

The android.telephony package con-
tains the TelephonyManager class, and it
has details on all of the information you
can obtain using it. Here we are going to
get and display a small subset of that infor-
mation to demonstrate the approach.
The first Activity, beyond the main
screen, our TelephonyExplorer applica-
tion will have is a simple screen that shows
some of the information we can obtain via
TelephonyManager, as shown in fig-
ure 7.2.

Figure 7.2 Displaying device and phone
network metainformation obtained from
the TelephonyManager class
Licensed to Deborah Christiansen <pedbro@gmail.com>

199Accessing telephony information
 The TelephonyManager class is the information hub for telephony-related data in
Android. Listing 7.1 demonstrates how you obtain a reference to this class and use it
to retrieve data (such as the data shown in figure 7.2).

// . . . start of class omitted for brevity

 final TelephonyManager telMgr =
 (TelephonyManager) this.getSystemService(
 Context.TELEPHONY_SERVICE);

// . . . onCreate method and others omitted for brevity

 public String getTelephonyOverview(
 TelephonyManager telMgr) {

 int callState = telMgr.getCallState();
 String callStateString = "NA";
 switch (callState) {
 case TelephonyManager.CALL_STATE_IDLE:
 callStateString = "IDLE";
 break;
 case TelephonyManager.CALL_STATE_OFFHOOK:
 callStateString = "OFFHOOK";
 break;
 case TelephonyManager.CALL_STATE_RINGING:
 callStateString = "RINGING";
 break;
 }

 GsmCellLocation cellLocation =
 (GsmCellLocation) telMgr.getCellLocation();
 String cellLocationString =
 cellLocation.getLac() + " " + cellLocation.getCid();

 String deviceId = telMgr.getDeviceId();
 String deviceSoftwareVersion =
 telMgr.getDeviceSoftwareVersion();

 String line1Number = telMgr.getLine1Number();

 String networkCountryIso = telMgr.getNetworkCountryIso();

 String networkOperator = telMgr.getNetworkOperator();
 String networkOperatorName = telMgr.getNetworkOperatorName();

 int phoneType = telMgr.getPhoneType();
 String phoneTypeString = "NA";
 switch (phoneType) {
 case TelephonyManager.PHONE_TYPE_GSM:
 phoneTypeString = "GSM";
 break;
 case TelephonyManager.PHONE_TYPE_NONE:
 phoneTypeString = "NONE";
 break;
 }

Listing 7.1 Obtaining a TelephonyManager reference and using it to retrieve data

Get TelephonyManager
from Context

B

Implement information
helper method

C

D
Obtain call state
information

Get cell location
information

E

F
Get device

information
Licensed to Deborah Christiansen <pedbro@gmail.com>

200 CHAPTER 7 Telephony
 String simCountryIso = telMgr.getSimCountryIso();
 String simOperator = telMgr.getSimOperator();
 String simOperatorName = telMgr.getSimOperatorName();
 String simSerialNumber = telMgr.getSimSerialNumber();
 String simSubscriberId = telMgr.getSubscriberId();
 int simState = telMgr.getSimState();
 String simStateString = "NA";
 switch (simState) {
 case TelephonyManager.SIM_STATE_ABSENT:
 simStateString = "ABSENT";
 break;
 case TelephonyManager.SIM_STATE_NETWORK_LOCKED:
 simStateString = "NETWORK_LOCKED";
 break;
 // . . . other SIM states omitted for brevity
 }

 StringBuilder sb = new StringBuilder();
 sb.append("telMgr - ");
 sb.append(" \ncallState = " + callStateString);

 // . . . remainder of appends omitted for brevity

 return sb.toString();
 }

The Android Context is used, through the getSystemService method with a con-
stant, to obtain an instance of the TelephonyManager class B. Once you have a handle
to the manager, you can use it as needed to obtain information. In this case we have
created a helper method to get data from the manager and return it as a String we
later display on the screen C.

 The manager allows you to access phone state data, such as whether or not a call is
in progress D, cell location information E, the device ID and software version F, the
phone number registered to the current user/SIM G, and many other SIM details
such as the subscriber ID (IMSI) H. There are additional properties that we are not
using in this example (see the Javadocs for complete details).

 Note one more detail here not shown in the listing. In order for this class to work,
the READ_PHONE_STATE permission has to be set in the manifest (without it security
exceptions will be thrown when you try to read data from the manager). We have con-
solidated the phone-related permissions into table 7.1, in section 7.3.1.

 This handle to the telephony-related information, including metadata about
the device, network, and SIM card, is one of the main purposes of the Telephony-
Manager class. The other main purpose of TelephonyManager is to allow you to
attach a PhoneStateListener.

7.2.2 Obtaining phone state information

Obviously a phone has various states that it as a device can be in. The most basic
phone states are idle, in a call, or in the process of initiating a call. When building
applications on a mobile device, there are times when you not only need to know the
current phone state but also want to be alerted anytime the state changes.

Get cellGet
phone number
of device
location
information

G

H
Obtain SIM
information
Licensed to Deborah Christiansen <pedbro@gmail.com>

201Accessing telephony information
 In these cases you want to attach a listener to the phone and “subscribe” so that you
can be notified of “published” changes. With Android this is done using a PhoneState-
Listener, which is attached to the phone through TelephonyManager. Listing 7.2 dem-
onstrates a sample usage of both of these classes.

 @Override
 public void onStart() {
 super.onStart();

 final TelephonyManager telMgr =
 (TelephonyManager)
 this.getSystemService(
 Context.TELEPHONY_SERVICE);

 PhoneStateListener phoneStateListener =
 new PhoneStateListener() {
 public void onCallStateChanged(
 int state, String incomingNumber) {
 telMgrOutput.setText(getTelephonyOverview(telMgr));
 }
 };
 telMgr.listen(phoneStateListener,
 PhoneStateListener.LISTEN_CALL_STATE);

 String telephonyOverview = this.getTelephonyOverview(telMgr);
 this.telMgrOutput.setText(telephonyOverview);
 }

To start working with a PhoneStateListener you need an instance of Telephony-
Manager, so you can later assign the listener B. PhoneStateListener itself is an inter-
face, so you need to create an implementation C, including the onCallStateChanged
required method, in order to use it D. Once you have a PhoneStateListener
instance (your own implementation that implements the interface), you attach it by
assigning it to the manager with the listen method E.

 In the example in listing 7.2 we are listening for any PhoneStateListener.
LISTEN_CALL_STATE change in the phone state. This is a constant value from a list of
available states that can be seen on the PhoneStateListener class. You can use a sin-
gle value when assigning a listener with the listen method, as we have done here, or
you can combine multiple values.

 If a call state change does occur, we reset the details on the screen using the
getTelephonyOverview method we used for setting the initial status in listing 7.1. The
action you take is defined in the onCallStateChanged method of your PhoneState-
Listener. You can filter further in this method too (apart from the types of events you
are listening for), based on the passed-in int state, if you need to.

 To see the values in this example change while working with the emulator, you can
use the SDK tools to send incoming calls or text messages and change the state of the
voice connection. The emulator includes a mock GSM modem that you can manipulate
using the gsm command from the console. Figure 7.3 shows an example session from the

Listing 7.2 Attaching a PhoneStateListener via the TelephonyManager

Obtain TelephonyManager
from Context

B

Create
PhoneStateListener

C

E
Assign listener

to manager

D
Implement

 onCallStateChanged method
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/emulator.html#telephony
http://code.google.com/android/reference/emulator.html#telephony

202 CHAPTER 7 Telephony
console that demonstrates this. For complete details see the emulator telephony docu-
mentation (http://code.google.com/android/reference/emulator.html - telephony).

 With many of the larger telephony background details now complete, in the next
few sections of this chapter we’re going to cover basic uses of the telephony APIs and
other related facilities. We will examine intercepting calls, using some of the tele-
phony utility classes, and making calls from your applications.

7.3 Interacting with the phone
In your day-to-day development you will often want to interact with the phone. This
interaction may be as simple as dialing outbound calls through built-in intents, or it
may involve intercepting calls to modify them in some way. In this section we are
going to cover these basic tasks, and we will examine some of the phone number utili-
ties Android provides for you out of the box.

 One of the more common things you will do with the Android telephony support
doesn’t involve the telephony APIs directly, and that is making calls using the built-in
intents.

7.3.1 Using intents to make calls

As we demonstrated in chapter 4, using the Intent.ACTION_CALL action and the tel:
Uri is all you need to invoke the built-in dialer application and make a call. This
approach will invoke the dialer application, populate the dialer with the provided
telephone number (taken from the Uri), and initiate the call.

 Along with this action you can also invoke the dialer application with the
Intent.ACTION_DIAL action, which will again populate the dialer with the supplied
phone number but stop short of initiating the call. Listing 7.3 demonstrates both tech-
niques using the respective actions.

Figure 7.3 An Android console session demonstrating the gsm command and
available subcommands
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/emulator.html

203Interacting with the phone
dialintent = (Button) findViewById(R.id.dialintent_button);
 dialintent.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent =
 new Intent(Intent.DIAL_ACTION,
 Uri.parse("tel:" + NUMBER));
 startActivity(intent);
 }
 });

 callintent = (Button) findViewById(R.id.callintent_button);
 callintent.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent =
 new Intent(Intent.CALL_ACTION,
 Uri.parse("tel:" + NUMBER));
 startActivity(intent);
 }
 });

At this point we have covered the usage of intents and the Android platform design
quite a bit. In listing 7.3 we are once again leveraging this design, to make outgoing
calls to specified numbers.

 Making calls using the built-in intents through the dialer application is very simple,
as we have already shown in previous examples. Basically you need to set the action
you want to take place, either populating the dialer with ACTION_DIAL B or populat-
ing the dialer and initiating a call with ACTION_CALL D. In either case you also need to
specify the telephone number you want to use with the Intent Uri C.

 The only other aspect of dialing calls you need to be aware of is permissions. The
correct permissions are required in your application manifest in order to be able to
access and modify phone state, dial the phone, or intercept phone calls (which we will
examine in section 7.3.3). Table 7.1 lists the relevant phone-related permissions and
their purposes (for more detailed information see the security section of the Android
documentation: http://code.google.com/android/devel/security.html).

Listing 7.3 Using Intent actions to dial and call using the built-in dialer application

Table 7.1 Phone-related manifest permissions and their purpose

Phone-related permission Purpose

android.permission.READ_PHONE_STATE Allow application to read phone state

android.permission.MODIFY_PHONE_STATE Allow application to modify phone state

android.permission.CALL_PHONE Initiate a phone call without user confir-
mation in dialer

android.permission.CALL_PRIVILEGED Call any number, including emergency,
without confirmation in dialer

android.permission.PROCESS_OUTGOING_CALLS Allow application to receive broadcast for
outgoing calls and modify

Usage of DIAL_ACTIONB

C
Including the
tel:number Uri

D
Usage of
CALL_ACTION
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/devel/security.html

204 CHAPTER 7 Telephony
Dialing from an Android application is very straightforward. The built-in handling via
intents and the dialer application make it almost trivial. Helping even more in terms
of “making it nice for the people” is the additional PhoneNumberUtils class, which you
can use to parse and validate phone number strings.

7.3.2 Helpful phone number–related utilities

Applications running on mobile devices that support telephony get to experience the
joy of dealing with a good deal of String formatting for phone numbers. Fortunately,
in the Android SDK there is a handy utility class that helps to mitigate the risks associ-
ated with this task and standardize the way it’s done—PhoneNumberUtils.

 The PhoneNumberUtils class can be used to parse String data into phone num-
bers, parse alphabetical keypad digits into numbers, and determine other properties
of phone numbers (such as whether or not they are global or localized). An example
usage of this class is shown in listing 7.4.

. . .

 private TextView pnOutput;
 private EditText pnInput;
 private EditText pnInPlaceInput;
 private Button pnFormat;

. . .

 this.pnFormat.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 String phoneNumber = PhoneNumberUtils.formatNumber(
 pnInput.getText().toString());
 phoneNumber = PhoneNumberUtils.convertKeypadLettersToDigits(
 pnInput.getText().toString());

 StringBuilder result = new StringBuilder();
 result.append(phoneNumber);
 result.append("\nisGlobal - "
 + PhoneNumberUtils.isGlobalPhoneNumber(phoneNumber));
 result.append("\nisEmergency - "
 + PhoneNumberUtils.isEmergencyNumber(phoneNumber));

 pnOutput.setText(result.toString());
 pnInput.setText("");
 }
});

The PhoneNumberUtils class has a number of static helper methods for parsing phone
numbers, the simplest of which is formatNumber. This method takes a single String as
input and uses the default locale settings to return a formatted phone number B
(there are additional methods to format a number using a locale you specify, to parse
different segments of a number, and so on). Parsing a number can be combined with
another helpful method, convertKeypadLettersToDigits, to further convert any

Listing 7.4 Working with the PhoneNumberUtils class

Format as
phone number

B

C
Convert alpha
characters to digits

Use additional phone
number utilities D
Licensed to Deborah Christiansen <pedbro@gmail.com>

205Interacting with the phone
alphabetic keypad letter characters into digits C. The conversion method won’t work
unless it already recognizes the format of a phone number, so in this case it’s impor-
tant to run the format method first.

 Along with these basic methods you can also check properties of a number string,
such as whether the number is global and whether it represents an emergency call D.

 An additional way to format a phone number that is useful for any Editable, such
as the very common EditText (or TextView), is the formatNumber overload that edits
these in place. This method updates an EditText that is passed in when it is invoked.
An example of using this is shown in listing 7.5.

this.pnInPlaceInput.setOnFocusChangeListener(
 new OnFocusChangeListener() {
 public void onFocusChange(View v, boolean b) {
 if (v.equals(pnInPlaceInput) && (b == false)) {
 PhoneNumberUtils.formatNumber(
 pnInPlaceInput.getText(),
 PhoneNumberUtils.FORMAT_NANP);
 }
 }
});

The in-place editor can be combined with a dynamic update step using various tech-
niques; one way is to make the update happen automatically when the focus changes
away from a phone number field (curiously though, the in-place edit does not also
provide the keypad alphabetic character-to-number conversion automatically). To do
this we have implemented an OnFocusChangeListener B. Inside the onFocusChange
method, which filters for the correct View item, we call the formatNumber overload,
passing in the respective Editable and the formatting style we want to use C. The
NANP here stands for North American Numbering Plan, which includes an optional
country and area code and a seven-digit phone number.

 Apart from using the phone number utilities and making calls, you may also need
to intercept calls.

7.3.3 Intercepting calls

There are many reasons you may want to intercept calls. For example, you may want
to write an application that is aware of incoming phone calls and changes the ringer
or uses other different alerts based on the caller. In addition, you may want to write
an application that catches outgoing calls and decorates or aborts them, based on
certain criteria.

 Intercepting outgoing calls is supported in the current Android SDK release, but
unfortunately the same is not true of incoming calls. Currently incoming calls cannot
be intercepted. Users can still change the ringer and other options for their contacts,
but all of that is based on the built-in applications and is not something that’s available
to you as a developer through the APIs.

Listing 7.5 Using in-place Editable View formatting via PhoneNumberUtils

Use OnFocusChangeListener
for update

B

Call formatNumber
method

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

206 CHAPTER 7 Telephony
 Because of the limitations in the API, we will focus on what an intercept for an out-
going call looks like, which is shown in listing 7.6.

public class OutgoingCallReceiver extends BroadcastReceiver {

 public static final String ABORT_PHONE_NUMBER = "1231231234";

 private static final String OUTGOING_CALL_ACTION =
 "android.intent.action.NEW_OUTGOING_CALL";
 private static final String INTENT_PHONE_NUMBER =
 "android.intent.extra.PHONE_NUMBER";

 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(
 OutgoingCallReceiver.OUTGOING_CALL_ACTION))

 String phoneNumber =
 intent.getExtras().getString(INTENT_PHONE_NUMBER);
 if ((phoneNumber != null)
 && phoneNumber.equals(
 OutgoingCallReceiver.ABORT_PHONE_NUMBER)) {
 Toast.makeText(context,
 "NEW_OUTGOING_CALL intercepted to number “
 + “123-123-1234 - aborting call",

 Toast.LENGTH_LONG).show();
 this.abortBroadcast();
 }
 }
 }
}

The first thing we do to intercept an outgoing call is to extend BroadcastReceiver B.
Our receiver defines several constants, one for the NEW_OUTGOING_CALL action C and
one for the phone number data key, PHONE_NUMBER D.

 For a BroadcastReceiver we have to implement the onReceive method E.
Within this method we filter on the Intent action we want, android.intent.
action.NEW_OUTGOING_CALL F, then we get the Intent data using the phone number
key G. If the phone number matches, we send a Toast alert to the UI H and abort
the outgoing call by calling the abortBroadcast method I.

 Beyond dialing out, formatting numbers, and intercepting calls, another important
area of the telephony support in Android is the support for sending and receiving SMS.

7.4 Working with messaging: SMS
SMS is a hugely popular and important means of communication for mobile devices.
SMS is used to send simple text messages and small amounts of data. Android includes
a built-in SMS application that allows users to view received SMS messages and send mes-
sages (including replying to received messages). Along with the built-in user-facing sup-
port and the related ContentProvider for interacting with the built-in system, the SDK
provides APIs for developers to be able to send and receive messages programmatically.

Listing 7.6 Catching and aborting an outgoing call

B

Create
broadcast
receiver

C
Define constant for
NEW_OUTGOING_CALL

D
Define constant for

PHONE_NUMBER

E
Override
onReceive

FFilter Intent for action

FGet Intent extras data

H

Show
quick
message

IAbort Intent
Licensed to Deborah Christiansen <pedbro@gmail.com>

207Working with messaging: SMS
 To explore this support we are going to look
at both sides of the coin, sending and receiving.
The unadorned screen in figure 7.4 shows the
SMS-related Activity we will build in the Tele-
phonyExplorer application.

 To get started working with SMS, we will
send SMS messages using the support provided
by the SmsManager.

7.4.1 Sending SMS messages

The android.telephony.gsm subpackage con-
tains the SmsManager and SmsMessage classes.
These are our SMS friends. The SmsManager is
used to define many important SMS-related
constants, and it contains the sendData-

Message, sendMultipartTextMessage, and
sendTextMessage methods.

 In listing 7.7 we have an example from our
TelephonyExplorer application of using the
SMS manager to send a simple text message.

// . . . start of class omitted for brevity

 private Button smsSend;
 private SmsManager smsManager;

 @Override
 public void onCreate(Bundle icicle) {

 super.onCreate(icicle);
 this.setContentView(R.layout.smsexample);

 // . . . other onCreate view item inflation omitted for brevity

 this.smsSend = (Button) findViewById(R.id.smssend_button);

 this.smsManager = SmsManager.getDefault();

 final PendingIntent sentIntent =
 PendingIntent.getActivity(
 this, 0, new Intent(this,
 SmsSendCheck.class), 0);

 this.smsSend.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 String dest = smsInputDest.getText().toString();
 if (PhoneNumberUtils.
 isWellFormedSmsAddress(dest)) {
 smsManager.sendTextMessage(
 smsInputDest.getText().toString, null,
 smsInputText.getText().toString(),

Listing 7.7 Using the SmsManager to send SMS messages

B
Get SmsManager
handle

Create PendingIntent
for post action

C

D
Check destination
is valid

Figure 7.4 An Activity that sends SMS
messages and an example of an alert based
on a received SMS message
Licensed to Deborah Christiansen <pedbro@gmail.com>

208 CHAPTER 7 Telephony
 sentIntent, null);
 Toast.makeText(SmsExample.this,
 "SMS message sent",
 Toast.LENGTH_LONG).show();
 } else {
 Toast.makeText(SmsExample.this,
 "SMS destination invalid - try again",
 Toast.LENGTH_LONG).show();
 }
 }
 });
 }

The first thing we need to do in regard to working with SMS messages is obtain an
instance of the SmsManager, which is done with the static getDefault method B. The
manager will be used later to send the message. Before we can do that, though, we
need to create a PendingIntent (which will be used as a parameter in the send
method coming up).

A PendingIntent can specify an Activity, Broadcast, or Service that it requires. In
our case we are using the getActivity method, which denotes an Activity, and then
we are specifying the context, request code (which is unused), the Intent, and addi-
tional flags C. The flags indicate whether or not a new instance of the referenced
Activity (or Broadcast or Service) should be created if one does not already exist.

 Once we have a PendingIntent, we check that the destination address is valid for
SMS (using another method from PhoneNumberUtils) D, and we send the message
using the manager’s sendTextMessage method E.

 This send method takes in several parameters, one of which can be confusing. The
signature of this method is as follows:

sendDataMessage(String destinationAddress, String scAddress, short
destinationPort, byte[] data, PendingIntent sentIntent, PendingIntent
deliveryIntent)

The destinationAddress is simple; this is the phone number you want to send the
message to. The scAddress is the tricky one. This is not meant to be the source
address, but rather it indicates the internal service center address on the network; this

Send messageE

What is a PendingIntent?
A PendingIntent is a specification of a future intent. It is basically a way for you to
pass a future Intent to another application and allow that application to execute that
Intent as if it had the same permissions as your application, whether or not your
application is still around when the Intent is eventually invoked. Remember the Ac-
tivity lifecycle and the separate process logic that the platform uses. A Pendin-
gIntent provides a means for applications to, in essence, work “beyond the grave”
for a particular Intent. Even after an owning application that creates a PendingIn-
tent has been killed, that Intent can still be run later.
Licensed to Deborah Christiansen <pedbro@gmail.com>

209Working with messaging: SMS
should be left null in most cases (which uses the default). The destinationPort is
also simple; it’s the port. The data is the payload of the message. Finally, the sent-
Intent and deliveryIntent are separate PendingIntent instances that are fired
when the message is successfully sent and received, respectively.

 Much like the permissions we listed in table 7.1 in reference to phone permissions,
SMS-related tasks also require manifest permissions. The SMS-related permissions are
shown in table 7.2.

Along with sending text and data messages using this basic pattern, you can create an
SMS-related BroadcastReceiver to receive incoming SMS messages.

7.4.2 Receiving SMS messages

Receiving an SMS message programmatically is done through receiving a broadcast on
the Android platform. To demonstrate this with our TelephonyExplorer application,
we are again going to implement a receiver, as shown in listing 7.8.

public class SmsReceiver extends BroadcastReceiver {
 public static final String SMSRECEIVED = "SMSR";
 private static final String SMS_REC_ACTION =
 "android.provider.Telephony.SMS_RECEIVED";

 @Override
 public void onReceive(fContext context, Intent intent) {

 if (intent.getAction().
 equals(SmsReceiver.SMS_REC_ACTION)) {
 StringBuilder sb = new StringBuilder();

 Bundle bundle = intent.getExtras();
 if (bundle != null) {
 Object[] pdus = (Object[]) bundle.get("pdus");
 for (Object pdu : pdus) {
 SmsMessage smsMessage =
 SmsMessage.createFromPdu((byte[]) pdu);
 sb.append("body - "
 + smsMessage.getDisplayMessageBody());
 }
 }

Table 7.2 SMS-related manifest permissions and their purpose

Phone-related permission Purpose

android.permission.RECEIVE_SMS Allow application to monitor incoming SMS messages

android.permission.READ_SMS Allow application to read SMS messages

android.permission.SEND_SMS Allow application to send SMS messages

android.permission.WRITE_SMS Write SMS messages to the built-in SMS provider (not
related to sending messages directly)

Listing 7.8 Creating an SMS-related BroadcastReceiver

B
Extend
BroadcastReceiver

C

Define constant
SMS_RECEIVED
action

D
Filter for action
in receiver

Get pdus from
Intent Bundle

E

Create SmsMessage
from pdus

F

G
Get message
body for display
Licensed to Deborah Christiansen <pedbro@gmail.com>

210 CHAPTER 7 Telephony
 Toast.makeText(context, "SMS RECEIVED - "
 + sb.toString(), Toast.LENGTH_LONG).show();
 }
 }
}

To react to an incoming SMS message we once again are creating a BroadcastReceiver
by extending that class B. Our receiver defines a local constant for the Intent action
it wants to catch, in this case android.provider.Telephony.SMS_RECEIVED C.

 Once the class setup is ready, we filter for the action we want in the onReceive
method D, and we get the SMS data from the Intent “extras” Bundle using the key
pdus E. PDU, or Protocol Data Unit, is the term that describes the data packet in SMS
messages. In this case the platform is using the String key pdus (we discovered this by
trial and error, by getting the key Set from the Bundle and iterating it). For every pdu
Object we then construct an SmsMessage by casting the data to a byte array F. Once
this is in SmsMessage form, we can work with the methods on that class, such as get-
DisplayMessageBody G.

 Sending and receiving messages in SMS form completes our exploration of the
telephony APIs.

7.5 Summary
In our trip through the Android telephony-related APIs we covered several important
topics. We began with a brief overview of some of the telephony terms, and then we
moved on to the Android-specific APIs.

 With the APIs we looked at accessing telephony information with the Telephony-
Manager, including device and SIM card data and phone state. From there we also
addressed hooking in a PhoneStateListener to get updates when the phone state
changed and reacting to such events.

 Beyond retrieving the data we also looked at dialing the phone using built-in
intents and actions, intercepting outgoing phone calls, and using the PhoneNumber-
Utils class in several ways. After we covered the standard voice usages, we addressed
SMS messaging. Here we looked at how to send and receive SMS messages using the
SmsManager and SmsMessage classes.

 In the next chapter we turn to the specifics of dealing with notifications and alerts
on the Android platform.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Notifications and alarms
Today’s cell phones are expected to be not only phones but personal assistants,
cameras, music and video players, instant-messaging clients, as well as just about
everything else a computer might do. With all these applications running on
phones, applications need a way to notify users to get their attention or to take
some sort of action whether in response to a SMS, to a new voicemail, or to an
Alarm reminding them of a new appointment.

 In this chapter we are going to look at how to use the Android Broadcast-
Receiver and the AlarmManager to notify users of just these sorts of events. You will
learn what a Toast is, what a Notification is, how to use the NotificationManager,
and how to display a Notification to the user or trigger some other action. You
will also learn how to create an Alarm and use the AlarmManager to schedule your
Alarm events. Before we go too deeply into how notifications work, let us first create
a simple example application.

This chapter covers:
■ Building an SMS Notification application
■ Using Alarms and the AlarmManager
■ Setting an Alarm
211

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/ableson/
http://www.manning.com/ableson/
http://www.manning.com/ableson/

212 CHAPTER 8 Notifications and alarms
8.1 Introducing Toast
For our example we will create a simple Receiver class that listens for an SMS text mes-
sage and when a message arrives briefly pops up a message, called a Toast, to the user
with the content of the message. A Toast is a simple, nonpersistent message designed
to alert the user of some occurring event. Toasts are a great way to let a user know that
a call is coming in, an SMS or email has arrived, or some other event has just happened.

 To look at how we can use a Toast, let’s create a simple example. To build the
example, first create a new project called SMSNotifyExample in Eclipse. You can use
whatever package name you like, but for this chapter we will use com.msi.man-
ning.chapter8. Now that we have created the project, let’s edit AndroidManifest.xml.
You will need to add tags so that your AndroidManifest.xml file looks like listing 8.1.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.chapter8">
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 <application android:icon="@drawable/chat">
 <activity android:name=".SMSNotifyActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".SMSNotifyExample">
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED" />
 </intent-filter>
 </receiver>
 </application>
</manifest>

The AndroidManifest.xml file needs to have specific user permissions B added to it
to allow incoming SMS messages. The Android security model default is to have no
permissions associated with applications, meaning applications can essentially do
nothing that might harm the device or the data on the device. To provide Android
permission you need to use one or more permissions. In chapter 9 we will go into
greater detail about Android’s security model.

 In the next part C of the AndroidManifest.xml file we define SMSNotifyActivity,
which is simply our Activity, and the next class is the SMSNotifyExample class D,
which will act as our receiver. Then we will create a simple Activity class called
SMSNotifyActivity, as in listing 8.2.

public class SMSNotifyExampleActivity extends Activity {

 @Override

Listing 8.1 AndroidManifest.xml for SMSNotifyExample

Listing 8.2 SMS Activity for the SMSNotifyExample class

Define user permissions to allow SMS messages B

D
SMSNotifyExample

acts as receiver

C
Define a receiver, SMSNotify,

with an Intent filter
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/ableson/
http://www.manning.com/ableson/

213Introducing Toast
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 }
}

As you can see there is very little to listing 8.2, in part because for this first example we
will be doing little with the Activity. Later in this chapter, we will build on this class.
Now let us create our Receiver class (see chapter 5 for more about Intent receivers),
which will listen for the SMS message and fire off an action. Listing 8.3 shows the code
for our SMSNotifyExample class.

public class SMSNotifyExample extends BroadcastReceiver {

 private static final String LOG_TAG = "SMSReceiver";

 public static final int NOTIFICATION_ID_RECEIVED = 0x1221;

 static final String ACTION = "android.provider.Telephony.SMS_RECEIVED";

 public void onReceiveIntent(Context context, Intent intent) {

 if (intent.getAction().equals(SMSNotifyExample.ACTION)) {
 StringBuilder sb = new StringBuilder();

 Bundle bundle = intent.getExtras();
 if (bundle != null) {

 Object[] pdusObj = (Object[]) bundle.get("pdus");
 SmsMessage[] messages = new SmsMessage[pdusObj.length];

 for (SmsMessage currentMessage : messages) {
 sb.append("Received SMS\nFrom: ");
 sb.append(currentMessage.getDisplayOriginatingAddress());
 sb.append("\n----Message----\n");
 sb.append(currentMessage.getDisplayMessageBody());

 }
 }
 Log.i(SMSNotifyExample.LOG_TAG, "[SMSApp] onReceiveIntent: " + sb);
 Toast.makeText(context, sb.toString(), Toast.LENGTH_LONG).show();

 }
 }

 @Override
 public void onReceive(Context context, Intent intent) {

 }
}

Listing 8.3 should be very easy to follow. Extend the SMSNotifyExample class using
BroadcastReceiver, which allows the class to receive Intent classes B. Then we cre-
ate a String C to hold the action that will be fired by the system when an SMS is
received. After that we create a simple method to notify the user that an SMS message
has been received, and we parse the SMS message to show who it was from and the

Listing 8.3 A sample SMS IntentReceiver

B
Extend the class as a
BroadcastReceiver

C
Action fired by Android
when a SMS is received

D
Build message to
share to the user

ECreate a Toast
Licensed to Deborah Christiansen <pedbro@gmail.com>

214 CHAPTER 8 Notifications and alarms
content of the message D. Finally we use a Toast to provide a quick message to the
user E.

 Toast classes are transient little messages—they pop up and provide the user with
quick information without interrupting what the user is doing. In our code we chain
two methods together using the form makeText(Context context, CharSquence
text, int duration).show(), where the first method contains a text view for the user
and the second method, show(), shows the message to the user. Toast allows you to
set a specific view using setView, but for our example we allow it to show the default,
which is the Android status bar.

 Once you have finished cutting and pasting the code, everything should automati-
cally compile, and you should be able to run the application. The application should
come up and look like figure 8.1.

 To test our application, select the DDMS option in Eclipse. Now in the Telephony
Actions field, type a telephone number, for example, 17035551429. Select SMS and
type a message in the Message field; then click Send. Your message should be sent to
the emulator, and you should be able to see the emulator responding in the Eclipse
console. A message should appear in the Android status bar on the very top of the
Android screen representation, as shown in figure 8.2.

 So now that we have created our simple example, know how to display a short mes-
sage upon receiving an SMS, and know how to use the emulator to create an SMS, let’s

Figure 8.1 A simple Toast, the
SMSNotifyExample, shown
running in the emulator

Figure 8.2 Example of a Toast message
being generated from an SMS message
Licensed to Deborah Christiansen <pedbro@gmail.com>

215Introducing notifications
look at how to create a more persistent message that can also be used to set LEDs, play
a sound, or something of that nature, to let the user know an event has occurred.

8.2 Introducing notifications
In the previous section we showed how simple it is to create a quick, unobtrusive mes-
sage to let the user know an SMS message has arrived. In this next section we are going
to look at how to create a persistent notification that not only shows up in the status
bar but stays in a notification area until the user deletes it. To do that we need to use
the class Notification since we want to do something more complex than Toast can
offer us.

 A notification on Android can be many things, ranging from a pop-up message, a
flashing LED, to a vibration, but all of these actions start with and are represented by
the Notification class. The Notification class defines how you want to represent a
notification to a user and has three constructors, one public method, and a number of
fields. Table 8.1 summarizes the class.

As you can see, the Notification class has numerous fields since it has to describe
every way you can notify a user. Using a Notification is as simple as running this
code:

Table 8.1 Notification fields

Access Type Method Description

public int ledARGB The color of the LED notification.

public int ledOffMS The number of milliseconds for LED to
be off between flashes.

public int ledOnMS The number of milliseconds for LED to
be on between flashes.

public ContentURI sound The sound to play.

public RemoteViews contentView View to display when the statusBar-
Icon is selected in the status bar.

public CharSequence statusBarBalloonText Text to display when the statusBar-
Icon is selected in the status bar.

public PendingIntent contentIntent The Intent to execute when the icon
is clicked.

public int icon The resource id of a drawable to use
as the icon in the status bar.

public CharSequence tickerText Text to scroll across the screen when
this item is added to the status bar.

public long[] vibrate The pattern with which to vibrate.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#ledARGB
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#ledOffMS
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#ledOnMS
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/net/ContentURI.html
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#sound
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/widget/RemoteViews.html
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarIcon
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarIcon
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/java/lang/CharSequence.html
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarBalloonText
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarIcon
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarIcon
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/content/Intent.html
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarIcon
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/java/lang/CharSequence.html
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarTickerText
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#vibrate

216 CHAPTER 8 Notifications and alarms
Notification notif = new Notification(
 context, // the application context
 icon, // the icon for the status bar
 ticketText, // the text to display in the ticker
 when, // the timestamp for the notification
 Title, // the title for the notification
 TextBody, // the details to display in the notification
 contentIntent, // the contentIntent
 appIntent); // the application intent

To send the Notification all you have to do is enter the following:

nm.notify(String, Notification);

where nm is the reference to the NotificationManager. Now let’s take our previous
example and edit to change it from a Toast notification to a notification in the status
bar. Before we do that, we’ll make the application more interesting by adding icons
to our resources directory. For this example we’re going to use the chat.png icon and
the incoming.png icon. You can find these files in the downloaded code for this
book, or you can get them from http://www.manning.com/ableson/. Simply drop
them in the res/drawable directory to have Eclipse automatically register them for
you in the R class.

 Now let’s edit our code. First we’ll edit the SMSNotifyActivity class so that when
the Activity is called it can find the Notification passed to it from the Notification-
Manager. After the Activity has run, SMSNotifyActivity can cancel it. Listing 8.4
provides the code you need for new SMSNotifyActivity class.

public class SMSNotifyActivity extends Activity {

 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 NotificationManager nm = (NotificationManager)
getSystemService(NOTIFICATION_SERVICE);
 nm.cancel(R.string.app_name);

 }
}

As you can see, all we did was to use the NotificationManager B to look up the
Notification and then used the cancel() C method to cancel it. We could do more
here, such as set up a custom view, but for now we will leave it as is.

 Next we need to edit the SMSNotifyExample to remove the Toast Notification and
support a Notification to the status bar. Listing 8.5 shows the edits we need to make.

public class SMSNotifyExample extends BroadcastReceiver {

 private static final String LOG_TAG = "SMSReceiver";

Listing 8.4 A sample SMSNotifyActivity

Listing 8.5 Updated SMSNotifyExample.java

Set up the
NotificationManager

B

C
Cancel the
Notification
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/ableson/

217Introducing notifications
 public static final int NOTIFICATION_ID_RECEIVED = 0x1221;
 static final String ACTION = "android.provider.Telephony.SMS_RECEIVED";
 private CharSequence tickerMessage = null;

 public void onReceiveIntent(Context context, Intent intent) {

 NotificationManager nm = (NotificationManager)
context.getSystemService(Context.NOTIFICATION_SERVICE);

 if (intent.getAction().equals(SMSNotifyExample.ACTION)) {

 StringBuilder sb = new StringBuilder();

 Bundle bundle = intent.getExtras();
 if (bundle != null) {
 Object[] pdusObj = (Object[]) bundle.get("pdus");
 SmsMessage[] messages = new SmsMessage[pdusObj.length];

 for (SmsMessage currentMessage : messages) {
 sb.append("Received compressed SMS\nFrom: ");
 sb.append(currentMessage.getDisplayOriginatingAddress());
 sb.append("\n----Message----\n");
 sb.append(currentMessage.getDisplayMessageBody());
 }
 }

 Log.i(SMSNotifyExample.LOG_TAG, "[SMSApp] onReceiveIntent: " + sb);
 abortBroadcast();

 Intent i = new Intent(context, SMSNotifyActivity.class);
 context.startActivity(i);

 CharSequence appName = "SMSNotifyExample";
 this.tickerMessage = sb.toString();
 Long theWhen = System.currentTimeMillis();

 PendingIntent.getBroadcast((Context) appName, 0, i, 0);
 Notification notif = new Notification(
 R.drawable.incoming,
 this.tickerMessage,
 theWhen);

 notif.vibrate = new long[] { 100, 250, 100, 500};
 nm.notify(R.string.alert_message, notif);
 }
 }

 @Override
 public void onReceive(Context context, Intent intent) {

 }
}

Notice that the first change we made was to add a called tickerMessage. The ticker-
Message will hold the SMS message that we want to scroll in the notification bar. We
add these fields right after our Action variable, like this:

private CharSequence tickerMessage = null;

Next we create an Application Intent B. The Application Intent will be the
Intent shown when we click on the SMS inbox. For this example it won’t do anything,

B
Create the

Application Intent

C
Build the
Notification

D
Broadcast the
Notification
Licensed to Deborah Christiansen <pedbro@gmail.com>

218 CHAPTER 8 Notifications and alarms
but it is required for building the Notification. You could have it pop up in an editor
or some other screen with a little more effort.

 Once the Application Intent is set, we can generate the Notification C. To
make the code easier to understand, we have added some comments next to each
attribute of Notification from listing 8.5:

 Notification notif = new Notification(
 R.drawable.incoming, // the icon for the status bar
 tickerMessage, // the text to display in the ticker
 theWhen
);

 nm.notify(R.string.app_name, notif);

On the last line we use the notify() method D from the NotificationManager to
broadcast our Notification to the application.

 Now if you run the application, then open the DDMS and pass an SMS message as
you did earlier, you should see the new Notification appear in the status bar. The
message displays each line for a short interval until the message is fully displayed. You
should also see a new icon pop up in the status bar indicating a new SMS message, as
shown in figure 8.3.

 When you have sent the message, you can click the New Messages icon, and a bar
should drop down from it. Click on the bar and drag it down to the bottom of the screen.
This opens the default view of the SMS inbox for Android, as shown in figure 8.4.

Figure 8.3 Using the Android DDMS to
send an SMS message to the application

Figure 8.4 The expanded SMS inbox
displaying the contentIntent and
appIntent
Licensed to Deborah Christiansen <pedbro@gmail.com>

219Alarms
There is a lot more you could do with this demo, such as creating a better UI or mak-
ing the SMS inbox more feature rich. You could even have the application play a
sound when a message arrives, but for this example we have looked at everything you
need to know to start working with notifications. In the next section we are going to
look at Notification’s close relative, the Alarm.

8.3 Alarms
In Android, alarms allow you to schedule your application to run at some point in the
future. Alarms can be used for a wide range of applications, from notifying a user of
an appointment to something more sophisticated, such as having an application start
up, check for software updates, and then shut down. An Alarm works by registering an
Intent with the Alarm, and then at the time scheduled the Alarm will broadcast the
Intent. Android will automatically start the targeted application even if the Android
handset is asleep.

 Android manages all alarms somewhat like the NotificationManager—via an Alarm-
Manager class. The AlarmManager has four methods: cancel, set, setRepeating, and
setTimeZone as shown in table 8.2.

You instantiate the AlarmManager indirectly as you do the NotificationManager by
using Context.getSystemService(Context.ALARM_SERVICE).

 Setting alarms is very easy, like most things in Android. In the next example we will
create a simple application that sets an Alarm when a button is pushed; when the
Alarm is triggered, it will pass back a simple Toast to inform us that the Alarm has
been fired.

8.3.1 Alarm example

In this next example we are going to create an Android project called SimpleAlarm
with the package com.msi.manning.chapter8.simpleAlarm, an application name of
SimpleAlarm and an Activity name of GenerateAlarm. In this project we will use

Table 8.2 AlarmManager public methods

Returns Method and description

void cancel(PendingIntent intent)
Remove alarms with matching Intent

void set(int type, long triggerAtTime, PendingIntent operation)
Set an Alarm

void setRepeating(int type, long triggerAtTime, long interval,
PendingIntent operation)
Set a repeating Alarm

void setTimeZone(String TimeZone)
Set the time zone for the Alarm
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/android/app/AlarmManager.html#cancel%28android.content.Intent%29
http://code.google.com/android/reference/android/content/Intent.html
http://code.google.com/android/reference/android/content/Intent.html
http://code.google.com/android/reference/android/app/AlarmManager.html#set%28int, long, android.content.Intent%29
http://code.google.com/android/reference/android/content/Intent.html
http://code.google.com/android/reference/android/app/AlarmManager.html#setRepeating%28int, long, long, android.content.Intent%29
http://code.google.com/android/reference/android/content/Intent.html

220 CHAPTER 8 Notifications and alarms
another open source icon, which you can find at http://www.manning.com/ableson/
or in the download for this chapter. Change the name of the icon to clock, and add it
to the res/drawable directory of the project when you create it.

 Next we need to edit the AndroidManifest.xml to have a receiver B, which we will
create soon, called AlarmReceiver, as shown in listing 8.6.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.chapter8.simpleAlarm">
 <application android:icon="@drawable/clock">
 <activity android:name=".GenerateAlarm"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".AlarmReceiver" android:process=":remote" />
 </application>
</manifest>

Now we edit the string.xml file in the values directory and add two new strings:

<string name="set_alarm_text">Set Alarm</string>
<string name="alarm_message">Alarm Fired</string>

We will use this string as the value of the button in our layout. Next we need to add a
new button to our layout, so edit the main.xml file to add a new button, like this:

<Button android:id="@+id/set_alarm_button"
android:layout_width="wrap_content"

 android:layout_height="wrap_content"
 android:text="@string/set_alarm_text">
 <requestFocus />
</Button>

We are ready to create a new class that will act as the Receiver for the Notification the
Alarm will generate. In this case we are going to be generating a Toast-style Notifica-
tion to let the user know that the Alarm has been triggered. Now create a new class as
shown in listing 8.7, which waits for the Alarm to broadcast to the AlarmReceiver and
will then generate a Toast.

public class AlarmReceiver extends BroadcastReceiver {

 public void onReceiveIntent(Context context, Intent intent) {
 Toast.makeText(context, R.string.app_name, Toast.LENGTH_SHORT).show();
 }

 @Override

Listing 8.6 AndroidManifest.xml

Listing 8.7 AlarmReceiver.java

BDefine the receiver

Create the
onReceiveIntent method

Broadcast a Toast when
the Intent is received
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/ableson/

221Alarms
 public void onReceive(Context context, Intent intent) {

 }
}

Next we need to edit the SimpleAlarm class to create a button widget (as discussed in
chapter 3) that calls the inner class setAlarm. In setAlarm we create an onClick
method that will schedule our Alarm, call our Intent, and fire off our Toast. Listing 8.8
shows what the finished class should look like.

public class GenerateAlarm extends Activity {

 Toast mToast;

 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 Button button = (Button)findViewById(R.id.set_alarm_button);
 button.setOnClickListener(this.mOneShotListener);
 }

 private OnClickListener mOneShotListener = new OnClickListener() {

 public void onClick(View v) {

 Intent intent = new Intent(GenerateAlarm.this, AlarmReceiver.class);

 PendingIntent appIntent =
 PendingIntent.getBroadcast(GenerateAlarm.this, 0, intent, 0);

 Calendar calendar = Calendar.getInstance();
 calendar.setTimeInMillis(System.currentTimeMillis());
 calendar.add(Calendar.SECOND, 30);

 AlarmManager am = (AlarmManager)getSystemService(ALARM_SERVICE);
 am.set(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(),
 appIntent);

 if (GenerateAlarm.this.mToast != null) {
 GenerateAlarm.this.mToast.cancel();
 }
 GenerateAlarm.this.mToast = Toast.makeText(GenerateAlarm.this,
 R.string.alarm_message, Toast.LENGTH_LONG);
 GenerateAlarm.this.mToast.show();
 }
 };

}

As you can see, this is a pretty simple class. We first create a Button to trigger our
Alarm B. Next we create an inner class for our mOneShotListener. We then create the
Intent to be trigged when the Alarm actually goes off C. In the next section of code
we use the Calendar class D to help us calculate the number of milliseconds from the
time the button is pressed, which we will use to set the Alarm.

Listing 8.8 SimpleAlarm.java

Set up Button to call
mOneShotListener

B

Create Intent to fire when Alarm goes off C

D

Set the time
for Alarm to
go off

F Set the Alarm

ECreate the AlarmManager
Licensed to Deborah Christiansen <pedbro@gmail.com>

222 CHAPTER 8 Notifications and alarms
 Now we have done everything necessary beforehand in order to create and set the
Alarm. To do this we first create the AlarmManager E and then call its set() method
to set the Alarm F. To see a little more detail of what’s going on in the application,
take a look at these lines of code:

AlarmManager am = (AlarmManager)getSystemService(ALARM_SERVICE);
 am.set(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(), intent);

This is where we actually create and set the Alarm by first using getSystemService to
create the AlarmManager. The first parameter we pass to the set() method is
RTC_WAKEUP, which is an integer representing the Alarm type we want to set. The
AlarmManager currently supports four Alarm types, as shown in table 8.3.

As you can see, there are multiple types of alarms that you can use depending on your
requirements. The RTC_WAKEUP, for example, sets the Alarm time in milliseconds, and
when the Alarm goes off it will wake up the device from sleep mode for you, as
opposed to RTC, which will not.

 The next parameter we pass to the method is the amount of time in milliseconds
we want to elapse, after which we want the alarm to be triggered. We set this with:

 Calendar calendar = Calendar.getInstance();
 calendar.setTimeInMillis(System.currentTimeMillis());
 calendar.add(Calendar.SECOND, 30);

The last parameter is the Intent we want to broadcast to, which is our Intent-
Receiver. Now if you build the application and run it in the emulator, you should see
something like the screen shown in figure 8.5.

 Clicking the Set Alarm button will set the alarm, and after 30 seconds you should
see something like figure 8.6, displaying the Toast message.

 As you can see, creating an Alarm is pretty easy in Android, but what might make
more sense would be for that Alarm to trigger a Notification in the status bar. To do
that you would need to add a NotificationManager and generate a Notification. To
do this we have created a new method to add to listing 8.8 called showNotification,
which takes four parameters and creates our Notification, like this:

Table 8.3 AlarmManager Alarm types

Type Description

ELAPSED_REALTIME Alarm time in SystemClock.elapsedRealtime() (time
since boot, including sleep)

ELAPSED_REALTIME_WAKEUP Alarm time in SystemClock.elapsedRealtime() (time since
boot, including sleep), which will wake up the device when it goes off

RTC Alarm time in System.currentTimeMillis() (wall clock
time in UTC)

RTC_WAKEUP Alarm time in System.currentTimeMillis() (wall clock
time in UTC), which will wake up the device when it goes off
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/android/app/AlarmManager.html#ELAPSED_REALTIME
http://code.google.com/android/reference/android/os/SystemClock.html#elapsedRealtime%28%29
http://code.google.com/android/reference/android/app/AlarmManager.html#ELAPSED_REALTIME_WAKEUP
http://code.google.com/android/reference/android/os/SystemClock.html#elapsedRealtime%28%29
http://code.google.com/android/reference/android/app/AlarmManager.html#RTC
http://code.google.com/android/reference/java/lang/System.html#currentTimeMillis%28%29
http://code.google.com/android/reference/android/app/AlarmManager.html#RTC_WAKEUP
http://code.google.com/android/reference/java/lang/System.html#currentTimeMillis%28%29

223Alarms
 private void showNotification(int statusBarIconID,
 int statusBarTextID, int detailedTextID, boolean showIconOnly) {

 Intent contentIntent = new Intent(this, SetAlarm.class);
 PendingIntent theappIntent = PendingIntent.getBroadcast(SetAlarm.this,
 0, contentIntent, 0);
 CharSequence from = "Alarm Manager";
 CharSequence message = "The Alarm was fired";

 String tickerText = showIconOnly ? null : this.getString(statusBarTextID);
 Notification notif = new Notification(statusBarIconID, tickerText,
 System.currentTimeMillis());

 notif.setLatestEventInfo(this, from, message, theappIntent);

 nm.notify(YOURAPP_NOTIFICATION_ID, notif);
 }

Much of this code is very similar to the SMSNotifyExample code. To add it to your
SimpleAlarm, edit listing 8.8 to look like listing 8.9, where the only other things we
have done are to import the Notification and NotificationManager to the code,
add the private variables nm and ApplicationID, and make a call to showNotifica-
tion() right after the Toast.

Figure 8.5 Example of the SimpleAlarm
application running in the emulator

Figure 8.6 After the Alarm runs, the
application shows a simple Toast message.
Licensed to Deborah Christiansen <pedbro@gmail.com>

224 CHAPTER 8 Notifications and alarms
public class SetAlarm extends Activity {

 private NotificationManager nm;
 Toast mToast;

 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 this.nm = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);

 Button button = (Button) findViewById(R.id.set_alarm_button);
 button.setOnClickListener(this.mOneShotListener);

 }

 private void showNotification(int statusBarIconID, int statusBarTextID, int
detailedTextID, boolean showIconOnly) {

 Intent contentIntent = new Intent(this, SetAlarm.class);
 PendingIntent theappIntent = PendingIntent.getBroadcast(SetAlarm.this, 0,
 contentIntent, 0);
 CharSequence from = "Alarm Manager";
 CharSequence message = "The Alarm was fired";

 String tickerText = showIconOnly ? null : this.getString(statusBarTextID);
 Notification notif = new Notification(statusBarIconID, tickerText,
 System.currentTimeMillis());

 notif.setLatestEventInfo(this, from, message, theappIntent);

 this.nm.notify(this.YOURAPP_NOTIFICATION_ID, notif);
 }

 private OnClickListener mOneShotListener = new OnClickListener() {

 public void onClick(View v) {

 Intent intent = new Intent(SetAlarm.this, AlarmReceiver.class);

 PendingIntent appIntent = PendingIntent.getBroadcast(SetAlarm.this, 0,
 intent, 0);

 Calendar calendar = Calendar.getInstance();
 calendar.setTimeInMillis(System.currentTimeMillis());
 calendar.add(Calendar.SECOND, 30);

 AlarmManager am = (AlarmManager)
 getSystemService(Context.ALARM_SERVICE);
 am.set(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(),
 appIntent);

 showNotification(R.drawable.alarm, R.string.alarm_message,
 R.string.alarm_message, false);

 }
 };

 }
}

Listing 8.9 SetAlarm.java
Licensed to Deborah Christiansen <pedbro@gmail.com>

225Summary
If you run the code and click Set Alarm, you
should see the Alarm Notification in the status
bar, as in figure 8.7. You could easily edit this
code to take in parameters for time and date,
have it show different Intents when the icons
are clicked, and so on.

 As you can see from this example, Android
alarms and the AlarmManager are very straight-
forward, and you should be able to easily inte-
grate them into your applications.

8.4 Summary
In this chapter we have looked at two separate but
related items: Notification and Alarm. We have
looked at how to use the NotificationManager to
generate notifications and how the Notifica-
tion class can be used to present a Notification
to the user by building a simple example that dis-
plays a Notification when an SMS messages
arrives in the inbox.

 We have also looked at how to set an Alarm to
cause an application to start or take some action
in the future, include waking the system from the
sleep mode. Finally we looked at how to trigger a
Notification from an Alarm. While the code
presented in these simple examples gives you a taste of what can be done with notifica-
tions and alarms, both have very broad applications limited only by your imagination.

 Now that you have an understanding of how to work with the Notification and
Alarm classes, we are going to move on a discussion of graphics and animation. In
chapter 9 you will learn the basic methods of generating graphics in Android, how to
create simple animations, and even how to work with OpenGL to generate stun-
ning 3D graphics.

Figure 8.7 Alarm Notification
showing in the status bar
Licensed to Deborah Christiansen <pedbro@gmail.com>

Graphics and animation
One of the main features of Android that you should have picked up on by now is how
much easier it is to develop Android applications than mobile application platforms.
This really stands out in the creation of visually appealing UIs and metaphors, but
there is a limit of what can be done with typical Android UI elements (such as those
discussed in chapter 3). In this chapter we are going to look at how to create graphics
using Android’s Graphic API, develop animations, and look at Android’s support for
the OpenGL standard (to see examples of what can be done with Android’s graphics
platform go to http://www.omnigsoft.com/Android/ADC/readme.html).

 If you have ever worked with graphics in Java, you will most likely find the
Graphics API and how graphics work in Android familiar.

9.1 Drawing graphics in Android
In this section we are going to be looking at Android’s graphical capabilities as
well as examples of how to make simple 2D shapes. We will be making use of

This chapter covers:
■ Drawing graphics in Android
■ Applying the basics of OpenGL ES
■ Animating
226

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://developer.android.com/reference/android/app/Activity.html
http://www.omnigsoft.com/Android/ADC/readme.html

227Drawing graphics in Android
the android.graphics package (see http://code.google.com/android/reference/
android/graphics/package-summary.html), which provides all the low-level classes
and tooling needed to create graphics. The graphics package supports such things as
bitmaps (which hold pixels), canvas (what your draw calls draw on), primitives (such
as rectangles or text), and paint (which you use to add color and styling).

 To demonstrate the basics of drawing a shape, let’s look at a simple example in list-
ing 9.1, where we will draw a rectangle.

package com.msi.manning.chapter9.SimpleShape;

public class SimpleShape extends Activity {

 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(new SimpleView(this));
 }

 private static class SimpleView extends View {
 private ShapeDrawable mDrawable =
 new ShapeDrawable();

 public SimpleView(Context context) {
 super(context);
 setFocusable(true);
 this.mDrawable =
 new ShapeDrawable(new RectShape());
 this.mDrawable.getPaint().setColor(0xFFFF0000);
 }

 @Override
 protected void onDraw(Canvas canvas) {

 int x = 10;
 int y = 10;
 int width = 300;
 int height = 50;
 this.mDrawable.setBounds(x, y, x + width, y + height);
 this.mDrawable.draw(canvas);
 y += height + 5;

 }
 }
}

Drawing a new shape is simple. First we need to import the necessary packages B
including graphics, then ShapeDrawable, which will support adding shapes to our
drawing, and then shapes, which supports several generic shapes including Rect-
Shape, which we will use. Next we need to create a view C, then a new ShapeDraw-
able to add our Drawable to D. Once we have a ShapeDrawable we can assign shapes
to it. In our code we use the RectShape E, but we could have used OvalShape, Path-
Shape, RectShape, RoundRectShape, or Shape. We then use the onDraw() method to

Listing 9.1 Shape example

Create ViewB

C
Create ShapeDrawable
to hold Drawable

Create Rectangle and
assign to mDrawable

D

The onDraw method
draws the graphics

E

Set boundaries and
draw on canvas

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/javax/microedition/khronos/opengles/GL10.html
http://code.google.com/android/reference/android/graphics/package-summary.html
http://code.google.com/android/reference/android/graphics/package-summary.html

228 CHAPTER 9 Graphics and animation
draw the Drawable on the Canvas F. Finally we
use the Drawable’s setBounds() method to set
the boundary (a rectangle) in which we will draw
our rectangle using the draw() method. When
you run listing 9.1, you should see a simple red
rectangle like the one shown in figure 9.1.

 Another way to do the same thing is through
the use of XML. Android allows you to define
shapes to draw in an XML resource file.

9.1.1 Drawing with XML

With Android you can create simple drawings
using an XML file approach. To do this, all you
need to do is create a Drawable object or objects,
which are defined as an XML file in your draw-
able directory, such as res/drawable. The XML to
create a simple rectangle would look like list-
ing 9.2.

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <solid android:color="#FF0000FF"/>
</shape>

With Android XML drawable shapes, the default is a rectangle, but you can change the
shape by using the type tag and selecting a value of oval, rectangle, line, or arc. To use
this XML shape you need to reference it in a layout, as in listing 9.3, where the layout
would reside in res/layout.

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

Listing 9.2 simplerectangle.xml

Listing 9.3 xmllayout.xml

Figure 9.1 A simple red rectangle
drawn using Android’s Graphics API
Licensed to Deborah Christiansen <pedbro@gmail.com>

229Drawing graphics in Android
 <ImageView android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/simplerectangle" />

Then all you need to do is create a simple Activity, where you place your UI in a
contentView, as in listing 9.4.

public class XMLDraw extends Activity {

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.xmldrawable);
 }
}

If you run this code, it will draw a simple rectangle. You can make more complex
drawings or shapes by stacking or ordering your XML drawables, and you can include
as many shapes as you want or need depending on space. You could change your xml-
drawable.xml file to look like listing 9.5, which adds a number of shapes and stacks
them vertically.

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <ImageView android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/shape_1" />
 <ImageView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:src="@drawable/line" />
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/shape_2" />
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="50dip"
 android:src="@drawable/shape_5" />
 </LinearLayout>
</ScrollView>

Finally you need to add the shapes in listings 9.6, 9.7, 9.8, and 9.9 into the res/draw-
able folder.

Listing 9.4 XMLDraw.java

Listing 9.5 xmldrawable.xml
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.manning.com/selman/
http://www.manning.com/selman/

230 CHAPTER 9 Graphics and animation
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="oval" >
 <solid android:color="#00000000"/>
 <padding android:left="10sp" android:top="4sp"
 android:right="10sp" android:bottom="4sp" />
 <stroke android:width="1dp" android:color="#FFFFFFFF"/>
</shape>

In listing 9.6 we are using an oval. We have added a tag called padding, which allows
us to define padding or space between the object and other objects in the UI. We are
also using the tag called stroke, which allows us to define the style of the line that
makes up the border of the oval (see listing 9.7).

<?xml version="1.0" encoding="utf-8"?>

<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <solid android:color="#FF0000FF"/>
 <stroke android:width="4dp" android:color="#FFFFFFFF"
 android:dashWidth="1dp" android:dashGap="2dp" />
 <padding android:left="7dp" android:top="7dp"
 android:right="7dp" android:bottom="7dp" />
 <corners android:radius="4dp" />
</shape>

With this shape we are generating another rectangle, but this time (see listing 9.8) we
introduce the tag corners, which allows us to make rounded corners with the attri-
bute android:radius.

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="oval">
 <gradient android:startColor="#FFFF0000" android:endColor="#80FF00FF"
 android:angle="270"/>
 <padding android:left="7dp" android:top="7dp"
 android:right="7dp" android:bottom="7dp" />
 <corners android:radius="8dp" />
</shape>

In listing 9.9 we create a shape of the type line with a size tag using the
android:height attribute, which allows us to describe the number of pixels used on
the vertical to size the line.

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android=http://schemas.android.com/apk/res/android
type="line" >
 <solid android:color="#FFFFFFFF"/>

Listing 9.6 shape1.xml

Listing 9.7 shape2.xml

Listing 9.8 shape3.xml

Listing 9.9 line.xml
Licensed to Deborah Christiansen <pedbro@gmail.com>

231Animations
 <stroke android:width="1dp" android:color="#FFFFFFFF"
 android:dashWidth="1dp" android:dashGap="2dp" />
 <padding android:left="1dp" android:top="25dp"
 android:right="1dp" android:bottom="25dp" />

 <size android:height="23dp" />
</shape>

If you run this, you should see something like fig-
ure 9.2.

 As you can see, drawing with Android is
straightforward, and Android provides the ability
for developers to programmatically draw any-
thing they might need. In the next section we are
going to look at what we can draw with Android’s
animations capabilities.

9.2 Animations
If a picture says a thousand words, then an anima-
tion must speak volumes. Android supports multi-
ple methods of animations, including through
XML, as you saw in chapter 3, or via Android’s XML
frame-by-frame animations using the Android
Graphics API, or via Android’s support for OpenGL
ES. In this section we are going to create a very sim-
ple animation of a bouncing ball using Android’s
frame-by-frame animation.

 Android allows you to create simple anima-
tions by showing a set of images one after another
to give the illusion of movement, much like stop-
motion film. Android does this by setting each
frame image as a drawable resource; the images
are then shown one after the other in the background of a View. To use this feature
you define a set of resources in a XML file and then call AnimationDrawable.run().

 To demonstrate this method for creating an animation, first you need to download
the images for this chapter from the book’s website at http://www.manning.com/
UnlockingAndroid. The images for this exercise are six representations of a ball
bouncing. Next, create a project called XMLanimation. Now create a new directory
called /anim under the /res resources directory. Place all of the images for this exam-
ple in the /drawable directory. Now create an XML file called Simple_animation.xml,
containing the code shown in listing 9.10.

<?xml version="1.0" encoding="utf-8"?>
 <animation-list xmlns:android=http://schemas.android.com/apk/res/android
 id="selected" android:oneshot="false">

Listing 9.10 Simple_animation.xml

Figure 9.2
Various shapes drawn using XML
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/UnlockingAndroid
http://www.manning.com/UnlockingAndroid

232 CHAPTER 9 Graphics and animation
 <item android:drawable="@drawable/ball1" android:duration="50" />
 <item android:drawable="@drawable/ball2" android:duration="50" />
 <item android:drawable="@drawable/ball3" android:duration="50" />
 <item android:drawable="@drawable/ball4" android:duration="50" />
 <item android:drawable="@drawable/ball5" android:duration="50" />
 <item android:drawable="@drawable/ball6" android:duration="50" />
 </animation-list>

The XML file defines the list of images to be displayed for the animation. The XML
<animation-list> tag contains the tags for the two attributes drawable, which
describes the path to the image, and duration, which describes the time to show the
image in nanoseconds. Now that you’ve created the animation XML file, edit the
main.xml file to look like listing 9.11.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ImageView android:id="@+id/simple_anim"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:layout_centerHorizontal="true"
 />
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Hello World, XMLAnimation"
 />
</LinearLayout>

All we have done here is to add an ImageView tag that sets up the layout for our Image-
View. Finally, create the code to run the animation, in listing 9.12.

public class XMLAnimation extends Activity {

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 ImageView img =
 (ImageView)findViewById(R.id.simple_anim);
 img.setBackground(R.anim.simple_animation);

 MyAnimationRoutine mar =
 new MyAnimationRoutine();
 MyAnimationRoutine2 mar2 =
 new MyAnimationRoutine2();

Listing 9.11 main.xml

Listing 9.12 xmlanimation.java

Bind resources
to ImageView

Call subclasses to start
and stop Animation
Licensed to Deborah Christiansen <pedbro@gmail.com>

233Animations
 Timer t = new Timer(false);
 t.schedule(mar, 100);
 Timer t2 = new Timer(false);
 t2.schedule(mar2, 5000);

 }

 class MyAnimationRoutine extends TimerTask {

 @Override
 public void run() {
 ImageView img = (ImageView) findViewById(R.id.simple_anim);
 AnimationDrawable frameAnimation = (AnimationDrawable)
 img.getBackground();
 frameAnimation.start();
 }
 }

 class MyAnimationRoutine2 extends TimerTask {

 @Override
 public void run() {
 ImageView img = (ImageView) findViewById(R.id.simple_anim);
 AnimationDrawable frameAnimation = (AnimationDrawable)
 img.getBackground();
 frameAnimation.stop();
 }
 }
}

Listing 9.12 might be slightly confusing
because of the use of the TimerTask classes.
Since we cannot control the animation from
within the OnCreate method, we need to cre-
ate two subclasses that call Animation-
Drawable’s start and stop methods. So the
first subclass, MyAnimationRoutine, extends
the TimerTask B and calls the frame-
Animation.start() method for the Anima-
tionDrawable bound to the ImageView

background. If you now run the project, you
should see something like figure 9.3.

 As you can see, creating an Animation
with XML in Android is pretty simple. You
can make the animations reasonably complex as you would with any stop-motion-type
movie, but to create more sophisticated animations programmatically you need to use
Android’s 2D and 3D graphics abilities. In this next section we will do just that.

9.2.1 Programmatically creating an animation

In the previous section we used Android’s frame-by-frame animation capabilities to
essentially show a series of images in a loop to give the impression of movement. In

Allow wait time before
starting Animation

B

Figure 9.3 Making a ball bounce using an
Android XML Animation
Licensed to Deborah Christiansen <pedbro@gmail.com>

234 CHAPTER 9 Graphics and animation
this next section we are going to programmatically animate a globe so that it moves
around the screen.

 To do this we are going to animate a graphics file (a PNG file) with a ball that
seems to be bouncing around inside our Android viewing window. We are going to
create a Thread in which our animation will run and a Handler that will help commu-
nicate messages back to our program that reflect the changes in state of our anima-
tion. We will later use this same approach in the section on OpenGL ES. You will find it
the basic way to approach most complex graphics applications and animations.
ANIMATING RESOURCES

In this section we are going to look at a very simple animation technique using an
image bound to a sprite and moving that sprite around the screen to give the appear-
ance of a bouncing ball. To get started, create a new project called bouncing ball with
a BounceActivity. You can copy and paste in the code in listing 9.13 for the Bounce-
Activity.java file.

public class BounceActivity extends Activity {

 protected static final int GUIUPDATEIDENTIFIER = 0x101;

 Thread myRefreshThread = null;
 BounceView myBounceView = null;

 Handler myGUIUpdateHandler = new Handler() {
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case BounceActivity.GUIUPDATEIDENTIFIER:
 myBounceView.invalidate();
 break;
 }
 super.handleMessage(msg);
 }
 };
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.requestWindowFeature(Window.FEATURE_NO_TITLE);

 this.myBounceView = new BounceView(this);
 this.setContentView(this.myBounceView);

 new Thread(new RefreshRunner()).start();
 }

 class RefreshRunner implements Runnable {

 public void run() {
 while (!Thread.currentThread().isInterrupted()) {

 Message message = new Message();
 message.what = BounceActivity.GUIUPDATEIDENTIFIER;
 BounceActivity.this.myGUIUpdateHandler
.sendMessage(message);

Listing 9.13 BounceActivity.java

Create a unique
identifier

B

Create a
handler

C

Create
the view

D

Create the
new thread

E

Run the
animation

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

235Animations
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }
 }
}

In listing 9.13 first we import the Handler and Message classes, then create a unique
identifier to allow us to send a message back to our program to update the view in
the main thread. To do this we need to send a message telling the main thread to
update the view each time the child thread has finished drawing our ball. Since dif-
ferent messages can be thrown by the system we need to guarantee uniqueness of our
message to our handler which we do by creating a unique identifier called GUIUP-
DATEIDENTIFIER B. Next we create the Handler that will process our messages to
update the main view C. A Handler allows us to send and process Message classes
and Runnable objects associated with a thread’s message queue. Handlers are associ-
ated with a single thread and its message queue. We will use the handler to allow our
objects running a thread to communicate changes in state back to the program that
spawned them or vice versa.

NOTE For more information on handling long-running requests in your
applications see http://developer.android.com/reference/android/app/
Activity.html.

We set up a View as shown in D and create the new thread E. Finally we create a
RefreshRunner inner class implementing Runnable, which will run unless something
interrupts the thread, at which point a message is sent to the Handler to call its inval-
idate() method F. The invalidate method invalidates the View, forcing a refresh.

 Now we need to create the code that will do our animation and create a View. We
are going to use an image of a globe, which you can obtain at http://www.man-
ning.com/UnlockingAndroid. Alternatively you could use any other PNG file you’d
like. We also want to have the Android logo as our background, which you can find
along with the source code downloads. Make sure to drop the images under res/draw-
able/. Next, create a Java file called BounceView, and copy the code from listing 9.14
and paste it into your editor.

public class BounceView extends View {

 protected Drawable mySprite;
 protected Point mySpritePos = new Point(0,0);

 protected enum HorizontalDirection {LEFT, RIGHT}
 protected enum VerticalDirection {UP, DOWN}
 protected HorizontalDirection myXDirection =

Listing 9.14 BounceView.java

Create enumerations
for directional values

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://www.manning.com/UnlockingAndroid
http://www.manning.com/UnlockingAndroid

236 CHAPTER 9 Graphics and animation
HorizontalDirection.RIGHT;

 protected VerticalDirection myYDirection = VerticalDirection.UP;

 public BounceView(Context context) {
 super(context);

this.setBackground(this.getResources().getDrawable(R.drawable.android));
this.mySprite =
 this.getResources().getDrawable(R.drawable.world);
 }

 @Override
 protected void onDraw(Canvas canvas) {

this.mySprite.setBounds(this.mySpritePos.x,
 this.mySpritePos.y,
 this.mySpritePos.x + 50, this.mySpritePos.y + 50);

 if (mySpritePos.x >= this.getWidth() –
mySprite.getBounds().width()) {
 this.myXDirection = HorizontalDirection.LEFT;
 } else if (mySpritePos.x <= 0) {
 this.myXDirection = HorizontalDirection.RIGHT;
 }

 if (mySpritePos.y >= this.getHeight() –
mySprite.getBounds().height()) {
 this.myYDirection = VerticalDirection.UP;
 } else if (mySpritePos.y <= 0) {
 this.myYDirection = VerticalDirection.DOWN;
 }

 if (this.myXDirection ==
HorizontalDirection.RIGHT) {
 this.mySpritePos.x += 10;
 } else {
 this.mySpritePos.x -= 10;
 }

 if (this.myYDirection ==
 VerticalDirection.DOWN) {
 this.mySpritePos.y += 10;
 } else {
 this.mySpritePos.y -= 10;
 }

 this.mySprite.draw(canvas);
 }
}

In listing 9.14 we do all the real work of animating our image. First we create a Draw-
able to hold our globe image and a Point, which we will use to position and track our
globe as we animate it. Next we create enums to hold directional values for horizontal
and vertical directions, which we will use to keep track of the moving globe B. Then
we map the globe to the mySprite variable and set the Android logo as the back-
ground for our animation C.

C
Get image file and
map it to the sprite

Set the bounds
of the globe

D

Move ball left or
right, up or down

E

Check if ball is
trying to leave
screen

F

Draw the
globe

G

Licensed to Deborah Christiansen <pedbro@gmail.com>

237Animations
 Now that we have done the setup work, we create a new View and set all the bound-
aries for the Drawable D. After that we create simple conditional logic that detects
whether the globe is trying to leave the screen; if it starts to leave the screen, we
change its direction E. Then we provide simple conditional logic to keep the ball
moving in the same direction if it has not encountered the bounds of the View F.
Finally we draw the globe using the draw method G. Now if you compile and run the
project, you should see the globe bouncing around in front of the Android logo, as
shown in figure 9.4.

While the simple Animation that we created is not too exciting, you could—with very
little extra work—leverage the key concepts (dealing with boundaries, moving around
drawables, detecting changes, dealing with threads, and so on) to create something
like the Google Lunar Lander example game or even a simple version of Asteroids. If
you want more graphics power and want to easily work with 3D objects for creating
things like games or sophisticated animations, read the next section on OpenGL ES.

9.2.2 Introducing OpenGL for embedded systems

One of the most interesting features of Android platform is its support of OpenGL for
Embedded Systems, or OpenGL ES. OpenGL ES is the embedded systems version of
the very popular OpenGL standard, which defines a cross-platform and cross-language
API for computer graphics. The OpenGL ES API does not support the full OpenGL

Figure 9.4 A simple animation of a globe bouncing in front of the Android logo
Licensed to Deborah Christiansen <pedbro@gmail.com>

238 CHAPTER 9 Graphics and animation
API, and much of the OpenGL API has been stripped out to allow OpenGL ES to run
on a large variety of mobile phones, PDAs, video game consoles, and other embedded
systems. OpenGL ES was originally developed by the Kronos Group, an industry con-
sortium, and the most current version of the standard can be found at http://
www.khronos.org/opengles/.

 OpenGL ES is a fantastic API for 2D and 3D graphics, especially for graphically
intensive applications such as games, graphical simulations and visualizations, and all
sorts of animations. Since Android also supports 3D hardware acceleration, developers
can make graphically intensive applications that target hardware with 3D accelerators.

 Because OpenGL and OpenGL ES are such broad topics with whole books dedi-
cated to them, we will cover only the basics of working with OpenGL ES and Android.
For a much deeper exploration of OpenGL ES, check out the specification as well as
the OpenGL ES tutorial at http://www.zeuscmd.com/tutorials/opengles/index.php.
After reading this section on Android support for OpenGL ES, you should have
enough information to follow a more in-depth discussion of OpenGL ES as well as to
port your code from other languages (such as the tutorial examples) into the Android
Framework. If you already know OpenGL or OpenGL ES, then the OpenGL com-
mands will be familiar, and you should concentrate on the specifics of working with
OpenGL from Android.

NOTE An excellent book on OpenGL and Java 3D programming is Java 3D
Programming by Daniel Selman, which is available at http://
www.manning.com/selman/.

With that in mind let’s apply the basics of OpenGL ES to first create an OpenGL-
Context, then a Window that we can draw on. To use OpenGL ES with Android, follow
these steps:

1 Create a custom View subclass.
2 Get a handle to an OpenGLContext, which provides access to Android’s OpenGL

ES functionality.
3 In the View’s onDraw() method, use the handle to the GL object and then use

its methods to perform any GL functions.

Following these basic steps, first we’ll create a class that uses Android to create a blank
surface to draw on. In the next section we’ll use OpenGL ES commands to draw a
square and then an animated cube on the surface. To start, open a new project called
OpenGLSquare and create an Activity called OpenGLSquare, as in listing 9.15.

public class SquareActivity extends Activity {

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(new DrawingSurfaceView(this));

Listing 9.15 OpenGLSquare.java
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.manning.com/selman/
http://www.manning.com/selman/

239Animations
 }

 class DrawingSurfaceView extends SurfaceView implements
 SurfaceHolder.Callback {

 public SurfaceHolder mHolder;

 public DrawingThread mThread;

 public DrawingSurfaceView(Context c) {
 super(c);
 init();
 }
 public void init() {
 mHolder = getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_GPU);
 }

 public void surfaceCreated(SurfaceHolder holder) {
 mThread = new DrawingThread();
 mThread.start();
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 mThread.waitForExit();
 mThread = null;
 }

 public void surfaceChanged(SurfaceHolder holder,
 int format, int w, int h) {
 mThread.onWindowResize(w, h);
 }

 class DrawingThread extends Thread {
 boolean stop;
 int w;
 int h;

 boolean changed = true;

 DrawingThread() {
 super();
 stop = false;
 w = 0;
 h = 0;
 }

 @Override
 public void run() {

 EGL10 egl = (EGL10)EGLContext.getEGL();
 EGLDisplay dpy =
 egl.eglGetDisplay(EGL10.EGL_DEFAULT_DISPLAY);
 int[] version = new int[2];
 egl.eglInitialize(dpy, version);
 int[] configSpec = {
 EGL10.EGL_RED_SIZE, 5,
 EGL10.EGL_GREEN_SIZE, 6,
 EGL10.EGL_BLUE_SIZE, 5,

B
Handle all creation,
destruction, etc.

C
Do the actual
drawing

Register as
a callback

D

Create a
new thread

E

Stop thread
when surface
is destroyed

F

Change size
of window

G

Create thread
to do drawing

H

Get an EGL
Instance

I

Specify a
configuration to use

J

Licensed to Deborah Christiansen <pedbro@gmail.com>

240 CHAPTER 9 Graphics and animation
 EGL10.EGL_DEPTH_SIZE, 16,
 EGL10.EGL_NONE
 };
 EGLConfig[] configs = new EGLConfig[1];
 int[] num_config = new int[1];
 egl.eglChooseConfig(dpy, configSpec, configs, 1,
 num_config);
 EGLConfig config = configs[0];

 EGLContext context = egl.eglCreateContext(dpy,
 config, EGL10.EGL_NO_CONTEXT, null);
 EGLSurface surface = null;
 GL10 gl = null;

 while(! stop) {
 int W, H;
 boolean updated;
 synchronized(this) {
 updated = this.changed;
 W = this.w;
 H = this.h;
 this.changed = false;
 }
 if (updated) {

 if (surface != null) {
 egl.eglMakeCurrent(dpy,
EGL10.EGL_NO_SURFACE,EGL10.EGL_NO_SURFACE, EGL10.EGL_NO_CONTEXT);
 egl.eglDestroySurface(dpy,
 surface);
 }

 surface =
 egl.eglCreateWindowSurface(dpy, config, mHolder, null);
 egl.eglMakeCurrent(dpy, surface,
 surface, context);

 gl = (GL10) context.getGL();

 gl.glDisable(GL10.GL_DITHER);

 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_FASTEST);

 gl.glClearColor(1, 1, 1, 1);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glViewport(0, 0, W, H);
 float ratio = (float) W / H;
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glFrustumf(-ratio, ratio, -1,
 1, 1, 10);
 }

 drawFrame(gl);

 egl.eglSwapBuffers(dpy, surface);

 if (egl.eglGetError() ==

Obtain reference
to OpenGL ES
context

1)

Do the actual
drawing

1!
Licensed to Deborah Christiansen <pedbro@gmail.com>

241Animations
EGL11.EGL_CONTEXT_LOST) {
 Context c = getContext();
 if (c instanceof Activity) {
 ((Activity)c).finish();
 }
 }
 }

 egl.eglMakeCurrent(dpy, EGL10.EGL_NO_SURFACE,
EGL10.EGL_NO_SURFACE,
 EGL10.EGL_NO_CONTEXT);
 egl.eglDestroySurface(dpy, surface);
 egl.eglDestroyContext(dpy, context);
 egl.eglTerminate(dpy);

 }

 public void onWindowResize(int w, int h) {
 synchronized(this) {
 this.w = w;
 this.h = h;
 this.changed = true;
 }
 }

 public void waitForExit() {
 this.stop = true;
 try {
 join();
 } catch (InterruptedException ex) {
 }
 }

 private void drawFrame(GL10 gl) {

 // do whatever drawing here.
 }
 }
 }
}

Listing 9.15 will generate an empty white window. Everything in listing 9.15 is essen-
tially code we need to draw and manage any OpenGL ES visualization. First we import
all our needed classes. Then we implement an inner class, which will handle every-
thing about managing a surface such as creating it, changing it, or deleting it. We
extend the class SurfaceView and implement the SurfaceHolder interface, which
allows us to get information back from Android when the surface changes, such as
when someone resizes it B. With Android all of this has to be done asynchronously;
we cannot manage surfaces directly.

 Next we create a thread to do the drawing C and create an init method that
uses the SurfaceView class’s getHolder method to get access to the SurfaceView
and add a callback to it via the addCallBack method D. Now we can implement
surfaceCreated E, surfaceChanged F, and surfaceDestroyed G, which are all
methods of the Callback class and are fired on the appropriate condition of change
in the Surface’s state.
Licensed to Deborah Christiansen <pedbro@gmail.com>

242 CHAPTER 9 Graphics and animation
 Now that all the Callback methods are implemented, we create a thread that will
do all our drawing H. Before we can draw anything, we need to create an OpenGL ES
Context I and then create a handler to the surface J so that we can use the
OpenGL Context’s method to act on the surface via the handle 1). Now we can finally
draw something, although in the drawFrame method 1! we are not doing anything.

 If you were to run the code right now, all you would get would be an empty win-
dow, but what we have generated so far will appear in some form or another in any
OpenGL ES application you make on Android. Typically you would break up your
code to have an Activity class to start your code, another class that would implement
your custom View, another class that might implement your SurfaceHolder and
Callback and provide all the methods for detecting changes to the surface as well as
the actual drawing of your graphics in a thread, and finally whatever code represents
your graphics. In the next section we will look at how to draw a square on the surface
as well as create an animated cube.
DRAWING SHAPES IN OPENGL ES

In our next example we will use OpenGL ES to create a simple drawing, a rectangle,
using OpenGL primitives—which are essentially pixels, polygons, and triangles. In
drawing our square we will us a primitive called the GL_Triangle_Strip, which takes
three vertices (the X, Y, Z points in an array of vertices) and draws a triangle. The last
two vertices become the first two vertices for the next triangle, with the next vertex in
the array being the final point. This repeats for as many vertices as there are in the
array, and it generates something like figure 9.5, where two triangles are drawn.

 OpenGL supports a small set of primitives, shown in table 9.1, from which you can
build anything from simple geometric shapes such as a rectangle to 3D models of ani-
mated characters .

Table 9.1 OpenGL primitives and their descriptions

Primitive flag Description

GL_POINTS Places a point at each vertex.

GL_LINES Draws a line for every pair of vertices given.

GL_LINE_STRIP Draws a continuous set of lines. After the first vertex, it draws a line
between every successive vertex and the vertex before it.

GL_LINE_LOOP Same as GL_LINE_STRIP except that it connects the start and end verti-
ces as well.

GL_TRIANGLES For every triplet of vertices, it draws a triangle with corners specified by the
coordinates of the vertices.

GL_TRIANGLE_STRIP After the first two vertices, every successive vertex uses the previous two
vertices to draw a triangle.

GL_TRIANGLE_FAN After the first two vertices, every successive vertex uses the previous vertex
and the first vertex to draw a triangle. This is used to draw cone-like shapes.
Licensed to Deborah Christiansen <pedbro@gmail.com>

243Animations
In listing 9.16 we use an array of vertices to define a square to paint on our surface. To
use the code, insert it directly into the code for listing 9.15, right below the com-
mented line // do whatever drawing here.

gl.glClear(GL10.GL_COLOR_BUFFER_BIT |
 GL10.GL_DEPTH_BUFFER_BIT);

float[] square = new float[] {

 0.25f, 0.25f, 0.0f,
 0.75f, 0.25f, 0.0f,
 0.25f, 0.75f, 0.0f,
 0.75f, 0.75f, 0.0f };

FloatBuffer squareBuff;

ByteBuffer bb =
ByteBuffer.allocateDirect(square.length*4);
 bb.order(ByteOrder.nativeOrder());

Listing 9.16 OpenGLSquare.java

Triangle 1

XY
Z

0.25 0.5 0.75

Triangle 2

0.25

0.5

0.75

0.25

0.5

0.75

1 2

3 4

Figure 9.5 How two triangles are drawn from an array of vertices

Clear the screenB

C
Create array that
represents a square

Create float buffer
to hold square

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

244 CHAPTER 9 Graphics and animation
 squareBuff = bb.asFloatBuffer();
 squareBuff.put(square);
 squareBuff.position(0);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluOrtho2D(gl, 0.0f,1.2f,0.0f,1.0f);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, squareBuff);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glColor4f(0,1,1,1);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);

This code is dense with OpenGL commands. The first thing we do is clear the screen
using glClear B, which is something you want to do before every drawing. Then we
build the array that will represent the set of vertices that will make up our square C. As
we explained before, we will be using the OpenGL primitive GL_TRANGLE_STRIP to
create the rectangle shown in figure 9.5, where the first set of three vertices (points 1, 2,
and 3) is the first triangle. The last vertex represents the third vertex (point 4) in the
second triangle, which reuses the last two vertices, 2 and 3, from the first triangle as its
first two to make the triangle described by points 2, 3 and 4 C. To say this more clearly,
Open GL takes one triangle and flips it over at the hypotenuse. We then create a buffer
to hold that same square data D. We also tell the system that we will be using a
GL_PROJECTION for our matrix mode, which is simply a type of matrix transformation
that is applied to every point in the matrix stack E.

 The next things we do are more setup related. We load the identity matrix and
then use the gluOrtho2D(GL10 gl, float left, float right, float bottom, float
top) command to set the clipping planes that are mapped to the lower-left and upper-
right corners of the window F. Now we are ready to start drawing our image. To do
this we first use the glVertexPointer(int size, int type, int stride, pointer to
array) method, which indicates the location of vertices for our triangle strip. The
method has four attributes: size, type, stride, and pointer. Size specifies the num-
ber of coordinates per vertex (for example, a 2D shape might ignore the Z axis and
only use two coordinates per vertex), type defines the data type to be used (GL_BYTE,
GL_SHORT, GL_FLOAT, and so on) G, stride specifies the offset between consecutive
vertices (how many unused values exist between the end of the current vertex and the
beginning of the next), and pointer is a reference to the array. While most drawing in
OpenGL ES is performed by using various forms of arrays such as the vertex array, they
are all disabled by default to save on system resources. To enable them we use the
OpenGL command glEnableClientState(array type), which accepts a array type,
which in our case is the GL_VERTEX_ARRAY H.

 Finally we use the glDrawArrays I function to render our arrays into the OpenGL
primitives and create our simple drawing. The glDrawArrays(mode, first, count)
function has three attributes: mode indicates which primitive to render, such as
GL_TRIANGLE_STRIP; first is the starting index of the array, which we set to 0 since we

OpenGL
commands
to define
projection

E

Set up 2D
orthographic
viewing region

F

G Set current
vertices for
drawing

H
Drawing will be done
by vertex array

Draw the arrayI
Licensed to Deborah Christiansen <pedbro@gmail.com>

245Animations
want it to render all the vertices in the array; count
specifies the number of indices to be rendered, and
in our case that is 4.

 Now if you run the code you should see a simple
blue rectangle on a white surface, like the one in fig-
ure 9.6. It isn’t particularly exciting, but most of the
code we used you would need for any OpenGL proj-
ect. In our next example we are going to create a 3D
cube with different colors on each side and then
rotate it in space.
THREE-DIMENSIONAL SHAPES AND SURFACES
WITH OPENGL ES

In this section we are going to use much of the code
from the previous example, but we are going to
extend it to create a 3D cube that rotates. We will
examine how to introduce perspective to our graph-
ics to give the illusion of depth.

 Depth works in OpenGL by using a depth buffer,
which contains a depth value between 0 and 1 for
every pixel. The value represents the perceived dis-
tance between objects and your viewpoint, so when
two objects’ depth values are compared, the value
closer to 0 will appear in front on the screen. To
make use of depth in our program we need to first enable the depth buffer by passing
GL_DEPTH_TEST to the glEnable method. Next we need to use glDepthFunc to define
how values are compared. For our example we are going to use GL_LEQUAL, defined in
table 9.2, which tells the system to show objects in front of other objects if their depth
value is lower.

Table 9.2 Flags for determining how values in the depth buffer will be compared

Flag Description

GL_NEVER Never passes

GL_LESS Passes if the incoming depth value is less than the stored value

GL_EQUAL Passes if the incoming depth value is equal to the stored value

GL_LEQUAL Passes if the incoming depth value is less than or equal to the stored value

GL_GREATER Passes if the incoming depth value is greater than the stored value

GL_NOTEQUAL Passes if the incoming depth value is not equal to the stored value

GL_GEQUAL Passes if the incoming depth value is greater than or equal to the stored value

GL_ALWAYS Always passes

Figure 9.6 A simple square drawn
on our surface using OpenGL ES
Licensed to Deborah Christiansen <pedbro@gmail.com>

246 CHAPTER 9 Graphics and animation
When we draw a primitive, the depth test will take place. If the value passes the test,
the incoming color value will replace the current one.

 The default value is GL_LESS. We want the value to pass the test if the values are
equal as well. This will cause objects with the same z value to display depending on the
order in which they were drawn. We pass GL_LEQUAL to the function.

 One very important part of maintaining the illusion of depth is the need for per-
spective. In OpenGL a typical perspective is represented by a viewpoint with near and
far clipping planes and top, bottom, left, and right planes, where objects that are
closer to the far plane appear smaller, as in figure 9.7.

OpenGL ES provides a function called gluPerspective(GL10 gl, float fovy, float
aspect, float zNear, float zFar) with five parameters (see table 9.3) that allows us
to easily create perspective.

 To demonstrate depth and perspective we are going to create a project called
OpenGLCube and copy and paste the code from listing 9.15 into the OpenGLCube-
Activity.

 Now add two new variables to your code, as in listing 9.17, right at the beginning of
the DrawSurfaceView inner class.

Table 9.3 Parameters for the gluPerspective function

Parameter Description

gl GL10 interface.

fovy Field of view angle, in degrees, in the y direction.

aspect The aspect ratio that determines the field of view in the x direction. The aspect ratio is

the ratio of x (width) to y (height).

zNear The distance from the viewer to the near clipping plane, which is always positive.

zFar The distance from the viewer to the far clipping plane, which is always positive.

T

L
R

B

N F
Viewpoint Figure 9.7 In OpenGL a

perspective is made up
of a viewpoint and near
(N), far (F), left (L), right
(R), top (T), and bottom
(B) clipping planes.
Licensed to Deborah Christiansen <pedbro@gmail.com>

247Animations
class DrawingSurfaceView extends SurfaceView implements
SurfaceHolder.Callback {
 public SurfaceHolder mHolder;

 float xrot = 0.0f;
 float yrot = 0.0f;

We are going to use xrot and yrot variables later in our code to govern the rotation of
our cube.

 Next, right before the drawFrame method, add a new method called makeFloat-
Buffer, as in listing 9.18.

protected FloatBuffer makeFloatBuffer(float[] arr) {
 ByteBuffer bb = ByteBuffer.allocateDirect(arr.length*4);
 bb.order(ByteOrder.nativeOrder());
 FloatBuffer fb = bb.asFloatBuffer();
 fb.put(arr);
 fb.position(0);
 return fb;
}

This float buffer is essentially the same as the one in listing 9.16, but we have
abstracted it from the drawFrame method so we can focus on the code for rendering
and animating our cube.

 Next, copy and paste the code in listing 9.19 into the drawFrame method.

 private void drawFrame(GL10 gl, int w1, int h1) {

 float mycube[] = {
 // FRONT
 -0.5f, -0.5f, 0.5f,
 0.5f, -0.5f, 0.5f,
 -0.5f, 0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 // BACK
 -0.5f, -0.5f, -0.5f,
 -0.5f, 0.5f, -0.5f,
 0.5f, -0.5f, -0.5f,
 0.5f, 0.5f, -0.5f,
 // LEFT
 -0.5f, -0.5f, 0.5f,
 -0.5f, 0.5f, 0.5f,
 -0.5f, -0.5f, -0.5f,
 -0.5f, 0.5f, -0.5f,
 // RIGHT
 0.5f, -0.5f, -0.5f,

Listing 9.17 OpenGLCubeActivity.java

Listing 9.18 OpenGLCubeActivity.java

Listing 9.19 OpenGLCubeActivity.java

B
Create sides
for the cube
Licensed to Deborah Christiansen <pedbro@gmail.com>

248 CHAPTER 9 Graphics and animation
 0.5f, 0.5f, -0.5f,
 0.5f, -0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 // TOP
 -0.5f, 0.5f, 0.5f,
 0.5f, 0.5f, 0.5f,
 -0.5f, 0.5f, -0.5f,
 0.5f, 0.5f, -0.5f,
 // BOTTOM
 -0.5f, -0.5f, 0.5f,
 -0.5f, -0.5f, -0.5f,
 0.5f, -0.5f, 0.5f,
 0.5f, -0.5f, -0.5f,
 };

 FloatBuffer cubeBuff;

 cubeBuff = makeFloatBuffer(mycube);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glDepthFunc(GL10.GL_LEQUAL);
 gl.glClearDepthf(1.0f);

 gl.glClear(GL10.GL_COLOR_BUFFER_BIT |
GL10.GL_DEPTH_BUFFER_BIT);

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glViewport(0,0,w1,h1);
 GLU.gluPerspective(gl, 45.0f,
((float)w1)/h1, 1f, 100f);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, 0, 0, 3, 0, 0, 0, 0, 1, 0);

 gl.glShadeModel(GL10.GL_SMOOTH);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, cubeBuff);
 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

 gl.glRotatef(xrot, 1, 0, 0);
 gl.glRotatef(yrot, 0, 1, 0);

 gl.glColor4f(1.0f, 0, 0, 1.0f);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 4, 4);

 gl.glColor4f(0, 1.0f, 0, 1.0f);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 8, 4);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 12, 4);

 gl.glColor4f(0, 0, 1.0f, 1.0f);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 16, 4);
 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 20, 4);

 xrot += 1.0f;
 yrot += 0.5f;

Create float buffer
for cube vertices

C

D Enable the
depth test

Define your
perspective

E

Define your
viewpoint in space

F

G
Select smooth
shading for model

Rotate angle around
vector x, y, z

H

Draw the six sides
in three colors

I

Increment the x
and y rotations

J

Licensed to Deborah Christiansen <pedbro@gmail.com>

249Animations
There is not much new code in this listing. First we describe the vertices for a cube B,
which is built in the same way as our simple rectangle in listing 9.16 (using triangles).
Next we set up the float buffer for our vertices C and enable the depth function D and
perspective function E to provide a sense of depth. Note that with our gluPerspective
we passed 45.0f (45 degrees) to give a more natural viewpoint.

 Next we use the GLU.gluLookAt(GL10 gl, float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ, float upX, float upY, float
upZ) F function to move the position of our view without having to modify the pro-
jection matrix directly. Once we have established our view position, we turn on
smooth shading for the model G and rotate the cube around the x and y axes H.
Then we draw the cube sides I and increment the rotation so that on the next itera-
tion of draw, the cube is drawn at a slightly different angle J. If you run the code,
you should now see a rotating 3D cube like the one shown in figure 9.8.

NOTE You can try experimenting with the fovy value to see how changing the
angle affects the display of the cube.

Figure 9.8 A 3D cube rotating in space
Licensed to Deborah Christiansen <pedbro@gmail.com>

250 CHAPTER 9 Graphics and animation
9.3 Summary
In this chapter we have only lightly touched on a number of topics related to
Android’s powerful graphics features, including simple drawings, animations, and
Android’s implementation of the OpenGL ES standard. Graphics and visualizations
are a large and complex topic, but because Android uses open and well-defined stan-
dards as well as supports an excellent API for graphics, it should be easy for you to use
Android’s documentation, API, and other resources, such as Manning’s Java 3D Pro-
gramming by Daniel Sleman, to develop anything from a new drawing program to com-
plex games.

 In the next chapter we are going to move from graphics to working with multiple
media. We will explore working with audio and video to lay the groundwork for mak-
ing rich multimedia applications.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Multimedia
Today people use their cell phones for almost everything but phone calls, from
chatting, to surfing the web, to listening to music, and even to watching live stream-
ing TV. Nowadays cell phones need to support multimedia to even be considered a
usable device. In this chapter we are going to look how you can use Android to play
audio files, watch video, take pictures, and even record sound.

 Android supports multimedia by making use of the open source multimedia
system called OpenCORE from PacketVideo Corporation. OpenCORE provides
the foundation for Android’s media services, which Android wraps in an easy-to-
use API.

 In this chapter we will look at OpenCORE’s architecture and features and then
use it via Android’s MediaPlayer API to play audio files, take a picture, play videos,
and finally record video and audio from the emulator. To begin let’s look at Open-
CORE’s multimedia architecture.

This chapter covers:
■ Playing audio and video
■ Controlling the camera
■ Recording audio
251

Licensed to Deborah Christiansen <pedbro@gmail.com>

252 CHAPTER 10 Multimedia
10.1 Introduction to multimedia and OpenCORE
Since the foundation of Android’s multimedia platform is PacketVideo’s OpenCORE,
in this section we will review OpenCORE’s architecture and services. OpenCORE is a
Java open source multimedia platform supporting the following:

■ Interfaces for third-party and hardware media codecs, input and output
devices, and content policies

■ Media playback, streaming, downloading, and progressive playback, includ-
ing 3GPP, MPEG-4, AAC, and MP3 containers

■ Video and image encoders and decoders, including MPEG-4, H.263, and AVC
(H.264), and JPEG

■ Speech codecs, including AMR-NB and AMR-WB
■ Audio codecs, including MP3, AAC, and AAC+
■ Media recording, including 3GPP, MPEG-4, and JPEG
■ Video telephony based on the 324-M standard
■ PV test framework to ensure robustness and stability; profiling tools for memory

and CPU usage

OpenCORE provides all this functionality in a well-laid-out set of services, which are
diagrammed in figure 10.1.

NOTE The current Android SDK does not support video recording via the API.
Video recording is still possible but is specific to the phone vendor.

As you can see from figure 10.1, OpenCORE’s architecture has excellent support for
multimedia and numerous codecs. In the next section we are going to dive right in
and use the Android API to play audio files.

Video encoder
MPEG-4

H.263
AVC

Video decoder
MPEG-4

H.263
AVC

WMV 9
Real Video

Audio decoder
WMA

Real Audio
MP3

AAC, HE-ACC,
HE-AACV2

Audio encoder
AAC

Speech codec
AMR(NB,WB)

G.711
G.726
G.729

Image codec
JPEG

Download
3Gpp
HTPP

Fastrack
iMotion

Streaming
3GPP
ASF
Real

RTP/RTSP
SOP

Composer
formats
3GPP
iMotion

AAC
AMR

Parser formats
3GPP

MPEG-4
iMotion

AAC
AMR
MP3
ASF
RN

WAV

Content policy
manager

DRM
Multimedia
database

Playlists

Multimedia engines

Data formats

Video codecs Audio codecs

CORE 2-Way
CS VTC
3G324M

H.245
H.223

Sharing
SIP

3GPP VTC
PushTo
Media
Share

Broadcast
DVB

MPEG-2
Systems
FLUTE

MediaFLO

Figure 10.1 OpenCORE’s services and architecture
Licensed to Deborah Christiansen <pedbro@gmail.com>

253Playing audio
10.2 Playing audio
Probably the most basic of needs for multimedia on a cell phone is the ability to play
audio files, whether new ringtones, MP3s, or quick audio notes. Android’s Media
Player is easy to use. At a high level all you need to do to play back an MP3 file is follow
these steps:

1 Put the MP3 in the res/raw directory in a project (note that you can also use a
URI to access files on the network or via the internet).

2 Create a new instance of the MediaPlayer and reference your MP3 by calling
MediaPlayer.create().

3 Call the MediaPlayer methods prepare() and start().

Let’s work through a simple example to demonstrate exactly how simple this is. First
create a new project called MediaPlayer Example with an Activity called MediaPlay-
erActivity. Now create a new folder under res/ called raw. This is where we will store
our MP3s. For this example we will use a ringtone for the game Halo 3, which you can
retrieve from MediaPlayer.create. Download the Halo 3 theme song (and any other
MP3s), and put them in the raw directory. Next, create a simple Button for the music
player, as in listing 10.1.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Simple Media Player"
 />

<Button android:id="@+id/playsong"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Halo 3 Theme Song"
 />
</LinearLayout>

Next we need to fill out our MediaPlayerActivity class, as in listing 10.2.

public class MediaPlayerActivity extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 Button mybutton = (Button) findViewById(R.id.playsong); 1

Listing 10.1 main.xml for MediaPlayer Example

Listing 10.2 MediaPlayerActivity.java

Set the view and a
button to play an MP3

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

254 CHAPTER 10 Multimedia
 mybutton.setOnClickListener(new Button.OnClickListener() {

 public void onClick(View v) {
 MediaPlayer mp =
 MediaPlayer.create(MediaPlayerActivity.this,
 R.raw.halotheme);
 mp.start();
 mp.setOnCompletionListener(new OnCompletionListener(){
 public void onCompletion(MediaPlayer arg0) {

 }
 }
);
 }
 }
);
 }
}

As you can see, playing back an MP3 is easy. In list-
ing 10.2 all we did was use a view that we created
in listing 10.1 and map the button, playsong, to
mybutton, which we then bound to the setOn-
ClickListener() B. Inside the listener we cre-
ated the MediaPlayer instance C using the
create(Context context, int resourceid)

method, which simply takes our context and a
resource ID for our MP3. Finally we set the set-
OnCompletionListener, which will perform
some task on completion. For the moment we do
nothing, but you might want to change a button’s
state or provide a notification to a user that the
song is over or ask if the user would like to play
another song. If so, you would use this method.

 Now if you compile the application and run it,
you should see something like figure 10.2. Click
the button, and you should hear the Halo 3 song
played back in the emulator via your speakers.
You can also control the volume of the playback
with the volume switches on the side of the Android Emulator phone visualization.

 Now that we have looked at how to play an audio file, let’s see how we can play a
video file.

10.3 Playing video
Playing a video is slightly more complicated than playing audio with the MediaPlayer
API, in part because you have to provide a view surface for your video to play on.
Android has a VideoView widget that handles that task for you, and it can be used in
any layout manager. Plus it provides a number of display options, including scaling

Get the context and
then play the MP3

C

Figure 10.2 Simple media player
example
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://groups.google.com/group/android-developers/files

255Playing video
and tinting. So let’s get started with playing video by creating a new project called Sim-
ple Video Player. Then create a layout as shown in listing 10.3.

NOTE Currently the emulator has some issues playing video content on certain
computers and operating systems. Do not be surprised if your audio or
video playback is choppy.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
 <VideoView android:id="@+id/video"
 android:layout_width="320px"
 android:layout_height="240px"
 />
 <Button android:id="@+id/playvideo"
 android:text="Play Video"
 android:layout_height="fill_parent"
 android:layout_width="fill_parent"
 android:paddingRight="4px"
 android:enabled="false"
 />
</LinearLayout>

All we have done in listing 10.3 is to add the VideoView widget B and a Button to ini-
tiate playback of our video C.

 Next we need to write a class to play the video. In addition to the VideoView, we
put in a Button that, when pushed, will pop up the VideoView control panel, known
as the MediaController. This, by default, overlays the bottom portion of the Vid-
eoView and shows your current position in the video clip. Plus it offers pause, rewind,
and fast-forward buttons. See listing 10.4.

public class SimpleVideo extends Activity {

 private VideoView myVideo;
 private MediaController mc;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 getWindow().setFormat(PixelFormat.TRANSLUCENT);
 setContentView(R.layout.main);
 Button bPlayVideo=(Button)findViewById(R.id.playvideo);

 bPlayVideo.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 SimpleVideo.this.mc.show(); }
 });

Listing 10.3 main.xml—UI for Simple Video Player

Listing 10.4 SimpleVideo.java

Add VideoView
widget

B

Add a Button to
play the video

C

Create a
translucent
window

B

C

Set the
view and
button to
play MP4

DShow the MediaController UI widget
Licensed to Deborah Christiansen <pedbro@gmail.com>

256 CHAPTER 10 Multimedia
 this.myVideo=(VideoView)findViewById(R.id.video);
 this.myVideo.setVideoPath("sdcard/test.mp4");
 this.mc=new MediaController(this);
 this.mc.setMediaPlayer(myVideo);
 this.myVideo.setMediaController(mc);
 this.myVideo.requestFocus();
 }
}

In listing 10.4 we first created a translucent window which is necessary for our Sur-
faceView B. Then we added a Button to the VideoView widget C and told Android to
add a MediaController widget over the VideoView D using the show() method. Next
we reference the VideoView E and use its setVideoPath() F to have it look at an SD
card (sdcard) for our test MP4. Finally we set up the MediaController G and use the
setMediaController() H to perform a callback to the VideoView to notify it when a
our video is finished playing.

 Before we can run this application, we need to set up an sdcard in the emulator
(see chapter 5 for details on the SD card). First, create a new SD card image:

mksdcard 512M mysdcard

Hit Return. A 512 MB FAT32 image named mys-
dcard has now been created for you to load into
the emulator. Load the SD card into the emula-
tor like this:

emulator –sdcard mysdcard

Now push the file test.mp4 to the disk image.
 Once you have pushed the file to the image,

you can launch the SimpleVideo application by
going to your IDE and running the project while
the emulator is already running. You should now
see something like figure 10.3.

 As you can see, the VideoView and Media-
Player classes simplify working with video files.
Something you will need to pay attention to when
working with video files is that the emulator often
has problems with files larger than 1 megabyte,
although the current G1 phone does not.

NOTE By default, G1 supports only MP4 and 3GP
formats. There are several video convert-
ers you can use to convert videos in other
formats to these standards. As Android
adoption grows, you can expect updates
and more players to support a greater
number of formats.

HCallback to VideoView when video is done

G
Create a
MediaController

F
Pass file from

sdcard to VideoView

E
Use VideoView as container

for playing video

Figure 10.3 Playing an MP4 video in the
Android Emulator
Licensed to Deborah Christiansen <pedbro@gmail.com>

257Capturing media
Now that you have seen how simple it is to play media using Android’s MediaPlayer
API, let’s look at how we can use a phone’s built-in camera or microphone to capture
images or audio.

10.4 Capturing media
Using your cell phone to take pictures, record memos, films short videos, and so on
are all features now expected of any such device. In this section we are going to not
only look at how to capture media from the microphone and camera but also write
these files to the simulated SD card image we created previously.

 To get started let’s examine how to use the Android Camera class to capture images
and save them to a file.

10.4.1 Understanding the camera

A very important feature of modern cell phones is their ability to take pictures or even
video using a built-in camera. Some phones even support using the camera’s micro-
phone to capture audio. Android, of course, supports all three features and provides a
variety of ways to interact with the camera. In this section we’re going to look at how to
interact with the camera and take photographs. In the next section we’ll use the cam-
era to take video and save it to an SD card.

 We will be creating a new project called SimpleCamera to demonstrate how to
connect to a phone’s camera to capture images. For this project we will be using the
Camera class (http://code.google.com/android/reference/android/hardware/
Camera. html) to tie the emulator’s (or phone’s) camera to a View. Most of the code
that we create for this project will be about showing the input from the camera, but
the main work for taking a picture is done by a single method called take-
Picture(Camera.ShutterCallback shutter, Camera.PictureCallback raw, Cam-
era.PictureCallback jpeg), which has three callbacks that allow you to control
how a picture is taken. Before we get any further into the Camera class and how to
use the camera, let’s create a project. We will be creating two classes, and since the
main class is long, we will break it into two sections. For the first section look at list-
ing 10.5, CameraExample.java.

NOTE The Android Emulator does not allow you to connect to camera devices on
your computer such as a webcam, and thus all your pictures will display a
chessboard like the one shown in figure 10.4. It is possible to connect to a
web camera and get live images and video, but it requires some hacking. An
excellent example on how to do this can be found at Tom Gibara’s website,
where he has an open source project for obtaining live images from a web-
cam: http://www.tomgibara.com/android/camera-source. It is possible
that in latter versions of the SDK the emulator will support connections to
cameras on the hardware the emulator is running on.

public class SimpleCamera extends Activity implements SurfaceHolder.Callback {

 private Camera camera;

Listing 10.5 CameraExample.java
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/android/hardware/ Camera.html
http://code.google.com/android/reference/android/hardware/ Camera.html
http://www.tomgibara.com/android/camera-source

258 CHAPTER 10 Multimedia
 private boolean isPreviewRunning = false;
 private SimpleDateFormat timeStampFormat = new
 SimpleDateFormat("yyyyMMddHHmmssSS");

 private SurfaceView surfaceView;
 private SurfaceHolder surfaceHolder;
 private Uri targetResource = Media.EXTERNAL_CONTENT_URI;

 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 Log.e(getClass().getSimpleName(), "onCreate");
 getWindow().setFormat(PixelFormat.TRANSLUCENT);
 setContentView(R.layout.main);
 surfaceView = (SurfaceView)findViewById(R.id.surface);
 surfaceHolder = surfaceView.getHolder();
 surfaceHolder.addCallback(this);
 surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 }

 @Override
 public boolean onCreateOptionsMenu(android.view.Menu menu) {

 MenuItem item = menu.add(0, 0, 0, "View Photos?");
 item.setOnMenuItemClickListener(new
 MenuItem.OnMenuItemClickListener() {

 public boolean onMenuItemClick(MenuItem item) {
 Intent intent = new Intent(Intent.ACTION_VIEW,
 SimpleCamera.this.targetResource);
 startActivity(intent);
 return true;
 }
 });
 return true;
 }

 @Override
 protected void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);
 }

 Camera.PictureCallback mPictureCallbackRaw = new
 Camera.PictureCallback() {
 public void onPictureTaken(byte[] data, Camera c) {
 SimpleCamera.this.camera.startPreview();
 }
 };

 Camera.ShutterCallback mShutterCallback = new Camera.ShutterCallback() {

 Public void onShutter() {}
 }
 };

Listing 10.5 is pretty straightforward. First we set variables for managing a sur-
faceView and then set up the View. Next we create a simple menu and menu option
that will float over our surface when the user clicks the MENU button on the phone

B

Create menu to
Android’s Photo
Gallery

C
Create a
PictureCallback

DCreate a ShutterCallback
Licensed to Deborah Christiansen <pedbro@gmail.com>

259Capturing media
while the application is running B. Doing so will open Android’s picture browser and
let the user view the photos on the camera. Next we create the first PictureCallback,
which is called when a picture is first taken C. This first callback captures the Pic-
tureCallback’s only method, onPictureTaken(byte[] data, Camera camera), to
grab the raw image data directly from the camera. Next we create a ShutterCallback,
which can be used with its method, onShutter(), to play a sound, but here we do not
call the method D. We will continue with the CameraExample.java in listing 10.6.

@Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 ImageCaptureCallback camDemo = null;
 if(keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
 try {
 String filename = this.timeStampFormat.format(new Date());
 ContentValues values = new ContentValues();
 values.put(MediaColumns.TITLE, filename);
 values.put(ImageColumns.DESCRIPTION,
 "Image from Android Emulator");
 Uri uri = getContentResolver().insert(
 Media.EXTERNAL_CONTENT_URI, values);
 camDemo = new ImageCaptureCallback(
 getContentResolver().openOutputStream(uri));
 } catch(Exception ex){
 }
 }
 if (keyCode == KeyEvent.KEYCODE_BACK) {
 return super.onKeyDown(keyCode, event);
 }

 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
 this.camera.takePicture(this.mShutterCallback,
 this.mPictureCallbackRaw, this.camDemo);
 return true;
 }

 return false;
 }

 @Override
 protected void onResume() {
 Log.e(getClass().getSimpleName(), "onResume");
 super.onResume();
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 }

 @Override
 protected void onStop()
 {

Listing 10.6 CameraExample.java continued

BCreate method to detect key events

C
If center key was depressed,

write a file to sdcard

D

If center key was
depressed, take
a picture
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/android/hardware/Camera.html

260 CHAPTER 10 Multimedia
 super.onStop();
 }

 public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {
 if (this.isPreviewRunning) {
 this.camera.stopPreview();
 }
 Camera.Parameters p = this.camera.getParameters();
 p.setPreviewSize(w, h);
 this.camera.setParameters(p);
 this.camera.setPreviewDisplay(holder);
 this.camera.startPreview();
 this.isPreviewRunning = true;
 }

 public void surfaceCreated(SurfaceHolder holder) {
 this.camera = Camera.open();
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 this.camera.stopPreview();
 this.isPreviewRunning = false;
 this.camera.release();
 }
}

Listing 10.6 is more complicated than listing 10.5 although a large amount of the
code in this listing is really about managing the surface for the camera preview. But as
you can see, the very first line is the start of an implementation of the method onKey-
Down B, which checks to see if the center key on the dpad was depressed. If it was, we
set up the creation of a file, and by using the ImageCaptureCallback, which we will
define in listing 10.7, we create an Outputstream to write our image data to C, includ-
ing not only the image but the filename and other metadata. Next we call the method
takePicture() and pass it the three callbacks mShutterCallback, mPictureCall-
backRaw, and camDemo, where mPictureCallbackRaw is our raw image and camDemo
writes the image to a file on the SD card D, as you can see in listing 10.7.

public class ImageCaptureCallback implements PictureCallback {

 private OutputStream filoutputStream;

 public ImageCaptureCallback(OutputStream filoutputStream) {
 this.filoutputStream = filoutputStream;
 }

 public void onPictureTaken(byte[] data, Camera camera) {
 try {
 this.filoutputStream.write(data);
 this.filoutputStream.flush();
 this.filoutputStream.close();
 } catch(Exception ex) {
 ex.printStackTrace();

Listing 10.7 ImageCaptureCallback.java

Write file to
operating
system

B

C
Capture image
from camera
Licensed to Deborah Christiansen <pedbro@gmail.com>

261Capturing media
 }
 }
}

In listing 10.7 the class implements the Picture-
Callback interface and provides two methods. The
constructor creates a stream to write data to B, and
the second method, onPictureTaken, takes binary
data and writes to the SD card as a JPEG C. Now if
you build this project and start the emulator running
using the SD card image from previously in this chap-
ter, you should see something like figure 10.4 when
you start the SimpleCamera application from the
Android menu. If you look at figure 10.4 you will
notice an odd black-and-white checked background
with a bouncing gray box. This is a test pattern that
the Android Emulator generates to simulate an
image feed since the emulator is not actually pulling
a live feed from the camera.

 Now if you click the center button on the dpad in
the emulator, the application will take a picture. To
see the picture click the MENU button, which will
cause a menu to appear on the camera view window
with a single option, View Pictures. If you select View
Pictures, you will be taken to the Android picture
explorer, and you should see Android’s image placeholders representing the number
of camera captures. You can also see the JPEG files that were written to the SD card by
opening the DDMS in Eclipse and navigating to sdcard > dcim > Camera. You can see
an example of what this might look like in figure 10.5.

Figure 10.5 The Android Emulator shows placeholder images for each photo taken.

Figure 10.4 Test pattern coming
from the emulator camera and
displayed in the SimpleCamera
application
Licensed to Deborah Christiansen <pedbro@gmail.com>

262 CHAPTER 10 Multimedia
As you can see, working with the camera in Android is not particularly complicated.
To see how a real camera will behave, you will have to test on a real handset until the
emulator provides a simple way to connect to a camera on your computer. This should
not stop you from developing your camera applications, however, and a wealth of
Android applications already make sophisticated use of the camera, ranging from
games to an application that uses a picture of your face to unlock your phone. Now
that you have seen how the Camera class works in Android, let’s look at how to capture
or record audio from a camera’s microphone. In the next section we’ll explore the
MediaRecorder class and write recordings to an SD card.

10.4.2 Capturing audio

Now we’ll look at using the onboard microphone to record audio. In this section we’re
going to use the Android MediaRecorder example from Google Android Developers
list, which you can find at http://groups.google.com/group/android-developers/files.
The code shown here has been slightly updated.

NOTE At the time the book was written, Google Android SDK 1 does not allow
you to capture audio from the emulator via your computer, but it is likely
that later versions of the SDK will.

In general recording audio or video follows the same process in Android:

1 Create an instance of android.media.MediaRecorder.
2 Create an instance of andriod.content.ContentValues, and add properties

like TITLE, TIMESTAMP, and the all-important MIME_TYPE.
3 Create a file path for the data to go to using android.content.Content-

Resolver.
4 To set a preview display on a view surface, use MediaRecorder.setPreview-

Display().
5 Set the source for audio, using MediaRecorder.setAudioSource().
6 Set output file format using MediaRecorder.setOutputFormat().
7 Set your encoding for audio, using MediaRecorder.setAudioEncoder().
8 Use prepare() and start() to prepare and start your recordings.
9 Use stop() and release() to gracefully stop and clean up your recording

process.

While recording media is not especially complex, it is, as you can see, more complex
than playing it. To really understand how to use the MediaRecorder class, we’ll look at
an application. Create a new application called SoundRecordingDemo. Next you
need to edit the AndroidManifest.xml file and add the following line:

<uses-permission android:name="android.permission.RECORD_AUDIO" />

This will allow the application to record the audio files and play them. Then create
the class shown in listing 10.8.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://groups.google.com/group/android-developers/files

263Capturing media
public class SoundRecordingDemo extends Activity {

 MediaRecorder mRecorder;
 File mSampleFile = null;
 static final String SAMPLE_PREFIX = "recording";
 static final String SAMPLE_EXTENSION = ".mp3";

 private static final String TAG="SoundRecordingDemo";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 this.mRecorder = new MediaRecorder();

 Button startRecording = (Button)findViewById(R.id.startrecording);
 Button stopRecording = (Button)findViewById(R.id.stoprecording);

 startRecording.setOnClickListener(new View.OnClickListener(){

 public void onClick(View v) {
 startRecording();
 }
 });

 stopRecording.setOnClickListener(new View.OnClickListener(){

 public void onClick(View v) {
 stopRecording();
 addToDB();
 }

 });
 }

 protected void addToDB() {
 ContentValues values = new ContentValues(3);
 long current = System.currentTimeMillis();

 values.put(MediaColumns.TITLE, "test_audio");
 values.put(MediaColumns.DATE_ADDED, (int) (current / 1000));
 values.put(MediaColumns.MIME_TYPE, "audio/mp3");
 values.put(MediaColumns.DATA, mSampleFile.getAbsolutePath());
 ContentResolver contentResolver = getContentResolver();

 Uri base = MediaStore.Audio.Media.EXTERNAL_CONTENT_URI;
 Uri newUri = contentResolver.insert(base, values);

 sendBroadcast(new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE, newUri));
 }

 protected void startRecording() {
 this.mRecorder = new MediaRecorder();
 this.mRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 this.mRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 this.mRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 this.mRecorder.setOutputFile(this.mSampleFile.getAbsolutePath());
 this.mRecorder.prepare();
 this.mRecorder.start();

Listing 10.8 SoundRecordingdemo.java

Set the metadata
for the audio B

Notify music
player new audio

file created

C

Start recording
the file

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

264 CHAPTER 10 Multimedia
 if (this.mSampleFile == null) {
 File sampleDir = Environment.getExternalStorageDirectory();

 try {
 this.mSampleFile = File.createTempFile(
 SoundRecordingDemo.SAMPLE_PREFIX,
 SoundRecordingDemo.SAMPLE_EXTENSION, sampleDir);
 } catch (IOException e) {
 Log.e(TAG,"sdcard access error");
 return;
 }
 }
 }

 protected void stopRecording() {
 this.mRecorder.stop();
 this.mRecorder.release();
 }
}

As you can see in listing 10.8, the first part of the code is creating the buttons and but-
ton listeners to start and stop the recording. The first part of the listing you need to
pay attention to is the addToDB() method. In this method we set all the metadata for
the audio file we plan to save, including the title, date, and type of file B. Next we call
the Intent ACTION_MEDIA_SCANNER_SCAN_FILE to notify applications like Android’s
Music Player that a new audio file has been created C. This will allow us to use the
Music Player to look for new files in a playlist and play the file.

 Now that we have finished the addToDB method, we create the startRecording
method, which creates a new MediaRecorder D. As in the steps in the beginning of
this section we set a audio source, which is the microphone, set an output format as
THREE_GPP, set the audio encoder type to AMR_NB, and then set the output file path to
write the file. Next we use the methods prepare() and start() to enable the record-
ing of audio.

 Finally we create the stopRecording() method to stop the MediaRecorder from
saving audio E. We do this by using the methods stop() and release(). Now if you
build this application and run the emulator with the SD card image from the previous
section, you should be able to launch the application from Eclipse and press the Start
Recording button. After a few seconds, press the Stop Recording button and open the
DDMS; you should be able to navigate to the sdcard folder and see your recordings, as
shown in figure 10.6.

 If you have music playing on your computer’s audio system, the Android Emulator
will pick it up and record it directly from the audio buffer (it is not actually recording
from a microphone). You can then easily test this by opening the Android Music
Player and selecting Playlists > Recently Added. It should play your recorded file, and
you should be able to hear anything that was playing on your computer at the time.
While Android currently lets you record only audio, Google plans to soon add support
for recording video. This will also use the MediaRecorder class to allow you to record
video coming in from the camera much like you would audio.

Stop recording and
release MediaRecorder

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

265Summary
10.5 Summary
In this chapter we looked at how the Android SDK makes use of multimedia and how
you can play, save, and record video and sound. We also looked at various features the
Android MediaPlayer offers the developer, from a built-in video player to wide sup-
port for formats, encodings, and standards.

 We also looked at how to interact with other hardware devices attached to the
phone, such as a microphone and camera. We used the SDK to create an SD card
image for the emulator to simulate SD cards, and we used the MediaRecorder applica-
tion to record audio and save it to the SD card.

 While Android’s SDK and Emulator, at the time of writing, do not provide a good
way to interact with a webcam or microphone on your development platform, you can
create real multimedia applications using the SDK now, as some vendors already have
done on their phone platforms. Google Android currently offers you everything you
need to create rich and compelling media applications, and its focus on supporting
industry and open standards guarantees your applications will have wide support on a
variety of phones.

 In the next chapter you will learn all about how to use Android’s location services
to interact with GPS and maps. By mixing in what you have learned in this chapter, you
could create your own GPS application that not only provides voice direction but
could even respond to voice commands.

Figure 10.6 An
example of audio
files being saved to
the SD card image
in the emulator
Licensed to Deborah Christiansen <pedbro@gmail.com>

Location,
 location, location
A mobile device with accurate location awareness is very powerful. Combining loca-
tion awareness with network data access is world changing—and this is where
Android shines. Android isn’t the only platform to support this capability, of
course, but it is set apart somewhat by an easy-to-work-with and popular location
API framework (Google Maps) and its open source nature.

 From direct network queries to triangulation with cell towers and even GPS, an
Android-powered device has access to different types of LocationProvider that it
can utilize to access location data. Different providers supply a mix of location-
related metrics including latitude and longitude, speed, bearing, and altitude.

 GPS is the most common location provider you will work with on the Android plat-
form, because it is the most accurate and powerful option. Nevertheless, some devices

This chapter covers:
■ Manipulating location properties in the emulator
■ Working with LocationProvider and LocationManager
■ Implementing and registering LocationListener
■ Understanding MapActivity and MapView
■ Using the Geocoder
266

Licensed to Deborah Christiansen <pedbro@gmail.com>

267Simulating your location within the emulator
may either not have a GPS receiver or a GPS signal may not be available. In those
instances the Android platform provides the capability for you to fail gracefully—to
query other providers when your first choice fails. You can configure which providers
are available and hook into one or another through the LocationManager class.

 Location awareness opens up a new world of possibilities for application develop-
ment. We are just beginning to see what inventive developers can do with real-time
location information and faster and more reliable network data access. In this chapter
we are going to follow that nascent path and build an application that combines loca-
tion awareness with data from the U.S. National Oceanic and Atmospheric Administra-
tion (NOAA).

 Specifically we will be connecting to the National Data Buoy Center (NDBC) to
retrieve data from buoys that are positioned around the coastline in North America
(and a few NOAA ships). That’s right; we said, “data from buoys.” Thanks to the NOAA-
NDBC system, which polls sensors on buoys and makes that data available in RSS feeds,
we can retrieve data for the vicinity, based on the current location, and display condi-
tion information such as wind speed, wave height, and temperature to our users.
(Although we won’t cover non-location-related details in this chapter, such as using
HTTP to pull the RSS feed data, the full source code for the application is available
with the code download for this chapter.) This application, which we are calling Wind
and Waves, has several main screens, including an Android MapActivity with a
MapView. These components are used for displaying and manipulating map informa-
tion, as shown in figure 11.1.

 We admit that accessing buoy data has a somewhat limited audience—being
important mainly for marine use cases (and in this case working only for fixed buoys
in North America and several ships that can be used as worldwide data points)—but
we wanted to demonstrate the broad scope of possibility here and to come up with
something unique. Along with its uniqueness, we hope to make this an interesting
application that exercises a great many of the Android location-related capabilities.

 In addition to displaying data based on the current location, we will also use this
application to create several LocationListener instances that we can use to receive
updates when the user’s location changes. When the location changes and the device
lets our application know, we will update our MapView using an Overlay—an object
that allows us to draw on top of the map.

 Outside of what our buoy application requires, here we will also pull in a few sam-
ples for working with the Geocoder class. This class allows you to map between a
GeoPoint (latitude and longitude) and a place (city or postal code) or address. This
is a very helpful utility, so we will cover it even though we won’t be using it on the
high seas.

 Before we begin building any of our example code, we will start with using the
built-in mapping application and simulating our position within the Android emula-
tor. This will allow us to mock our location for the emulator. After we have covered all
of the emulator location-related options, we will move on to building Wind
and Waves.

Simulating your location within the emulator
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.topografix.com/GPX/1/1/

268 CHAPTER 11 Location, location, location
11.1 Simulating your location within the emulator
For any location-aware application you will start by working with the provided SDK and
the emulator. The first thing you will want to do within the emulator is set and update
your current location. From there you will want to progress to supplying a range of
locations and times to simulate movement over a geographic area.

 There are several ways you can accomplish these tasks for the emulator, either by
using the DDMS tool or by using the command line within the shell. The fastest way to
get started is to send in direct coordinates through the DDMS tool.

11.1.1 Sending in your coordinates with the DDMS tool

The DDMS tool is available in two contexts, either launched on its own from the SDK
tools subdirectory or as the Emulator Control view within the Eclipse IDE. (You need
to have Eclipse and the Android Eclipse plug-in to use DDMS within Eclipse; see chap-
ter 2 and appendix A for more details about getting the SDK and plug-in set up.)

Figure 11.1 Screens from the Wind and Waves
location-aware application
Licensed to Deborah Christiansen <pedbro@gmail.com>

269Simulating your location within the emulator
 The simplest way to set your location with the DDMS tool is to send direct latitude
and longitude coordinates manually from the Emulator Control > Location Controls
form. This is depicted, using the straightforward manual approach, in figure 11.2.
(Note that Longitude is the top/first field, which is the standard around the world, but
backwards in terms of how latitude and longitude are generally expressed in the
United States.)

 If you launch the built-in Maps application (which is included with Android on the
main menu) and send in a location with the DDMS tool, you should then be able to
use the menu to select My Location, and the map will animate to the location you
have specified—anywhere on earth.

 Try this a few times to make sure you get the hang of it; for example, send the dec-
imal coordinates in table 11.1 one by one, and in between browse around with the
built-in map. When you supply coordinates to the emulator, you will need to use the
decimal form.

 Although the DDMS tool requires the decimal format, latitude and longitude are
more commonly expressed on maps and other tools as degrees, minutes, and seconds.
Degrees are used because these coordinates represent points on the surface of the
globe as measured from either the equator (for latitude) or the prime meridian (for
longitude). Each degree is further subdivided into 60 smaller sections, called minutes,
and each minute also has 60 seconds (and it goes on from there if need be, tenths of a
second, and so on).

Figure 11.2 Using the DDMS tool to send direct latitude and longitude coordinates to the emulator as
a mock location
Licensed to Deborah Christiansen <pedbro@gmail.com>

270 CHAPTER 11 Location, location, location
When representing latitude and longitude
on a computer, the degrees are usually
converted into decimal form with positive
representing north and east and negative
representing south and west, as shown in
figure 11.3.

 It’s not personal, but if you live in the
southern and eastern hemispheres, say
in Buenos Aires, Argentina, which is 34°60’
S, 58°40’ W in the degree form, the deci-
mal form is negative for both latitude and
longitude, -34.60, -58.40. If you haven’t
used latitude and longitude much, the dif-
ferent forms can be confusing at first, but
they quickly become second nature after
you work with them a bit.

 Once you have mastered setting a fixed position, the next thing you will want to be
able to do is supply a set of coordinates that the emulator will use to simulate a range
of movement.

11.1.2 The GPS Exchange Format

The DDMS tool supports two formats for supplying a range of location data in file
form to the emulator. The GPS Exchange Format (GPX) is the first of these and is the
more expressive form in terms of working with Android.

Table 11.1 Example coordinates for the emulator to set using the DDMS tool

Description
Latitude
degrees

Longitude
degrees

Latitude
decimal

Longitude
decimal

Golden Gate Bridge, California 37°49’ N 122°29’ W 37.49 -122.29

Mount Everest, Nepal 27°59’ N 86°56’ E 27.59 86.56

Ayer’s Rock, Australia 25°23’ S 131°05’ E -25.23 131.05

North Pole 90°00’ N - 90.00 -

South Pole 90°00’ S - -90.00 -

Using the command line to send coordinates
You can also send direct coordinates from within the emulator console. If you telnet
localhost 5554, you will connect to the default emulator’s console (adjust the port
where necessary). From there you can use the geo fix command to send longitude,
latitude, and optional altitude, for example, geo fix -21.55 64.1. Again keep in
mind that the Android tools require that longitude be the first parameter

Figure 11.3 Latitude and longitude spherical
diagram, showing positive north and east and
negative south and west
Licensed to Deborah Christiansen <pedbro@gmail.com>

271Simulating your location within the emulator
 GPX is an XML schema (http://www.topografix.com/GPX/1/1/) that allows you
to store waypoints, tracks, and routes. Many handheld GPS devices support and/or uti-
lize this format. Listing 11.1 is a portion of an example GPX file that shows the basics
of the format.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<gpx xmlns="http://www.topografix.com/GPX/1/1"
 version="1.1"
 creator="Charlie Collins - Hand Rolled"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.topografix.com/GPX/1/1
 http://www.topografix.com/GPX/1/1/gpx.xsd">

 <metadata>
 <name>Sample Coastal California Waypoints</name>
 <desc>Test waypoints for use with Android</desc>
 <time>2008-11-25T06:52:56Z</time>
 <bounds minlat="25.00" maxlat="75.00"
 minlon="100.00" maxlon="-150.00" />
 </metadata>

 <wpt lat="41.85" lon="-124.38">
 <ele>0</ele>
 <name>Station 46027</name>
 <desc>Off the coast of Lake Earl</desc>
 </wpt>
 <wpt lat="41.74" lon="-124.18">
 <ele>0</ele>
 <name>Station CECC1</name>
 <desc>Crescent City</desc>
 </wpt>
 <wpt lat="38.95" lon="-123.74">
 <ele>0</ele>
 <name>Station PTAC1</name>
 <desc>Point Arena Lighthouse</desc>
 </wpt>

 . . . remainder of wpts omitted for brevity

 <trk>
 <name>Example Track</name>
 <desc>A fine track with trkpt's.</desc>
 <trkseg>
 <trkpt lat="41.85" lon="-124.38">
 <ele>0</ele>
 <time>2008-10-15T06:00:00Z</time>
 </trkpt>
 <trkpt lat="41.74" lon="-124.18">
 <ele>0</ele>
 <time>2008-10-15T06:01:00Z</time>
 </trkpt>
 <trkpt lat="38.95" lon="-123.74">
 <ele>0</ele>
 <time>2008-10-15T06:02:00Z</time>
 </trkpt>

Listing 11.1 A sample GPX file

Define root
gpx element

B

Include metadata
stanza

C

D
Supply waypoint
elements

Supply track
element

E

Use a track
segment

F

G
Provide specific
points
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.topografix.com/GPX/1/1/

272 CHAPTER 11 Location, location, location
 . . . remainder of trkpts omitted for brevity

 </trkseg>
 </trk>
</gpx>

As part of the root gpx element, a GPX file requires the correct XML namespace B
and then moves on to metadata C and individual waypoints D (waypoints are named
locations and are defined using latitude and longitude). Along with individual way-
points, a GPX file also supports related route information in the form of tracks E,
which can be subdivided further into track segments F. Each track segment is made
up of track points (which are basically related and ordered waypoints with an addi-
tional point-in-time property) G.

 When working with a GPX file in the DDMS tool you can use two different modes,
as the screen shot in figure 11.4 reveals. In the top half of the GPX box individual way-
points are listed; as each is clicked, that individual location is sent to the emulator. In
the bottom half of the GPX box all the tracks are displayed. Tracks can be “played” for-
ward and backward to simulate movement. As each track point is reached in the file,
based on the time it defines (the times matter with GPX, the file can be run at various
speeds using the Speed button), those coordinates are sent to the emulator.

 GPX is very simple and extremely useful when working with mock location infor-
mation for your Android applications, but it’s not the only file format supported. The
DDMS tool also supports a format called KML.

Figure 11.4 Using the DDMS tool with a GPX file to send mock location information
Licensed to Deborah Christiansen <pedbro@gmail.com>

273Simulating your location within the emulator
11.1.3 The Google Earth Keyhole Markup Language

The second format that the Android DDMS tool supports for sending a range of mock
location information to the emulator is the Keyhole Markup Language (KML). KML
was originally a proprietary format (created by Keyhole, which was acquired by
Google), but it has since been submitted to the Open Geospatial Consortium (OGC)
and accepted as an international standard.

 The mantra of the OGC KML is stated as:

That there be one international standard language for expressing geographic
annotation and visualization on existing or future web-based online and mobile
maps (2d) and earth browsers (3d).

A sample KML file for sending location data to the Android Emulator is shown in list-
ing 11.2. This file uses the same coastal location data as we saw with the previous GPX
example.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">

 <Placemark>
 <name>Station 46027</name>
 <description>Off the coast of Lake Earl</description>
 <Point>
 <coordinates>-124.38,41.85,0</coordinates>
 </Point>
 </Placemark>

 <Placemark>
 <name>Station 46020</name>
 <description>Outside the Golden Gate</description>
 <Point>
 <coordinates>-122.83,37.75,0</coordinates>
 </Point>
 </Placemark>

 <Placemark>
 <name>Station 46222</name>
 <description>San Pedro Channel</description>
 <Point>
 <coordinates>-118.31,33.61,0</coordinates>
 </Point>
 </Placemark>

</kml>

KML uses a kml root element and, like any self-respecting XML format, requires the
correct namespace declaration B. KML supports many more elements and attributes
than the DDMS tool is concerned with parsing. Basically, in DDMS terms, all your KML
files need to have are Placemark elements C, which contain Point child elements D,
which in turn supply coordinates E.

Listing 11.2 A sample KML file

Define root
kml element

B

C

Capture
information
with Placemark

D Use a Point

E
Supply coordinates

for Point
Licensed to Deborah Christiansen <pedbro@gmail.com>

274 CHAPTER 11 Location, location, location
Figure 11.5 shows an example of using a KML file with the DDMS tool.
 KML is very flexible and expressive, but it has drawbacks when working with it in an

Android Emulator context. As we have noted, the DDMS parser basically looks for the
coordinate elements in the file and sends the latitude, longitude, and elevation for
each in a sequence, one per second (the documentation says one Placemark per sec-
ond). Timing and other advanced features of KML are not yet supported by DDMS.
Because of this we find it more valuable at present to use GPX as a debugging and test-
ing format (where detailed timing is supported).

 KML is still important, though; remember it’s the international standard, so it is
sure to gain traction. Also, KML is an important format for other Google applications,
so you may encounter it more frequently in other contexts than GPX.

 Now that we have shown how to send mock location information to the emulator,
in various formats, the next thing we need to do is step out of the built-in Maps appli-
cation and start creating our own programs that rely on location.

11.2 Using LocationManager and LocationProvider
When building location-aware applications on the Android platform, there are several
key classes you will use very often. A LocationProvider provides location data using
several metrics, and its data is accessed through a LocationManager.

 LocationManager, along with returning the available providers, also allows you to
attach a LocationListener to be updated when the device location changes and/or
directly fire an Intent based on the proximity to a specified latitude and longitude.
The last-known Location is also available directly from the manager.

Figure 11.5 Using the DDMS tool with a KML file to send mock location information
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/toolbox/apis/mapkey.html

275Using LocationManager and LocationProvider
 The Location class is a bean that represents all the location data available from a
particular snapshot in time. Depending on the provider used to populate it, a Loca-
tion may or may not have all the possible data present (it might not include speed or
altitude, for example).

 To get our Wind and Waves sample application started and to demonstrate the
related concepts, the first thing we need to do is get a handle on the LocationManager.

11.2.1 Accessing location data with LocationManager

The central class that you will use to interact with location-related data on Android is
the LocationManager. Before you can check which providers are available or query
the last-known Location, you need to get the manager from the system service. The
code to do this is shown in listing 11.3, which includes a portion of the MapViewActiv-
ity that will drive our Wind and Waves application.

public class MapViewActivity extends MapActivity {

 private static final int MENU_SET_SATELLITE = 1;
 private static final int MENU_SET_MAP = 2;
 private static final int MENU_BUOYS_FROM_MAP_CENTER = 3;
 private static final int MENU_BACK_TO_LAST_LOCATION = 4;

 . . . Handler and LocationListeners omitted here for brevity - shown in
 later listings

 private MapController mapController;
 private LocationManager locationManager;
 private LocationProvider locationProvider;
 private MapView mapView;
 private ViewGroup zoom;
 private Overlay buoyOverlay;
 private ProgressDialog progressDialog;
 private Drawable defaultMarker;
 private ArrayList<BuoyOverlayItem> buoys;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 this.setContentView(R.layout.mapview_activity);

 this.mapView = (MapView) this.findViewById(R.id.map_view);
 this.zoom = (ViewGroup) findViewById(R.id.zoom);
 this.zoom.addView(this.mapView.getZoomControls());

 this.defaultMarker =
 getResources().getDrawable(R.drawable.redpin);
 this.defaultMarker.setBounds(0, 0,
 this.defaultMarker.getIntrinsicWidth(),
 this.defaultMarker.getIntrinsicHeight());

 this.buoys = new ArrayList<BuoyOverlayItem>();
 }

 @Override

Listing 11.3 Start of MapViewActivity

B
Extend
MapActivity

Define
LocationManager

C

D
Define
LocationProvider
Licensed to Deborah Christiansen <pedbro@gmail.com>

276 CHAPTER 11 Location, location, location
 public void onStart() {
 super.onStart();
 this.locationManager =
 (LocationManager)

this.getSystemService(Context.LOCATION_SERVICE);
 this.locationProvider =
 this.locationManager.getProvider(
 LocationManager.GPS_PROVIDER);

 // LocationListeners omitted here for brevity

 GeoPoint lastKnownPoint = this.getLastKnownPoint();
 this.mapController = this.mapView.getController();
 this.mapController.setZoom(10);
 this.mapController.animateTo(lastKnownPoint);
 this.getBuoyData(lastKnownPoint);
 }

 . . . onResume and onPause omitted for brevity
 . . . other portions of MapViewActivity are included
 in later listings in this chapter

 private GeoPoint getLastKnownPoint() {
 GeoPoint lastKnownPoint = null;

 Location lastKnownLocation =
 this.locationManager.getLastKnownLocation(
 LocationManager.GPS_PROVIDER);

 if (lastKnownLocation != null) {
 lastKnownPoint = LocationHelper.getGeoPoint(lastKnownLocation);
 } else {
 lastKnownPoint = LocationHelper.GOLDEN_GATE;
 }
 return lastKnownPoint;
 }

The first thing to note with the MapViewActity is that it extends MapActivity B.
Although we aren’t focusing on the MapActivity details yet (that will be covered in
section 11.3), this extension is still important to note. Once we get the class started, we
declare member variables for LocationManager C and LocationProvider D.

 In order to instantiate the LocationManager we use the Activity getSystemSer-
vice(String name) method E. LocationManager is a system service, so we don’t
directly create it; we let the system return it. After we have the LocationManager, we
also assign the LocationProvider we want to use with the manager’s getProvider
method F. In this case we are using the GPS provider. We will talk more about the
LocationProvider class in the next section.

 Once we have the manager and provider in place, we use the onCreate method of
our Activity to instantiate a MapController and set initial state for the screen G. A
MapController and the MapView it manipulates are also items we will cover more in
section 11.3.

Instantiate
LocationManager
system service

E

F
Assign GPS
LocationProvider

Set up mapG

Get the last
known Location

H

Licensed to Deborah Christiansen <pedbro@gmail.com>

277Using LocationManager and LocationProvider
 Along with helping you set up the provider you need, LocationManager supplies
quick access to the last-known Location H. This method is very useful if you need a
quick fix on the last location, as opposed to the more involved techniques for registering
for periodic location updates with a listener (a topic we will cover in section 11.2.3).

 Though we don’t use it in this listing, or in the Wind and Waves application at all,
the LocationManager additionally allows you to directly register for proximity alerts. If
you need to fire an Intent based on proximity to a defined location, you will want to
be aware of the addProximityAlert method. This method lets you set the location
you are concerned about with latitude and longitude, and then it lets you specify a
radius and a PendingIntent. If the device comes within the range, the PendingIntent
is fired. (There is a corresponding removeProximityAlert method as well.)

 Getting back to the main purpose for which we will use the LocationManager with
Wind and Waves, we next need to look a bit more closely at the GPS LocationProvider.

11.2.2 Using a LocationProvider

LocationProvider is an abstract class that helps define the capabilities of a given pro-
vider implementation. Different provider implementations, which are responsible for
returning location information, may be available on different devices and in differ-
ent circumstances.

 So what are the different providers, and why are multiple providers necessary?
Those are really context-sensitive questions, meaning the answer is, “it depends.”
Which provider implementations are available depends on the hardware capabilities
of the device—does it have a GPS receiver, for example? It also depends on the
situation; even if the device has a GPS receiver, can it currently receive data from satel-
lites, or is the user somewhere that’s not possible (an elevator or a tunnel)?

 At runtime you will need to query for the list of providers available and use the
most suitable one (or ones—it can often be advantageous to fall back to a less-accu-
rate provider if your first choice is not available or enabled). The most common pro-
vider, and the only one available in the Android Emulator, is the LocationManager.
GPS_PROVIDER provider (which uses the GPS receiver). Because it is the most common
(and most accurate) and what is available in the emulator, this is the provider we are
going to use for Wind and Waves. Keep in mind, though, at runtime in a real device,
there will normally be multiple providers, including the LocationManager.

NETWORK_PROVIDER provider (which uses cell tower and Wi-Fi access points to deter-
mine location data).

 In listing 11.3 we showed how you can obtain the GPS provider directly using the
getProvider(String name) method. Some alternatives to this approach of directly
accessing a particular provider are shown in table 11.2.

 Different providers may support different location-related metrics and have differ-
ent costs or capabilities. The Criteria class helps to define what each provider
instance can handle. Among the metrics available are the following: latitude and lon-
gitude, speed, bearing, altitude, cost, and power requirements.
Licensed to Deborah Christiansen <pedbro@gmail.com>

278 CHAPTER 11 Location, location, location
Another important aspect of working with location data and LocationProvider
instances is Android permissions. Location-related permissions need to be in your
manifest depending on the providers you want to use. Listing 11.4 shows the Wind
and Waves manifest XML file, which includes both COARSE- and FINE-grained location-
related permissions.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.windwaves">

 <application android:icon="@drawable/wave_45"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Black”>

 <activity android:name="StartActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity android:name="MapViewActivity" />
 <activity android:name="BuoyDetailActivity" />

 <uses-library android:name="com.google.android.maps" />

 </application>

 <uses-permission
 android:name=
 "android.permission.ACCESS_COARSE_LOCATION" />

Table 11.2 Methods for obtaining a LocationProvider reference

LocationProvider code snippet Description

List<String> providers =
 locationManager.getAllProviders();

Get all of the providers regis-
tered on the device.

List<String> enabledProviders =
 locationManager.getAllProviders(true);

Get all of the currently enabled
providers.

locationProvider =
 locationManager.getProviders(true).get(0);

A shortcut to get the first en-
abled provider, regardless of
type.

locationProvider =
 this.locationManager.getBestProvider(
 myCriteria, true);

An example of getting a
LocationProvider using a
specified Criteria. (You can
create a criteria instance
and specify whether bearing or
altitude or cost and other met-
rics are required or not.)

Listing 11.4 A manifest file showing COARSE and FINE location-related permissions

Include
LocationManager.
NETWORK_PROVIDER

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

279Using LocationManager and LocationProvider
 <uses-permission
 android:name=
 "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
 android:name="android.permission.INTERNET" />
</manifest>

In terms of location permissions, we are including both the ACCESS_COARSE_
LOCATION B, and ACCESS_FINE_LOCATION C permissions in our manifest. The
COARSE permission corresponds to the LocationManager.NETWORK_PROVIDER

provider (cell and Wi-Fi based data), and the FINE permission corresponds to the
LocationManager.GPS_PROVIDER provider. We aren’t using the network provider in
Wind and Waves, but we have noted that a worthwhile enhancement would be to fall
back to the network provider if the GPS provider is unavailable or disabled—this per-
mission would allow that.

 Once you understand the basics of LocationManager and LocationProvider, the
next step is to unleash the real power and register for periodic location updates in
your application with the LocationListener class.

11.2.3 Receiving location updates with LocationListener

One way to keep abreast of the device location from within an Android application is
to create a LocationListener implementation and register it to receive updates.
LocationListener is a very flexible and powerful interface that lets you filter for
many types of location events based on various properties. You have to implement the
interface and register your instance to receive location data callbacks.

 Listing 11.5 brings all of the pieces we have covered thus far into scope as we create
several LocationListener implementations for the Wind and Waves MapViewActiv-
ity (the parts we left out of listing 11.3) and then register those listeners using the
LocationManager and LocationProvider.

. . . start of class in Listing 11.3

private final LocationListener locationListenerGetBuoyData =
 new LocationListener() {
 public void onLocationChanged(
 final Location loc) {
 int lat = (int) (loc.getLatitude()
 * LocationHelper.MILLION);
 int lon = (int) (loc.getLongitude()
 * LocationHelper.MILLION);

 GeoPoint geoPoint = new GeoPoint(lat, lon);
 getBuoyData(geoPoint);
 }
 public void onProviderDisabled(String s) {
 }
 public void onProviderEnabled(String s) {
 }

Listing 11.5 Creation of LocationListener implementations in MapViewActivity

Include GPS
provider

C

Create
anonymous
LocationListener

B

Implement
onLocationChanged

C

Get latitude
and longitude

D

Create GeoPointE

F
Update map
pins (buoy data)
Licensed to Deborah Christiansen <pedbro@gmail.com>

280 CHAPTER 11 Location, location, location
 public void onStatusChanged(String s, int i, Bundle b) {
 }
 };

private final LocationListener locationListenerRecenterMap =
 new LocationListener() {
 public void onLocationChanged(final Location loc) {
 int lat = (int) (loc.getLatitude()
 * LocationHelper.MILLION);
 int lon = (int) (loc.getLongitude()
 * LocationHelper.MILLION);

 GeoPoint geoPoint = new GeoPoint(lat, lon);
 mapController.animateTo(geoPoint);
 }
 public void onProviderDisabled(String s) {
 }
 public void onProviderEnabled(String s) {
 }
 public void onStatusChanged(String s, int i, Bundle b) {
 }
 };

 @Override
 public void onStart() {
 super.onStart();
 this.locationManager =
 (LocationManager)
 this.getSystemService(Context.LOCATION_SERVICE);
 this.locationProvider =
 this.locationManager.getProvider(LocationManager.GPS_PROVIDER);

 if (locationProvider != null) {
 this.locationManager.requestLocationUpdates(
 locationProvider.getName(), 3000, 185000,
 this.locationListenerGetBuoyData);
 this.locationManager.requestLocationUpdates(
 locationProvider.getName(), 3000, 1000,
 this.locationListenerRecenterMap);
 } else {
 Toast.makeText(this, "Wind and Waves cannot continue,"
 + " the GPS location provider is not available"
 + " at this time.", Toast.LENGTH_SHORT).show();
 this.finish();
 }

 . . . remainder of repeated code omitted (see listing 11.3)
 }

When implementing the LocationListener interface, it is often practical to use an
anonymous inner class B. For our MapViewActivity we have created two Location-
Listener implementations because we want to register them both using different set-
tings, as we will show momentarily.

 Within the first listener, locationListenerGetBuoyData, we see how the onLoca-
tionChanged method is implemented C. In that method we get the latitude and lon-
gitude from the Location sent in the callback D. We then use the data to create a

Move map to
new location

G

Register
locationListener-
GetBuoyData

H

Register
locationListener-
RecenterMap

I

Licensed to Deborah Christiansen <pedbro@gmail.com>

281Working with maps
GeoPoint E after multiplying the latitude and longitude by 1 million (1e6). The 1e6
format is necessary because GeoPoint requires microdegrees for coordinates.

 After we have the data, we update the map (using a helper method that resets a
map Overlay, the details of which we will cover in the next section) F. In the second
listener, locationListenerRecenterMap, we perform a different task—we center the
map G.

 The reason we are using two listeners becomes crystal clear when you see how listeners
are registered with the requestLocationUpdates method of the LocationManager class.
Here we are registering the first one, locationListenerGetBuoyData, to fire only when
the new device location is a long way off from the previous one (185000 meters; we chose
this number to stay just under 100 nautical miles, which is the radius we will use to pull
buoy data for our map; we don’t need to redraw the buoy data on the map if the user
moves less than 100 nautical miles) H. We are registering the second one, location-
ListenerRecenterMap, to fire more frequently (so the map view recenters if the user
stays inside our application but moves more than 1000 meters) I. Using separate lis-
teners like this allows us to fine-tune the event processing (rather than having to build
in our own logic to do different things based on different values with one listener).

Although our implementation here works, and it is the most straightforward example,
keep in mind that our registration of LocationListener instances could be made
even more robust by implementing the onProviderEnabled and onProviderDisabled
methods. Using those methods and different providers, you can see how you could
provide useful messages to the user and also provide a graceful fallback through a set
of providers (if GPS becomes disabled, try the network, and so on).
With LocationManager, LocationProvider, and LocationListener instances in place,
the next thing we need to address is more detail concerning the MapActivity and
MapView we are using.

11.3 Working with maps
We have demonstrated the start of the MapViewActivity our Wind and Waves applica-
tion will use in the previous sections. There we covered the supporting classes and the
handling of registering to receive location updates. With that structure in place, we
now will focus on the map details themselves.

Register location listeners carefully
The time parameter to the requestLocationUpdates method should be used care-
fully. Getting location updates too frequently (less than 60000 ms per the documen-
tation) can wear down the battery and make the application too noisy. In this sample
we have used an extremely low value for the time parameter for debugging purposes
(3000 ms). You should never use a value lower than the recommended 60000 ms in
production code.
Licensed to Deborah Christiansen <pedbro@gmail.com>

282 CHAPTER 11 Location, location, location
 The MapViewActivity screen will
look like the screen shot in figure 11.6,
where several map Overlay classes are
used on top of a MapView within a
MapActivity.

 In order to use the com.google.
android.maps package on the Android
platform and to support all the concepts
related to a MapView, we are required to
use a MapActivity.

11.3.1 Extending MapActivity

A MapActivity is the gateway to the
Android Google Maps-like API package
and other useful map-related utilities.
There are several details behind creat-
ing and using a MapView that we as
developers are fortunate enough not to
have to worry about, because Map-

Activity handles them for us.
 You will learn more about MapView,

which is what we really care about as
developers building map applications,
in the next section, but it’s important to
first understand what a MapActivity is
and why it’s necessary. At its core, a Map-
Activity supports a MapView (a MapAc-
tivity is the only place a MapView can be
used) and manages all the network and
file system–intensive setup and teardown
tasks needed for supporting the same.

 The MapActivity onResume method
automatically sets up network threads for various map-related tasks and caches map
section tile data on the filesystem, for example, and the onPause method cleans these
up. Without this class, all of these details would be extra housekeeping that any
Activity wishing to include a MapView would have to repeat each time.

 There isn’t a lot you will need to do with regard to MapActivity in code. Extend-
ing this class (as we did in listing 11.3), making sure to use only one instance per pro-
cess (use more than one and unexpected results may occur), and including a special
manifest element to enable the com.google.android.maps package are all you need.
You may have noticed the curious uses-library element in the Wind and Waves man-
ifest in listing 11.4.

<uses-library android:name="com.google.android.maps" />

Figure 11.6 The MapViewActivity from
the Wind and Waves application showing a
MapActivity with MapView
Licensed to Deborah Christiansen <pedbro@gmail.com>

283Working with maps
The com.google.android.maps package, where MapActivity, MapView, MapCon-
troller, and other related classes such as GeoPoint and Overlay reside, is “not a stan-
dard package in the Android library” per the documentation. This manifest element
is required to pull in support for the maps package.

 Once you have the uses-library element and have a basic Activity that extends
MapActivity, the details come inside the MapView and related Overlay classes.

11.3.2 Using a MapView

A MapView is a miniature version of many of
the Google Maps API concepts in the form of
a View for your Android application. A
MapView displays tiles of a map, which it
obtains over the network as the map is
moved and zoomed, much like the web ver-
sion of Google Maps.

 Many of the concepts from the standard
Google Maps API are also present in Android
through the MapView. For instance, MapView
supports a plain map mode, a satellite mode,
a street-view mode, and a traffic mode. When
you want to write something on top of the
map, from a straight line between two points
to “pushpin” markers, or full-on images or
anything else, you use an Overlay.

 Examples of several of these concepts
can be seen in the MapViewActivity screen
shots for the Wind and Waves application,
such as what is shown in figure 11.6. That
same MapViewActivity is shown again in
figure 11.7, switched into satellite mode and
zoomed in several levels.

 The com.google.android.maps package
supports a good many of the Google Maps
API concepts but isn’t identical. You have
already seen the MapView we will use for the
Wind and Waves application declared and
instantiated in listing 11.3. Here we will dis-
cuss the use of this class inside our Activity
to control, position, zoom, populate, and
overlay our map.

 Before we can use a map at all, we have to get a Google Maps API key and declare it
in our layout file. Listing 11.6 shows the MapActivity layout file we are using with a
special android:apiKey attribute.

Figure 11.7 The MapViewActivity
from the Wind and Waves application using
satellite mode and zoomed in on a position
near Los Angeles
Licensed to Deborah Christiansen <pedbro@gmail.com>

284 CHAPTER 11 Location, location, location
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_horizontal" android:padding="10px">

 <com.google.android.maps.MapView
 android:id="@+id/map_view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:enabled="true"
 android:clickable="true"
 android:apiKey=
 "05lSygx-ttd-J5GXfsIB-dlpNtggca4I4DMyVqQ" />

 <LinearLayout
 android:id="@+id/zoom"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerInParent="true">
 </LinearLayout>

</RelativeLayout>

A MapView can be declared in XML just like other View components B. In order to
use the Google Maps network resources a MapView requires an API key C. You can
obtain a map key via a special Google Maps Android key registration web page: http:
//code.google.com/android/maps-api-signup.html.

 Before you can register for a key, you need to get the MD5 fingerprint of the certif-
icate that is used to sign your application. This sounds tricky, but it’s really very simple.
When you are working with the Android Emulator, the SDK has a Debug Certificate
that is always in use. To get the MD5 fingerprint for this certificate, you can use the fol-
lowing command (on Mac and Linux; on Windows adjust for the user’s home direc-
tory and the slashes):

cd ~/.android
keytool -list -keystore ./debug.keystore -storepass android -keypass android

Getting a key for a production application involves the same process, but you need to
use the actual certificate your APK file is signed with (rather than the debug.keystore
file). The Android documentation has a good deal of additional information about
obtaining a maps key (http://code.google.com/android/toolbox/apis/mapkey.
html). For more information about digital signatures, keys, and signing in general, see
appendix B.

 Once you have a MapActivity with a MapView and have set up your view in the
layout file, complete with map key, you can make full use of the map. Several of the
listings we have shown up to this point are using the MapView we have declared in the
Wind and Waves application. In listing 11.7 we are repeating a few of the map-related
lines of code we have already shown, and we are bringing in additional related items
to consolidate all the map-related concepts in one listing.

Listing 11.6 A MapView layout file including the Google Maps API key

Define MapView element in XMLB

Include apiKey
attribute

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/toolbox/apis/mapkey.html
http://code.google.com/android/toolbox/apis/mapkey.html

285Working with maps
. . . from onCreate
this.mapView = (MapView) this.findViewById(R.id.map_view);
this.zoom = (ViewGroup) findViewById(R.id.zoom);
this.zoom.addView(this.mapView.getZoomControls());

 . . . from onStart
this.mapController = this.mapView.getController();
this.mapController.setZoom(10);
this.mapController.animateTo(lastKnownPoint);

. . . from onMenuItemSelected
case MapViewActivity.MENU_SET_MAP:
 this.mapView.setSatellite(false);
 break;
case MapViewActivity.MENU_SET_SATELLITE:
 this.mapView.setSatellite(true);
 break;
case MapViewActivity.MENU_BUOYS_FROM_MAP_CENTER:
 this.getBuoyData(this.mapView.getMapCenter());
 break;

MapView is a ViewGroup, and you can declare it in XML and inflate it just like other
view components B. Because it is a ViewGroup you can also combine and attach other
elements to it. Beyond the MapView itself, we are using a separate additional View-
Group for the zoom controls C and attaching the controls from the map to it D.

 Next we get a MapController from the MapView E, and we use the controller to set
the initial zoom level F and animate to a specified GeoPoint G. The controller is
what you use to zoom and move the map. Also, when the user chooses to do so via the
menu, we set the mode of the map from plain to satellite and vice versa H. Along with
manipulating the map itself, we can get data back from it, such as the coordinates of
the map center I.

 Above and beyond manipulating the map and getting data from the map, you also
have the ability to draw items on top of the map using any number of Overlay instances.

11.3.3 Placing data on a map with an Overlay

The small buoy icons on the MapViewActivity for the Wind and Waves application
that we have used in several figures up to this point are drawn on the screen at speci-
fied coordinates using an Overlay.

Listing 11.7 Portions of code that demonstrate working with maps

The maps key conundrum
One issue with the maps key process is that you need to declare the key in the layout
file. Because there can be only one MapActivity and one MapView per application/
process, it would seem more logical to declare the key in the application manifest or
in an environment variable or properties file, but none of those is the case. With the
key in the layout file, you have to remember to update the key between debug (emu-
lator) and production modes, and if you debug on different development machines,
you will also have to remember to switch keys by hand.

Inflate MapView from layout B C Include View
for zoom
controls

D
Get zoom controls
from MapView

G
Animate to

given GeoPoint

F
Set initial
zoom level

E
Get
MapController

H
Set map
satellite mode

Get coordinates
from map center

I

Licensed to Deborah Christiansen <pedbro@gmail.com>

286 CHAPTER 11 Location, location, location
 Overlay is a generalized base class for different specialized implementations.
You can roll your own Overlay by extending the class, or you can use the included
MyLocationOverlay. The MyLocationOverlay class lets you display a user’s current
location with a compass, and it has other useful features like including a Location-
Listener for convenient access to position updates.

 Another common use case for a map (in addition to showing you where you are) is
the need to place multiple marker items on it—the ubiquitous pushpins. We have this
exact requirement for the Wind and Waves application. We need to create buoy mark-
ers for the location of every buoy using data we get back from the NDBC feeds.
Android provides built-in support for this with the ItemizedOverlay base class and
the OverlayItem.

 An OverlayItem is a simple bean that includes a title, a text snippet, a drawable
marker, and coordinates using a GeoPoint (and a few other properties, but you get
the idea). Listing 11.8 is the buoy data–related BuoyOverlayItem class that we are
using for Wind and Waves.

public class BuoyOverlayItem extends OverlayItem {

 public final GeoPoint point;
 public final BuoyData buoyData;

 public BuoyOverlayItem(GeoPoint point, BuoyData buoyData) {
 super(point, buoyData.title, buoyData.dateString);
 this.point = point;
 this.buoyData = buoyData;
 }
}

We extend OverlayItem to bring in all the necessary properties of an item to be drawn
on the map: a location, a title, a snippet, and so on B. In the constructor we make the
call to the superclass with the required properties C, and we assign additional elements
our subclass supports. In this case we are adding a BuoyData member (itself a bean with
name, water temperature, wave height, and so on–type properties) D.

 After we have the individual item class prepared, we need a class that extends
ItemizedOverlay and uses a Collection of the items to display them on the map one-
by-one. Listing 11.9, the BuoyItemizedOverlay class, shows how this works.

public class BuoyItemizedOverlay
 extends ItemizedOverlay<BuoyOverlayItem> {

 private final List<BuoyOverlayItem> items;
 private final Context context;

 public BuoyItemizedOverlay(List<BuoyOverlayItem> items,
 Drawable defaultMarker, Context context) {
 super(defaultMarker);

Listing 11.8 The OverlayItem subclass BuoyOverlayItem

Listing 11.9 The BuoyItemizedOverlay class

B
Extend
OverlayItem

C
Call superclass
constructor

D
Include extra
BuoyData property

Extend ItemizedOverlayB

C
Include Collection
of OverlayItem

D Provide
drawable marker
Licensed to Deborah Christiansen <pedbro@gmail.com>

287Working with maps
 this.items = items;
 this.context = context;
 this.populate();
 }

 @Override
 public BuoyOverlayItem createItem(int i) {
 return this.items.get(i);
 }

 @Override
 protected boolean onTap(int i) {
 final BuoyData bd = this.items.get(i).buoyData;

 LayoutInflater inflater = LayoutInflater.from(this.context);
 View bView = inflater.inflate(R.layout.buoy_selected, null);
 TextView title = (TextView) bView.findViewById(R.id.buoy_title);

 . . . rest of view inflation omitted for brevity

 new AlertDialog.Builder(this.context)
 .setView(bView)
 .setPositiveButton("More Detail",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface di, int what) {
 Intent intent =
 new Intent(context, BuoyDetailActivity.class);
 BuoyDetailActivity.buoyData = bd;
 context.startActivity(intent);
 }
 })
 .setNegativeButton("Cancel",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface di, int what) {
 di.dismiss();
 }
 })
 .show();

 return true;
 }

 @Override
 public int size() {
 return this.items.size();
 }

 @Override
 public void draw(Canvas canvas, MapView mapView, boolean b) {
 super.draw(canvas, mapView, false);
 }
}

The BuoyItemizedOverlay class extends ItemizedOverlay B and includes a Collec-
tion of BuoyOverlayItem elements C. In the constructor we pass the Drawable
marker to the parent class D. This marker is what is drawn on the screen in the over-
lay to represent each point on the map.

E
Override
createItem

Get data
and display

F

Override
size method

G

Include
other
methods
if needed

H

Licensed to Deborah Christiansen <pedbro@gmail.com>

288 CHAPTER 11 Location, location, location
 ItemizedOverlay takes care of many of the details we would have to tackle our-
selves if we weren’t using it (if we were just making our own Overlay with multiple
points drawn on it). This includes the drawing of items and focus and event handling.
For every element in the Collection of items an ItemizedOverlay holds, it invokes
the onCreate method E, and it supports facilities like onTap F, where we can react
when a particular overlay item is selected by the user. In our code we inflate some
views and display an AlertDialog with information about the respective buoy when a
BuoyOverlayItem is tapped. From the alert, the user can navigate to more detailed
information if desired.

 The size method tells ItemizedOverlay how many elements it needs to process G,
and even though we aren’t doing anything special with it in our case, there are also meth-
ods like onDraw that can be customized if necessary H.

 When working with a MapView you create the Overlay instances you need, then
add them on top of the map. Wind and Waves uses a separate Thread to retrieve the
buoy data in the MapViewActivity (the data-retrieval code is not shown but is
included in the code download for this chapter), and when ready we send a Message
to a Handler to add the BuoyItemizedOverlay to the MapView. These details are
shown in listing 11.10.

private final Handler handler = new Handler() {
 public void handleMessage(final Message msg) {

 progressDialog.dismiss();

 if (mapView.getOverlays().contains(buoyOverlay)) {
 mapView.getOverlays().remove(buoyOverlay);
 }

 buoyOverlay = new BuoyItemizedOverlay(buoys,
 defaultMarker,
 MapViewActivity.this);
 mapView.getOverlays().add(buoyOverlay);
 }
 };

A MapView contains a Collection of Overlay elements, and so you can remove previ-
ous elements if you need to. We use the remove method to clean up any existing Buoy-
OverlayItem class B before we create C and add a new one D. This way we aren’t
simply adding more items on top of each other; rather we are resetting the data.

 The built-in Overlay subclasses have handled our requirements here perfectly,
which is very helpful. The ItemizedOverlay and OverlayItem classes have allowed us
to complete the Wind and Waves application without having to make our own Overlay
subclasses directly. Keep in mind, if you need to, you can go to that level and implement
your own draw, tap, touch, and so on methods within your custom Overlay.

Listing 11.10 The Handler Wind and Waves uses to add overlays to the MapView

Remove Overlay if
already present

B

Create
BuoyItemizedOverlay

C

D
Add Overlay
to MapView
Licensed to Deborah Christiansen <pedbro@gmail.com>

289Converting places and addresses with Geocoder
 With our sample application now complete and providing us with buoy data using
a MapActivity and MapView, we next need to address one additional maps-related con-
cept that we haven’t yet encountered but is nonetheless very important—geocoding.

11.4 Converting places and addresses with Geocoder
Geocoding is described in the documentation as converting a “street address or other
description of a location” into latitude and longitude coordinates. Reverse geocoding
is the opposite, converting latitude and longitude into an address. To accomplish this,
the Geocoder class makes a network call (automatically) to a web service.

 We aren’t using geocoding in the Wind and Waves application because it’s obvi-
ously not as useful in the ocean as it is with landmarks, cities, addresses, and so on.
Nevertheless, geocoding is an invaluable tool to have at your disposal when working
with coordinates and maps. To demonstrate the concepts surrounding geocoding, list-
ing 11.11 includes a new single Activity application, GeocoderExample.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.setContentView(R.layout.main);
 this.input = (EditText) this.findViewById(R.id.input);
 this.output = (TextView) this.findViewById(R.id.output);
 this.button = (Button) this.findViewById(R.id.geocode_button);
 this.isAddress = (CheckBox)
 this.findViewById(R.id.checkbox_address);

 this.button.setOnClickListener(new OnClickListener() {
 public void onClick(final View v) {
 output.setText(performGeocode(
 input.getText().toString(),
 isAddress.isChecked()));
 }
 });
 }

 private String performGeocode(String in, boolean isAddr) {
 String result = "Unable to Geocode - " + in;
 if (this.input != null) {
 Geocoder geocoder = new Geocoder(this);
 if (isAddr) {
 try {
 List<Address> addresses =
 geocoder.getFromLocationName(in, 1);
 if (addresses != null) {
 result = addresses.get(0).toString();
 }
 } catch (IOException e) {
 Log.e("GeocodExample", "Error", e);
 }
 } else {

Listing 11.11 A short Geocoder example

Instantiate Geocoder
with Context

B

Get Address from
location name

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

290 CHAPTER 11 Location, location, location
 try {
 String[] coords = in.split(",");
 if ((coords != null) && (coords.length == 2)) {
 List<Address> addresses =
 geocoder.getFromLocation(
 Double.parseDouble(coords[0]),
 Double.parseDouble(coords[1]),
 1);
 result = addresses.get(0).toString();
 }
 } catch (IOException e) {
 Log.e("GeocodExample", "Error", e);
 }
 }
 }
 return result;
 }
}

In Android terms, you create a Geocoder by
constructing it with the Context of your appli-
cation B. You then use a Geocoder to covert
either String instances that represent place
names into Address objects with the get-
FromLocationName method C or latitude and
longitude coordinates into Address objects
with the getFromLocation method D.

 Figure 11.8 is an example of our simplified
GeocoderExample in use. In this case we are
converting a String representing a place
(Wrigley Field in Chicago) into an Address
object that contains latitude and longitude
coordinates.

 The GeocoderExample application shows
how useful the Geocoder is. For instance, if
you have data that includes address string por-
tions, or even just place descriptions, it’s easy
to covert that into latitude and longitude
numbers for use with GeoPoint and Overlay,
and so on.

 Geocoding rounds out our look at the
powerful location- and mapping-related
components of the Android platform.

Get Address from
coordinates

D

Figure 11.8 A Geocoder usage example
that demonstrates turning an Address
String into an Address object that
provides latitude and longitude coordinates
Licensed to Deborah Christiansen <pedbro@gmail.com>

291Summary
11.5 Summary
“Location, location, location,” as they say in real estate, could also be the mantra for
the future of mobile computing. One of the most important features of the Android
platform is the support for readily available location information and the inclusion of
smart-mapping APIs and other location-related utilities.

 In this chapter we explored the location and mapping capabilities of the Android
platform by building an application that set up a LocationManager and LocationPro-
vider, to which we attached several LocationListener instances. We did this so that
we could keep our application informed about the current device location (using
updates from the listeners). Along with the LocationListener, we also briefly dis-
cussed several other ways to get location updates from the Android platform.

 After we covered location-awareness basics, we combined that with a somewhat
unique data source (the National Data Buoy Center) to provide a draggable, zoomable,
interactive map. To build the map we used a MapActivity, with MapView and Map-
Controller. These classes make it fairly easy to set up and display maps. Once we had
our MapView in place, we created an ItemizedOverlay to include points of interest on
it, using individual OverlayItem elements. From the individual points, in our case
buoys, we linked into another Activity class to display more detailed informa-
tion—demonstrating how to go from the map to any other kind of Activity and back.

 One important part of mapping that our water-based sample application did not
include was converting from an address into a latitude and longitude and vice
versa—geocoding. So we built a separate small sample to demonstrate this process,
and there we discussed usage of the Geocoder class and how it works.

 With our exploration of the mapping capabilities of Android complete, including
a fully functional sample application that combines mapping with many other
Android tenets we have already explored up to this point, we are going to move into a
new stage in the book. In the next few chapters that make up the final section of the
book, we will explore complete nontrivial applications that bring together intents,
activities, data storage, networking, and more.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Part 3

Android applications

As we have seen in part 2, the Android platform is very capable, enabling
rich applications in many genres and vertical industries. The goal of part 3 is to
integrate many of the lessons learned in part 2 on a larger scale and to spur you
on to explore the platform in greater depth than simply using the Android SDK.

 We take a detailed look at the requirements of a Field Service Application.
We next map those requirements on a practical application which could be
adapted for many industries. The application includes multiple UI elements,
server communications, and detecting touch screen events for capturing and
uploading a signature (chapter 12).

 We wrap up this part and the book with a deeper examination of the
Android/Linux relationship by writing native C applications for Android and
connecting to Android core libraries such as sqlite and tcp socket communica-
tions (chapter 13).

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Putting it all
 together–the Field

 Service Application
Now that we have introduced and examined Android and its core technologies, it is
high time to put together a more comprehensive application. In this chapter we are
going to put much of what you have learned into a composite application, leveraging
skills gained throughout the book. In addition to an in-depth Android application,
this chapter’s sample application works with a custom website application that man-
ages data for use by a mobile worker. The aim is to demonstrate a more complex appli-
cation involving real-world requirements. All of the source code for the server-side
application is available for download from the book’s companion website.

This chapter covers:
■ Storing and exchanging data
■ Implementing the Field Service Application
■ Following the application flow
■ Capturing signature
■ Uploading data
295

Licensed to Deborah Christiansen <pedbro@gmail.com>

296 CHAPTER 12 Putting it all together–the Field Service Application
 After reading through this chapter and becoming familiar with the sample applica-
tion, you will be ready to strike out on your own and build useful Android applica-
tions. Many of the code samples are explained; however, if you need more
background information on a particular topic, please refer to earlier chapters where
the Android APIs are more fully presented.

 If this example is going to represent a useful real-world application, we need to put
some flesh on it. Beyond helping you to understand the application, this definition
process will get you thinking about the kinds of impact a mobile application can have
on our economy. This chapter’s sample application is called Field Service Application.
Pretty generic name perhaps, but it will prove to be an ample vehicle for demonstrat-
ing key elements required in mobile applications as well as demonstrate the power of
the Android platform for building useful applications quickly.

 Our application’s target user is a fleet technician who works for a national firm
that makes its services available to a number of contracted customers. One day our
technician, who we will call a mobile worker, is replacing a hard drive in the computer at
the local fast food restaurant, and the next day he may be installing a memory
upgrade in a piece of pick-and-place machinery at a telephone system manufacturer.
If you have ever had a piece of equipment serviced at your home or office and
thought the technician’s uniform did not really match the job he was doing, you have
experienced this kind of service arrangement. This kind of technician is often
referred to as hands and feet. He has basic mechanical or computer skills and is able to
follow directions reliably, often guided by the manufacturer of the equipment being
serviced at the time. Thanks to workers like this, companies can extend their reach to
a much broader geography than the internal staffing levels would ever allow. For
example, a small manufacturer of retail music-sampling equipment might contract
with such a firm for providing tech support to retail locations across the country.

 Because of our mythical technician’s varied schedule and lack of experience on a
particular piece of equipment, it is important to equip him with as much relevant and
timely information as possible. However, he cannot be burdened with thick reference
manuals or specialized tools. So, with a toolbox containing a few hand tools and of
course an Android-equipped device, our fearless hero is counting on us to provide an
application that enables him to do his job. And remember, this is the person who
restores the ice cream machine to operation at the local Dairy Barn or perhaps fixes
the farm equipment’s computer controller so the cows get milked on time. You never
know where a computer will be found in today’s world!

 If built well, this application can enable the efficient delivery of service to custom-
ers in many industries, where we live, work, and play. Let’s get started and see what
this application must be able to accomplish.

12.1 Field Service Application requirements
We have established that our mobile worker will be carrying two things: a set of hand
tools and an Android device. Fortunately, in this book we are not concerned with the
applicability of the hand tools in his toolbox, leaving us free to focus on the capabilities
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://android12.msi-wireless.com
http://android12.msi-wireless.com
http://android12.msi-wireless.com

297Field Service Application requirements
and features of a Field Service Application running on the Android platform. In this
section, we’re going to define the basic and high-level application requirements.

12.1.1 Basic requirements

Before diving into the bits and bytes of data requirements and application features, it
is helpful to enumerate some basic requirements and assumptions about our Field
Service Application. Here are a few items that come to mind for such an application:

■ The mobile worker is dispatched by a home office/dispatching authority,
which takes care of prioritizing and distributing job orders to the appropriate
technician.

■ The mobile worker is carrying an Android device, which has full data service,
that is, a device capable of browsing rich web content. The application needs to
access the internet for data transfer as well.

■ The home office dispatch system and the mobile worker share data via a wire-
less internet connection on an Android device; a laptop computer is not neces-
sary or even desired.

■ A business requirement is the proof of completion of work, most readily accom-
plished with the capture of a customer’s signature. Of course, an electronic sig-
nature is preferred.

■ The home office desires to receive job completion information as soon as possi-
ble, as this accelerates the invoicing process, which improves cash flow.

■ The mobile worker is also eager to perform as many jobs as possible since he is
paid by the job, not by the hour, so getting access to new job information as
quickly as possible is a benefit to the mobile worker.

■ The mobile worker needs information resources in the field and can use as
much information as possible about the problem he is being asked to resolve.
The mobile worker may have to place orders for replacement parts while in
the field.

■ The mobile worker will require navigation assistance, as he is likely covering a
rather large geographic area.

■ The mobile worker needs an intuitive application. One that is simple to use
with a minimum number of requirements.

There are likely additional requirements for such an application, but this list is ade-
quate for our purposes. One of the most glaring omissions from our list is security.

 Security in this kind of an application comes down to two fundamental aspects.
The first is physical security of the Android device. Our assumption is that the device
itself is locked and only the authorized worker is using it. A bit naïve perhaps, but
there are more important topics we need to cover in this chapter. If this bothers you,
just assume there is a sign-in screen with a password field that pops up at the most
inconvenient times, forcing you to tap in your password on a very small keypad. Feel
better now? The second security topic is the secure transmission of data between the
Licensed to Deborah Christiansen <pedbro@gmail.com>

298 CHAPTER 12 Putting it all together–the Field Service Application
Android device and the dispatcher. This is most readily accomplished through the use
of a Secure Sockets Layer (SSL) connection whenever required.

 The next step in defining this application is to examine the data flows and discuss
the kind of information that must be captured to satisfy the functional requirements.

12.1.2 Data model

Throughout this chapter, the term job refers to a specific task or event that our mobile
worker engages in. For example, a request to replace a hard drive in a computer at the
bookstore is a job. A request to upgrade the firmware in the fuel-injection system at
the refinery is likewise a job. The home office dispatches one or more jobs to the
mobile worker on a regular basis. Certain data elements in the job are helpful to the
mobile worker to accomplish his goal of completing the job. This information comes
from the home office. Where the home office gets this information is not our concern
in this application.

 In this chapter’s sample application, there are only two pieces of information the
mobile worker is responsible for submitting to the dispatcher. The first requirement is
that the mobile worker communicates to the home office that a job has been closed;
that is, completed. The second requirement is the collection of an electronic signa-
ture from the customer, acknowledging that the job has, in fact, been completed. Fig-
ure 12.1 depicts these data flows.

 Of course, there are additional pieces of information that may be helpful here,
such as the customer’s phone number, anticipated duration of the job, replacement
parts required in the repair (including tracking numbers), any observations about the
condition of related equipment, and much more. While these are very important to a
real-world application, these pieces of information are extraneous to the goals of this
chapter and are left as an exercise for you to extend the application for your own
learning and use.

 The next objective is to determine how data is stored and transported.

Home office / dispatcher Mobile worker

List of jobs sent to a
specific mobile worker

Each job contains

Job id

Customer name

Address

City, State, Zip

Product needing repair

URL to product information

Comments

Job status (updated by mobile)

Signature (updated by mobile)

Jobs

Figure 12.1 Data
flows between the
home office and a
mobile worker
Licensed to Deborah Christiansen <pedbro@gmail.com>

299Field Service Application requirements
12.1.3 Application architecture and integration

Now that we know which entities are responsible for the relevant data elements, and
in which direction they flow, let’s look at how the data is stored and exchanged. We
will be deep into code before too long, but for now we will discuss the available
options and continue to examine things from a requirements perspective, building to
a proposed architecture.

 At the home office, the dispatcher must manage data for multiple mobile workers.
The best tool for this purpose is a relational database. The options here are numerous,
but we will make the simple decision to use MySQL, a popular open source database. Not
only are there multiple mobile workers, but the organization we are building this appli-
cation for is quite spread out, with employees in multiple markets and time zones.
Because of the nature of the dispatching team, it has been decided to host the MySQL
database in a data center, where it is accessed via a browser-based application. For this
sample application, the dispatcher system is super simple and written in PHP.

 Data storage requirements on the mobile device are quite modest. At any point, a
given mobile worker may have only a half-dozen or so assigned jobs. Jobs may be
assigned at any time, so the mobile worker is encouraged to refresh the list of jobs
periodically. Although you learned about how to use SQLite in chapter 5, we have little
need for sharing data between multiple applications and don’t need to build out a
ContentProvider, so we’ve made the decision to use an XML file stored on the filesys-
tem to serve as a persistent store of our assigned job list.

 The Field Service Application uses HTTP to exchange data with the home office.
Again, we use PHP to build the transactions for exchanging data. While more com-
plex and sophisticated protocols can be employed, such as Simple Object Access Pro-
tocol (SOAP), this application simply requests an XML file of assigned jobs and
submits an image file representing the captured signature. This architecture is
depicted in figure 12.2.

 The last item to discuss before diving into the code is configuration. Every mobile
worker needs to be identified uniquely. This way, the Field Service Application can
retrieve the correct job list, and the dispatchers can assign jobs to workers in the field.

MySQL

WWW Server
(Apache or IIS)

with PHP

getjoblist.php

closejob.php

Distributed dispatchers

Dispatch functions

Figure 12.2 The Field Service
Application and dispatchers both
leverage PHP transactions.
Licensed to Deborah Christiansen <pedbro@gmail.com>

300 CHAPTER 12 Putting it all together–the Field Service Application
Similarly, the mobile application may need to communicate with different servers,
depending on locale. A mobile worker in the United States might use a server located
in Chicago, but a worker in the United Kingdom may need to use a server in Cam-
bridge. Because of these requirements, we have decided that both the mobile worker’s
identifier and the server address need to be readily accessed within the application.
Remember, these fields would likely be secured in a deployed application, but for our
purposes they are easy to access and not secured.

 We have identified the functional requirements, defined the data elements neces-
sary to satisfy those objectives, and selected the preferred deployment platform. It is
time to examine the Android application.

12.2 Android application tour
Have you ever downloaded an application’s source code, excited to get access to all of
that code, but once you did, it was a little overwhelming? You want to make your own
changes, to put your own spin on the code, but you unzip the file into all of the vari-
ous subdirectories, and you just don’t know where to start. Before we jump directly
into examining the source code, we need to pay a little attention to the architecture,
in particular the flow from one screen to the next.

12.2.1 Application flow

In this section we will examine the application flow to better understand the relation
among the application’s functionality, the UI, and the classes used to deliver this func-
tionality. Doing this process up front helps ensure that the application delivers the
needed functionality and assists in defining which classes we require when it comes time
to start coding, which is soon! Figure 12.3 shows the relation between the high-level

Applica�on Launch

Main Screen

(FieldService Ac�vity)

Refresh Jobs

(RefreshJobs Ac�vity)

Manage Jobs

(ManageJobs Ac�vity)

Se�ngs

(ShowSe�ngs Ac�vity)

Show Job Details

(ShowJob Ac�vity)

Display Signature

(Launch Browser)

Map Job Loca�on
(Launch Google Maps)

Look up Product Info

(Launch Browser)
Capture Signature

(CloseJob Ac�vity)
Job Closed?

No

Yes

Splash Screen

(Splash Ac�vity)

#6

#2

#3

#4

#1

#5

#7

#8 #9
#10 #11

#12

Figure 12.3 Application flow
Licensed to Deborah Christiansen <pedbro@gmail.com>

301Android application tour
classes in the application, which are implemented as an Android Activity as well as
interaction with other services available in Android.

 Here is the procession of steps in the application:

1 The application is selected from the application launch screen on the Android
device.

2 The application splash screen displays. Why? Some applications require setup
time to get data structures initialized. As a practical matter, such time-consuming
behavior is discouraged on a mobile device; however, it is an important aspect to
application design, so it is included in this sample application.

3 The main screen displays the currently configured user and server settings,
along with three easy-to-hit-with-your-finger buttons.

4 The Refresh Jobs button initiates a download procedure to fetch the currently
available jobs for this mobile worker from the configured server. The download
includes a ProgressDialog, which is discussed later in this chapter.

5 The Settings button brings up a screen that allows the configuration of the user
and server settings.

6 Selecting Manage Jobs lets our mobile worker review the available jobs assigned
to him and proceed with further steps specific to a chosen job.

7 Selecting a job from the list of jobs on the Manage Jobs screen brings up
the Show Job Details screen with the specific job information listed. This
screen lists the available information about the job and presents three addi-
tional buttons.

8 The Map Job Location button initiates a geo query on the device using an
Intent. The default handler for this Intent is the Maps application.

9 Because our mobile worker may not know much about the product he is being
asked to service, each job includes a product information URL. Clicking this
button brings up the built-in browser and takes the mobile worker to a (hope-
fully) helpful internet resource. This may be an online manual or an instruc-
tional video.

10 The behavior of the third button depends on the current status of the job. If
the job is still marked OPEN, this button is used to initiate the closeout or com-
pletion of this job.

When the close procedure is selected, the application presents an empty can-
vas upon which the customer can take the stylus (assuming a touch
screen–capable Android device, of course!) and sign that the work is complete.
A menu on that screen presents two options: Sign & Close or Cancel. If the Sign
& Close option is selected, the application submits the signature as a JPEG
image to the server, and the server marks the job as CLOSED. In addition, the
local copy of the job is marked as CLOSED. The Cancel button causes the Show
Job Details screen to be restored.

11 If the job being viewed has already been closed, the browser window is opened
to a page displaying the previously captured signature.
Licensed to Deborah Christiansen <pedbro@gmail.com>

302 CHAPTER 12 Putting it all together–the Field Service Application
Now that we have a pretty good feel for what our requirements are and how we are
going to tackle the problem from a functionality and application-flow perspective,
let’s examine the code that delivers this functionality.

12.2.2 Code road map

The source code for this application consists of 12 Java source files, one of which is the
R.java file, which you will recall is automatically generated based on the resources in
the application. This section presents a quick introduction to each of these files. No
code is explained yet; we just want to know a little bit about each file, and then it will
be time to jump into the application, step-by-step. Table 12.1 lists the source files in
the Android Field Service Application.

The application also relies on layout resources to define the
visual aspect of the UI. In addition to the layout xml files, an
image used by the Splash Activity is placed in the drawable
subfolder of the res folder along with the stock Android icon
image. This icon is used for the home application launch screen.
Figure 12.4 depicts the resources used in the application.

 In an effort to make navigating the code as easy as possible,
the Field Service Application resource files are presented in
table 12.2. Note that each of these is clearly seen in figure 12.4,
which is a screen shot from our project open in Eclipse.

Table 12.1 The source files used to implement the Field Service Application

Source Filename Description

Splash.java Activity provides splash screen functionality.

ShowSettings.java Activity provides management of username and server URL address.

FieldService.java Activity provides the main screen of the application.

RefreshJobs.java Activity interacts with server to obtain updated list of jobs.

ManageJobs.java Activity provides access to list of jobs.

ShowJob.java Activity provides detailed information on a specific job, such as an address
lookup, or initiates the signature-capture process.

CloseJob.java Activity collects electronic signature and interacts with the server to upload
images and mark jobs as CLOSED.

R.java Automatically generated source file representing identifiers in the resources.

Prefs.java Helper class encapsulating SharedPreferences.

JobEntry.java Class that represents a job. Includes helpful methods used when passing
JobEntry objects from one Activity to another.

JobList.java Class representing the complete list of JobEntry objects. Includes methods
for marshaling and unmarshaling to nonvolatile storage.

JobListHandler.java Class used for parsing XML document containing job data.

Figure 12.4 Resources
used in the application
Licensed to Deborah Christiansen <pedbro@gmail.com>

303Android application tour
An examination of the source files in this application tells us that we have more than
one Activity in use. In order to enable navigation between one Activity and
the next, our application must inform Android of the existence of these Activity
classes. If you recall from chapter 1, this registration step is accomplished with the
AndroidManifest.xml file.

12.2.3 AndroidManifest.xml

Every Android application requires a manifest file to let Android properly “wire things
up” when an Intent is handled and needs to be dispatched. Let’s look at the
AndroidManifest.xml file used by our application, which is presented in listing 12.1.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.msi.manning.UnlockingAndroid">
 <application android:icon="@drawable/icon">
 <activity android:name=".Splash"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".FieldService" >
 </activity>
 <activity android:name=".RefreshJobs" >
 </activity>
 <activity android:name=".ManageJobs" >
 </activity>
 <activity android:name=".ShowJob" >
 </activity>
 <activity android:name=".CloseJob" >

Table 12.2 Resource files used in the sample application

Filename Description

android.jpg Image used in the Splash Activity.

icon.jpg Image used in the application launcher.

fieldservice.xml Layout for main application screen, FieldService Activity.

managejobs.xml Layout for the list of jobs, ManageJobs Activity.

refreshjobs.xml Layout for the screen shown when refreshing job list, RefreshJobs Activity.

showjob.xml Layout for job detail screen, ShowJob Activity.

showsettings.xml Layout for configuration/settings screen, ShowSettings Activity.

splash.xml Layout for splash screen, Splash Activity.

strings.xml Strings file containing extracted strings. Ideally all text is contained in a strings file
for ease of localization. This application’s file contains only the application title.

Listing 12.1 The Field Service Application’s AndroidManifest.xml file

Splash Activity is
the entry point

Intent filter for main
launcher visibility

Application’s
defined
Activity list
Licensed to Deborah Christiansen <pedbro@gmail.com>

304 CHAPTER 12 Putting it all together–the Field Service Application
 </activity>
 <activity android:name=".ShowSettings" >
 </activity>

 </application>
<uses-permission android:name="android.permission.INTERNET">
 </uses-permission>
</manifest>

12.3 Android code
After a rather long introduction and stage setting for this chapter, it’s time to look at
the source code for the Field Service Application. The approach is to largely follow
the application flow, step-by-step. Let’s start with the splash screen.

12.3.1 Splash Activity

We are all very familiar with a splash screen for a software application. It acts like a cur-
tain while important things are taking place behind the scenes. Ordinarily splash
screens are visible until the application is ready—this could be a very brief amount of
time or much longer in the case where quite a bit of housekeeping is necessary. As a
rule, a mobile application should focus on economy and strive to have as little resource
consumption as possible. The splash screen in this sample application is meant to dem-
onstrate how such a feature may be constructed—we don’t actually need one for house-
keeping purposes. But that’s okay; you can learn in the process. Two code snippets are
of interest to us, the implementation of the Activity as well as the layout file that
defines what the UI looks like. First, examine the layout file in listing 12.2.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:scaleType="fitCenter"
 android:src="@drawable/android"
 />
</LinearLayout>

The splash.xml layout contains a single ImageView B, set to fill the entire screen. The
source image for this view is defined as the drawable resource C, named android.
Note that this is simply the name of the file (minus the file extension) in the drawable
folder, as shown earlier.

 Now we must use this layout in an Activity. Aside from the referencing of an
image resource from the layout, this is really not that interesting. Figure 12.5 shows
the splash screen running on the Android Emulator.

Listing 12.2 splash.xml defines the layout of the application’s splash screen.

Application’s defined
Activity list

Required permission for internet access

Full screen
ImageView

B

Image
reference

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

305Android code
Of interest to us is the code that creates the splash page functionality. This code is
shown in listing 12.3.

package com.msi.manning.UnlockingAndroid;

// multiple imports omitted for brevity, see full source code

public class Splash extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.splash);
 Handler x = new Handler();
 x.postDelayed(new splashhandler(), 2000);
 }
 class splashhandler implements Runnable {

Listing 12.3 Splash.java implements splash screen functionality.

Figure 12.5 Splash screen

Set up main ViewB

Define and set
up Handler

C

Implement HandlerD
Licensed to Deborah Christiansen <pedbro@gmail.com>

306 CHAPTER 12 Putting it all together–the Field Service Application
 public void run() {
 startActivity(
 new Intent(getApplication(),FieldService.class));
 Splash.this.finish();
 }
 }
}

Like most Activity classes in Android, we want to associate the splash layout with this
Activity’s View B. A Handler is set up C, which is used to close down the splash
screen after an elapsed period of time. Note that the arguments to the postDelayed
method are an instance of a class that implements the Runnable interface and the
desired elapsed time in milliseconds. In this snippet of code, the screen will be shown
for 2000 milliseconds, or 2 seconds. After the indicated amount of time has elapsed,
the class splashhandler D is invoked. The FieldService Activity is instantiated
with a call to startActivity E. Note that an Intent is not used here—we explicitly
specify which class is going to satisfy our request. Once we have started the next
Activity, it is time to get rid of our splash screen Activity, F.

 The splash screen is happily entertaining our mobile worker each time he starts
the application. Let’s move on to the main screen of the application.

12.3.2 FieldService Activity, part 1

The goal of the FieldService Activity is to put the functions the mobile worker
requires directly in front of him and make sure they are easy to access. A good mobile
application is often one that can be used with one hand, such as the five-way navigation
buttons, or in some cases a thumb tapping on a button. In addition, if there is helpful
information to display, you should not hide it. It is helpful for our mobile worker
to know that he is configured to obtain jobs
from a particular server. Figure 12.6 demon-
strates the Field Service Application convey-
ing a very simple, yet easy-to-use home screen.

 Before reviewing the code in FieldSer-
vice.java, we need to take a break to discuss
how the user and server settings are man-
aged. This is important because these set-
tings are used throughout the application,
and as shown in the fieldservice.xml layout
file, we need to access those values to display
to our mobile worker on the home screen.
PREFS CLASS

As you learned in chapter 5, there are a number of means for managing data. Because
we need to persist this data across multiple invocations of our application, the data must
be stored in a nonvolatile fashion. This application employs private SharedPreferences
to accomplish this. Why? Despite the fact that we are largely ignoring security for this
sample application, using private SharedPreferences means that other applications

Start
application’s
main Activity

E

F Kill the splash screen

Figure 12.6 The home screen. Less is more.
Licensed to Deborah Christiansen <pedbro@gmail.com>

307Android code
cannot casually access this potentially important data. For example, we presently use
only an identifier (let’s call it an email address for simplicity) and a server URL in this
application. However, we might also include a password or a PIN in a production-ready
application, so keeping this data private is a good practice.

 The Prefs class can be described as a helper or wrapper class. This class wraps the
SharedPreferences code and exposes simple getter and setter methods, specific to
this application. This implementation knows something about what we are trying to
accomplish, so it adds value with some default values as well. Let’s look at listing 12.4
to see how our Prefs class is implemented.

package com.msi.manning.UnlockingAndroid;

// multiple imports omitted for brevity, see full source code

public class Prefs {

 private SharedPreferences _prefs = null;
 private Editor _editor = null;
 private String _useremailaddress = "Unknown";
 private String _serverurl =
 "http://android12.msi-wireless.com/getjoblist.php";
 public Prefs(Context context) {
 _prefs =

context.getSharedPreferences("PREFS_PRIVATE",Context.MODE_PRIVATE);
 _editor = _prefs.edit();
 }
 public String getValue(String key,String defaultvalue){
 if (_prefs == null) return "Unknown";
 return _prefs.getString(key,defaultvalue);
 }
 public void setValue(String key,String value) {
 if (_editor == null) return;
 _editor.putString(key,value);
 }
 public String getEmail(){
 if (_prefs == null) return "Unknown";
 _useremailaddress = _prefs.getString("emailaddress","Unknown");
 return _useremailaddress;
 }
 public void setEmail(String newemail) {
 if (_editor == null) return;
 _editor.putString("emailaddress",newemail);
 }
 … (abbreviated for brevity)
 public void save() {
 if (_editor == null) return;
 _editor.commit();
 }
}

Listing 12.4 Prefs class provides storage and retrieval for small and useful information.

SharedPreferences
object

B

Implement HandlerC

Default
values

D

E Initialize SharedPreferences

f Generic
set/get
methods

Extract email valueg

Set email valueh

Save preferencesi
Licensed to Deborah Christiansen <pedbro@gmail.com>

308 CHAPTER 12 Putting it all together–the Field Service Application
To persist the application’s settings data, we employ a SharedPreferences object B.
To manipulate data within the SharedPreferences object, here named simply _prefs,
we use an instance of the Editor class C. This snippet employs some default settings
values D, which are appropriate for our application. The Prefs() constructor E
does the necessary housekeeping so we can establish our private SharedPreferences
object, including using a passed-in Context instance. The Context class is necessary
because the SharedPreferences mechanism relies on a Context for segregating data.
This snippet shows a pair of set and get methods that are generic in nature F. The
getEmail G and setEmail methods H are responsible for manipulating the email
setting value. The save() method I invokes a commit() on the Editor, which per-
sists the data to the SharedPreferences store.

 Now that you have some feel for how this important preference data is stored, let’s
return to examine the code of FieldService.java.

12.3.3 FieldService Activity, part 2

Recall that the FieldService.java file implements the FieldService class, which is
essentially the home screen of our application. This code does the primary dispatch-
ing for the application. Many of the programming techniques in this file have been
shown earlier in the book; however, please take note of the use of startActivityFor-
Result and the onActivityResult methods as you read through the code, as shown
in listing 12.5.

package com.msi.manning.UnlockingAndroid;

// multiple imports trimmed for brevity, see full source code

public class FieldService extends Activity {
 final int ACTIVITY_REFRESHJOBS = 1;
 final int ACTIVITY_LISTJOBS = 2;
 final int ACTIVITY_SETTINGS = 3;
 Prefs myprefs = null;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.fieldservice);
 myprefs = new Prefs(this.getApplicationContext());
 RefreshUserInfo();
 final Button refreshjobsbutton = (Button) findViewById(R.id.getjobs);
 refreshjobsbutton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 startActivityForResult(new

Intent(v.getContext(),RefreshJobs.class),ACTIVITY_REFRESHJOBS);
 } catch (Exception e) {
 }
 }
 });

Listing 12.5 FieldService.java implements FieldService Activity

Useful constants

Prefs instanceB

Set up UI
Instantiate Prefs
instance

C

Initiate
UI field
contents

DConnect
button to UI
Licensed to Deborah Christiansen <pedbro@gmail.com>

309Android code
 // see full source comments
 }
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent

data) {
 switch (requestCode) {
 case ACTIVITY_REFRESHJOBS:
 break;
 case ACTIVITY_LISTJOBS:
 break;
 case ACTIVITY_SETTINGS:
 RefreshUserInfo();
 break;
 }
 }
 private void RefreshUserInfo() {
 try {
 final TextView emaillabel = (TextView)

findViewById(R.id.emailaddresslabel);
 emaillabel.setText("User: " + myprefs.getEmail() + "\nServer: " +

myprefs.getServer() + "\n");
 } catch (Exception e) {
 }
 }
}

This code implements a simple UI that displays three distinct buttons. As each is
selected, a particular Activity is started in a synchronous, call/return fashion.
The Activity is started with a call to startActivityForResult D. When the called
Activity is complete, the results are returned to the FieldService Activity via the
onActivityResult method E. An instance of the Prefs class B, C is used to obtain
values for displaying in the UI. Updating the UI is accomplished in the method
RefreshUserInfo F.

 Because the settings are so important to this application, the next section covers
the management of the user and server values.

12.3.4 Settings

When the user clicks the Settings button from the main application screen, an Activ-
ity is started that allows the user to configure his user ID (email address) and the
server URL. The screen layout is very basic (listing 12.6). It is shown graphically in fig-
ure 12.7.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView

Listing 12.6 showsettings.xml contains UI elements for the settings screen

E onActivityResult
processing

RefreshUserInfoF

TextView for
display of labels
Licensed to Deborah Christiansen <pedbro@gmail.com>

310 CHAPTER 12 Putting it all together–the Field Service Application
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Email Address"
 />
 <EditText
 android:id="@+id/emailaddress"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Server URL"
 />
 <EditText
 android:id="@+id/serverurl"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:autoText="true"
 />
 <Button android:id="@+id/settingssave"
 android:text="Save Settings"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:enabled="true"
 />
</LinearLayout>

The source code behind the settings screen is
also very basic. Note the use of the Populate-
Screen() method, which makes sure the
EditView controls are populated with the cur-
rent values stored in the SharedPreferences.
Note also the use of the Prefs helper class to
retrieve and save the values, as shown in list-
ing 12.7

package com.msi.manning.UnlockingAndroid;

// multiple imports trimmed for brevity, see full source code

public class ShowSettings extends Activity {
 Prefs myprefs = null;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.showsettings);
 myprefs = new Prefs(this.getApplicationContext());
 PopulateScreen();
 final Button savebutton = (Button) findViewById(R.id.settingssave);
 savebutton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {

Listing 12.7 ShowSettings.java implements the code behind the settings screen

TextView for
display of labels EditView for

entry of data

Button to initiate
saving data

Initialize Prefs
instance

B

Populate UI
elements

C

Figure 12.7 Settings screen in use
Licensed to Deborah Christiansen <pedbro@gmail.com>

311Android code
 try {
 final EditText email=
 (EditText)findViewById(R.id.emailaddress);
 if (email.getText().length() == 0) {
 // display dialog, see full source code
 return;
 }
 final EditText serverurl =
 (EditText)findViewById(R.id.serverurl);
 if (serverurl.getText().length() == 0) {
 // display dialog, see full source code
 return;
 }
 myprefs.setEmail(email.getText().toString());
 myprefs.setServer(serverurl.getText().toString());
 myprefs.save();
 finish();
 } catch (Exception e) {
 }
 }
 });
}
 private void PopulateScreen() {
 try {
 final EditText emailfield = (EditText) findViewById(R.id.emailaddress);
 final EditText serverurlfield = (EditText)findViewById(R.id.serverurl);
 emailfield.setText(myprefs.getEmail());
 serverurlfield.setText(myprefs.getServer());
 } catch Exception e) {
 }
 }
}

This Activity commences by initializing the SharedPreferences instance B, which
retrieves the settings values and subsequently populates the UI elements C by calling
the application-defined PopulateScreen method G. When the Save Settings button is
clicked, the onClick method is invoked, wherein the data is extracted from the UI ele-
ments D and put back into the Prefs instance E. A call to the finish method F
ends this Activity.

 Once the settings are in order, it’s time to focus on the core of the application,
managing jobs for our mobile worker. In order to get the most out of looking at the
higher-level functionality of downloading (refreshing) and managing jobs, we need to
look at the core data structures in use in this application.

12.3.5 Data structures

Data structures represent a key element of any software project and, in particular, one
consisting of multiple tiers, such as this Field Service Application. Job data is
exchanged between an Android application and the server, so the elements of the job
are central to our application. In Java, we implement these data structures as classes,
which include helpful methods in addition to the data elements. XML data shows up
in many locations in this application, so we will start there.

D Connect
EditText to UI

Store and
save settings

E

F
Finish this
Activity

PopulateScreen
method sets up UI

G

Licensed to Deborah Christiansen <pedbro@gmail.com>

312 CHAPTER 12 Putting it all together–the Field Service Application
JOB XML DESCRIPTION

The same XML format is used as persistent storage by the Android application and for
the transmission of job data from the server to Android. There is nothing particularly
fancy in the XML document structure, just a collection of jobs.

 Perhaps the most straightforward means of describing an XML document is
through a Document Type Definition, or DTD. The DTD representing the XML used
in this application is shown in listing 12.8.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT joblist ((job+))>
<!ELEMENT job ((id, status, customer, address, city, state, zip, product,

producturl, comments))>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT producturl (#PCDATA)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT customer (#PCDATA)>
<!ELEMENT comments (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT address (#PCDATA)>

The joblist B is the top level of the xml file, containing one or more job elements C.
 Listing 12.9 shows a sample XML document containing a joblist with a single job

entry.

<?xml version="1.0" encoding="UTF-8" ?>
<joblist>
<job>
<id>22</id>
<status>OPEN</status>
<customer>Big Tristan's Imports</customer>
<address>2200 East Cedar Ave</address>
<city>Flagstaff</city>
<state>AZ</state>
<zip>86004</zip>
<product>UnwiredTools UTCIS-PT</product>
<producturl>http://unwiredtools.com</producturl>
<comments>Requires tuning - too rich in the mid range RPM.
Download software from website before visiting.</comments>
</job>
</joblist>

Now that you have a feel for what the job data looks like, you need to see how the data
is handled in our Java classes.
JOBENTRY

The individual job is used throughout the application and is therefore essential to
understand. In our application, we define the JobEntry class to manage the individual

Listing 12.8 DTD for joblist.xml

Listing 12.9 XML document containing data for the Field Service Application

joblist groupingB

C job element fields
Licensed to Deborah Christiansen <pedbro@gmail.com>

313Android code
job, shown in listing 12.10. Note that many of the lines are omitted from this listing
for brevity; please see the available source code for the complete code listing.

package com.msi.manning.UnlockingAndroid;

import android.os.Bundle;

public class JobEntry {
 private String _jobid="";
 private String _status = "";
 // members omitted for brevity
private String _producturl = "";
 private String _comments = "";

 JobEntry() {
 }
 // get/set methods omitted for brevity
 public String toString() {
 return this._jobid + ": " + this._customer + ": " + this._product;
 }
 public String toXMLString() {
 StringBuilder sb = new StringBuilder("");
 sb.append("<job>");
 sb.append("<id>" + this._jobid + "</id>");
 sb.append("<status>" + this._status + "</status>");
 sb.append("<customer>" + this._customer + "</customer>");
 sb.append("<address>" + this._address + "</address>");
 sb.append("<city>" + this._city + "</city>");
 sb.append("<state>" + this._state + "</state>");
 sb.append("<zip>" + this._zip + "</zip>");
 sb.append("<product>" + this._product + "</product>");
 sb.append("<producturl>" + this._producturl + "</producturl>");
 sb.append("<comments>" + this._comments + "</comments>");
 sb.append("</job>");
 return sb.toString() + "\n";
}

 public Bundle toBundle() {
 Bundle b = new Bundle();
 b.putString("jobid", this._jobid);
 b.putString("status", this._status);
 // assignments omitted for brevity
 b.putString("producturl", this._producturl);
 b.putString("comments", this._comments);
 return b;
}
public static JobEntry fromBundle(Bundle b) {
 JobEntry je = new JobEntry();
 je.set_jobid(b.getString("jobid"));
 je.set_status(b.getString("status"));
 // assignments omitted for brevity
 je.set_producturl(b.getString("producturl"));
 je.set_comments(b.getString("comments"));
 return je;
}
}

Listing 12.10 JobEntry.java

Bundle class importB

C
Each member
is a String

toString methodD

E
toXMLString
method

toBundle
method

F

fromBundle
method

G

Licensed to Deborah Christiansen <pedbro@gmail.com>

314 CHAPTER 12 Putting it all together–the Field Service Application
This application relies heavily on the Bundle class B for moving data from one
Activity to another. This will be explained in more detail later in this chapter. A
String member C exists for each element in the job such as jobid, customer, and
so on. The toString() method D is rather important as it is used when displaying
jobs in the ManageJobs Activity, discussed later in the chapter. The toXML-
String() method E generates an XML representation of this JobEntry, complying
with the job element defined in the previously presented DTD. The toBundle()
method F takes the data members of the JobEntry class and packages them into a
Bundle. This Bundle is then able to be passed between activities, carrying with it the
required data elements. The fromBundle() static method G returns a JobEntry
when provided with a Bundle. The toBundle() and fromBundle() work together to
assist in the passing of JobEntry objects (at least the data portion thereof) between
activities. Note that this is one of many ways in which to move data throughout an
application. Another method would be to have a globally accessible class instance to
store data, for example.

 Now that you understand the JobEntry class, we need to look at the JobList class,
which is a class used to manage a collection of JobEntry objects.
JOBLIST

When interacting with the server or presenting the available jobs to manage on the
Android device, the Field Service Application works with an instance of the JobList
class. This class, like the JobEntry class, has both data members and helpful methods.
The JobList class contains a typed List data member, which is implemented using a
Vector. This is the only data member of this class, as shown in listing 12.11. The meth-
ods of interest are described in the listing.

package com.msi.manning.UnlockingAndroid;

import java.util.List;
import org.xml.sax.InputSource;
import android.util.Log;
// additional imports omitted for brevity, see source code

public class JobList {
 private Context _context = null;
 private List<JobEntry> _joblist;
 JobList(Context context){
 _context = context;
 _joblist = new Vector<JobEntry>(0);
 }
 int addJob(JobEntry job){
 _joblist.add(job);
 return _joblist.size();
 }
 JobEntry getJob(int location) {
 return _joblist.get(location);
 }

Listing 12.11 JobList.java code listing

List class
imported
for Vector

B
InputSource
imported, used
by XML parser

C

Familiar logging
mechanism

ConstructorD

E addJob/getJob
methods
Licensed to Deborah Christiansen <pedbro@gmail.com>

315Android code
 List<JobEntry> getAllJobs() {
 return _joblist;
 }
 int getJobCount() {
 return _joblist.size();
 }
 void replace(JobEntry newjob){
 try {
 JobList newlist = new JobList();
 for (int i=0;i<getJobCount();i++) {
 JobEntry je = getJob(i);
 if (je.get_jobid().equals(newjob.get_jobid())) {
 newlist.addJob(newjob);
 } else {
 newlist.addJob(je);
 }
 }
 this._joblist = newlist._joblist;
 persist();
 } catch (Exception e) {
 }
}
void persist() {
 try {
 FileOutputStream fos = _context.openFileOutput("chapter12.xml",

Context.MODE_PRIVATE);
 fos.write("<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n".getBytes());
 fos.write("<joblist>\n".getBytes());
 for (int i=0;i<getJobCount();i++) {
 JobEntry je = getJob(i);
 fos.write(je.toXMLString().getBytes());
 }
 fos.write("</joblist>\n".getBytes());
 fos.flush();
 fos.close();
 } catch (Exception e) {
 Log.d("CH12",e.getMessage());
 }
}
static JobList parse(Context context) {
 try {
 FileInputStream fis = context.openFileInput("chapter12.xml");
 if (fis == null) {
 return null;
 }
 InputSource is = new InputSource(fis);
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser parser = factory.newSAXParser();
 XMLReader xmlreader = parser.getXMLReader();
 JobListHandler jlHandler =
new JobListHandler(null /* no progress updates when reading file */);
 xmlreader.setContentHandler(jlHandler);
 xmlreader.parse(is);
 fis.close();
 return jlHandler.getList();

F
getAllJobs
method

replace
method

G

persist method writes
data to storage

H

parse
method

I

Licensed to Deborah Christiansen <pedbro@gmail.com>

316 CHAPTER 12 Putting it all together–the Field Service Application
 } catch (Exception e) {
 return null;
 }
 }
}

The list of jobs is implemented as a Vector, which is a type of List B. The XML struc-
ture containing job information is parsed with the SAX parser, so we need to be sure to
import those required packages C. JobEntry objects are stored in the typed List
object named _joblist D. Helper methods for managing the list are included as
addJob and getJob E. The getAllJobs() method F returns the list of JobEntry
items. Note that generally speaking the application uses the getJob() method for
individual JobEntry management; however, the getAllJobs() method is particularly
useful when we get to displaying the full list of jobs in the ManageJobs Activity, dis-
cussed later in this chapter.

 The replace() method G is used when we have closed a job and need to update
our local store of jobs. Note that after it has updated the local list of JobEntry items, it
calls the persist() H method, which is responsible for writing an XML representa-
tion of the entire list of JobEntry items to storage. This method invokes the toXML-
String() method on each JobEntry in the list. The openFileOutput method creates
a file within the application’s private file area. This is essentially a helper method to
ensure we get a file path to which we have full read/write privileges.

 Finally, the parse method I obtains an instance of a FileInputStream to gain
access to the file and then creates an instance of an InputStream C, which is required
by the SAX XML parser. In particular, take note of the JobListHandler. SAX is a call-
back parser, meaning that it invokes a user-supplied method to process events in the
parsing process. It is up to the JobListHandler (in our example) to process the data
as appropriate.

 We have one more class to go before we can jump back to the higher-level function-
ality of our application. The next section takes a quick tour of the JobListHandler,
which is responsible for putting together a JobList from an XML data source.
JOBLISTHANDLER

As presented already, our application uses an XML data storage structure. This XML
data can come from either the server or from a local file on the filesystem. In either
case, the application must parse this data and transform it into a useful form. This is
accomplished through the use of the SAX XML parsing engine and the JobList-
Handler, which is shown in listing 12.12. The JobListHandler is used by the SAX parser
for our XML data, regardless of the data’s source. Where the data comes from dictates
how the SAX parser is set up and invoked in this application. The JobListHandler
behaves slightly differently depending on whether or not the class’s constructor
includes a Handler argument. If the Handler is provided, the JobListHandler will pass
messages back for use in a ProgressDialog. If the Handler argument is null, this status
message passing is bypassed. When parsing data from the server, the ProgressDialog
is employed; the parsing of a local file is done quickly and without user feedback. The
Licensed to Deborah Christiansen <pedbro@gmail.com>

317Android code
rationale for this is simple—the network connection may be slow and we need to show
progress information to the user. An argument could be made for always showing the
progress of the parse operation, but this approach gives us opportunity to demonstrate
more conditionally operating code.

package com.msi.manning.UnlockingAndroid;

// multiple imports omitted for brevity, see full source code

public class JobListHandler extends DefaultHandler {
 Handler phandler = null;
 JobList _list;
 JobEntry _job;
 String _lastElementName = "";
 StringBuilder sb = null;
 Context _context;

 JobListHandler(Context c,Handler progresshandler) {
 _context = c;
 if (progresshandler != null) {
 phandler = progresshandler;
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Processing List");
 phandler.sendMessage(msg);
 }
 }

 public JobList getList() {
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Fetching List");
 if (phandler != null) phandler.sendMessage(msg);
 return _list;
 }

 public void startDocument() throws SAXException {
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Starting Document");
 if (phandler != null) phandler.sendMessage(msg);
 _list = new JobList(_context);
 _job = new JobEntry();
 }
 public void endDocument() throws SAXException {
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("End of Document");
 if (phandler != null) phandler.sendMessage(msg);
 }
 public void startElement
 ➥ (String namespaceURI, String localName,String qName,
 ➥ Attributes atts) throws SAXException {
 try {
 sb = new StringBuilder("");

Listing 12.12 JobListHandler.java

JobListHandler
constructor

B

Check for
progress handler

C

getList
method

D

startDocument
method

E

endDocument
method

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

318 CHAPTER 12 Putting it all together–the Field Service Application
 if (localName.equals("job")) {
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)(localName);
 if (phandler != null) phandler.sendMessage(msg);
 _job = new JobEntry();
 }
 } catch (Exception ee) {
 }
 }
 public void endElement
 ➥ (String namespaceURI, String localName, String qName)
 ➥ throws SAXException {
 if (localName.equals("job")) {
 // add our job to the list!
 _list.addJob(_job);
 Message msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Storing Job # " + _job.get_jobid());
 if (phandler != null) phandler.sendMessage(msg);
 return;
 }
 // portions of the code omitted for brevity
 }
 public void characters(char ch[], int start, int length) {
 String theString = new String(ch,start,length);
 Log.d("CH12","characters[" + theString + "]");
 sb.append(theString);
 }
}

The JobListHandler constructor B takes a single argument of Handler. This value
may be null. If null, Message passing is omitted from operation, as we will show. When
reading from a local storage file, this Handler argument is null. When reading data
from the server over the internet, with a potentially slow connection, the Message-
passing code is utilized to provide feedback for the user in the form of a Progress-
Dialog. The ProgressDialog code is shown later in this chapter in the discussion of
the RefreshJobs Activity. A local copy of the Handler C is set up when using the
ProgressDialog, as described in B.

 The getList() D method is invoked when parsing is complete. The role of
getList is to return a copy of the JobList that was constructed during the parse pro-
cess. When the startDocument() callback method E is invoked by the SAX parser,
the initial class instances are established. The endDocument() method F is invoked by
the SAX parser when all of the document has been consumed. This is an opportunity
for the Handler to perform additional cleanup as necessary. In our example, a mes-
sage is posted to the user by sending a Message.

 For each element in the XML file, the SAX parser follows the same pattern: start-
Element is invoked, characters() is invoked (one or more times), and endElement is
invoked. In the startElement method, we initialize our StringBuilder and evaluate
the element name. If the name is “job,” we initialize our class-level JobEntry instance.

G
Check for end
of job element

H
Build up String
incrementally
Licensed to Deborah Christiansen <pedbro@gmail.com>

319Digging deeper into the code
 In the endElement() method, the element name is evaluated. If the element name
is “job” G, the JobListHandler adds this JobEntry to the JobList data member,
_joblist with a call to addJob(). Also in the endElement() method, the data mem-
bers of the JobEntry instance (_job) are updated. Please see the full source code for
more details.

 The characters() method is invoked by the SAX parser whenever data is available
for storage. The JobListHandler simply appends this string data to a StringBuilder
instance H each time it is invoked. It is possible that the characters method is
invoked more than once for a particular element’s data. That is the rationale behind
using a StringBuilder instead of a single String variable; StringBuilder is a more
efficient class for constructing strings from multiple substrings.

 After this lengthy but important look into the data structures and the accompanying
explanations, it is time to return to the higher-level functionality of the application.

12.4 Digging deeper into the code
Most of the time our mobile worker is using this application, he will be reading
through comments, looking up a job address, getting product information, and per-
forming other aspects of working on a specific job. However, without a list of jobs to
work on, our mobile worker will be sitting idle, not earning a dime! Therefore, the
first thing to review is the fetching of new jobs. This is also a good time to discuss gath-
ering the list of jobs, coming on the heels of the review of the JobListHandler.

12.4.1 RefreshJobs

The RefreshJobs Activity performs a simple yet
vital role in the Field Service Application. When-
ever requested, the RefreshJobs Activity

attempts to download a list of new jobs from the
server. The UI is super simple—just a blank screen
with a ProgressDialog informing the user of the
application’s progress, as shown in figure 12.8.

 The code listing for RefreshJobs is shown in
listing 12.13. The code is rather straightforward,
as most of the heavy lifting is done in the Job-
ListHandler. This code’s responsibility is to
fetch configuration settings, initiate a request to
the server, and put a mechanism in place for
showing progress to the user.

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source

public class RefreshJobs extends Activity {

Listing 12.13 RefreshJobs.java

Figure 12.8 The ProgressDialog in
use during RefreshJobs
Licensed to Deborah Christiansen <pedbro@gmail.com>

320 CHAPTER 12 Putting it all together–the Field Service Application
 Prefs myprefs = null;
 Boolean bCancel = false;
 JobList mList = null;
 ProgressDialog progress;
 Handler progresshandler;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.refreshjobs);
 myprefs = new Prefs(this.getApplicationContext);
 myprogress = ProgressDialog.show(this, "Refreshing Job List",
 ➥ "Please Wait",true,false);
 progresshandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case 0:
 myprogress.setMessage("" + (String) msg.obj);
 break;
 case 1:
 myprogress.cancel();
 finish();
 break;
 case 2: // error occurred
 myprogress.cancel();
 finish();
 break;
 }
 super.handleMessage(msg);
 }
 };
 Thread workthread = new Thread(new DoReadJobs());
 workthread.start();
 }
 class DoReadJobs implements Runnable {
 public void run() {
 InputSource is = null;
 Message msg = new Message();
 msg.what = 0;
 try {
 //Looper.prepare();
 msg.obj = (Object) ("Connecting ...");
 progresshandler.sendMessage(msg);
 URL url = new URL(myprefs.getServer() +
 ➥ "getjoblist.php?identifier=" + myprefs.getEmail());
 is = new InputSource(url.openStream());
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser parser = factory.newSAXParser();
 XMLReader xmlreader = parser.getXMLReader();
 JobListHandler jlHandler =
new JobListHandler(progresshandler);
 xmlreader.setContentHandler(jlHandler);
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Parsing ...");

Progress
indicator

B

Set up
ProgressDialog

C

Define HandlerD

Update UI with
textual message

E

F Handle cancel
and cancel with
error

Use openFileInput
for stream

G

Initiate
DoReadJobs
class instance

H

Create Message
object

I

Looping
construct

J Prepare
status
message

1)

1!
Prepare to
parse data

1@
Instantiate
JobListHandler
Licensed to Deborah Christiansen <pedbro@gmail.com>

321Digging deeper into the code
 progresshandler.sendMessage(msg);
 xmlreader.parse(is);
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Parsing Complete");
 progresshandler.sendMessage(msg);
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Saving Job List");
 progresshandler.sendMessage(msg);
 jlHandler.getList().persist();
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Job List Saved.");
 progresshandler.sendMessage(msg);
 msg = new Message();
 msg.what = 1;
 progresshandler.sendMessage(msg);
 } catch (Exception e) {
 Log.d("CH12","Exception: " + e.getMessage());
 msg = new Message();
 msg.what = 2; // error occurred
 msg.obj = (Object)("Caught an error retrieving
 ➥ Job data: " + e.getMessage());
 progresshandler.sendMessage(msg);
 }
 }
 }
}

A ProgressDialog B is used to display progress information to the user. There are a
number of ways to display progress in Android. This is perhaps the most straightfor-
ward approach. A Handler is employed to process Message instances. While the Han-
dler itself is defined as an anonymous class, the code requires a reference to it for
passing to the JobListHandler when parsing, which is shown in 1@. When instantiat-
ing the ProgressDialog C, the arguments include:

■ Context
■ Title of Dialog
■ Initial Textual Message
■ Indeterminate
■ Cancelable

Using true for the Indeterminate parameter means that we are not providing any clue
as to when the operation will complete, such as percentage remaining, just an indicator
that something is still happening, which can be a best practice when you don’t have a
good handle on how long an operation may take. A new Handler D is created to pro-
cess messages sent from the parsing routine, which is introduced momentarily. An
important class that has been mentioned but thus far not described is Message. This
class is used to convey information between different threads of execution. The Mes-
sage class has some generic data members that may be used in a flexible manner. The

Persist data1#

Set status flag
for completion

1$

Set status
flag for error

1%
Licensed to Deborah Christiansen <pedbro@gmail.com>

322 CHAPTER 12 Putting it all together–the Field Service Application
first of interest is the what member, which acts as a simple identifier, allowing recipients
to easily jump to desired code based on the value of the what member. The most typical
(and used here) approach is to evaluate the what data member via a switch statement.

 In this application, a Message received with its what member equal to 0 represents
a textual update message E to be displayed on the ProgressDialog. The textual data
itself is passed as a String cast to an Object and stored in the obj data member of the
Message. This interpretation of the what member is purely arbitrary. We could have
used 999 as the value meaning textual update, for example. A what value of 1 or 2
indicates that the operation is complete F, and this Handler can take steps to initiate
another thread of execution. For example, a value of 1 indicates successful comple-
tion so the ProgressDialog is canceled (dismissed would work here also), and the
RefreshJobs Activity is completed with a call to finish(). The value of 2 for the
what member has the same effect as a value of 1, but it is provided here as an example
of handling different result conditions; for example, a failure response due to an
encountered error. In a production-ready application, this step should be fleshed out
to perform an additional step of instruction to the user and/or a retry step. Any Mes-
sage not explicitly handled by the Handler instance should be passed to the super
class G. In this way system messages may be processed.

 When communicating with a remote resource, such as a remote web server in our
case, it is a good idea to perform the communications steps in a thread other than the
primary GUI thread. A new Thread H is created based on the DoReadJobs class, which
implements the Runnable Java interface. A new Message object I is instantiated and ini-
tialized. This step takes place over and over throughout the run method of the DoRead-
Jobs class. It is important to not reuse a Message object, as they are literally passed and
enqueued. It is possible for them to stack up in the receiver’s queue, so reusing a Mes-
sage object will lead to losing data or corrupting data at best and Thread synchroniza-
tion issues or beyond at worst!

 Why are we talking about a commented-out line of code J? Great ques-
tion—because it caused so much pain in the writing of this application! A somewhat
odd and confusing element of Android programming is the Looper class. This class
provides static methods to assist Java Threads to interact with Android. Threads by
default do not have a message loop, so presumably Messages don’t go anywhere when
sent. The first call to make is Looper.prepare(), which creates a Looper for a Thread
that does not already have one established. Then by placing a call to the loop()
method, the flow of Messages takes place. Prior to implementing this class as a Runna-
ble interface, I experimented with performing this step in the same thread and
attempted to get the ProgressDialog to work properly. All this said, if you run into
funny Thread/Looper messages on the Android Emulator, have a look at adding a call
to Looper.prepare() at the beginning of your Thread and then Looper.loop() to
help Messages flow.

 When we want to send data to the user to inform him of our progress, we update
an instance of the Message class 1) and send it to the assigned Handler.
Licensed to Deborah Christiansen <pedbro@gmail.com>

323Digging deeper into the code
 In order to parse an incoming XML data stream, we create a new InputSource
from the URL stream 1!. This step is required for the SAX parser. This method reads
data from the network directly into the parser without a temporary storage file.

 Note that the instantiation of the JobListHandler 1@ takes a reference to the pro-
gresshandler. This way the JobListHandler can (optionally) propagate messages
back to the user during the parse process. Once the parse is complete, the JobList-
Handler returns a JobList object, which is then persisted 1# to store the data to the
local storage. Because this parsing step is complete, we let the Handler know by pass-
ing a Message 1$ with the what field set to a value of 1. If an exception occurs, we pass
a message with what set to 2, indicating an error 1%.

 Congratulations, your Android application has now constructed a URL with persis-
tently stored configuration information (user and server) and successfully connected
over the internet to fetch XML data. That data has been parsed into a JobList con-
taining JobEntry objects, while providing our patient mobile worker with feedback,
and subsequently storing the JobList to the filesystem for later use. Now we want to
work with those jobs, because after all, those jobs have to be completed for our mobile
worker friend to make a living!

12.4.2 ManageJobs

The ManageJobs Activity presents a scrollable
list of jobs for review and action. At the top of the
screen is a simple summary indicating the number
of jobs in the list, and each individual job is enu-
merated in a ListView.

 Earlier we mentioned the importance of the
JobEntry’s toString() method:

public String toString() {
 return this._jobid + ": " + this._customer +

": " + this._product;
}

This method generates the String that is used to
represent the JobEntry in the ListView, as shown
in figure 12.9.

 The layout for this Activity’s View is rather
simple, just a TextView and a ListView, as shown
in listing 12.14.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/joblistview"
 android:orientation="vertical"
 android:layout_width="fill_parent"

Listing 12.14 managejobs.xml

Figure 12.9 MangeJobs Activity
lists downloaded jobs.
Licensed to Deborah Christiansen <pedbro@gmail.com>

324 CHAPTER 12 Putting it all together–the Field Service Application
 android:layout_height="wrap_content"
 android:scrollbars="vertical"
 >
 <TextView android:id="@+id/statuslabel"
 android:text="list jobs here "
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 />
 <ListView android:id="@+id/joblist"
 android:layout_height="fill_parent"
 android:layout_width="fill_parent"
 />
</LinearLayout>

The code in listing 12.15 for the ManageJobs Activity connects a JobList to the GUI
as well as reacts to the selection of a particular job from the ListView. In addition, this
class demonstrates taking the result from another, synchronously invoked Activity
and processing it according to its specific requirement. For example, when a job is
completed and closed, that JobEntry is updated to reflect its new status.

package com.msi.manning.UnlockingAndroid;

// multiple imports omitted for brevity, see full source

public class ManageJobs extends Activity implements OnItemClickListener {
 final int SHOWJOB = 1;
 Prefs myprefs = null;
 JobList _joblist = null;
 ListView jobListView;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.managejobs);
 myprefs = new Prefs(this.getApplicationContext());
 TextView tv =
 (TextView) findViewById(R.id.statuslabel);
 _joblist = JobList.parse(this.getApplicationContext());
 if (_joblist == null) {
 _joblist = new JobList(this.getApplicationContext());
 }
 if (_joblist.getJobCount() == 0){
 tv.setText("There are No Jobs Available");
 } else {
 tv.setText("There are " + _joblist.getJobCount() + " jobs.");
 }
 jobListView = (ListView) findViewById(R.id.joblist);
 ArrayAdapter<JobEntry> adapter = new ArrayAdapter<JobEntry>(this,
 android.R.layout.simple_list_item_1, _joblist.getAllJobs());
 jobListView.setAdapter(adapter);
 jobListView.setOnItemClickListener(this);
 jobListView.setSelection(0);
 }

Listing 12.15 ManageJobs.java implements the ManageJobs Activity

Connect
TextView to UI

Parse the
data in
storage

B

Handle
a bad
parse

C

Check for an
empty JobList Connect

ListView
to UI

D

Process
 click events on List

Connect the
list with the
dataevents
on List

Use a
built-in
list
layout
Licensed to Deborah Christiansen <pedbro@gmail.com>

325Digging deeper into the code
 public void onItemClick(AdapterView parent, View v, int position, long id) {
 JobEntry je = _joblist.getJob(position);
 Log.i("CH12", "job clicked! [" + je.get_jobid() + "]");
 Intent jobintent = new Intent(this, ShowJob.class);
 Bundle b = je.toBundle();
 jobintent.putExtras(b);
 startActivityForResult(jobintent, SHOWJOB);
 }
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent

data) {
 switch (requestCode) {
 case SHOWJOB:
 if (resultCode == 1){
 Log.d("CH12","Good Close, let's update our list");
 JobEntry je = JobEntry.fromBundle(data.getExtras());
 _joblist.replace(je);
 }
 break;
 }
 }

}

The objective of this code is to display a list of available jobs to the user in a List-
View D. In order to display the list of jobs we must first parse the list stored on the
device B. Note that the Context argument is required to allow the JobList class
access to the private file area for this application. If the parse fails, we initialize the
JobList instance to a new, empty list. This is a somewhat simplistic way to handle the
error without the GUI falling apart C.

 When a specific job is selected, its details are extracted via a call to the getJob
method E. The job is stored in a Bundle, put into an Intent F, and subsequently
sent to the ShowJob Activity for display and/or editing G. Note the use of SHOWJOB
as the last parameter of the startActivityForResult method. When this called
Activity returns, that parameter will help the caller understand the context of the
data when the onActivityResult method is invoked H and the return code checked.
To obtain the changed JobEntry, we need to extract it from the Intent with a call to
getExtras(), which returns a Bundle. This Bundle is turned into a JobEntry instance
via the static fromBundle method of the JobEntry class. To update the list of jobs to
reflect this changed JobEntry, call the replace method I.

 Now that we can view and select the job of interest, it is time to look at just what we
can do with that job. Before diving in to the next section, be sure to review the Man-
ageJobs code carefully to understand how the JobEntry information is passed
between the two activities.

12.4.3 ShowJob

The ShowJob Activity is the most interesting element of the entire application, and
it is certainly the screen most useful to the mobile worker carrying around his Android-

Process
 click events

on List

Use a Bundle to
store Job data

F

GStart ShowJob Activity
Prepare Intent for

showing Job details

EFetch job from list by ordinal

Check return codeH

I
Update the list with
via replace method

Extract returned
JobEntry
Licensed to Deborah Christiansen <pedbro@gmail.com>

326 CHAPTER 12 Putting it all together–the Field Service Application
capable device and toolbox. To help in the discus-
sion of the different features available to the user
on this screen, take a look at figure 12.10.

 The layout is very straightforward but this
time we have some Buttons and we will be
changing the textual description depending on
the condition of a particular job’s status. A Text-
View is used to present job details such as
address, product requiring service, and com-
ments. The third Button will have the text
property changed, depending on the status of
the job. If the job’s status is marked as CLOSED,
the functionality of the third button will change.

 To support the functionality of this Activity,
first the code needs to launch a new Activity to
show a map of the job’s address, as shown in fig-
ure 12.11.

 The second button, Get Product Info,
launches a browser window to assist the user in
learning more about the product he is being
called upon to work with. Figure 12.12 shows this in action.

 The third requirement is to allow the user to close the job or to view the signature
if it is already closed, the details of which are covered in the next section on the
CloseJob Activity.

More on Bundles
We need to pass the selected job to the ShowJob Activity, but we cannot casually
pass an object from one Activity to another. We don’t want the ShowJob Activity
to have to parse the list of jobs again; otherwise we could simply pass back an index
to the selected job by using the integer storage methods of a Bundle. Perhaps we
could store the currently selected JobEntry (and JobList for that matter) in a global
data member of the Application object, should we have chosen to implement one.
If you recall in chapter 1 when we discussed the ability of Android to dispatch In-
tents to any Activity registered on the device, we want to keep the ability open to
an application other than our own to perhaps pass a job to us. If that were the case,
using a global data member of an Application object would never work! Never mind
for the moment the likelihood of such a step being low, particularly considering how
the data is stored in this application. This chapter’s sample application is an exercise
of evaluating some different mechanisms one might employ to solve data movement
around Android. The chosen solution is to package the data fields of the JobEntry
in a Bundle F (in listing 12.15) to move a JobEntry from one Activity to another.
In the strictest sense, we are moving not a real JobEntry object but a representation
of a JobEntry’s data members. The net of this long discussion is that this method
creates a new Bundle by using the toBundle() method of the JobEntry.

Figure 12.10 An example of a job
shown in the ShowJob Activity
Licensed to Deborah Christiansen <pedbro@gmail.com>

327Digging deeper into the code
Fortunately, the steps required for the first two operations are quite simple with
Android—thanks to the Intent. Listing 12.16 and the accompanying descriptions
show you how.

package com.msi.manning.UnlockingAndroid;

// multiple imports omitted for brevity, see full source

public class ShowJob extends Activity {
 Prefs myprefs = null;
 JobEntry je = null;
 final int CLOSEJOBTASK = 1;
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.showjob);
 myprefs = new Prefs(this.getApplicationContext());
 StringBuilder sb = new StringBuilder();
 String details = null;
 Intent startingIntent = getIntent();
 if (startingIntent != null) {
 Bundle b = startingIntent.getExtas();
 if (b == null) {
 details = "bad bundle?";
 } else {
 je = JobEntry.fromBundle(b);
 sb.append("Job Id: " + je.get_jobid() + " (" + je.get_status()+
 ➥ ")\n\n");
 sb.append(je.get_customer() + "\n\n");
 sb.append(je.get_address() + "\n" + je.get_city() + "," +
 ➥ je.get_state() + "\n");
 sb.append("Product : "+ je.get_product() + "\n\n");

Listing 12.16 ShowJob.java

Figure 12.11 Viewing a job
address in the Maps application

Figure 12.12 Get Product Info takes the
user to a web page specific to this job.

Get Intent

Extract the Bundle
from the Intent
Licensed to Deborah Christiansen <pedbro@gmail.com>

328 CHAPTER 12 Putting it all together–the Field Service Application
 sb.append("Comments: " + je.get_comments() + "\n\n");
 details = sb.toString();
 }
 } else {
 details = "Job Information Not Found.";
 TextView tv = (TextView) findViewById(R.id.details);
 tv.setText(details);
 return;
 }
 TextView tv = (TextView) findViewById(R.id.details);
 tv.setText(details);
 Button bmap = (Button) findViewById(R.id.mapjob);
 bmap.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 // clean up data for use in GEO query
 String address = je.get_address() + " " + je.get_city() + " " +
 ➥ je.get_zip();
 String cleanAddress = address.replace(",", "");
 cleanAddress = cleanAddress.replace(' ','+');
 try {
 Intent geoIntent = new

Intent("android.intent.action.VIEW",android.net.Uri.parse("geo:0,0?q=" +
 ➥ cleanAddress));
 startActivity(geoIntent);
 } catch (Exception ee) {
 }
 }
 });
 Button bproductinfo = (Button) findViewById(R.id.productinfo);
 bproductinfo.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 Intent productInfoIntent = new Intent("android.intent.action.VIEW",
 ➥ android.net.Uri.parse(je.get_producturl()));
 startActivity(productInfoIntent);
 } catch (Exception ee) {
 }
 }
 });
 Button bclose = (Button) findViewById(R.id.closejob);
 if (je.get_status().equals("CLOSED")) {
 bclose.setText("Job is Closed. View Signature");
 }
 bclose.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 if (je.get_status().equals("CLOSED")) {
 Intent signatureIntent = new Intent("android.intent.action.VIEW",
 ➥ android.net.Uri.parse(myprefs.getServer() + "sigs/" +
 ➥ je.get_jobid() + ".jpg"));
 startActivity(signatureIntent);
 } else {
 Intent closeJobIntent = new Intent(ShowJob.this,CloseJob.class);
 Bundle b = je.toBundle();
 closeJobIntent.putExtras(b);
 startActivityForResult(closeJobIntent,CLOSEJOBTASK);

Update UI upon
error and return

Build and launch
a geo query

Obtain product
information via
URL

Selectively update
Button label

Show Signature
for CLOSED
JobEntrys

Initiate CloseJob Activity
Licensed to Deborah Christiansen <pedbro@gmail.com>

329Digging deeper into the code
 }
 }
 });
 Log.d("CH12","Job status is :" + je.get_status());
 }
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent

data) {
 switch (requestCode) {
 case CLOSEJOBTASK:
 if (resultCode == 1) {
 this.setResult(1, "", data.getExtras());
 finish();
 }
 break;
 }
 }
}

Upon completion of the CloseJob Activity, the onActivityResult callback is
invoked. When this situation occurs, this method receives a Bundle containing the
data elements for the recently closed JobEntry B. If you recall, the ShowJob Activ-
ity was launched “for result.” The requirement is to propagate this JobEntry data
back up to the calling Activity, ManageJobs. Calling setResult() and passing the
Bundle (obtained with getExtras()) fulfills this requirement.

 Despite the simple appearance of some text and a few easy-to-hit buttons, the
ShowJob Activity provides a significant amount of functionality to the user. All that
remains is to capture the signature to close out the job. To do this requires an exami-
nation of the CloseJob Activity.

12.4.4 CloseJob

Our faithful mobile technician has just completed the maintenance operation on the
part and is ready to head off to lunch before stopping for another job on the way
home, but first he must close out this job with a signature from the customer. To
accomplish this, the Field Service Application presents a blank screen, and the cus-
tomer uses a stylus (or a mouse in the case of the Android Emulator) to sign the
device, acknowledging that the work has been completed. Once the signature has
been captured, the data is submitted to the server. The proof of job completion has
been captured, and the job can now be billed. Figure 12.13 demonstrates this
sequence of events.

 This Activity can be broken down into two basic functions. The first is the capture
of a signature. The second is transmittal of job data to the server. Of interest is that this
Activity’s UI has no layout resource. All of the UI elements in this Activity are gen-
erated dynamically, as shown in listing 12.17. In addition, the ProgressDialog intro-
duced in the RefreshJobs Activity is brought back for an encore, to let our mobile
technician know that the captured signature is being sent when the Sign & Close menu

Handle newly
closed JobEntry

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

330 CHAPTER 12 Putting it all together–the Field Service Application
option is selected. If the user selects Cancel, the ShowJob Activity resumes control.
Note that the signature should be made prior to selecting the menu option.

package com.msi.manning.UnlockingAndroid;

// multiple imports omitted for brevity, see full source

public class CloseJob extends Activity {
 ProgressDialog myprogress;
 Handler progresshandler;
 Message msg;
 JobEntry je = null;
 private closejobView sc = null;
 @Override
 public void onCreate(Bundle icicle) {

Listing 12.17 CloseJob.java—GUI setup

Figure 12.13 The CloseJob Activity capturing a signature and sending data to the server

Local queuing
One element not found in this sample application is the local queuing of the signa-
ture. Ideally this would be done in the event that data coverage is not available. The
storage of the image is actually quite simple; the perhaps more challenging piece is
the logic on when to attempt to send the data again. Considering all of the develop-
ment of this sample application is done on the Android Emulator with near-perfect
connectivity, it is of little concern here. However, in the interest of best preparing you
to write real-world applications, it is worth the reminder of local queuing in the event
of communications trouble in the field.
Licensed to Deborah Christiansen <pedbro@gmail.com>

331Digging deeper into the code
 super.onCreate(icicle);
 Intent startingIntent = getIntent();
 if (startingIntent != null) {
 Bundle b = startingIntent.getExtras()
 if (b != null) {
 je = JobEntry.fromBundle(b);
 }
 }
 sc = new closejobView(this);
 setContentView(sc);
 if (je == null) {
 finish();
 }
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0,0,"Sign & Close");
 menu.add(0,1,"Cancel");
 return true;
 }
 public boolean onOptionsItemSelected(Menu.Item item) {
 Prefs myprefs = new Prefs(CloseJob.this.getApplicationContext());
 switch (item.getId()) {
 case 0:
 try {
 myprogress = ProgressDialog.show(this, "Closing Job ",
 ➥ "Saving Signature to Network",true,false);
 progresshandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case 0:
 myprogress.setMessage("" + (String) msg.obj);
 break;
 case 1:
 myprogress.cancel();
 finish();
 break;
 }
 super.handleMessage(msg);
 }
 };
 Thread workthread = new Thread(new DoCloseJob(myprefs));
 workthread.start();
 } catch (Exception e) {
 Log.d("closejob",e.getMessage());
 msg = new Message();
 msg.what = 1;
 progresshandler.sendMessage(msg);
 }
 return true;
 case 1:
 finish();
 return true;

Instantiate instance
of closejobView

B

Define available
menus

C

Handle selected
menu

D

Start Thread
to CloseJob

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

332 CHAPTER 12 Putting it all together–the Field Service Application
 }
 return false;
}

Unlike previous activities in this chapter, the UI does not come from a design
time–defined layout, but rather an instance of a closejobView B is the primary UI.
The closejobView is defined in listing 12.18.

 The onCreateOptionsMenu method C is an override of the base View’s method,
allowing a convenient way to add menus to this screen. Note that two menus are
added, one for Sign & Close and one for Cancel. The onOptionsItemSelected
method D is invoked when the user selects a menu item. A ProgressDialog and
accompanying Handler are instantiated when the menu to close a job is selected.
Once the progress-reporting mechanism is in place, a new Thread is created and
started in order to process the steps required to actually close the job E. Note that an
instance of Prefs is passed in as an argument to the constructor, as that will be needed
to store a signature, as we’ll show in listing 12.19.

 The UI at this point is only partially set up; we need a means to capture a signature
on the screen of our Android device. Listing 12.18 implements the class closejob-
View, which is an extension of the View class.

public class closejobView extends View {
 Bitmap _bitmap;
 Canvas _canvas;
 final Paint _paint;
 int lastX;
 int lastY;
 public closejobView(Context c) {
 super(c);
 _paint = new Paint();
 _paint.setColor(Color.BLACK);
 lastX = -1;
 }
 public boolean Save(OutputStream os){
 try {
 _canvas.drawText("Unlocking Android", 10, 10, _paint);
 _canvas.drawText("http://manning.com/ableson", 10, 25, _paint);
 _canvas.drawText("http://android12.msi-wireless.com", 10, 40, _paint);
 _bitmap.compress(Bitmap.CompressFormat.JPEG, 100, os);
 invalidate();
 return true;
 } catch (Exception e) {
 return false;
 }
 }
 @Override
 protected void onSizeChanged(int w, int h, int oldw, int oldh) {
 Bitmap img =
 Bitmap.createBitmap(w, h,Bitmap.Config.ARGB_8888);
 Canvas canvas = new Canvas();

Listing 12.18 CloseJob.java—closejobView class

B
closejobView extends
the base class ViewRequired classes

for drawing
C

Initialize drawing
classes

Save method
persists
signature

D

E Add
contextual
data to image

Convert
image to
JPEG

Bitmap initialization code
Licensed to Deborah Christiansen <pedbro@gmail.com>

333Digging deeper into the code
 canvas.setBitmap(img);
 if (_bitmap != null) {
 canvas.drawBitmap(img, 0, 0, null);
 }
 _bitmap = img;
 _canvas = canvas;
 _canvas.drawColor(Color.WHITE);
 }
 @Override
 protected void onDraw(Canvas canvas) {
 if (_bitmap != null) {
 canvas.drawBitmap(_bitmap, 0, 0, null);
 }
 }
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();
 int X = (int)event.getX();
 int Y = (int)event.getY();
 switch (action) {
 case MotionEvent.ACTION_UP:
 // reset location
 lastX = -1;
 break;
 case MotionEvent.ACTION_DOWN:
 if (lastX != -1){
 if ((int) event.getX() != lastX) {
 _canvas.drawLine(lastX, lastY, X, Y, _paint);
 }
 }
 lastX = (int)event.getX();
 lastY = (int)event.getY();
 break;
 case MotionEvent.ACTION_MOVE:
 if (lastX != -1){
 _canvas.drawLine(lastX, lastY, X, Y, _paint);
 }
 lastX = (int)event.getX();
 lastY = (int)event.getY();
 break;
 }
 invalidate();
 return true;
 }
 }
}

The closejobView extends the base View class B. The Bitmap and Canvas classes C
work together to form the drawing surface for this Activity. Note the call to the
Canvas.drawColor method, which sets the background color to WHITE. When the
onDraw() method is invoked, the canvas draws its associated bitmap with a call to
drawBitmap() F.

 The logic for where to draw relies on the onTouchEvent method G, which receives
an instance of the MotionEvent class. The MotionEvent class tells what happened and

Draw image
on screen

F

Handle Touch Events
(i.e., capture signature!)

G

Licensed to Deborah Christiansen <pedbro@gmail.com>

334 CHAPTER 12 Putting it all together–the Field Service Application
where. ACTION_UP, ACTION_DOWN, and ACTION_MOVE are the events captured, with some
logic to guide when and where to draw. Once the signature is complete, the Save
method D is responsible for converting the contents of the image to a form usable for
submission to the server. Note that additional text is drawn on the signature E. In this
case, it is little more than a shameless plug for this book’s webpage; however, this
could also be location-based data. Why is this important? Imagine someone forging a
signature. Could happen, but it would be more challenging and of less value to a
rogue mobile technician if the GPS/location data were actually stamped on the job,
along with the date and time. When converting the image to our desired JPEG format,
there is an additional input argument to this method—an OutputStream, used to
store the image data. This OutputStream reference was actually an input argument to
the Save method.

 Now that the UI has been created and a signature drawn on the screen, let’s look at
the code used to close the job. Closing the job involves capturing the signature and send-
ing it to the server via an HTTP POST. The class DoCloseJob is shown in listing 12.19.

 class DoCloseJob implements Runnable {
 Prefs _myprefs;
 DoCloseJob(Prefs p) {
 _myprefs = p;
 }
 public void run() {
 try {
 FileOutputStream os =
 getApplication().openFileOutput("sig.jpg", 0);
 sc.Save(os);
 os.flush();
 os.close();
 // reopen to so we can send this data to server
 File f = new

File(getApplication().getFileStreamPath("sig.jpg").toString());
 long flength = f.length();
 FileInputStream is = getApplication().openFileInput("sig.jpg");
 byte data[] = new byte[(int) flength];
 int count = is.read(data);
 if (count != (int) flength) {
 // bad read?
 }
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Connecting to Server");
 progresshandler.sendMessage(msg);
 URL url = new URL(_myprefs.getServer() +
 "/closejob.php?jobid=" + je.get_jobid());
 URLConnection conn = url.openConnection();
 conn.setDoOutput(true);
 BufferedOutputStream wr = new

BufferedOutputStream(conn.getOutputStream());

Listing 12.19 CloseJob.java—DoCloseJob class

Constructor uses
Prefs instance

Open a file for
storing signature

B

Construct
storage URL

C

Write data
to server

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

335Digging deeper into the code
 wr.write(data);
 wr.flush();
 wr.close();
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Data Sent");
 progresshandler.sendMessage(msg);
 BufferedReader rd = new BufferedReader(new
 ➥ InputStreamReader(conn.getInputStream()));
 String line = "";
 Boolean bSuccess = false;
 while ((line = rd.readLine()) != null) {
 if (line.indexOf("SUCCESS") != -1) {
 bSuccess = true;
 }
 }
 wr.close();
 rd.close();
 if (bSuccess) {
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Job Closed Successfully");
 progresshandler.sendMessage(msg);
 je.set_status("CLOSED");
 CloseJob.this.setResult(1,"",je.toBundle());
 } else {
 msg = new Message();
 msg.what = 0;
 msg.obj = (Object)("Failed to Close Job");
 progresshandler.sendMessage(msg);
 CloseJob.this.setResult(0);
 }
 } catch (Exception e) {
 Log.d("CH12","Failed to submit job close signature: " + e.getMessage());
 }
 msg = new Message();
 msg.what = 1;
 progresshandler.sendMessage(msg);
 }
}

At this point, we have a signature on the screen and need to capture it. A new File-
OutputStream B is obtained for a file on the local filesystem, and the signature is writ-
ten to this file. We are now ready to transmit this file to the server—remember, we
want to bill the client as soon as possible for work completed!

 In preparation for sending the signature to the server, the signature file contents
are read into a byte array via an instance of a FileInputStream. Using the Prefs
instance to get specific configuration information, a URL C is constructed in order to
POST data to the server. The query String of the URL contains the jobid and the POST
data contains the image itself. A BufferedOutputStream D is employed to POST data,
which consists of the captured signature in JPEG format.

Read server
response

E

Check for successful
processing

F

Update local
JobEntry status

G

H

Set result and
store updated
JobEntry
Licensed to Deborah Christiansen <pedbro@gmail.com>

336 CHAPTER 12 Putting it all together–the Field Service Application
 Once the job data and signature have been sent to the server, the response data is
read back from the server E. A specific string indicates a successful transmission F.

 Upon successful closing, the JobEntry status member is marked as CLOSED G,
and this JobEntry is converted to a Bundle so that it may be communicated to the
caller by invoking the setResult() method H. Once the Handler receives the “I’m
done” message and the Activity finishes, this data is propagated back to the ShowJob
and all the way back to the ManageJob Activity.

 And that thankfully wraps up the source code review for the Android side of
things! There were some methods omitted from this text to limit this already very long
chapter, so please be sure to examine the full source code. Now it’s time to look at the
server application.

12.5 Server code
A mobile application often relies on server-side resources, and our Field Service Appli-
cation is no exception. Since this is not a book on server-side development tech-
niques, server-related code, and discussion, things will be presented briefly and matter
of factly. We will introduce the UI and the accompanying database structure that
makes up our list of job entries, and then we’ll review the two server-side transactions
that concern the Android application.

12.5.1 Dispatcher user interface

Before jumping into any server code–specific items, it is important to understand how
the application is organized. All jobs entered by a dispatcher are assigned to a particu-
lar mobile technician. That identifier is interpreted as an email address, as seen in the
Android example where the user ID was used throughout the application. Once the
user ID is specified, all of the records revolve around that data element. For example,
figure 12.14 demonstrates this by showing the jobs assigned to the author, fable-
son@msiservices.com.

Figure 12.14 The server-side dispatcher screen
Licensed to Deborah Christiansen <pedbro@gmail.com>

337Server code
NOTE This application is available for testing the sample application yourself. It
is located at http://android12.msi-wireless.com. Simply sign on and add
jobs for your email address.

Let’s now turn our attention to the underlying data structure, which contains the list
of jobs.

12.5.2 Database

As mentioned earlier in the architecture section, the database in use in this applica-
tion is MySQL, with a single database table called tbl_jobs. The SQL to create this table
is provided in listing 12.20.

CREATE TABLE IF NOT EXISTS 'tbl_jobs' (
 'jobid' int(11) NOT NULL auto_increment,
 'status' varchar(10) NOT NULL default 'OPEN',
 'identifier' varchar(50) NOT NULL,
 'address' varchar(50) NOT NULL,
 'city' varchar(30) NOT NULL,
 'state' varchar(2) NOT NULL,
 'zip' varchar(10) NOT NULL,
 'customer' varchar(50) NOT NULL,
 'product' varchar(50) NOT NULL,
 'producturl' varchar(100) NOT NULL,
 'comments' varchar(100) NOT NULL,
 UNIQUE KEY 'jobid' ('jobid')
) ENGINE=MyISAM DEFAULT CHARSET=ascii AUTO_INCREMENT=25 ;

Each row in this table is uniquely identified by the jobid B, which is an auto-incre-
menting integer field. The identifier field C corresponds to the user ID/email of
the assigned mobile technician. The producturl field D is designed to be a specific
URL to assist the mobile technician in the field to quickly gain access to helpful infor-
mation to assist in completing the assigned job.

 The next section provides a road map to the server code.

12.5.3 PHP dispatcher code

The server-side dispatcher system is written in PHP and contains a number of files
working together to create the application. Table 12.3 presents a brief synopsis of each
source file to help you navigate the application should you choose to host a version of
this application yourself.

Listing 12.20 Data definition for tbl_jobs

Table 12.3 Server-side source code

Source File Description

addjob.php Form for entering new job information

closejob.php Used by Android application to submit signature

db.php Database connection info

Unique record idB

User identificationC

Product URLD
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://android12.msi-wireless.com

338 CHAPTER 12 Putting it all together–the Field Service Application
Of all of these files, only two actually concern the Android application. These are dis-
cussed in the next section.

12.5.4 PHP mobile integration code

When the Android application runs the RefreshJobs Activity, the server side gener-
ates an XML stream. Without going into excessive detail on the server-side code, the
getjoblist.php file is explained in listing 12.21.

<?
require('db.php');
require('utils.php');
$theuser = $_GET['identifier'];
print (getJobsXML($theuser));
?>

The getJobsXML B function retrieves data from the database and formats each row
into an XML representation. It wraps the list of XML-wrapped job records in the <job-
list> tags along with the <?xml ...> header declaration to generate the expected
XML structure used by the Android application. Remember, this is the data ultimately
parsed by the SAX-based JobListHandler class, as shown in listing 12.12.

 The other transaction that is important to our Android Field Service Application is
the closejob.php file, examined in listing 12.22.

<?
require('db.php');

export.php Used to export list of jobs to a csv file

footer.php Used to create a consistent look and feel for the footer of each page

getjoblist.php Used by Android application to request job XML stream

header.php Used to create a consistent look and feel for the header of each page

index.php Home page, including search form

manage.php Used to delete jobs on the web application

savejob.php Used to save a new job (called from addjob.php)

showjob.php Used to display job details and load into a form for updating

showjobs.php Displays all jobs for a particular user

updatejob.php Used to save updates to a job

utils.php Contains various routines for interacting with the database

Listing 12.21 getjoblist.php

Listing 12.22 closejob.php

Table 12.3 Server-side source code (continued)

Source File Description

Database routines

Helper routines
Extract the
user identifier

B
Build list of jobs
for this user
Licensed to Deborah Christiansen <pedbro@gmail.com>

339Summary
require('utils.php');
$data = file_get_contents('php://input');
$jobid = $_GET['jobid'];
$f = fopen("~/pathtofiles/sigs/".$jobid.".jpg","w");
fwrite($f,$data);
fclose($f);
print(closeJob($_GET['jobid']));
?>

The POST-ed image data is read via the file_get_contents() function B. The secret
is the special identifier of php://input. This is the equivalent of a binary read. This
data is read into a variable named $data. The jobid is extracted from the query
String C. The image file is written out to a directory that contains signatures as JPEG
files, keyed by the jobid as part of the filename D. When a job has been closed and
the signature is requested by the Android application, it is this file that is requested in
the Android browser. The closeJob function E (implemented in utils.php) updates
the database to mark the selected job as CLOSED.

 That wraps up the review of the source code for this chapter’s sample application.

12.6 Summary
This chapter certainly was not short, but hopefully it was worth the read. The intent of
the sample application was to tie together many things learned in previous chapters
into a composite application that has real-world applicability to the kind of uses an
Android device is capable of bringing to fruition. Is this sample application produc-
tion ready? Of course not, but almost! That is, as they say, an exercise for the reader.

 Starting with a simple splash screen, this application demonstrated the use of Han-
dlers and displaying images stored in the resources section of an Android project.
Moving along to the main screen, a simple UI led to different activities useful for
launching various aspects of the realistic application.

 Communications with the server downloaded XML data, while showing the user a
ProgressDialog along the way. Once the data stream commenced, the data was parsed
by the SAX XML parser, using a custom Handler to navigate the XML document.

 Managing jobs in a ListView was demonstrated to be as easy as tapping on the
desired job in the list. The next screen, the ShowJobs Activity, allowed even more
functionality with the ability to jump to a Map showing the location of the job and even
a specific product information page customized to this job. Both of those functions
were as simple as preparing an Intent and a call to startActivity().

 Once the mobile technician completed the job in the field, the CloseJob Activ-
ity brought the touch-screen elements into play by allowing the user to capture a sig-
nature from his customer. That digital signature was then stamped with additional,
contextual information and transmitted over the internet to prove the job was done!
Jumping back to what you learned earlier, it would be straightforward to add location-
based data to further authenticate the captured signature.

 The chapter wrapped up with a quick survey of the server-side components to
demonstrate some of the steps necessary to tie the mobile and the server sides
together.

Read in image dataB

Get the job IDC

Write out the
image dataD

Close the jobE
Licensed to Deborah Christiansen <pedbro@gmail.com>

340 CHAPTER 12 Putting it all together–the Field Service Application
 The sample application is hosted on the internet and is free for you to test out with
your own Android application, and of course the full source code is provided for the
Android and server applications discussed in this chapter.

 Now that we have shown what can be accomplished when exercising a broad range
of the Android SDK, the next chapter takes a decidedly different turn as we explore
the underpinnings of Android a little deeper and look at building native C applica-
tions for the Android platform.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Hacking Android
This book has presented a cross section of development topics in an effort to
unlock the potential of the Android platform for the purpose of delivering useful,
and perhaps even fun, mobile applications. In chapter 12 we built a more compre-
hensive application, building on what was introduced in the prior chapters. As we
embark on this final chapter, we are leaving behind the comforts of working strictly
in the Android SDK, Java, and Eclipse.

 The Android SDK is quite comprehensive and capable, as this book has
attempted to convey, but there may be times when your application requires some-
thing more. This chapter explores the steps required to build applications that run
in the Linux foundation layer of Android. To accomplish this, we are going to use
the C programming language. In this chapter we use the term Android/Linux to
refer to the Linux underpinnings of the Android platform. We also use the term
Android/Java to refer to a Java application built using the Android SDK and Eclipse.

This chapter covers:
■ Android’s Linux foundation
■ Building a C application
■ Using the SQLite database from C
■ Bridging the gap with a Java client application
341

Licensed to Deborah Christiansen <pedbro@gmail.com>

342 CHAPTER 13 Hacking Android
 We demonstrate the steps of building an Android/Linux application commencing
with a description of the environment and the required tool chain. After an obligatory
Hello World–caliber application, we construct a more sophisticated application that
implements a daytime server. Ultimately any application built for Android/Linux
needs to bring value to the user in some form. In an effort to meet this objective, it is
desirable that Android/Java be able to interact in a meaningful manner with our
Android/Linux application. To that end we will build a traditional Android applica-
tion using Java in Eclipse to interact with the Android/Linux server application.

 Let’s get started with an examination of the requirements of building our first C
application for Android.

13.1 The Android/Linux:junction
 Applications for Android/Linux are markedly different from applications con-

structed with the Android SDK. Applications built with Eclipse and the context-sensitive
Java syntax tools make for a comfortable learning environment. In line with the spirit
of Linux development, from here on out all development takes place with command-
line tools and nothing more sophisticated than a text editor. While the Eclipse environ-
ment could certainly be leveraged for non-Java development, the focus of this chapter
is on core C language coding for Android/Linux. The first place to start is with the cross-
compiling tool chain required to build Android/Linux applications.

13.1.1 Tool chain

Building applications for Android/Linux requires the use of a cross-compiler tool
chain from CodeSourcery. The specific version required is the Sourcery G++ Lite Edi-
tion for ARM, found at http://www.codesourcery.com/gnu_toolchains/arm/portal/
package2548?@template=release. Once installed, the Sourcery G++ tool chain con-
tributes a number of useful tools to assist in the creation of applications targeting
Linux on ARM, which is the architecture of the Android platform. The ARM platform
is a 32-bit reduced instruction set computer (RISC) processor, used in numerous
devices including smartphones, PDAs, and technology appliances such as low-end
routers and disk drive controllers. The CodeSourcery installation comes with a fairly
comprehensive set of PDF documents describing the main components of the tool
chain, including the C compiler, the assembler, the linker, and many more tools. A full
discussion of these versatile tools is well beyond the scope of this chapter; however,
three tools in particular are demonstrated in the construction of this chapter’s sample
applications. We will be using these tools right away, so we briefly introduce them in
this section.

 The first and most important tool introduced is gcc. This tool is the compiler
responsible for turning C source files into object files and optionally initiating the link
process to build an executable suitable for the Android/Linux target platform. The
full name of the gcc compiler for our cross-compilation environment is arm-none-
linux-gnueabi-gcc. This tool is invoked from the command line of the development
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.codesourcery.com/gnu_toolchains/arm/portal/package2548?@template=release
http://www.codesourcery.com/gnu_toolchains/arm/portal/package2548?@template=release

343The Android/Linux:junction
machine. The tool takes command-line arguments of one or more source files along
with zero or more of the numerous available switches.

 The linker, arm-none-linux-gnueabi-ld, is responsible for producing an executable
application for our target platform. When performing the link step, object code along
with routines from one or more library files are combined into a relocatable, execut-
able binary file, compatible with the Android Emulator’s Linux environment. While a
simple application may be compiled and linked directly with gcc, the linker is used
when creating applications with more than one source file and/or more complex
application requirements.

 If the linker is responsible for constructing applications from more than one con-
tributing component, the object dump utility is useful for dissecting, or disassembling,
an application. We introduce the objdump, or arm-none-linux-gnueabi-objdump, tool
presently; its usefulness becomes more apparent later in the chapter. This utility
examines an executable application—a binary file—and turns the machine instruc-
tions found there into an assembly language listing file, suitable for analysis.

NOTE: All of the examples in this chapter take place on a Windows XP worksta-
tion. It is also possible to use this tool chain on a Linux development
machine.

With this brief introduction behind us, let’s build the obligatory Hello Android appli-
cation to run in the Linux foundation of the Android Emulator.

13.1.2 Building an application

The first thing we want to accomplish with our journey into Android/Linux develop-
ment is to print something to the screen of the emulator to demonstrate that we are
running something on the platform outside the Android SDK and its Java application
environment. There is no better way to accomplish this feat than by writing a variant
of the Hello World application. At this point, there will be little talk of Android activi-
ties, views, or resource layouts. Most code samples in this chapter are in the C lan-
guage. Listing 13.1 shows the code listing for our first Hello Android application.

#include <stdio.h>

int main(int argc,char * argv[])
{

 printf("Hello, Android!\n");
 return 0;
}

Virtually all C language applications require a #include header file containing func-
tion definitions, commonly referred to as prototypes. In this case, the application
includes the header file B for the standard input and output routines, stdio.h. The
standard C language entry point for user code C is the function named main. The

Listing 13.1 Hello.c

Standard include fileB
Application entry pointC

Display a stringD
Licensed to Deborah Christiansen <pedbro@gmail.com>

344 CHAPTER 13 Hacking Android
function returns an integer return code (a value of zero is returned in this simple
example) and takes two arguments. The first, argc, is an integer indicating the num-
ber of command-line arguments passed in to the program when invoked. The second,
argv, is an array of pointers to null-terminated strings representing each of the com-
mand-line arguments. The first argument, argv[0], is always the name of the program
executing. This application has but a single useful instruction, printf, which is to
write to standard output (the screen) a textual string D. The printf function is
declared in the header file, stdio.h.

 To build this application, we employ the gcc tool:

arm-none-linux-gnueabi-gcc hello.c -static -o hellostatic

There are a few items to note about this command-line instruction:

■ The compiler is invoked with the full name arm-none-linux-gnueabi-gcc.
■ The source file is named hello.c.
■ The –static command-line switch is used to instruct gcc to fully link all

required routines and data into the resulting binary application file. In essence,
the application is fully standalone and ready to be run on the target Android
Emulator without any additional components. An application that’s statically
linked tends to be rather large because so much code and data are included in
the executable file. For example, this statically linked application with basically
a single line of code weighs in at 568,231 bytes. Ouch! If this -static switch is
omitted, the application is built without any extra routines linked in. In this
case the application will be much smaller; however, it will rely on finding com-
patible routines on the target system in order to run. For now, we are keeping
things simple and building our sample application in such a manner that all
support routines are linked statically.

■ The output switch, -o, is used to request the name of the executable applica-
tion to be hellostatic. If this switch is not provided, the default application name
is a.out.

Now that the application is built, it’s time to try it out on
the Android Emulator. In order to do this we will rely on
the adb tool introduced in chapter 2.

13.1.3 Installing and running the application

In preparation to install and run the Hello Android
application, let’s take a tour of our build and testing envi-
ronment. We need to identify four distinct environ-
ments/tools and clearly understand them when building
applications for Android/Linux. The first environment
to grasp is the big-picture architecture of the Android
Emulator running essentially on top of Linux, as shown
in figure 13.1.

Figure 13.1 Android runs
atop a Linux kernel.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://honeypod.blogspot.com/2007/12/initialize-libc-for-android.html
http://honeypod.blogspot.com/2007/12/initialize-libc-for-android.html
http://honeypod.blogspot.com/2007/12/initialize-libc-for-android.html
http://benno.id.au
http://benno.id.au

345The Android/Linux:junction
 As presented in the early chapters of this book, there is a Linux kernel running
underneath the pretty, graphical face of Android. There exist device drivers, process
lists, and memory management, among other elements of a sophisticated operat-
ing system.

 As shown in the previous section, we need an environment in which to compile our
C code. This is most likely to be a command-prompt window on a Windows machine,
or a shell window on a Linux desktop machine, exercising the CodeSourcery tool
chain. This is the second environment to be comfortable operating within.

NOTE The CodeSourcery tool chain is not designed to run on the Android/Linux
environment itself, so the development work being done here is consid-
ered to be cross compiling. The figures and example code presented in this
chapter were taken from a Windows development environment used by the
author. There are a number of long path and directory structures in the
Android SDK and the CodeSourcery tools. In order to help simplify some
of the examples and keep certain command line entries from running over
multiple lines some drive mappings were set up. For example a drive letter
of “m:” seen in scripts and figures corresponds to the root location of
source code examples on the author’s development machine. Likewise the
“g:” drive points to the currently installed Android SDK on the author’s
development machine. Note that this technique may also be used in Linux
of Mac OSX environments with a “soft link” (ln) command.

The next requirement is to copy our newly constructed binary executable application
to the Android Emulator. This can be done with a call to the adb utility or by using the
DDMS view in Eclipse. Both of these tools were demonstrated in chapter 2. Here is the
syntax for copying the executable file to the Android Emulator:

adb push hellostatic /data/ch13

Note a few items about this command:

■ The command name is adb. This command takes a number of arguments that
guide its behavior. In this case, the subcommand is push, which means to copy a
file to the Android Emulator. There is also a pull option for moving files from
the Android Emulator file system to the local development machine’s hard drive.

■ After the push option, the next argument, hellostatic in this case, represents
the local file, stored on the development machine’s hard drive.

■ The last argument is the destination directory (and/or filename) for the trans-
ferred file. In this sample, we are copying the hellostatic file from the current
working directory to the /data/ch13 directory on the Android Emulator.

Be sure that the desired target directory exists first! You can accomplish this with a
mkdir command on the adb shell, described next.

 The final tool to become familiar with is the shell option of the adb shell. Using this
command, we can interact directly on the Android Emulator’s file system with a limited
shell environment. To enter this environment (and assuming the Android Emulator is
Licensed to Deborah Christiansen <pedbro@gmail.com>

346 CHAPTER 13 Hacking Android
already running), execute adb shell from the command line. When invoked, the shell
displays the # prompt, just as if you had made a secure shell (ssh) or telnet connection
to a remote Unix-based machine. Figure 13.2 shows these steps in action.

Note the sequence shown in figure 13.2. First the application is built with a call to gcc.
Next we push the file over to the Android Emulator. We then connect to the Android
emulator via the adb shell command, which gives us the # prompt, indicating that we
are now on the shell. Next we change directory (cd) to /data/ch13. Remember that
this is Linux, so the application by default may not be executable. A call to chmod sets
the file’s attributes, turning on the executable bits and allowing the application to be
invoked. Lastly, we invoke the application with a call to ./hellostatic. The search path
for executable applications does not by default include the current directory on a
Linux system, so we must provide a more properly qualified path, which explains the
./ prefix. Of course, we can see that our application has run successfully because we
see the “Hello, Android!” text displayed on the screen.

 Congratulations! We have a successful, albeit simple, Android/Linux application
running on the Android Emulator. In the next section, we take a quick look at stream-
lining this build process.

13.1.4 Build script

In the last section we reviewed each step in building and preparing to test our applica-
tion. Due to the rather tedious nature of executing each of these steps, we have a
strong desire to utilize command-line tools when building C applications, as it greatly
speeds up the edit, compile, copy, debug cycle. This example with only a single C
source file is rather simplistic; however, when multiple source files must be linked
together, the thought of having a build script is very appealing. The need for a build

Figure 13.2 The build, copy, run cycle
Licensed to Deborah Christiansen <pedbro@gmail.com>

347A better way
script is particularly evident where there are numerous source files to compile and
link, as we will encounter later in this chapter.

 Listing 13.2 shows the build script for our Hello Android application.

arm-none-linux-gnueabi-gcc hello.c -static -o hellostatic
g:\tools\adb push hellostatic /data/ch13
g:\tools\adb shell "chmod 777 /data/ch13/hellostatic"

A call to arm-none-linux-gnueabi-gcc B compiles the source file, hello.c. The file is stat-
ically linked against the standard C libraries, and the resulting binary executable file is
written out as hellostatic. The file hellostatic is copied to the Android Emulator C and
placed in the directory /data/ch13. The permissions for this file are changed D,
permitting execution. Note the use of the adb shell with a quote-delimited command.
Once this command executes, the adb application exits and returns to the Windows
command prompt.

 This example can be extended to perform other build steps or cleanup proce-
dures such as removing temporary test data files on the Android Emulator or any sim-
ilarly helpful tasks. As you progress, it will become clear what commands to put into
your build script to make the testing process more efficient.

 Now that the pressure is off—we have successfully written, built, and executed an
application in the Android/Linux environment—it is time to deal with the problem-
atic issue of a simple application requiring a file size of half a megabyte.

13.2 A better way
That was fun, but who wants a 500+ KB file that only displays something to the screen?
Recall that the –static flag links in the essentials for running the application, includ-
ing the input/output routines required for actually printing a message to the screen.
If you are thinking there must be a better way, you are correct; we need to link our
application to existing system libraries rather than including all of that code in our
application’s executable file.

13.2.1 The static flag, revisited

When an application is built with the –static flag, it is entirely self-contained, mean-
ing that all of the routines it requires are linked directly into the application. This is
not new information; we have already discussed this. It has another important implica-
tion beyond just the size of the code: it also means that using Android resident code
libraries is a bigger challenge. Let’s dig deeper to understand why. In order to do this,
we have to look at the filesystem of Android/Linux.

 System libraries in Android/Linux are stored in the directory /system/lib. This
directory contains important functionality, such as OpenGL, SQLite, C standard rou-
tines, Android runtime, UI routines, and much more. Figure 13.3 shows a list of the
available libraries in the Android Emulator. In short, everything that is specific to the

Listing 13.2 Build script for Hello Android, buildhello.bat

B Compile and link
Copy fileC

Change permissionsD
Licensed to Deborah Christiansen <pedbro@gmail.com>

348 CHAPTER 13 Hacking Android
Android platform is found in /system/lib, so if we
are going to build an application that has any signif-
icant functionality, we cannot rely on the libraries
that ship with CodeSourcery alone. We have to write
an application that can interact with the Android
system libraries. This calls for a side trip to discuss
the functionality of the linker application.

 When building an application that requires the
use of the linker, a few things change. First, the gcc
command is no longer responsible for invoking the
linker. Instead, the –c option is used to inform the
tool to simply compile the application and leave
the link step to a subsequent build step. Here is
an example:

arm-none-linux-gnueabi-gcc –c hello.c -o hello.o

This command tells the compiler to compile the file
hello.c and place the resulting object code into the
file hello.o.

 This process is repeated for as many source files
as necessary for a particular application. For our
sample application, we have only this single source
file. However, in order to get an executable applica-
tion, we must employ the services of the linker.

 Another important change in the build environ-
ment is that we need to get a copy of the Android/
Linux libraries. We are compiling on the Windows platform (or Linux if you prefer),
so we need to get access to the Android Emulator’s /system/lib contents in order to
properly link against the library files. Just how do we go about this? We use the adb
utility, of course! Listing 13.3 shows a Windows batch file used to extract the system
libraries from a running instance of the Android Emulator. A few of the libraries are
pointed out.

adb pull /system/lib/libdl.so m:\android\system\lib
adb pull /system/lib/libthread_db.so m:\android\system\lib
adb pull /system/lib/libc.so m:\android\system\lib
adb pull /system/lib/libm.so m:\android\system\lib
adb pull /system/lib/libGLES_CM.so m:\android\system\lib
adb pull /system/lib/libssl.so m:\android\system\lib
...
adb pull /system/lib/libhardware.so m:\android\system\lib
adb pull /system/lib/libsqlite.so m:\android\system\lib
many entries omitted for brevity

Figure 13.4 shows these files now copied over to the development machine.

Listing 13.3 pullandroid.bat

libdl.so, dynamic loading

libc.so, C runtime
libm.so, math library

libGLES_CM.so,
OpenGL

libsqlite.so,
SQLite database

Figure 13.3 Available libraries in /
system/lib
Licensed to Deborah Christiansen <pedbro@gmail.com>

349A better way
Once these files are available on the development machine, we can proceed with the
build step using the linker.

13.2.2 Linking

The name for the linker is arm-none-linux-gnueabi-ld. In most Linux environments the
linker is named simply ld. When using the linker, many command-line options are
available for controlling the output. There are so many options that an entire book
could be written covering no other topic. Our interest in this chapter is writing appli-
cations, and we are taking as streamlined an approach as possible. So while there may
be other options available to get the job done, the aim here is to learn how to build an
application that enables us as much flexibility as possible to employ the Android system

Figure 13.4 Android
libraries pulled to the
development machine
Licensed to Deborah Christiansen <pedbro@gmail.com>

350 CHAPTER 13 Hacking Android
libraries. To that end, listing 13.4 shows the build script for building a dynamic version
of Hello Android.

arm-none-linux-gnueabi-gcc -c hello.c -o hello.o

arm-none-linux-gnueabi-ld -entry=main -dynamic-linker /system/bin/linker
 -nostdlib -rpath /system/lib -rpath-link /android/system/lib -L
 /android/system/lib -l android_runtime -l c -o
 hellodynamic hello.o

g:\tools\adb push hellodynamic /data/ch13
g:\tools\adb shell "chmod 777 /data/ch13/hellodynamic"

This build script passes the –c compiler option B when compiling the source file,
hello.c. This way gcc does not attempt to link the application. The link command,
arm-none-linux-gnueeabi-ld, has a number of options C. These options are more
fully described in table 13.1. As in the previous example, adb is used to push the exe-
cutable file D over to the Android Emulator. The permissions are also modified to
mark the application as executable.

Listing 13.4 Build script for dynamically linked Android application

Table 13.1 Linker options

Linker option Description

-entry=main Indicates the entry point for the application, in this
case, the function named main.

-dynamic-linker /system/bin/linker Tells the application where the dynamic linker appli-
cation may be found at runtime. The /system/bin/
linker path is found on the Android Emulator, not the
development environment.

-nostdlib Tells linker to not include standard C libraries when
attempting to resolve code during the link process.

-rpath /system/lib Tells the executable where libraries can be found at
runtime. This works in a manner similar to the envi-
ronment variable LD_LIBRARY_PATH.

-rpath-link /android/system/lib Tells the linker where libraries can be found when
linking.

-L /android/system/lib Tells the linker where libraries can be found. This is
the linker import directory.

-l android_runtime Tells the linker that this application requires rou-
tines found in the library file libandroid_runtime.so.

-l c Tells the linker that this application requires rou-
tines found in the library file libc.so.

-o hellodynamic Requests an output filename of hellodynamic.

hello.o Includes hello.o as an input to the link process.

Compile onlyLinkC
Copy and change
permissions

D

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

351A better way
If our application required routines from the Open GL or SQLite library, the link
command would have additional parameters of –l GLES_CM or –l sqlite, respec-
tively. Leaving those library options off the link command prevents the application
from linking properly because certain symbols (functions, data) cannot be found.

 So, did it work? The hellodynamic binary is now only 2504 bytes. That’s a great
improvement. Figure 13.5 shows a listing of the two Hello Android files for a remarkable
comparison. Each program is run, first the static version, then the dynamic version.

This looks great, except for one little problem. Note the last line in figure 13.5, which
says, “Killed.” Is there a problem with our dynamic version? Let’s look closer.

13.2.3 Exit, not return

While our application has successfully linked with the Android system libraries of
libc.so and libandroid_runtime.so and can actually run, there are missing pieces that
cause the application to not properly execute. When we build an application in this
manner, without letting the linker do all of its magic of knitting the entire application
together, we have to do some housekeeping ourselves. Looks like there was something
to that 500 KB application after all!

 For one thing, if our application’s entry point is the main function, and the main
function executes a return statement, just where does it return to? Let’s replace the
return statement with an exit() call, as shown in listing 13.5.

#include <stdio.h>

int main(int argc,char * argv[])
{

 printf("Hello, Android!\n");

 exit(0);

Listing 13.5 Add an exit() call

Figure 13.5 Hello Android, static and dynamically linked

Add exitB
Licensed to Deborah Christiansen <pedbro@gmail.com>

352 CHAPTER 13 Hacking Android
 //return 0;
}

Add a call B to the function exit(). This should return execution to the operating
system. Comment out the call to return() C. A return call in this location causes a
stack underflow because there is nowhere within this application to return to!

 This fixed the problem—no more killed messages! Look at figure 13.6, where we
see that the dynamic version of Hello, Android! now runs just fine.

Unfortunately we are not finished. It turns out that our application does not properly
interact with other libraries, nor does it properly handle the argc and argv[] argu-
ments to the main function. The C library (remember, we are linking against libc.so)
has certain expectations for application structure and stack location. We’re closer but
still not quite ready for prime time.

 What our application requires is a start routine, which is called by the operating
system when our application is invoked. This function in turn calls our application’s
main function. This start routine must set up the necessary structures to allow the
application to properly interact with the operating system and the core C libraries.

13.2.4 Startup code

We have surmised that our application is missing the proper startup code, but just
what does startup code for an Android/Linux application on ARM look like? Where
do we turn to get this kind of information? Let’s look deeper into the bag of Code-
Sourcery tricks for a clue.

 A number of executable applications ship with Android. Let’s pull one of those
over to the desktop and see what we can learn. Perhaps we can extract information
from that file that can assist in solving this puzzle.

 The tool we are going to use to assist us in this effort is the object dump command,
arm-none-linux-gnueabi-objdump. This utility has a number of options for tearing
apart an ELF (Executable and Linkable Format) file for examination. This is the kind
of file structure used by applications in the Android/Linux environment. Using the
–d option of the objdump command results in a disassembly of the executable file,
showing the assembly language equivalent of the code in each executable section.
Our interest is in the first .text section of the disassembly, as this ought to be the
entry point of the application. Listing 13.6 shows the .text section from the ping pro-
gram taken from the Android Emulator (via adb pull).

Remove return callC

Figure 13.6 A
better-behaving
dynamic version
of Hello Android
Licensed to Deborah Christiansen <pedbro@gmail.com>

353A better way
000096d0 <dlopen-0x60>:

 96d0: e1a0000d mov r0, sp

 96d4: e3a01000 mov r1, #0; 0x0

 96d8: e28f2004 add r2, pc, #4; 0x4

 96dc: e28f3004 add r3, pc, #4; 0x4

 96e0: eaffff8b b 9514 <dlopen-0x21c>

 96e4: ea000e03 b cef8 <dlclose+0x37bc>

 96e8: 0000e408 andeq lr, r0, r8, lsl #8

 96ec: 0000e410 andeq lr, r0, r0, lsl r4

 96f0: 0000e418 andeq lr, r0, r8, lsl r4

 96f4: 0000e420 andeq lr, r0, r0, lsr #8

 96f8: e1a00000 nop (mov r0,r0)

 96fc: e1a00000 nop (mov r0,r0)

The first instruction assigns the value of the stack pointer (sp) to register 0 (r0) B.
Next the literal value of zero is assigned to register r1 C. The address counter plus
four memory location spaces is stored in registers r2 and r3 D.The b instruction tells
the code to branch to a specific address E. In this case, the address is 0x21c bytes
prior to the address of the dlopen function. This value is 9514 in decimal. The next
branch is to an address that is 0x37bc bytes beyond the dlclose label F. The next few
instructions G are conditional operations. The code snippet finishes up with a pair of
nop instructions H. Note that the address of each instruction is shown to the very left
of each line. Each instruction occurs at a 4-byte offset from its predecessor. Four bytes
times eight bits per byte equals a 32-bit address bus, which makes sense because the
ARM processor family is 32-bit.

 Okay, so that looks a little different from the rest of the code in this chapter—and
just what does it do? Unfortunately, other than some basic interpretation of the op
codes used, there is little to tell us why those instructions are there. After doing some
research on the internet, we found a better example of this code, shown in listing 13.7.

 .text

 .global _start

 _start:

 mov r0, sp

 mov r1, #0

 add r2, pc, #4

 add r3, pc, #4

 b __libc_init

 b main

 .word __preinit_array_start

 .word __init_array_start

 .word __fini_array_start

Listing 13.6 Disassembly of ping

Listing 13.7 crt.S

Stack pointerB
mov instructionC

add instructionD

Branch instructionE
Branch instructionF

Conditional expressionsG

nop instructionH

.text directiveB
global directiveC

start labelD
Set up stack pointerE

Branch to initializationF

Branch to mainG

H Jump table
Licensed to Deborah Christiansen <pedbro@gmail.com>

354 CHAPTER 13 Hacking Android
 .word __ctors_start
 .word 0
 .word 0
 .section .preinit_array
 __preinit_array_start:
 .word 0xffffffff
 .word 0x00000000

 .section .init_array
 __init_array_start:
 .word 0xffffffff
 .word 0x00000000

 .section .fini_array
 __fini_array_start:
 .word 0xffffffff
 .word 0x00000000

 .section .ctors
 __ctors_start:
 .word 0xffffffff
 .word 0x00000000

The .text directive indicates that this code should be placed in the .text section of
the resulting executable B. The global start directive C makes the start routine vis-
ible to the rest of the application and the linker. The start: D label indicates the first
location of the start routine. The mov and add instructions perform some housekeep-
ing E with the stack pointer, sp, just as seen in the extracted code from the ping pro-
gram. Initialization takes place via a branch instruction to call the __libc_init
routine F. This routine is found in the library libc.so. When this routine is complete,
execution returns to the next instruction, another branch of the main routine G.
This is the main() routine implemented by our C application. The next instruc-
tions H set up a jump table to the sections required by a C language executable appli-
cation. A pair of nop instructions round out the table. The sections preinit_array,
init_array, fini_array, and .ctors are defined I. Note that it appears that these
sections are required and that the values provided are an allowable address range for
these sections. The linker takes care of putting these sections into the resulting exe-
cutable file. Attempting to run the application without these sections results in code
that crashes. I know—I tried!

NOTE All credit for this crt.S file belongs to the author of a blog found at http:
//honeypod.blogspot.com/2007/12/initialize-libc-for-android.html. Ad-
ditional reference material for low-level Android programming informa-
tion can be found at http://benno.id.au.

Now that we have found an adequate startup routine, let’s take a quick look at how to
add this routine to our application. The assembly file is handled just like a C language
file by the compiler:

arm-none-linux-gnueabi-gcc -c -o crt0.o crt.S

Required sectionsI
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://honeypod.blogspot.com/2007/12/initialize-libc-for-android.html
http://honeypod.blogspot.com/2007/12/initialize-libc-for-android.html
http://benno.id.au

355What time is it?
The resulting object file, crt0.o, is passed to the linker as an input file, just as any other
object file would be. Also, the entry switch to the linker must now specify _start
rather than main:

arm-none-linux-gnueabi-ld --entry=_start --dynamic-linker /system/bin/linker -
nostdlib -rpath /system/lib -rpath-link \android\system\lib -L
\android\system\lib -l c -l android_runtime -l sqlite -o executablefile
csourcefile.o crt0.o

At this point, we are comfortable that we can build applications for Android/Linux,
so it’s time to build something useful. The next section walks through the construc-
tion of a daytime server.

13.3 What time is it?
Although we do not talk about it much today, Linux systems (and more generically,
Unix systems) have a service running that provides the server’s current date and time.
This application, known as a daytime server, typically runs as a daemon, meaning in
the background and not connected to a particular shell. For our purposes, we will
implement a basic daytime server for Android/Linux, but we won’t worry about turn-
ing it into a background service.

 This application helps exercise our interest in developing Android/Linux applica-
tions. First and most important, this is an application of some significance beyond a
simple printf statement. Second, once this application is built we write an Android/
Java application to interact with the daytime server.

13.3.1 Daytime Server application

Our Daytime Server application has a very basic function. The application listens on a
TCP port for incoming socket connections. When a connection is made, the applica-
tion writes a short textual string representation of the date and time via the socket,
closes the socket, and then returns to listening for a new connection.

 In addition to the TCP socket interactions, our application logs requests to
a SQLite database. Why? Because we can! The purpose of this application is to
demonstrate nontrivial activities in the Android/Linux environment, including
the use of the SQLite system library. Let’s get started with examining the Daytime
Server application.

13.3.2 daytime.c

The Daytime Server application can be broken into two basic functional parts. The
first is the TCP socket server.

 Our Daytime Server application binds to TCP port 1024 when looking for new con-
nections. Ordinarily a daytime service binds to TCP port 13; however, Linux has a
security feature where only trusted users can bind to any port below 1023. The second
feature is the insertion of data into a SQLite database. Listing 13.8 shows the code for
the Daytime Server application.
Licensed to Deborah Christiansen <pedbro@gmail.com>

356 CHAPTER 13 Hacking Android
#include <time.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <resolv.h>
#include "sqlite3.h"

int PORTNUMBER = 1024;

#define htons(a)
(((a & 0x00ff) << 8) | ((a & 0xff00) >> 8))

void RecordHit(char * when)
{
 int rc;
 sqlite3 *db;
 char *zErrMsg = 0;
 char sql[200];
 rc = sqlite3_open("daytime_db.db",&db);
 if(rc)
 {
 printf("Can't open database: %s\n", sqlite3_errmsg(db));
 sqlite3_close(db);
 return;
 }

 bzero(sql,sizeof(sql));
 sprintf(sql,"insert into hits values (DATETIME('NOW'),'%s');",when);
 rc = sqlite3_exec(db, sql, NULL, 0, &zErrMsg);
 if(rc!=SQLITE_OK)
 {
 printf("SQL error: %s\n", zErrMsg);
 }

 sqlite3_close(db);
}

int main(int argc, char **argv)
{
int listenfd, connfd;
struct sockaddr_in servaddr;
char buf[100];
time_t ticks;
int done = 0;
int rc;
fd_set readset;
int result;
struct timeval tv;

 printf("Daytime Server\n");
 listenfd = socket(AF_INET,SOCK_STREAM,0);
 bzero(&servaddr,sizeof(servaddr));
 servaddr.sin_family = AF_INET;

Listing 13.8 daytime.c

Required
headers

B

Listening port numberC

Define helpful macroD

ESQLite
interaction

E

Set up and listen
on socket

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

357What time is it?
 servaddr.sin_addr.s_addr = INADDR_ANY;
 servaddr.sin_port = htons(PORTNUMBER);

 rc = bind(listenfd, (struct sockaddr *) &servaddr,sizeof(servaddr));
 if (rc != 0)
 {
 printf("after bind,rc = [%d]\n",rc);
 return rc;
 }
 listen(listenfd,5);
 while (!done)
 {
 printf("Waiting for connection\n");
 while (1)
 {
 bzero(&tv,sizeof(tv));
 tv.tv_sec = 2;
 FD_ZERO(&readset);
 FD_SET(listenfd, &readset);
 result = select(listenfd + 1, &readset, &readset, NULL, &tv);
 if (result >= 1)
 {
 printf("Incoming connection!\n");
 break;
 }
 else if (result == 0)
 {
 printf("Timeout.\n");
 continue;
 }
 else
 {
 printf("Error, leave.\n");
 return result;
 }
 }

 printf("Calling accept:\n");
 connfd = accept(listenfd,
 (struct sockaddr *) NULL, NULL);
 printf("Connecting\n");
 ticks = time(NULL);
 sprintf(buf,"%.24s",ctime(&ticks));
 printf("sending [%s]\n",buf);
 write(connfd,buf,strlen(buf));
 close(connfd);
 RecordHit(buf);
 }
 return 0;

As with many C language applications, a number of headers B are required, includ-
ing definitions and prototypes for time functions, SQLite functions, and of course a
number of headers required for TCP sockets. Note that the sqlite3.h header file is not
provided in the CodeSourcery tool chain. This file was acquired from a sqlite3 distri-
bution, and the file was copied into the local directory along with daytime.c. This is

Set up and listen
on socket

F

Accept socket
connection

G

Record activityH
Licensed to Deborah Christiansen <pedbro@gmail.com>

358 CHAPTER 13 Hacking Android
why the include file is delimited with quotation marks rather than <>, which is used
for finding include files in the system or compiler path. The htons function is typically
implemented in the library named socket (libsocket.so). Android does not provide
this library, nor was this found in any of the system libraries. Therefore htons is
defined here as a macro D. This macro is required to get the network byte ordering
correct. When the application is running, this port can be verified by running net-
stat –tcp on the command line in the adb shell.

 The standard TCP port for a daytime server is port 13. In C, application is using
port 1024 because our application cannot bind to any port numbered 1023 or below.
Only system processes may bind to ports below 1024.

 In the RecordHit function, we see SQLite interaction E. The RecordHit() func-
tion is responsible for inserting a record into the SQLite database created for this
application.

 Jumping into the main function, we see the socket functions in use to listen on a
socket for incoming connections F. When a connection is accepted G, the current
system time is sent to the calling client. After this, the application makes a record of
the transaction by calling the RecordHit function H.

 That’s all the code necessary to implement our Android/Linux Daytime Server
application. Let’s look next at the SQLite3 database interaction in more detail.

13.3.3 The SQLite database

This application employs a simple database structure created with the sqlite3 applica-
tion. We interact with sqlite3 from the adb shell environment, as shown in figure 13.7.

Figure 13.7 Sqlite3 from the command line in the adb shell
Licensed to Deborah Christiansen <pedbro@gmail.com>

359What time is it?
The purpose of this database is to record some data each time Daytime Server pro-
cesses an incoming request. From a data perspective this sample is a bit boring as it
simply records the system time plus the text returned to the client, which is a ctime
formatted time string. Though somewhat redundant from a data perspective, the pur-
pose is to demonstrate the use of SQLite from our C application, utilizing the
Android/Linux resident sqlite3 library, libsqlite.so.

 The previous section of code outlined the syntax for inserting a row into the data-
base; this section shows how to interact with the database using the sqlite3 tool. The
sequence shown in figure 13.7 is broken out and explained in listing 13.9.

pwd
pwd
/data/ch13
sqlite3 daytime_db.db
sqlite3 daytime_db.db
SQLite version 3.5.0
Enter ".help" for instructions
sqlite> .databases
.databases
seq name file
--- --------------- ---
0 main /data/ch13/daytime_db.db
sqlite> .tables
.tables
hits
sqlite> .schema hits
.schema hits
CREATE TABLE hits (hittime date,hittext text);
sqlite> .header on
.header on
sqlite> .mode column
.mode column
sqlite> select * from hits;
select * from hits;
hittime hittext
------------------- ------------------------
2008-07-29 07:31:35 Tue Jul 29 07:31:35 2008
2008-07-29 07:56:27 Tue Jul 29 07:56:27 2008
2008-07-29 07:56:28 Tue Jul 29 07:56:28 2008
2008-07-29 07:56:29 Tue Jul 29 07:56:28 2008
2008-07-29 07:56:30 Tue Jul 29 07:56:30 2008
sqlite> .exit
.exit
#

The SQLite database operates in a similar fashion to other, modern SQL-based envi-
ronments. In listing 13.9 we see the output from an interactive session where the data-
base for this chapter’s sample application is opened B. A series of commands given at
the sqlite> prompt C display the contents of the database in terms of structure. The
schema command dumps the Data Definition Language for a particular table. In this

Listing 13.9 Interacting with a sqlite database

Connect to our
database fileB

Examine database
structure

C

The Create statementD

Select rowsE
Licensed to Deborah Christiansen <pedbro@gmail.com>

360 CHAPTER 13 Hacking Android
case, we see the CREATE TABLE instructions for the hits table D. Viewing the data is
simple with the use of the familiar select statement E.

 The SQLite database engine is known for its simplicity. This section displayed a sim-
ple interaction and just how easy it is to employ. In addition, the SQLite3 database may
be pulled from the Android Emulator and used on the development machine, as
shown in figure 13.8.

This feature makes Android a very compelling platform for mobile data collection
applications because synching data can be as simple as copying a database file that is
compatible across multiple platforms.

13.3.4 Building and running Daytime Server

To build this application we need to combine the components of the prior few sec-
tions. We know that our application requires a startup component and must also link
against multiple libraries. Because the application interacts with the SQLite database,
we must link against the sqlite library in addition to the c and android_runtime librar-
ies. The full build script is shown in listing 13.10.

arm-none-linux-gnueabi-gcc -c daytime.c

arm-none-linux-gnueabi-gcc -c -o crt0.o crt.S

arm-none-linux-gnueabi-ld --entry=_start --dynamic-linker /system/bin/linker -
nostdlib -rpath /system/lib -rpath-link \android\system\lib -L
\android\system\lib -l c -l android_runtime -l sqlite -o daytime daytime.o
crt0.o

C:\software\google\<path to android sdk>\tools\adb
 push daytime /data/ch13
g:\tools\adb shell "chmod 777 /data/ch13/daytime"

Listing 13.10 Daytime application build script

Figure 13.8 The SQLite database on the development machine

Compile daytime.cB
Compile crt.SC

D Link the application

E Install application
Licensed to Deborah Christiansen <pedbro@gmail.com>

361What time is it?
The build script begins by compiling the main source file, daytime.c B. The next line
compiles the crt.S file, which was introduced in listing 13.7 for our C runtime initial-
ization C. The linker command contains a number of switches to create the desired
application. Note the parameter to the linker in D to include the sqlite library. Note
also the inclusion of both daytime.o and crt0.o object files as inputs to the linker. Both
are required to properly construct the Daytime Server application. The input files are
found in local (to the development machine) copies of the libraries. adb is employed
to push the executable file to the Android Emulator and to modify the permissions,
saving a manual step E.

 Running the Daytime Server application is the easy and fun part of this exercise.
Figure 13.9 shows our Daytime Server running.

Here is a rundown of the sequence shown in figure 13.9:

1 Start the shell by running adb shell.
2 Change directories to /data/ch13, where our application resides, previously

pushed there with an adb push command.

Figure 13.9 Daytime Server running in the shell
Licensed to Deborah Christiansen <pedbro@gmail.com>

362 CHAPTER 13 Hacking Android
3 Run the ./daytime application.
4 The application binds to a port and begins listening for an incoming connection.
5 A timeout occurs prior to a connection being made. The application displays

the timeout and returns to look for connections again.
6 A connection is detected and subsequently accepted.
7 The time string is constructed and sent to the client.
8 A record is inserted into the database with the shown sql statement.
9 We kill the application and restart the shell. Note that this is because we did not

build a clean way of killing the Daytime Server. A proper version of the applica-
tion would be to convert it to a daemon, which is beyond the scope of our inter-
est here.

10 Run sqlite3 to examine the contents of our application’s database.
11 Perform a select against the hits table, where we see the recently inserted

record.

We have built an Android/Linux application that implements a variant of the tradi-
tional daytime server application as well as interacts with a SQL database. Not too
shabby when you consider that this is a telephone platform! Let’s move on to examine
the Android/Java application used to exercise the Daytime Server, our Daytime Client.

13.4 Daytime Client
One of the stated objectives for this chapter is to connect the Java UI to our Daytime
Server application. This section demonstrates the construction of a Daytime Client
application, which communicates with our Daytime Server via TCP sockets.

13.4.1 Activity

The Daytime Client application has a single
Activity, which presents a single Button and
a TextView, as shown in figure 13.10.

 When the Button is clicked, the Activity
initiates the Daytime Server query and replaces
the text of the TextView with the information
received from the Daytime Server. Not much to
it really, but that is fine, as all we are after in this
sample is to demonstrate connectivity between
the two applications. Listing 13.11 shows the
onCreate method for this Activity.

 Handler h;
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

Listing 13.11 UI elements of DaytimeClient.java

B
Declare and
implement a Handler

Figure 13.10 The Daytime Client app
Licensed to Deborah Christiansen <pedbro@gmail.com>

363Daytime Client
 setContentView(R.layout.main);

 final TextView statuslabel = (TextView) findViewById(R.id.statuslabel);

 h = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case 0:
 Log.d("CH13","data [" + (String) msg.obj + "]");
 statuslabel.setText((String) msg.obj);
 break;
 }
 super.handleMessage(msg);
 }
 };

 Button test = (Button) findViewById(R.id.testit);
 test.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 try {
 Requester r = new Requester();
 r.start();
 } catch (Exception e) {
 Log.d("CH13 exception caught : ",e.getMessage())
 }
 }
 });
 }

This application is all about detecting the selection of a button C and initiating an
action based on that click. The action is the creation of an instance of the Requester
class D, which we discuss in the next section. We handle the response from the socket
server with the assistance of a Handler B. The Handler has a single role, which is to
update the UI with textual data stored in the obj member of a Message object.

 While the UI of this application is very simple, the more interesting side of this
Activity is the interaction with the Daytime Server, which takes place in the
Requester class, discussed in the next section.

13.4.2 Socket client

The Daytime Server application listens on a TCP port for incoming connections. In
order to request the date and time, the Daytime Client must establish a client socket
connection to the Daytime Server. It is hard to imagine a simpler TCP service than
this—open a socket to the server and read data until the socket connection is closed.
There is no additional requirement. Most of the networking examples in this book
have focused on a higher-level protocol, HTTP, where the request and response are
clearly defined with headers and a specific protocol to observe. In this example, the
communications involve a lower-level socket connection, essentially raw, if you will,
because there is no protocol associated with it beyond being a TCP stream (as opposed
to UDP). Listing 13.12 demonstrates this lower-level socket communication.

B Declare and
implement a Handler

Implement
click listener

C

Create a Requester instanceD
Licensed to Deborah Christiansen <pedbro@gmail.com>

364 CHAPTER 13 Hacking Android
 public class Requester extends Thread {
 Socket requestSocket;
 String message;
 StringBuilder returnStringBuffer = new StringBuilder();
 Message lmsg;
 int ch;

 public void run() {
 try {
 requestSocket = new Socket("localhost", 1024);
 InputStreamReader isr = new

InputStreamReader(requestSocket.getInputStream(),"ISO-8859-1");
 while ((ch = isr.read()) != -1) {
 returnStringBuffer.append((char) ch);
 }
 message = returnStringBuffer.toString();
 lmsg = new Message();
 lmsg.obj = (Object) message;
 lmsg.what = 0;
 h.sendMessage(lmsg);
 requestSocket.close();
 } catch (Exception ee) {
 Log.d("CH13","failed to read data" + ee.getMessage());
 }
 }
 }

The Requestor B class extends the Thread class by implementing the run method.
Communications take place via an instance of the Socket class C, which is found in
the java.net package. Note the port number being used—1024, just like our socket
server! A Message D is used to communicate back to the UI thread. Once the Message
object is initialized, it is sent back to the calling thread E.

 With the Daytime Client now coded, it’s time to test the application. In order for the
Daytime Client to access a TCP socket, a special permission entry is required in the
AndroidManifest.xml file: <uses-permission android:name="android.permission.
INTERNET"></uses-permission>.

13.4.3 Testing Daytime Client

The first step in testing the Daytime Client is to ensure that the Daytime Server appli-
cation is running, as described in section 13.3.4. Once you know the Daytime Server is
running, you can run the Daytime Client.

NOTE If you are unclear on how to build and run the Daytime Client, refer to
chapter 2 for information on properly setting up the Android develop-
ment environment in Eclipse.

Figure 13.11 demonstrates the Daytime Client running, alongside a view of the Day-
time Server. Note how the TextView of the Android application is updated to reflect
the date and time sent by the Daytime Server.

Listing 13.12 Requester class implementation

B
Requester class extends
the Thread class

Socket
communications

C

Create a
Message object

D

Send the Message
to main thread

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

365Summary
The Daytime Server is exercising both TCP socket functionality and SQLite database
record insertions, all running in the Android Emulator. A production-ready Android/
Linux application would need to be converted to run as a daemon, which is beyond
our aim for this chapter.

13.5 Summary
This chapter wraps up this book with a topic that hopefully stretches your imagina-
tion for the kinds of applications possible with the versatile and open platform of
Android. We had the goal of writing an application outside the Android SDK and
demonstrating how that kind of application may be leveraged by a standard Android
Java application. To write for the Android/Linux layer, we turned to the C program-
ming language.

 Developing C language applications for Android/Linux is a cross-platform compi-
lation exercise using the freely available CodeSourcery tool chain. This chapter dem-
onstrated using that tool set in conjunction with the adb utility provided in the
Android SDK. The adb utility was vital because it enabled us to push our application to
the Android Emulator for testing as well as to extract the Android system libraries,
which were essential for linking our application with the Android resident libraries.

Figure 13.11 Testing the Daytime Client
Licensed to Deborah Christiansen <pedbro@gmail.com>

366 CHAPTER 13 Hacking Android
Of course, we used the adb shell to interact directly with the Android Emulator to run
our C application.

 C language mastery on this platform is powerful because much of the C language
development process involves porting existing, open source Linux code to the ARM
processor. This has the potential benefit of speeding up development for future func-
tionality delivery to Android by leveraging existing code bases. A logical extension to
this topic would be the development of a Java Native Interface (JNI) to bring many
capabilities residing in C language libraries directly into the Java environment
of Android.

 Our sample application exercised TCP socket communications. The TCP commu-
nications capability proved to be a ready interface mechanism between the Android/
Java layer and the Android/Linux foundation of the environment in the Daytime Cli-
ent and Server applications, respectively. TCP socket communications may also take
place from the Android/Linux environment to external, remote systems such as email
servers or directory servers, opening up literally a world of possibilities.

 The Daytime Server sample application also demonstrated the use of an Android
resident library to manipulate a SQLite database used to store transaction data. The
impact of this step should not be minimized as it satisfies three important develop-
ment challenges. The first and most basic accomplishment of this functionality is that
we have demonstrated linking against, and employing, an Android resident system
library. This is significant because it shows how future applications may leverage
Android functionality such as Open GL or media services. Second, using a device-resi-
dent database that is also accessible from the Java layer means we have an additional
(and persistent) interface mechanism between the Java and Linux environments on
the platform. Third, Android is a mobile platform. Anytime there is a mobile applica-
tion, the topic of sharing and synching data bubbles up. We demonstrated in this
chapter the ease with which an SQL-capable database was shared between the Android
Emulator and a personal computer—and all without complex synchronization pro-
gramming. Synchronization is, of course, a larger topic than this, but the capability of
moving a single file between platforms is a welcome feature. There are only a few com-
parable solutions in the marketplace for other mobile environments, and that is after
literally years of market penetration by these other platforms. Android gets it right
from the start.

 I trust that this chapter and this book will challenge you to dig deeper and that you
may enjoy Unlocking Android.

Licensed to Deborah Christiansen <pedbro@gmail.com>

appendix A:
Installing

 the Android SDK

This appendix walks through the installation of Eclipse, the Android SDK, and the
ADT plug-in for Eclipse. This appendix is meant to be a reference resource to assist
in setting up the environment for Android application development. The topic of
using the development tools is covered in chapter 2.

A.1 Development environment requirements
In order to develop Android applications, your computing environment must sat-
isfy the minimum requirements. Android development is a quick-paced topic, with
changes coming about very rapidly, so it is a good idea to stay in tune with the
latest developments from the Android development team at Google. The latest

This appendix covers:
■ Development environment requirements
■ Obtaining the latest Android SDK
■ Configuring the Android Development Tools for Eclipse
367

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/intro/installing.html#developmentrequirements
http://code.google.com/android/intro/installing.html#developmentrequirements
http://code.google.com/android/intro/installing.html#developmentrequirements

368 APPENDIX A Installing the Android SDK
information regarding supported platforms and requirements for Android devel-
opment tools may be found at http://code.google.com/android/intro/installing.
html#developmentrequirements.

 The development environment used for the sample applications in this book
includes:

■ Windows XP/Vista, Mac OS X 10.4.8 or later (Intel x86 only), Linux
■ Eclipse 3.3 (or later), including the JDT and Web Tools Platform, which are

included in the Eclipse installation package
■ JDK) and Java Runtime Environment (JRE) version 5
■ ADT plug-in for Eclipse

A.2 Obtaining and installing Eclipse
A requirement for running the Eclipse IDE is the JRE version 5 or later. For assistance
in determining the best JRE for your development computer, go to http://
www.eclipse.org/downloads/moreinfo/jre.php. It is very likely that you already have
an acceptable JRE installed on your computer. An easy way to determine what version
(if any) you have is to run the following command from a command window or termi-
nal session on your development computer:

java -version

This procedure checks to see if the JRE is installed and present in your computer’s
search path. If the command comes back with an error stating an invalid or unrecog-
nized command, it is likely that the JRE is not installed and/or that it is not properly
configured. Figure A.1 demonstrates using this command to check the version of the
installed JRE.

Once your JRE is installed, the next step is to install the Eclipse IDE. Download the latest
stable release from http://www.eclipse.org/downloads. You will want to download the
version for Java developers. This distribution is described at the Eclipse website: http:
//www.eclipse.org/downloads/moreinfo/java.php. The Eclipse download is a com-
pressed file. Once it is downloaded, extract the contents of the file to a convenient place
on your computer. Because this download is simply a compressed file and not an
installer, it does not create any icons or shortcuts on your computer.

Figure A.1 The java –version command displays the version of Java installed on your computer.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/intro/installing.html#developmentrequirements
http://code.google.com/android/intro/installing.html#developmentrequirements
http://www.eclipse.org/downloads
http://www.eclipse.org/downloads/moreinfo/java.php
http://www.eclipse.org/downloads/moreinfo/java.php
http://www.eclipse.org/downloads/moreinfo/jre.php
http://www.eclipse.org/downloads/moreinfo/jre.php

369Obtaining and installing Eclipse
 To start Eclipse, run eclipse.exe (for Windows users) found in the Eclipse installa-
tion directory. You may want to make your own menu or desktop shortcut to
eclipse.exe for convenience. This will start the IDE. Eclipse prompts for a workspace
and suggests a default location such as C:\documents and settings\username\work-
space. You may want to change that value to something Android specific to separate
your Android work from other projects, as shown in figure A.2.

Accept the suggested workspace location or specify an alternative workspace location,
as desired. Once Eclipse is loaded, click the Workbench: Go to the Workbench icon
on the main screen, as shown in figure A.3.

Figure A.2 Eclipse
projects are stored in a
workspace, which is a
directory on your
computer’s hard drive.

Figure A.3 Eclipse defaults to the home screen. Go to the workbench.
Licensed to Deborah Christiansen <pedbro@gmail.com>

370 APPENDIX A Installing the Android SDK
Eclipse consists of many perspectives, the default being the Java Perspective. It is from
this perspective that Android application development takes place. The Java Perspec-
tive is shown in figure A.4. Chapter 2 discusses in greater detail the use of the Eclipse
IDE for Android application development.

 For more information on becoming familiar with the Eclipse environment, visit
the http://www.eclipse.org, where you can find online tutorials for building Java
applications with Eclipse.

 Now that Eclipse is installed, it’s time to focus on the Android SDK.

A.3 Obtaining and installing the Android SDK
The Android SDK is available as a free download from a link on the Android home
page, at http://code.google.com/android/download.html. SDK installation versions
are available for multiple platforms, including Windows, Mac OS X (Intel x86 only),
and Linux (i386). Select the latest version of the SDK for the desired platform.

TIP The Android SDK version shown in this appendix is marked 1.0_r1. The
SDK will change from time to time as the Android team releases new ver-
sions. If you need to upgrade from one version to another, there will be
an upgrade document on the Android website.

The Android SDK is a compressed folder download. Download and extract the con-
tents of the compressed folder file to a convenient place on your computer. For exam-
ple, you might install the SDK to C:\software\google\android-sdk-windows-1.0_r1, as
shown in figure A.5.

Figure A.4 Android development takes place in the Java Perspective.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.eclipse.org
http://code.google.com/android/download.html

371Obtaining and installing the Eclipse plug-in
As you can see from figure A.5, the installation footprint is rather simple. Opening the
file documentation.html in your browser launches the SDK’s documentation, which is
largely a collection of Javadocs enumerating the packages and classes of the SDK; the
complete documentation source is found in the docs folder. The file android.jar is the
Android runtime Java archive. The samples folder contains a number of sample appli-
cations, each of which is mentioned in the documentation. The tools folder contains
Android-specific resource compilers and the very helpful adb tool. These tools are
explained and demonstrated in chapter 2 of this book.

 Both Eclipse and the Android SDK are now installed. It’s time to install the ADT
plug-in for Eclipse to take advantage of the ADT’s powerful features, which will assist
in bringing your Android applications to life.

A.4 Obtaining and installing the Eclipse plug-in
The following steps demonstrate the installation of the Android plug-in for Eclipse,
known as the ADT. The most up-to-date installation directions are available from the An-
droid website. The first steps are somewhat generic for any Eclipse plug-in installation.

 Here are the basic steps to install the ADT:

1 Run the Find and Install feature in Eclipse, found under the Help > Software
Updates menu, as shown in figure A.6.

Figure A.5 The Android SDK installs into a directory on your hard drive.

Figure A.6 The Eclipse environment supports an extensible plug-in architecture.
Licensed to Deborah Christiansen <pedbro@gmail.com>

372 APPENDIX A Installing the Android SDK
2 Select the Search for New Features to Install option, as shown in figure A.7.
Click Next.

3 Select New Remote Site. Give this site a name, such as Android Tools, as shown
in figure A.8. Use the following URL in the dialog: https://dl-ssl.google.com/
android/eclipse. Please note the https in the URL. Click OK.

4 A new entry is added to the list and is checked by default. Click Finish. The
search results display the ADTs.

Figure A.7 Choose the new features option.

Figure A.8 Create a new update
site to search for Android-related
tools.
Licensed to Deborah Christiansen <pedbro@gmail.com>

https://dl-ssl.google.com/android/eclipse
https://dl-ssl.google.com/android/eclipse

373Configuring the Eclipse plug-in
5 Select Android Tools and click Next, as shown in figure A.9.

6 After reviewing and accepting the license agreement, click Next.
7 Review and accept the installation location. Click Finish.
8 The plug-in is now downloaded and installed.
9 Restart Eclipse to complete the installation.

Congratulations! The ADT Eclipse plug-in is installed. Next step: configuration.

A.5 Configuring the Eclipse plug-in
Once Eclipse is restarted, it is time to connect the plug-in to the Android SDK installa-
tion. Select Preferences under the Window menu in Eclipse. Click the Android item
in the tree view to the left to expand the Android settings. In the right-hand pane,
specify the SDK installation location. For example, the value used for this appendix is
C:\software\google\android-sdk-windows-1.0_r1, as shown in figure A.10.

Figure A.9 You must select Android Tools for Eclipse to download and install.
Licensed to Deborah Christiansen <pedbro@gmail.com>

374 APPENDIX A Installing the Android SDK
Once the SDK location is specified, there are five other sections you may configure:

■ Build —This section has options for automatically rebuilding resources. Leave
this checked. The Build option can change the level of verbosity. Normal is the
default setting.

■ DDMS —This service is used for peering into a running virtual machine. These
settings specify TCP/IP port numbers used for connecting to a running VM with
the debugger and various logging levels and options. The default settings
should be just fine.

■ Launch —This section permits optional emulator switches to be sent to the emu-
lator upon startup. An example of this might be the wipe-data option, which
cleans the persistent file system upon launch of the emulator.

■ LogCat —This is a log file created on the underlying Linux kernel. The font is
selectable in this dialog. Adjust this as desired.

■ Usage Stats —This optional feature sends your usage stats to Google to help the
Android tools team better understand which features of the plug-in are actually
used in an effort to enhance the toolset.

Your Android development environment is complete!

Figure A.10 You must select Android Tools for Eclipse to download and install.
Licensed to Deborah Christiansen <pedbro@gmail.com>

appendix B:
Signing and

 installing applications
 on an Android device

After you get a handle on writing Android applications and working with the emu-
lator, the next step is to digitally sign and install those applications on an actual
device. Putting your applications on an actual device allows you to perform rigor-
ous testing and lets you see practical results. You also have a bit more capability
on an actual device (you can switch IP network types, use Bluetooth, use the real
camera, and so on), so it is of course the first step on the road to publishing your

This appendix covers:
■ Using the adb tool to install and remove applications
■ Using keytool and jarsigner
■ Publishing applications to an android device
■ Getting an application ready for distribution
375

Licensed to Deborah Christiansen <pedbro@gmail.com>

376 APPENDIX B Signing and installing applications on an Android device
application to a broader audience. In this appendix we provide concise information
about how to get your applications ready for release and how to work with a real
device to sign and install applications.

B.1 Recapping the Android Debug Bridge
Although we covered the Android Debug Bridge (adb) in chapter 2, a recap is in
order as background for signing and installing applications and working with Android
devices.

 The adb is a client/server program that lets you interact with the Android SDK in
various ways, including pushing and pulling files, installing and removing applica-
tions, issuing shell commands, and more. The adb tool comprises three components:
a development machine–based server, a development machine client for issuing com-
mands, and a client for each emulator or device in use. (Other Android tools, such as
the DDMS tool, also create clients to interact with the adb.)

 You can make sure your local adb server is running by issuing the adb start-

server command. Similarly, you can stop your server with adb kill-server and then
restart it, if necessary (or just to get familiar with the process). When you start the
Eclipse/ADT environment, it automatically starts an adb server instance.

 Once you are sure your adb server is running, you can tell if any devices or emula-
tors are connected by issuing the adb devices command. The output of this com-
mand with an emulator running and a physical device attached via a USB cable is
shown here:

#$ adb devices
List of devices attached
emulator-5554 device
HT845GZ49611 device

There are many more adb commands and uses than we are addressing here, of course,
and obviously adb is very important in terms of developing Android applications (it is
the chassis of the entire SDK), but it’s important to understand that it supports both the
emulator and any connected physical devices. The first step in getting your applica-
tions onto an actual device is to connect your device and make sure it is recognized by
the adb and then run the applications from the SDK (to make the process as simple as
possible, close down any running emulators and restart your adb server, then connect
your device so that it is the only option present).

B.2 Digital signatures
When you are running your applications using the adb, you are running in debug
mode. In debug mode your applications are automatically digitally signed by the SDK
using a self-signed debug key that is stored in the debug.keystore file (this file is in the
.android subdirectory of the user’s home directory by default).

 The Android platform requires digital signatures on every .apk package (every appli-
cation archive file). Without a digital signature, an .apk is not allowed to run. The debug
key and store are conveniences included for you, so that you do not have to worry about
Licensed to Deborah Christiansen <pedbro@gmail.com>

377Digital signatures
digital signatures while developing applications using the SDK. When you are ready to
go beyond debug mode and run outside the adb, you need to sign your application with
a non-debug key (the debug key is not allowed outside debug mode).

 Here we are going to cover basic examples of using the Java to create your own key
and keystore. We will also include an example of using such a key to sign your .apk files
with the Java tool. These are standard Java tools included with the Sun Java SDK; for spe-
cific information about these tools, see the Sun documentation for your platform: http:
//java.sun.com/javase/6/docs/technotes/tools/index.html - security.

B.2.1 Keytool

An example of using the keytool command to create your own self-signed private key
is the following:

keytool -genkey -v -keystore my-release-key.keystore -alias my_key -keyalg

➥ RSA -validity 10000

This command generates a key (-genkey) in verbose mode (-v) using a keystore file
named my-release-key.keystore and an alias of my_key with the RSA cryptographic algo-
rithm and a validity period of 10000 days. Every key in a keystore requires an alias. We
will use the alias next when referring to the key within the keystore while demonstrating
how to sign an .apk file. Also note that we are using a very long time period for the key.
The Android documentation recommends at least a 25-year key life, and the Android
Market currently requires a key that does not expire until after October 22, 2033.

 The keytool command will prompt you for a key password and organizational
information when creating a key. You should use accurate information (it is possible
for your users to view this later), and you should use a strong password. Once you cre-
ate your key, you also need to be very careful to store it securely and keep the pass-
word private. (If your key is lost or compromised, your identity can be misused, and
the trust relationships to your key via your applications can be abused.)

B.2.2 Jarsigner

Once you have a private key, you can use it to sign your application files. Signing your
files is done using the jarsigner tool. Before you can use the jarsigner tool, you need to
export your project as an unsigned .apk archive. To export your project using the
Eclipse/ADT environment, right-click and select the Android Tools > Export
Unsigned Application Package option, as shown in figure B.1.

 Once you have an unsigned archive file, then you can use the jarsigner tool to sign
it with your key, as shown here:

jarsigner -verbose -keystore my-release-key.keystore RestaurantFinder.apk

➥ my_key

This command tells the jarsigner tool to use the previously defined keystore file (my-
release-key.keystore) for the particular .apk, using the specified key (designated by the
key alias my_key).
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://java.sun.com/javase/6/docs/technotes/tools/index.html
http://java.sun.com/javase/6/docs/technotes/tools/index.html

378 APPENDIX B Signing and installing applications on an Android device
Once you enter this command and use the correct password, jarsigner will create a few
metadata files (a manifest, for example) and will digitally sign each file in the archive
with your key, as shown here:

Enter Passphrase for keystore:

 adding: META-INF/MANIFEST.MF
 adding: META-INF/TOTSP_KE.SF
 adding: META-INF/TOTSP_KE.RSA
 signing: res/anim/scaler.xml
 signing: res/drawable/no_review_image.png
 signing: res/drawable/restaurant_icon.png
 signing: res/layout/review_criteria.xml
 signing: res/layout/review_detail.xml
 signing: res/layout/review_list.xml
 signing: res/layout/spinner_view.xml
 signing: res/layout/spinner_view_dropdown.xml
 signing: AndroidManifest.xml
 signing: resources.arsc
 signing: classes.dex

Jarsigner is the last step; after your archive is signed with your key, it’s ready to be
installed on a device and tested outside debug mode. You can use the adb tools to

Figure B.1 Using Android Tools from the Eclipse/ADT environment to export an unsigned application
archive package
Licensed to Deborah Christiansen <pedbro@gmail.com>

379Cleaning up for distribution
install a signed .apk archive (adb install [path_to_apk]), or you can optionally use
the very handy APK Installer application that is available in the Android Market
(http://www.android.com/market/).

 The APK Installer tool lets you install archives that are copied onto your SD card, as
opposed to using the adb. Once you plug your device in via USB, you can elect to
mount the device (following the on-device screen instructions) and copy files to it.
This works like any USB drive, and you can drag your .apk onto your phone. With an
.apk archive on your SD card, you can then browse to it from the APK Installer and
select Install—it will take care of the rest.

 The streamlined process we have outlined here, creating a key and signing your
applications with it, is the bare minimum that you need to install an application on an
Android device in non-debug mode. For more detailed information you should review
the Android documentation in this area (http://code.google.com/android/devel/
sign-publish.html - signing).

 Once you are familiar with signing your applications, the next thing you need to
do is perform some final cleanup before actual distribution to end users.

B.3 Cleaning up for distribution
Getting an Android application cleaned up to go to distribution is straightforward.
You generally need to remove any extraneous code, such as log statements, and any-
thing else debug-specific, such as the android:debuggable="true" attribute, if pres-
ent, in the manifest. You should also use common sense and do things like making
sure that any local data stores are cleaned up and cleaned out before packaging
(don’t include your test data). Along with that, you need to provide a few required
manifest elements, you should test on an actual device, and you may want to add data
import and export support or provide an End User License Agreement (EULA).

B.3.1 Important manifest elements: label, logo, version, SDK level

Your application needs to have several key manifest elements before you consider
distribution.

 You should include an appropriate label and icon using the android:label and
android:icon attributes within the <application> element of the manifest. Make the
icon and the label text the right size so that they are not cut off on the device or
devices you are targeting. (Smaller amounts of text are better for labels, in general.)

 Every application should also include the android:versionCode and
android:versionName attributes in the <application> element of the manifest as
well. The versionCode is an integer value that can be checked programmatically (and
is typically incremented at each release), and the versionName is what is displayed to
users. Android provides solid documentation on these elements as well (http://
code.google.com/android/devel/sign-publish.html - versioning).

 Along with the label, icon, and versions, it is also important to specify the
android:minSdkVersion attribute. Without this attribute, the application is assumed to
be compatible with all versions of the Android SDK. If your application works with 1.0r2
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.android.com/market/
http://code.google.com/android/devel/sign-publish.html
http://code.google.com/android/devel/sign-publish.html
http://code.google.com/android/devel/sign-publish.html
http://code.google.com/android/devel/sign-publish.html

380 APPENDIX B Signing and installing applications on an Android device
or 1.1 but not 0.9, then you should provide this attribute (and this attribute will likely
be even more important in the future when more versions are available in the wild).

B.3.2 Test, test, then test again

Once you think your application is streamlined and ready, with logo and versions and
so on, you should put it through some paces in non-debug mode on an actual device
as a testing step. Here we are talking about acceptance-style testing, actually using the
application to see how it performs (unit tests are also a good idea, as is the Monkey
exerciser that Android provides at http://code.google.com/android/reference/
monkey.html, but those are a different level of tests that should generally come well
before distribution time arrives).

 Make sure to run your application under as many conditions as you can (with Wi-Fi
on and off, network (GPRS, EDGE, 3G) on and off, GPS on and off, and so on), and
make sure it responds as you expect (even if the response is just a context-sensitive
message to users that data is not available, if that is what you expect). Pay extra atten-
tion to how your application responds to being stopped and restarted; for example, if
your device supports it, change the screen orientation at each activity back and forth
(this stops and starts the current Activity, which may cause problems if you have not
used onCreate/onStart/onPause and the other lifecycle methods appropriately).

 Along with making sure your application works on an actual device in as many con-
ditions as possible, you may want to consider a few additional touches.

B.3.3 An End User License Agreement

Your own EULA is recommended. Everyone is familiar with these types of agreements,
from so frequently encountering them and not reading them in everyday life. Even
though users often blaze past these, it is a good idea to have one to define terms and
to potentially protect yourself from liabilities. (You should consult a lawyer about all
legal matters, including drawing up a EULA.)

 It is common to require a EULA to be shown as an Alert the first time your applica-
tion is started and then not show it again on subsequent launches (you can do this
with a single saved boolean as a preference). As well as showing the EULA the first
time out, it is also a good idea to include a setting to allow users to get back to it and
view it if they choose to.

B.3.4 Nice extra: data import and export

As an extra step, if your application saves any state using any local form (files, prefer-
ences, database, and the like) you may want to implement an import/export
data–type Activity. This Activity should allow the user to save the data out to the
SD card (in XML format, for example) and should also allow the user to read data
back in and populate the local stores. This can make application upgrades easier in
some cases, and it can make switching to a new device possible without losing all local
data (something your users will appreciate).
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/android/reference/monkey.html
http://code.google.com/android/reference/monkey.html

381Publishing to the Market
 Once you are convinced that everything is in place, data import/export included
or not, you are then ready to take your wares to the Android Market.

B.4 Publishing to the Market
The Android Market (http://market.android.com) is the built-in application that
comes with the Android platform that allows users to browse and install applications
with just a few clicks. The significant point to keep in mind is that governance (terms
that developers must agree to) is included with Android devices. There are no outside
steps required for a user to install your application if it is on the Market—direct from
service to device.

B.4.1 The Market rules

Before you put your application on the Market, you should carefully read the
developer terms (http://www.android.com/us/developer-distribution-agreement.
html) and the content guidelines (http://www.android.com/market/terms/
developer-content-policy.html).

 The Market terms cover pricing and payments, returns, license grants, takedowns,
and many other important topics that you should be familiar with. The content guide-
lines further define what is acceptable in terms of subject matter and media (again,
there are rules; it’s not an entirely open system).

 If the Market terms are amenable to you and you plan to post applications, you
need to register (which can be done online at the Market website) and have a Google
account. There is a small fee to register, but this is minimal and probably worthwhile
to allow the Market to associate an identity with an account using an actual payment
method (which has contact information).

 Once you are set up, you can begin placing your applications in the Market for
users to download and install directly.

B.4.2 Getting your application in the Market

Registered Market developers simply use an online form to upload applications.
When uploading applications, you can define the different Market locations that are
supported, pricing and terms, as well as a category and description and other options.

B.4.3 Automatic Market updates

Currently the Android Market is in beta form, and it does not support automatically
alerting your users about updates to installed applications. Because of this, the
Android documentation has a section titled “Publishing Upgrades on Android Mar-
ket” that details how you can create your own automatic update support.

 Basically, this process boils down to hosting a web service that your application
should poll periodically to check for application updates. If an update is found, you
can have your application programmatically invoke the Market application (which
supports its own rich set of intents) and direct the user to the new version.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://market.android.com
http://www.android.com/us/developer-distribution-agreement.html
http://www.android.com/us/developer-distribution-agreement.html
http://www.android.com/market/terms/developer-content-policy.html
http://www.android.com/market/terms/developer-content-policy.html

382 APPENDIX B Signing and installing applications on an Android device
B.4.4 Why the Market matters

In short, the Android Market matters because it’s built in and it’s open.
 We touched on this in chapter 1, but the open nature of Android itself—and of the

Market—is an important advantage to Android developers and Android users. There
is no arbitrary inclusion or exclusion process that an individual or company holds
over the Market. Anyone who joins and agrees to the terms can put applications on
the Market. Some applications will do better than others, of course (and users can
rate them and comment on them), but anyone can join.

 The Android Market is a merit-based system; impress your users and they will rate
your application well and compliment you; do the opposite and they will do the oppo-
site (survival of the fittest, if you will). Some pundits have panned this as a potentially
negative aspect of the overall Android experience, purporting that without more con-
trol too many bad (or even rogue) applications will appear. Although some abuse is
probably inevitable, we think the reality is that the Market will be very healthy (it does
have sensible terms of use), and that the open nature will reveal itself as invaluable in
the long term (creating an environment where better applications are created and
rewarded, in the end greatly benefiting users).

B.5 Other distribution means
The last thing to be aware of with regard to distributing your application and the
Android Market is the fact that there are other means.

 Various third-party sites offer distribution channels too. These sites have different
agreement types and different payment models, so you should research them carefully
before using them, but you should know that they are available.

 These services include:

■ http://andappstore.com
■ http://slideme.org/
■ http://www.androidfreeware.org/

You may want to distribute your application only in the official Market or on third-
party services, or you may decide to use a combination. If you do use third-party ser-
vices, keep in mind that these, while growing in popularity, are not as accessible to
users as the built-in Market. (Users have to find the third-party service and generally
then have to install applications on their own or at least bootstrap the service with an
application specifically designed to use it.)

 Lastly, you can deliver your .apk file on your own as well. Normal end users should
not be expected to use the shell to install applications, of course, but you can point
them to the APK Installer (which itself is in the Market), and they can install any
archive you can deliver them. The more means you have at your disposal to get your
applications into the hands of users, obviously, the better.

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://andappstore.com
http://slideme.org/
http://www.androidfreeware.org/

index
Symbols

@ symbol 25

Numerics

2D
graphics 238

3D
graphics 238
shapes and surfaces 245

A

aapt 40, 85
abortBroadcast 206
AbsoluteLayout 81
acceptance testing 380
access

permissions 130
ACTION_DOWN 334
ACTION_MOVE 334
ACTION_PICK 16
ACTION_UP 334
actions 103

using built ins 110
Activity 25, 36, 43, 59, 301, 303,

329, 362
built-in support 109
common way to invoke 66
Default category

designation 103
extended by user classes 18
key 109
lifecycle 60–70

objects 97
RefreshJobs 322
ShowJob 325

Adapter
ArrayAdapter 64
BaseAdapter 79
CursorAdapter 64
custom 78
defined 63
GalleryAdapter 64
ListAdapter 64
ReviewAdapter 78

AdapterView 74
adb 41, 67, 136, 345, 376

devices 376
installing and removing

applications 376
issuing shell commands 376
kill-server 376
running in debug mode 376
shell 345, 358
shell command 42
start-server 376

addCallBack 241
addProximityAlert 277
Address 290
addToDB 264
ADT 33, 38, 368

configuring 373
Installing 371
plug-in 52

AIDL 98, 117
publishing 120
syntax 117
types 118

aidl tool 117, 125
automatically invoked 119

Alarm 211, 219
broadcasts Intent 219

AlarmManager 211
supports four Alarm types 222

alarms 219–225
AlertDialog 66, 288
Android

application requires manifest
file 303

built-in applications 98
calling an Intent 104
development requires Java

skills 12
development tools

See also ADT
discourages direct file

sharing 23
drawing graphics 226–231
Emulator 5
Javadocs 72
licensing 10
Linux kernal-based OS 4
logging mechanism 20
market challenge same as

Palm 8
MediaPlayer 251
moving from Activity to

Activity 127
Music Player 264
not a J2ME platform 13
platform 4–6
resources 60
runtime 347
same but different 8
383

Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX384
Android (continued)
SDK 33
shell 27
stack 11–12
stock icon 302
user applications written in

Java 4
using resources 84–93
vs. iPhone 10
what it is not 4

android
id 89

Android Application Wizard 43
Android Asset Packaging

Tool 40
Android Asset Packaging Tool.

See aapt
Android Debug Bridge. See adb
Android Development Tools. See

ADT
Android device

touch screen–capable 301
Android Emulator 35, 38, 41,

50–54, 329
network speed 51
splash screen 304
testing core features 52
working with an SD card 140

Android Graphics API 231
Android Interface Definition

Language. See AIDL
Android Javadocs 101
Android Market 10, 381

automatic updates 381
content guidelines 381
developer terms 381
importance 382

Android packages 34
android.app 34
android.content 34
android.graphics 34
android.net 34
android.opengl 34
android.os 34
android.provider 34
android.telephony 34
android.text 34
android.util 34
android.view 34
android.webkit 34
android.widget 34

Android Project Wizard 43
Android resource files

Drawables 44
Layout 44
Values 44

android:id 45
android.graphics 227
android.intent.action.MAIN 25
android.intent.category.

LAUNCHER 25
android.net 168
android.provider.Telephony.

SMS_RECEIVED 22
android.telephony 198, 207
android.util.Log class 47
android.view 71
Android/Java

refers to Java 341
Android/Linux

nontrivial activities 355
refers to Linux 341
startup code appearance 352
system libraries 347

AndroidManifest
understanding the file 93–95

AndroidManifest.xml 22, 25, 44,
60, 93

Animation 233
AnimationDrawable 231
animation-list tag 232
animations

Android supports four
types 92

frame-by-frame 231
programmatically 233

ANR 77
Apache 11

commons.io package 142
HttpClient 177
ResponseHandler 179

Apache Software License. See
ASL

.apk file 40
signing 377

APK Installer 379
Apple AppStore 10
Application

pass state between
activities 66

application distribution
Android vs. iPhone 10

Application Layer 170
Application Not Responding. See

ANR
Application Wizard 47
applications

distribution 382
install on device 375
key manifest elements 379
lifecycle 59
manifest 164

publishing 375
state 129

argc 352
argv 352
ARM 342

Android/Linux application
on 352

processor family 353
arm-none-linux-gnueabi-

gcc 342, 344, 347
arm-none-linux-gnueabi-ld 343
arm-none-linux-gnueabi-

objdump 343
arrays

defined 92
disabled by default 244
helpfulness 91

asInterface 119
ASL 10
assembly language 343
Atom Publishing Protocol 189
AtomPub 187, 189
audio

capturing 262
playback choppy 255
playing 253–254

Authentication Key 197
authority 104
AuthScope 184

B

background task 114
BaseColumns 159
BasicNameValuePair 185
Binary Runtime Environment

for Wireless. See BREW
bind to data 74
Binder 98, 116, 124

onTransact 124
bindService 120, 122
Bitmap 333
BlackBerry 8, 10

email capabilities 8
Bluetooth 11, 34

close-range wireless
networking 168

not available in Android
Emulator 168

BOOT_COMPLETED 107
BREW 8
broadcast

actions 111
events 110
permissions 111
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 385
BroadcastReceiver 15, 20, 25,
98, 107, 110, 209

associating with
IntentFilter 112

onReceive method 206
BufferedOutputStream 335
BufferedReader 175
BufferedWriter 175
build script

need for 346
Builder pattern 67
Bundle 21, 66, 186, 314, 336
Burnette, Ed 36
Button 62, 64, 326
buttons

tied to UI elements 65

C

C 341
application 341

Callback 241
camera

on cell phone 257
Cancelable 321
Canvas 333
carriers. See mobile operators
category 94, 103
CATEGORY_LAUNCHER 15
characters 318
classes.dex 49
client/server 171
ClientLogin 189, 192
CodeSourcery 342, 345
colors

values expressed 90
com.google.android.maps 282
com.google.android.phone.

Dialer 16
command line 40
command-line tools

create batch builds 48
ComponentName 99
connection

wireless internet 297
ConnectivityManager 172

mobile or WiFi 168
Contacts

class structure 156
content

// scheme 104
content provider 22–25
CONTENT_URI 151, 158
ContentObserver 158

ContentProvider 22, 25, 66, 110,
127, 149, 206, 299

accessible by any
application 158

creating 158–165
extending 160
updating data 157

ContentResolver 23, 149, 154,
158, 262

deleting data 157
ContentValues 262
contentView 229
Context 20, 64, 110, 132, 200,

308, 325
corners 230
createPackageContext 132
CSS 91
ctime 359
Cursor 24, 127, 144, 155

data items changed 164
custom URI

matching 105

D

DAL 144
Dalvik Debug Monitoring Ser-

vice. See DDMS
Dalvik virtual machine

11, 13, 49
data 103

import and export 380
inserting 156
persistence 66
plans 49
storage requirements 299
structures 311

Data Access Layer 144
Data Definition Language 359
/data/app directory 41
database 127

not WORLD_READABLE 148
open a connection 148
persisting data to 143
server 24

datagram 170
Daytime Client 362–365

single Activity 362
special permission 364
testing 364

Daytime Server 359
listens on TCP port 355, 363

daytime server 342

DBHelper
inner classes 144
outer class 145

DBOpenHelper 144, 148
DDMS 35, 39, 218, 374

option 214
Perspective 36, 38, 47, 56

DDMS tool
two contexts 268

Debian 9
Debug 54

Certificate 284
Perspective 55–56

debug.keystore 376
debugging 35, 55
DEFAULT_FOCUS 83
del.icio.us 187
device ID 200
dex files 13
dialer

populating 202
digital signature

required 376
dimensions

units of expression 90
directory

change 346
disassembling 343
distribution

cleaning up for 379
Document Type Definition. See

DTD
documentation.html 371
Drawable 227–228
drawable 304
drawBitmap 333
drawColor 333
DTD 312
duration 232

E

Eclipse 14, 33, 35, 138, 268
build SMSNotifyExample 212
DDMS view 345
default perspective 370
how Android components

fit 34
IDE 43
launch recording

application 264
workspace prompt 369

Eclipse IDE 368, 370
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX386
EDGE 51
Editor 308
EditText 29, 45, 62
EditView 310
electronic signature 297
ELF 352
emulator

advantages to using 50
switches 374
vs. simulator 52
why preferred 52

Emulator Control view 39
End User License Agreement.

See EULA
endElement 318–319
Enterprise Information

Systems 8
equator

base for latitude 269
EULA 379
EVDO 52
event handling 64, 83
Executable and Linkable For-

mat. See ELF
exit 351
externalize string 89

F

FAT 140, 142
Fedora (Red Hat) 9
Field Service Application 297

requirements 296–300
resource files 302
source files 302

FieldService Activity
goal 306

File 140
File Allocation Table 140
File Explorer view 39
file permissions

notations 131
file_get_contents 339
FileInputStream 136, 142,

316, 335
FileOutputStream 135, 142, 335
files

accessing 135
read and write 136

filesystem 126, 134
based on Linux 134

FILL_PARENT 82
findViewById 30, 47, 62, 89

method 29
finish 311, 322

focus 82
nextFocusDown 83
nextFocusLeft 83
nextFocusRight 83
nextFocusUp 83
override default behavior 83

format
simple value 90

formatNumber 204
frameAnimation 233
FrameLayout 81
fromBundle 314, 325

G

G1
supports MP4 and 3GP 256

Gallardo, David 36
gcc 342, 350
GDATA API

implementation of
AtomPub 189

not true REST 190
Gentoo 9
geo

fix 270
Geocoder 290

getFromLocation 290
getFromLocationName 290
map between point and

place 267
geocoding 289
GeoPoint 267, 281
getEmail 308
getExtras 76, 325
getHolder 241
getJob 325
getProvider 276
getSharedPreferences 127
getSystemService 173, 200, 276
getTelephonyOverview

reset screen details 201
getText 48
getView 79
Gibara, Tom 257
GL_DEPTH_TEST 245
GL_LEQUAL 245–246
GL_LESS 246
GL_PROJECTION 244
GL_TRANGLE_STRIP 244
GL_TRIANGLE_STRIP 244
GL_Triangle_Strip

takes three vertices 242
GL_VERTEX_ARRAY 244
glClear 244

glDepthFunc 245
glDrawArrays 244
glEnable 245
glEnableClientState 244
global

start directive 354
state 66

Global System for Mobile
Communication 197

gluLookAt 249
gluOrtho2D 244
gluPerspective 249

parameters 246
glVertexPointer 244
GNU General Public License. See

GPL
Google 4

Android Market 10
Base Atom API 73
Contacts 189
Data 187, 189
Maps 27, 283

GPL 10
GPRS 51
GPS 7, 34, 266, 334

Exchange Format 270
most common location

provider 266
GPX 270, 274

DDMS tool 272
routes 271
tracks 271
waypoints 271

GSM 51, 197
Android standard 197

gsm command 201

H

Handango 10
Handler 75, 87, 117, 306,

316, 321
messages reflecting

change 234
relationship diagram 180
send a Message 109
updating Adapter 77

HandlerThread 77
Hatcher, Erik 48
height

class 81
setting minimum 72

HSCSD 51
HSPDA 51
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 387
HTTP 168, 299, 363
authentication 184
defines internet rules 171
GET 183
GET method 177
headers 184
parameters 184
POST 177, 183, 334
request 177
response 177
working with 176–186

HttpClient 180
HttpEntity 180
HttpPost 185
HttpRequestHelper

177, 182, 189
HttpRequestInterceptor 184
HTTPS 187
HttpUrlConnection 177
Hypertext Transfer

Protocol 168

I

IBinder 116, 124
base of remoting

protocol 124
onBind 120
transact 124

ICCID
identifies SIM card 197

icon
stock Android 302

id attribute 45
IDL 117
ifconfig 175
ImageView 89, 304
IMEI

identifies device 197
IMSI

subscriber and network
identifier 197

independent software vendor.
See ISV

Indeterminate 321
InputStream 316
instructional video 301
Integrated Circuit Card ID 197
Intent 14, 66, 187, 203, 301

Action 99
actions 101
Category 99
Component 99
constants 101
Data 99

defined 15
defined and invoked 99
definitions express 99
explicit 17
Explicit Intent invocation 99
Extras 99
handlers 102
implicit 17
Implicit Intent invocation 99
object components 99
objects 97
receiving 20
resolution 17, 103
Type 99
working with 98–110
works with IntentFilter 109

IntentFilter 20, 97, 99
classes defined 104
defined 15
defines relationship 15
object 102
works with Intent 109

intent-filter 26, 102
intents

late binding 98
Interface Definition Language.

See IDL
International Mobile Equipment

Identity 197
International Mobile Subscriber

Identity 197
Internet Layer 170
Internet Protocol 168
Inter-Process Communication.

See IPC
IP 168

address 170
address from command

line 175
network data 168

IPC 98, 113, 117
ipconfig 175
iPhone 8

vs. Android 10
ISV 17
ItemizedOverlay 286

J

J2ME 8, 13
jarsigner 377
Java 4, 341

keytool 377
Java Developer Kit. See JDK
Java Developer Tools. See JDT

Java Micro Edition. See J2ME
Java Perspective 36, 56

Eclipse default 370
Java Runtime Environment. See

JRE
java.net 168, 177
java.text.NumberFormat 47
JavaDoc 33
JDK 48, 368
JDT 36, 49, 368
JobEntry 312
JobListHandler 316, 319
JPEG

captured signature 335
converting to 334

JRE 368

K

keyboard 50
Keyhole Markup Language 273
Ki

authenticates SIM card 197
KML 273

coordinates 273
DDMS tool 274
drawbacks 274
international standard 274
Placemark 273
Point 273

Knoppix 9
Kronos Group 238

L

LAI
region device is in 197

latency 51
latitude

how expressed 269
launch screen 302
layout 72

create a screen 63
two-step process 82

LayoutParams 80, 88
ld 349
LD_LIBRARY_PATH. 350
LED 215
libsqlite.so 359
lifecycle

callback methods control
state 68

entire lifecycle phase 69
foreground phase 69
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX388
lifecycle (continued)
high-level methods 69
methods 68
visible phase 69

LinearLayout 29, 81, 154
Link Layer 170
linker 348

arm-none-linux-gnueabi-
ld 349

Linux 4, 341, 370
alternative to Windows 9
building applications 341
Daytime Server 355
file permissions 131
finding IP address 175
kernel 11
market diluted 9
success as kernel 9

Linux kernal
why use 12

ListActivity 74
ListView 73–77, 324, 339
local queuing 330
localhost 42
Location 275, 280
location

awareness 266
specify coordinates 268
updates 279

Location Area Identity 197
location-based service. See GPS
LocationListener 274, 279

onProviderDisabled 281
onProviderEnabled 281
receive updates 267

LocationManager 108, 116, 274
Criteria 277
find available providers 267
getProvider 277
GPS_PROVIDER 277
NETWORK_PROVIDER 277

LocationProvider 266, 274, 277
COARSE 278
FINE 278
permissions 278

LogCat 55, 374
using a filter on 39

logging 38
longitude

how expressed 269
loopback 170

don’t connect to 175
Looper 77, 322
Loughran, Steve 48

M

Mac 8
finding IP address 175

Mac OS X 370
MAIN LAUNCHER

intent filter 107
main.xml 44
makeText 214
managedQuery method 154
Mandrake. See Mandriv
Mandriv 9
manifest 93

activity element 94
elements supported 94
file 106
intent-filter element 94
manifest element 94
namespace 94
package declaration 94
uses-permission 94

MapActivity 267, 276, 282, 284
MapController 276, 285
maps 281
Maps application 269, 301
MapView 267, 276, 282–284

animate 285
Google Maps API key 283
satellite mode 283
street-view mode 283
traffic mode 283
zoom 285

MapViewActivity 275
margins 80
McGovern, Robert 36
MD5 fingerprint 284
media

capturing 257–264
MediaController 255
MediaPlayer.create(). 253
MediaRecorder 262, 264
Menu 65

instead of on-screen
buttons 65

menu 65
item 102

MenuItem 65, 100
MEPIS 9
Message 77, 109, 117, 180, 186,

288, 364
class 321
handleMessage 78
instances 321
sendEmptyMessage 78

sendEmptyMessageAtTime
78

sendEmptyMessageDelayed
78

sendMessage 78
Message object

do not reuse 322
MessageQueue 77
metrics

location-related 266
Microsoft

platforms compelling 8
MIME type 104
MIME_TYPE 158, 262
minSdkVersion 379
mkdir 345
mksdcard 256

tool 140
mobile operators

response to Android 6
threatened by Google 7
view of cell phones 6

mobile phone
basic states 200

Mobile Safari 8
iPhone 8

Monkey exerciser 380
MotionEvent 333
MP3 file

play back 253
My Location 269
MyLocationOverlay 286
MySQL 299, 337

N

National Data Buoy Center. See
NDBC

navigation 297
NBDC 267

feeds 286
netstat 358
network protocols 169
NetworkInfo 173
networking

overview 169–172
NOAA 267
node 170
nop 353
North American Numbering

Plan 205
nostdlib 350
Notification 116, 211

fields 215
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 389
NotificationManager 211, 216
notifications

introducing 215–219

O

-o switch 344
objdump 343, 352
Observable pattern 83
Observer pattern 83
OGC 273
onActivityResult 308–309,

325, 329
onBind method 20
onCallStateChanged 201
onClick 48, 311
OnClickListener 48, 62, 64, 152
onClickListener 83
onCreate 62, 68, 75

method 20
onCreateOptionsMenu 64, 332
onDraw 80, 333
OnFocusChangeListener

83, 205
onLayout 80
onListItemClick 76
onLocationChanged 280
onMeasure 80
onMenuItemSelected

64, 76, 100
onOptionsItemSelected 332
onPause 68
onReceive 112, 206
onSaveInstanceState 70
onServiceConnected 122
onServiceDisconnected 122
onTouchEvent 333
onVisibilityChanged 80
Open Geospatial

Consortium 273
Open Handset Alliance 3–4, 50
OpenCORE 251–252
OpenCore 11
openFileInput 135
openFileOutput 134, 316
OpenGL 347

depth 245
perspective 246
primitives 242

OpenGL ES 11, 237
3D shapes 245
Context 242
drawing shapes 242
Kronos Group 238
using with Android 238

OpenGL for Embedded Systems.
See OpenGL ES

OpenGLContext 238
openInputStream method 23
openRawResource 137
openSUSE 9
org.apache.httpclient 168
OutputStream 334
OvalShape 227
Overlay 267, 285

drawing 288
event handling 288
focus 288
onTap 288

OverlayItem 286

P

Package Explorer 36
packet 170
Packet Video

Open Core 11
padding 72, 230
Palm 8, 10

market challenge same as
Android 8

Parcelable 124
parse Uri 101
path 104
PathShape 227
patterns

Builder 67
Observable 83

PCLinuxOS 9
PDU

SMS data packet 210
PendingIntent 208, 277
permissions 94

access 130
perspective

clipping planes 246
phone number 200
PhoneNumberUtils 208

formatNumber helper
method 204

parse and validate 204
PhoneStateListener

196, 198, 201
PHP 299, 337
php://input 339
PictureCallback 259
PID 39, 67
placement 80
Plain Old XML over HTTP 168
PNG 234

Point 236
port 355

three ranges 172
Ports

Dynamic and/or Private 172
Registered 172
Well Known 172

POST data 335
postDelayed 306
POX 168

exposes chunks of XML 187
preferences 127
preinit_array 354
prime meridian

base for longitude 269
printf 344
process

isolated 98
kill 41
placed on a stack 67
pruning 67

process id. See PID
ProgressDialog 76, 301, 316,

321, 329, 332, 339
projection 154
protocol

layers 170
Protocol Data Unit 210
Proxy 119
ps -a 27
putExtras 76

Q

Qualcomm 8
queryString 108
queuing

local 330

R

R class 30
R.java 30, 60, 84

file 45, 302
raw resources 92
receiver 107

tag 26
RecordHit

inserts record into SQLite
DB 358

RectShape 227
RefreshJobs 319
relational database

built-in 143
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX390
RelativeLayout 81, 89
remoting 124
removeProximityAlert 277
Representational State Transfer.

See REST
requestLocationUpdates 281

use time parameter
carefully 281

resource types 85
Resources 137

raw resources 136
XML resources 137

ResponseHandler 180, 183
REST 168, 189–193

method 190
resource 189
REST-style API 190
uses URL-style approach 187

return 351
RISC 342
RoundRectShape 227
router 171
rpath 350
Run 54
Runnable 77, 235, 322

S

Safari 8
save 308
SAX 73, 139

XML parser 316
scheme 104
SD card 139, 256

support 127
sdcard path 140
Secure Digital. See SD
secure shell 346
Secure Sockets Layer. See SSL
select 360
Selman, Daniel 238
sendBroadcast 110
sendDataMessage 207
sendMultipartTextMessage 207
sendTextMessage 207
ServerSocket 174
Service 19, 25–26, 113, 120

background task 114
building 113–117
cleaning up after stopped 124
lifecycle 116, 123
objects 97
onBind 116
onCreate 116
onDestroy 116

Starting vs. binding 122
two purposes 113

service
long-running 117
tag 26

Service-bound lifecycle 124
ServiceConnection 114, 121
Service-Oriented Architecture.

See SOA
Services

two purposes in Android 122
Service-started lifecycle 123
setAudioEncoder 262
setAudioSource 262
setBounds 228
setContentView 62, 87
setContentView method 28
setEmail 308
setIcon 65
setMediaController 256
setNotificationUri 164
setOutputFormat 262
setResult 336
setText 48
Settings 301
setVideoPath 256
SGL 11
shape

drawing a rectangle 227
ShapeDrawable 227
SharedPreferences

126, 306, 308
access mode 129
Context 127
Editor 129
MODE_PRIVATE 131
MODE_WORLD_READABLE

 131
MODE_WORLD_WRITABLE

 131
objects 131
storing with different

modes 127
XML files permissions 131

sharedUserId 131, 136
Short Message Service. See SMS
ShutterCallback 259
signature

electronic 297
JPEG image 301

SIM 196
SIM card

store user contacts 198
stored identifiers 197

Simple API for XML. See SAX
Simple Object Access Protocol.

See SOAP
simulator

vs. emulator 52
simulator code

with Windows DLLs 52
Slackware 9
smartphones 6

market leaders 8
SMS 16, 206, 212

pdus 210
permissions 209
receiving messages 209
send message to emulator 23
sending message to Android

Emulator 39
sending messages 208

SmsManager 207
SmsMessage 207, 210
SOA 98
SOAP 168, 193, 299

imposes strict rules 187
kSOAP 193
proxy 193

Socket 175, 364
socket

server 173
software version 200
Spinner 62–63
Splash Activity 302
splash screen 301, 304
splashhandler 306
SQL 24

statements 155
SQLite 11, 66, 108, 126,

299, 347
built-in database system 143
data types 145
insert, update, and delete

data 148
insertion of data 355
query 148
supports

WeatherReporter 127
sqlite3 143, 358

tool 148–149
SQLiteDatabase 147, 161
SQLiteOpenHelper 144
SQLQueryBuilder 164
SSL 298
start routine 352
startActivity 66, 101, 339

method 19
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 391
startActivityForResult
66, 308–309, 325

method 19
startDocument 318
startElement 318
starting path 132
startRecording 264
startService 112
startService method 19
state

instance 70
pass between activities 66
persistent 70

–static command-line switch 344
–static flag

applications self-
contained 347

stride 244
String 319
StringBuilder 318
strings.xml 44
stroke 230
Structured Query Language. See

SQL
Stub 117
styles 90

helpfulness 91
vs. themes 91

stylus 301, 329
Subscriber Identity Module 196
Sun Microsystems

licensing 13
surfaceChanged 241
surfaceCreated 241
surfaceDestroyed 241
SurfaceHolder 241–242
SurfaceView 241
Symbian 8

T

takePicture 257
TCP 355

reliable 171
sockets 357

TCP port
Daytime Server listens 363

TCP/IP 38, 170
telephony 195, 197

alert based on caller 205
alphabetic keypad 205
application manifest 203
format number 204
intercept call 205
making calls 203

outgoing call 205
permission 200
permissions 203

TelephonyManager 196, 198
telnet 42
testing

acceptance-style 380
.text 352
TextView 45, 89, 326, 362
themes

vs. styles 91
Thread 75, 234
TimerTask 116, 233
timestamp

appending 142
Toast

alerts user 212
introducing 212–215

toBundle 326
tool

aidl 117
command-line 40
jarsigner 377

tool chain
cross compiling 342
Sourcery G++ Lite Edition for

ARM 342
toString 314
toXMLString 314, 316
Transport Layer 170
Try/Catch 48

U

U.S. National Oceanic and
Atmospheric Administra-
tion. See NOAA

Ubuntu 9
UDP

fire and forget 171
UI 60
UMTS 51
unbindService 122
Uniform Resource Identifier. See

URI
Uniform Resource Locator. See

URL
Unix

Daytime Server 355
URI 14

Content 23
examples 15
syntax 151

Uri 99, 104, 202
object 101

UriBuilder 157
UriMatcher 161
URIs

using those built in 110
URL 14
Usage Stats 374
user

ID 136
input 73

UsernamePasswordCredentials
184

uses-library 282
uses-permission 26, 364

tag 26

V

Vector 316
Verizon

Get It Now 8
versionCode 379
versionName 379
video

playback choppy 255
playing 254–257

video recording
specific to phone vendor 252

VideoView 254
View 44, 59, 333

classes 71
lifecycle methods 80
manipulating element 72
objects 97
single-threaded interface 84

view
XML defined 87

ViewGroup 72, 80, 285
vnd.android.cursor.dir 159
vnd.android.cursor.item 159

W

WEAK_FOCUS 83
web services 168, 186–194
Web Tools Platform 368
WebKit 7, 11
what 322
width

class 81
setting minimum 72

Wi-Fi 168
no emulation layer 168

Window 238
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX392
Windows
finding IP Address 175

Windows Mobile 10
Windows Mobile/SmartPhone 8
WinRAR 49
WinZip 49
Workbench 369
WRAP_CONTENT 82
WS-* 193

X

XML 299, 311
drawable shapes 228
drawing with 228
parsing 189
Schema 193
stream 338

XmlPullParser 139

Y

Yahoo! Weather API
98, 105, 116
Licensed to Deborah Christiansen <pedbro@gmail.com>

9 7 8 1 9 3 3 9 8 8 6 7 2

99935

9 7 8 1 9 3 3 9 8 8 6 7 2

99935

ISBN 13: 978-1-933988-67-2
ISBN 10: 1-933988-67-3

M
obile app developers don’t have to accept vendor lock-in any
more. Android is an open (and free) Java-based platform that
provides the device OS, SDK, server components, and numerous

helper applications you need to build effi cient—and extremely cool—
mobile apps.

Unlocking Android is a concise, hands-on developer’s guide for the An-
droid operating system and development tools. It starts by introducing
Android basics as well as the architectural concepts you need. It then
presents practical examples showing you how to build apps that use, ex-
tend, or replace Android’s features, large and small. It’s ideal for corpo-
rate developers and hobbyists alike who have an interest, or a mandate,
to deliver high quality and cost-eff ective mobile phone soft ware. Th is
book requires previous experience with Java but no prior knowledge of
Android.

What’s Inside

Th orough coverage of Android 1.x
Uses Eclipse for Android development
UI design, networking, notifi cation, and more
Many code examples
Bonus chapter on hacking Android

About the Authors

Frank Ableson is an entrepreneur who helps leading mobile soft ware
companies bring their products to market. Charlie Collins is a Java de-
veloper with experience in mobile, embedded, and alternative lan-
guages on the JVM. Robi Sen focuses on developing novel wireless
solutions.

For online access to the authors, code samples, and a free ebook for
owners of this book, go to www.manning.com/UnlockingAndroid

$39.99 / Can $49.99 [INCLUDING eBOOK]

Unlocking Android A Developer’s Guide

MOBILE/WIRELESS

Frank Ableson Charlie Collins Robi Sen Foreword by Dick Wall

“Valuable, useful”
 —From the Foreword by Dick Wall
 Senior Engineer, Former Android
 Advocate for Google, and
 Java Posse Co-host

“For newbies and experts alike,
 this book is like a lighthouse.”
 —Kevin Galligan
 CTO, Medical Research Forum

“Chock-full of valuable code
 and tips.”
 —Scott Webster
 AndroidGuys Editor

“Take your app from zero
 to running in no time fl at.”
 —Charles Hudson
 President and Founder, Aduci

“Highly recommended!”
 —Horaci Macias
 Soft ware Architect, Avaya

M A N N I N G

SEE INSERT

	Front Cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	Frank Ableson
	Charlie Collins
	Robi Sen

	about this book
	The Audience
	Roadmap
	Code Conventions
	Software Requirements
	Author Online

	about the cover illustration
	What is Android? —The Big Picture
	Targeting Android
	1.1 Introducing Android
	1.1.1 The Android platform
	1.1.2 In the market for an Android?
	1.1.3 Licensing Android

	1.2 Stacking up Android
	1.2.1 Probing Android’s foundation

	1.3 Booting Android development
	1.3.1 Android’s good Intent-ions
	1.3.2 Activating Android
	1.3.3 AndroidManifest.xml
	1.3.4 Mapping applications to processes

	1.4 An Android application
	1.5 Summary

	Development environment
	2.1 The Android SDK
	2.1.1 The application programming interface
	2.1.2 Core Android packages
	2.1.3 Optional packages

	2.2 Fitting the pieces together
	2.2.1 Java Perspective
	2.2.2 DDMS Perspective
	2.2.3 Command-Line tools

	2.3 Building an Android application in Eclipse
	2.3.1 Android Project Wizard
	2.3.2 Android sample application code
	2.3.3 Building the application

	2.4 The Android Emulator
	2.4.1 Skins
	2.4.2 Network speed
	2.4.3 Emulator profiles

	2.5 Debugging
	2.6 Summary

	Exercising the Android SDK
	User interfaces
	3.1 Creating the Activity
	3.1.1 Creating an Activity class
	3.1.2 Exploring Activity lifecycle

	3.2 Working with views
	3.2.1 Exploring common views
	3.2.2 Using a ListView
	3.2.3 Multitasking with Handler and Message
	3.2.4 Creating custom views
	3.2.5 Understanding layout
	3.2.6 Handling focus
	3.2.7 Grasping events

	3.3 Using resources
	3.3.1 Supported resource types
	3.3.2 Referencing resources in Java
	3.3.3 Defining views and layouts through XML resources
	3.3.4 Externalizing values
	3.3.5 Providing animations

	3.4 Understanding the AndroidManifest file
	3.5 Summary

	Intents and services
	4.1 Working with Intent classes
	4.1.1 Defining intents
	4.1.2 Intent resolution
	4.1.3 Matching a custom URI
	4.1.4 Using Android-provided activities

	4.2 Listening in with broadcast receivers
	4.2.1 Overloading the Intent concept
	4.2.2 Creating a receiver

	4.3 Building a Service
	4.3.1 Dual-purpose nature of a Service
	4.3.2 Creating a background task Service

	4.4 Performing Inter-Process Communication
	4.4.1 Android Interface Definition Language
	4.4.2 Exposing a remote interface
	4.4.3 Binding to a Service
	4.4.4 Starting versus binding
	4.4.5 Service lifecycle
	4.4.6 Binder and Parcelable

	4.5 Summary

	Storing and retrieving data
	5.1 Using preferences
	5.1.1 Working with SharedPreferences
	5.1.2 Preference access permissions

	5.2 Using the filesystem
	5.2.1 Creating files
	5.2.2 Accessing files
	5.2.3 Files as raw resources
	5.2.4 XML file resources
	5.2.5 External storage via an SD card

	5.3 Persisting data to a database
	5.3.1 Building and accessing a database
	5.3.2 Using the sqlite3 tool

	5.4 Working with ContentProvider classes
	5.4.1 Understanding URI representations and manipulating records
	5.4.2 Creating a ContentProvider

	5.5 Summary

	Networking and web services
	6.1 An overview of networking
	6.1.1 Networking basics
	6.1.2 Clients and servers

	6.2 Checking the network status
	6.3 Communicating with a server socket
	6.4 Working with HTTP
	6.4.1 Simple HTTP and java.net
	6.4.2 Robust HTTP with HttpClient
	6.4.3 Creating an HTTP and HTTPS helper

	6.5 Web services
	6.5.1 POX—Putting it together with HTTP and XML
	6.5.2 REST
	6.5.3 To SOAP or not to SOAP, that is the question

	6.6 Summary

	Telephony
	7.1 Telephony background and terms
	7.2 Accessing telephony information
	7.2.1 Retrieving telephony properties
	7.2.2 Obtaining phone state information

	7.3 Interacting with the phone
	7.3.1 Using intents to make calls
	7.3.2 Helpful phone number–related utilities
	7.3.3 Intercepting calls

	7.4 Working with messaging: SMS
	7.4.1 Sending SMS messages
	7.4.2 Receiving SMS messages

	7.5 Summary

	Notifications and alarms
	8.1 Introducing Toast
	8.2 Introducing notifications
	8.3 Alarms
	8.3.1 Alarm example

	8.4 Summary

	Graphics and animation
	9.1 Drawing graphics in Android
	9.1.1 Drawing with XML

	9.2 Animations
	9.2.1 Programmatically creating an animation
	9.2.2 Introducing OpenGL for embedded systems

	9.3 Summary

	Multimedia
	10.1 Introduction to multimedia and OpenCORE
	10.2 Playing audio
	10.3 Playing video
	10.4 Capturing media
	10.4.1 Understanding the camera
	10.4.2 Capturing audio

	10.5 Summary

	Location, location, location
	11.1 Simulating your location within the emulator
	11.1.1 Sending in your coordinates with the DDMS tool
	11.1.2 The GPS Exchange Format
	11.1.3 The Google Earth Keyhole Markup Language

	11.2 Using LocationManager and LocationProvider
	11.2.1 Accessing location data with LocationManager
	11.2.2 Using a LocationProvider
	11.2.3 Receiving location updates with LocationListener

	11.3 Working with maps
	11.3.1 Extending MapActivity
	11.3.2 Using a MapView
	11.3.3 Placing data on a map with an Overlay

	11.4 Converting places and addresses with Geocoder
	11.5 Summary

	Android applications
	Putting it all together–the Field Service Application
	12.1 Field Service Application requirements
	12.1.1 Basic requirements
	12.1.2 Data model
	12.1.3 Application architecture and integration

	12.2 Android application tour
	12.2.1 Application flow
	12.2.2 Code road map
	12.2.3 AndroidManifest.xml

	12.3 Android code
	12.3.1 Splash Activity
	12.3.2 FieldService Activity, part 1
	12.3.3 FieldService Activity, part 2
	12.3.4 Settings
	12.3.5 Data structures

	12.4 Digging deeper into the code
	12.4.1 RefreshJobs
	12.4.2 ManageJobs
	12.4.3 ShowJob
	12.4.4 CloseJob

	12.5 Server code
	12.5.1 Dispatcher user interface
	12.5.2 Database
	12.5.3 PHP dispatcher code
	12.5.4 PHP mobile integration code

	12.6 Summary

	Hacking Android
	13.1 The Android/Linux:junction
	13.1.1 Tool chain
	13.1.2 Building an application
	13.1.3 Installing and running the application
	13.1.4 Build script

	13.2 A better way
	13.2.1 The static flag, revisited
	13.2.2 Linking
	13.2.3 Exit, not return
	13.2.4 Startup code

	13.3 What time is it?
	13.3.1 Daytime Server application
	13.3.2 daytime.c
	13.3.3 The SQLite database
	13.3.4 Building and running Daytime Server

	13.4 Daytime Client
	13.4.1 Activity
	13.4.2 Socket client
	13.4.3 Testing Daytime Client

	13.5 Summary

	appendix A: Installing the Android SDK
	A.1 Development environment requirements
	A.2 Obtaining and installing Eclipse
	A.3 Obtaining and installing the Android SDK
	A.4 Obtaining and installing the Eclipse plug-in
	A.5 Configuring the Eclipse plug-in

	appendix B: Signing and installing applications on an Android device
	B.1 Recapping the Android Debug Bridge
	B.2 Digital signatures
	B.2.1 Keytool
	B.2.2 Jarsigner

	B.3 Cleaning up for distribution
	B.3.1 Important manifest elements: label, logo, version, SDK level
	B.3.2 Test, test, then test again
	B.3.3 An End User License Agreement
	B.3.4 Nice extra: data import and export

	B.4 Publishing to the Market
	B.4.1 The Market rules
	B.4.2 Getting your application in the Market
	B.4.3 Automatic Market updates
	B.4.4 Why the Market matters

	B.5 Other distribution means

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back Cover

