
Jordan
Greyling

Practical Android Projects

Companion
eBook
Available

Practical
Android Projects

Trim: 7.5 x 9.25 spine = 0.8125" 424 page count 534ppi

Building cool scripts, apps, and games
for Android Smartphones

Lucas Jordan | Pieter GreylingCOMPANION eBOOK SEE LAST PAGE FOR DETAILS ON $10 eBOOK VERSION

US $39.99

Shelve in
Mobile Computing

User level:
Intermediate-Advancedwww.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

ISBN 978-1-4302-2629-1

9 781430 226291

54499

this print for content only—size & color not accurate

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 C

SPOT MATTE

Take a practical approach to becoming a leading-edge Android developer,
learning by example while combining the many technologies needed to cre-

ate a successful, up-to-date web app.

Practical Android Projects introduces the Android SDK and development tools of
the trade, and then dives into building cool-looking and fun apps that put An-
droid’s amazing capabilities to work. Android is the powerful, full-featured, open
source mobile platform that powers phones like Google Nexus, Motorola Droid,
Samsung Galaxy S, and a variety of HTC phones and tablet computers.

This book helps you quickly get Android projects up and running with the free
and open source Eclipse, NetBeans, and IntelliJ IDEA IDEs. Then you build and ex-
tend mobile applications using the Android SDK, Java, Scripting Layer for Android,
and languages such as Python, Ruby, Javascript/HTML, Flex/AIR, and Lua.

In Practical Android Projects you’ll work on real-world projects such as:

• Hosting an Android BASIC interpreter

• Extending your Java-based Android applications with embedded LUA

• Scripting your Android device with SL4A

• Adding Twitter and Facebook to your applications

• Using 2D graphics and animations for casual games

• Creating cross-platform apps with JavaScript/HTML and Flex with AIR

Practical Android Projects is for any developer new to the Android platform who
wants to learn to build mobile applications. Knowledge of the fundamentals of
Java programming is assumed.

ISBN 978-1-4302-3243-8

9 781430 232438

53999

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iv

Contents at a Glance

■Contents .. v

■About the Authors ... x

■About the Technical Reviewer .. xi

■Acknowledgments ... xii

■Preface ... xiii

■Chapter 1: Android Fundamentals ... 1

■Chapter 2: Development Tools in Practice .. 49

■Chapter 3: Roll Your Own Android Scripting Environment 105

■Chapter 4: Embedding Lua in Android Applications 155

■Chapter 5: Introducing SL4A: The Scripting Layer for Android 193

■Chapter 6: Creating a GUI with HTML/JavaScript and AIR 221

■Chapter 7: Using REST with Facebook and Twitter 251

■Chapter 8: Using the Google App Engine with Android 275

■Chapter 9: Game Development: Graphics .. 311

■Chapter 10: Game Development: Animation .. 341

■Chapter 11: App Inventor .. 361

■Index .. 387

1

1

 Chapter

Android Fundamentals
The Android platform is a very exciting yet relatively new player in today’s mobile device

market. Beyond rating very highly in the number of cool features per device, Android-

enabled smartphones are currently enjoying the highest percentage sales growth rate in

the mobile industry.

According to Gartner Research,1 worldwide sales of Android-based smartphones to end

users have jumped from the number 6 spot in 2009 to number 4 by the end of the first

quarter of 2010. This level of growth is expected to continue. In fact, Gartner has

predicted that Android will become the number 2 worldwide mobile operating system in

2010 and will challenge Symbian for the number 1 position by 2014.2

We want to share with you some of the enthusiasm we have for this truly remarkable

development platform. Throughout the course of this book, we will attempt to do this by

showing the wide range of opportunities available at your fingertips when you choose to

develop Android applications.

Perhaps you are reading this book in order to gain more background understanding of

the Android platform. Perhaps you plan to roll up your sleeves and join us in running and

playing with the projects in the emulator or your own device. We want to get you up and

running quickly and provide you with sufficient understanding of the Android platform

and Android Development Kit (ADK) development environment to have success with

your goals.

With those goals in mind, this chapter aims to be as practical an introduction to Android

development as possible. It also strives to cover a broad spectrum of required

conceptual and theoretical background material in a concise and to-the-point manner.

We will start with a short description of the Android platform and then jump straight into

coverage of the installation of the Android SDK and supporting development tools. To

fully round out our SDK setup study, we embark on a step-by-step test drive that

1 From Gartner press release: http://www.gartner.com/it/page.jsp?id=1372013

2
 From the Gartner press release: http://www.gartner.com/it/page.jsp?id=1434613

1

http://www.gartner.com/it/page.jsp?id=1372013
http://www.gartner.com/it/page.jsp?id=1434613

CHAPTER 1: Android Fundamentals 2

involves generating a bare-bones Android project and getting the resulting skeleton

Android application up and running in the Android emulator.

The next order of business will be a tour of the Android platform architecture. Here we

will describe the Android platform stack; Android component architecture; and Dalvik,

the Android runtime. With this knowledge in hand, we then cover working with the Java

IDEs Eclipse, NetBeans, and IntelliJ IDEA Community Edition; plus spend some time

learning how to equip them with Android programming capabilities via plugins.

This means we have a lot of ground to cover, so let's get started.

What Is Android?
In a nutshell, Android is an operating system targeted at mobile hardware such as

phones and other constrained computing devices such as netbooks and tablet

computers.

The concept and platform was the brainchild of Android Inc., a small startup company

from Palo Alto, California, that was acquired by Google in 2005. Its stated goal was to

create a small, stable, flexible, and easily upgraded operating system for handsets that

would be highly attractive for device manufacturers and telephony carriers.

Android platform releases 1.x through 2.x are aimed primarily at smartphone devices,

whereas it is reported that Android release 3.x will be the first operating platform

specifically designed with high-end support for tablet computers.

The Android platform was originally unveiled in November 2007. The unveiling coincided

with the announcement of the formation of the Open Handset Alliance, a group of

companies that share the goal of promoting open standards for mobile device platforms

such as Android.

In October 2008, Android was released under the Apache 2.0 open-source license.3 This

and the flexible component-based design of the platform present innovative and cost-

effective opportunities for manufacturers and software developers alike. We aim to

showcase some of these distinguishing platform capabilities during the course of this

book.

Installing the Android SDK
We will start by installing the core Android SDK and tools. Our aim is to get the Android

emulator with our own simple application up and running on an Android Virtual Device

(AVD) as soon as possible. The experience gained will then serve as a basis for further

discussion.

3 http://source.android.com/source/licenses.html

http://source.android.com/source/licenses.html

CHAPTER 1: Android Fundamentals 3

The examples and commands you will be shown were run on a mixture of Ubuntu

GNU/Linux, Microsoft Windows, and Apple Mac OS X systems. All the tools, including

the JDK and the Android SDK toolset, behave in a similar, if not identical, manner across

the major supported computing platforms.

Java Development Kit (JDK)
To begin with, you should have a recent version of the Java SDK (JDK) installed on your

particular system. It can be obtained either from your operating system distribution

package install manager application or directly downloaded from the Internet.4 We

assume that we do not need to go into the details for doing this. Suffice it to say that

JDK5 or upward should be fine. This writing is based on JDK6.

CHECKING THE JDK VERSION: To confirm that a compatible version of the JDK is installed and
available to the environment, we usually do a quick check on the command line or console
terminal, as follows:

$ java –version

java version "1.6.0_18"

OpenJDK Runtime Environment (IcedTea6 1.8.1) (6b18-1.8.1-0ubuntu1)

OpenJDK Server VM (build 16.0-b13, mixed mode)

$ javac –version

javac 1.6.0_18

If something goes wrong, you should consult the JDK configuration documentation for your

particular platform. We will not cover debugging Java installations here.

Android SDK and Target Platforms
Assuming that our Java platform is ready, we now need to download the Android SDK

starter package and use it to install our target Android platforms.

The Android SDK starter package can be downloaded from the official Google Android

SDK download site.5 Select the download appropriate for your development platform.

The supported platforms currently include Windows, Mac OS X (Intel), and Linux (i386).

 In the case of having downloaded an SDK starter package archive for Linux or Mac OS

X, unpack the downloaded archive into a directory of your choice.

4 https://jdk6.dev.java.net/

5 http://developer.android.com/sdk/

https://jdk6.dev.java.net/
http://developer.android.com/sdk/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

CHAPTER 1: Android Fundamentals 5

SETTING THE PATH ON WINDOWS: From the desktop, right-click My Computer and click
Properties. Alternatively, from Control Panel, double-click System. Both options open the
System Properties dialog box. Now click the Advanced tab. In the Advanced section, click

the Environment Variables button. In the Environment Variables window, select the PATH
variable in the User- or System Variable section, depending on whether you want the setting
applied for all users or just yourself. Click the Edit button. Add or modify the path. Directories

are separated by a semicolon. Click OK when done.

For confirmation, issuing the following command on your development system will print

the current value of the system PATH variable to the terminal console window.

Linux and Mac OS X:

echo $PATH

Windows:

echo %PATH%

Android Platform API Levels
The API level targeted by your application is very important for reasons of device

compatibility and the software development- and maintenance lifetime of your

codebase. If it is not managed properly, the maintenance of your application could

potentially become a nightmare, especially if it is deployed to multiple Android devices

and operating platforms.

It is also a good idea to become familiar with the folder structures of the Android SDK

once it is installed. Again, this is especially valid if your applications will be built for

multiple Android hardware targets.

For a better understanding of the subject of API levels, it is well worth the effort of

reviewing the documentation found on the official developer’s web site for Android API

levels.7 The tie-in between API level numbers and their corresponding platforms are

clarified in Table 1–1, which was current at the time of writing.

7 http://developer.android.com/guide/appendix/api-levels.html

http://developer.android.com/guide/appendix/api-levels.html

CHAPTER 1: Android Fundamentals 6

Table 1–1. Android Platform Versions and API Levels

Platform Version API Level

Android 2.3 9

Android 2.2 8

Android 2.1 7

Android 2.0.1 6

Android 2.0 5

Android 1.6 4

Android 1.5 3

Android 1.1 2

Android 1.0 1

Android Platform Setup
Here is a short list of dependencies for proceeding with the setup of SDK platforms:

 Android SDK starter package downloaded and unpacked.

 The JDK, ADK, and Ant tools are accessible on the environment path.

 We have a basic understanding of Android platform versions and API

levels.

 Last but not least, we should be connected to the Internet.

We can now install the SDK platform components using the Android SDK and AVD

Manager programs.

To start the SDK Manager on Linux or Mac OS X, execute the following command:

$ android

To start the SDK Manager on Windows, run the following program:

SDK Manager.exe

The main user interface of the Android SDK Manager on Linux should appear as in

Figure 1–1.

CHAPTER 1: Android Fundamentals 7

Figure 1–1. The Android SDK and AVD Manager during initial SDK setup on Linux

WINDOWS USB DRIVER FOR ANDROID DEVICES: It is worth showing the equivalent Android
SDK and AVD Manager for the Windows platform (see Figure 1–2). It contains an important
addition, the Windows USB Driver package for Android devices. This will become necessary

when you develop, debug, and deploy directly in conjunction with a physical Android phone or

other Android hardware device attached via USB cable to a Windows computer.

CHAPTER 1: Android Fundamentals 8

Figure 1–2. The Android SDK and AVD Manager during initial SDK setup on Windows

Note that in both cases we have selected the Android 2.3 platform, API level 9, plus the

relevant additions such as documentation and SDK samples. Now click Install
Selected. The appropriate SDK resource bundles will now be downloaded and installed

into the SDK directory structure where we unpacked the SDK starter archive.

In order to maintain and update your SDK over time, an update session can be directly

initiated from the command line by executing the following commands:

 In a terminal session on Linux/Mac OS X:

$ android update sdk

 Besides the option of simply running SDK Manager.exe again, the same

can be achieved from the Windows command prompt with the

following:

C:\> android.bat update sdk

CHAPTER 1: Android Fundamentals 9

Again, we assume that the Android tools can be found on the system path. Further

information about managing your Android SDK installation can be found on the Android

Developers “Adding SDK Components” page.8

Extra Tools: Apache Ant
There are some development tools that no Java developer should do without. One such

an indispensable utility is Apache Ant, which is a build tool that is Java's rough

equivalent to make. make is traditionally used in C/C++ development environments. Ant

also differs from make in that it uses XML to specify build steps and actions.

The Android SDK extensively uses Ant for its compilation, build, and deployment

infrastructure. We will use it to test drive our core tools in the next section. So if it is not

already installed on your system, we recommend you grab a copy and install it. If

necessary, you can find installation instructions and more information about Ant on the

official Ant web site.9

SOME IDES ALREADY CONTAIN ANT: If you will be using an IDE exclusively, installing a stand-
alone instance of Apache Ant might not be necessary. IDEs such as Eclipse and NetBeans come

packaged with an Ant distribution that they invoke behind the scenes during the build process.

If you are planning to work through the examples that follow, ensure that Ant is on the

system environment path once it is installed.

Android SDK Test Drive
We will now take our SDK and platform installation for a comprehensive test drive to

complete the installation of runtime components and to confirm that everything was set

up correctly. We will also get to know the environment better. This is a central part of

this chapter and will form the basis of further subjects covered.

Initially, we will do the work from the terminal console, command line, or command

prompt, whichever terminology is appropriate for your system or personal preference.

1. Create an application project directory to work in and call it HelloAndroidSdk.

From within a parent- or home directory of your choice somewhere on your

system, issue the following commands:

On Linux or Mac OS X:

$ mkdir HelloAndroidSdk
$ cd HelloAndroidSdk

8 http://developer.android.com/sdk/adding-components.html

9 http://ant.apache.org/

http://developer.android.com/sdk/adding-components.html
http://ant.apache.org/

CHAPTER 1: Android Fundamentals 10

On Windows:

C:\> md HelloAndroidSdk
C:\> cd HelloAndroidSdk

2. Next we will create a bare-bones Android application using the SDK tools, but

before we do that, let’s check the available platform targets. From now on, we will

only show the GNU/Linux bash shell version of the command because the

equivalents for the other platforms are identical in syntax. Issue the following

command:

$ android list targets

Based on the SDK selections installed earlier, the output should be similar to this

listing:

 Available Android targets:
id: 1 or "android-9"
 Name: Android 2.3
 Type: Platform
 API level: 9
 Revision: 2
 Skins: HVGA (default), QVGA, WQVGA400, WQVGA432, WVGA800, WVGA854

3. Now we will use the SDK tools to create a skeleton Android application targeting

the previous platform within this folder. Enter the following command code as a

single command line on the console:

$ android create project --target "android-9" --name MyAndroidSdkApp
--path ./MyAndroidSdkAppProject --activity MyAndroidSdkAppActivity
--package com.example.myandroid

NOTE: The --target "android-9" argument could also have read as follows: --target 1.

The successful completion of the command should result in output similar to this:

Created project directory: ./MyAndroidSdkAppProject
Created directory ./MyAndroidSdkAppProject/src/com/example/myandroid
Added file ./MyAndroidSdkAppProject/src/com/example/myandroid/

MyAndroidSdkAppActivity.java
Created directory ./MyAndroidSdkAppProject/res
Created directory ./MyAndroidSdkAppProject/bin
Created directory ./MyAndroidSdkAppProject/libs
Created directory ./MyAndroidSdkAppProject/res/values
Added file ./MyAndroidSdkAppProject/res/values/strings.xml
Created directory ./MyAndroidSdkAppProject/res/layout
Added file ./MyAndroidSdkAppProject/res/layout/main.xml
Added file ./MyAndroidSdkAppProject/AndroidManifest.xml
Added file ./MyAndroidSdkAppProject/build.xml

The Android SDK has now generated the full source code and resource files to

build a complete and functional Android application.

CHAPTER 1: Android Fundamentals 11

A listing is shown in Figure 1–3 of the Java source code of one of the files,

MyAndroidSdkAppActivity.java, that was generated. This is the application’s main

entry point, a class that extends the Activity class.

ABOUT THE CODE: We will not go into the detailed coding aspects of Android programming in
this chapter. This chapter serves as the diving board used by the rest of the book to dive into the

details of coding Android applications.

4. Next, we want to build the generated source code into an executable application.

To do this, first enter the following into the new application directory:

$ cd MyAndroidSdkAppProject

Now issue the following command to instruct ant to build a debugging release of

the application project:

$ ant debug

This should result in ample output similar to the following:

Buildfile: /HelloAndroidSdk/MyAndroidSdkAppProject/build.xml
 [setup] Android SDK Tools Revision 8
 [setup] Project Target: Android 2.3
 [setup] API level: 9 [setup] ...
BUILD SUCCESSFUL
Total time: 5 seconds

Assuming a successful build (as indicated by the message at the end of the

listing) the /MyAndroidSdkAppProject/bin directory should now be populated with

executable binaries. It should also contain debug versions of the application in the

form of Dalvik Virtual Machine (DVM)–compatible classes (classes.dex) and

Android application packages (MyAndroidSdkApp-debug.apk). We will cover them in

more detail later on in the chapter.

The project directory should look similar to Figure 1–3. Feel free to investigate the

project folder structures and the files that were created.

CHAPTER 1: Android Fundamentals 12

THE MANIFEST FILE: ANDROIDMANIFEST.XML: Another of the files that were generated in
the root of the project is called the AndroidManifest.xml file. This is a very special file in that
it defines and binds the application together. It is used by the Android SDK to declare essential

information about the application for the benefit of the Android runtime system. Among other
items, it identifies the application’s Java package that serves as its unique name to the system,
required permissions, components consumed and implemented, libraries to link against, and so

on. Also see the Android Developers site for the Manifest File.10

Figure 1–3. Generated application directory and files

5. Of course, we are eager to launch our new application, but first we need a device

for it to run on. Because we will generally not use a physical device for ongoing

development, we require a virtual machine on which to run an emulation of the

Android runtime platform. The Android SDK takes care of both requirements.

10 http://developer.android.com/guide/topics/manifest/manifest-intro.html

http://developer.android.com/guide/topics/manifest/manifest-intro.html

CHAPTER 1: Android Fundamentals 13

 An Android virtual machine is called an Android Virtual Device
(AVD), and multiple AVDs can be configured using the AVD

Manager to model your test- and production target device

configurations. Reference material can be found on the Android

Virtual Devices web site.11

 The Android runtime platform emulation is provided in the

Android SDK and is simply called the Android emulator. The

emulator is the platform that will run our application. Complete

information is available Android emulator web site.12

6. To create an AVD, we will start the AVD Manager on the terminal command line

by issuing the following command:

$ android

This will launch the familiar Android SDK and AVD Manager (see Figure 1–4).

Figure 1–4. The Android SDK and AVD Manager with no AVDs

7. Our next task is to create an AVD. Clicking the New button opens the Create new
Android Virtual Device (AVD) form (see Figure 1–5).

11 http://developer.android.com/guide/developing/tools/avd.html

12 http://developer.android.com/guide/developing/tools/emulator.html

http://developer.android.com/guide/developing/tools/avd.html
http://developer.android.com/guide/developing/tools/emulator.html

CHAPTER 1: Android Fundamentals 14

Figure 1–5. Creating a new AVD with the AVD Manager

Fill out the text fields on the form to create a new AVD called HelloAndroidSdkAVD

with a virtual SD card of 32MB in size. Then click the Create AVD button.

8. After an informational dialog telling us that the AVD was created successfully, we

should be taken back to the main Android SDK and AVD Manager form (see Figure

1–6). Here we should now see our new HelloAndroidSdkAVD in the list of AVDs

available to this instance of the Android SDK.

Figure 1–6. The Android SDK and AVD Manager listing the new Virtual Device

CHAPTER 1: Android Fundamentals 15

9. Now that we have created our AVD, we can launch the emulator from the terminal

and instruct it to run on top of our HelloAndroidSdkAVD virtual AVD. Issue this

command on the console:

$ emulator -avd HelloAndroidSdkAVD

Because this is the first time we launch the emulator with our brand-new AVD, it

can take a little while for the startup to complete.

ANOTHER WAY TO LAUNCH THE EMULATOR/AVD COMBINATION: Launching the emulator
with our AVD can also be achieved directly from the AVD Manager graphical user interface (GUI)

application by selecting the AVD in the Virtual Devices list and clicking the Start button.

Once the emulator is up and running, we should see the Android platform startup

screen (see Figure 1–7). We now have a device to run our test application on.

This device is essentially a full implementation of the Android platform stack

including the DVM that, along with the AVD, provides us with a complete virtual

mobile device. Leave the emulator running or restart it for the next section.

Figure 1–7. The Android emulator running the new AVD

CHAPTER 1: Android Fundamentals 16

If you have not used an Android device before, now might be a good time to play

with the emulator to get comfortable with the user interface. Table 1–2 presents a

short list of handy emulator keys and the corresponding keyboard keys that will

be useful during development. See the Android Developers emulator site for a full

list.13

Table 1–2. Convenient Android Emulator Keyboard Keys

Device Key Keyboard Key

Home HOME

Menu F2 or PAGE UP

Back ESC

Search F5

Power F7

Orientation (portrait, landscape) KEYPAD_9, CTRL+F12

Full-screen emulator (on/off) ALT-ENTER

Trackball (on/off) F6

DPad left/up/right/down KEYPAD_4/8/6/2

DPad center KEYPAD_5

10. Our next step is to deploy the application package onto the emulator. With the

emulator running on the desktop, enter the following command on the console

terminal from within the MyAndroidSdkAppProject folder:

/MyAndroidSdkAppProject$ ant install

13 http://developer.android.com/guide/developing/tools/emulator.html

http://developer.android.com/guide/developing/tools/emulator.html

CHAPTER 1: Android Fundamentals 17

RUN THE EMULATOR IN A SEPARATE PROCESS: To run the emulator and still have access to
issue commands on the same terminal, use the following:

Linux/Mac OS X: emulator -avd HelloAndroidSdkAVD &

On Windows: start emulator -avd HelloAndroidSdkAVD

The emulator is then launched in a separate operating system process, thus allowing us to

continue entering commands, such as the install instruction, on the original console.

Ant will attempt to update and rebuild your application if necessary and then run

the ant install step to deploy the package to the device.

The ant install process should connect with the deployment daemon and copy

the application package onto the emulator. The output should be something like

the following:

install:
 [echo] Installing
 [exec] pkg: /data/local/tmp/MyAndroi
 [exec] Success
 [exec] 828 KB/s (0 bytes in 13263.000s)
BUILD SUCCESSFUL
Total time: 9 seconds

IN CASE OF BUILD FAILED: The build and install might fail with the following output:

install:

 [echo] Installing

 [exec] error: device offline

 [exec] * daemon not running. starting

 [exec] * daemon started successfully *

BUILD FAILED

Make sure that you have only one instance of the emulator running, verify that it has completely
finished starting up and then run ant install again. The daemon should be properly started

up the next time round.

The daemon referred to is the Android Debug Bridge (simply called adb) and it

performs the actual installation initiated by the ant install build step. Issuing the

following adb command will list the devices currently running:

adb devices
List of devices attached
emulator-5554 device

CHAPTER 1: Android Fundamentals 18

The Android Debug Bridge is a core Android development tool that is worth

spending time learning about; you will certainly encounter it again in this book.

More information is available on the official Android Developers adb site.14

LEAVE THE EMULATOR RUNNING: It is often a good idea to just leave the emulator running in
its own session while you are developing. The process is identical to keeping a real phone
switched on during the whole time you might need it. This habit also pays when using an IDE

such as NetBeans or Eclipse.

11. With the emulator up and running, and the application now installed, we should

get the initial Android screen. Drag open the small lock on the left of the initial

Android platform startup screen (as seen in Figure 1–7); the Android Home screen

appears (see Figure 1–8).

Figure 1–8. The Android emulator open on the Home activity

12. Click the Launcher icon for the Application Launcher Activity (see Figure 1–9).

14 http://developer.android.com/guide/developing/tools/adb.html

http://developer.android.com/guide/developing/tools/adb.html

CHAPTER 1: Android Fundamentals 19

Figure 1–9. The Android Emulator open on the Launcher activity

13. Now click the icon for launching our installed test application (see Figure 1–10).

Figure 1–10. The Android emulator in the MyAndroidSdkAppActivity Activity

And there we have it! The MyAndroidSdkAppActivity application was run successfully

displaying a friendly hello message. That concludes our comprehensive test drive.

Test Drive Summary
It is important to recap our goals with the test drive section because they remain

relevant throughout the book:

CHAPTER 1: Android Fundamentals 20

 A primary goal was introducing the Android SDK core development

tools and environment. As with any development platform, having an

understanding and feeling comfortable with the core tool culture is

very valuable. This will enable the developer to drop down into these

tools for problem resolution and to build custom scripting or

automation tasks using these command-line tools that can

significantly boost productivity.

 We also wanted to see something running as quickly as possible. The

intent was to build confidence and a good foundational springboard.

Of course, it is also a lot more interesting and a lot more fun to take a

practical approach when learning something new.

 Another goal was to demonstrate that it is entirely possible to develop

for the Android platform without using a dedicated and monolithic IDE.

IDEs, though very useful as productivity- and source code project

management tools, can often obscure important details and limit an

understanding of core aspects of a platform. Obviously, we would still

need other tools such as a good programmer’s text editor to code

with. The Android SDK complements your personal development tools

of choice with a full suite of build, deployment, and debugging utilities.

More information about building Android applications with the out-of-the-box SDK

command-line tools is available on the official Android Developers “Developing In Other

IDEs” web site.15

Android Architecture and Background
This is not intended to be an in-depth coverage of the Android platform architecture. We

will try to provide a basic understanding of key Android platform concepts that will serve

as background and context for our practical projects. The official Android Developers

web site16 is a good reference for further study.

The Android architecture stack, at its highest level, is broadly made up of three layers:

 Exceptionally rich end-user functionality delivered via a core set of

state-of-the-art applications that are pluggable by design.

 Middleware services forming a loosely coupled, reusable, fully open,

and extensible component framework with supporting runtime

libraries.

 An open-source, highly stable, trusted, and high-performance

operating system that forms the foundation of the Android platform.

15 http://developer.android.com/guide/developing/other-ide.html

16 http://developer.android.com/guide/basics/what-is-android.html

http://developer.android.com/guide/developing/other-ide.html
http://developer.android.com/guide/basics/what-is-android.html

CHAPTER 1: Android Fundamentals 21

The Android Platform Stack
A breakdown of the layers and components that comprise the system architecture of the

Android platform is graphically depicted in Figure 1–11. We will briefly describe them

here.

Figure 1–11. The Android platform system architecture

The Hardware Abstraction Layer (HAL)
Hardware abstraction layers (HALs) are designed to protect operating platform

engineers and applications developers from the idiosyncrasies of a multitude of

hardware platforms delivered to the device market by almost equally numerous vendors.

The open-source Linux kernel and appropriate device drivers form the HAL for the

Android operating platform. It takes care of core system operations such as hardware

driver control, process management, networking, and power- and memory

management.

CHAPTER 1: Android Fundamentals 22

The C/C++ Runtime Libraries
The native C/C++ libraries run directly on the HAL kernel and provide core services to

applications and the Android runtime.

These services include graphics support (2D, 3D, SGL, OpenGL), display management,

video and audio media playback, structured data storage (SQLite), libc, built-in web

browser support via WebKit, and SSL for secure networking.

The Android Runtime
The DVM is the star of the Android applications runtime. Each DVM instance is hosted in

its own Linux kernel system process and takes advantage of system-level threading and

memory management. Its performance and memory characteristics are such that

Android can afford to allocate an instance of the DVM to each running application.

The DVM is supported by a core set of (Java) libraries and APIs that are fully

documented, open, and available to software developers. Even though Java code is

written to target Dalvik using these libraries, this does not make the DVM a true Java

Virtual Machine (JVM). It merely supports a large part of standard Java augmented by

libraries and APIs that are Android-specific.

Due to its unique and encompassing role in Android applications development, we will

investigate Dalvik in more detail in an upcoming section of this chapter.

The Application Framework
The Android Application Framework directly supports the development of applications. It

is the broad set of Java namespaces and classes with which we create our applications.

This framework encompasses a wide range of Android Managers and Providers that

abstract the supporting hardware and device resources and services. These include

everything from the user interface, to location awareness, acceleration detection,

camera, telephony, system notifications etc.

The Applications Layer
Android systems are generally delivered with a highly functional set of core applications

that provide the device user with an innovative set of tools. These tools allow the device

owner to both leverage and take advantage of the impressive capabilities of the Android

hardware platform and to mix and match applications to their taste and special

requirements.

The Android SDK supports developing against this high level of flexibility with the same

comprehensive set of APIs used by the platform developers themselves. In addition, the

open design of the platform allows developers to apply the SDK to reuse, extend, or

completely replace the provided core applications with their own creations.

CHAPTER 1: Android Fundamentals 23

All Android applications are treated equally by the system. Standard Android

applications are generally written in Java, and native code libraries can be loaded and

called via Java Native Interface (JNI) if needed.

Android Component Architecture
Android is a component-based platform. Applications are built up from loosely coupled,

reusable, extendable, and replaceable components that fall within well-defined roles. We

will briefly list the types of components here. The “Android Fundamentals” web site17

provides a deeper treatment of the subject:

 Activities (Views). This is the application’s primary user interface

component. Every individual screen of an Android application is

derived from the Activity Java class (android.app.Activity18). They

are containers for Views (android.view.View19).

 Services (Controllers). These are background components that

behave like UNIX daemons and Windows services. They run invisibly

and perform ongoing unattended processing.

 Content Providers (Models). Data Managers that are the

recommended form of inter-application data sharing.

 Intents. Inter-application messaging that can target a specific Service

or Activity. It can also be broadcast system-wide to advertise an

intended action or request an action to be performed.

 Broadcast Receivers. Listeners and consumers for Intents.

 Notifications. Visual or aural mechanisms for end-user notification.

 Widgets. Special visual components that extend the Home screen.

The Android Runtime: Dalvik Virtual Machine (DVM)
At the heart of the Android Java runtime platform sits the Dalvik Virtual Machine (DVM).
We have mentioned some aspects of the DVM previously. The central and unique role

that the DVM plays in the Android system justifies looking at it in a little more depth.

Furthermore, the positioning and peculiarities of the DVM in the world of JVMs also bear

closer scrutiny.

The DVM is Google's fully open-source implementation of the Java SE (JSE) VM. The

DVM was optimized by design for attaining the maximum possible performance for a

17 http://developer.android.com/guide/topics/fundamentals.html

18 http://developer.android.com/reference/android/app/Activity.html

19 http://developer.android.com/reference/android/view/View.html

http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/view/View.html

CHAPTER 1: Android Fundamentals 24

Java VM hosted on resource-restricted devices such as mobile phones. It strives to

maximize the well-known gains associated with programming in Java while minimizing

the penalties of operating a virtual machine in a constricted environment.

The following points regarding Android Java development and the DVM runtime

bytecode support are fundamental for Android software developers:

 Android is not JSE: The Android API maximizes overlap with the JSE,

but there are differences. A notable example is in the GUI department.

Android implements its own graphical user interface API and does not

support JSE AWT and Swing at all.

 Android uses Standard Java Android supports development with the

full Java programming language. Even though some packages and

APIs of the JSE are not supported, use of the Java language is

generally unrestricted. For this reason, your Android Java code is

compiled with a standard, vanilla Java compiler, not a Google-specific

one.

 Dalvik runs (.dex) Dalvik Executables: Your Android code will be

compiled by the mainstream Java compiler you have come to love.

The resulting bytecode will also be the same familiar format. However,

perhaps surprisingly, the DVM does not run this bytecode. It does not

execute the standard .class and .jar files you might be used to.

Instead, the DVM runs its own form of bytecode compiled as .dex files

that are commonly packaged into .apk Android Package files. The

Android SDK includes a tool called “dx” that transforms standard

compiled class files into .dex files. Figure 1–12 has a graphical

representation of this process followed by an overview.

 Every application has its DVM: The DVM is, by design, highly

optimized in terms of performance and size. This allows (also by

design) each Android application to be hosted in its own instance of

the DVM. At the cost of a marginal amount of extra system resources,

this runtime architecture promotes higher application availability and

better security. For example, applications do not share memory and

are thus protected from the potential misbehavior and runtime failure

of other applications.

Figure 1–12. The path from a Java source file to a DVM executable package

CHAPTER 1: Android Fundamentals 25

The Path to DEX (and APK)
An overview of the steps required for creating a runnable Android package, as depicted

in Figure 1–12, is as follows:

 Life for an Android Java application starts with a programming text

editor and stock-standard Java source code that imports Android APIs

from the namespaces and libraries provided with the Android SDK.

 This code is compiled with a standard Java compiler (javac) from the

standard JDK. The result is a standard set of bytecode class files as

one would expect from a normal Java application.

 These class files are consumed by the Android SDK dx program that

converts and binds the set of class files into a DVM-compatible

classes.dex file. This binary consists of special bytecode meant to run

on the DVM. It does not run on the reference JVM.

 All class-, dex and resource files are then prepared, signed, and

zipped together as an Android application package (.apk) archive by

the aapt and apkbuilder utility programs.

 The .apk application package is then ready for deployment and

execution on an Android device. Packages can be installed either via

the ant install build step or using the adb install command.20

AN ANDROID BUILD FROM JAVA TO DEX TO APK

Tracing through the following build listing extract taken from our earlier “Android SDK Test Drive” section
should serve to complement the previous overview. Important names are in bold font, and some sections
have been condensed for brevity. It might be useful to refer to this listing later when we have covered
more ground and some concepts start to come together.

\MyAndroidSdkAppProject> ant debug
Buildfile: \MyAndroidSdkAppProject\build.xml
 [setup] Android SDK Tools Revision 8
 [setup] Project Target: Android 2.3
 [setup] API level: 9
 [setup]
 [setup] ------------------
 [setup] Resolving library dependencies:
 [setup] No library dependencies.
 [setup]
 [setup] ------------------
 [setup]
 [setup] WARNING: No minSdkVersion value set. Application will install on all
 Android versions.
 [setup]

20 http://developer.android.com/guide/developing/tools/adb.html#move

http://developer.android.com/guide/developing/tools/adb.html#move

CHAPTER 1: Android Fundamentals 26

 [setup] Importing rules file: tools\ant\main_rules.xml

-debug-obfuscation-check:
-set-debug-mode:
 -compile-tested-if-test:
-dirs:
 [echo] Creating output directories if needed...
 [mkdir] Created dir: \MyAndroidSdkAppProject\gen
 [mkdir] Created dir: \MyAndroidSdkAppProject\bin\classes
-pre-build:
-resource-src:
 [echo] Generating R.java / Manifest.java from the resources...
-aidl:
 [echo] Compiling aidl files into Java classes...
-pre-compile:
compile:
 [javac] \android-sdk-windows\tools\ant\ant_rules_r3.xml:336: warning:

 'includeantruntime' was not set, defaulting to build.sysclasspath=last;

set to false for repeatable builds
 [javac] Compiling 2 source files to \MyAndroidSdkAppProject\bin\classes
-post-compile:
 -obfuscate:
-dex:
 [echo] Converting compiled files and external libraries into

 \MyAndroidSdkAppProject\bin\classes.dex...
-package-resources:
 [echo] Packaging resources
 [aapt] Creating full resource package...
-package-debug-sign:
[apkbuilder] Creating MyAndroidSdkApp-debug-unaligned.apk and signing it with a debug

 key...
debug:
 [echo] Running zip align on final apk...
 [echo] Debug Package: \MyAndroidSdkAppProject\bin\MyAndroidSdkApp-debug.apk
BUILD SUCCESSFUL

Dalvik and the Apache Harmony JVM
A significant part of the DVM was built with code from the Apache Harmony Java class

library. Apache Harmony is a full stack, open-source Java SE implementation that can

be used as an alternative JRE.

To quote from the Apache Harmony web site, the project has as its primary goal the

implementation of a complete Java SE, including virtual machine, class library areas,

and all related and common tooling.

The fact that Harmony is a full stack reimplementation of Java SE also has implications

for Android. Both platforms essentially attempted to create full and free JSE

implementations that are not bound to licensing anomalies that had historically plagued

Java. Harmony and the lion's share of the Android code fall under Apache License

Version 2.0. The notable exceptions in the case of Android are the Linux kernel patches

that are released under the GPLv2 license. However, the stated preferred license for

new Android derived code is Apache 2.0.

3

CHAPTER 1: Android Fundamentals 27

The relationship between Android Dalvik and Harmony might at some point in the future

lead to a reconciliation phase where compatible code contributions are merged from the

Android codebase back into Harmony. Regardless, this does highlight the often subtle

but powerful possibilities that the effective use of the open-source model creates for

those willing to embrace it.

One important aspect to remember is that although Apache Harmony aims to be a full

JSE implementation, as mentioned earlier, the Android implementation is not.

DALVIK COMES FROM DALVÍK: For the curious (and we’re sure many of you are), the name
“Dalvik” apparently stems from the name of the fishing village, Dalvík, in the north of Iceland.

This is believed to have been the home of some ancestors of the DVM creator, Dan Bornstein.

Dalvik JVM Performance
With the Android 2.2 "Froyo" release and onward, the DVM includes a just-in-time

compiler. This is especially important for the future of the Android platform because

performance and perceived performance are of the utmost relevance for end-user

applications running on resource-restricted devices such as mobile phones.

The DVM architecture is register-machine–based as opposed to stack-machine–based.

Stack-machines are commonly used for virtual machines in general and for most JVMs

in particular. We will try to avoid the debate about virtual stack versus virtual register VM

performance. Suffice it to say that, theoretically, even though register-machine based

implementations tend to result in larger machine code; they also tend to execute faster

than stack machines after being loaded into memory. This is partly due to fewer

resulting VM instructions that need to be executed by the real machine to fetch and

perform the actual computation work, despite the larger overall code size.

Again, this has direct relevance for the execution profile of applications and services on

restricted devices. There are always trade-offs, especially when betting on factors such

as improved memory resource availability at relatively lower expense than processor

cost.

Using an Integrated Development Environment (IDE)
This section presents an overview of applying the Eclipse and NetBeans IDEs to your

Android development tasks. It gives resource references, shows how to install the

relevant supported plugins that will convert these Java IDEs into full-blown Android

development tools, and provides quickstart information on creating an Android project in

the respective IDE.

CHAPTER 1: Android Fundamentals 28

Working with Eclipse
From the moment the Android SDK was released, Eclipse has been the de facto

standard IDE for Android development and remains so to this day.

From our perspective, these are the main reasons for this:

 With the release of the Android SDK, Google immediately made

available the extensive Android Development Tools (ADT) plugin for

Eclipse. It has a clear head start.

 ADT is used and maintained by the Google Android platform

developers themselves.

 Eclipse enjoys huge Java development market penetration. This

applies to both open-source environments that build on Eclipse RCP

and commercial development suites from big vendors.

 Eclipse/ADT, like the Android SDK itself, is open source and available

free of charge.

These motivators combine to make choosing Eclipse for Android development a no-

brainer for most developers and organizations. Clearly, one (beneficial) side effect of this

situation is that there is a huge amount of official (and less than official) information

available for using Eclipse/ADT. It has also been covered almost by default in many

books and tutorial publications.

We are trying to present a comprehensive introduction to Android development in only

one chapter of this book. Considering this and the vast amount of Eclipse/ADT

information available, we will strive only to deliver an Eclipse/ADT quickstart plus

convenient references to additional information. We assume that the reader has, at the

very least, sufficient experience to know what Eclipse Update Sites are and how to

manage them in the IDE.

On the Web: Eclipse for Android Development
Official information and references for Eclipse and the Google ADT plugin for Eclipse can

be found at the following online locations:

Eclipse Home and Download Area
 http://www.eclipse.org

 http://www.eclipse.org/downloads/

Android Development Tools Plugin for Eclipse ADT
 http://developer.android.com/sdk/eclipse-adt.html

 http://developer.android.com/sdk/eclipse-adt.html#installing

http://www.eclipse.org
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html#installing

CHAPTER 1: Android Fundamentals 29

Android Development in Eclipse with ADT
 http://developer.android.com/guide/developing/eclipse-adt.html

Official Google ADT Eclipse Update Site
 https://dl-ssl.google.com/android/eclipse/

 http://dl-ssl.google.com/android/eclipse/

If you do not have Eclipse on your system, go ahead with downloading and installing it.

The Eclipse version that the author uses (Eclipse 3.6.x Helios JEE) is displayed (using

the Help About Eclipse menus) in Figure 1–13.

Figure 1–13. Eclipse version

Quickstart: The Eclipse Android Development Tools (ADT)
Plugin
We will now cover the setup procedure for the Eclipse/ADT plugin.

Installing ADT
1. To install the Eclipse ADT plugin, go to the Eclipse Help Install New Software menu

and click the Add (a New Software Site) button. This should display the dialog

shown in Figure 1–14.

http://developer.android.com/guide/developing/eclipse-adt.html
https://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/

CHAPTER 1: Android Fundamentals 30

Figure 1–14. Add the ADT Eclipse software site.

2. Enter your own preferred Name and in the Location use either of the following

resource locators:

https://dl-ssl.google.com/android/eclipse/

http://dl-ssl.google.com/android/eclipse/

Try the second URL if the former fails to connect. Click the OK button.

3. The Eclipse Available Software dialog shown in Figure 1–15 displays with the

ADT listed. Select all the tools and click Next or Finish. Continue with the setup

workflow until the installation is complete.

Figure 1–15. Eclipse Add ADT Available Software

https://dl-ssl.google.com/android/eclipse/
http://dl-ssl.google.com/android/eclipse/

CHAPTER 1: Android Fundamentals 31

4. Now follow the Window Preferences menus and select the Android entry in the

tree view on the left. The Android Preferences editor should now be visible, as in

Figure 1–16.

Figure 1–16. Eclipse ADT Android preferences

5. Use the Browse button to find the root directory of the location where the Android

SDK is installed on your system. Click the Apply button.

6. If the updated list of installed SDK Targets appears, the Eclipse ADT plugin is now

installed correctly. Click OK to dismiss the dialog.

It might be a good idea to restart Eclipse and double-check the Android
Preferences setting again. If this procedure did not work, please follow up with

the Eclipse/ADT online references given earlier.

THE ANDROID SDK AND AVD MANAGER IN ECLIPSE: After successful ADT installation, the
Android SDK and AVD Manager can be launched from the Eclipse menu system. Follow

Window Android SDK and AVD Manager.

Android Projects in Eclipse
Create new Android projects by clicking File New Project and selecting Android
Project from the Android node. See Figure 1–17.

CHAPTER 1: Android Fundamentals 32

Figure 1–17. Creating a new Android project with Eclipse/ADT

From the same dialog (refer to Figure 1–17), new Android projects can also be created

from the existing source by enabling the Create project from existing source radio

button and then following the selection workflow.

Another option, which is handy when getting to know the Android SDK, is to select

Create project from existing sample. This then populates the Samples drop-down

with a list of Android SDK sample projects retrieved from the contents of your SDK

installation. Here you will be able to select a sample as the basis for your new project.

CHAPTER 1: Android Fundamentals 33

Working with NetBeans
No, Eclipse is no longer the only free Android development IDE game in town. Over the

last years, the NetBeans21 IDE has become a fully viable alternative to Eclipse in the IDE

arena. Not only that, but the NetBeans platform22 is also making a serious challenge to

Eclipse RCP for a stake in the rich client platform development space. The NetBeans

platform has been used as the development foundation of choice for many high-profile

products in the defense, geospatial, network management, retail, bio-informatics, and

myriad other commercial and open-source domains.23

As mentioned before, we are presenting a wide introduction to Android development in

only one chapter of this book. Yet we still feel that it is a good idea to cover Android

development with NetBeans. NetBeans has many easy-to-use qualities that make it a

great choice for both teaching and getting started with Java development in general and

Android development in particular. Furthermore, we would like to contribute to the

growing body of documentation that supports Android development with NetBeans.

Experience has shown that having a choice of high-quality development tools available

is always a good thing.

On the Web: NetBeans for Android Development
Official information and references for NetBeans and the NBAndroid plugin for NetBeans

can be found at the following online locations.

NetBeans Home and Download Area
 http://netbeans.org/

 http://netbeans.org/downloads/

Android Plugin for NetBeans: NBAndroid
 http://kenai.com/projects/nbandroid/

 http://kenai.com/projects/nbandroid/pages/Install

Android Development In NetBeans, with NBAndroid
 http://wiki.netbeans.org/IntroAndroidDevNetBeans

21 http://netbeans.org/downloads

22 http://netbeans.org/features/platform

23 http://netbeans.org/features/platform/showcase.html

http://netbeans.org/
http://netbeans.org/downloads/
http://kenai.com/projects/nbandroid/
http://kenai.com/projects/nbandroid/pages/Install
http://wiki.netbeans.org/IntroAndroidDevNetBeans
http://netbeans.org/downloads
http://netbeans.org/features/platform
http://netbeans.org/features/platform/showcase.html

CHAPTER 1: Android Fundamentals 34

Official NBAndroid NetBeans Update Site
 http://kenai.com/downloads/nbandroid/updates.xml

If you do not have NetBeans on your system, download and install it. The NetBeans

version that the author currently uses (NetBeans 6.9.1) is displayed (using the Help
About menus) in Figure 1–18.

Figure 1–18. NetBeans version

Quickstart: The NetBeans Android (NBAndroid) Plugin
We will now cover the setup procedure for the NetBeans/NBAndroid plugin. To install

NBAndroid, follow these steps:

1. To install the NetBeans NBAndroid plugin, go to the NetBeans Tools Plugins

menu and click the Settings tab.

2. Click the Add button to show the Update Center Customizer, as shown in Figure

1–19.

http://kenai.com/downloads/nbandroid/updates.xml

CHAPTER 1: Android Fundamentals 35

Figure 1–19. Adding the NBAndroid plugin Update Center in NetBeans

3. Enter your own preferred Name for the Update Center and in the URL text box enter

the following:

http://kenai.com/downloads/nbandroid/updates.xml

4. Click the OK button.

You should now be able to see the NBAndroid plugin Update Center visible in the

list on the Settings tab (see Figure 1–20).

Figure 1–20. The NBAndroid plugin Update Center added to NetBeans

http://kenai.com/downloads/nbandroid/updates.xml

CHAPTER 1: Android Fundamentals 36

5. Click the Available Plugins tab. Find and select Android. The description should

appear on the right side (see Figure 1–21).

Figure 1–21. The NBAndroid plugin listed in NetBeans

6. Now click the Install button on the bottom left of the dialog.

7. Click Next (see Figure 1–22), accept the license agreement, and let the installation

continue until it is complete.

Figure 1–22. Installing the NBAndroid plugin in NetBeans

8. Click the Installed tab. Check Show Details. Sort the Name column. The Android

plugin should be Active (see Figure 1–23). Click Close.

CHAPTER 1: Android Fundamentals 37

Figure 1–23. Completed NBAndroid plugin installation in NetBeans

9. Click the left Navigator Services tab. The Android Devices node should now be

visible in the tree of services (see Figure 1–24).

Figure 1–24. The Android Devices node in NetBeans Services

10. Now go to menu Tools Java Platforms.

11. Click Add Platform (see Figure 1–25).

CHAPTER 1: Android Fundamentals 38

Figure 1–25. Managing Java platforms in NetBeans

12. Select the Google Android Platform. Click Next (see Figure 1–26).

Figure 1–26. Adding the Android Java platform to NetBeans

13. Browse to the Android SDK root folder. Click Next (see Figure 1–27).

CHAPTER 1: Android Fundamentals 39

Figure 1–27. Setting the Android SDK folder

14. Select a target and give it a name. Click Finish (see Figure 1–28).

Figure 1–28. Setting the Android SDK target

15. The Android platform target is now registered with NetBeans and ready for use.

Click the Close button (see Figure 1–29).

CHAPTER 1: Android Fundamentals 40

Figure 1–29. The Android Java platform target is now registered with NetBeans.

Android Projects in NetBeans
Here we present a tutorial on how to create a new Android project using NetBeans and

NBAndroid:

1. Create new Android projects in NetBeans by going to the main menu and clicking

File New Project. Select Android from the Categories list. Click Next (see Figure

1–30).

Figure 1–30. Create New NetBeans Android Project

CHAPTER 1: Android Fundamentals 41

The New Android Application screen opens (see Figure 1–31).

Figure 1–31. Create New NetBeans Android project name and location

2. Fill in your Project Name, Location, Folder, Package Name, and Activity Name.

Pick an Android platform from the drop-down.

3. Click Finish.

The main NetBeans development environment and code editor opens in the new project

(see Figure 1–32).

Figure 1–32. Create New NetBeans Android application

Your NetBeans IDE is ready to be used for coding Android projects.

CHAPTER 1: Android Fundamentals 42

Working with IntelliJ IDEA Community Edition
IntelliJ IDEA24 from JetBrains25 has long had a reputation for being one the most

outstanding Java IDEs ever created. However, it was available only as a commercial

closed-source product.

Just over a year ago, JetBrains announced an open source26 version of IntelliJ IDEA

called the Community Edition.27 A year later, it released its official Android plugin,

previously only available with the commercial edition of the IDE, as part of the free

Community Edition starting with version 10.28

This gives Android Java developers a very serious and attractive no-cost IDE alternative.

On the Web: JetBrains IntelliJ IDEA for Android
Development
Official information and references for JetBrains IntelliJ IDEA Community Edition and

using it for Android development can be found at the following online locations:

IntelliJ IDEA Community Edition Home and Download Areas
 http://www.jetbrains.org

 http://www.jetbrains.org/display/IJOS/Download

 http://www.jetbrains.com/idea/download/

IntelliJ IDEA Early Access Program and Download Areas
 http://www.jetbrains.com/idea/nextversion/

 http://confluence.jetbrains.net/display/IDEADEV/IDEA+X+EAP

Android Development with IntelliJ IDEA
 http://www.jetbrains.com/idea/features/google_android.html

24 http://www.jetbrains.com/idea/

25 http://www.jetbrains.com/

26 http://www.jetbrains.org

27 http://blogs.jetbrains.com/idea/2009/10/intellij-idea-open-sourced/

28 http://blogs.jetbrains.com/idea/2010/10/intellij-idea-10-free-ide-for-android-development/

http://www.jetbrains.org
http://www.jetbrains.org/display/IJOS/Download
http://www.jetbrains.com/idea/download/
http://www.jetbrains.com/idea/nextversion/
http://confluence.jetbrains.net/display/IDEADEV/IDEA+X+EAP
http://www.jetbrains.com/idea/features/google_android.html
http://www.jetbrains.com/idea/
http://www.jetbrains.com/
http://www.jetbrains.org
http://blogs.jetbrains.com/idea/2009/10/intellij-idea-open-sourced/
http://blogs.jetbrains.com/idea/2010/10/intellij-idea-10-free-ide-for-android-development/

CHAPTER 1: Android Fundamentals 43

Official IntelliJ IDEA Documentation and Blog Site
 http://www.jetbrains.com/idea/documentation

 http://blogs.jetbrains.com/idea/

IntelliJ IDEA Community Edition Project and Code Repository
 http://git.jetbrains.org/

 http://git.jetbrains.org/?p=idea/community.git;a=summary

If you do not have IntelliJ IDEA Community Edition on your system, now is a good time

to download and install it. The IntelliJ IDEA version that the author currently uses (IntelliJ

IDEA 10 Preview) is displayed (using the Help About menus) in Figure 1–33.

Figure 1–33. IntelliJ IDEA Community Edition version

Quickstart: The IntelliJ IDEA Android Plugin
The IDEA Android plugin comes bundled with the IDE installation so there is nothing

extra to set up for Android development as far as the IDE itself is concerned. The only

other task to perform is identifying the location of your Android SDK and platform target

for your project. We will demonstrate how to do this shortly.

Android Projects in IntelliJ IDEA Community Edition
Here we will present a short tutorial on how to create a new Android project using the

IntelliJ IDEA Community Edition:

1. Create new Android projects in IntelliJ IDEA by going to the main menu and

clicking File New Project. The first New Project wizard screen opens (see Figure

1–34).

http://www.jetbrains.com/idea/documentation
http://blogs.jetbrains.com/idea/
http://git.jetbrains.org/
http://git.jetbrains.org/?p=idea/community.git

CHAPTER 1: Android Fundamentals 44

Figure 1–34. Creating a new IntelliJ IDEA Community Edition project

2. Select Create project from scratch and click Next. The next New Project wizard

screen should appear (see Figure 1–35).

Figure 1–35. Creating a new IntelliJ IDEA Community Edition Android project

3. Select a project type of Android Module, fill out the Name and Location directories

entry fields with appropriate values, and click Next. The following New Project

wizard screen for the source directory configuration should appear (see Figure 1–

36).

CHAPTER 1: Android Fundamentals 45

Figure 1–36. Configuring the New Project source directory

4. Decide whether and where to configure the source directory and click Next. The

following New Project wizard screen for the Android SDK and platform target

configuration should appear (see Figure 1–37).

Figure 1–37. Configuring the Android platform for a project

5. Optionally select an Android Platform from the list and click Next, or click New to

configure a new platform. The following Select Path dialog form should appear

(see Figure 1–38) if you perform the latter.

CHAPTER 1: Android Fundamentals 46

Figure 1–38. Adding a New Android platform target to an IntelliJ IDEA Community Edition project

6. Browse to the required Android Platform directory on your development system

and click OK. The previous dialog form should now appear with the new platform

in the list (see Figure 1–39). Select the platform and fill out the remaining fields

with your settings. Click Finish.

Figure 1–39. Selecting an Android SDK platform target for an IntelliJ IDEA Community Edition project

7. The New Project wizard is now complete, and the main IntelliJ IDEA development

environment and code editor opens in the new project (see Figure 1–40).

CHAPTER 1: Android Fundamentals 47

Figure 1–40. Creating a new IntelliJ IDEA Android application and IDE code editor

Your IntelliJ IDEA Community Edition IDE is now ready for use in programming Android

projects.

Summary
In this chapter, we have used a fairly broad brush to give you a good introductory

background and knowledge of the Android development platform. Without getting

distracted with too much detail, we have covered multiple aspects from theory to tools.

We have also complemented this material with references to the official online Android

developer resources and encouraged their habitual use.

In addition, we provided quickstart recipe guides for beginning with Android

programming using the most popular Java developer IDEs. These tools are purpose-

built and maintained to complement and leverage the core Android SDK tools. They

should serve to streamline and accelerate your development work while not distracting

from the use of the SDK programs and utilities directly when needs dictate.

The knowledge and understanding you gained should equip you with a good foundation

for starting your practical journey into programming software using the Android SDK and

your own tools of choice. This springboard will allow you to dive into deeper waters in

any specific Android technology direction you wish to pursue.

49

49

 Chapter

Development Tools in
Practice
In the first chapter of the book we presented a broad coverage of the Android platform

from both a theoretical and practical viewpoint. You had the opportunity to learn about

the overall architecture and components of the platform. You also had the chance to

test drive the tools that ship with the Android software development kit (SDK) by

creating a skeleton Android project from the command line and stepping through the

development lifecycle all the way to installation of the application on the Android

emulator.

We also included an introduction to the three major noncommercial Java integrated

development environments (IDEs), Eclipse, NetBeans, and Intellij IDEA Community

Edition, showed you how to equip them with Android development capabilities via freely

available plugins.

This chapter has a dual goal: first, it aims to leave you with a firm grasp of how to use

the Android SDK development tools for real Android development projects. Second, and

no less important, it will provide an introduction to the structure and components of

Android projects and the Android application programming interface (API).

We will cover the creation of a capable Android development environment with nothing

but the Android SDK command line and graphical user interface (GUI) tools plus a stock

programmer’s text editor. As part of this discussion, we will present a project containing

reusable code sections and techniques that also give us the chance to demonstrate

specific SDK tools and Android API features.

Finally, we will import the example project into the Eclipse integrated development

environment (IDE) in order to demonstrate how to take advantage of some of the

Android productivity features of Eclipse with the Android Development Tools (ADT)

plugin.

2

CHAPTER 2: Development Tools in Practice 50

Coding with the SDK and a Programmer’s Editor
It is entirely feasible to do serious Android development using the Android SDK in

combination with a programmer’s editor. This approach requires minimal setup

overhead and is worth becoming familiar with for the sole reason of enriching your

understanding of core Android development. This will help you to understand what your

IDE of choice is doing behind the scenes and empower you to dig right in to debugging

tasks without an IDE.

As an example, we have often saved time by diving straight to the root cause of an

Android application crash during debugging simply by issuing the following Android

Debug Bridge command in a terminal window:

adb logcat

Thereafter repeating the same steps that caused the runtime failure in the application

and watching the logging output as it is streamed to the logcat terminal often makes the

real problem (such as a missing permission in the application manifest file) clearly

evident.

For further information on the adb tool, and as a general approach to learning the core

ADK utilities and programs, we suggest running the adb help command. Reviewing the

official Android developer site for, in this case, the Android Debug Bridge is also

recommended.1

NOTE ON DEVELOPMENT OPERATING SYSTEMS: We use a mixture of Ubuntu GNU/Linux,

Apple Mac OS X, and Microsoft Windows development systems. The code listings, screen
captures and commands we demonstrate generally apply to all platforms. We will draw attention

to any notable exceptions.

Development Environment Dependencies
Before we proceed, we need to review some dependencies and ensure that we can run

the necessary Android SDK utilities and commands on our development system.

Ensure that Development Kit Locations Are on the Path
For doing serious work with the Android SDK, always ensure that the appropriate

binaries and tools (<Java JDK/bin>, <Android SDK/tools>, <Android SDK/platform-
tools>, and <Ant/bin>) are on the system path. We covered the subject of path setup

and issues in some depth in the first chapter of this book. Please refer to that chapter for

more information if necessary.

1 http://developer.android.com/guide/developing/tools/adb.html

http://developer.android.com/guide/developing/tools/adb.html

CHAPTER 2: Development Tools in Practice 51

Preparing an Android Virtual Device (AVD)
To be able to run our test project for this chapter we will need an Android Virtual Device.

It is probably ideal that this AVD is not cluttered with previous debugging applications

and leftover user data.

We can either reuse the HelloAndroidSdkAVD we created in the first chapter or create a

new one. The AVD should be configured with at least Android 2.3 (API Level 9)

compatibility like the one depicted in Figure 2–1. I chose to create a fresh AVD and give

it the more meaningful name of android23api9_hvga_32mb for easier reference.

Figure 2–1. Preparing a new Android Virtual Device (AVD)

Creating (and Deleting) an AVD from the Command Line
The Android SDK also supports the creation of AVDs from the command line.2 So we

could also have made our new AVD using the following terminal command:

android create avd –n android23api9_hvga_32mb –t android-9 –s HVGA –c 32M

If you want to get rid of the AVD for some reason, simply use the following command:

android delete avd –n android23api9_hvga_32mb

2 http://developer.android.com/guide/developing/tools/avd.html#options

http://developer.android.com/guide/developing/tools/avd.html#options

CHAPTER 2: Development Tools in Practice 52

BE CAREFUL! The android delete terminal command does not ask for confirmation of the
requested operation. So this makes it really easy to accidentally purge an AVD you might still

need. Make sure to keep backups of development AVDs that contain useful test data.

AVD File and Image Locations
AVD configuration and image files are created on your development computer under the

.android directory in your home folder. Depending on your system, the default locations

are as shown in Table 2–1.

These locations can be overridden by using the –p switch on the android create avd

command as in the next example command on Linux / Mac OS X:

android create avd –n avd23api9 –t android-9 –c 32M –p mydroiddev/avds/avd23api9

Or on Windows:

android create avd –n avd23api9 –t android-9 –c 32M –p C:\mydroiddev\avds\avd23api9

Table 2–1. Default AVD Locations by Operating System Platform

Platform Default Android Virtual Device Location

Linux and Mac OS X ~/.android/avd/

Windows XP C:\Documents and Settings\<user>\.android\avd\

Windows Vista C:\Users\<user>\.android\avd\

As always, more information is available on the Android Developers web site.3

Frequently Used Android Development Kit Tools
Becoming comfortable with using the Android SDK tools from the terminal command

line will add a lot of value to your Android development efforts. The various IDEs and

their Android plugins come packed with a lot of functionality. These features are often

standard out-of-the-box Android SDK tools in a repackaged or embedded form.

Familiarity with the core tools will enrich your understanding of your IDE of choice as

well as allow you to drop down to these tools when the IDE implementation falls short.

There are a handful of tools that will prove themselves useful on a daily basis. Launching

some tools brings up GUIs from which other core functionality can be reached

conveniently via menus. Table 2–2 provides a list of commands that will allow a

3 http://developer.android.com/guide/developing/tools/avd.html#location

http://developer.android.com/guide/developing/tools/avd.html#location

CHAPTER 2: Development Tools in Practice 53

developer to perform the majority of Android development tasks in combination with a

code editor.

Table 2–2. Indispensable Android SDK Development Tool Commands

Android SDK Development Tool Linux/Mac OS X Windows

Android SDK and AVD Manager android android.bat

Dalvik Debug Monitor ddms ddms.bat

Ant Compile ant compile ant.bat compile

Ant Clean ant clean ant.bat clean

Ant Build Debug ant debug ant.bat debug

Ant Build Install ant install ant.bat install

Ant Build Uninstall ant uninstall ant.bat uninstall

NOTE: All ant commands must be run in your Android application project root directory where

the ant build.xml file should reside. The android create project command generates a

build.xml file containing the relevant ant build actions and targets.

Working with the Android Tools and a Code Editor
The purpose of this section is to give you an idea of what is possible using the frequently

used Android tools from the previous section, plus a code editor that is configured to

invoke these tools directly from its own user interface.

Selecting a Code Editor
For our demonstration, we have decided to use the Geany4 programmer’s editor. It was

selected because it suited our intentions in this instance particularly well, not because

we are suggesting that it should become your editor of choice. The main aspects that

made it applicable for demonstrating the goals of this section are as follows:

 It is a GUI that can easily and clearly be presented in a book.

 It is freely and easily obtainable for many operating systems for

readers who want to try the examples.

4 http://www.geany.org/

http://www.geany.org/

CHAPTER 2: Development Tools in Practice 54

 It supports the grouping of files into projects with user customizable

build commands.

References for Editor Alternatives
Before we go on, we thought it would be appropriate to list some references for other

editor environments that some readers will certainly know and might even be using as

their preferred choice. We fully understand that the subject of the programmer’s code

editor can spark very animated discussions and should be treated with sensitivity.

So here is a short and by no means definitive list of editors and editing environments

that can be well suited to Android development:

 Emacs and Android-Mode: The GNU Emacs manual describes it as

"the extensible, customizable, self-documenting, real-time display

editor." Emacs is open source and runs on almost all known platforms.

 Emacs home: http://www.gnu.org/software/emacs/

 Java-Mode: http://sourceforge.net/projects/jdee/

 Android-Mode: https://github.com/remvee/android-mode

 Using Emacs for Android Development:
http://blog.fmaj7.me/?p=18

 Eclim, Vim with Eclipse: Vim is a highly configurable text editor built

to enable efficient text editing. It is an improved version of the vi editor

distributed with most UNIX systems. Vim is open source and runs on

almost all known platforms.

 Vim home: http://www.vim.org/

 Eclim Eclipse for Vim: http://eclim.org/index.html

 Using Vim + Eclim for Android Development:
http://jyro.blogspot.com/2009/05/android-development-with-vim-
eclim.html

 jEdit: jEdit is a mature programmer's text editor with hundreds

(counting the time developing plugins) of person-years of development

behind it. It is open source and written in Java, so it runs on Mac OS

X, OS/2, UNIX, VMS, and Windows.

 jEdit home: http://www.jedit.org/

 TextMate: TextMate is a powerful, general-purpose GUI text editor for

Mac OS X that is very popular with programmers and technology

professionals. It is highly configurable and focuses on productive

automation. It is currently only available for Mac OS X and is a

proprietary, commercial product.

 TextMate home: http://www.macromates.com/

http://www.gnu.org/software/emacs/
http://sourceforge.net/projects/jdee/
https://github.com/remvee/android-mode
http://blog.fmaj7.me/?p=18
http://www.vim.org/
http://eclim.org/index.html
http://jyro.blogspot.com/2009/05/android-development-with-vim-eclim.html
http://jyro.blogspot.com/2009/05/android-development-with-vim-eclim.html
http://jyro.blogspot.com/2009/05/android-development-with-vim-eclim.html
http://www.jedit.org/
http://www.macromates.com/

CHAPTER 2: Development Tools in Practice 55

 Bluefish: Bluefish is a powerful editor targeted toward programmers

and web designers, with many options to write web sites, scripts, and

programming code. It is released under the GNU GPL license and runs

on most operating systems including Linux, FreeBSD, Mac OS X,

OpenBSD, Solaris, and Windows.

 Bluefish home: http://bluefish.openoffice.nl/

Working with Geany
Releases of Geany are either available from your system package distribution site or can

be downloaded as source code,5 installers, or third-party packages.6 It is also available

in a portable7 format that can be installed on a USB stick.

Geany has the following important characteristics that we list here because we believe

they apply as practical considerations to whichever editor or editors you decide to use

instead:

 Cross-platform (Linux, Windows, Mac OS X, *BSD, Solaris, and so on)

 Open source and easily built from source code

 Small and fast, allowing rapid use also on constrained systems

 Good documentation set

 Active project with frequent releases and a supportive community

 Code syntax coloring, completion, and symbol navigation tree

 Organization of code folders into projects with build commands

 Configurable menu tools based on external commands

 Extensible architecture and a stable set of core plugins

AN IMPORTANT NOTE ON CODE EDITORS: You are clearly free to use any programming editor
of your choice. Indeed, many good development text editors available in the open-source and

commercial markets have the characteristics and features we have outlined.

5 http://www.geany.org/Download/Releases

6 http://www.geany.org/Download/ThirdPartyPackages

7 http://www.geanyportable.org/

http://bluefish.openoffice.nl/
http://www.geany.org/Download/Releases
http://www.geany.org/Download/ThirdPartyPackages
http://www.geanyportable.org/

CHAPTER 2: Development Tools in Practice 56

Configuring the Editor for Android Work
Ideally, we want to be able to conveniently invoke the Android SDK tool commands

listed in Table 2–2 from the user interface of our editor. Geany supports this

customization through a concept called Build Commands that results in new application

menu entries. Indeed, this is one of the characteristics we listed previously and one of

the reasons why we chose it for this section.

Most good open-source and commercial code editors support this feature in some

fashion and to some extent. Our goal is to simply introduce this concept of external tool

commands as an alternative to a full-blown IDE, not to focus too much on the specific

editor at hand.

Whether you decide to use Geany or another equivalent editor, we recommend

researching the relevant documentation. Geany’s manual is also posted on the official

web site.8

The ability to customize the Geany build commands is available from the Set Build
Commands menu item on the Build menu. This opens the Project Properties dialog on

the Build tab, as shown in Figure 2–2.

Figure 2–2. Android SDK Build commands for Geany code editor on Windows

8 http://www.geany.org/Documentation/Manual

http://www.geany.org/Documentation/Manual

CHAPTER 2: Development Tools in Practice 57

The Project Properties dialog Build tab depicted in Figure 2–2 is for Geany on a

Windows development system.

Incidentally, the %p substitution symbol is Geany-specific and is substituted at invocation

time with the current project directory as a working directory for the command. More

information on substitutions is available in the user manual.9

The equivalent configuration and Android SDK tool commands for a Linux development

system are shown in Figure 2–3.

Figure 2–3. Android SDK Build commands for Geany code editor on Linux

Configuring Geany in this fashion results in a Geany Build Menu similar to that shown in

Figure 2–4.

9 http://www.geany.org/manual/current/#substitutions-in-commands-and-working-directories

http://www.geany.org/manual/current/#substitutions-in-commands-and-working-directories

CHAPTER 2: Development Tools in Practice 58

Figure 2–4. Android SDK commands on Geany code editor Build menu

We now have the Android SDK development tools conveniently at hand directly in the

user interface of the tool. This essentially converts our code editor into a very lean but

functional mini–Android development IDE.

The Example Application Project
The example project we present in this section is not meant to be a useful application in

itself. It has a dual purpose: to serve as a container for reusable bits of code and as a

vehicle for demonstrating the use of several development tools that ship with the

Android SDK.

We will first present the full source code of relevant sections of the project and then take

a step-by-step approach to work through a grab bag of small reusable code chunks.

These code pieces cover the kinds of things we generally want to know how to do as

soon as possible when learning a new development platform. Quickly composing such

code snippets allows us to rapidly create small, quick-and-dirty, but functional prototype

applications. The project code will cover areas such as the following.

 Fixed text labels that communicate instructions, application help, or

other usage information to the user

 Editable text fields that gather user input, data modifications, and

deletions for application processing

 Conditionally active or inactive buttons that trigger code actions and

afford the user the opportunity to control application functionality

 Mouse and Keyboard Event listeners on buttons and text fields that

trap user input actions and alter application state accordingly

 Extracting Views and String values from application layout files and

string tables at runtime

CHAPTER 2: Development Tools in Practice 59

 Storing and loading basic application data to and from simple, “flat”

text files

 Flexible runtime logging that traces application behavior for

debugging, production problem resolution, accountability, security and

other purposes

 Notifications and alarms that keep the user and the system up to date

with application state and functioning or elicit user decision-making

actions

 Creation and layout of user interface controls using static XML files

during application build

 Programmatic, or dynamic, creation and layout of user interface

controls at runtime in code

 Creation and interaction with application menus

Generating the Foundation Android Project
The first step to developing a new Android application with the core tools is to generate

the base project folder structure and files. This was covered in the first chapter of this

book, but we will provide the required knowledge for this section here.

Since we called our project MyAndroidSdkAppProject in the first chapter, and we are

dealing with an assortment of generic Android SDK features, we will simply call the

project for this section MyAndroidSdkAppProject2.

Open your terminal (command-line console) in a parent folder of your choice and then

issue the following command on your platform shell (cmd.exe, bash, etc):

android create project
--target "android-9"
--name MyAndroidSdkApp2
--path ./MyAndroidSdkAppProject2
--activity MyAndroidSdkAppActivity2
--package com.example.myandroid

Note that we have added line breaks to the command for convenient reading. Please

refer to the first chapter for more information on the android create project command.

The official documentation is available on the Android developer web site.10 For more

background information, also try issuing the following command:

android -h create

This will list some useful help and usage information to the terminal console window.

10 http://developer.android.com/guide/developing/other-ide.html

http://developer.android.com/guide/developing/other-ide.html

CHAPTER 2: Development Tools in Practice 60

The Android Project Directory Structure
The android create project command generates a project directory structure and files

that can immediately be compiled with Ant from the project root directory using the ant
compile command. A debugging release of the application can also be directly built

using ant debug.

If you have decided to use the Geany editor according to our earlier discussion, you can

create a Geany project using the MyAndroidSdkAppProject2 directory as the base

directory for the project. Having done this, you can then configure the project build

commands according to our previous instructions. It will then be possible to invoke the

Ant Build Debug command from the Build menu. We will cover this in further detail.

Should you prefer not to use the editor for this section, you can also just run the build

from a terminal session on the command line instead.

After a successful debug build, the directory structure and content of the project folder

should appear similar to that listed in Listing 2–1. This is the standard layout of an

Android SDK Ant-based project so it is prudent to become familiar with it. We will not

delve into detailed discussion of each element here. The relevant information is

conveniently accessible from the official Android Developers web page.11

We will be covering appropriate segments of an Android project directory as we work

through the code projects in this chapter and the rest of the book.

Listing 2–1. Basic Android Create Project Directory Structure

\MyAndroidSdkAppProject2
| AndroidManifest.xml
| build.properties
| build.xml
| default.properties
| local.properties
| proguard.cfg
+---bin
| | classes.dex
| | MyAndroidSdkApp2-debug-unaligned.apk
| | MyAndroidSdkApp2-debug.apk
| | MyAndroidSdkApp2.ap_
| \---classes\com\example\myandroid
| MyAndroidSdkAppActivity2.class
| R$attr.class
| R$drawable.class
| R$layout.class
| R$string.class
| R.class
+---gen\com\example\myandroid
| R.java
+---libs
+---res
| +---drawable-hdpi

11 http://developer.android.com/guide/developing/other-ide.html#CreatingAProject

http://developer.android.com/guide/developing/other-ide.html#CreatingAProject

CHAPTER 2: Development Tools in Practice 61

| | icon.png
| +---drawable-ldpi
| | icon.png
| +---drawable-mdpi
| | icon.png
| +---layout
| | main.xml
| \---values
| strings.xml
\---src\com\example\myandroid
 MyAndroidSdkAppActivity2.java

You have already seen the application that was generated for us in action. If you refer to

the “Android SDK Test Drive” sections of Chapter 1, you will find an image of it running

in the Android emulator (refer to Figure 1-10). The only difference should be that it now

says MyAndroidSdkAppProject2 instead of MyAndroidSdkAppProject.

Preparing to Run the Example Application
In the following sections, we will be covering the source code for the example

application while running through the application workflow in the Android emulator. This

will help you understand what the code does in practice.

Starting a Debugging Session
To begin the debugging session we need to launch both the Dalvik Debug Monitor

(DDMS) and the Android emulator with our AVD. We can do this from the terminal

command line with the following commands.

On Linux/Mac OS X:

emulator -avd android23api9_hvga_32mb &
ddms &

On Windows:

start emulator -avd android23api9_hvga_32mb
start ddms

Clearly, we also can use the convenient shortcuts we set up on the Geany editor menu

as depicted in Figure 2–5.

CHAPTER 2: Development Tools in Practice 62

Figure 2–5. Starting the DDMS from the Geany customized Build menu

To launch the emulator with our AVD, we first start the Android SDK and AVD Manager.

When the Manager application user interface is open, select android23api9_hvga_32mb

from the AVD Name list and then click the Start button. The DDMS application can be

launched directly from the menu entry.

During the loading of the Android emulator, the DDMS should appear as in Figure 2–6.

The emulator instance is selected, and DVM events are listed on the Log tab.

Figure 2–6. Android DDMS with loading emulator instance selected

The emulator should now be visible as in Figure 2–7. Note that for convenience we have

switched the orientation to Landscape using the CTRL+F12 keyboard sequence.

CHAPTER 2: Development Tools in Practice 63

Figure 2–7. Android emulator instance in Landscape view mode

NOTE: We will leave the emulator and the Android Debug Bridge (ADB) running in the
background while doing development using the same AVD. Unless we need to switch AVDs, there
should generally be no need to restart these tools for each recompilation, rebuild, or reinstall of

the application debug package (MyAndroidSdkApp2-debug.apk).

Replacing the Default Generated Code
We need to replace the code for the following three files in the project folder,

/MyAndroidSdkAppProject2, with our own12 versions:

 The application main layout file: We will be adding new GUI controls

/res/layout/main.xml

12 The book example source code and listings are available as download archives from the Apress web site.

CHAPTER 2: Development Tools in Practice 64

 The default strings table file: To show how to read string resources

/res/values/strings.xml

 The main activity class code file: New Java demonstration code

/src/com/example/myandroid/MyAndroidSdkAppActivity2.java

You are free to edit the existing generated files or simply overwrite them with the files

from the code listings of this book. We will discuss the files in detail later on.

Building and Installing the Project Example Code
We now want to build and deploy the new code to the AVD in one step (Figure 2–8).

Figure 2–8. Build and install from the Geany customized Build menu

We can either do this from the Geany custom menu as before or execute the command

directly from the terminal in the root project directory as follows. This command should

work from Linux, Mac OS X, and Windows:

ant install

If you click the Application Launcher icon of the emulator, you should now see

MyAndroidSdkAppActivity2 among the application icons.

Creating a Log Filter for the Application in the DDMS
To make things easier during debugging, the Dalvik Debug Monitor (DDMS) application

offers the ability to create application filters based on custom criteria. We can create a

new log filter by clicking the button with the large green cross (marked in Figure 2–9).

One of the criteria is called the Log Tag. Fill in the Filter Name and Log Tag text fields

with MyAndroidSdkAppActivity2.

CHAPTER 2: Development Tools in Practice 65

Figure 2–9. Creating a new log filter based on the application Log Tag

The following segment of code is an extract from Listing 2–8:

public class MyAndroidSdkAppActivity2 extends Activity
{
 /** TAG for debug logging purposes - used as a filter in DDMS */
 private static final String TAG = "MyAndroidSdkAppActivity2";

[--code omitted--]

It shows the main entry point for the main application class that inherits the Android

Activity class. All Android applications that interact with the end user have to extend

this class. The central role of the Activity class is well explained on the Android

Developers web site.13

For the moment, we are mainly interested in the Log Tag. In this code segment, we have

declared the code necessary to implement and later use an application Log Tag. More

information on the Log14 class and debugging tasks15 are available on the official

Developers site.

You will soon see how to use this tag in your code.

NOTE: It is highly recommended to always implement and use the Android Log API during

development and debugging of your own code.

As shown in Figure 2–10, you should now be able to see a new tab for the application

log filter in the DDMS user interface.

13 http://developer.android.com/reference/android/app/Activity.html

14 http://developer.android.com/reference/android/util/Log.html

15 http://developer.android.com/guide/developing/debug-tasks.html

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/guide/developing/debug-tasks.html

CHAPTER 2: Development Tools in Practice 66

Figure 2–10. A new log filter in DDMS based on the application Log Tag

Running the Example Application
Now that we have built and deployed our code, and we have a convenient log filter in

place, we can proceed to launch the application in the emulator. Be sure to keep the

DDMS open on your desktop with the MyAndroidSdkAppActivity2 log filter tab active.

Figure 2–11 depicts the initial screen of the application after startup. Note that for

convenience we have again switched the orientation to Landscape using the CTRL+F12

keyboard sequence. Once we start testing the application, it will make more sense to

switch back to Portrait orientation.

Figure 2–11. The MyAndroidSdkAppActivity2 Application in the emulator

The logging activity of the first time launch of the application code is visible in Figure 2–

12. For interest, our application code looks for a private file on startup. If it does not find

it, it logs the exception and proceeds. These exception log entries are visible in Figure

2–12.

CHAPTER 2: Development Tools in Practice 67

Figure 2–12. The MyAndroidSdkAppActivity2 application log filter and output in DDMS

What Does the Demo Application Do?
As shown in Figure 2–11, the initial screen of the application after startup is fairly simple

on the surface. It presents five basic visible GUI controls:

 A fixed text view that acts as a label with a hello message. We will not

spend time on this control since it is very straightforward.

 An enabled button with the text “Silly Exit Button”. When clicked,

this button will cause the application to seemingly close. We will

discuss this in more detail in a coming section. Suffice it to say that we

called it “Silly” since Android applications, or activities, do not

normally need specific exit support. The platform already has facilities

for this.

 An initially disabled button called “Save Message”, which allows the

user to save any text entered into the editable text field below. This

text will appear the next time the application is launched. It also pops

up an Android toast message when pressed.

CHAPTER 2: Development Tools in Practice 68

 An editable text field initially filled with the text “Please enter a
message and save it.” When edited with contents, it will trigger code

that will enable the previously disabled Save and Maker buttons. If the

text message is left blank the buttons will be disabled.

 An initially disabled button called “Button Maker Button”. When this

button is enabled as described previously, it will dynamically create

another button below it each time it is pressed. This code will be used

to demonstrate the creation of GUI controls at runtime. The created

buttons will also have data tags and event handlers attached to them

at creation time. These will invoke routines that implement a mix of

Android notification mechanisms (toasts, alerts, and system

notifications).

We suggest you play around with the application to get a feel for it before diving into the

code discussions below.

Here follows a sequence of screen captures and comments of the application

demonstration features in action.

Figure 2–13 shows the application after opening for the first time. Note that some of the

buttons are not enabled.

Figure 2–13. The MyAndroidSdkAppActivity2 Application after first-time launch

Figure 2–14 shows the application after entering a text message. The previously

disabled buttons have now been activated.

CHAPTER 2: Development Tools in Practice 69

Figure 2–14. The MyAndroidSdkAppActivity2 Application after entering a new text message

Figure 2–15 depicts the application after clicking on Save Message. If the application is

closed and reopened, this text message will be reloaded from a private application file.

Figure 2–15. The MyAndroidSdkAppActivity2 Application shows a toast after saving the new text message

CHAPTER 2: Development Tools in Practice 70

Figure 2–16 shows the application after clicking the Button Maker Button three times.

Figure 2–16. The Application with new buttons after pressing the Button Maker Button three times

Figure 2–17 shows that clicking the first created button raises an OK alert dialog.

Figure 2–17. MyAndroidSdkAppActivity2 Dynamic Button 1 shows an alert

CHAPTER 2: Development Tools in Practice 71

Figure 2–18 shows that clicking the second created button raises an Android toast. Note

that the label text for each dynamic button is also changed as it is pressed.

Figure 2–18. MyAndroidSdkAppActivity2 Dynamic Button 2 shows a toast

Figure 2–19 shows that clicking the third button creates an Android system notification.

System Notifications are normally reserved for Android services or other background

applications, but here we have decided to demonstrate how to create one in an

interactive manner.

CHAPTER 2: Development Tools in Practice 72

Figure 2–19. MyAndroidSdkAppActivity2 Dynamic Button 3 creates a notification

Figure 2–20 shows the opened notification in Landscape orientation. Clicking Clear

should dismiss it.

Figure 2–20. MyAndroidSdkAppActivity2 Dynamic Button 3 system notification

Note that the demonstration application consistently carries the custom text message

through to all the user notification types.

If we close and reopen the application (see Figure 2–21), the user interface is now aware

that a message was previously persisted, and all buttons are consequently also available

for use.

CHAPTER 2: Development Tools in Practice 73

Figure 2–21. Application after reopening and automatic reloading of persisted text message

Figure 2–22 shows the demonstration menu group with a menu item highlighted.

Figure 2–22. Application demonstrating menu groups after pressing the F2 MENU key

Figure 2–23 shows a toast based on the menu item that was selected.

CHAPTER 2: Development Tools in Practice 74

Figure 2–23. Application showing a toast after selecting a menu item

That concludes our tour of the example application. You should now have a good

enough understanding of the interactions of the application to dive into the project files

and source code.

A Walk through the Core Application Files
As mentioned earlier, we have replaced the following first three files of the generated

application with our own. We will discuss each of these files in overview.

 Application main layout: /res/layout/main.xml

 Default strings table: /res/values/strings.xml

 Activity: src/com/example/myandroid/MyAndroidSdkAppActivity2.java

Even though we have not altered it, we will also discuss the Application Manifest file.

 Android Manifest file: /AndroidManifest.xml

The Application Manifest File
We will start with the Android Manifest file. One basic aspect that is vital to understand

when developing Android software is the process by which the Android runtime finds the

startup class in an Android application package.

CHAPTER 2: Development Tools in Practice 75

The keys to this process lie within the application manifest. If we review Listing 2–2, we

can follow the process described as follows based on the contents of our example

manifest file.

Listing 2–2. The Generated Application Manifest File: AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.myandroid"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/icon">
 <activity android:name="MyAndroidSdkAppActivity2"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

From the manifest the Android runtime will look up the name within the activity tag that

wraps a MAIN action and a category of LAUNCHER. It then takes this name and appends it

to the package tag value specified in the manifest tag. The full name of the startup class

in this case will then be com.example.myandroid.MyAndroidSdkAppActivity2.

The Application Main Layout File
As mentioned elsewhere, the original layout file that was generated by the android
create project command is presented in Listing 2–3 for reference only. We replaced it

with the one in Listing 2–4.

Listing 2–3. The Original Generated Application Layout File: main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Hello World, MyAndroidSdkAppActivity2"
 />
</LinearLayout>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 2: Development Tools in Practice 76

Android GUIs and the Role of the View Class
Before we go any farther, it is worth covering some background surrounding activities,

layouts, views, and how Android GUIs are built up. There are some core Android GUI

concepts, their relationships, and their roles that will underpin all our GUI work as

Android developers. The essence of these concepts can be summarized as follows:

 Activities: All Android application screens or forms are instances of

the Activity class or descendants thereof. Activities are the

foundation of Android applications with a user interface. In contrast,

background or long-running applications like services are not derived

from the Activity class, but rather from the invisible Android Service

class. An activity normally takes on a visible appearance by being

assigned a specific Layout class instance.

 Layouts: The Layout class forms the unseen container for all visible

controls in an activity screen or form. Layouts are built on the

ViewGroup class and can be specified declaratively in an XML layout

file or created programmatically in the runtime code of the application.

 View Groups: The ViewGroup class is a container class and a direct

subclass of the View class. It also serves as the base class for all

Layout classes including LinearLayout, RelativeLayout,

AbsoluteLayout, FrameLayout, and other composites.

 Views: The View class is the base class for the ViewGroup class and

the root for all user interface components, controls, or widgets in the

Android GUI world. The View class handles all on-screen drawing and

event processing. This class is the root GUI class and is second to

only one other class in the inheritance hierarchy, java.lang.Object. In

order to create your own, highly specialized and distinguishing user

interfaces, you will generally implement your own direct View

descendant classes and base your interfaces on them.

The previous background should now serve as a basis for understanding the user

interface aspects of our example application better.

The Layout for the Example Code
The layout file for the example application (see Listing 2–4) declares the five View

controls initially visible in the application’s activity.

Listing 2–4. The Project Example Application Layout File: main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/layout_main"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView

http://schemas.android.com/apk/res/android

CHAPTER 2: Development Tools in Practice 77

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Howdy Android World! Nice to see you!"
 />
 <Button
 android:id="@+id/cmd_silly_exit_button"
 android:layout_width="96px"
 android:layout_height="wrap_content"
 android:text="Silly Exit Button"
 />
 <Button
 android:id="@+id/cmd_save_message"
 android:layout_width="96px"
 android:layout_height="wrap_content"
 android:text="Save Message"
 />
 <EditText
 android:id="@+id/txt_toast"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" >
 </EditText>
 <Button
 android:id="@+id/cmd_make_button"
 android:layout_width="192px"
 android:layout_height="wrap_content"
 android:text="Button Maker Button"
 />
</LinearLayout>

A subtle but important addition to the layout file is the bold line of XML code:

android:id="@+id/layout_main"

The original layout did not contain this line. We added it for the purpose of

demonstrating how to get access to the id of the root LinearLayout ViewGroup instance.

If we browse forward to Listing 2–8, our replacement MyAndroidSdkAppActivity2.java

source file, we can find the following code:

private ViewGroup vwgMainLayout = null;
[--code omitted--]
vwgMainLayout = (ViewGroup)findViewById(R.id.layout_main);

These code segments demonstrate how to get a reference to the main activity layout.

This is then used later to add controls dynamically to the ViewGroup layout instead of

declaring them in the XML layout file before build time. See Listing 2–11 for more on

this.

The findViewById(int id) method is the standard Android API for retrieving a handle to

a View instance that was created by the Android platform from declarations in a Layout

file. We will see it in almost all Android application code. It takes as an argument the id

of the View that was declared in an XML layout file.

These ids are generated by the Android SDK from the application’s resource XML files

during build time. The R.java Java class source code file is generated (in the gen

directory) based on the XML resource files declared in the project structure. Here follows

an extract from the R.java file with the relevant R.id.layout_main id highlighted in bold:

CHAPTER 2: Development Tools in Practice 78

[--code omitted--]
public static final class id {
 public static final int cmd_make_button=0x7f050004;
 public static final int cmd_save_message=0x7f050002;
 public static final int cmd_silly_exit_button=0x7f050001;
 public static final int layout_main=0x7f050000;
 public static final int txt_message=0x7f050003;
}
public static final class layout {
 public static final int main=0x7f030000;

[--code omitted--]

DO NOT EDIT R.JAVA: The R.java class file serves as a list (index) of all application resources

identified by a unique build time–generated reference. It should never be edited by hand.

The Default String Table File
The String table is a container for string resources, which are generic software

development artifacts used to minimize the impact of changes in the international

aspects of applications, among others. In general, these aspects do not directly affect

the logic of the compiled application, and the latter should ideally not be affected when

the former needs to vary.

For example, when an application user interface needs to support a new natural

language B, as well as an existing language A, string resources can be the answer for

retrieval of the correct language values based on locale. Embedding (or “hard-coding”)

both sets of values in the application code is not a sustainable alternative. This becomes

especially relevant when a potential support requirement for a third language C might be

just around the corner.

The example application demonstrates how to extract values from the String table,

strings.xml (see Listing 2–6), using the Android API getString() method call as in the

following code extract from Listing 2–9:

 public void initialize()
 {

[--code omitted--]

 /** get string values from the default string table */
 message_def = getString(R.string.default_message);
 label_toasts = getString(R.string.label_toasts);
 label_alerts = getString(R.string.label_alerts);
 label_notify = getString(R.string.label_notify);

[--code omitted--]

CHAPTER 2: Development Tools in Practice 79

More information on Android string resources can be found online at the Android

Developers web site.16

Listing 2–5 presents the original String table.

Listing 2–5. The Original Generated Application String Table File: strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">MyAndroidSdkAppActivity2</string>
</resources>

Listing 2–6 shows the replacement String table.

Listing 2–6. The Project Example Application Replacement String Table File: strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">MyAndroidSdkAppActivity2</string>
 <string name="default_message">Please enter a message and save it.</string>
 <string name="label_toasts">I make Toasts!</string>
 <string name="label_alerts">I make Alerts!</string>
 <string name="label_notify">I just Notify!</string>
</resources>

The Main Activity Java Source File
As earlier, we will first present the generated Android Activity class source file shown in

Listing 2–7 and then provide the full code listing of our chapter project replacement

example in segments from Listing 2–8 onward.

Listing 2–7. The Original Generated Application Main Activity Java File: MyAndroidSdkAppActivity2.java

package com.example.myandroid;

import android.app.Activity;
import android.os.Bundle;

public class MyAndroidSdkAppActivity2 extends Activity
{
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

Our replacement MyAndroidSdkAppActivity2.java source file (see Listing 2–8) is fairly

long and extensive. It also covers several distinct technical areas of Android

programming. We will systematically work through code segments from the full source

code file as extracts in the chapter “How to” sections that follow. We strongly suggest

16 http://developer.android.com/guide/topics/resources/string-resource.html

http://developer.android.com/guide/topics/resources/string-resource.html

CHAPTER 2: Development Tools in Practice 80

that you build and work through the code project with us to get the best from the

discussion.

Listing 2–8. The Application Main Activity Java Source File: MyAndroidSdkAppActivity2.java (Partial)

package com.example.myandroid;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Notification;
import android.app.NotificationManager;
import android.content.Intent;
import android.app.PendingIntent;
import android.os.Bundle;
import android.util.Log;
import android.content.Context;
import android.view.View;
import android.view.ViewGroup;
import android.view.ViewGroup.LayoutParams;
import android.view.KeyEvent;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.LinearLayout;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import java.lang.Runtime;
import java.lang.CharSequence;
import java.lang.Integer;
import java.lang.Object;
import java.io.BufferedReader;
import java.io.File;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

public class MyAndroidSdkAppActivity2 extends Activity
{
 /** TAG for debug logging purposes - used as a filter in DDMS */
 private static final String TAG = "MyAndroidSdkAppActivity2";

 /** our message text file - used to store arbitrary bits of text */
 private static final String MESSAGEFILE = "messagefile.txt";

 /** handles to our static controls in the XML layout */
 private Button cmdSilly = null;
 private Button cmdMaker = null;
 private Button cmdSave = null;
 private EditText txtMessage = null;
 private CharSequence message_def = null;
 private CharSequence message = null;
 private String label_toasts = null;
 private String label_alerts = null;
 private String label_notify = null;

 /** handles to our dynamic controls created programmatically */
 private ViewGroup vwgMainLayout = null;

CHAPTER 2: Development Tools in Practice 81

 private static final int MAKE_MAX = 3;
 private int countMade = 0;
 private Button cmdMade = null;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 Log.d(TAG, "in [onCreate()]...");

 super.onCreate(savedInstanceState);
 // set the main layout
 setContentView(R.layout.main);
 // also get a programmable handle to the main layout
 vwgMainLayout = (ViewGroup)findViewById(R.id.layout_main);
 initialize(); // our init method
 }
[--code omitted--]

Android Coding How to
In this section we will break down the example application source code into segments

that demonstrate distinct coding techniques. We will be doing this in a “how-to” format.

The goal is to clarify the overall code structure and to create a small reference of

reusable code snippets for common Android programming tasks.

Using the Android Log API
Since application logging is something that applies to all code, the first aspect we want

to cover in this how-to section is about using the built-in Android Log API.

We want to remind you that reference reading on the Log API is available on the official

Android Developers site.17 There is also good coverage of Android debugging

techniques on the site.18

Log API Methods and Styles
The Android API includes a standard logging class simply called Log, which supports

several static methods that allow the programmer to implement logging facilities in a

program at several levels. The most commonly used of these levels and methods are

listed in Table 2–3. You will see some of these levels and methods used throughout the

demonstration project source code.

17 http://developer.android.com/reference/android/util/Log.html

18 http://developer.android.com/guide/developing/debug-tasks.html

http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/guide/developing/debug-tasks.html

CHAPTER 2: Development Tools in Practice 82

Table 2–3. Android Log API Levels and Methods

Logging Level Log API Static Method Overloaded Method with Exception Argument

Verbose Log.v(String tag, String msg) Log.v(String tag, String msg, Throwable tr)

Debug Log.d(String tag, String msg) Log.d(String tag, String msg, Throwable tr)

Information Log.i(String tag, String msg) Log.i(String tag, String msg, Throwable tr)

Warning Log.w(String tag, String msg) Log.w(String tag, String msg, Throwable tr)

Error Log.e(String tag, String msg) Log.e(String tag, String msg, Throwable tr)

Some aspects of logging in Android code were covered during an earlier section that

showed how to create log filters in the DDMS. We also presented a snippet of code

there which is worth reviewing again. It shows the declaration for the Log Tag:

public class MyAndroidSdkAppActivity2 extends Activity
{
 /** TAG for debug logging purposes - used as a filter in DDMS */
 private static final String TAG = "MyAndroidSdkAppActivity2";

In general, we use a logging call style similar to the following snippet for standard debug

tracing:

 public void onCreate(Bundle savedInstanceState)
 {
 Log.d(TAG, "in [onCreate()]...");

For logging exceptions we use the following type of call:

 catch (Throwable t) {
 Log.e(TAG, "File write failed: " + t.toString(), t);
 throw t; /** other unexpected exception - rethrow it */
 }

As we will show next, the effects of such logging calls can be graphically viewed using

the ample logging tools provided by the Android SDK.

CHAPTER 2: Development Tools in Practice 83

Android SDK Log Viewers
Besides log filters, the DDMS menu system (see Figure 2–24) shows another way to

view the Android log. Select Device Run logcat to do this.

Figure 2–24. Starting logcat from the DDMS menus

Figure 2–25 shows the resulting logcat remote window after opening it from the DDMS

menu system.

CHAPTER 2: Development Tools in Practice 84

Figure 2–25. Running logcat from the DDMS menus

We can also issue adb logcat from a separate terminal window to track log entries as

they are written. Figure 2–26 depicts logcat open on a Windows development

computer.

Figure 2–26. Running adb logcat on the Windows command line

CHAPTER 2: Development Tools in Practice 85

Centralizing Application GUI Initialization Code
Listing 2–9 presents a centralized method in which all GUI control and supporting

element setup for the application is performed. This is not so much a specific technique

as it is a good programming practice. It has the advantage that it reduces noise and

clutter in the onCreate() method.

The method, initialize(), is invoked at the end of the Activity onCreate() method. It is

responsible for delegating to the set of how-to methods you will see later. These

methods implement the lower level Android API functionality that the example project

attempts to demonstrate.

Listing 2–9. MyAndroidSdkAppActivity2.java : GUI Setup Grouped Within an Initialize() Method

 public void initialize()
 {
 Log.d(TAG, "in [initialize()]...");

 /** get string values from the default string table */
 message_def = getString(R.string.default_message);
 label_toasts = getString(R.string.label_toasts);
 label_alerts = getString(R.string.label_alerts);
 label_notify = getString(R.string.label_notify);

 cmdSilly = (Button)findViewById(R.id.cmd_silly_exit_button);
 cmdSilly.setOnClickListener(
 new Button.OnClickListener() {
 public void onClick (View v){
 Log.d(TAG, v.toString() + ": Leaving activity...");
 Runtime.getRuntime().exit(0);
 }
 }
);

 cmdSave = (Button)findViewById(R.id.cmd_save_message);
 cmdSave.setOnClickListener(
 new Button.OnClickListener() {
 public void onClick (View v) {
 Log.d(TAG, v.toString() + ": Saving message...");
 message = txtMessage.getText();
 Log.d(TAG, "message: [" + message + "]");
 Log.d(TAG, "file: [" + MESSAGEFILE + "]");
 writeMessageFile(message);
 makeToast("[" + message + "] is now saved");
 }
 }
);

 txtMessage = (EditText)findViewById(R.id.txt_message);
 txtMessage.setOnKeyListener(new View.OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 final int action = event.getAction();
 boolean ret = false; // we are not consuming the event by default
 if (keyCode == KeyEvent.KEYCODE_MENU) { // ignore menu key
 Log.d(TAG, v.toString() + ": User pressed the MENU key");
 }

CHAPTER 2: Development Tools in Practice 86

 else {
 Log.d(TAG, v.toString() + ": User worked in the message");
 message = txtMessage.getText();
 setButtonsEnabled();
 }
 return ret;
 }
 });

 cmdMaker = (Button)findViewById(R.id.cmd_make_button);
 cmdMaker.setOnClickListener(
 new Button.OnClickListener() {
 public void onClick (View v) {
 Log.d(TAG, v.toString() + ": Making a button...");
 makeWideButton("I was made at runtime");
 }
 }
);

 Log.d(TAG, "reading file: [" + MESSAGEFILE + "]");
 message = readMessageFile();
 txtMessage.setText(message);
 Log.d(TAG, "retrieved: [" + message + "]");
 setButtonsEnabled();
 if (0 == message.length()) { // only show default message if empty
 txtMessage.setText(message_def);
 }
 }

Exiting an Application Activity
The top button you see when you open the application is a button called “Silly Exit
Button”. The reason for this name stems from the fact that, by design, Android

applications should not, in theory and in practice, need “Exit” buttons or any other such

mechanisms. Normally a device user will simply abandon the current application and

directly go off to another application as needed. The Android platform already supports

mechanisms for doing this such as Back, Home, and so on.

Be that as it may, it is interesting to note how such functionality can be achieved. It

might also be useful in certain circumstances where there is a need to achieve the same

result programmatically without user initiation.

The following segment of code is extracted from Listing 2–9 and shows the

implementation of this button:

 cmdSilly = (Button)findViewById(R.id.cmd_silly_exit_button);
 cmdSilly.setOnClickListener(
 new Button.OnClickListener() {
 public void onClick (View v){
 Log.d(TAG, v.toString() + ": Leaving activity...");
 Runtime.getRuntime().exit(0);
 }
 }
);

CHAPTER 2: Development Tools in Practice 87

As highlighted by the code in bold, the effect of an Exit is achieved by asking the JVM

runtime implementation, in this case the DVM, to shut itself down.

Enabling and Disabling Buttons (and other Views)
Until the user has actually entered a text message or activated the text area to accept

the default message already there, some of the buttons on the activity will remain

inactive (or disabled).

The method shown in Listing 2–10, setButtonsEnabled(), is responsible for centrally

checking the state of the text message and enabling or disabling the relevant buttons

accordingly. It uses the setEnabled() method of the subject View instances. In this case,

these subjects are Button instances. The Android Button class is descended from the

View class and thus supports the setEnabled() method. We pass the boolean false or

true depending on whether to disable or enable the target control instance respectively.

Listing 2–10. MyAndroidSdkAppActivity2.java: Button Availability State Control Is Centralized

 public void setButtonsEnabled()
 {
 if (0 == message.length()) {
 Log.d(TAG, "message is EMPTY");
 cmdMaker.setEnabled(false);
 cmdSave.setEnabled(false);
 }
 else {
 Log.d(TAG, "message is: [" + message + "]");
 cmdMaker.setEnabled(true);
 cmdSave.setEnabled(true);
 }
 }

When studying this method it is worth also reviewing and keeping in mind the following

snippet from the initialize() method in Listing 2–9:

 txtMessage = (EditText)findViewById(R.id.txt_message);
 txtMessage.setOnKeyListener(new View.OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 final int action = event.getAction();
 boolean ret = false; // we are not consuming the event by default
 if (keyCode == KeyEvent.KEYCODE_MENU) { // ignore menu key
 Log.d(TAG, v.toString() + ": User pressed the MENU key");
 }
 else {
 Log.d(TAG, v.toString() + ": User worked in the message");
 message = txtMessage.getText();
 setButtonsEnabled();
 }
 return ret;
 }
 });

The preceding code implements a View OnKeyListener for the message text field. As the

user interacts with the message EditText field using the keyboard, it delegates control

CHAPTER 2: Development Tools in Practice 88

to the setButtonsEnabled() method. This ensures that the state of availability of the

buttons is constantly kept synchronized with whether the user has actually entered or

accepted any text in the message field.

Creating Controls Dynamically (at Runtime in Code)
One of the techniques we wanted to demonstrate in the example code was how to

create a GUI control programmatically. In Listing 2–11, we present this by implementing

a helper method makeWideButton() that creates instances of the Button class in the

particular sense.

These techniques can also be used in the general sense for other GUI controls since

Buttons are descended from the View class, and all other Android GUI artifacts have the

View class as their root. The method on the layout container class (ViewGroup) that adds

the subject GUI control (View) to itself is predictably called addView() and takes a View

instance as its primary argument.

Listing 2–11. MyAndroidSdkAppActivity2.java:- Dynamic View (Button) Control Creation

 /**
 * class to demonstrate tagging an Android View instance with user data
 * */
 public class MyButtonTagData {
 public Integer myUserId = 0;
 public CharSequence myUserData = "--empty--";
 public MyButtonTagData(Integer id, CharSequence data) {
 this.myUserId = id;
 this.myUserData = data;
 }
 }

 public void makeWideButton(CharSequence label)
 {
 countMade++;
 if (MAKE_MAX >= countMade) {
 cmdMade = new Button(this);
 cmdMade.setText("[" + countMade + "] " + label);
 cmdMade.setTag(/** attach our structure instance to the control */
 new MyButtonTagData(new Integer(countMade), label_notify)
);
 cmdMade.setOnClickListener(
 new Button.OnClickListener() {
 public void onClick (View v) {
 MyButtonTagData tagdata = (MyButtonTagData)v.getTag();
 Integer tag = tagdata.myUserId;
 switch (tag.intValue()) {
 case 1:
 ((Button)v).setText(label_alerts);
 Log.d(TAG, v.toString() + ": button ONE...");
 showOkAlertDialog(tag + " - " + message);
 break;
 case 2:
 ((Button)v).setText(label_toasts);
 Log.d(TAG, v.toString() + ": button TWO...");

CHAPTER 2: Development Tools in Practice 89

 makeToast(tag + " - " + message);
 break;
 default:
 ((Button)v).setText(tagdata.myUserData);
 Log.d(TAG, v.toString() + ": button DEFAULT...");
 showNotification(tag + " - " + message);
 break;
 }
 }
 }
);
 LayoutParams parms = new LayoutParams(
 LayoutParams.MATCH_PARENT, LayoutParams.WRAP_CONTENT);
 vwgMainLayout.addView(cmdMade, parms);
 }
 }

If we review Listing 2–8, our replacement MyAndroidSdkAppActivity2.java source file,

we can find the following code:

private ViewGroup vwgMainLayout = null;
[--code omitted--]
vwgMainLayout = (ViewGroup)findViewById(R.id.layout_main);

This shows us retrieving a reference to the main activity layout. This is required to serve

as the target upon which to call the addView() method as per the implementation of

makeWideButton() in Listing 2–11.

It is also worth noting the LayoutParams class instance (parms), which we create to set

some attributes for the dynamically created Button View instance(cmdMade). The method

addView() will use this parms instance as its second argument upon adding the button to

the main layout instance (vwgMainLayout). These attributes are normally declaratively

controlled from an XML layout file but we wanted to demonstrate how to do this with

Java code.

Another detail worth drawing attention to is the setTag() method call. The signatures for

this method are as follows:

 void setTag(int key, Object tag): Sets a tag associated with the

current view instance and a key.

 void setTag(Object tag): Sets the tag associated with the current

view instance.

We use the first form to attach a reference to an arbitrary class called MyButtonTagData

for demonstration purposes and then retrieve it later using the getTag() method. In this

fashion, tags can be used to store data that is associated with a view without having to

create separate data structures.

CHAPTER 2: Development Tools in Practice 90

Making an Android Toast
Listing 2–12 presents the code we use in the example application to raise all the Android

toast notifications. We want to point you to the official online documentation for the

Toast class19 and the tutorial on creating Android toasts.20 The code for our bare-bones

toast requirement is quite straightforward and intuitive.

Listing 2–12. MyAndroidSdkAppActivity2.java: Making a Toast

 public void makeToast(CharSequence message)
 {
 Toast.makeText(
 this,
 message,
 Toast.LENGTH_SHORT).show();
 }

NOTE: Having forgotten to call the show() method when making toasts have often caught us by
surprise. This appears to be a common mistake, so be on the lookout for it when your toasts

won’t show.

Showing an Android Alert Dialog
Listing 2–13 presents the code we use in the example application to create and show

the Android OK alert dialogs. The alert dialog builder is a powerful mechanism with a lot

of flexibility. We recommend that you have a look at the Android Developers site

reference for the AlertDialog.Builder class21 and the tutorial on creating dialogs.22

Again, the code is straightforward and self-explanatory.

Listing 2–13. MyAndroidSdkAppActivity2.java: Showing a Basic Alert Dialog

 public void showOkAlertDialog(CharSequence message)
 {
 new AlertDialog.Builder(this)
 .setMessage(message)
 .setPositiveButton("OK", null)
 .show();
 }

19 http://developer.android.com/reference/android/widget/Toast.html

20 http://developer.android.com/guide/topics/ui/notifiers/toasts.html

21 http://developer.android.com/reference/android/app/AlertDialog.Builder.html

22 http://developer.android.com/guide/topics/ui/dialogs.html

7

http://developer.android.com/reference/android/widget/Toast.html
http://developer.android.com/guide/topics/ui/notifiers/toasts.html
http://developer.android.com/reference/android/app/AlertDialog.Builder.html
http://developer.android.com/guide/topics/ui/dialogs.html

CHAPTER 2: Development Tools in Practice 91

Creating and Showing an Android System Notification
Android system notifications are normally used by background applications without a

user interface, Android services in particular. We will not cover Android services here but

wanted to demonstrate how notifications work (see Listing 2–14).

Listing 2–14. MyAndroidSdkAppActivity2.java: Creating and Showing a System Notification

 public void showNotification(CharSequence message)
 {
 final int notifyRef = 1;
 final int notifyIcon = R.drawable.icon;
 final long notifyWhen = System.currentTimeMillis();
 final String notifyService = Context.NOTIFICATION_SERVICE;

 NotificationManager notifyManager = (NotificationManager)
 getSystemService(notifyService);

 Notification notification = new Notification(
 notifyIcon, message, notifyWhen);

 Context context = getApplicationContext();
 CharSequence notifyTitle = message;
 CharSequence notifyText = "You saved this message.";

 Intent notifyIntent = new Intent(
 this, MyAndroidSdkAppActivity2.class);
 PendingIntent contentIntent = PendingIntent.getActivity(
 this, 0, notifyIntent, 0);
 notification.setLatestEventInfo(
 context, notifyTitle, notifyText, contentIntent);

 notifyManager.notify(notifyRef, notification);
 }

A key step in creating system notifications is getting a handle on the Android notification

service. This handle is an instance of the NotificationManager class and is the engine

behind the creation and triggering of notifications.

The notification is then instantiated from the Notification class and populated with an

icon integer handle, our message character buffer, and a timestamp in milliseconds for

the notification.

We then fill out the notification with the current application Context, a custom title and

text, and an Intent instance to launch when we click the notification in expanded form.

Of course, we could have added the title and text as arguments to our method

signature, but we will only use it in one call in our example code and it is a simple matter

to make it more generic. The focus is on demonstrating the concepts involved.

CHAPTER 2: Development Tools in Practice 92

Using a Private Application File
The two wrapper methods shown in Listing 2–15 take care of storing and retrieving the

custom string message we entered. They do this by calling our Android private

application file helper methods presented in Listing 2–16. Note that here we catch and

handle any exceptions that were bubbled up by our general file helper methods in a

manner visible to the user (with a toast).

Listing 2–15. MyAndroidSdkAppActivity2.java: Loading and Storing a Demonstration Text Message in a File

 /**
 * application specific wrapper to read a message that might be in a file
 * */
 public String readMessageFile()
 {
 String ret_str = "";
 try {
 ret_str = stringFromPrivateApplicationFile(MESSAGEFILE);
 }
 catch (Throwable t) {
 makeToast("Message read failed: " + t.toString());
 }
 return ret_str;
 }

 /**
 * application specific wrapper to write a message to a file
 * */
 public void writeMessageFile(CharSequence message)
 {
 try {
 stringToPrivateApplicationFile(MESSAGEFILE, message.toString());
 }
 catch (Throwable t) {
 makeToast("Message write failed: " + t.toString());
 }
 }

The two methods in Listing 2–16 encapsulate the generic functionality of storing and

loading string data to and from what are known as private application files.

Listing 2–16. MyAndroidSdkAppActivity2.java: Reading from and Writing to a Private Android Application File

 /**
 * general method to read a string from a private application file
 * */
 public String stringFromPrivateApplicationFile(String name)
 throws java.lang.Throwable
 {
 String ret_str = "";
 try {
 InputStream is = openFileInput(name);
 if (null != is) {
 InputStreamReader tmp_isr = new InputStreamReader(is);
 BufferedReader tmp_rdr = new BufferedReader(tmp_isr);
 String tmp_str = "";

CHAPTER 2: Development Tools in Practice 93

 StringBuilder tmp_buf = new StringBuilder();
 while ((tmp_str = tmp_rdr.readLine()) != null) {
 tmp_buf.append(tmp_str);
 }
 is.close();
 ret_str = tmp_buf.toString();
 }
 }
 catch (java.io.FileNotFoundException e) {
 /** file has not been created - log this */
 Log.e(TAG, "File not found: " + e.toString(), e);
 }
 catch (Throwable t) {
 Log.e(TAG, "File read failed: " + t.toString(), t);
 throw t; /** other unexpected exception - rethrow it */
 }
 return ret_str;
 }

 /**
 * general method to write a string to a private application file
 * */
 public void stringToPrivateApplicationFile(String name, String data)
 throws java.lang.Throwable
 {
 try {
 OutputStreamWriter tmp_osw = new OutputStreamWriter(
 openFileOutput(name, Context.MODE_PRIVATE));
 tmp_osw.write(data);
 tmp_osw.close();
 }
 catch (Throwable t) {
 Log.e(TAG, "File write failed: " + t.toString(), t);
 throw t; /** other unexpected exception - rethrow it */
 }
 }

NOTE: These helper methods, in the spirit of being generic and reusable, do not make exceptions
visible to the end user. This would limit the scope of their applicability. Instead, exceptions are

logged and propagated to calling client code for handling.

Browsing the Device File System with the DDMS File Explorer
The Android SDK tools enable us to browse the file system of the Android device or

emulator that we are using for development. Figure 2–27 shows a way to access this

functionality graphically from the DDMS. Open Device File Explorer from the DDMS

menu system.

CHAPTER 2: Development Tools in Practice 94

Figure 2–27. Opening the File Explorer from the DDMS menu system

Figure 2–28 shows the File Explorer browsing the data subdirectories for the example

application. You can clearly see the demonstration message file.

Figure 2–28. The File Explorer window with a view on the file system and the example message file

The File Explorer also allows us to push and pull files to and from the device or emulator.

CHAPTER 2: Development Tools in Practice 95

Navigating the Device File System with the ADB Shell
In addition to graphically navigating the device file system, the Android SDK tools also

allow us to run a remote shell on an attached device, whether the device is an AVD

emulated instance or an actual physical device.

The SDK utility that supports this functionality is the ADB. To see how this works, issue

the following commands in a terminal command-line window:

adb -e shell
cd /data/data/com.example.myandroid/files/
ls
cat messagefile.txt

The output of running this session on Windows can be seen in Figure 2–29. The

preceding commands are compatible with Linux, Mac OS X, and Windows systems. In

fact, it might be worth a mention that the # (hash) prompt belongs to the remote Linux

shell on the device, not the local host system.

Figure 2–29. Navigating the file system and the ADB shell

For clarity, a transcript of this session for Windows follows here:

C:\>adb -e shell
cd /data/data/com.example.myandroid/files/
cd /data/data/com.example.myandroid/files/
ls
messagefile.txt
cat messagefile.txt
Practical Android is Fun!

Making Menus
Per Listing 2–17, Android activity menus are mainly created by overriding two methods

on the Activity class: onCreateOptionsMenu() and onOptionsItemSelected().

The onCreateOptionsMenu() method is invoked with the activity’s default root menu item

as an argument. This can then be used to add additional menu groups and menu items.

We should always return true from this method if the menu structure is to be visible, or

else return false.

CHAPTER 2: Development Tools in Practice 96

The onOptionsItemSelected() method takes care of menu actions that are triggered by

events as the user selects menu items. When we handle a known application menu item

in our menu event code, we should always return true from this method. For all other

(perhaps unknown) menu items, we should delegate the return processing to the base

class’ implementation of this method.

Listing 2–17. MyAndroidSdkAppActivity2.java: Creating Menus and Responding to Menu Selection Events

 /**
 * how to make a menu - implement onCreateOptionsMenu()
 * */
 @Override
 public boolean onCreateOptionsMenu(Menu menu)
 {
 // always first delegate to the base class in case of system menus
 super.onCreateOptionsMenu(menu);

 /** our 1st demo menu grouping - menu sub-item titles should be
 * read from the strings table rather than embedded in app code */
 final int mnu_grp1 = 1;
 menu.add(mnu_grp1, 1, 1, "My Menu Item 1-1");
 menu.add(mnu_grp1, 2, 2, "My Menu Item 1-2");

 // our 2nd demo menu grouping
 final int mnu_grp2 = 2;
 menu.add(mnu_grp2, 3, 3,"My Menu Item 2-1");
 menu.add(mnu_grp2, 4, 4,"My Menu Item 2-2");

 return true; // true for a visible menu, false for an invisible one
 }

 /**
 * how to respond to a menu - implement onOptionsItemSelected()
 * */
 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 final int mnu_id = item.getItemId();
 Log.d(TAG, "Menu Item: ID [" + mnu_id + "] selected");
 switch(mnu_id) {
 case 1: // our own items
 case 2:
 case 3:
 case 4:
 makeToast("Menu [" + mnu_id + "] " + message);
 return true; // true when we have handled al our own items
 default: // not our items
 Log.d(TAG, "Menu Item: UNKNOWN ID selected");
 return super.onOptionsItemSelected(item); // pass item id up
 }
 }

CHAPTER 2: Development Tools in Practice 97

Migrating the Example Application to Eclipse/ADT
Now that you are comfortable with the Android SDK tools and the inner workings of our

example project, we will complete the chapter by stepping through a migration of the

project to an Eclipse/ADT (Android Development Tools) environment.

Make a Copy of the Project
To keep things simple, we will make a copy of the project folder,

/MyAndroidSdkAppProject2, and its contents to a new directory called

/MyAndroidSdkAppProject2_Eclipse without altering anything. You are free to do this in

any way you wish.

NOTE: The project files for the book examples are available for download from the Apress book

web site.

Open Eclipse with the ADT Plugin Installed
We will need a fully functioning Eclipse installation with the ADT plugin correctly

installed. Setting this up was covered in the first chapter of the book. Please refer to that

section of the book if necessary.

Create a New Android Project from the Copy of the Project
Use the Eclipse menu sequence File New Android Project. The dialog shown in Figure

2–30 should be visible.

Now ensure that the Create project from existing source radio button is selected and

enter the project name as MyAndroidSdkAppProject2_Eclipse.

Use the Browse button to navigate to the location where we made our

/MyAndroidSdkAppProject2_Eclipse copy of the project earlier.

Select the Android 2.3 Build Target. If this build target does not appear in the list it

means that ADT was not properly set up according to the instructions in the first

chapter. Please refer to Chapter 1 for troubleshooting.

Now click the Finish button to import the project into the Eclipse workspace.

CHAPTER 2: Development Tools in Practice 98

Figure 2–30. New Eclipse/ADT Android project from existing sources

Once the project has been imported, perform a Refresh and Build Project in the IDE.

Create and Test a New Run Configuration for the Project
Use the Eclipse menu sequence Run Run Configurations. The dialog depicted in Figure

2–31 should be now be visible.

Set up the configuration accordingly and name it to your preference. We used the name

MyAndroidSdkAppProject2_Eclipse.

Now click the Run button and verify that the application behaves as it is supposed to

from previous experience outside Eclipse.

CHAPTER 2: Development Tools in Practice 99

Figure 2–31. Create a new run configuration for the project

Deploying to a Real Device
We can test with a real device by attaching it to our development computer via USB.

Normally it is as simple as plugging in the device and ensuring that your phone has the

USB Debugging setting turned on.

NOTE: If you are developing on Windows, the USB Driver Package for Windows should have been

selected and installed as part of the initial Android SDK setup.

Follow the instructions on the “Developing on a Device”23 page of the Android

Developers site for full background and troubleshooting, if necessary, for your platform.

23 http://developer.android.com/guide/developing/device.html

http://developer.android.com/guide/developing/device.html

CHAPTER 2: Development Tools in Practice 100

Once the device is connected, switch the Automatic setting on the Target tab of the Run

Configuration to Manual, click Apply, and then click Run.

The Eclipse ADT plugin should now present an Android Device Chooser dialog as

shown in Figure 2–32 and Figure 2–33.

Figure 2–32. The Eclipse/ADT Android Device Chooser dialog with running device selected

Your physical device should appear as a valid target along with a list of AVD targets.

Figure 2–33. The Eclipse/ADT Android Device Chooser dialog with AVD selected

CHAPTER 2: Development Tools in Practice 101

If you select the Choose a running Android device option, the example application

should be installed and opened on your phone. You can then test the known

functionality.

Creating a Signed APK Package of the Example Application
We will now present the steps necessary to export a signed and certificated APK

package of an application using Eclipse/ADT. The ADT plugin provides by far the most

convenient way for performing this otherwise tedious task:

1. Open the application Android Manifest tab and click the Use the Export Wizard

link in the Exporting section. See Figure 2–34.

Figure 2–34. Export and sign an APK

2. The Project Checks dialog should appear. Click the Next button. See Figure 2–35.

CHAPTER 2: Development Tools in Practice 102

Figure 2–35. Eclipse/ADT Wizard for exporting a signed APK: project verification

3. Now the Keystore selection dialog should appear. Select Create (unless you

already have a keystore) and click the Next button when you are done with all the

required input fields. Make sure you record the password you selected for the

keystore. If this is lost, you will need to create a new keystore from scratch. See

Figure 2–36.

Figure 2–36. Eclipse/ADT Wizard for exporting a signed APK: keystore creation

4. Per Figure 2–37, we should now be prompted for the configuration of a keystore

Alias. Follow the same procedure as in the previous step. Take care to select a

Validity (duration) period that makes sense. Click the Next button when you are

done.

CHAPTER 2: Development Tools in Practice 103

Figure 2–37. Eclipse/ADT Wizard for exporting a signed APK: alias creation

5. As depicted in Figure 2–38, we should now be on the last step: Destination and
key/certificate checks. This verifies our selections and allows us to pick a

destination folder for the final signed APK file. Click the Finish button when done.

Figure 2–38. Eclipse/ADT Wizard for exporting a signed APK: checking and saving the APK file

The certificated APK file can now be deployed to your users.

That completes our migration of the chapter example project to the Eclipse/ADK

development environment. You should now be sufficiently comfortable with the

spectrum of Android development tools to be able to make full use of an IDE such as

Eclipse to boost your productivity significantly.

CHAPTER 2: Development Tools in Practice 104

Summary
In this chapter, you learned how to create and use a fully functional Android

development environment using a selection of out-of-the-box Android SDK tools and an

open-source programming text editor. In addition, the work was based on a practical

demonstration project with several reusable code sections as its subject matter.

This was followed by walking through a migration of the example project to the Eclipse

IDE by importing the source code using the Eclipse/ADT plugin wizards. This allowed us

to demonstrate taking advantage of some of the Android-specific development features

of the Eclipse ADT plugin while building on the understanding of the core toolset

covered during the earlier part of the chapter.

105

105

 Chapter

Roll Your Own Android
Scripting Environment
A device running Android is by definition a full-blown computing platform.

Considering this, it’s not a giant leap of the imagination to wonder about the feasibility of

entering programming code directly on the device and having this code execute

immediately without any intervening compilation, build, and deployment cycle. In other

words, can an Android device work as a handheld, onboard environment for writing and

running small scripts and programs?

Perhaps you’ve found yourself wanting the convenience of tinkering on your phone with

a small algorithm or piece of code logic while on the bus, train or plane. Ideally, you’d be

able to do this in an iterative manner so that each bit of logic can be run instantly,

resulting in immediate feedback.

Maybe you’ve wished for the ability to customize and configure the behavior of a favorite

application by attaching bits of instantly runnable code to well-defined user modifiable

points in the software. These sections of code could then be invoked at runtime and,

based on the input, would change the way the application performed its tasks.

In these scenarios, our application would effectively become the host for a guest

programming-language interpreter. Assuming that the interpreter is component-based, it

could, in theory, be plugged into host applications of widely varying design and

functional purpose.

In general, such dynamic and interpretive programming activities are known as scripting,

and they fall within the realm of scripting languages, interpreters, and domain specific

languages (DSLs). The sequence of actions that read the code to be executed and finally

end up with a result is also commonly called “evaluation”; hence the frequent existence

of methods or functions called “eval” in the implementation code of such environments.

As we’ve learned so far, the Android OS is by design a flexible, componentized,

configurable, and pluggable open source operating platform. Thus, it makes sense to

3

CHAPTER 3: Roll Your Own Android Scripting Environment 106

expect we can implement our own scripting environment for our handheld Android

device.

In this chapter we will show you how to do just that. We will build our own scripting

environment that uses an embedded interpreter to evaluate small scripts and programs

written in the BASIC programming language. This interpreter, or engine, was originally

written over a decade ago to demonstrate the flexibility and capabilities of Java and the

JVM, as well as to show how to implement such a scripting engine using just Java. It is

called Cocoa-BASIC and is fully implemented in the Java programming language,

making it a good candidate for integration into a standard Android Java-based

application.

We assume here that you, as a developer who knows Java, will understand enough of

the BASIC language constructs and syntax to follow along. The COCOA programming

documentation that we’ll refer to also covers the syntax elements and functions

supported by the Cocoa-BASIC implementation.

First we’ll run through some architectural and design considerations in order to give

context and meaning to the practical implementation. We will then demonstrate the

BASIC interpreter running in a standard or classic Java AWT (Abstract Window Toolkit)

desktop GUI configuration as it was originally conceived. Next we’ll cover porting the

interpreter to the Android platform where we embed the engine into an Android Activity

that acts as the host application for the interpreter. Not only is this application a

controller for the interpreter, it also has some basic features that make it a convenient

environment for using the interpreter.

This will essentially create a no-frills but complete onboard environment that will enable

you to write and run small BASIC scripts and programs directly on your Android device.

This implementation will not be an industrial-strength programming tool, but it will

certainly provide the foundation and understanding necessary for building one.

Along the way, the project will also allow us to gain further insights into the function and

potential of the Android development platform.

Designing a Scripting Environment
Before we dive in, let’s have a short planning session and think through the core

architectural and design concepts relevant to making our own scripting environment.

The Components of a Scripting System
A scripting system can consist of several components and these can be arranged in a

number of configurations.

Seen from a very high level, you’ll generally find three components overall, two of which

are the main building blocks:

CHAPTER 3: Roll Your Own Android Scripting Environment 107

 The Application: The logical container and owner of our functionality

and features. In summary, the application is what a particular piece of

software is all about. It embodies the purpose of the software. No

matter how many hidden, self-contained bits and pieces of other

software are running behind the scenes, from the user’s perspective

the application is the sum total of the software.

 The Interpreter: The engine that processes the script code and

evaluates it to end up with some result.

These two logical components can both be implemented to be run in either of two roles:

 The Host: Also known as the controller or the client, this is the part of

the application the user will see and interact with. It makes calls or

requests to the guest via some form of interface, such as IPC, sockets,

files, I/O streams etc. In essence, the host is extended by the guest.

 The Guest: Also known as the provider or the server, generally this

component will not be seen by the user since it is embedded within

the host. It services the host with responses to its requests via an

interface such as local or remote method calls, sockets, files, I/O

streams, etc.

The third part of the picture is not strictly a design component but rather the

unavoidable basis upon which the scripting system functions:

 The Platform: The operating system or virtual machine, which can be

viewed as one of the building blocks even though it is not strictly a

direct structural component of the architecture. Our application code

should generally interface only with the operating platform via a well-

known and officially published set of platform APIs. In our case, these

will be the Android APIs that are published and documented in the

Android SDK.

The Component Roles in a Scripting System
As part of the foundation for our interpreter environment design, we will quickly

summarize and clarify the possible roles of the guest and host components.

Extending the Application by Embedding the Interpreter
In this scenario, the application performs the role of host for the interpreter. As depicted

in Figure 3–1, the interpreter is embedded within the overall application and hidden from

the direct view of the end user. The application might present some kind of interface for

directing the functioning of the interpreter engine, but always acts as the final controller

in this configuration.

CHAPTER 3: Roll Your Own Android Scripting Environment 108

Figure 3–1. Embedding scripting architecture

As you will see, we will use this design for our scripting environment implementation.

Extending the Interpreter by Embedding the Application
Even though we will not be using this design approach, we will cover it for the sake of

completeness. As shown in Figure 3–2, the roles have now been reversed and the

scripting engine itself becomes the primary usage interface for the application. In

essence, it becomes the application.

This is a common configuration where the application services an end-user base

consisting of skilled or specialist users with technical know-how and advanced

requirements.

For instance, the application could be an interactive domain-specific command-line or

console terminal shell that allows direct execution of script commands by its users.

These script commands then invoke application-specific core functionality from

business libraries wrapped as modules embedded within the script environment.

Database engines often ship with such applications that allow the interpretation and

execution of backend database administration or data-query commands interactively

from a shell.

Figure 3–2. Extending scripting architecture

CHAPTER 3: Roll Your Own Android Scripting Environment 109

It is worth mentioning that it’s often useful to apply a cross-over or mix-and-match

approach that melds these two design strategies. This can be the case in scenarios

where we implement a shell-like scripting interpreter in a graphical toolkit environment.

In other words, this can be desirable when the interpreter is lightly wrapped in a thin GUI

shell that may be significantly more code-intensive than if the interface were a lean

console shell.

Designing for Resource-Constrained Systems
Operating systems such as Android are designed to execute on resource-constrained

hardware. As such, these platforms do not take kindly to lax application response times.

When these become extreme and regular enough, they certainly affect the perception

and popularity of the application with its intended end users.

In fact, the Android system enforces and encourages responsive user interface

applications by applying timeouts on long-running application processes, particularly

GUI code. The system does this mostly to avoid a state known as ANR, or Application
Not Responding, which generally results in the Android system presenting the user with

an ANR Dialog as shown in Figure 3–3. This dialog is something we want to avoid as a

matter of course when we develop Android applications.

Figure 3–3. The Android “Application Not Responding” dialog

What does all of this imply for our onboard interpreter design? It means that our script

can’t just go off and leave the application’s user interface to its own devices. Such

behavior will very likely hang of freeze the user interface while it waits for the script

interpreter process to rejoin the application.

CHAPTER 3: Roll Your Own Android Scripting Environment 110

More information and guidelines on this subject can be found on the Android Developers

“Designing for Responsiveness” web site.1

Multi-Threading for Background Code
Whenever we predict—or even just have a suspicion, however vague—that our scripting

code might at times take a relatively long time to execute, it is always a good idea to

consider using asynchronous processing via threads. This is especially appropriate

when our script interpreter engine is being hosted in an end-user application with a

single-threaded graphical user interface.

GUI frameworks commonly execute on a single main application thread, and it is

imperative that this thread is not in any way choked or blocked into unresponsive

behavior. When the application defers to performing background work, such as network

access or database queries running on the main GUI thread, this can result in a user

interface that no longer responds to GUI events for intermittent periods of time—or

worse.

The Android operating environment is no exception when it comes to its user interface

toolkit threading model. By default, Android applications are run by the system on a

single thread called main. This is also known as the UI thread, and it is the thread that is

responsible for dealing with the user interface and interacting with the UI components of

the Android platform.

You’ll find more information regarding threading on the Android Developers Application

Fundamentals web page under the “Processes and Threads” heading.2

As a final word on threading here, we will mention that in our scripting environment

implementation, we will also demonstrate running the interpreter engine on a separate

thread using the recommended Android asynchronous processing pattern.

Programming with BASIC
Some readers may wonder about our choice of the BASIC programming language for

this chapter. It may come as a surprise to learn that selecting BASIC for the essential

“roll your own” aspects of the chapter was, in fact, a no-brainer.

This is due to the history, design, popularity, and, indeed, the very nature of BASIC. It

fairly concisely wraps up fundamental and core programming constructs and concepts

in a small language that is easy to learn. Most of its relatively few core statements and

function names are short and easy to remember. Notably, they are also easy to type on

a device with a small keyboard and screen.

1
 http://developer.android.com/guide/practices/design/responsiveness.html

2
 http://developer.android.com/guide/topics/fundamentals.html#procthread

http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/guide/topics/fundamentals.html#procthread

CHAPTER 3: Roll Your Own Android Scripting Environment 111

These attributes and the language’s approachability for a potentially large audience of

users make it a very appropriate choice for running on popular and highly mobile small

devices.

A BASIC Backgrounder
The BASIC programming language was designed to be easy to teach and easy to learn.

Unlike many other languages that were created for the same reason, BASIC can claim a

huge number of programmers who were introduced to programming with the language

and used it as their first coding environment.

WHAT IS BASIC? BASIC is an acronym that stands for “Beginner’s All-purpose Symbolic
Instruction Code.” It was originally created in 1964 by the computer scientists Kemeny and Kurtz.

The main purpose was to teach programming skills to those who weren’t scientists or
mathematicians, who produced most software applications at the time. There was growing
demand for software applications and it was felt that the pool of programming talent could be

significantly extended through the introduction of a new generation of high-level programming

languages such as BASIC.

BASIC is also unique in that many of its implementations are interpreters. This

significantly tightens the feedback loop between the programmer and the development

system. Such an iterative programming environment leads to rapid prototyping of

systems and a highly accelerated learning pace.

It therefore comes as no surprise that most modern scripting languages follow the same

interpretive route and should concede this as one of the main reasons for their rapid

growth and adoption by the programming community.

Cocoa—A BASIC Interpreter for Java
For this project, we selected the Cocoa-BASIC interpreter for Java. It was originally

created in 1996 by Chuck McManis and featured in a series of articles for JavaWorld3

entitled “How to build an interpreter in Java.”4 These articles are still available on the

JavaWorld web site at the time of this writing and some of the pages are included in the

code download archives as part of the documentation.

The source code and documentation for Cocoa BASIC are downloadable and free for

learning and noncommercial purposes from the Cocoa home page.5

3 http://www.javaworld.com/

4 http://www.javaworld.com/jw-05-1997/jw-05-indepth.html

5 http://www.mcmanis.com/chuck/java/cocoa/

http://www.javaworld.com/
http://www.javaworld.com/jw-05-1997/jw-05-indepth.html
http://www.mcmanis.com/chuck/java/cocoa/

CHAPTER 3: Roll Your Own Android Scripting Environment 112

COCOA-BASIC IS NOT OPEN SOURCE: Please note that Cocoa-BASIC is not published under an
open source license. The author has kindly given permission for us to use the Cocoa-BASIC code
for the chapter project, and you are free to explore and use it for learning although it remains

copyrighted.

More programming documentation for Cocoa-BASIC is available in the code distribution

download and on the reference web site.6

Outlining the Code Projects for This Chapter
This chapter presents two code projects. Both can be downloaded from the book web

site as part of the resources for this chapter:

 Cocoa-BASIC AWT (cocoa-basic-awt): This is the original Java AWT-

based hosting code. It is directly based on the code that can be

downloaded from the Cocoa-BASIC home web site. We have

collected and organized the code into packages with only the relevant

source files and dependencies actually needed by the interpreter and

the AWT GUI host application. The project is in the form of an IntelliJ

IDEA IDE project but can easily be imported and built in other IDEs.

 CocoaDroid (cocoadroid): This is the full implementation of our

Android-based onboard scripting environment that embeds the BASIC

interpreter engine. It is also in the form of an IntelliJ IDEA IDE project.

We will go through the functioning, source code, and relevant resources of these two

projects in detail during the remainder of this chapter.

The Cocoa-BASIC AWT Project
Before we dive into the Java AWT desktop GUI version of the scripting environment,

let’s take a quick look at the overall design paradigm of the application. We will meet

these design aspects and component classes again in the Android application

implementation, so it’s worth covering this material now.

Understanding the Cocoa-BASIC AWT Application Design
Building on our earlier overall logical architecture and design diagrams, we present a

similar depiction relevant to the AWT-based Java desktop host application in Figure 3–4.

6 http://www.mcmanis.com/chuck/java/cocoa/basic_doc.html

http://www.mcmanis.com/chuck/java/cocoa/basic_doc.html

CHAPTER 3: Roll Your Own Android Scripting Environment 113

Figure 3–4. Cocoa-BASIC AWT embedded scripting architecture

We have added slightly more detail relating to the main classes for the script engine and

the core application. As you can see, the key actors in terms of classes are:

 The Application

 BASIC: The startup application class that contains the Java main

method. It instantiates the two main classes of the GUI

application (ConsoleWindow) and the interpreter

(CommandInterpreter) and hooks up their mechanism of

communication: one instance each of InputStream and

OutputStream derived classes, which, in this case, is

DataInputStream for interpreter input and PrintStream for output.

 ConsoleWindow: This class manages the user interface. It is the

View of the application. It also embeds an instance of the

KeyboardBuffer class, which manages the lower-level aspects of

the Input- and OutputStream communications with the

CommandInterpreter class instance.

 KeyboardBuffer: This class manages the interaction between the

commands typed via the keyboard and the resulting output

received from the interpreter.

 The Interpreter

 CommandInterpreter: The class that encapsulates the script

engine. All host application interaction and communication with

the script interpreter occurs through this class.

 Program: The backend class that wraps an executable unit of

code that can be logically described as a “program.”

We will look at the source code for these classes shortly. First let’s step through what

the application actually does and see what it looks like when it runs.

CHAPTER 3: Roll Your Own Android Scripting Environment 114

Running the Cocoa-BASIC AWT Desktop Application
We are not going to go into the details of building and running the application from the

IDE. We assume you are proficient enough with Java development tasks to be able to

do this on your own.

Assuming we’ve built the project according to the downloadable book sample code

project, the condensed project file directory should be similar to the one in Listing 3–1.

Listing 3–1. The Cocoa-BASIC AWT Condensed Project Folder

cocoa-basic-awt
+---cocoa
| +---basic
| | BASIC.java
| | CommandInterpreter.java
| | Program.java
| | ...
| +---dlib
| | ConsoleWindow.java
| | KeyboardBuffer.java
| \---util
| | ...
+---out
| +---artifacts
| | atest1.bas
| | atest2.bas
| | cocoa-basic-awt.jar
| | ...
\---test-scripts
 | ...

Take note of the location of the cocoa-basic-awt.jar file. We will start the application by

issuing the following command from the terminal where the jar file resides:

java -jar cocoa-basic-awt.jar

This should start the application with the main window displayed as in Figure 3–5.

Figure 3–5. Cocoa-BASIC AWT main window

This displays a small application banner. To actually run any code, we select File ➤ New

from the menu as in Figure 3–6.

CHAPTER 3: Roll Your Own Android Scripting Environment 115

Figure 3–6. Opening a new Cocoa-BASIC AWT buffer

This should present the new window buffer in Figure 3–7.

Figure 3–7. Running code in a new buffer

Enter some code as per Figure 3–7 and Listing 3–2 into the window text buffer to

exercise the interpreter. Don’t type the “>>” characters; they are for clarity only. The

expected interpreter response is indicated by the absence of these characters.

Listing 3–2. Simple BASIC Test Code

>> let a$ = "we will make this work on android too…"
>> print a$
we will make this work on android too…

Assume that we have, for testing convenience, placed our cocoa-basic-awt.jar file and

the atest2.bas BASIC test code file in certain folders, as follows.

On Linux and Mac OS X:

/home/<user>/cocoa-basic-awt/

And on Windows:

C:_dev_\cocoa-basic-awt\

Now we run the application as before and enter the following commands into a new file

buffer. The expected interpreter response is also listed in the transcripts.

On Linux and Mac OS X (see Figure 3–8):

>> load "/home/<user>/cocoa-basic-awt/atest2.bas"
File loaded.
Ready.

CHAPTER 3: Roll Your Own Android Scripting Environment 116

Figure 3–8. Loading a program‘s source code file in a new buffer (Linux/Mac OS X)

And on Windows (see Figure 3–9):

C:_dev_\cocoa-basic-awt\
>> load "C:_dev_\cocoa-basic-awt\\atest2.bas"
File loaded.
Ready.

Figure 3–9. Loading a program‘s source code file in a new buffer (Windows)

Now open a new file buffer, type the list command and press Enter. The loaded

program should be listed in the buffer as in Figure 3–10.

CHAPTER 3: Roll Your Own Android Scripting Environment 117

Figure 3–10. Listing a source code file in a new buffer

Again, open a new file buffer, type the run command, and press the Enter key. The

loaded program should be executed by the BASIC interpreter, producing the output

listed in the buffer as shown in Figure 3–11.

CHAPTER 3: Roll Your Own Android Scripting Environment 118

Figure 3–11. Running a loaded program

This concludes our demonstration of the application.

Reviewing the Cocoa-BASIC AWT Source Code
Now that we understand the flow of the application a little better, let’s take a look at

some of the source code. Please refer back to the architecture overview diagrams earlier

in this chapter for a conceptual refresher if necessary.

Listing 3–3 shows the source code of the main Java startup file for this application,

BASIC.java. Code of interest is highlighted in bold.

Listing 3–3. The Cocoa-BASIC AWT BASIC .java Startup Class

package cocoa.basic;

import java.io.*;
import cocoa.dlib.*;

public class BASIC {
 public static void main(String args[]) {
 char data[] = new char[256];
 ConsoleWindow cw = new ConsoleWindow("Java BASIC 1.0");

 CommandInterpreter ci = new CommandInterpreter(cw.DataInputStream(),
 cw.PrintStream());
 try
 {
 ci.start();
 }
 catch (Exception e)
 {
 System.out.println("Caught an Exception :");
 e.printStackTrace();
 try
 {

CHAPTER 3: Roll Your Own Android Scripting Environment 119

 System.out.println("Press enter to continue.");
 int c = System.in.read();
 }
 catch (IOException xx)
 {
 /* pass */
 }
 }
 }
}

As explained earlier, it is important to note that the stream instances, InputStream and

OutputStream, of the two classes, CommandInterpreter and ConsoleWindow, are hooked

together upon instantiation via the CommandInterpreter class constructor.

 ConsoleWindow cw = new ConsoleWindow("Java BASIC 1.0");
 CommandInterpreter ci = new CommandInterpreter(cw.DataInputStream(),
 cw.PrintStream());

This causes input into the console window to be streamed into the interpreter, and

output from the interpreter to be printed to the console window via the print stream.

Listing 3–4 shows a segment of source code from the CommandInterpreter class. Again,

code of interest is highlighted in bold. As we can see, the constructor ensures that there

are always input and output stream instances available.

Listing 3–4. I/O Streams and the CommandInterpreter Class (partial)

package cocoa.basic;

import java.io.*;

/**
 * This class is an "interactive" BASIC environment. You can think of it as
 * BASIC debug mode. Using the streams you passed in to create the object, it
 * hosts an interactive session allowing the user to enter BASIC programs, run
 * them, save them, and load them.
 */
public class CommandInterpreter
{
 private DataInputStream inStream;
 private PrintStream outStream;

 final static String commands[] = {
 "new", "run", "list", "cat", "del", "resume",
 "bye", "save", "load", "dump", "cont",
 };

[--code omitted--]
 /**
 * Create a new command interpreter attached to the passed
 * in streams.
 */
 public CommandInterpreter(InputStream in, OutputStream out)
 {
 if (in instanceof DataInputStream)
 {

CHAPTER 3: Roll Your Own Android Scripting Environment 120

 inStream = (DataInputStream) in;
 }
 else
 {
 inStream = new DataInputStream(in);
 }
 if (out instanceof PrintStream)
 {
 outStream = (PrintStream) out;
 }
 else
 {
 outStream = new PrintStream(out);
 }
 }

[--code omitted--]

NOTE: We will not be going into the details of the BASIC language interpreter implementation.
This is outside the scope of this chapter since this is an Android programming book, not a
computer language implementation book. We are focused on the Android platform and the

Android programming techniques that make an application such as this possible. As mentioned

before, the full source code is available as organized projects for your perusal and study.

Let’s move on to the feature project of this chapter, CocoaDroid, our onboard BASIC

interpreter and scripting application.

The CocoaDroid Project
To begin the coverage of this project, we present a short table of dependencies (Table

3–1) to serve as a reminder of what to check before running the application in an

emulator on our development system. Then, as with the previous project, we take a

quick look at the conceptual architecture of the application.

A Preflight Checklist
Table 3–1 lists some configuration items you’ll need to take care of in order to test the

project. Of course, you are free to set up your configuration to your own liking, but these

dependency items should generally be checked in any case.

AVD ANDROID PLATFORM LEVEL: The dependency list in Table 3–1 assumes that the Android
platform API Level android-9 has been installed on your system. This is for Android 2.3, the
latest version at the time of this writing. Be sure you know which platform you are creating your
AVD for. At the time of this writing, CocoaDroid was built for running on the Android 2.2 (Froyo)

and the Android 2.3 (Gingerbread) platforms.

CHAPTER 3: Roll Your Own Android Scripting Environment 121

We will not be covering how to run the project on the emulator in any depth here

because we assume you’ve been brought up to speed by reading our first two chapters

of this book. Table 3–1 is meant to be simply a convenient reminder.

Table 3–1. CocoaDroid Project Debugging Dependency Checklist

Item Value or Command

PATH <Android SDK Directory>/tools

PATH <Android SDK Directory>/platform-tools

Create an AVD android create avd -n android23api9_hvga_32mb -t android-9 -c 32M

List AVDs android list avd

Delete an AVD android delete avd -n android23api9_hvga_32mb

Understanding the CocoaDroid Application Design
It is a good idea to have a mental map of how our application’s main components fit

together, so let’s take a look at the conceptual architecture diagram in Figure 3–12.

Figure 3–12. CocoaDroid Embedded Scripting Architecture

As you can see, the overall logical design of the application remains very similar to that

of the earlier Java AWT version.

CHAPTER 3: Roll Your Own Android Scripting Environment 122

The main actors in terms of classes are:

 The Application

 CocoaDroidActivity: The main entry point of the application. The

Cocoa-BASIC interpreter will be embedded in the

CocoaDroidActivity Android Activity, which will set up an

InputStream and an OutputStream, create an instance of a

CommandInterpreter, and pass in references to the two stream

instances. These streams will be used to direct communication

back and forth between the CocoaDroidActivity and the

CommandInterpreter instances. Note further down that our

particular flavor of this class is a subclass called

CocoaDroidCommandInterpreter. Figure 3–12 still depicts the

name of the parent class since logically nothing has really

changed in the conceptual design.

 CommonAndroidCodeLibrary: This class services the application

with several common operations. They are loosely organized as

a set of static methods.

 The Interpreter

 CocoaDroidCommandInterpreter: The class that encapsulates the

script engine. All host application interaction and communication

with the script interpreter occurs through this class. In the case

of the CocoaDroid application, we created a subclass of

CommandInterpreter called CocoaDroidCommandInterpreter that

has been altered slightly to fit an Android Activity based

environment better.

 Program: The backend class that wraps an executable unit of

code that can be logically described as a “program.” It remains

exactly as before in the AWT desktop-based project.

We will review some application source code as we go along, but first let’s see what the

application looks like.

Running the CocoaDroid Android Application
Building and running the application with the IDE and the Android emulator is, once

again, assumed to be within the proficiency and skill set of the reader. We will not cover

those steps here.

When we’ve built our application and installed it to an emulator or a physical device, we

should see the CocoaDroid application icon on the Application Launcher, as per Figure

3–13.

CHAPTER 3: Roll Your Own Android Scripting Environment 123

Figure 3–13. The CocoaDroid application launcher

The Elements of the CocoaDroid Main Activity Screen
When we launch the application, we should see the “CocoaDroid – BASIC for Android”

startup Activity as shown in Figure 3–14.

Figure 3–14. The CocoaDroid main Activity screen on startup

CHAPTER 3: Roll Your Own Android Scripting Environment 124

The application prints a startup banner and a ready message. This means that

CocoaDroid is now prepared to accept and evaluate strings or listings of commands and

statements in the BASIC programming language.

The CocoaDroid application main Activity screen is organized with the following

elements:

 The Input (or Code) Text Field: An Input entry field for the interpreter

and programming language commands. This is an instance of the

Android EditText View class.

 The Toolbar: A tool layout with four buttons. The first button is an

instance of the ImageButton View class and the others are standard

Button instances. They are arranged within an embedded

LinearLayout instance.

 Run (the black box with the green arrow). This initiates the

creation of an interpreter instance and pushes the code in the

input text field onto an input stream. This stream feeds into the

interpreter CocoaDroidCommandInterpreter instance. The

interpreter evaluates this code and streams the result back via an

output stream from which it is pulled and placed into the output

text field.

 Load. This button loads text that was previously saved to two

persistent scratch files, one each for input and output, using the

Save button. The feature allows you to keep a single record of the

last input and output session text values.

 Save. This button saves the text currently in the input and output

text fields, which can then be reloaded with the Load button. It

keeps only a single session record at a time, overwriting the

previous input and output scratch files with the new values.

 Clear. This button clears the input and output text field values in

order to present a clean working area. The output of the last

execution run is not lost but pushed onto the top of the history

list (described shortly).

 The Output (or Results) Text Field: An output field that lists the result

of the interpreter evaluation. This is also an instance of the Android

EditText View class, so its contents can be manipulated.

 The History List: A list of previous interpreter output results that scroll

downward from the second-most recent to the earliest. Each

evaluation result is added to the top of this list when it is replaced by

the output of a new interpreter run. This list is an instance of ListView.

 The Main Menu: CocoaDroid also has an Android application menu

that is not immediately visible. It provides the user with a few more

features and is portrayed in Figure 3–15.

CHAPTER 3: Roll Your Own Android Scripting Environment 125

 Load Samples. The CocoaDroid application package ships with a

file containing small snippets of BASIC code that you can copy

and paste into the input text filed to use as a basis for your own

programs. The file is stored internally as a raw resource file

asset. We will cover this in more detail later.

 Load Work. Besides letting you store a copy of an input/output

session, CocoaDroid also lets you save a buffer of text we call

Work to an application text file. This menu item retrieves the data

currently saved and populates the input text field with it when

selected.

 Save Work. This menu item saves the current contents of the

input text field and writes it to a private application file as

described in the Load Work section.

 About CocoaDroid. When this menu item is selected, a short

notice banner is printed by the CocoaDroid interpreter to the

output results text field. For the sake of demonstration and

technical value, we decided to use Cocoa-BASIC code itself to

write this message. We will cover this in more detail later.

The Main XML Layout Resource
We have introduced and explained the main user interface controls of the CocoaDroid

application. The content of Listing 3–5, the main XML layout resource file, shows the UI

Toolkit types and attributes for the user interface.

Listing 3–5. main.xml

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/scroll_view_main"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:fillViewport="true"
 >
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <EditText
 android:id="@+id/txt_input"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:scrollbars="vertical">
 </EditText>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="@android:drawable/bottom_bar"
 android:gravity="center_vertical">

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 3: Roll Your Own Android Scripting Environment 126

 <ImageButton
 android:id="@+id/cmd_enter"
 android:src="@drawable/btn_run"
 android:layout_width="0dip"
 android:layout_weight="2.0"
 android:layout_height="wrap_content"/>
 <Button
 android:id="@+id/cmd_load_scratch"
 android:layout_width="0dip"
 android:layout_weight="1.0"
 android:layout_height="wrap_content"
 android:text="Load"/>
 <Button
 android:id="@+id/cmd_save_scratch"
 android:layout_width="0dip"
 android:layout_weight="1.0"
 android:layout_height="wrap_content"
 android:text="Save"/>
 <Button
 android:id="@+id/cmd_clear"
 android:layout_width="0dip"
 android:layout_weight="1.0"
 android:layout_height="wrap_content"
 android:text="Clear"/>
 </LinearLayout>
 <EditText
 android:id="@+id/txt_output"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:scrollbars="vertical">
 </EditText>
 <ListView
 android:id="@+id/lst_output"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
 </LinearLayout>
</ScrollView>

The Application Activity Class
To get a better idea of the user interface implementation from the Java code

perspective, Listing 3–6 shows a partial representation of the application Activity class

source file.

Listing 3–6. CocoaDroidActivity.java (partial)

public class CocoaDroidActivity extends Activity implements View.OnClickListener
{
 protected static final String TAG = "CocoaDroidActivity";

 protected EditText _txtInput = null;
 protected EditText _txtOutput = null;
 protected ImageButton _cmdEnter = null;
 protected Button _cmdLoadScratch = null;
 protected Button _cmdSaveScratch = null;

CHAPTER 3: Roll Your Own Android Scripting Environment 127

 protected Button _cmdClear = null;
 protected ListView _outputListView = null;
 OutputStringArrayAdapter _outputArrayAdapter = null;
 ArrayList<String> _outputArrayList = new ArrayList<String>();
 // The input and output streams that form the communications
 // channels with the Cocoa-BASIC interpreter
 protected ByteArrayInputStream _inputStream = null;
 protected ByteArrayOutputStream _outputStream = null;
 // The embedded Cocoa-BASIC interpreter instance reference
 protected CocoaDroidCommandInterpreter _commandInterpreter = null;

 /**
 * Called when the activity is first created.
 */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 Log.d(TAG, "onCreate(): ...");
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 initialize();
 }

 /**
 * Sets up Activity user interface controls and resources.
 */
 protected void initialize()
 {
 // set a custom title from the strings table
 setTitle(getString(R.string.app_desc));

 // get a handle on and configure the input and text fields
 _txtInput = (EditText) findViewById(R.id.txt_input);
 _txtInput.setTextSize(TextSize.NORMAL);
 _txtInput.setTypeface(Typeface.MONOSPACE);
 _txtOutput = (EditText) findViewById(R.id.txt_output);
 _txtOutput.setTextSize(TextSize.NORMAL);
 _txtOutput.setTypeface(Typeface.MONOSPACE);
 _txtOutput.setTextColor(Color.GREEN);
 _txtOutput.setBackgroundColor(Color.DKGRAY);

 // get a handle on the enter command button and its event handler
 _cmdEnter = (ImageButton) findViewById(R.id.cmd_enter);
 _cmdEnter.setOnClickListener(this);

 // get a handle on the scratchpad buttons and event handling
 _cmdLoadScratch = (Button) findViewById(R.id.cmd_load_scratch);
 _cmdLoadScratch.setOnClickListener(this);
 _cmdSaveScratch = (Button) findViewById(R.id.cmd_save_scratch);
 _cmdSaveScratch.setOnClickListener(this);

 // button for clearing buffers
 _cmdClear = (Button) findViewById(R.id.cmd_clear);
 _cmdClear.setOnClickListener(this);

 // set up and get a handle on the output list view using an array adapter
 _outputListView = (ListView) findViewById(R.id.lst_output);

CHAPTER 3: Roll Your Own Android Scripting Environment 128

 _outputArrayAdapter = new OutputStringArrayAdapter(this, _outputArrayList);
 _outputListView.setAdapter(_outputArrayAdapter);

 // show the startup about banner
 showAbout();

 // and let the interpreter show a little sample
 String print_hello = "print \">> ready...\"";
 evalCodeStringSync(print_hello);
 _txtInput.setText("");
 }
[--code omitted--]

As highlighted in bold, to keep the onCreate method cleaner we have split most of the

initialization code into a separate initialize method.

The snippet of code below, extracted from Listing 3–6, shows the input and output

stream references we discussed earlier. They are the variables we will use to feed code

to the interpreter and to receive results back. The code also shows the reference,

CocoaDroidCommandInterpreter, to the CocoaBASIC interpreter engine itself. We will

discuss this later when we look at the methods that use it.

 // The input and output streams that form the communications
 // channels with the Cocoa-BASIC interpreter
 protected ByteArrayInputStream _inputStream = null;
 protected ByteArrayOutputStream _outputStream = null;
 // The embedded Cocoa-BASIC interpreter instance reference
 protected CocoaDroidCommandInterpreter _commandInterpreter = null;

Implementing a Custom ArrayAdapter
From Listing 3–6, we also draw attention to this piece of code:

 // set up and get a handle on the output list view using an array adapter
 _outputListView = (ListView) findViewById(R.id.lst_output);
 _outputArrayAdapter = new OutputStringArrayAdapter(this, _outputArrayList);
 _outputListView.setAdapter(_outputArrayAdapter);

You might be wondering about the OutputStringArrayAdapter class we refer to in the

snippet above. When we build up our ListView, we use a custom ArrayAdapter class,

OutputStringArrayAdapter, instead of the standard Android one. Its implementation is

shown in Listing 3–7.

Listing 3–7. OutputStringArrayAdapter — CocoaDroidActivity.java (partial)

/**
* Custom String ArrayAdapter class that allows us to manipulate the row colors etc.
*/
protected class OutputStringArrayAdapter extends ArrayAdapter<String>
{
 OutputStringArrayAdapter(Context context, ArrayList<String> stringArrayList)
 {
 super(context, android.R.layout.simple_list_item_1, stringArrayList);
 }

 public View getView(int position, View convertView, ViewGroup parent)

CHAPTER 3: Roll Your Own Android Scripting Environment 129

 {
 TextView txt = new TextView(this.getContext());
 txt.setTextColor(Color.GREEN);
 txt.setTextSize(TextSize.SMALL);
 txt.setText(this.getItem(position));
 return txt;
 }
}

The purpose of this class is essentially cosmetic—it serves mainly to override the

getView method in order to apply a different look to the command history list child rows,

and it changes the text font size and text color to fit in with the rest of the Activity. We

want the history text entries slightly smaller and in green on a black background.

The Application XML Strings Table
The application code extensively (but not exclusively) uses strings stored in an XML

strings table (strings.xml). We show the contents of the strings table in Listing 3–8.

These values are retrieved throughout the application source code using the API

getString method.

Listing 3–8. strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">CocoaDroid</string>
 <string name="app_desc">CocoaDroid - BASIC for Android</string>
 <string name="app_copy_cocoabasic">CocoaBASIC Version 1.0 Copyright (C) 1996
 Chuck McManis. All Rights Reserved.</string>
 <string name="app_copy_cocoadroid">CocoaDroid Android Port Copyright (C) 2010
 Pieter Greyling. All Rights Reserved.</string>
 <string name="app_usage_01">Type in BASIC commands, scripts or programs and
 press Enter...</string>
 <string name="app_usage_02">Save and reload your session with Save and
 Load.</string>
 <string name="app_usage_03">Clear the buffers with Clear.</string>
 <string name="file_name_scratch_input">cocoadroid_scratch_input.txt"</string>
 <string name="file_name_scratch_output">"cocoadroid_scratch_output.txt"</string>
 <string name="file_name_work">"cocoadroid_work.txt"</string>
 <string name="file_name_samples">"program_templates/cocoadroid_basic_templates
.bas"</string>
 <string name="menu_work_load">Load Work</string>
 <string name="menu_work_save">Save Work</string>
 <string name="menu_samples_load">Load Samples</string>
 <string name="menu_app_about">About CocoaDroid</string>
 <string name="title_samples_file_load">Samples File Load</string>
 <string name="title_scratch_files_load">Scratch Files Load</string>
 <string name="title_scratch_files_save">Scratch Files Save</string>
 <string name="title_work_file_load">Work File Load</string>
 <string name="title_work_file_save">Work File Save</string>
 <string name="exception_on_samples_file_load">The Samples File could not be
 loaded! Please check your CocoaDroid installation.</string>
 <string name="exception_on_scratch_files_load">The Scratch Files could not be
 loaded! Save first.</string>
 <string name="exception_on_scratch_files_save">The Scratch Files could not be

CHAPTER 3: Roll Your Own Android Scripting Environment 130

 saved!</string>
 <string name="exception_on_work_file_load">The Work File could not be loaded! Save
 Work first.</string>
 <string name="exception_on_work_file_save">The Work File could not be
 saved!</string>
</resources>

Using XML Menu Layout Resources
We spoke earlier of the application menu. Figure 3–15 depicts its appearance.

Figure 3–15. CocoaDroid main menu

Instead of using pure Java code, our application menu is defined in the XML layout

resource shown in Listing 3–9.

Listing 3–9. cocoadroid_main_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/menu_itm_work_load"
 android:icon="@drawable/mnu_load_work"
 android:title="@string/menu_work_load">
 </item>
 <item
 android:id="@+id/menu_itm_work_save"
 android:icon="@drawable/mnu_save_work"
 android:title="@string/menu_work_save">
 </item>
 <item
 android:id="@+id/menu_itm_samples_load"

http://schemas.android.com/apk/res/android

CHAPTER 3: Roll Your Own Android Scripting Environment 131

 android:icon="@drawable/mnu_load_samples"
 android:title="@string/menu_samples_load">
 </item>
 <item
 android:id="@+id/menu_itm_app_about"
 android:icon="@drawable/mnu_about"
 android:title="@string/menu_app_about">
 </item>
</menu>

Declaring Android UI layouts7 in XML resources like this provides more flexibility to

support multiple physical screen configurations dynamically. Moreover, it supports

changes to the user interface without recompilation of the code. This technique also

follows the generally recommended principle of separating the presentation layout (UI)

from the application logic (code).

Using an Android Menu Inflater
The menu8 is created using an Android MenuInflater9 inside the overridden method of

the CocoaDroidActivity class (see Listing 3–10). This loads our

cocoadroid_main_menu.xml resource file and inflates the menu at runtime.

Listing 3–10. onCreateOptionsMenu — CocoaDroidActivity.java

/**
* Implement our app menu using an XML menu layout and the ADK MenuInflater.
*/
@Override
public boolean onCreateOptionsMenu(Menu menu)
{
 // always first delegate to the base class in case of system menus
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.cocoadroid_main_menu, menu);
 // true for a visible menu, false for an invisible one
 return true;
}

Our First Script, Hello Android BASIC!
We now understand some of the basic operations and the core ideas behind

CocoaDroid. Let’s finally try to run some code with it!

Type this code into the input field and press the Run button with the green arrow.

let hi$ = "Hello Android"
print hi$, "Practical Book!"

7
 http://developer.android.com/guide/topics/ui/declaring-layout.html

8
 http://developer.android.com/guide/topics/ui/menus.html

9
 http://developer.android.com/reference/android/view/MenuInflater.html

http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/guide/topics/ui/menus.html
http://developer.android.com/reference/android/view/MenuInflater.html

CHAPTER 3: Roll Your Own Android Scripting Environment 132

CocoaDroid should respond by printing the following to the evaluation output text field.

Hello Android Practical Book!

The output should look something like what’s shown in Figure 3–16.

Figure 3–16. Hello Android in BASIC

Recall from the earlier partial Listing 3–6 of CocoaDroidActivity.java that this class

handles clicks on UI Views centrally by implementing OnClickListener10 as follows:

public class CocoaDroidActivity extends Activity implements View.OnClickListener

Thus, when we click on the Run button, the onClick method in Listing 3–11 is invoked.

Listing 3–11. onClick — CocoaDroidActivity.java

 /**
 * Centralized onClick listener for all views, particularly buttons.
 *
 * @param v
 */
 public void onClick(View v)
 {
 Log.d(TAG, "onClick(): ".concat(v.toString()));
 String codeString = _txtInput.getText().toString();
 switch (v.getId()) {
 case R.id.cmd_enter:
 new EvalCodeStringAsyncTask().execute(codeString);
 break;

10

 http://developer.android.com/guide/topics/ui/ui-events.html

http://developer.android.com/guide/topics/ui/ui-events.html

CHAPTER 3: Roll Your Own Android Scripting Environment 133

 case R.id.cmd_load_scratch:
 loadScratchFiles();
 break;
 case R.id.cmd_save_scratch:
 saveScratchFiles();
 break;
 case R.id.cmd_clear:
 clearBuffers();
 break;
 default:
 // do nothing
 break;
 }
 }

The method extracts the textual code from the interpreter input field and then drops into

the case statement condition for the run button based on the id of the View that was

clicked (in this case the run Button cmd_enter). It then creates a new instance of the

EvalCodeStringAsyncTask class, passing in the code that needs to be interpreted. This

class takes care of running our code interpreter on a separate thread that doesn’t block

the user interface main thread while the interpreter is evaluating the code.

Running BASIC Code Asynchronously Using an Android AsyncTask
To run our code safely on a separate thread, we will create our own subclass of the

Android AsyncTask11 class. The Android Developers web site has a good introduction on

the subject of writing threading code in Activities called “Painless Threading.”12

Our threaded class is called EvalCodeStringAsyncTask and its implementation is shown

in Listing 3–12.

Listing 3–12. EvalCodeStringAsyncTask — CocoaDroidActivity.java

 /**
 * Handle program code interpretation as asynchronous operations.
 * android.os.AsyncTask<Params, Progress, Result>
 */
 protected class EvalCodeStringAsyncTask extends AsyncTask<String, Integer, String>
 {
 protected String doInBackground(String... codeString)
 {
 String result = "";
 Log.d(TAG, "doInBackground() [code]: \n" + codeString[0]);
 result = evalCodeString(codeString[0]);
 Log.d(TAG, "doInBackground() [eval]: \n" + result);
 publishProgress((int) (100)); // just to demonstrate how
 return result;
 }

11

 http://developer.android.com/reference/android/os/AsyncTask.html

12
 http://developer.android.com/resources/articles/painless-threading.html

http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/resources/articles/painless-threading.html

CHAPTER 3: Roll Your Own Android Scripting Environment 134

 /**
 * We leave this here for the sake of completeness.
 * Progress update is not implemented.
 *
 * @param progress
 */
 @Override
 protected void onProgressUpdate(Integer... progress)
 {
 setProgressPercent(progress[0]);
 }

 /**
 * Update the GUI output work result edit field.
 *
 * @param result
 */
 @Override
 protected void onPostExecute(String result)
 {
 writeOutput(result);
 }
 }

The AsyncTask generic class takes the following arguments when declared:

android.os.AsyncTask<Params, Progress, Result>

 Params indicates the types that our implementation of the subclass’s

overridden execute method will take. This is the same as for the

doInBackground method.

 Progress is the type for the overridden onProgressUpdate method.

 Result declares the type for the overridden method onPostExecute

that executes when the work is done and is the return value of the

doInBackground method.

As per Listing 3–12, our implementation looks like this:

EvalCodeStringAsyncTask <String, Integer, String>

When our task is fired, it runs the doInBackground method, which in turn calls the

evalCodeString method. This method is shown in Listing 3–13.

Listing 3–13. evalCodeString — CocoaDroidActivity.java

 /**
 * Interpret and execute (evaluate) the given code fragment.
 * It is invoked by the EvalCodeStringAsyncTask.
 *
 * @param codeString
 * @return The result of the evaluation drawn off the interpreter output stream.
 */
 protected String evalCodeString(String codeString)
 {
 Log.d(TAG, "evalCodeString(): " + codeString);

CHAPTER 3: Roll Your Own Android Scripting Environment 135

 String result = null;

 // set up and direct the input and output streams
 try {
 _inputStream = inputStreamFromString(codeString);
 _outputStream = new ByteArrayOutputStream();

 // fire up the command interpreter to evaluate the source code buffer
 _commandInterpreter =
 new CocoaDroidCommandInterpreter(_inputStream, _outputStream);
 try {
 _commandInterpreter.eval();
 // extract the resulting text output from the stream
 result = stringFromOutputStream(_outputStream);
 }
 catch (Throwable t) {
 result = ("UNSUPPORTED OPERATION!\n[\n" +
 codeString + "\n]\n" + t.toString());
 }
 }
 catch (Throwable t) {
 result = ("UNSUPPORTED OPERATION!\n[\n" +
 codeString + "\n]\n" + t.toString());
 }

 return result;
 }

First, the method creates an instance of a ByteArrayInputStream from the code string

and an instance of ByteArrayOutputStream to act as OutputStream for the interpreter

results. The code string is converted to a stream using a utility helper method,

stringFromInputStream, which essentially does the following:

return (new ByteArrayInputStream(codeString.getBytes(_encoding)));

The evalCodeString method next instantiates a new instance of the CocoaBASIC

interpreter class, CocoaDroidCommandInterpreter, and passes in the references to the

two stream instances. It then calls the eval method on the interpreter instance. The eval

method is the entry point into the CocoaBASIC engine black box, which works with

what is on the input stream and pipes the result back out via the output stream. This is

then passed into another stream utility method, stringFromInputStream, which reads the

bytes from the input stream and puts this buffer into a string as follows:

// extract the resulting text output from the stream
result = stringFromOutputStream(_outputStream);

This result is returned from the evalCodeString method and finally passed into a call on

the onPostExecute method by the AsyncTask implementation. Our override of

onPostExecute calls writeOutput, which is shown in Listing 3–14. This writes the

previous result to the history list and the new result to the output text field where it

appears to the user.

CHAPTER 3: Roll Your Own Android Scripting Environment 136

Listing 3–14. writeOutput — CocoaDroidActivity.java

 /**
 * Write code evaluation output to the result text view and roll the array list
 * with the stack of previous output results.
 */
 protected void writeOutput(String result)
 {
 if (0 == result.length() || "".equals(result.trim())) {
 result = "-- null or empty result --";
 }
 Log.d(TAG, "writeOutput(): " + result);
 // always add previous result to index 0; it is the top of the list
 _outputArrayList.add(0, _txtOutput.getText().toString());
 _outputArrayAdapter.notifyDataSetChanged();
 _txtOutput.setText(result); // to the scratch output area
 }

Now that we’ve looked in detail at the mechanisms at work when we submit a piece of

code, let’s move on to some other useful little features of the CocoaDroid application.

Saving Your Latest Session in Scratch Files
As mentioned previously in the section about the elements of the main CocoaDroid

Activity screen, the application supports saving the current contents of the input and

output text fields into two private application text files we call session “scratch files.”

When we first try to use the Load button, the application complains about not finding the

scratch files. It presents the alert dialog shown in Figure 3–17. Since it looks for the input

scratch file first, that’s the one listed in the error alert dialog.

Figure 3–17. Scratch files not found alert

CHAPTER 3: Roll Your Own Android Scripting Environment 137

NOTE: As a rule, end-user applications should not give away too many details about the
implementation of their internals. However, since this is a technical book for learning about
implementation details, we decided to show the path and file name in the alert dialog. For a

production release of the application, we would replace this alert message with something less

revealing but perhaps more useful for an end-user.

The implementation of the method that wraps this functionality is shown in Listing 3–15.

It is quite straightforward so we will not explain it further.

Listing 3–15. loadScratchFiles — CocoaDroidActivity.java

 /**
 * Reads work previously saved to the scratch files.
 * Note that we provide illustrative exception alerts which might or
 * might not be a wise thing for end-user applications in general.
 */
 protected void loadScratchFiles()
 {
 String scratch_input = "";
 String scratch_output = "";
 try {
 scratch_input = stringFromPrivateApplicationFile(this,
 getString(R.string.file_name_scratch_input));
 scratch_output = stringFromPrivateApplicationFile(this,
 getString(R.string.file_name_scratch_output));
 _txtInput.setText(scratch_input);
 _txtOutput.setText(scratch_output);
 }
 catch (Throwable t) {
 Log.e(TAG, "loadScratchFiles(): LOAD FAILED!", t);
 showOkAlertDialog(this,
 String.format("%s\n%s",
 getString(R.string.exception_on_scratch_files_load),
 t.toString()),
 getString(R.string.title_scratch_files_load));
 }
 }

The stringFromPrivateApplicationFile and showOkAlertDialog methods we use in the

listing were described in a previous chapter and can be reviewed from the downloadable

book source code.

Clicking the Save button causes the application to save the scratch files and to be able

to load them again later, so it should no longer complain about not finding the scratch

files. Figure 3–18 shows the toast that is displayed when we do this. We will not list the

implementation code for this. It is the inverse of the loading code we’ve already shown

and holds no revelations from an Android programming perspective.

CHAPTER 3: Roll Your Own Android Scripting Environment 138

Figure 3–18. Saving scratch files

The Clear button shown in Figure 3–19 behaves predictably and simply clears the input

and output fields. It does, however, also preserve a record of the contents of the output

field by rolling it to the top of the history list.

Figure 3–19. Clearing text fields

CHAPTER 3: Roll Your Own Android Scripting Environment 139

Figure 3–20 shows that when we now click the Load button, our previous session

reappears. This works even if we exit the application and it gets unloaded by the

Android runtime, even when the device or emulator is restarted. Only by explicitly

deinstalling the application or by removing the application data using the system

settings application can these files be removed.

Figure 3–20. Loading the previous session

Using the Work File
Besides the scratch files, the application also supports saving the current contents of

the input text field into another private application text file we call the “Work File.” This

provides users with the opportunity to keep a separate little work area with snippets of

code or a bigger program they are working on that will not be lost when they overwrite

the scratch files.

As per Figure 3–21, the Load Work menu item is on the left of the top row of the main,

and currently the only, application menu.

CHAPTER 3: Roll Your Own Android Scripting Environment 140

Figure 3–21. The Load Work menu item

When we first try to use this menu, the application will, as with the scratch files,

complain about not finding the work file. It will present the alert dialog shown in Figure

3–22.

Figure 3–22. Work File Load alert

CHAPTER 3: Roll Your Own Android Scripting Environment 141

Like the scratch files, we create the work file by saving from the menu, as shown in

Figures 3–23 and 3–24.

Figure 3–23. Save Work menu item

Figure 3–24. The work file is saved

CHAPTER 3: Roll Your Own Android Scripting Environment 142

We won’t spend more time on the work file since its implementation is identical to that

of the scratch files.

Viewing the Files in the DDMS File Explorer
We should at this point be able to view the application files with the Dalvik Debug

Monitor (DDMS) File Explorer which is part of the Android SDK Tools. Figure 3–25 shows

the files in the application package namespace.

Figure 3–25. CocoaDroid application scratch and work files viewed with the DDMS File Explorer

We covered the DDMS and File Explorer tool in an earlier chapter as part of the Android

Tools.

EMULATOR DATA DIRECTORY: You can find the application package data location in the

/data/data/ directory on the AVD when using the emulator.

Using the CocoaDroid BASIC Samples
Since we are now comfortable with the application menus, go to the Load Samples

menu item and select it. You should see the file contents as in Figure 3–26 loaded into

the input edit text field.

At the top of the file you should see the SCRIPTS area. These are snippets of code with

no line numbers. By scrolling down you’ll find the PROGRAMS area. See Figure 3–27.

These are more involved code snippets with BASIC line numbers, which allow

statements like GOSUB to function.

CHAPTER 3: Roll Your Own Android Scripting Environment 143

Figure 3–26. Loading Samples — Scripts

Figure 3–27. Loading Samples — Programs

CHAPTER 3: Roll Your Own Android Scripting Environment 144

Loading an Application Asset Resource
As mentioned before, the file containing the BASIC samples are stored in an application

asset file. The data from this file is retrieved by the implementation of the load samples

functionality as shown in Listing 3–16.

Listing 3–16. loadSamplesAssetFile — CommonAndroidCodeLibrary.java

 /**
 * Loads the example snippets from the samples asset file.
 * Note that we provide illustrative exception alerts which might or
 * might not be a wise thing for end-user applications in general.
 */
 private void loadSamplesAssetFile()
 {
 String buffer = "";
 try {
 buffer = stringFromAssetFile(this,
 getString(R.string.file_name_samples));
 _txtInput.setText(buffer);
 }
 catch (Throwable t) {
 Log.e(TAG, "loadSamplesAssetFile(): LOAD FAILED!", t);
 showOkAlertDialog(this,
 String.format("%s\n%s",
 getString(R.string.exception_on_samples_file_load),
 t.toString()),
 getString(R.string.title_samples_file_load));
 }
 }

If we refer back to the XML strings table section, we can see that the asset file name is

declared as follows in strings.xml:

<string
name="file_name_samples">"program_templates/cocoadroid_basic_templates.bas"
</string>

Our program_templates directory lives under the standard application assets directory.

The implementation for the utility helper method, stringFromAssetFile, is shown in

Listing 3–17.

Listing 3–17. stringFromAssetFile — CommonAndroidCodeLibrary.java

 /**
 * Reads the contents of an Asset File into a String and returns the String.
 */
 public static String stringFromAssetFile(Context context, String filename)
 throws IOException
 {
 AssetManager am = context.getAssets();
 InputStream is = am.open(filename);
 String result = stringFromInputStream(is);
 is.close();
 return result;
 }

CHAPTER 3: Roll Your Own Android Scripting Environment 145

And the implementation method, stringFromInputStream, is in Listing 3–18.

Listing 3–18. stringFromInputStream — CommonAndroidCodeLibrary.java

 /**
 * Reads the stream contents of an InputStream into a String and returns the String.
 */
 public static String stringFromInputStream(InputStream from)
 throws IOException
 {
 return stringFromInputStream(from, 8192);
 }

 public static String stringFromInputStream(InputStream from, int buffSize)
 throws IOException
 {
 ByteArrayOutputStream into = new ByteArrayOutputStream();
 byte[] buf = new byte[buffSize];
 for (int n; 0 < (n = from.read(buf));) {
 into.write(buf, 0, n);
 }
 into.close();
 return (new String(into.toByteArray(), _encoding));
 }

These methods require knowledge of the data encoding (the variable _encoding) that

should be used for the buffer contents. The encoding for the runtime is retrieved by the

code in Listing 3–19 in a static block in the class CommonAndroidCodeLibrary:

Listing 3–19. Encoding — CommonAndroidCodeLibrary.java (partial)

 protected static final String _encoding;
 protected static final String _newline;
 static {
 _encoding = System.getProperty("file.encoding");
 _newline = System.getProperty("line.separator");
 }

Running the CocoaDroid BASIC Sample Scripts
To run the samples, we will need to copy and paste snippets from the samples file into

our input text field. This is a fairly intuitive process but we will present some images in

order to give context for the more technical discussion that follows.

Figure 3–28 shows us selecting a section of script code.

CHAPTER 3: Roll Your Own Android Scripting Environment 146

Figure 3–28. Selecting sample script code

Figure 3–29 shows the Android clipboard Copy operation.

Figure 3–29. Copying sample script code

CHAPTER 3: Roll Your Own Android Scripting Environment 147

As in Figure 3–30, we should click Clear to cleanse the input edit text field before

pasting in the code.

Figure 3–30. Clearing the buffer for sample code

Figure 3–31 shows the Android clipboard Paste operation.

Figure 3–31. Pasting sample script code

CHAPTER 3: Roll Your Own Android Scripting Environment 148

And Figure 3–32 shows the BASIC code pasted into the input work area and ready to

run.

Figure 3–32. The sample script is ready

In Figure 3–33 we have run the code and can see the resulting output.

Figure 3–33. Running the sample script

CHAPTER 3: Roll Your Own Android Scripting Environment 149

Running the CocoaDroid BASIC Sample Programs
Now we will demonstrate following the same procedure with a program. A program is

loosely defined as having BASIC line numbers and can thus take advantage of

constructs like GOSUB/RETURN, which require a code line address.

We won’t go through all the steps in the routine as we did for scripts, but will give you

just the required information to get started. We will also draw attention to what is new in

working with programs.

Figure 3–34 shows the program we will use for the demonstration. It simulates rolling

dice six times.

Figure 3–34. Selecting the sample program

Copy and paste this program into the input text field as before. As you can see from

Figure 3–35, we have edited the code to roll the dice only twice.

CHAPTER 3: Roll Your Own Android Scripting Environment 150

Figure 3–35. The edited program

Run this program and you should something similar to Figure 3–36 (We got two sixes!).

Notice the LIST and RUN commands at the end of the source file. And no, like in most

dialects of BASIC, the case of commands and statements is not significant. So print is

the same as PRINT.

Figure 3–36. Running the program with LIST

CHAPTER 3: Roll Your Own Android Scripting Environment 151

Try removing the LIST statement and running it again (see Figure 3–37).

Figure 3–37. Running the program without LIST

At this point, we believe you now know enough to play around with bits of code and

CocoaDroid on your own.

Running BASIC Code Synchronously
Before we finish the chapter, we want to show you the implementation of the

CocoaDroid About menu item.

This might seem somewhat roundabout but the reason is that the banner message uses

CocoaBASIC to display itself. The way it does this is different from executing other

pieces of BASIC in that it does it synchronously. It uses a method called

evalCodeStringSync that bypasses the AsyncTask infrastructure and calls the core

evalCodeString method directly.

CHAPTER 3: Roll Your Own Android Scripting Environment 152

Figure 3–38. The About menu item

We provide the implementation for the About banner in Listing 3–20.

Listing 3–20. showAbout — CocoaDroidActivity.java

 /**
 * Start up our script engine with a copyright notice.
 * This also demonstrates the general principle of reusing the BASIC interpreter
 * by passing commands into the input stream and letting it do the work.
 */
 protected void showAbout()
 {
 // ask the BASIC interpreter to print the startup banner
 String aboutCommand =
 "PRINT \"" + getString(R.string.app_copy_cocoabasic) + "\"\n";
 aboutCommand = aboutCommand +
 "PRINT \"" + getString(R.string.app_copy_cocoadroid) + "\"\n";
 // also ask it to print a little usage message
 aboutCommand = aboutCommand +
 "PRINT \"" + getString(R.string.app_usage_01) + "\"";
 // now submit the work using the synchronous evaluation
 evalCodeStringSync(aboutCommand);
 _txtInput.setText("");
 }

Listing 3–21 shows the implementation for the evalCodeStringSync method.

Listing 3–21. evalCodeStringSync — CocoaDroidActivity.java

 /**
 * Interpret and execute (evaluate) the given code fragment.
 * This version of evalCodeString is reserved by convention for internally
 * invoking non-user initiated interpreter code evaluation, i.e., from code.

CHAPTER 3: Roll Your Own Android Scripting Environment 153

 * It is not invoked by the EvalCodeStringAsyncTask whereas the companion
 * evalCodeString() method is.
 * @param codeString
 * @return The result of the evaluation drawn off the interpreter output stream.
 */
 protected String evalCodeStringSync(String codeString)
 {
 Log.d(TAG, "evalCodeStringSync(): " + codeString);
 // invoke eval bypassing use of an EvalCodeStringAsyncTask instance
 String result = evalCodeString(codeString);
 if (0 == result.length() || "".equals(result.trim())) {
 result = "-- null or empty result --";
 }
 writeOutput(result);
 // also place on input area since the user might not have entered this
 // the method might have been initiated by code and not by the Enter button
 _txtInput.setText(codeString);
 return result;
 }

Recall that we reviewed the core evalCodeString method in Listing 3–13. Feel free to

refer back to that section.

In essence the evalCodeStringSync method allows us to issue short-lived pieces of

code to the interpreter directly on the main thread of the user interface. Of course, all the

usual caveats we discussed earlier then come into play.

Summary
In this chapter we have shown you how to create a no-frills but functionally complete

onboard interpreter environment for CocoaBASIC, a dialect of the BASIC programming

language.

Besides creating a useful and diverting application, we have also covered a large

number of core Android programming techniques, including implementing asynchronous

processing, using asset resources, creating custom array adapters, using XML menu

resources and menu inflators, and more.

We hope you have fun playing with the CocoaDroid scripting environment!

155

155

 Chapter

Embedding Lua in Android
Applications
In this chapter we will show you how to embed the Lua programming language into your
Android applications. We will do this using the Kahlua2 implementation of Lua. Kahlua2
is a native port of the Lua programming language to the Java Virtual Machine (JVM). This
implementation of Lua is written in the Java programming language and as such makes
it very practical for us to host Lua in an Android Java application.

In Chapter 3 of this book, we covered the subject of hosting, or embedding, a
programming language interpreter engine as a guest module in an application. There we
presented a practical project that embedded the CocoaBASIC language engine into an
Android application. This application was designed to run scripts and programs
interactively using the BASIC programming language.

You might ask yourself what is different about this chapter. Why are we showing you
how to run scripting code from your applications when we have already demonstrated
this in a previous chapter? And why have we picked another programming language to
do so?

The fundamental difference is that we will now take the integration of the host and guest
runtimes to the next step. In this chapter, we will treat the concept of script code calling
back into code implemented in our Android application.

Not only will our application implement code to run scripts but it will also implement
code to allow those very same scripts to call into methods implemented within our
application. Since such methods have access to the Android platform, our scripts can
gain equal access to Android functionality as long as we take care to follow the proper
protocols.

In addition, this chapter will build on these concepts to show you how easy it is to create
a startup script that can configure your own Android applications.

4

CHAPTER 4: Embedding Lua in Android Applications 156

Introducing Lua and Kahlua2
The Lua web site describes Lua as follows:

“Lua is a powerful, fast, lightweight, embeddable scripting language.
Lua combines simple procedural syntax with powerful data description
constructs based on associative arrays and extensible semantics. Lua is
dynamically typed, runs by interpreting bytecode for a register-based
virtual machine, and has automatic memory management with
incremental garbage collection, making it ideal for configuration,
scripting, and rapid prototyping. Lua is free open-source software,
distributed under a very liberal license (the well-known MIT license). It
may be used for any purpose, including commercial purposes, at
absolutely no cost. Lua is designed, implemented, and maintained by a
team at PUC-Rio, the Pontifical Catholic University of Rio de Janeiro in
Brazil. "Lua" (pronounced LOO-ah) means "Moon" in Portuguese.”

As such, Lua is an excellent choice as an embedded scripting language with which you
can allow your users to leverage and extend your applications with custom scripts.

Quoting from the Kahlua1 site:

“Kahlua is a Virtual Machine together with a standard library, all
implemented in Java. It tries to emulate Lua as much as possible, while
still reusing as much as possible from Java.”

Kahlua is then an equally good choice for embedding the Lua language into your Java
applications.

Lua Resources
For more background on the Lua programming language, you can consult the following
online resources:

 The Programming Language Lua:

 http://www.lua.org/

 Lua Documentation:

 http://www.lua.org/docs.html

1 http://code.google.com/p/kahlua/

http://www.lua.org/
http://www.lua.org/docs.html
http://code.google.com/p/kahlua/

CHAPTER 4: Embedding Lua in Android Applications 157

 Lua 5.1 Online Reference Manual:

 http://www.lua.org/manual/5.1/

 Programming in Lua (first edition):

 http://www.lua.org/pil/

Kahlua2 Resources
Material about Kahlua and Kahlua2 is available from the following links:

 Kahlua Home:

 http://code.google.com/p/kahlua/

 Kahlua2 Home:

 https://github.com/krka/kahlua2

 Kahlua2 Documentation:

 http://krkadev.blogspot.com/2010/05/getting-started-with-
kahlua2.html

 Using the Kahlua2 J2SE runtime platform:

 http://krkadev.blogspot.com/2010/06/kahlua-j2se-
goodies.html

 Kahlua2 on Android:

 http://krkadev.blogspot.com/2010/06/kahlua-on-android.html

 Differences between Kahlua2 and Lua 5.1:

 http://krkadev.blogspot.com/2010/06/differences-between-
kahlua2-and-lua-51.html

Using Kahlua2 in Your Android Java Applications
This chapter presents the following code projects. They can be downloaded from the
book web site as part of the resources for this chapter:

 Kahlua2 (kahlua2): This is the original Kahlua2 open-source code from
Kristofer Karlsson2 as hosted on the Kahlua2 GitHub site.3 The project
format supports the IntelliJ IDEA integrated development environment
(IDE), but can easily be imported and built in other IDEs.

2 http://krkadev.blogspot.com/

3 https://github.com/krka/kahlua2

http://www.lua.org/manual/5.1/
http://www.lua.org/pil/
http://code.google.com/p/kahlua/
https://github.com/krka/kahlua2
http://krkadev.blogspot.com/2010/05/getting-started-with-kahlua2.html
http://krkadev.blogspot.com/2010/05/getting-started-with-kahlua2.html
http://krkadev.blogspot.com/2010/05/getting-started-with-kahlua2.html
http://krkadev.blogspot.com/2010/06/kahlua-j2se-goodies.html
http://krkadev.blogspot.com/2010/06/kahlua-j2se-goodies.html
http://krkadev.blogspot.com/2010/06/kahlua-j2se-goodies.html
http://krkadev.blogspot.com/2010/06/kahlua-on-android.html
http://krkadev.blogspot.com/2010/06/differences-between-kahlua2-and-lua-51.html
http://krkadev.blogspot.com/2010/06/differences-between-kahlua2-and-lua-51.html
http://krkadev.blogspot.com/2010/06/differences-between-kahlua2-and-lua-51.html
http://krkadev.blogspot.com/
https://github.com/krka/kahlua2

CHAPTER 4: Embedding Lua in Android Applications 158

 Kahlua2 Android Interpreter (kahlua2interpreter): This is the code
from the Kahlua2 contrib subfolder. We provide it as a separate
project that can be built from the command line using Ant as well as
using the IntelliJ IDEA IDE. It is a bare-bones Android Lua interpreter
application that demonstrates the essentials of hosting the Kahlua2
framework on Android.

 KahluaDroid (kahluadroid): KahluaDroid is the main project of this
chapter. It demonstrates how to embed the Kahlua2 runtime in your
own Android applications. This project takes us to the next level by
making use of Kahlua2 functionality to allow calling Android
application programming interface (API) functions from Lua scripts. It
also shows how to implement a simple application startup script
infrastructure which supports running Lua code that can configure the
Android application when the main Activity is created.

Working through these projects should give you a good understanding of what can be
achieved by extending your Android applications with a scripting engine such as
Kahlua2.

Development Environment Configuration
As a quick reference, Table 4–1 lists some development environment configuration
settings that we find useful for working with the Android software development kit (SDK).
It also repeats from previous chapters the command needed to create a compatible
Android Virtual Device (AVD) for running the code.

Table 4–1. Development Environment Configuration Quick Reference

Item Value or Command

PATH <Android SDK Directory>/tools

PATH <Android SDK Directory>/platform-tools

PATH <Apache Ant Directory>/bin

Create an AVD android create avd -n android23api9_hvga_32mb -t android-9 -c 32M

The Kahlua2 Project
In order to be able to embed the Kahlua2 Lua runtime into our applications we will need
the runtime library files. These dependencies are embedded into our hosting
applications as Java archives (jar files). We will show you how to build these runtime
libraries from the Kahlua2 source code. This will enable us to stay up to date with
Kahlua2 changes and help us to understand the process from end-to-end.

CHAPTER 4: Embedding Lua in Android Applications 159

Setting up the Kahlua2 Runtime Files Project
To build the Kahlua2 dependency packages, first download the sample project archives
from the book web site. Assuming that we have unpacked the chapter sample code, the
Kahlua2 project file directory should appear similar to that shown below:

+---kahlua2
| +---.idea
| | +---copyright
| | \---libraries
| +---cldc11
| | \---src
| +---contrib
| | +---androidinterpreter
| | | +---gen
| | | +---res
| | | | +---layout
| | | | \---values
| | | \---src
| | | \---se
| | | \---krka
| | | \---kahlua
| | | \---android
| | +---j2me-lib
| | +---midlet
| | | \---src
| | +---midlet-interpreter
| | | \---src
| | \---midlet-minimal
| | \---src
| +---core
| | +---resources
| | \---src
| +---core-dep
| +---docs
| +---interpreter
| | +---lib
| | +---resources
| | +---src
| | \---test
| +---j2se
| | +---resources
| | +---src
| | \---test
| +---javadoc
| | \---src
| +---lib
| +---testsuite
| | +---lua
| | +---src
| | +---test
| | \---util
| \---webstart

CHAPTER 4: Embedding Lua in Android Applications 160

Building from the Console
Open a terminal (command-line) window in the kahlua2 directory and issue the following
command:

ant package

This should build the project resulting in output similar to the following:

kahlua2> ant package
Buildfile: ...\kahlua2\build.xml
[--output omitted--]
setup:
 [mkdir] Created dir: ...\kahlua2\bin\classes\core
 [mkdir] Created dir: ...\kahlua2\bin\classes\j2se
 [mkdir] Created dir: ...\kahlua2\kahlua2\bin\classes\interpreter
 [mkdir] Created dir: ...\kahlua2\bin\classes\cldc11
 [mkdir] Created dir: ...\kahlua2\bin\core-src-replaced
[--output omitted--]
package:
 [jar] Building jar: ...\kahlua2\bin\kahlua-5.1_2.0.0-core.jar
 [jar] Building jar: ...\kahlua2\bin\kahlua-5.1_2.0.0-cldc11.jar
 [jar] Building jar: ...\kahlua2\bin\kahlua-5.1_2.0.0-j2se.jar
 [jar] Building jar: ...\kahlua2\bin\kahlua-5.1_2.0.0-interpreter.jar

BUILD SUCCESSFUL
Total time: 2 seconds

Building from an IDE
The Kahlua2 project, as downloaded from its home site, includes support for the IntelliJ
IDEA IDE. It can also be imported into other IDEs such as Eclipse. Figure 4–1 shows the
Kahlua2 project Ant build.xml file and the package step in the Ant Build view of this IDE.

CHAPTER 4: Embedding Lua in Android Applications 161

Figure 4–1. Kahlua2 Ant Build and run package target step

This allows us to issue the build step command directly from the IDE instead of running
it in a terminal session. The results are identical.

The Kahlua2 Runtime Libraries
You will notice in Listing 4–2 that we highlighted two of the Java archive files in bold:

\kahlua2\bin\kahlua-5.1_2.0.0-core.jar
\kahlua2\bin\kahlua-5.1_2.0.0-j2se.jar

These library files contain the implementation of the core Kahlua2 language plus a
supporting JVM platform, in this case a J2SE-compatible runtime. Kahlua2 also runs on
other Java mobile platforms such as CLDC.4 For more information on Java Micro
Edition5 (J2ME) and CLDC, see the official online documentation.6

4 Connected Limited Device Configuration

5 http://java.sun.com/products/cldc/overview.html

6 http://java.sun.com/products/cldc/

http://java.sun.com/products/cldc/overview.html
http://java.sun.com/products/cldc/

CHAPTER 4: Embedding Lua in Android Applications 162

We will be using the Kahlua2 J2SE platform for our Android work since it is currently the
one that is most compatible with the Android platform.

The Kahlua2 Android Interpreter Project
Looking at Listing 4–1, the Kahlua2 project folder, notice that the project includes a
subproject under the contrib folder called androidinterpreter. Here is an extract from the
listing:

+---kahlua2
| +---.idea
| +---cldc11
| +---contrib
| | +---androidinterpreter

For convenience, we decided to demonstrate the functionality of this interpreter project
in a separately prepared project we called kahlua2interpreter. The main reason for this is
to add support for building the project using the latest Android SDK Tools as well as
allowing us to import it into an IDE without polluting the original code base.

Setting up the Project
In order to demonstrate and understand the interpreter project properly, we will cover
the essentials of how we set it up here. The process is common enough when working
with Android projects to justify a review.

NOTE: You do not have to perform all these steps. The downloadable project code we provide for
the chapter already has everything you need to get it building and running immediately from both

the terminal command line and the IDE.

As the first step of setting up the Android interpreter project for this chapter, we used
the following Android SDK Tools command to create a baseline Android project
directory structure:

android create project --target "android-9"
 --name Kahlua2Interpreter
 --path ./kahlua2interpreter
 --activity Kahlua2Interpreter
 --package se.krka.kahlua.android

We then copied the Kahlua2 runtime archives we built earlier into the libs subdirectory
and also copied the main Java source file, renamed from KahluaInterpreter.java to
Kahlua2Interpreter.java, into the src folder. The source code references for the
KahluaInterpreter class were also changed to Kahlua2Interpreter.

CHAPTER 4: Embedding Lua in Android Applications 163

To preserve credit, and since we are not adding any functionality to the code for this
iteration, we made sure to keep the package name, se.krka.kahlua.android, the same as
that created by the original author7 of the Kahlua28 project.

Building from the Console
As mentioned before, the downloadable project code we provide for the chapter already
has everything you need to get it building and running immediately from both the
terminal command line and the IDE.

This can be verified by running the following compile command in a terminal window in
the kahlua2interpreter project root directory:

ant compile

This is followed by the following build command:

ant debug

In both cases, the result should be a BUILD SUCCESSFUL status and in the case of the latter
should end up listing something similar to the following:

kahlua2interpreter> ant debug
Buildfile: ...\kahlua2interpreter\build.xml
 [setup] Android SDK Tools Revision 8
 [setup] Project Target: Android 2.3
 [setup] API level: 9
[--output omitted--]
-package-debug-sign:
[apkbuilder] Creating Kahlua2Interpreter-debug-unaligned.apk and signing it with a
 debug key...
debug:
 [echo] Running zip align on final apk...
 [echo] Debug Package: ...\kahlua2interpreter\bin\Kahlua2Interpreter-debug.apk

BUILD SUCCESSFUL
Total time: 4 seconds

Building from an IDE
As the final step to confirm that all our changes worked correctly, we imported the
project into the Eclipse IDE and set up the Kahlua2 runtime library archives (kahlua-
5.x.x-core/j2se.jar), as shown in Figure 4–2. You may, of course, choose to import the
code into another IDE or environment.

7 http://krkadev.blogspot.com/

8 https://github.com/krka/kahlua2

http://krkadev.blogspot.com/
https://github.com/krka/kahlua2

CHAPTER 4: Embedding Lua in Android Applications 164

Figure 4–2. Kahlua2 runtime libraries in the Kahlua2Interpreter Eclipse project

With this, we can build and debug the project directly from the Eclipse IDE.

Running the Kahlua2 Android Interpreter
Now that we have built the Kahlua2 source distribution, let’s run it and enter the
following code:

from = "Kahlua2!"
print("Hello Android from "..from)

Figure 4–3 shows the application after entering the code.

Figure 4–3. The Kahlua2 Android interpreter Hello World

CHAPTER 4: Embedding Lua in Android Applications 165

Clicking the Run button should present the image in Figure 4–4. It shows the output
from the Lua print function.

Figure 4–4. The Kahlua2 Android interpreter

Understanding the Basics of Embedding Kahlua2
Listing 4–1 shows the implementation for the Kahlua2 Android interpreter constructor.
The code is from the main Activity of the application and encapsulates the steps
necessary to create an embedded Kahlua2 runtime environment with which to run our
Lua scripts.

Listing 4–1. Kahlua2Interpreter.java (partial)

[--code omitted--]
import se.krka.kahlua.converter.KahluaConverterManager;
import se.krka.kahlua.integration.LuaCaller;
import se.krka.kahlua.integration.LuaReturn;
import se.krka.kahlua.integration.annotations.LuaMethod;
import se.krka.kahlua.integration.expose.LuaJavaClassExposer;
import se.krka.kahlua.j2se.J2SEPlatform;
import se.krka.kahlua.luaj.compiler.LuaCompiler;
import se.krka.kahlua.vm.KahluaTable;
import se.krka.kahlua.vm.KahluaThread;
import se.krka.kahlua.vm.KahluaUtil;
import se.krka.kahlua.vm.LuaClosure;
import se.krka.kahlua.vm.Platform;

[--code omitted--]

private final Platform platform;
private final KahluaTable env;
private final KahluaConverterManager manager;
private final LuaJavaClassExposer exposer;
private final LuaCaller caller;
private final KahluaThread thread;

[--code omitted--]

CHAPTER 4: Embedding Lua in Android Applications 166

public Kahlua2Interpreter() {
 platform = new J2SEPlatform();
 env = platform.newEnvironment();
 manager = new KahluaConverterManager();
 KahluaTable java = platform.newTable();
 env.rawset("Java", java);
 exposer = new LuaJavaClassExposer(manager, platform, env, java);
 exposer.exposeGlobalFunctions(this);
 caller = new LuaCaller(manager);
 thread = new KahluaThread(new PrintStream(new OutputStream() {
 @Override
 public void write(int i) throws IOException {
 buffer.append(Character.toString((char) i));
 }
 }), platform, env);
}

[--code omitted--]

The KahluaDroid application project that we will see later also uses this boilerplate code.
In order to have a basic understanding of the operations in Listing 4–1, we will go
through the essentials of executing Lua code with Kahlua2 here. The Kahlua2 blog web
site9 has good information available, and we encourage you to refer to it.

Kahlua2 requires a platform to run its environment within. The Kahlua2 J2SE platform10
implementation is currently the most compatible with the Android runtime. A platform
instance is created with the J2SEPlatform constructor as follows:

platform = new J2SEPlatform();

Having set up a platform instance, the platform.newEnvironment call creates a new
environment table filled with runtime library functions using the following snippet of
code:

env = platform.newEnvironment();

This environment is essentially a global namespace in which the Kahlua2 runtime data
structures and supporting runtime library code items live. For reference, a source code
extract from the implementation of the J2SEPlatform newEnvironment method can be seen
in Listing 4–2.

Listing 4–2. J2SEPlatform.java (partial)

[--code omitted--]

package se.krka.kahlua.j2se;

[--code omitted--]

public class J2SEPlatform implements Platform {
 private static J2SEPlatform INSTANCE = new J2SEPlatform();

9 http://krkadev.blogspot.com/2010/05/getting-started-with-kahlua2.html

10 http://krkadev.blogspot.com/2010/06/kahlua-j2se-goodies.html

http://krkadev.blogspot.com/2010/05/getting-started-with-kahlua2.html
http://krkadev.blogspot.com/2010/06/kahlua-j2se-goodies.html

CHAPTER 4: Embedding Lua in Android Applications 167

 public static J2SEPlatform getInstance() {
 return INSTANCE;
 }

[--code omitted--]

 @Override
 public KahluaTable newTable() {
 return new KahluaTableImpl(new ConcurrentHashMap<Object, Object>());
 }

 @Override
 public KahluaTable newEnvironment() {
 KahluaTable env = newTable();

 env.rawset("_G", env);
 env.rawset("_VERSION", Version.VERSION + " (J2SE)");

 MathLib.register(this, env);
 BaseLib.register(env);
 RandomLib.register(this, env);
 UserdataArray.register(this, env);
 StringLib.register(this, env);
 CoroutineLib.register(this, env);
 OsLib.register(this, env);
 TableLib.register(this, env);
 LuaCompiler.register(env);

 KahluaThread workerThread = setupWorkerThread(env);
 KahluaUtil.setupLibrary(env, workerThread, "/stdlib");

[--code omitted--]

 return env;
 }

[--code omitted--]

As you can see, the following runtime support libraries are registered within this global
environment: MathLib, BaseLib, RandomLib, UserdataArray, StringLib, CoroutineLib, OsLib,
TableLib, and LuaCompiler. The J2SEPlatform.java class can be inspected in more detail as
part of the Kahlua2 project source code.

NOTE: The KahluaDroid project that we present later is based on the same core code, so it is
worth making a mental note of this section in case you need to refer to it. We will not cover these

implementation details again under that project.

Let’s go back to Listing 4–1 and the following code:

manager = new KahluaConverterManager();

The KahluaConverterManager supports data type conversion operations. Since Kahlua
supports fewer data types (String, Double, Boolean, KahluaTable) than Java, this class
does the work of automatic conversion between the two languages.

CHAPTER 4: Embedding Lua in Android Applications 168

We also create a new Kahlua2 table instance with the J2SEPlatform newTable method as
follows:

KahluaTable java = platform.newTable();
env.rawset("Java", java);

This instance will be required to expose our Java class methods to the Kahlua2 runtime
as part of the following code:

exposer = new LuaJavaClassExposer(manager, platform, env, java);
exposer.exposeGlobalFunctions(this);

The LuaJavaClassExposer class exposes global methods of the given class referred to with
the exposeGlobalFunctions call to the Kahlua2 script engine. As you will see in more detail
later, with a little extra work this will allow us to call these methods as global Lua
functions directly from our Kahlua2 scripts.

Last but not least, our code will need a thread to run on, along with some way of
communicating results back to the hosting (or client) environment. This is achieved via
the following code:

 thread = new KahluaThread(new PrintStream(new OutputStream() {
 @Override
 public void write(int i) throws IOException {
 buffer.append(Character.toString((char) i));
 }
 }), platform, env);

The KahluaThread instance is made aware of the runtime platform and the current
environment plus has the ability to feed back results via an overridden write method on
a PrintStream instance reference.

The KahluaDroid Project
The main project of this chapter is the KahluaDroid application. This is a Java Android
application that embeds the Kahlua2 runtime and also allows Lua scripts executing in
that runtime to call back into code in the KahluaDroid application. It builds upon the
previous Kahlua Interpreter project and makes use of the tools provided by the Kahlua2
infrastructure in order to provide closer interaction between the worlds of Android and
Lua.

NOTE: The KahluaDroid project is compatible with both Eclipse and IntelliJ IDEA Community
Edition, so using any or both of these IDEs should work fine. Importing the projects into a
NetBeans IDE environment or any other IDE of your choice should also present no problems. We

will not cover how to do this here.

CHAPTER 4: Embedding Lua in Android Applications 169

Running the KahluaDroid Application
Let us now run KahluaDroid using the emulator with a compatible AVD, as specified
before. This will allow us to exercise the behavior of the KahluaDroid application
interactively. At the same time, we will also study the elements of the application that
implement its behavior and characteristics.

The Application User Interface Controls
When the application has finished loading, it should present us with the Activity depicted
in Figure 4–5.

Figure 4–5. KahluaDroid main activity screen

The main screen consists of an entry field, followed by three buttons and an output field.
Per Listing 4–3, the main application layout resource file, these user interface controls
are as follows:

 Code Input Text Field (edittext_input): Here is where we enter our
Lua code.

 Run Code Asynchronously Button (button_run_async): Clicking this
button will run the Lua code on the background using an
implementation of the Android AsyncTask class.

 Run Code Synchronously (on GUI Thread) Button (button_run_sync):
Clicking this button will run the Lua code on the main thread, allowing
for full interaction with the user interface foreground.

 Clear Button (button_clear): Causes the contents of the input text field
to be deleted.

 Results Output Field (textview_output): Displays both the input code
and the results from code execution.

CHAPTER 4: Embedding Lua in Android Applications 170

Listing 4–3, the main application layout resource file, declares the user interface controls
that make up the main application interface.

Listing 4–3. KahluaDroid Main Layout Resource main.xml

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/scrollview_main"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:fillViewport="true">
 <LinearLayout android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/linearlayout_main">
 <EditText android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:id="@+id/edittext_input"></EditText>
 <LinearLayout android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="@android:drawable/bottom_bar"
 android:gravity="center_vertical">
 <Button android:id="@+id/button_run_async"
 android:layout_width="0dip"
 android:layout_weight="2.0"
 android:layout_height="wrap_content"
 android:text="@string/button_run_async_text_wait"></Button>
 <Button android:id="@+id/button_run_sync"
 android:layout_width="0dip"
 android:layout_weight="2.0"
 android:layout_height="wrap_content"
 android:text="@string/button_run_sync_text_wait"></Button>
 <Button android:id="@+id/button_clear"
 android:layout_width="0dip"
 android:layout_weight="1.0"
 android:layout_height="wrap_content"
 android:text="@string/button_clear_text"></Button>
 </LinearLayout>
 <TextView android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:id="@+id/textview_output"></TextView>
 </LinearLayout>
</ScrollView>

Entering and Running Lua Code
Since we created KahluaDroid in order to demonstrate how to host Lua code in a
standard Java Android application, we will immediately enter and run some code to get
a feel for the application.

Enter the following code into the input text field:

local droidinfo = android_version()
print("This is Android:\n" .. droidinfo)

http://schemas.android.com/apk/res/android

CHAPTER 4: Embedding Lua in Android Applications 171

THE ANDROID_VERSION FUNCTION: The android_version function you see in the Lua code is
not part of the Kahlua2 runtime. It is actually part of our Android Java code. You will see how we

implemented this function later in the chapter.

The application appearance should now be similar to what is shown in Figure 4–6.

Figure 4–6. Entering Lua Code on the KahluaDroid Main Activity Screen

Now click the Run Async button.

The expected result should be similar to that portrayed in Figure 4–7.

Figure 4–7. Running Lua code on the KahluaDroid main activity screen

The application has forwarded the Lua code we entered to the embedded Kahlua2
scripting engine. This ran the code and fed back a printable result stream to the
application via the output stream that it uses to communicate computation results to its
clients.

CHAPTER 4: Embedding Lua in Android Applications 172

Recall that we went into some depth regarding the implementation details of this earlier
in the chapter under the “Understanding the Basics of Embedding Kahlua2” section.

The Application Menu
As mentioned earlier, the KahluaDroid application also implements a menu. This menu is
portrayed in Figure 4–8.

Figure 4–8. KahluaDroid application menu

The menu consists of the following menu items:

 Load Snippets (menu_itm_snippets_load): This item triggers the loading
a small file of Lua code snippets into the input text field. From there,
selected sections of these items can be copied and used for getting
started with trying the application.

 Load Startup Script (menu_itm_startup_script_load): This menu item
loads the contents of a user-defined startup file into the input text
field. From there, it can be edited and resaved.

 Save Startup Script (menu_itm_startup_script_save): This item saves
the contents of the input text field as a startup script. This script will be
executed the next time the application is launched. To be exact; the
next time that the application Activity’s onCreate method is invoked.

These items are identified in Listing 4–4, the menu layout resource file.

Listing 4–4. KahluaDroid Main Menu Resource–kahluadroid_main_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/menu_itm_snippets_load"
 android:icon="@drawable/mnu_load_snippets"
 android:title="@string/menu_snippets_load">
 </item>
 <item

http://schemas.android.com/apk/res/android

CHAPTER 4: Embedding Lua in Android Applications 173

 android:id="@+id/menu_itm_startup_script_load"
 android:icon="@drawable/mnu_startup_script_load"
 android:title="@string/menu_startup_script_load">
 </item>
 <item
 android:id="@+id/menu_itm_startup_script_save"
 android:icon="@drawable/mnu_startup_script_save"
 android:title="@string/menu_startup_script_save">
 </item>
</menu>

By now, the contents of both the menu layout Listing 4–4 and the creation and event
handling implementations in Listing 4–5 should be familiar.

Listing 4–5. Menu Implementation Methods in KahluaDroid.java (partial)

[--code omitted--]

 /**
 * Implement our application menu using an XML menu layout and the ADK MenuInflater.
 */
 @Override
 public boolean onCreateOptionsMenu(Menu menu)
 {
 // always first delegate to the base class in case of system menus
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.kahluadroid_main_menu, menu);
 // true for a visible menu, false for an invisible one
 return true;
 }

 /**
 * Respond to our application menu events.
 */
 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 final int mnu_id = item.getItemId();
 switch (mnu_id) {
 case R.id.menu_itm_snippets_load:
 loadSnippetsAssetFile();
 return true;
 case R.id.menu_itm_startup_script_load:
 loadStartupScript();
 return true;
 case R.id.menu_itm_startup_script_save:
 saveStartupScript();
 return true;
 default: // not our items
 return super.onOptionsItemSelected(item); // pass item id up
 }
 }

[--code omitted--]

CHAPTER 4: Embedding Lua in Android Applications 174

The Application Strings Table
The KahluaDroid application code uses the strings table resource extensively. It is
presented in Listing 4–6 for reference if you are trying to follow all the code using only
the text of the book.

Listing 4–6. KahluaDroid Main String Table Resource–strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">KahluaDroid</string>
 <string name="app_version">1.0.0</string>
 <string name="app_desc">KahluaDroid - Lua on Android</string>
 <string name="file_name_snippets">program_templates/lua_snippets.lua</string>
 <string name="file_name_startup_script">kahluadroid_startup.lua</string>
 <string name="button_run_async_text_wait">Run Async</string>
 <string name="button_run_async_text_busy">Running Async...</string>
 <string name="button_run_sync_text_wait">Run on GUI Thread</string>
 <string name="button_run_sync_text_busy">Running Sync...</string>
 <string name="button_clear_text">Clear</string>
 <string name="menu_snippets_load">Load Snippets</string>
 <string name="menu_startup_script_load">Load Startup Script</string>
 <string name="menu_startup_script_save">Save Startup Script</string>
</resources>

The Application Initialization Code
Listing 4–7 shows the startup and initialization code for KahluaDroid. This should be
self-explanatory based upon what we have covered so far.

Listing 4–7. KahluaDroid Startup and Initialization Implementation in KahluaDroid.java (partial)

package com.pietergreyling.android.kahluadroid;

[--code omitted--]

public class KahluaDroid extends Activity
{
 protected static final String TAG = "KahluaDroid";
 protected String APP_TITLE;
 protected String STARTUP_SCRIPT_CODE;

 /**
 * Kahlua reference variables
 */
 protected final Platform _platform;
 protected final KahluaTable _env;
 protected final KahluaConverterManager _manager;
 protected final LuaJavaClassExposer _exposer;
 protected final LuaCaller _caller;
 protected final KahluaThread _thread;

 /**
 * GUI reference variables
 */
 protected EditText _txtInput;

CHAPTER 4: Embedding Lua in Android Applications 175

 protected TextView _txtOutput;
 protected Button _cmdRunAsync;
 protected Button _cmdRunSync;
 protected Button _cmdClear;
 protected final StringBuffer _buffer = new StringBuffer();

 public KahluaDroid()
 {
 _platform = new J2SEPlatform();
 _env = _platform.newEnvironment();
 _manager = new KahluaConverterManager();
 KahluaTable java = _platform.newTable();
 _env.rawset("Java", java);
 _exposer = new LuaJavaClassExposer(_manager, _platform, _env, java);
 _exposer.exposeGlobalFunctions(this);
 _caller = new LuaCaller(_manager);
 _thread = new KahluaThread(new PrintStream(new OutputStream()
 {
 @Override
 public void write(int i) throws IOException
 {
 _buffer.append(Character.toString((char) i));
 }
 }), _platform, _env);
 }

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 Log.d(TAG, "onCreate(): ...");
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 initialize();
 runStartupScript();
 }

 /**
 * Sets up Activity user interface controls and resources.
 */
 protected void initialize()
 {
 APP_TITLE = getString(R.string.app_desc) + " [v."
 + getString(R.string.app_version) + "]";
 setTitle(APP_TITLE);
 _txtInput = (EditText) findViewById(R.id.edittext_input);
 _txtInput.setTextSize(TextSize.NORMAL);
 _txtInput.setTypeface(Typeface.MONOSPACE);

 _cmdRunAsync = (Button) findViewById(R.id.button_run_async);
 _cmdRunAsync.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View view)
 {
 executeAsync();
 }
 });

CHAPTER 4: Embedding Lua in Android Applications 176

 _cmdRunSync = (Button) findViewById(R.id.button_run_sync);
 _cmdRunSync.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View view)
 {
 executeSync();
 }
 });

 _cmdClear = (Button) findViewById(R.id.button_clear);
 _cmdClear.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View view)
 {
 _txtInput.getText().clear();
 }
 });

 _txtOutput = (TextView) findViewById(R.id.textview_output);
 _txtOutput.setTextSize(TextSize.NORMAL);
 _txtOutput.setTypeface(Typeface.MONOSPACE);
 _txtOutput.setTextColor(Color.GREEN);
 _txtOutput.setBackgroundColor(Color.DKGRAY);
 }

[--code omitted--]

Running Lua Code On or Off the Main GUI Thread
On the KahluaDroid main activity screen there is a button named Run Async and one next
to it called Run on GUI Thread. These buttons provide us with the ability to decide whether
we want to execute the Lua code on a separate (asynchronous) background thread or
on the main thread of the application. All graphical user interface (GUI) interaction is also
running on the main thread, so it is important to understand the distinction and possible
consequences.

In Chapter 3, where we covered running BASIC scripts with CocoaDroid, we discussed
threading in the Android context and the Android AsyncTask class infrastructure. If you
have not read that chapter, we recommend it as background for this section since the
KahluaDroid implementation of threading follows the same principles and practices.

Thus, assuming that you have background knowledge of Android threading concepts we
will have a cursory look at the implementation behind the Run buttons here and leave you
to peruse the code.

NOTE: We will not delve into Android handlers, binding, and thread pools here since our project
threading implementations more than suffices for our purposes. One can go far by avoiding
multithreading complications using keep-it-simple design disciplines and implementing a
subclass of AsyncTask if necessary. It is also worth remembering that while the Android platform

supports multithreading, it is by no means a server platform.

CHAPTER 4: Embedding Lua in Android Applications 177

Executing Background Code with AsyncTask
When your scripts are designed to stay within the thread space of the Kahlua2 runtime
and will not interact with the Android GUI in any way, use the KahluaDroid executeAsync
method to push your Lua code. This provides the additional benefit of avoiding potential
blocking of the user interface while background work might be taking place on the main
application thread. The implementation is shown in Listing 4–8.

Listing 4–8. Asynchronous Threading Implementation in KahluaDroid.java (partial)

[--code omitted--]

 protected void executeAsync()
 {
 // prepend source to output
 final String source = _txtInput.getText().toString();
 Log.d(TAG, "executeAsync(): " + source);
 String oldoutput = (_txtOutput.getText()).toString();
 String newoutput = ("> " + source + "\n") + oldoutput;
 _txtOutput.setText(newoutput);
 // run the code asynchronously
 KahluaAsyncTask task = new KahluaAsyncTask();
 task.execute(source);
 }

[--code omitted--]

Listing 4–9 presents the implementation of the KahluaAsyncTask class. This is derived
from the Android AsyncTask class and provides developers with the recommended
approach for running background Android code on a thread separated from the main
application GUI thread. As mentioned before, we have covered this to some length in
Chapter 3. The Android Developers web site also has good coverage of Android
threading11 and the AsyncTask class12.

Listing 4–9. KahluaAsyncTask Class Implementation in KahluaDroid.java (partial)

[--code omitted--]

 private class KahluaAsyncTask extends AsyncTask<String, Void, Void>
 {
 @Override
 protected void onPreExecute()
 {
 _cmdRunAsync.setEnabled(false);
 _cmdRunAsync.setText(getString(R.string.button_run_async_text_busy));
 _txtInput.getText().clear();
 flush();
 }

 @Override
 protected Void doInBackground(String... strings)

11 http://developer.android.com/resources/articles/painless-threading.html

12 http://developer.android.com/reference/android/os/AsyncTask.html

http://developer.android.com/resources/articles/painless-threading.html
http://developer.android.com/reference/android/os/AsyncTask.html

CHAPTER 4: Embedding Lua in Android Applications 178

 {
 // flush();
 String source = strings[0];
 try
 {
 LuaClosure closure = LuaCompiler.loadstring(source, null, _env);
 LuaReturn result = _caller.protectedCall(_thread, closure);
 if (result.isSuccess())
 {
 for (Object o : result)
 {
 _buffer.append(KahluaUtil.tostring(o, _thread) + "\n");
 }
 }
 else
 {
 _buffer.append(result.getErrorString() + "\n");
 _buffer.append(result.getLuaStackTrace() + "\n");
 }
 }
 catch (Exception e)
 {
 _buffer.append(e.getMessage() + "\n");
 }
 return null;
 }

 @Override
 protected void onPostExecute(Void result)
 {
 flush();
 _cmdRunAsync.setText(getString(R.string.button_run_async_text_wait));
 _cmdRunAsync.setEnabled(true);
 }

 private void flush()
 {
 // output.append(_buffer.toString());
 // prepend _buffer to output
 String oldoutput = (_txtOutput.getText()).toString();
 String newoutput = _buffer.toString() + oldoutput;
 _txtOutput.setText(newoutput);
 _buffer.setLength(0);
 }
 };

[--code omitted--]

Executing UI Code on the Main Thread
If your scripts have side effects such as interaction with Android user interface elements,
use the KahluaDroid executeSync method. This will allow your code to influence the GUI
without crashing. The implementation is shown in Listing 4–10.

CHAPTER 4: Embedding Lua in Android Applications 179

Listing 4–10. Synchronous Threading Implementation Methods in KahluaDroid.java (partial)

[--code omitted--]

 protected void executeSync()
 {
 // prepend source to output
 final String source = _txtInput.getText().toString();
 Log.d(TAG, "executeSync(): " + source);
 String oldoutput = (_txtOutput.getText()).toString();
 String newoutput = ("> " + source + "\n") + oldoutput;
 _txtOutput.setText(newoutput);
 _cmdRunSync.setText(getString(R.string.button_run_sync_text_busy));
 executeSync(source);
 }

 protected void executeSync(String source)
 {
 try
 {
 LuaClosure closure = LuaCompiler.loadstring(source, null, _env);
 LuaReturn result = _caller.protectedCall(_thread, closure);
 if (result.isSuccess())
 {
 for (Object o : result)
 {
 _buffer.append(KahluaUtil.tostring(o, _thread) + "\n");
 }
 }
 else
 {
 _buffer.append(result.getErrorString() + "\n");
 _buffer.append(result.getLuaStackTrace() + "\n");
 }
 }
 catch (Exception e)
 {
 _buffer.append(e.getMessage() + "\n");
 }
 finally {
 flushSync();
 _cmdRunSync.setText(getString(R.string.button_run_sync_text_wait));
 }
 }

 private void flushSync()
 {
 String oldoutput = (_txtOutput.getText()).toString();
 String newoutput = _buffer.toString() + oldoutput;
 _txtOutput.setText(newoutput);
 _buffer.setLength(0);
 }

[--code omitted--]

CHAPTER 4: Embedding Lua in Android Applications 180

Exposing Android Application Methods to Kahlua2
Kahlua2 enables the implementation of Lua callable global functions by decorating
compatible methods within your Java class with the @LuaMethod annotation.

We covered the background earlier with our treatment of the LuaJavaClassExposer class.
To recap, this class exposes global methods of the given class referred to with the
exposeGlobalFunctions call to the Kahlua2 script engine. This enables the Kahlua2 runtime
to call back to methods of the given class.

Scope does not allow for us to review the full details behind this here, but the code is
available within the Kahlua2 project of this chapter.

Sharing Data between Java and Lua
Listing 4–11 provides a listing of a method pair we implemented to demonstrate how to
set and get variable values in the Lua environment. This effectively allows us to share
variable values between the Android Java application and the Lua environment table.

Listing 4–11. Lua Environment Variable Manipulation Methods in KahluaDroid.java (partial)

[--code omitted--]

 @LuaMethod(global = true)
 public void lua_setvar(CharSequence varname, CharSequence value)
 {
 _env.rawset(varname, value);
 }

 @LuaMethod(global = true)
 public String lua_getvar(CharSequence varname)
 {
 String value = (String)_env.rawget(varname);
 return value;
 }

[--code omitted--]

Modifying the Android application GUI from Lua
Listing 4–12 shows a set of methods that manipulate the GUI of our Android application
in some way or other. The implementation of an application startup script later in this
chapter will use these methods to demonstrate the alteration of visual aspects of an
Android application from within Lua script code.

Listing 4–12. Android GUI Manipulation Methods in KahluaDroid.java (partial)

[--code omitted--]

 @LuaMethod(global = true)
 public void app_settextsize()
 {
 Double size = (Double)_env.rawget("text_size");
 app_settextsize(size);

CHAPTER 4: Embedding Lua in Android Applications 181

 }

 @LuaMethod(global = true)
 public void app_settextsize(Double size)
 {
 switch (size.intValue()) {
 case 1:
 _txtInput.setTextSize(TextSize.SMALL);
 _txtOutput.setTextSize(TextSize.SMALL);
 break;
 case 2:
 _txtInput.setTextSize(TextSize.NORMAL);
 _txtOutput.setTextSize(TextSize.NORMAL);
 break;
 case 3:
 _txtInput.setTextSize(TextSize.LARGE);
 _txtOutput.setTextSize(TextSize.LARGE);
 break;
 default:
 _txtInput.setTextSize(TextSize.NORMAL);
 _txtOutput.setTextSize(TextSize.NORMAL);
 }
 }

 @LuaMethod(global = true)
 public void app_settextcolor()
 {
 Double color = (Double)_env.rawget("text_color");
 app_settextcolor(color);
 }

 @LuaMethod(global = true)
 public void app_settextcolor(Double color)
 {
 switch (color.intValue()) {
 case 1:
 _txtOutput.setTextColor(Color.BLACK);
 _txtOutput.setBackgroundColor(Color.WHITE);
 break;
 case 2:
 _txtOutput.setTextColor(Color.GREEN);
 _txtOutput.setBackgroundColor(Color.DKGRAY);
 break;
 case 3:
 _txtOutput.setTextColor(Color.LTGRAY);
 _txtOutput.setBackgroundColor(Color.BLUE);
 break;
 default:
 _txtOutput.setTextColor(Color.GREEN);
 _txtOutput.setBackgroundColor(Color.DKGRAY);
 }
 }

[--code omitted--]

CHAPTER 4: Embedding Lua in Android Applications 182

Implementing a Small Lua Callable Android Runtime
Listing 4–13 presents the implementation of a small Lua callable Android runtime. This is
a loose set of Android-related operations that we are making accessible from Lua
scripts. Again, we will show how we call these methods as Lua functions later.

Listing 4–13. Lua Callable Android Runtime Methods in KahluaDroid.java (partial)

[--code omitted--]
 @LuaMethod(global = true)
 public void android_alert(CharSequence message)
 {
 new AlertDialog.Builder(this)
 .setTitle(getString(R.string.app_name))
 .setMessage(message)
 .setPositiveButton("OK", null).show();
 }

 @LuaMethod(global = true)
 public void android_alert(CharSequence message, CharSequence title)
 {
 new AlertDialog.Builder(this).setTitle(title).setMessage(message)
 .setPositiveButton("OK", null).show();
 }

 @LuaMethod(global = true)
 public void android_toast(CharSequence message)
 {
 Toast.makeText(this, message, Toast.LENGTH_SHORT).show();
 }

 @LuaMethod(global = true)
 public void android_notify(
 CharSequence title,
 CharSequence tickerText,
 CharSequence message)
 {
 showNotification(
 getApplicationContext(),
 KahluaDroid.class,
 tickerText,
 title,
 message,
 R.drawable.icon_practical_andy_blue);
 }

 @LuaMethod(global = true)
 public String android_version()
 {
 String full_version =
 String.format("[v:%s.%s][sdk: %s][codename: %s]",
 VERSION.RELEASE,
 VERSION.INCREMENTAL,
 VERSION.SDK_INT,
 VERSION.CODENAME);
 return full_version;
 }

CHAPTER 4: Embedding Lua in Android Applications 183

 @LuaMethod(global = true)
 public String android_release()
 {
 String release = String.format("%s", VERSION.RELEASE);
 return release;
 }

 @LuaMethod(global = true)
 public String android_sdk()
 {
 String sdk_level = String.format("%s", VERSION.SDK_INT);
 return sdk_level;
 }

[--code omitted--]

Calling Application Methods as Lua Functions
Having seen the implementation of Lua script-callable methods in our main KahluaDroid
class, let us have a look at how to use them. We have provided a few small Lua code
samples in the form of a Lua snippets file.

The KahluaDroid Lua Snippets
Under the assets folder of the application source code, you should find the
program_templates/lua_snippets.lua code file.

This is the asset file that gets loaded by the Load Snippets (Figure 4–9) menu item.

Figure 4–9. KahluaDroid Load Snippets Menu

Figure 4–10 depicts the Activity after loading the snippets file into the input text field.

CHAPTER 4: Embedding Lua in Android Applications 184

Figure 4–10. KahluaDroid loaded snippets

The full content of the snippets file is in Listing 4–14.

Listing 4–14. KahluaDroid Lua Code Snippets Asset File–lua_snippets.lua

-- KahluaDroid
-- Sample Lua Snippets
-- 2010.12.20
-- http://pietergreyling.com

-- android_sdk()
if android_sdk() == "9" then
 print "Gingerbread"
end

-- android_release()
print("Android Release: "..android_release())

-- android_alert("text", "title")

android_alert(
 "Run me on the GUI thread!",
 "Android Alert")

-- android_toast()
android_toast("Run me on the GUI thread!")

-- android_notify(
-- title, tickerText, message)
android_notify(
 "KahluaDroid Notification",
 "KahluaDroid message waiting...",
 "Thanks for reading this message.")

-- app_settextsize() / app_settextcolor()
app_settextsize(1) -- small
app_settextcolor(3) -- grey on blue
app_settextsize(2) -- normal
app_settextcolor(2) -- green on dkgrey
app_settextsize(3) -- large

http://pietergreyling.com

CHAPTER 4: Embedding Lua in Android Applications 185

app_settextcolor(1) -- black on white

-- lua runtime lib: os
print(os.date())

-- lua runtime lib: math
print(math.sin(3))

-- tables
a={}; a["num"]=12345; print("n="..a["num"])

-- functions
function func(a)
 print("-- func: "..a)
end
func ("test argument")

-- random number generation
local r = newrandom()
r:random() -- 0 to 1
r:random(max) -- 1 to max
r:random(min, max) -- min to max
-- seeds with hashcode of object
r:seed(obj)

---[[
local r = newrandom()
for i=1,6 do
 print("dice "..i.." rolled "..r:random(6))
end
--]]

-- Sample Startup Script
msg1 = "Startup script complete.\n"
msg2 = "KahluaDroid ready..."
app_settextsize(1) -- small
app_settextcolor(3) -- grey on blue
print(msg1..msg2)
android_toast(msg1..msg2)

Implementing an Application Startup Script
Startup scripts are a common way to configure applications of all types, from personal
productivity applications on the desktop to back-end number crunching server
applications. Knowing what we have learned so far in this chapter, we can now
effectively implement a basic startup script infrastructure for our Android applications.

Saving Lua Code as a Startup Script
To create a small startup script, we will copy some code from the Lua snippets file that
we have prepared for this project.

Open the snippets using the Load Snippets menu, as addressed earlier. We will pick the
following code (see Listing 4–14):

CHAPTER 4: Embedding Lua in Android Applications 186

-- Sample Startup Script
msg1 = "Startup script complete.\n"
msg2 = "KahluaDroid ready..."
app_settextsize(1) -- small
app_settextcolor(3) -- grey on blue
print(msg1..msg2)
android_toast(msg1..msg2)

Copy the section as shown in Figure 4–11.

Figure 4–11. Copying the KahluaDroid startup script from the Lua snippets

Now paste the selection into the input text field, as shown in Figure 4–12.

Figure 4–12. Pasting the KahluaDroid startup script code

Use the Save Startup Script menu item to save the code to the startup file. This should
result in a toast message similar to that shown in Figure 4–13.

CHAPTER 4: Embedding Lua in Android Applications 187

Figure 4–13. Saving the KahluaDroid startup script

Running the Application with the Startup Script
When we relaunch the application after saving the startup script, you should see a result
similar to that depicted in Figure 4–14. The text size will be smaller, and the output text
background will be blue with a gray foreground.

Figure 4–14. Running the KahluaDroid startup script on application launch

The startup script load implementation is shown in Listing 4–15.

Listing 4–15. Startup Script Implementation-KahluaDroid.java (partial)/
CommonAndroidCodeLibrary.java (partial)

[--code omitted--]

 protected void runStartupScript()
 {
 try
 {
 STARTUP_SCRIPT_CODE = readStartupScript();
 Log.d(TAG,

CHAPTER 4: Embedding Lua in Android Applications 188

 "runStartupScript(): STARTUP_SCRIPT_CODE:\n" +
 STARTUP_SCRIPT_CODE);
 executeSync(STARTUP_SCRIPT_CODE);
 }
 catch (Throwable t)
 {
 Log.e(TAG, "runStartupScript(): FAILED!", t);
 STARTUP_SCRIPT_CODE = "";
 }
 }

[--code omitted--]

 protected String readStartupScript()
 {
 String buffer = "";
 try {
 buffer = stringFromPrivateApplicationFile(this,
 getString(R.string.file_name_startup_script));
 return buffer;
 }
 catch (Throwable t) {
 Log.e(TAG, "readStartupScript(): NO STARTUP SCRIPT!", t);
 //showOkAlertDialog(this, t.toString(), "Read Startup Script");
 return "";
 }
 }

[--code omitted--]

 /**
 * Reads a private application file into a String and returns the String.
 *
 * @param context
 * @param name
 * @return
 * @throws java.lang.Throwable
 */
 public static String stringFromPrivateApplicationFile(Context context, String name)
 throws java.lang.Throwable
 {
 String ret_str = "";
 InputStream is = context.openFileInput(name);
 InputStreamReader tmp_isr = new InputStreamReader(is);
 BufferedReader tmp_rdr = new BufferedReader(tmp_isr);
 String tmp_str = "";
 StringBuilder tmp_buf = new StringBuilder();
 while ((tmp_str = tmp_rdr.readLine()) != null) {
 tmp_buf.append(tmp_str);
 tmp_buf.append(_newline); // readLine drops newlines, put them back
 }
 is.close();
 if(0 < tmp_buf.length()) { // brutally remove the inevitable newline at end
 tmp_buf.setLength(tmp_buf.length() - 1);
 }
 ret_str = tmp_buf.toString();
 return ret_str;

CHAPTER 4: Embedding Lua in Android Applications 189

 }

[--code omitted--]

As you will notice, the startup script code is run synchronously on the main application
thread using the executeSync method since this also allows it to relatively safely cause
side-effects that influence the state of the user interface.

Using Lua Comment Blocks in the Startup Script
When working and testing the code in a startup script, it is useful to have a handy way of
quickly activating and deactivating blocks of code. A simple technique with which to
achieve this is by using the Lua comment block syntax.

In Lua, line comments start with a double hyphen (--) at any point in a line and runs until
the end of the line:

-- This is a Lua line comment and starts with a double-hyphen (--).
-- Such comments only run to the end of the line that they are on.

Lua also offers multiline or block comments that start with --[[and run until a matching
]].

--[[Multi-line strings and comments
 use double square brackets.]]

A common trick, when we want to disable a piece of code, is to write the following:

--[[
print("commented") nothing (a comment)
--]]

Now, if we add a single hyphen to the first line, the code is in again:

---[[
print("uncommented") uncommented
--]]

In the first case, the -- in the last line is still inside the block comment. In the second
case, the ---[[does not start a block comment, but a line comment instead. This leaves
the print("uncommented") outside comments and thus active. The last line then forms a
separate comment, as it starts with --.

This makes it easy to test and save startup script code with KahluaDroid. Simply
enclose sections of code in block comments and enable and disable the sections with a
single change at the top of the block. This way, you can store pieces of code and not
worry about losing any work you might want to retest or apply later.

Figure 4–15 displays a block comment in effect.

CHAPTER 4: Embedding Lua in Android Applications 190

Figure 4–15. KahluaDroid startup script block commented

Figure 4–16 displays the same block of code uncommented.

Figure 4–16. KahluaDroid startup script block uncommented

Accessing the Startup Script from the DDMS File Explorer
Android application files on the emulator can also be accessed by using the Android
SDK Dalvik Debug Monitor (DDMS) File Explorer. Although we demonstrated this in
previous chapters, we do so here again (see Figure 4–17).

CHAPTER 4: Embedding Lua in Android Applications 191

Figure 4–17. The KahluaDroid Startup Script in the DDMS File Explorer

Removing a Broken Startup Script
Sometimes we make mistakes in our code. In the case of our startup script, such
malfunctioning code might cause moments during which our application cannot launch
properly or even refuses to start at all. This can present a “Catch-22” scenario in which
we are cannot use the application to fix the problem. Since the application then does not
start, or does so in an unpredictable state, we cannot reload the startup script in order
to edit the code of the script and fix it.

It might be obvious, but the Android platform comes with functionality to manage
applications and clear corresponding application data. This can be accessed from the
Settings main menu using the Manage apps menu item. (See Figure 4–18.)

Figure 4–18. Clearing KahluaDroid application data

CHAPTER 4: Embedding Lua in Android Applications 192

Summary
This chapter showed you the basics of how to use the Lua programming language to
extend your own Java-based Android applications.

We chose the Kahlua2 implementation of Lua since it has a native Java code base and
was designed to run on mobile devices.

We demonstrated how it is possible to call methods implemented in our Android classes
from Lua scripts.

In the next chapter, we will finalize our study of scripting on the Android platform by
giving you an introduction to the Scripting Layer for Android (SL4A). SL4A is a platform
that enables the running of multiple scripting engines on an Android device.

Our scripting implementations of the last two chapters have run within the processes of
our Java Android applications. The design of SL4A currently differs in that scripting
engines run in their own Android processes and communicate to an Android RPC server
application via a JSON RPC bridge. This Java Android server application then makes
Android API calls by proxy on behalf of the scripting engine.

193

193

 Chapter

Introducing SL4A:
The Scripting Layer
for Android
The main objective of this chapter is to introduce you to the Scripting Layer for Android

(SL4A) platform. Our aim is to give you enough basic understanding of how SL4A1 works

and to be able to use it to run your own scripts written in a number of high-level

scripting languages.

As you will see, the design of SL4A enables it to support many scripting language

interpreters. In order to make practical use of SL4A, you will need to understand at least

the rudiments of one high-level scripting language such as Python, Ruby, Perl, Lua,

JavaScript, or BeanShell.

For this book, we assume that you have a good level of Java programming language

knowledge and this should serve you well if you intend to use a related language such

as BeanShell or JavaScript with SL4A.

In this chapter, we will first give you some background about what SL4A is, what it can

be used for, where to get it, and where to learn more about it for yourself. We will then

show you how to install and run SL4A with small examples. After this, you will get a

technical overview of how SL4A works and how its design relates to the scripting

architectures we presented in the two previous chapters. To help you on your way to a

deeper study of SL4A, we will then show you how to obtain a copy of the complete

SL4A source code repository. In conclusion, we will present some equivalent SL4A

“Hello World” example code snippets in various scripting languages.

1 From now on, we will use the acronym “SL4A” instead of “Scripting Layer for Android.”

5

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 194

What Is Scripting Layer for Android?
In a nutshell, SL4A is an infrastructure for enabling the interoperation of scripting

language engines that have been ported to the Android platform with the Android

application programming interface (API) via remote procedure calls (RPCs) to a server

implemented as a standard Android Java application.

About SL4A
SL4A,2 originally called Android Scripting Environment (ASE), was brought to us by

Damon Kohler3 and is hosted on Google Code as an open-source project.

From the user perspective, the SL4A Android application lets you edit and run scripts

against multiple interactive script interpreters on your Android device. It also supports

the ability to install script interpreters into the application directly from the SL4A home

site.

In essence, SL4A is more than just a standard end-user Android application; it is also a

platform for exposing Android functionality to custom client programs such as scripting

engines.

The SL4A License
Like the Android platform, SL4A is open source and is released under the same Apache

License Version 2.0,4 as is most of Android.

Using SL4A
The SL4A system is suited for the following kinds of tasks:

 RAD programming: With SL4A it is possible to use a rapid application

development (RAD) approach to quickly create a prototype application

that allows you to test the feasibility of an idea. Once the practicality of

the application is confirmed, you can create a full-blown Android

application.

 Writing test scripts: Assuming that the supporting Android APIs are

exposed to SL4A, it can be used to create test scripts for other

functionality.

2
 http://code.google.com/p/android-scripting/

3
 http://www.damonkohler.com/search/label/sl4a

4
 http://www.apache.org/licenses/

http://code.google.com/p/android-scripting/
http://www.damonkohler.com/search/label/sl4a
http://www.apache.org/licenses/

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 195

 Building utilities: You can fairly easily and quickly write utility and tool

scripts that do small jobs or automate certain aspects of repetitive

tasks. These tools probably do not require a complicated user

interface; they need just a simple dialog-based user interaction mode.

SL4A Resources
For more background on SL4A, we recommend consulting the following online

resources:

 SL4A home:

 http://code.google.com/p/android-scripting/

 SL4A downloads:

 http://code.google.com/p/android-scripting
/downloads/list

 http://code.google.com/p/android-scripting
/downloads/list?q=label:Featured

 SL4A FAQ:

 http://code.google.com/p/android-scripting/wiki/FAQ

 SL4A Wiki:

 http://code.google.com/p/android-scripting/w/list

 SL4A tutorials:

 http://code.google.com/p/android-scripting/wiki
/Tutorials

 SL4A source code:

 http://code.google.com/p/android-scripting/source
/checkout

The SL4A Code Repository
The SL4A project source code is hosted on Google Code in a Mercurial repository.5

Mercurial SCM is an open-source, distributed-source, control management tool.

Mercurial is designed to be cross-platform and is written in the Python programming

language.

5
 http://code.google.com/p/android-scripting/source/browse/

http://code.google.com/p/android-scripting/
http://code.google.com/p/android-scripting
http://code.google.com/p/android-scripting
http://code.google.com/p/android-scripting/wiki/FAQ
http://code.google.com/p/android-scripting/w/list
http://code.google.com/p/android-scripting/wiki
http://code.google.com/p/android-scripting/source
http://code.google.com/p/android-scripting/source/browse/

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 196

Later in the chapter, we will show you how to use the Mercurial client-side tools and

integrated development environment (IDE) plugins to bring the SL4A code to your

desktop in order to build and run SL4A.

Running SL4A in the Android Emulator
Before we dive into the details of SL4A, we will show you the quickest way to have a

look at SL4A in action.

We will download the SL4A Android application package (APK) distribution and install it

on a running Android emulator instance. This will allow us to use SL4A to install some

scripting engines into the emulator from the SL4A site.

Development Environment Configuration
As a quick reference, Table 5–1 lists some development environment configuration

settings and commands that you will find useful for working with the code in this

chapter.

Table 5–1. Development Environment Configuration Quick Reference

Item Value or Command

PATH <Android SDK Directory>/tools

PATH <Android SDK Directory>/platform-tools

PATH <Apache Ant Directory>/bin

PATH <Mercurial Directory>/

Create an AVD android create avd -n android23api9_hvga_32mb -t android-9 -c 32M

Start the AVD on

Linux / Mac OS X

emulator -avd android23api9_hvga_32mb &

Start the AVD on

Windows

start emulator -avd android23api9_hvga_32mb

Even though the PATH entry for the Mercurial executable (hg or hg.exe) is not strictly

necessary right now, it will become useful if you decide to get a snapshot of the SL4A

code and build it yourself.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 197

Downloading the SL4A APKs
First, we will download the SL4A application archive from the SL4A download site here:

 http://code.google.com/p/android-scripting/downloads/list

Or here:

 http://code.google.com/p/android-scripting/downloads
/list?q=label:Featured

Download the latest release of the SL4A APK. At the time of writing, this was the

following:

sl4a_r3.apk

Save this to a directory on your file system. We have called ours sl4a-apk.

Also available on the SL4A site were the following scripting engine APKs:

beanshell_for_android_r1.apk
jruby_for_android_r1.apk
lua_for_android_r1.apk
perl_for_android_r1.apk
python_for_android_r1.apk
rhino_for_android_r1.apk

NOTE: The SL4A APKs are included in the book downloads, so you can get started right away.

Installing the SL4A APK on the Android Emulator
Ensure that you are running the Android emulator using a compatible AVD. For this,

follow the instructions in Table 5–1.

Now, in a terminal command-line shell, navigate to the directory where you have saved

the downloaded SL4A APK file and enter the following command:

adb install sl4a_r3.apk

This should produce output similar to the following:

adb install sl4a_r3.apk
364 KB/s (840827 bytes in 2.250s)
 pkg: /data/local/tmp/sl4a_r3.apk
Success

The SL4A launcher icon should now appear on the emulator, as illustrated in Figure 5–1.

http://code.google.com/p/android-scripting/downloads/list
http://code.google.com/p/android-scripting/downloads

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 198

Figure 5–1. SL4A Application Launcher icon

Running SL4A on the Android Emulator
When we launch the application, you should see the SL4A primary Usage Tracking

request, as shown in Figure 5–2.

Figure 5–2. SL4A Usage Tracking

Simply click one of either the Accept or Refuse buttons. After invoking the SL4A

application menu (press the F2 keyboard key while in the emulator), you should now see

the image of the main SL4A application Activity screen, as shown in Figure 5–3.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 199

Figure 5–3. SL4A application initial screen with Menu

Now select the View menu item and choose the Interpreters entry, as shown in Figure

5–4.

Figure 5–4. SL4A view interpreters

As illustrated in Figure 5–5, our SL4A emulator installation is currently equipped only

with the Shell interpreter.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 200

Figure 5–5. SL4A interpreters: Shell

If you run the Shell interpreter, you should be presented with Figure 5–6. As you can

see, we have entered the following command into the shell:

echo $PATH

We are also about to execute the UNIX top command.

Figure 5–6. SL4A interpreters: Shell commands

The result of running the top command is shown in Figure 5–7.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 201

Figure 5–7. SL4A Interpreters: Shell top

When you exit the Shell interpreter using the application menu, you are presented with

the screen as depicted in Figure 5–8.

Click the Yes button.

Figure 5–8. SL4A interpreters: Shell exit

We are now done with confirming that our SL4A emulator installation is functioning

correctly.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 202

Installing SL4A Interpreters
Next we will add some new scripting language interpreters to the SL4A toolbox.

We will first show you how to do so using the SL4A application and then summarize how

to install the interpreters from your computer using the downloadable6 application

packages (APKs). This will enable you to install the base interpreter engines slightly

faster than doing it from the device using SL4A. It is best thereafter to let the relevant

script engine fetch its current and compatible extra ZIP packages under its own control.

Adding Interpreters with SL4A
From within the Interpreters screen, select the Add menu item. After scrolling down to

the Python entry in the list, you should see the image depicted in Figure 5–9.

Figure 5–9. SL4A Add interpreters

Select the Python entry.

This will start a download of the Python APK from the SL4A site that should show the

notification shown in Figure 5–10 when completed.

6 http://code.google.com/p/android-scripting/downloads/list

s

http://code.google.com/p/android-scripting/downloads/list

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 203

Figure 5–10. SL4A Add interpreters: Python downloaded

Clicking the notification entry should display the dialog shown in Figure 5–11.

Figure 5–11. SL4A Add interpreters: Python install

Now click the Install button.

The image shown in Figure 5–12 is what you should see during the download and

installation process.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 204

Figure 5–12. SL4A Add interpreters: Python installing

Once the installation is complete, you should see something similar to that shown in

Figure 5–13.

Figure 5–13. SL4A Add interpreters: Python installed

If you now click the Open button, you will be presented with a screen (see Figure 5–14) to

initiate the secondary installation sequence. This will download all the supporting

archives to the emulator instance.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 205

Figure 5–14. SL4A Add interpreters: Install Python supporting files

Figure 5–15 depicts the process of downloading the suite of Python interpreter files.

Figure 5–15. SL4A Add interpreters: Install Python download supporting files

Once the whole installation download process is complete, you should see the image

illustrated in Figure 5–16.

Do not click the Uninstall button.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 206

Figure 5–16. SL4A Add interpreters: Install Python done

Going back to the SL4A interpreters list, you should now see the Python script language

entry, as shown in Figure 5–17.

Figure 5–17. SL4A Add interpreters: Python complete

This means that you can run Python on Android! The result of clicking the Python

interpreter entry is shown in Figure 5–18.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 207

Figure 5–18. SL4A: Run Python

Let’s enter some code into the interpreter. Try running the following Python statements:

import sys
print(sys.platform)

The result should be the following:

linux2

This short session is also shown in Figure 5–19.

Figure 5–19. SL4A - Run Python Code

To demonstrate interaction with the Android API, enter the following code into the

interactive interpreter:

import android
andy = android.Android()
andy.makeToast('Hello Practical Android Projects!')

The result is shown in Figure 5–20.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 208

Figure 5–20. SL4A: Run Python Hello Android

This concludes our demonstration of how to install SL4A interpreters using SL4A.

NOTE: The SL4A interpreter setup process that we have documented so far will also apply when
using a physical device. So when you install SL4A and the supported interpreters on your phone,

the same steps will be presented.

Adding Interpreters with Package Archives
As mentioned earlier, it is also possible to install the interpreters from your computer

using the downloadable7 application packages (APKs). This makes script interpreter

installation slightly faster than only using the SL4A application as explained before.

Let’s assume that you want to install the Perl scripting interpreter in this fashion. In a

terminal command-line shell, navigate to the directory where you have saved the

downloaded Perl APK file and enter the following command:

adb install perl_for_android_r1.apk

This should produce output similar to the following:

adb install perl_for_android_r1.apk
96 KB/s (33894 bytes in 0.343s)
 pkg: /data/local/tmp/perl_for_android_r1.apk
Success

As shown earlier in Figure 5–14 where we installed Python, you can now initiate the

secondary installation sequence using the Perl for Android Launcher icon that should

now be visible in the emulator or device. This will download all the supporting archives

7 http://code.google.com/p/android-scripting/downloads/list

http://code.google.com/p/android-scripting/downloads/list

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 209

following on from Figure 5–14 with the same workflow as before. At the very least, it

saves having the interpreter package being downloaded.

Understanding Scripting Layer for Android
As mentioned earlier, SL4A enables interoperation between Android agnostic scripting

language engines and the Android API. As you will see later, this is not restricted to

scripting languages only. Any program that implements a compatible JSON–based RPC8

interfacing module or set of routines can potentially invoke the SL4A RPC Server.

Communicating Using JavaScript Object Notation (JSON)
Internally, SL4A uses the JavaScript Object Notation (JSON) data format for the

interchange of messages and data between the SL4A RPC Server and its clients. This is

fundamental to its workings so we will give a quick summary of JSON here.

The acronym JSON was originally specified by Douglas Crockford. The JSON data

format is described in RFC 4627.9

To quote from the JSON specification:

“JavaScript Object Notation (JSON) is a lightweight, text-based,
language-independent data interchange format. It was derived from the
ECMAScript Programming Language Standard. JSON defines a small
set of formatting rules for the portable representation of structured data.
JSON can represent four primitive types (strings, numbers, booleans,
and null) and two structured types (objects and arrays).”

To give you an idea of the data format, the specification also presents an example of a

JSON object as follows:

{
 "Image": {
 "Width": 800,
 "Height": 600,
 "Title": "View from 15th Floor",
 "Thumbnail": {
 "Url": "http://www.example.com/image/481989943",
 "Height": 125,
 "Width": "100"
 },
 "IDs": [116, 943, 234, 38793]
 }
}

8 Remote Procedure Call

9
 http://tools.ietf.org/html/rfc4627

http://www.example.com/image/481989943
http://tools.ietf.org/html/rfc4627

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 210

We will not go into more detail about JSON here but instead recommend that you follow

up the online resources for more information if you are interested.

Summarizing the SL4A Architecture
SL4A exposes Android API functionality to its clients. It achieves this by implementing a

scripting language–compatible module that marshals RPCs and their responses to and

from a RPC server implemented as an Android Java application. This enables the RPC

server to have direct access to the Android API and it behaves as a remote proxy using

a façade that encapsulates and exposes selected Android APIs.

Scripting languages are ported, via cross-compilation or otherwise, to the Android

platform in their purest form avoiding any source code changes. This implies that the

scripting language has no knowledge of the Android platform at all. It gains access to

the Android API using a special module generally implemented in the scripting language

itself that accesses the Android API over the remote SL4A RPC server. The current

implementation uses the JSON data format for its application layer network messaging

package payload content.

The overall design of this infrastructure is illustrated in Figure 5–21.

Figure 5–21. SL4A architecture overview

To explain things another way, a “generic” script engine, running in a self-contained

process, accesses the Android API over bidirectional JSON-RPC via an API façade. The

façade is serviced in a separate process, and implemented as a “standard,” Java-based,

Android server application. The latter has full access to the Android platform API and

thus essentially serves as a remote API “proxy” for the scripting engine/interpreter. Each

scripting language has a “wrapper” module providing an “Android object” that serves as

an in-process, local, API proxy, with the task of packaging RPC calls as scripting

methods in the spirit of the particular scripting engine.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 211

To sum this up, an overview of the full-round trip invocation stack looks something like

the following:

-- Script Interpreter
---- Client/Caller/Consumer Script
------ "Android" Script Object (locally wraps RPC calls) - Local Proxy
-------- Remote Procedure Calls (RPC) – Exchanges contain a JSON payload
------ Android API Java Facade - Remote Proxy
---- API Server/Provider - Android Java application
-- The Android Platform itself

NOTE: This decoupled architecture permits any compatible local or remote client to call into

SL4A as long as it does so via the JSON RPC call interface.

Reviewing Local Proxy Implementations
We will not go into detailed explanations of the code, but to give you an idea of what is

involved, here are some implementations of client RPC proxy wrapper modules.

In Python (see Listing 5–1):

Listing 5–1. Python Module for Accessing the AndroidProxy (android-scripting/python/ase/android.py)

Copyright (C) 2009 Google Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.

__author__ = 'Damon Kohler <damonkohler@gmail.com>'

import collections
import json
import os
import socket
import sys

PORT = os.environ.get('AP_PORT')
HOST = os.environ.get('AP_HOST')
HANDSHAKE = os.environ.get('AP_HANDSHAKE')
Result = collections.namedtuple('Result', 'id,result,error')

class Android(object):

 def __init__(self, addr=None):

http://www.apache.org/licenses/LICENSE-2.0
mailto:damonkohler@gmail.com

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 212

 if addr is None:
 addr = HOST, PORT
 self.conn = socket.create_connection(addr)
 self.client = self.conn.makefile()
 self.id = 0
 if HANDSHAKE is not None:
 self._authenticate(HANDSHAKE)

 def _rpc(self, method, *args):
 data = {'id': self.id,
 'method': method,
 'params': args}
 request = json.dumps(data)
 self.client.write(request+'\n')
 self.client.flush()
 response = self.client.readline()
 self.id += 1
 result = json.loads(response)
 if result['error'] is not None:
 print result['error']
 # namedtuple doesn't work with unicode keys.
 return Result(id=result['id'], result=result['result'],
 error=result['error'],)

 def __getattr__(self, name):
 def rpc_call(*args):
 return self._rpc(name, *args)
 return rpc_call

The equivalent functionality is shown in the C programming language (see Listing 5–2)

taken from the android-cruft project10 on Google Code. This project demonstrates how

to write C programs that can access the Android API by leveraging SL4A, using the

same principles as the earlier Python proxy.

Listing 5–2 presents the C main function that is the meat of the code logic. It attempts to

invoke the Android API over the SL4A RPC server in order to raise an Android Toast with

the message “w00t!” It marshals the message character buffer into a json_array, which

it then sends over to the SL4A RPC server with a call to the sl4a_rpc function.

Listing 5–2. C Main Module for Accessing SL4A (ndk-to-sl4a.c)

[--code omitted--]

main(int argc, char **argv) {
 int port = 0;
 if (argc != 2) {
 printf("Usage: %s port\n", argv[0]);
 return 1;
 }
 port = atoi(argv[1]);

 int socket_fd = init_socket("localhost", port);
 if (socket_fd < 0) return 2;

10 http://code.google.com/p/android-cruft/wiki/SL4AC

http://code.google.com/p/android-cruft/wiki/SL4AC

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 213

 json_t *params = json_array();
 json_array_append(params, json_string("w00t!"));
 sl4a_rpc(socket_fd, "makeToast", params);
}
[--code omitted--]

The supporting C functions are shown in Listing 5–3. We will not go into the details, but

present the listing here for the sake of completeness.

Listing 5–3. C Support Functions for Accessing SL4A (ndk-to-sl4a.c)

// Released into the public domain, 15 August 2010
// This program demonstrates how a C application can access some of the Android
// API via the SL4A (Scripting Languages for Android, formerly "ASE", or Android
// Scripting Environment) RPC mechanism. It works either from a host computer
// or as a native binary compiled with the NDK (rooted phone required, I think)
// SL4A is a neat Android app that provides support for many popular scripting
// languages like Python, Perl, Ruby and TCL. SL4A exposes a useful subset of
// the Android API in a clever way: by setting up a JSON RPC server. That way,
// each language only needs to implement a thin RPC client layer to access the
// whole SL4A API.
// The Android NDK is a C compiler only intended for writing optimized
// subroutines of "normal" Android apps written in Java. So it doesn't come
// with any way to access the Android API.
// This program uses the excellent "Jansson" JSON library to talk to SL4A's
// RPC server, effectively adding native C programs to the list of languages
// supported by SL4A.
// To try it, first install SL4A: http://code.google.com/p/android-scripting/
//
// Start a private server with View->Interpreters->Start Server
//
// Note the port number the server is running on by pulling down the status
// bar and tapping "SL4A service".
// This program works just fine as either a native Android binary or from a
// host machine.
// ------------
// To compile on an ordinary linux machine, first install libjansson. Then:
// $ gcc -ljansson ndk-to-sl4a.c -o ndk-to-sl4a
// To access SL4A on the phone use "adb forward tcp:XXXXX tcp:XXXXX" to port
// forward the SL4A server port from your host to the phone. See this
// page for more details:
// http://code.google.com/p/android-scripting/wiki/RemoteControl
// ------------
// To compile using the NDK:
// 1. Make sure you can compile "Hello, world" using the NDK. See:
// http://credentiality2.blogspot.com/2010/08/native-android-c-program-
using-ndk.html
//
// 2. If you followed the above instructions, you have a copy of the agcc.pl
// wrapper that calls the NDK's gcc compiler with the right options for
// standalone apps.
//
// 3. Unpack a fresh copy of the jansson sources. Tell configure to build for
// Android:
//
// $ CC=agcc.pl ./configure --host=arm
// $ make

http://code.google.com/p/android-scripting/
http://code.google.com/p/android-scripting/wiki/RemoteControl
http://credentiality2.blogspot.com/2010/08/native-android-c-program-%ED%AF%80%ED%B0%81

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 214

//
// 4. Cross your fingers and go! (I'm quite certain there's a more elegant
// way to do this)
//
// $ agcc.pl -I/path/to/jansson-1.3/src -o ndk-to-sl4a-arm ndk-to-sl4a.c
 /path/to/jansson-1.3/src/*.o
//
// 5. Copy to the phone and run it with the port of the SL4A server!

#include <stdio.h>
#include <jansson.h>
#include <unistd.h>
#include <string.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

// This mimics SL4A's android.py, constructing a JSON RPC object and
// sending it to the SL4A server.
int sl4a_rpc(int socket_fd, char *method, json_t *params) {
 static int request_id = 0; // monotonically increasing counter

 json_t *root = json_object();

 json_object_set(root, "id", json_integer(request_id));
 request_id++;

 json_object_set(root, "method", json_string(method));

 if (params == NULL) {
 params = json_array();
 json_array_append(params, json_null());
 }

 json_object_set(root, "params", params);

 char *command = json_dumps(root, JSON_PRESERVE_ORDER | JSON_ENSURE_ASCII);
 printf("command string:'%s'\n", command);

 write(socket_fd, command, strlen(command));
 write(socket_fd, "\n", strlen("\n"));

 // At this point we just print the response, but really we should buffer it
 // up into a single string, then pass it to json_loads() for decoding.
 printf("Got back:\n");
 while (1) {
 char c;
 read(socket_fd, &c, 1);
 printf("%c", c);
 if (c == '\n') {
 break;
 }
 }
 fflush(stdout);
 return 0;

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 215

}

// This function is just boilerplate TCP socket setup code
int init_socket(char *hostname, int port) {
 int socket_fd = socket(AF_INET, SOCK_STREAM, 0);
 if (socket_fd == -1) {
 perror("Error creating socket");
 return 0;
 }

 struct hostent *host = gethostbyname(hostname);
 if (host == NULL) {
 perror("No such host");
 return -1;
 }

 struct sockaddr_in socket_address;

 int i;
 for (i=0; i < sizeof(socket_address); i++) {
 ((char *) &socket_address)[i] = 0;
 }

 socket_address.sin_family = AF_INET;

 for (i=0; i < host->h_length; i++) {
 ((char *) &socket_address.sin_addr.s_addr)[i] = ((char *) host->h_addr)[i];
 }

 socket_address.sin_port = htons(port);

 if (connect(socket_fd, (struct sockaddr *) &socket_address, sizeof(socket_address))
< 0) {
 perror("connect() failed");
 return -1;
 }

 return socket_fd;
}

[--code omitted--]

Getting the SL4A Source Code
To quote from the home site of SL4A:

“SL4A is designed for developers and is alpha quality software.”

This means that you can expect SL4A to go through relatively frequent changes and

releases until it moves out of alpha. For this reason, we will present methods by which

you can retrieve the SL4A source code.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 216

Cloning the SL4A Source Code
We will show you several options for getting a local copy of the SL4A source code

repository.

Installing Mercurial
We recommend that you install a local copy of Mercurial using the following resources:

 Mercurial source code management home:

 http://mercurial.selenic.com/

 http://mercurial.selenic.com/about/

 Mercurial downloads:

 http://mercurial.selenic.com/downloads/

 Mercurial tools:

 http://mercurial.selenic.com/wiki/OtherTools

NOTE: The Eclipse IDE plugin for Mercurial that we will present later also includes the option of
installing the Mercurial executables and binaries for the Windows platform. We prefer to install

Mercurial as a stand-alone application and add it to the system PATH variable.

To verify the Mercurial installation on your development computer, execute the following

command from the terminal command line:

hg –v

This should result in output similar to the following:

Mercurial Distributed SCM (version 1.6.2)
Copyright (C) 2005–2010 Matt Mackall <mpm@selenic.com> and others
This is free software; see the source for copying conditions.
[--text omitted--]
use "hg help" for the full list of commands

Getting SL4A Using the Mercurial Hg Executable
We assume that you have installed a local copy of Mercurial and that it is on your

system PATH variable. Enter into a file system directory of your choice using the

terminal command line and execute the following command:

hg clone https://android-scripting.googlecode.com/hg/ android-scripting

This should result in output somewhat similar to the following:

hg clone https://android-scripting.googlecode.com/hg/ android-scripting
requesting all changes
adding changesets

http://mercurial.selenic.com/
http://mercurial.selenic.com/about/
http://mercurial.selenic.com/downloads/
http://mercurial.selenic.com/wiki/OtherTools
mailto:mpm@selenic.com
https://android-scripting.googlecode.com/hg/
https://android-scripting.googlecode.com/hg/

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 217

adding manifests
adding file changes
added 1066 changesets with 34881 changes to 28397 files
updating to branch default
11207 files updated, 0 files merged, 0 files removed, 0 files unresolved

Using Mercurial with Eclipse
You can install the Mercurial plugin for Eclipse from the update location below:

 Eclipse Mercurial plugin:

 http://javaforge.com/project/HGE

 Eclipse Mercurial plugin update site:

 http://cbes.javaforge.com/update

Figure 5–22 displays the form required for installing the Eclipse Mercurial plugin.

Figure 5–22. Eclipse Mercurial plugin

We will not follow the whole sequence here, but Figure 5–23 displays the form required

for cloning a Mercurial repository from within Eclipse.

http://javaforge.com/project/HGE
http://cbes.javaforge.com/update

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 218

Figure 5–23. Cloning a Mercurial repository with the Eclipse Mercurial plugin

Using Mercurial with IntelliJ IDEA
You can install the Mercurial plugin for IntelliJ IDEA from the following location:

 IntelliJ IDEA Mercurial plugin:

 http://plugins.intellij.net/plugin/?id=3370

 https://bitbucket.org/willemv/hg4idea

Figure 5–24 displays the form required for using the IntelliJ IDEA Mercurial plugin. This

will allow you to clone a Mercurial repository from the IDE.

Figure 5–24. IntelliJ IDEA Mercurial plugin

Again, we will not follow the whole sequence here, but Figure 5–25 displays the form

required for cloning a Mercurial repository from within IntelliJ IDEA.

http://plugins.intellij.net/plugin/?id=3370
https://bitbucket.org/willemv/hg4idea

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 219

Figure 5–25. Cloning a Mercurial repository with the IntelliJ IDEA Mercurial plugin

SL4A Hello World Examples
To get an idea of the spirit of SL4A, here are some basic examples in different scripting

languages. Install the interpreters and try them out.

 BeanShell:

source("/sdcard/com.googlecode.bshforandroid/extras/bsh/android.bsh");
droid = Android();
droid.call("makeToast", "Hello, Android!");

 JavaScript:

load("/sdcard/com.googlecode.rhinoforandroid/extras/rhino/android.js");
var droid = new Android();
droid.makeToast("Hello, Android!");

 Perl:

use Android;
my $a = Android->new();
$a->makeToast("Hello Practical Android Projects!");

 Python:

import android
andy = android.Android()
andy.makeToast("Hello Practical Android Projects!")

 Ruby:

droid = Android.new
droid.makeToast "Hello Practical Android Projects!"

 TCL:

package require android
set android [android new]
$android makeToast "Hello, Android!"

We hope that this will encourage you to study SL4A in more depth.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android 220

Summary
The main objective of this chapter was to introduce you to the Scripting Layer for

Android (SL4A) platform. SL4A is a growing topic and is well worth investigating in

depth.

We helped you get a basic understanding of how SL4A works and to be able to use it to

run your own scripts on the Android platform.

You now have enough information to clone your own copy of the SL4A source code

repository in order to build SL4A yourself.

221

221

 Chapter

Creating a GUI with
HTML/JavaScript and AIR
The Android SDK and development environment provide a rich set of tools for

developing applications. The biggest drawback to these tools is their lack of cross-

platform support. It is true that many of the simpler Java classes provide some level of

cross-platform functionality, but when it comes to the UI, it is a different story. It would

be a considerable task to write an Android application in a display-agnostic way using

the standard Android tool chain. One solution to this cross-platform problem is to write

your application in an alternative language and framework that is supported on Android.

At this stage in the game, JavaScript probably provides a developer with the greatest

number of supported devices. If you can boil your application down to a web page or

two, you have a better chance of getting it working on a larger number of devices.

However, JavaScript and HTML bring their own set of cross-platform issues. Consider

how much effort web developers must put into cross-browser testing and validation.

This same complexity applies to deploying a web-based application on a mobile device,

which has its own browser, with its own quirks.

JavaScript and HTML work as a cross-platform solution because browsers must provide

a reasonably complete and consistent way of rendering web pages. Similarly, Flash is a

good platform for cross-platform application development. Flash applications can also

be installed as native applications through Adobe’s packaging and deployment tool

called AIR. The combination of the large browser penetration of the Flash runtime, along

with the potential for more traditional application deployment through AIR, makes the

Flash runtime a good choice for cross-platform development. As of Android 2.2, AIR is

supported as a first-class citizen.

Developers who consider Flash development an artifact from the 90s are in some ways

correct. However, Adobe has done a lot work to bring modern development practices to

the Flash runtime. Today, Flash development is done with a set of tools and libraries

called Flex. With Flex, you can create modern applications that run on the Flash runtime.

Building a UI with Flex is very similar to how Android applications are built, or even

6

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 222

AWT/Swing applications, and should be easy to pick up for any developer who has built

a UI with Java.

Though the number of devices that can run Flash is smaller than the number of devices

that can render a web page, Flash has at least one advantage: it is written and maintained

by a single company. While there are many browsers, written by many different

companies, Adobe is the sole author of Flash and this greatly reduces the number of

cross-platform surprises, which reduces the overhead for cross-platform development.

Both Flash and JavaScript/HTML have advantages and disadvantages for solving the cross-

platform issue. This chapter will explore an application written once in JavaScript/HTML and

again in Flex. We will explore what is required to get the applications running on an Android

device, and hopefully illuminate each technology enough to help guide a developer looking

for a cross-platform solution that includes Android.

We will configure an Android project with the Eclipse plug-in to host our web application

as if it was a native app. This will include setting up the basic Android views to view a

local web page and describe where the web page should be stored in the project. Once

we have the project configured, we will explore the HTML and JavaScript itself,

explaining how the application handles user interaction, displaying and animating

graphics, and how JavaScript can interact with Java code running on the device.

The second section of this chapter will describe how to set up a Flex/AIR application

using Eclipse and the Flash Builder plug-in. Once this project is configured, we will

describe how to package it for use with Android and explain how the application works.

Setting Up an Android Project to Display a Web
Application
There are two example projects associated with this chapter. We want to look at the one

called 06_HtmlOnAndroid first. The basic idea with this application is that it is simply a

HTML file bundled in an Android application and is displayed in a WebView. In fact, before

we look at the Android project at all, look at Figure 6–1, which shows the application in a

web browser.

Figure 6–1 shows is a square area in which a number of different circles, or orbs, are

drawn. A user can select a pair of orbs to trade places by clicking on them. If orbs of a

like type form a complete vertical or horizontal line, they are whisked away and the

user’s score is incremented. The user’s score is presented at the top of the screen along

with a high score.

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 223

Figure 6–1. Application running in a web browser

In this section you will learn how to configure an Android project to display local HTML

as if it was a native application. We will also discuss how the HTML and JavaScript

works. Lastly, we will cover how to call Java methods from JavaScript.

The Android Project
Android provides a very capable UI component called WebView that can be used to

display HTML content. The WebView class is standard on Android and does not require

anything special to use. The entry point in the 06_HtmlOnAndroid project is the class

HtmlOnAndroid and shows how little code is required to get this type of application set

up. Listing 6–1 shows the onCreate method of HtmlOnAndroid.

Listing 6–1. HtmlOnAndroid.onCreate()

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 webView = new WebView(this);
 webView.getSettings().setJavaScriptEnabled(true);
 webView.loadUrl("file:///android_asset/index.html");
 webView.addJavascriptInterface(new JavaScriptInterface(), "android");
 webView.setScrollBarStyle(WebView.SCROLLBARS_INSIDE_OVERLAY);

 setContentView(webView);
}

In Listing 6–1 we see that a new WebView is created and set as the contentView. This

makes the WebView the only component visible in the application, allowing us to have a

full screen JavaScript/HTML application. After the WebView is created, a number of

file:///android_asset/index.html

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 224

methods are called on the WebView. These methods enable functionality that is required

by our application.

The call to webView.getSettings().setJavaScriptEnabled(true) is critical for our

application because it allows the JavaScript to run, which defines the actual game. By

default, JavaScript is disabled on new WebViews, perhaps for performance or security

reasons.

In order to set the web page displayed by the WebView a call to loadUrl is made. As can

be seen in Listing 6–1 we are setting the starting URL to

file:///android_asset/index.html. The index.html file is located in the assets

directory of the project. By default, any files stored in the assets directory are available

on the device at the path file:///android_asset/.

Without modification, an application with a single WebView has a lot of extra stuff on the

screen. We want to get rid of as much of this clutter as possible to make room for the

application and to make it look more native. See Figure 6–2, which shows the

application before and after our cosmetic changes are made.

Figure 6–2. Default Android app vs. cleaned-up app

You can see on the left that there is a header to the WebView and scroll bars on the right.

The method call setScrollBarStyle is used to remove the default scroll bars of the

WebView. Since this is a simple, full-screen application, we can remove the scroll bars to

increase the viewing area and prevent some user confusion. To further increase the

amount of screen area in the AndroidManifest.xml file, we set the theme of the

application to @android:style/Theme.NoTitleBar as can be seen in Listing 6–2.

file:///android_asset/index.html
file:///android_asset/
mailto:@android:style/Theme.NoTitleBar

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 225

Listing 6–2. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.ljordan.anrdoid.chapter06"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".HtmlOnAndroid"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.NoTitleBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
</application>
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_GPS" />
 <uses-permission android:name="android.permission.ACCESS_ASSISTED_GPS" />
 <uses-permission android:name="android.permission.ACCESS_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
</manifest>

Listing 6–2 shows the AndroidManifest.xml file for this project. Besides setting our

theme for the application, we also define the permissions required by this application. It

is important to note that the permissions of an application apply to an application that

lives in a WebView as well. For example, if your application wants to make a call to an

external server through JavaScript, you must include the INTERNET permission. This is

also true for the HTML5 location API, you must set the ACCESS_GPS and probably the

ACCESS_FINE_LOCATION for this feature to work in your web view the way you want.

Calling Android Methods from JavaScript
To make JavaScript applications capable of fully utilizing the host device on which they

run, the Android SDK provides a mechanism for JavaScript to make calls into the

Android Java environment. This is important, since it frees developers from worrying

about whether or not some piece of functionality is available in the WebView. In Listing 6–

1 the method addJavascriptInterface is called on the WebView object and a new

instance of a class called JavaScriptInterface and the String “android” are passed in.

This creates a global variable called android available to any JavaScript running within

this WebView. The android object is considered to be a JavaScriptInterface and

JavaScript can call any method defined by that class. The JavaScriptInterface class

can be named anything, as it is a class defined in this project and can be found in the

HtmlOnAndroid.java file. Listing 6–3 shows the details.

http://schemas.android.com/apk/res/android
mailto:theme="@android:style/Theme.NoTitleBar

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 226

Listing 6–3. JavaScriptInterface definition

final class JavaScriptInterface {
 JavaScriptInterface() {
 }

 public int getScreenWidth() {
 return webView.getWidth();
 }

 public int getScreenHeight() {
 // Removing 5 pixels to prevent vertical scrolling.
 return webView.getHeight() - 5;
 }

 public int getHighScore() {
 SharedPreferences preferences = getPreferences

(MODE_WORLD_WRITEABLE);
 return preferences.getInt(KEY_HIGH_SCORE, 0);
 }

 public void setHighScore(int value) {
 SharedPreferences preferences = getPreferences(MODE_PRIVATE);
 Editor editor = preferences.edit();
 editor.putInt(KEY_HIGH_SCORE, value);
 editor.commit();
 }

}

You can see that the JavaScriptInterface class is very simple. It does not even

implement an interface. It simply provides a bunch of methods that can be called from

JavaScript. The application is going to take advantage of this class by using it to get the

size of the WebView and to read and write a high score, so it can be saved between

sessions. The purpose of this android object will become clear in the next section, in

which we explore the JavaScript application in detail.

It is important to highlight two issues when exposing an Android object to the JavaScript

in a WebView. First, a different thread will perform any method call originating in

JavaScript than the thread used to created the WebView. The class AsyncTask can be

used to help synchronize work between the UI thread and any background thread. The

use of the class AsyncTask is covered in Chapter 7. Second, and perhaps more

important, these methods are exposed to any JavaScript running within the WebView.

This may very well include JavaScript from an untrusted site. Take care that the

functionally exposed is harmless or that the WebView is constrained to only show trusted

code. The simplest way to do this is to not link to any external sites or to not include the

INTERNET permission.

JavaScript Application
Once we have the Android application set up with a WebView, we can focus our

development attention on creating an application with standard web tools. JavaScript

development has come a long way over the years. If you don’t have a lot of experience

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 227

developing JavaScript applications, explore Google’s Chrome web browser and the

development tools that are included with it. In Chrome, check under the View menu, and

you will find a sub-menu called Developer which contains a number of tools. You will

find a tree view, showing the DOM of the current page, a list of resources referenced by

the page, a JavaScript debugger, and a whole lot more. Figure 6–3 shows an example of

these tools.

Figure 6–3. Chrome developer tools

TIP: Redeploying your JavaScript application onto a mobile device can be a big waste of time
during development. Try using a browser like Chrome to develop and debug your web
application, then deploy once in a while to your Android device for validation. Download Chrome

at www.google.com/chrome.

The starting point for this web application is the file index.html, which is shown in

Listing 6–4.

Listing 6–4. index.html

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF-8">

http://www.google.com/chrome

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 228

<title>Title is not displayed</title>

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="orb_quest.js"></script>

</head>
<body onload="onLoad()" style="background-color: #666666;margin: 0" >
<div>

 <table style="position: absolute;color: #FFFFFF">
 <tr >
 <td><div>Score:</div></td>
 <td><div id="score" style="padding-left: 10px">0</div></td>
 </tr>
 <tr >
 <td><div>High Score:</div></td>
 <td><div id="highScore" style="padding-left: 10px">0</div></td>
 </tr>
 </table>

 <canvas style="position: absolute;" id="canvas" ></canvas>

</div>
</body>
</html>

In Listing 6–4 you see the content of the index.html. The index.html references the

style file style.css and the script file orb_quest.js. In addition to these external files, we

have a table for holding the score and high score information, as well as an HTML5

canvas tag. The animation portion of the game is done with a canvas element to explore

some of the HTML5 features supported by the Android browser. Before we look at the

JavaScript code which is the heart of this application, let’s consider the CSS file shown

in Listing 6–5.

Listing 6–5. style.css

@CHARSET "UTF-8";

canvas {
 -webkit-tap-highlight-color: rgba(0, 0, 0, 0);
}

body {
 background-color: rgb(128,128,128);
}

In Listing 6–5 is a very simple CSS file. In a more complex application, there is no doubt

that this file would be much larger, defining many styles used throughout the

application. In our case, the only declaration that really matters is the canvas element

that states that the highlight color should be invisible. More precisely, the color is

defined to be black with zero opacity. This is important in our sample application

because, by default, images touched in an Android browser become selected and are

shown with a blue highlight. For whatever reason a canvas element is treated the same

way as an image. Because the user will be tapping this component to play the game, we

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 229

want to disable this default behavior. Setting the background to gray was done to help

the screenshots of this application come though in print.

The body element in the index.html file calls the JavaScript function onLoad when it is

loaded. This function is defined in the JavaScript file orb_quest.js. The application logic

that drives this game is found in that same JavaScript file. Listing 6–6 shows the onLoad

function.

Listing 6–6. orb_quest.js (onLoad Function)

function onLoad(){
 var red_orb = new Image();
 red_orb.src = "images/red_orb.png";
 orb_images.push(red_orb);

 var blue_orb = new Image();
 blue_orb.src = "images/blue_orb.png";
 orb_images.push(blue_orb);

 var green_orb = new Image();
 green_orb.src = "images/green_orb.png";
 orb_images.push(green_orb);

 scoreElement = document.getElementById("score");
 highScoreElement = document.getElementById("highScore");

 highScore = getHighScore();
 highScoreElement.innerHTML = highScore;

 var canvas = document.getElementById("canvas");
 var screenWidth = getScreenWidth();
 var screenHeight = getScreenHeight();

 if (screenWidth < screenHeight){
 canvasSize = screenWidth;
 var top = (screenHeight-canvasSize)/2.0;
 canvas.style.top = top + "px";
 } else {
 canvasSize = screenHeight;
 var left = (screenWidth-canvasSize)/2.0
 canvas.style.left = left + "px";
 }
 canvas.setAttribute("width", canvasSize);
 canvas.setAttribute("height", canvasSize);

 canvas.addEventListener("click", canvasClick, false);

 ctx = canvas.getContext("2d");

 for(var i=0;i<coordCount;i++){
 coord.push(oneFifth*i+oneTenth);
 }
 for (var col=0;col<coordCount;col++){
 for (var row=0;row<coordCount;row++){
 sprites.push(new Sprite("Orb", randomOrbImage(), coord[col],

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 230

 coord[row], oneFifth));
 }
 }

 setInterval("renderScene()", 1000/30);
}

The onLoad function in Listing 6–6 handles a number of the things required to get the

application up and running. The method defines a number of images, which represent

each type of orb, and stores them in the array orb_images. The score, highscore, and

canvas elements from the document are identified and stored in global variables,

because they will be accessed throughout the life of the application. The canvas element

is resized by getting the desired height and width by calling getScreenHeight and

getScreenWidth. These methods are shown in Listing 6–7. The last thing that the onLoad

function does is register a click listener method on the canvas and add a bunch of

starting orbs. Before we move on to some of the details about how this application

draws and handles user input, let’s look at the getScreenHeight and getScreenWidth

functions, because they show how the JavaScript application can communicate with the

host Android application.

Listing 6–7. Functions that call into Android

function getScreenWidth(){
 if (android){
 return android.getScreenWidth();
 } else {
 return 320;
 }
}
function getScreenHeight(){
 if (android){
 return android.getScreenHeight();
 } else {
 return 480;
 }
}
function setHighScore(value){
 if (localStorage && typeof(localStorage) != 'undefined') {
 localStorage.setItem("HighScore", value);
 return value;
 } else {
 if (android){
 android.setHighScore(value);
 return value;
 }
 }
 //not actually saved
 return value;
}
function getHighScore(){
 if (localStorage && typeof(localStorage) != 'undefined') {
 var value = localStorage.getItem("HighScore");
 if (value) {
 return parseInt(value);
 }
 //Maybe it is not set yet.

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 231

 return 0;
 } else {
 if (android){
 return android.getHighScore();
 }
 }
 //no local storage, not on android... just return zero.
 return 0;
}

In Listing 6–7 there are four functions: getScreenHeight and getScreenWidth are used to

set the size of the application, and getHighScore and setHighScore are used to keep

track of any high score that is achieved. The functions that concern themselves with

screen size first check to see if the variable named android is defined. The variable

android is declared in JavaScript, but is only set to a value if this JavaScript is running

within the WebView of our application. The variable will be null if the JavaScript is

running in any other browser, including a browser on an Android device. If the variable

has a value, a call to the corresponding function on the android variable is made. Note

that the function names are identical to the method names defined in Listing 6–3 for the

class JavaScriptInterface. Simply put, the function calls made on the JavaScript

android variable are method calls performed on the JavaScriptInterface object created

in the onCreate method from Listing 6–1.

If the android variable is not set, a fallback value is provided. In a more complex

application, the values returned could be the size of the browser window, or something

else. In our case, we just tell the application to show up in a browser with about the

same size at a mobile screen. We would use this fallback pattern if we intended to use

this application on a regular web page, beyond our application.

The functions getHighScore and setHighScore provided a slightly more complex

example of mixing browser functionality with Android functionality. Instead of first

checking to see if the android variable is set, each function checks to see if a variable

localStorage is present and defined. The variable localStorage is another HTML5

technology used to store user data. The HTML5 local storage API is basically a key

value pair. If local storage is not available the application tries to use the android
variable to store and retrieve data. See Listing 6–3 to see how this is done in Android.

TIP: Learn more than you ever wanted to know about HTML5 at

http://dev.w3.org/html5/html-author/.

Graphics and Animation
There are many ways to render content onto a web page: simple HTML, SVG, and now

the canvas tag. Although the focus of this book is on Android and not HTML5 or canvas,

it is worth exploring the details of how this application works in order to make a valid

evaluation of this approach to application development on Android.

http://dev.w3.org/html5/html-author/

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 232

The heart of this application is the canvas tag defined in the index.html file. A canvas tag

defines a region of the page where graphics will be programmatically drawn. This is

different from the HTML DOM or an SVG element, which define a scene graph that can

be manipulated with JavaScript. It is true that many visual effects can be achieved with

these tools, but not all effects can be efficiently achieved, such as pixel-level drawing.

This is where canvas comes in: it allows pixel-level drawing and provides a number of

helper functions for things like lines, arcs, paths, text, and images.

To draw on the canvas element, we must get access to a context object for that canvas.

In order to get the context, a call to canvas.getContext(“2d”) is made. By specifying

“2d,” we get back a context with a number of 2D drawing functions. Those with a

Java2D background will find the drawing functions on the canvas context very familiar.

There are functions for setting the draw and fill color, functions for drawing lines and

arcs to support paths, and functions for setting the rotate, scale, and translate to

provide full support for transformations.

In order to achieve an animation instead of just a single static image, we set up a timer

to render the scene 30 times a second. This is done by calling

setInterval("renderScene()", 1000/30). It is not strictly necessary in our application to

draw the scene continuously; we could imagine that we stop rendering while waiting for

the user to click the canvas. For simplicity, we render constantly. Each time renderScene

is called, we increment a variable called currentTick. The variable currentTick gives us

a way to know how many times we have rendered the scene. This is useful when we

want to know how far along we are in a particular animation and when we should stop

animating.

The basic strategy of this application is to create a list of items drawn on the canvas

(Sprites), define a way of expressing their motion, and create a function for drawing

them. Let’s start with the definitions of the orbs as shown in Listing 6–8.

Listing 6–8. Sprites

function Sprite(type, img, centerX, centerY, scale) {
 this.type = type;
 this.img = img;
 this.centerX = centerX;
 this.centerY = centerY;
 this.scale = scale;
}

In Listing 6–8 we can see a function that creates a Sprite variable. Each Sprite has a

type, an image, a location, and a scale. In our case, we are only going to create Sprites

with one of the three orb images included with the application. In Listing 6–6, a number

of starting orbs are created and placed in the array orb_images. This array is used to

store all orbs visible on the screen and generally track game state.

In order to animate the orbs, we create a second type of variables defined by the

function Transformation, as seen in Listing 6–9.

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 233

Listing 6–9. Transformation

function Transformation(startTick,endTick,startValue,endValue,field,

tweenFunction,sprite, whenDone) {
 this.startTick = startTick;
 this.endTick = endTick;
 this.startValue = startValue;
 this.endValue = endValue;
 this.field = field;
 this.tweenFunction = tweenFunction;
 this.sprite = sprite;
 this.whenDone = whenDone;
}

A Transformation describes a change in a Sprite’s visual appearance over time.

Instead of writing functions that move or scale a sprite as part of a given animation, a

Transformation provides a simple API for defining these animations. The two values

startTick and endTick define a period of time when this Transformation is active. The

value field describes which value on a Sprite this Transformation will change. The

idea is that during the period between startTick and endTick this Transformation will

set a value of a Sprite to some value between startValue and endValue. Let’s consider

the example Transformation shown in Listing 6–10.

Listing 6–10. Example Transformation

new Transformation(10, 100, .2, .7,"centerX","linear", orb);

Listing 6–10 shows a Transformation being created that will animate the centerX value

of an orb from 20 to 70 percent of the way across the canvas. This animation will

happen during the period between tick 10 and 100. The linear string indicates which

tweenFunction should be used to describe the motion of the orb. The string linear

indicates that each passing tick will move the orb the same distance each time. There

are two other possible tweenFunctions included with this example: windupovershoot and

easeboth. These other functions provide a more pleasant animation than simply linear,

and are used to make the scene livelier.

We now have a way of describing the items in the scene and how they move. By

creating instances of Sprite and Transformation and storing them in the arrays sprites

and trans, we can create a scene in a great number of states. These two arrays are

used by the function renderScene to actually draw the scene onto the canvas element, as

seen in Listing 6–11.

Listing 6–11. renderScene

function renderScene(){
 ctx.fillStyle = "rgb(256,256,256)";
 ctx.fillRect(0,0,canvasSize,canvasSize);

 var oldTransIndex = [];

 for (var i=0;i<trans.length;i++){
 var tran = trans[i];
 if (tran.endTick >= currentTick){
 applyTransformation(tran, currentTick);
 } else {

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 234

 oldTransIndex.push(i);
 }
 }
 oldTransIndex.reverse();
 for (var i=0;i<oldTransIndex.length;i++){
 trans.splice(oldTransIndex[i], 1);
 }

 for (var i=0;i<sprites.length;i++){
 renderSprite(ctx, sprites[i]);
 }
 currentTick++;
}

In Listing 6–11 the first thing done is to set the fill color and then call fillRect. These

two operations clear the canvas of any visual artifacts from the previous call to

renderScene, giving us a clean slate on which we can draw. The renderScene function

then applies each Transformation that will change the location or scale values of the

Sprites they are assigned to. If the range of ticks is less than the value of currentTick,

the Transformation is done and marked for deletion. Then each sprite is rendered to the

canvas. Let’s consider how Transformations are applied and how Sprites are rendered

in turn. Listing 6–12 shows how Transformations update the value of a given Sprite.

Listing 6–12. applyTransformation

function applyTransformation(trans, tick){
 if (tick >= trans.startTick && tick <= trans.endTick){
 if (trans.sprite){
 var fraction = (tick-trans.startTick)/(trans.endTick –

 trans.startTick);
 fraction = eval(trans.tweenFunction + "(" + fraction + ")");
 var value = trans.startValue + (trans.endValue –

 trans.startValue)*fraction;
 var expression = "trans.sprite." + trans.field + " = " + value;
 eval(expression);
 }
 if (tick == trans.endTick){
 if (trans.whenDone){
 eval(trans.whenDone);
 }
 }
 }
}

In Listing 6–12, after checking that the tick value is within range, we calculate what

fraction of ticks has passed since startTick and the endTick of the Transformation. The

fraction value is then passed to the tweenFunction that weights the fraction. The final

value is then calculated based on the modified fraction and the defined startValue and

endValue. This final value is then applied to the appropriate field on the Sprite. Last, a

callback function called whenDone is called in case we need to know when this particular

Transformation is done.

Once each Sprite has had chance to be modified by one or more Transformations, it is

drawn to the canvas. Listing 6–13 shows how this is done.

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 235

Listing 6–13. renderSprite

function renderSprite(ctx, sprite){
 ctx.save();

 var widthInPixels = canvasSize*sprite.scale;
 var scale = widthInPixels/sprite.img.width;
 var centerX = canvasSize*sprite.centerX-(widthInPixels/2.0);
 var centerY = canvasSize*sprite.centerY-(widthInPixels/2.0);

 ctx.translate(centerX, centerY);
 ctx.scale(scale, scale);
 ctx.drawImage(sprite.img, 0, 0);

 ctx.restore();
}

In Listing 6–13 we want to translate the drawing location of the ctx object in order to

draw the Sprite at the appropriate place. Since we don’t want to keep track of the state

of the ctx variable, we can use the save and restore functions to modify the state of the

ctx in any way we want. We know that a call to restore will undo all changes. Using the

sprites scale and location, we simply call drawImage to pass in the image associated with

the Sprite to draw each Sprite on the canvas.

User Interaction
We have described how the application is set up and have created a simple but limited

API to describe the game scene. The last bit of logic we have to look at is how user

interaction affects the game state. User interaction starts with the functions canvasClick

that is called when a mouse or finger clicks the canvas element. Listing 6–14 shows this

function in detail.

Listing 6–14. canvasClick

function canvasClick(e){
 if (trans.length == 0){
 if (selectedOrb){
 var secondOrb = findOrbForXY(e.layerX, e.layerY);
 if (secondOrb != selectedOrb){

 var endOfScale = currentTick + 15
 trans.push(new Transformation(currentTick, endOfScale,

 oneFifth,oneTenth,"scale","windupovershoot",secondOrb));

 var endOfTranslate = endOfScale + 15;
 trans.push(new Transformation(endOfScale,

 endOfTranslate,secondOrb.centerX,selectedOrb.centerX,"centerX","easeboth",secondOrb,

 null));
 trans.push(new Transformation(endOfScale,

 endOfTranslate,secondOrb.centerY,selectedOrb.centerY,"centerY","easeboth",secondOrb,

 null));
 trans.push(new Transformation(endOfScale,

 endOfTranslate,selectedOrb.centerX,secondOrb.centerX,"centerX","easeboth",

selectedOrb, null));

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 236

 trans.push(new Transformation(endOfScale,

 endOfTranslate,selectedOrb.centerY,secondOrb.centerY,"centerY","easeboth",

selectedOrb, null));

 trans.push(new Transformation(endOfTranslate,

 endOfTranslate+15,oneTenth,oneFifth,"scale","windupovershoot",secondOrb, null));
 trans.push(new Transformation(endOfTranslate,

 endOfTranslate+15,oneTenth,oneFifth,"scale","windupovershoot",selectedOrb,

 "checkForGroups()"));

 var indexA = sprites.indexOf(secondOrb);
 var indexB = sprites.indexOf(selectedOrb);

 sprites[indexB] = secondOrb;
 sprites[indexA] = selectedOrb;

 selectedOrb = null;
 }
 } else {
 selectedOrb = findOrbForXY(e.layerX, e.layerY);
 trans.push(new Transformation(currentTick, currentTick +

 15,oneFifth,oneTenth,"scale","windupovershoot",selectedOrb, null));
 }
 }
}

In Listing 6–14, we only do anything if the trans array is empty. This means we only care

about user input if there are no animations. When a user clicks, we want to know if this

is the first or second orb they are clicking. If a click has happened before, the variable

selectedOrb will be null; if it is the second time selectedOrb will have a value. We use

the function findOrbForXY to figure out where the user clicked and hence, which orb

they clicked.

If it was the first orb the user has clicked, we simply record which orb it was in

selectedOrb and add a Transformation that scales the selected orb down over the

course of 15 ticks (.5 sec). If the user has clicked on a second orb, we want to create a

number of Transformations that create the animation of the two orbs changing

locations. Last, we swap the locations of the orbs in the array sprites.

We take advantage of the callback function of Transformation to call the function

checkForGroups when the last Transformation is done. The checkForGroups function

looks for columns and rows that are all of the same type of orb and creates the

animations that move the matching orbs off the canvas. Listing 6–15 shows a partial

listing of the checkForGroups function.

Listing 6–15. checkForGroups (partial)

var animatedOrbs = [];

 var endScale = currentTick+15
 var endTrans = endScale+15;
 var matchsFound = 0;

 //check rows
 for (var r=0;r<coordCount;r++){

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 237

 var allSame = true;
 var color0 = orbForColRow(0, r).img;
 for (var c=1;c<coordCount;c++){
 var colorC = orbForColRow(c, r).img;
 if (color0 != colorC){
 allSame = false;
 break;
 }
 }
 if (allSame){
 matchsFound++;
 for (var c=0;c<coordCount;c++){
 var orb = orbForColRow(c, r);
 trans.push(new Transformation(currentTick,

 endScale,orb.scale,oneTenth,"scale","windupovershoot",orb));
 trans.push(new Transformation(endScale,

 endTrans,orb.centerX,orb.centerX+1.0,"centerX","easeboth",orb,

 "newOrbAt("+c+","+r+")"));
 }
 }
 }
//… ommited column loop
if (matchsFound > 0){
 trans.push(new Transformation(endScale,

 endTrans,null,null,null,null,null, "endCheck("+matchsFound+")"));
 }

In Listing 6–15 we iterate over each row and column and check to see if all of the orbs

are the same type. Listing 6–15 only shows the loop that checks the rows; in the

accompanying code you will find the rest of the method that checks the columns. For

each row that contains a single type of orb, we create the Transformations that animate

each orb off the screen. The Transformation that handles the X (or Y) translation calls

the function newOrbAt when it is done; this function simply adds a new orb Sprite to

replace the one that is removed. At the end of the checkForMatches function, we check

to see if any matches are found. If so, we create one last Transformation whose sole job

is to call the function endCheck when all of the Transformations are done animating.

Listing 6–16 shows the endCheck function.

Listing 6–16. endCheck

function endCheck(numFound){
 score += numFound;
 scoreElement.innerHTML = score;
 checkForGroups();
 if (score > highScore){
 highScore = score;
 highScoreElement.innerHTML = highScore;
 setHighScore(highScore);
 }
}

The endCheck function in Listing 6–16 does a little book keeping at the end of our user

click event. We update the score by incrementing the variable score and update the

display to show this new score. We also call checkForGroups again, in case the orbs

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 238

generated by the last set of matching rows and columns produce more matches. Last,

we update the high score if appropriate by calling setHighScore.

JavaScript Summary
The application presented here demonstrates that JavaScript plus HTML5 can be used

to create at least a simple game or application. People using web technologies to create

applications are probably interested in maximum code reuse, and that is possible. With

the new features in HTML5 and the increasing support for these technologies, it is worth

exploring this technology fully. In this example we use a canvas element to handle a lot

of the rendering included in this application. The very simple graphics API creating in

this game is just scratching the surface of what is available. Check the numerous and

excellent graphics APIs available for rendering to both canvas and SVG. Refer to a

library called protovis at http://vis.stanford.edu/protovis/. JavaScript is a powerful

functional language and can be used to describe not just complex animations but

complex applications as well.

Using Flash and Flex Apps on Android with AIR
AIR is an Adobe product that allows Flash applications to be packaged and deployed on

many different platforms. The platforms supported are the usual suspects: OS X,

Windows, and now Android. Adobe’s design philosophy with AIR is that you write an

application with their tools and their APIs and they handle the complexity of handling

different platforms. This is very similar to the Java philosophy, where the functionality

and complexity of the host system is presented with a standard set of APIs. This is

great, since we don’t have to worry about things like which file system the host

application is using. We can simply access the appropriate File API and know that it will

work across platforms.

AIR of course does not provided an API for all possible functions of the host device. Like

Java, developers find themselves in a tough spot when they are asked to interface with

a platform-specific API or hardware component. They may be forced to fall back and

make a call to a native library, which by its very nature is not cross-platform and requires

special handling code to deal with the case when that native API is absent.

Flex is the tool of choice for creating Flash applications. Flex is a combination of things:

it is a set of libraries used by an application to perform basic operations like displaying

content or accessing the file system. Flex is also a way of declaratively describing a UI

with XML called MXML files. The glue that ties the UI to the libraries is the ActionScript

programming language. Finally, the Flex SDK comes with a compiler for turning MXML

files and ActionScript files into SWF files. SWF files are analogous to JAR files in Java.

ActionScript is a non-typesafe language that is similar to both JavaScript and Java.

ActionScript classes are generally specified in .as files. ActionScript classes are very

much like Java classes; they support inheritance and define fields and methods. The

non-typesafe nature of ActionScript can be a turn-off to some developers. In practice

this makes little difference in day-to-day development, since the Flex compiler is by

http://vis.stanford.edu/protovis/

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 239

default configured to generate errors and warnings when code is written in a non-

typesafe way. With those protections in place, the majority of ActionScript code is

effectively typesafe, and when you need to do something in a non-typesafe way you are

free to do so.

In this section you will learn how to set up a Flex project suitable for using with AIR. This

project will implement similar functionality as the HTML/JavaScipt version did, so a

comparison can be made. We will also look at how an AIR application is packaged for

use as an Android application.

Writing a Flex Application for Android
There is a sample project called 06_AirOnAndroid in the accompanying source code. We

will be working though the details of this project to give an overview of what is required

to write a Flex application with Android in mind.

TIP: The Flex SDK can be downloaded from: www.adobe.com/products/ flex/flex_

framework/. The Flex SDK includes AIR, which is required to build an Android deployable.

A good way to show that ActionScript is accessible to a Java developer is to look at a

simple example class. Listing 6–17 shows the file Orb.as.

Listing 6–17. Orb.as

package org.orb_quest
{
 import spark.components.Group;
 import spark.primitives.BitmapImage;

 public class Orb extends Group
 {
 public var image:BitmapImage;

 public function Orb(image:BitmapImage)
 {
 super();
 this.image = image;
 image.smooth = true;

 image.x = 512/-2;
 image.y = 512/-2;
 addElement(image);

 this.mouseEnabled = false;

 }
 public function exampleFunction():String{
 return "example function";
 }
 }
}

http://www.adobe.com/products/

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 240

In Listing 6–17 is the definition of the class Orb. The first difference is the class is

contained in a curly bracket block that describes which package this class is in. Besides

that cosmetic difference, we see that the definition of the variable image includes the

keyword var, and we also notice that the class definition, BitmapImage, comes after the

variable name, separated by a colon. I find this variable definition backwards, perhaps

from working with Java too much. In any case, after a little time your fingers will retrain

themselves. Another difference is the use of the keyword function in both the

constructor and the function exampleFunction. This is where a Java developer would

expect the return type, which is fact at the end of the definition to the right of the colon.

The use of the var and function keywords speaks to the shared history of ActionScript

and JavaScript.

Building and Deploying
The example project, 06_AirOnAndroid, is an eclipse project created with the Flash

Builder 4 plug-in. Flash Builder 4 is a commercial application and also an eclipse plug-in,

and is available for a 30-day trial. While I confess to being a huge fan of open source in

its many forms, and would prefer to guide you to an open and free tool, there simply is

not one available. The Flex SDK is a free download and can be used without Flash

Builder 4, but I find the eclipse integration of Flash Builder 4 critical for my productivity.

Besides integrating eclipse with the Flex SDK, it also provides a good editor for MXML

and AS files. It also provides code completion, which I can no longer live without.

One catch with Flash Builder 4: if you are running OS X, you must use a build of eclipse

that uses the Carbon library. This means the newest version of eclipse you can use is

eclipse 3.5 (Galileo).

If you have installed the Flash Builder 4 plug-in and opened the provided sample project,

you will notice in the bin-debug directory a number of files. There are two xml files and

two swf files. When bundling an application with AIR, you must provided an xml file that

describes some properties of the application and an swf file that contains the logic and

assets for that application.

As mentioned, there are two xml files and two swf files. This is because there are

artifacts generated for a desktop version of the application and a mobile version. If you

look in the src directory, you will see the same two XML files, AndroidMain-app.xml and

Main-app.xml. The presence of these two files tells Flash Builder 4 to create two sets of

applications files. If you want to change a value on one of these xml files, change the

one in the src directory, as the one in bin-debug is created as part of the build process.

The reason we need two applications is that, as with the JavaScript version, developing

and debugging the application is much easier if you run the application on the desktop.

In this case we want to develop and debug the application as an AIR desktop

application. In Flex, the root most UI component must be different between desktop

applications and Android applications. When we look closer at the actual Flex code, this

will become clear.

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 241

By default, eclipse automatically builds the project after each file save, so you don’t

really have to worry about the details of how this gets done. If you are not using Flash

Builder 4, at the root of the project directory you will find two hidden files names

.actionScriptProperties and .flexProperties. These two files contain all of the information

required to build this project with just the Flex SDK.

In the root of the project directory you will also find two scripts, one called install.sh
and one called package.sh. These two files are shown in Listing 6–18 and Listing 6–20.

Listing 6–18. package.sh

#!/bin/bash
cd bin-debug
~/tools/flex/flex_sdk_4.1.0.16076_AIR_2.5/bin/adt -package -target apk-debug

 -storetype pkcs12 -storepass password -keystore ../cert.p12 06_AirOnAndroid.apk

 AndroidMain-app.xml AndroidMain.swf

In Listing 6–18 we see that we use the AIR tool called adt to package up the compiled

swf with the application description found in the xml file. The target command of apk-
debug tells AIR to build a deployable suitable for Android. The output of this command is

the file 06_AirInAndroid.apk, which is signed with the cert.p12 file. Once the signed

apk is generated, it is ready to be installed on an Android device or emulator.

One thing you might notice is that there is no AndroidManifest.xml file used in this

process. AIR allows us to declare this information with the application xml file. Listing 6–

19 shows the Android specific portion of the AndroidMain-app.xml file.

Listing 6–19. AndroidMain-app.xml (partial)

<manifestAdditions>

 <!-- Set the manifest properties in AndroidManifest.xml Optional. -->
 <manifest>

 <!-- Set the attributes for manifest. Optional -->
 <!-- <attribute name="android:installLocation" value="auto"/> -->

 <!-- Set the data part for manifest. Optional. -->
 <data>
 <![CDATA[
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <uses-configuration android:reqFiveWayNav="true"/>
 <supports-screens android:normalScreens="true"/>
 <uses-feature android:required="true"

 android:name="android.hardware.touchscreen.multitouch"/>
]]>
 </data>
 </manifest>

 <!-- Set the application properties in AndroidManifest.xml Optional. -->
 <!--<application> -->

 <!-- Set the attributes for application. Optional -->
 <!-- <attribute name="android:enabled" value="true"/> -->

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 242

 <!-- Set the data part for application. Optional. -->
 <!-- <data>
 <![CDATA[
 <uses-library android:name="android.view"/>
]]>
 </data> -->
 <!--</application> -->

 <!-- Set the launcherActivity properties in AndroidManifest.xml Optional. -->
 <!--<launcherActivity> -->

 <!-- Set the attributes for launcherActivity. Optional -->
 <!--<attribute name="android:excludeFromRecents" value="false"/> -->

 <!--- Set the data part for launcherActivity. Optional. -->
 <!-- <data>
 <![CDATA[
 <intent-filter>
 </intent-filter>
]]>
 </data> -->
 <!-- </launcherActivity> -->

 </manifestAdditions>

The element manifestAdditions shown in Listing 6–19 contains the information that

would normally go in the AndroidManifest.xml file. In our case, the only element that is

not commented out is the first data element. It contains the permission XML we would

like to include with our application. The rest of the content is commented out, but with

the included documentation it is easy to find the right location for anything you might

wish to include.

Listing 6–20 shows the Android adb tool being used to install the new apk on any

running emulator. There is nothing about this command that should be a surprise. We

are using the standard method to install an Android application. Listing 6–20 is a script

is from my development environment running on OS X. You will need to adjust this script

to match your local installation of Android or make your own if you are running Windows.

Listing 6–20. install.sh

#!/bin/bash
cd bin-debug
~/tools/android/android-sdk-mac_86/tools/adb -e install -r 06_AirOnAndroid.apk

Android 2.2 supports AIR applications, but I suspect not all vendors will include AIR on

their devices. If an AIR application is installed on a device without the AIR runtime

installed, the user will be prompted to install AIR when they first run the application.

Figure 6–4 shows the prompt the user will see.

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 243

Figure 6–4. User prompt to install AIR

This prompt never worked for me. As a result I was forced to find and install the AIR

runtime manually on the device before the application would run. Hopefully this is just an

issue with the emulator, but it should be noted as a possible hazard of using AIR on

Android. Not being able to get the application running seamlessly on a user’s device will

be a deal breaker for a lot of people. If all goes well, you will see the application running

on your device or emulator, it should look like Figure 6–5.

Figure 6–5. The AIR application running on Android

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 244

In Figure 6–5 we see the application up and running on Android. There is the familiar grid

of orbs and the current and high scores. The game is played in exactly the same way:

click on two orbs to make them change places. If you create a row or a column of like

types, the orbs are cleared and the score is increased. What differs is the

implementation.

Creating the Flex UI with MXML
Flex uses the XML markup in the MXML files to describe the component tree of the

application. Not every component is necessarily visible at all times. Flex provides special

components that can be used to show one set of children or another, like a tabbed view.

The basic philosophy of Flex is that you should think of the application, including all

possible views, as a single tree of components. The component tree then “binds” to a

data model, which dictates which view is visible and what data is displayed. This is

similar to the Android philosophy of separating the UI from the application logic. In

Android the UI is often defined in XML files that the application instantiates in order to

display the UI. Let’s consider the entry point for this application, the file

AndroidMain.mxml, as shown in Listing 6–21.

Listing 6–21. AndroidMain.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 xmlns:ns="org.orb_quest.*">
 <ns:OrbQuest/>
</s:Application>

Listing 6–21 shows that MXML applications are XML files. Like many component-driven

UI libraries, the application is composed of a tree of components. In Android the root

component is whatever is set using the setContentView method of the class Activity. In

Swing, the root component might be a JFrame. In the case of an AIR application running

on Android, the root component is an Application, which is defined by the

s:Application element in Listing 6–19. Running this application on the desktop requires

a different root element, as shown in Listing 6–22.

TIP: MXML files include a lot of different namespaces in the root element. Think of these as
Java import statements: they allow you to use components from different libraries, including your

own.

Listing 6–22. Main.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:WindowedApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:ns="org.orb_quest.*"
 width="400"
 height="500">

http://ns.adobe.com/mxml/2009
library://ns.adobe.com/flex/spark
library://ns.adobe.com/flex/mx
http://ns.adobe.com/mxml/2009
library://ns.adobe.com/flex/spark

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 245

 <ns:OrbQuest/>
</s:WindowedApplication>

Listing 6–22 shows the entry point for this application when it is run on the desktop. The

only difference is that the root element is of type s:WindowedApplication. While it is not

ideal that the root element is different for various platforms, it turns out to be a minor

inconvenience, since both entry points have a single child element called ns:OrbQuest.

The element ns:OrbQuest is a component defined by this project. In both the Android

and desktop version it represents the layout of the application and the game logic.

Listing 6–23 shows the portion of the OrbQuest.mxml file that defines the UI layout.

Listing 6–23. OrbQuest.mxml (Layout)

<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 width="100%" height="100%"
 color="0xFFFFFF"
 creationComplete="init()"
 resize="layoutOrbs()"
 >
//ommited code and non-visual components

 <s:Rect width="100%" height="100%">
 <s:fill><s:SolidColor color="0x555555" /></s:fill>
 </s:Rect>

 <s:Group y="5" x="5">
 <s:layout>
 <s:TileLayout>
 <s:requestedColumnCount>2</s:requestedColumnCount>
 </s:TileLayout>
 </s:layout>
 <s:Label text="Score:"/>
 <s:Label id="scoreLabel" text="{score}"/>
 <s:Label text="High Score:"/>
 <s:Label id="highScoreLabel" text="{highScore}"/>
 </s:Group>

 <s:Group id="gameGroup" y="40" x="20" click="clicked(event)">
 <s:Rect width="100%" height="100%">
 <s:fill><s:SolidColor color="0x999999" /></s:fill>
 </s:Rect>
 </s:Group>
</s:Group>

In Listing 6–23 we see that the root element is of type Group. A Group is a basic container

for other components. Each of the three top-level elements describes a component in

the application. The first Rect simply defines a gray rectangle that fills the screen. The

first Group element has a TileLayout and holds the text Labels used to display the score

and high score. The last Group is where the application is going to dynamically add and

animate the elements for the orbs.

This simple layout conveys some of the basic concepts of Flex. First, it is a bit like HTML

in the way components are nested and described in XML. Second, it is a bit like

http://ns.adobe.com/mxml/2009
library://ns.adobe.com/flex/spark
library://ns.adobe.com/flex/mx

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 246

JavaScript as elements can be defined by setting the id attribute and events can be

registered with event attributes, like the click attribute of the second Group. However,

there are some important differences.

One thing that makes Flex different from HTML is that a much larger component set is

available out of the box. While not immediately obvious from this example, a quick scan

of the documentation shows many different types of layouts, something that is almost

missing from HTML. But the real power of Flex is how the declarative XML is able to

interact with the driving ActionScript code. Note the Label, with the id of scoreLabel,

has its text attribute set to the value {score}. These curly brackets indicate that the text

of this label should be whatever the value of the variable score is. We will look at how

score is defined in a moment. In the meantime, know that it is of type int and that the

application logic will be updating that variable as the games score increases. This is

called “binding” in Flex terms. By binding the text attribute to the variable score, the

developer no longer has to be concerned with updating the UI; the relationship between

the UI and model (score) has been defined. However, binding should be used with care,

since every time you use binding the ActionScript compiler inserts monitoring logic into

your compiled code. This additional logic can become a performance issue if it is used

frequently.

Writing ActionScript
We now have a basic UI laid out and we know that some of the components have a

relationship with some code. For example, in Listing 6–21 we know that the Label

scoreLabel is bound to the variable score, and the Group with id gameGroup should call

the method clicked when it is clicked by a mouse or touched by a finger. The variable

score and the method clicked obviously needs to be defined. One place where code

can be defined is right in the MXML file. Flex allows ActionScript to be included in an

MXML file inside of a CDATA block. Listing 6–24 shows the CDATA block from

OrbQuest.mxml.

Listing 6–24. OrbQuest.MXML (ActionScript, partial)

<fx:Script>
 <![CDATA[
import flashx.textLayout.formats.Float;
import mx.collections.ArrayCollection;
import mx.core.IVisualElement;
import mx.events.EffectEvent;
import spark.effects.Animate;
import spark.effects.animation.Keyframe;
import spark.effects.animation.MotionPath;
import spark.primitives.BitmapImage;

[Embed(source="images/blue_orb.png")]
[Bindable]
public var blueOrbImage:Class;
[Embed(source="images/green_orb.png")]
[Bindable]
public var greenOrbImage:Class;
[Embed(source="images/red_orb.png")]

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 247

[Bindable]
public var redOrbImage:Class;
private var images:ArrayCollection = new ArrayCollection();
private var orbsAdded:Boolean = false;
private var numColsAndRows:int = 5;
private var imageWidth:int = 512;
[Bindable]
private var orbScale:Number = 0.1;
[Bindable]
private var firstOrb:Orb;
[Bindable]
private var secondOrb:Orb;
[Bindable]
private var score:int;
[Bindable]
private var highScore:int;

private var sharedObj:SharedObject;

public function init():void{
 sharedObj = SharedObject.getLocal("myTasks");
 if (sharedObj.size > 0) {
 highScore = sharedObj.data.highScore;
 }

 scaleDownAnimate.addEventListener(EffectEvent.EFFECT_END, scaleDownDone);
 swapAnimateSecond.addEventListener(EffectEvent.EFFECT_END, swapDone);
 scaleUpAnimateSecond.addEventListener(EffectEvent.EFFECT_END, scaleUpDone);

 images.addItem(blueOrbImage);
 images.addItem(greenOrbImage);
 images.addItem(redOrbImage);

 for (var i:int=0;i<numColsAndRows*numColsAndRows;i++){
 var image:BitmapImage = new BitmapImage();
 image.source = randomImage();
 var orb:Orb = new Orb(image);
 orb.scaleX = orbScale;
 orb.scaleY = orbScale;
 gameGroup.addElement(orb);
 }
 orbsAdded = true;
 layoutOrbs();
}

private function clicked(event:MouseEvent):void{
 if (!isAnimating()){

 trace("x: " + event.localX + " y: " + event.localY + " c: " +

 event.target.toString());

 var col:int = getColOrRowFromCoord(event.localX);
 var row:int = getColOrRowFromCoord(event.localY);

 var index:int = getIndexFromCoord(col, row);
 var orb:Orb = gameGroup.getElementAt(index) as Orb;

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 248

 if (firstOrb){
 if (firstOrb != orb){
 secondOrb = orb;
 scaleDownAnimate.target = orb;
 scaleDownAnimate.play();
 }
 } else {
 firstOrb = orb;
 scaleDownAnimate.target = orb;
 scaleDownAnimate.play();
 }
 }

Listing 6–24 shows that the CDATA block must be declared in an fx:Script tag. Inside

the CDATA block, we see some very ordinary looking code. We see import statements,

variable declarations, and functions. In fact, this MXML file is not just defining a layout, it

is defining a class called OrbQuest, which extends Group and has all of the fields and

functions defined in the CDATA block. A quick scan of the code reveals the variable

score; this is the variable that the Label scoreLabel is bound to. In Java terms, it is

reasonable to think of Label being bound to this.score, where this is any instance of

an OrbQuest class. Likewise, when a user clicks the Group gameGroup, the clicked

method shown in Listing 6–24 is called on this OrbQuest object.

Some of the variables in Listing 6–24 have [bindable] above them; the square bracket

annotation is similar to annotations in Java. The bindable annotation itself tells the

compiler that this variable can be bound to. Variables by default are not eligible for

binding unless they are declared to be. This is because there is some overhead when

variables are bound. Under the covers, the logic must be inserted into the compiled

code to update anything that is “listening” to the variable.

The other annotation used in Listing 6–24 is Embed. This annotation tells the compiler to

generate code that loads the image file defines as the source. This is more than just a

short hand for loading an image file; it is a way of telling the compiler that an external file

is required. As an exercise, rename one of the image files and notice that the compiler

complains that a resource is missing. This is a powerful tool, something I wish was in

more languages, any time the compiler can tell me something is wrong, the better in my

book.

The init function in Listing 6–24 does a lot of the same things as the JavaScript version.

The highScore is read out of a SharedObject object. The SharedObject class is how Flex

stores simple data from a user session. In a browser the SharedObject class is basically

in interface to cookies. As an AIR application it is a convenient way to store user data,

taking advantage of a shared API. There are a bunch of event listeners being register

with Animate objects. Flex provides a powerful set of animation tools that we will explore

shortly. By registering an event listener a particular function will be called every time

these animations complete. The last section of the init method preloads a bunch of

orbs and lays them out.

The clicked function in Listing 6–24 is purposefully similar to the user event handing

found in the JavaScript version, as is much of the rest of the application. It is not worth

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 249

going over all of the methods in detail, but it is worth taking a look at the Animate class.

Note that toward the end of the clicked method, the scaleDownAnimate has a target set

and then is told to play. Let’s take a look at another declarative aspect of MXML in

Listing 6–25.

Listing 6–25. OrbQuest.mxml (Declarations)

<fx:Declarations>
 <s:Animate id="scaleDownAnimate" >
 <s:motionPaths>
 <s:MotionPath property="scaleX">
 <s:keyframes>
 <s:Keyframe time="0"

 value="{orbScale}"/>
 <s:Keyframe time="500"

 value="{orbScale/4}"/>
 </s:keyframes>
 </s:MotionPath>
 <s:MotionPath id="scaleYPath" property="scaleY">
 <s:keyframes>
 <s:Keyframe time="0"

 value="{orbScale}"/>
 <s:Keyframe time="500"

 value="{orbScale/4}"/>
 </s:keyframes>
 </s:MotionPath>
 </s:motionPaths>
 </s:Animate>

In Listing 6–25 we see one of the Animate objects defined in the Declarations section of

the MXML file. The Declarations section provides a space in an MXML file to define

objects using the same technique as the visual components. The objects declared in the

Declarations section are by nature not visual, but of course they may affect visual

components. The Animate class is a good example: it defines an animation for visual

components. Animations are described by stating which property of a component is

going to be modified (scaleX in this case) and describing a collection of KeyFrames. Each

KeyFrame states a time at which the given property will have a specific value. When the

animation runs, the KeyFrames will determine the value of the property before and after

the current time. This is much like the simple API in the JavaScript version, but much

more complete. It might not be immediately clear why you would want to define an

Animate with this XML syntax. It is definitely possible to create a similar Animate object

by simply calling new Animate and filling out the correct properties. The advantage here

is that it turns out to be a lot less typing to define this structure, and the structure is

immediately obvious when the XML is well formatted. The other advantage is that we

can use binding. Each KeyFrame has the value attribute bound to the variable orbScale.

This is done because orbScale is recalculated every time the screen is resized. It

ensures that these KeyFrames are always using the correct value.

In conclusion, the Flash, Flex, and AIR ecosystem is a powerful tool for developing

applications for many platforms. If it is a technology you know, it is very easy to use with

Android. In my experience so far, there does seem to be a performance decline when

using AIR on Android, but if performance is not critical for your application this may not

CHAPTER 6: Creating a GUI with HTML/JavaScript and AIR 250

be an issue. There is also the problem of AIR availability. As mentioned, AIR is fully

supported on Android 2.2 and later, but there are a lot of devices out there which do not

run that version. At least in the United States, the cell phone carriers are packaging up

their own version of Android and preventing users from updating their OSes. This sort of

vendor lockout may be a stumbling block to using AIR as your deployment. Time will tell

if this will be a growing issue or not.

Summary
The first half of this chapter was dedicated to using web-based tools like HTML and

JavaScript to create an application that can easily be ported to another platform, or

simply put on the web. We looked at some of the interoperability features Android

provides for communicating with JavaScript. The second half of the chapter explored

AIR, which is Adobe’s deployment technology for Flash and Flex. We examined a simple

Flex application and learned how MXML and ActionScript work together. Both

technologies offer cross-platform advantages, but both technologies also have their own

limitations.

One of the great things about writing applications for Android is that you can assume the

device has a network connection most of the time. In the next chapter we will learn how

to write an Android application that consumes a web service and explore how that

expands what an Android application can do.

251

251

 Chapter

Using REST with
Facebook and Twitter
It has been said that every generation of software developers reinvents remote

procedure calls (RPC). There are probably hundreds of technologies that have been

created to get one computer to run a function for another. Representational State

Transfer (REST) might seem like just another new type of RPC—this generation’s

version—especially considering how popular it is these days. But that’s not the case;

REST is really a collection of guidelines for using the existing HTTP 1.1 protocol to

communicate information between a client and a server.

In this chapter we will explore how REST takes advantage of the HTTP methods (POST,

GET, and so forth), as well as statelessness and caching, to suggest a simple, scalable

architecture suitable for a large number of web services. The authors of REST would like

you to consider the World Wide Web as the largest implementation of REST, taken as an

entire application. Clearly, REST is scalable.

After an overview of REST, we will see how to consume a REST web service provided

by Twitter. This will include creating a request, sending it to a server, and responding to

the result. In this example we will also learn a little about JavaScript Object Notation

(JSON), a popular data-interchange format.

Twitter exposes a lot of web services that don’t require authentication, and a lot that do.

It uses a protocol called Open Authentication (OAuth) for authentication, which is also

used by Facebook and Google, among others. We will explore how to implement a

simple authentication workflow in an Android application.

While composing a REST request and handling the details of OAuth is an interesting

exercise, it can be a bit tedious. We will take a look at the Android APIs that Twitter and

Facebook provide, which wrap a lot of the complexity around making REST calls. These

APIs help developers interact with the many services exposed by Twitter and Facebook.

After all, when working with Twitter, we want to tweet, not POST.

7

CHAPTER 7: Using REST with Facebook and Twitter 252

Understanding REST
REST is a strategy of using HTTP methods to create an API suitable for client-server

communication. This is exactly how a web browser works: using a URL to make a

request to a server, which returns an HTML file. Of course, browsers make requests for

things besides HTML files; they also request CSS files, images, and a slew of other files

types. It thus makes sense that this flexible protocol can also be used for

communicating data that might not have a visual component. At the end of the day, the

REST architecture simply takes advantage of the fact that HTTP is both pervasive and

capable, making it an excellent candidate for a data transfer protocol.

Applications communicating over HTTP are nothing new. For example, the Simple

Object Access Protocol (SOAP) uses HTTP to send and receive XML documents. While

SOAP clearly uses HTTP, SOAP authors are encouraged to define XML documents for

each type of action that can take place. For example, they will have one document type

for adding users and another for listing movies. Both types of documents might be sent

to the server using a POST method. When creating a set of REST services, authors are

encouraged to use the various HTTP methods as the verbs that define the service.

Listing movies, for example, would best be accomplished with a GET request, while

adding a new user would use a POST request. Table 7–1 shows some example services

and the HTTP methods used.

Table 7–1. Example REST Service

Service Name Service URL Method Param

List Movies http://example.com/movies GET

Get Single Movie http://example.com/movies/[1] GET 1) id of movie

Update Movie Info http://example.com/movies/[1] PUT 1) id of movie

Add Movie http://example.com/movies POST

Clear All Movies http://example.com/movies DELETE

Clear Single Movie http://example.com/movies[1] DELETE 1) id of movie

Table 7–1 shows six services. Each has a name for human reference, a URL where the

resource is provided, the HTTP method used to perform the action, and a note about

required parameters. This very simple example highlights how the HTTP methods can

be used to describe a number of likely functions. By using four different methods and a

single URL we have defined complete CRUD (Create Read Update Delete) services for a

single data type. If we wanted a similar set of services for a different data type, we could

simply define a new URL.

In some cases, REST is simply too poor syntactically for a given service. It would be

unrealistic to suggest that all web services could or should be boiled down to just 4

verbs. Transactions, for example, are completely missing from the REST terminology.

http://example.com/movies
http://example.com/movies/
http://example.com/movies/
http://example.com/movies
http://example.com/movies
http://example.com/movies

CHAPTER 7: Using REST with Facebook and Twitter 253

You could argue that a transaction is just another object to be acted on by REST verbs,

but the implementation would still be left to the developer. When we look at the

examples for Twitter and Facebook, keep in mind the volume of data these companies

process in a day. I suspect the simplicity of their services contributes, in part, to their

success in processing the enormous number of requests they receive.

REST and JSON
So far we’ve described how REST defines services, but not what is actually sent and

received when using these services. In fact there is no single answer to that question,

since REST does not try to dictate how a client or server should accomplish a particular

task. Of course, some services will return text and others will return binary data, like

when a web browser asks for an image.

In practice, a lot of services return text when binary data is not required. This often takes

the form of XML, JSON, RSS, or ATOM. All four of these formats are used to structure

text data and have excellent support in all major languages. While many binary formats

are more efficient in terms of size, the use of plain text is very common and very helpful

when it comes to debugging. Let’s take a closer look at JSON, since both Facebook and

Twitter use it. Listing 7–1 shows some example JSON.

NOTE: Twitter’s web services actually allow you to specify which format you want your data

returned in. Twitter may not have invented this idea, but it deserves praise for including this

feature.

Listing 7–1. A Simple JSON Example

{
"height":128,
"name":"Fred"
}

This is a very simple JSON object with two key/value pairs. The first has a key of

“height” and a number value of 128. The second has a key of “name” and a string value

of “Fred”. JSON objects are just collections of key/value pairs. Given JavaScript’s

dynamic nature this makes a lot of sense, as objects in JavaScript behave in exactly the

same way. In fact, JSON is valid JavaScript and can be passed to the eval function to

create a fully populated JavaScript object. For security reasons, though, this is not

advised since third parties could put arbitrary code in the JSON string.

In our example, the values of the two keys are simple types, but this is not required. You

can use another object for a value, or even an array. Listing 7–2 shows a more complete

example.

Listing 7–2. A More Complex JSON Example

{
"firstName":"Lucas",
"lastName":"Jordan",

CHAPTER 7: Using REST with Facebook and Twitter 254

"age":33,
"favoriteColors":["Red, "Blue"],
"address":{
 "street":"640 Nednil St."
 "city":"Rochester"
 "state":"NY"
},
"phoneNumber":[
 {
 "type":"mobile",
 "number":"555 555-6666"
 }
 {
 "type":"home",
 "number":"555 555-7777"
 }
]
}

The JSON in Listing 7–2 describes a person object. We see the keys “firstName”,

“lastName”, and “age”, which have simple values. The value for the key “address” is

another JSON object that contains its own key/value pairs. The key “favoriteColors”

corresponds to an array of strings, while the key “phoneNumber” corresponds to an

array of objects. See Figure 7–1 for a real example of JSON being used as the result of a

web service.

Figure 7–1. Chrome displaying JSON from a GET request

In Figure 7–1, we see a simple REST call made to Twitter using the browser. The URL

shows that “json” was specified as the result type. The JSON displayed represents the

CHAPTER 7: Using REST with Facebook and Twitter 255

20 most recent tweets on Twitter. I am not sure who uses this service, but it is an

interesting snapshot of a live web service.

REST from an Android Application
Now that we’ve seen how a REST service is defined and what type of data we can

expect to get as a result, let’s look at a sample Android application that performs a

number of REST calls through a number of different APIs. Figure 7–2 shows the sample

application running.

Figure 7–2. The FaceTweet demo application

The FaceTweet Android application displays the most recent tweet from the Twitter

account “lucasljordan,” as well as two buttons that let the user login to Facebook and

Twitter. Below the authentication buttons are a pair of action buttons that become enabled

after the user authenticates, to allow the user to interact with a Facebook or Twitter

service. The tweet at the top of the screen is produced by the code in Listing 7–3.

Listing 7–3. TweetFace.java (partial)

private final static String URL_STATUSES_USER_TIMELINE = "http://api.twitter.com/1/
statuses/user_timeline.json";

private HttpClient client = new DefaultHttpClient();
//…
public JSONObject readStatus(String screenName)
 throws ClientProtocolException, IOException, JSONException {
 StringBuilder fullUrl = new StringBuilder(URL_STATUSES_USER_TIMELINE);
 fullUrl.append("?screen_name=");
 fullUrl.append(screenName);

http://api.twitter.com/1/%ED%AF%80%ED%B0%81statuses/user_timeline.json
http://api.twitter.com/1/%ED%AF%80%ED%B0%81statuses/user_timeline.json

CHAPTER 7: Using REST with Facebook and Twitter 256

 HttpGet get = new HttpGet(fullUrl.toString());
 HttpResponse response = client.execute(get);

 int statusCode = response.getStatusLine().getStatusCode();

 if (statusCode == 200) {
 HttpEntity entity = response.getEntity();
 String json = EntityUtils.toString(entity);
 JSONArray bunchOfTweets = new JSONArray(json);
 JSONObject mostRecentTweet = bunchOfTweets.getJSONObject(0);
 return mostRecentTweet;
 } else {
 String reason = response.getStatusLine().getReasonPhrase();
 throw new RuntimeException("Trouble reading status(code="
 + statusCode + "):" + reason);
 }
}

Listing 7–3 shows a method named readStatus that takes a string named screenName as

an argument. The first thing we need to do is create a URL describing the resources we

want to work with. This is done by creating a StringBuilder and concatenating the base

URL defined in URL_STATUSES_USER_TIMELINE with the parameter screen_name set to the

variable screenName. Once the URL is constructed, an HttpGet object is created with the

URL. The HttpGet class is from the Apache commons code base, which is built into the

Android Java environment. The get variable is passed to the execute method of the

variable client, which is of type HttpClient, another class from the Apache networking

libraries. The execute method is where the actual network call is made, and this method

blocks until a result from the server is received.

Once the execute method returns, we check the status of the request. A statusCode of

200 means we have successfully received the requested information. If you take a closer

look at the URL URL_STATUSES_USER_TIMELINE, you’ll see that at the end of the String we

specified a reply formatted in JSON. So when we use the toString method of

EntityUtils to convert the response’s HttpEntity into a string, we know we have a

JSON string. This particular service is defined to return a JSONArray as a result, so we

know to first create a JSONArray object, passing in the string json. Lastly, we pull out the

first (index 0) JSONObject from the JSONArray and return it.

Both the JSONArray and the JSONObject are classes from the package org.json. These

classes are built into the Android environment and don’t require any external jars to use.

JSONArray contains a list of valid JSON values, while JSONObject contains a mapping of

keys to valid JSON values. Listing 7–4 shows the returned JSONObject in its raw form.

Listing 7–4. A Tweet in JSON

{
 "in_reply_to_user_id":null,
 "truncated":false,
 "in_reply_to_user_id_str":null,
 "id_str":"29482242963",
 "favorited":false,
 "geo":null,
 "created_at":"Tue Nov 02 15:52:36 +0000 2010",
 "contributors":null,

CHAPTER 7: Using REST with Facebook and Twitter 257

 "in_reply_to_screen_name":null,
 "source":"web",
 "coordinates":null,
 "retweet_count":null,
 "in_reply_to_status_id":null,
 "place":null,
 "user":{
 "description":null,
 "id_str":"211193291",
 "verified":false,
 "time_zone":null,
 "profile_text_color":"333333",
 "url":null,
 "follow_request_sent":null,
 "lang":"en",
 "created_at":"Tue Nov 02 15:50:19 +0000 2010",
 "profile_link_color":"0084B4",
 "location":null,
 "notifications":null,
 "profile_use_background_image":true,
 "profile_sidebar_fill_color":"DDEEF6",
 "listed_count":0,
 "following":null,
 "profile_background_image_url":"http:\/\/s.twimg.com\/a\
/1289502323\/images\/themes\/theme1\/bg.png",
 "favourites_count":0,
 "statuses_count":1,
 "profile_sidebar_border_color":"C0DEED",
 "followers_count":0,
 "protected":false,
 "profile_image_url":"http:\/\/s.twimg.com\/a\
/1289502323\/images\/default_profile_1_normal.png",
 "show_all_inline_media":false,
 "profile_background_tile":false,
 "friends_count":0,
 "name":"Lucas L Jordan",
 "contributors_enabled":false,
 "screen_name":"lucasljordan",
 "id":211193291,
 "geo_enabled":false,
 "utc_offset":null,
 "profile_background_color":"C0DEED"
 },
 "retweeted":false,
 "id":29482242963,
 "in_reply_to_status_id_str":null,
 "text":"Looks like REST on Android uses the apache libraries, that makes
 life easier!"
}

In Listing 7–4 we see the JSON representing a tweet. Note that there’s a lot more

information returned than just 140 characters. In addition to some extra information

about the tweet, such as creation data and geo-location, there is also information about

the user who authored the tweet. In our case, we are only interested in the very last key,

“text”.

CHAPTER 7: Using REST with Facebook and Twitter 258

Asynchronous Tasks
When creating an Android application, it’s important not to have long-running tasks in

the main thread of the application as this makes the application unresponsive. Making a

network call should always be considered a long-running task, and making a REST call

to Twitter is a network call, so we want to find a way to move this task to another thread.

Android supplies a class called AsyncTask, which provides an easy way to move long-

running tasks off of the main thread. In Listing 7–3 we saw the method readStatus,

which does the work of calling Twitter. Listing 7–5 shows a subclass of AsyncTask that

makes the call to readStatus.

Listing 7–5. ReadTweet Extends AsyncTask

private class ReadTweet extends AsyncTask<String, Integer, String> {
 @Override
 protected String doInBackground(String... screenNames) {
 try {
 tweet = readStatus(screenNames[0]);
 return tweet.getString("text");
 } catch (Exception e) {
 Log.w("FaceTweet", e);
 return "error reading tweet";
 }
 }

 protected void onPostExecute(final String result) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 tweetView.setText(result);
 }
 });
 }
}

Here we see that ReadTweet extends AsyncTask with three generics specified. The first

generic, String, specifies the type passed into the method doInBackground. Note that

more than one String can be passed in. The second generic type, Integer, is used for

tracking progress, but we don’t use it in this example. The last generic, String, is used

to specify the return type of doInBackground and the type passed to onPostExecute as

the result. Given these three points of customization, AsyncTask can be extended to

accommodate a large number of use cases.

The doInBackground method is where we’ll do the actual work—in this case, make a call

to readStatus. As shown in Listing 7–3, readStatus returns a JSONObject containing the

latest tweet. To get the actual content of the tweet out of the JSONObject, we call

getString and pass in “text” as the key. Once we have the text of the tweet, we simply

return it as the result of the method doInBackground. That result is passed to

onPostExecute. In the method onPostExecute, we define a new Runnable that does the

work of updating the UI. The Runnable is passed to the method runOnUiThread, which

makes sure the Runnable gets executed on the UI thread so we don’t have any multi-

threading issues. Listing 7–6 shows the initialization code of this Android application and

how the ReadTweet class is executed.

CHAPTER 7: Using REST with Facebook and Twitter 259

Listing 7–6. onCreate

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 tweetView = (TextView) findViewById(R.id.tweetView);
 statusView = (TextView) findViewById(R.id.statusView);

 loginTwitterButton = (Button) findViewById(R.id.loginTwitterButton);
 loginFacebookButton = (Button) findViewById(R.id.loginFacebookButton);
 replyOnTwitterButton = (Button) findViewById(R.id.replyOnTwitterButton);
 facebookWallButton = (Button) findViewById(R.id.facebookWallButton);

 loginTwitterButton.setOnClickListener(this);
 loginFacebookButton.setOnClickListener(this);
 replyOnTwitterButton.setOnClickListener(this);
 facebookWallButton.setOnClickListener(this);

 new ReadTweet().execute("lucasljordan");
}

The onCreate method handles a number of initializing tasks. The first thing this method

does is identify the UI components defined in the layout file for this Activity. The

component we are most interested in right now is tweetView, which displays the current

tweet on the screen. As you can see, tweetView’s setText method is not called in the

onCreate method. setText is called in the Runnable defined in the onPostExecute method

of the class ReadTweet. At the bottom of the onCreate method, an instance of ReadTweet

is created and the execute method is called. This causes the work defined in the

ReadTweet object to be executed in the background and ultimately call the setText

method on the tweetView object, displaying th latest tweet.

Twitter
We saw a simple example that used Twitter, but we haven’t yet looked at authenticating

an app with Twitter. Most Twitter services require that a client be authenticated before it

can make a request. Twitter uses a technology called OAuth to authenticate a user.

OAuth is an emerging standard for authenticating users so client applications can make

request on their behalf. There is some specific terminology that must be covered to

understand OAuth, but before we get to the technical information, let’s consider Figure

7–3, which depicts the user experience when using OAuth with a web application.

CHAPTER 7: Using REST with Facebook and Twitter 260

Figure 7–3. The user experience when using OAuth with a web application

TIP: There’s a lot more to learn about OAuth. Check out http://hueniverse.com/oauth/ to find

out more about it.

The user starts out at a web page hosted at example.com. The web page at

example.com asks the user to authenticate with Twitter so it can perform some action

for that user. To facilitate this, the web application directs the user to a special web

page at Twitter used for authenticating. When the web application directs the user to

Twitter, it makes sure to include information about itself, including a callback URL. The

callback URL is the URL that Twitter will send the user back to when the authentication

is complete. This callback URL will also contain additional information the web

application will use during future authenticated calls to Twitter services. However, we

are not writing a web application; Figure 7–4 shows the equivalent in terms of Android.

Figure 7–4. OAuth user experience on Android

With Android, a user starts out in some Activity that asks the user to authenticate with

Twitter. This is done by creating an Intent with the URL of Twitter’s authentication page.

The callback URL is a URL where the scheme has been registered by the example

Activity. The Intent causes the Android OS to switch the user to a Web Activity

displaying the Twitter web page. Once the user has authenticated, the Web Activity

redirects to the user to the callback URL. Since the callback URL has a scheme

registered by the original example Activity, Android directs the user back the original

Activity.

i

http://hueniverse.com/oauth/

CHAPTER 7: Using REST with Facebook and Twitter 261

If you want to work with the example code, you must do a couple of things. First you

must create a Twitter account, then you must create a Twitter application. Once you

create an application you’ll be given a consumer key and a consumer secret. These are

values you’ll need to paste into the class FaceTweet for the placeholder constants

CONSUMER_KEY and CONSUMER_SECRET. Figure 7–5 shows the Twitter control panel for

Twitter applications.

Figure 7–5. Twitter application control panel

Figure 7–5 shows the Twitter application created to accompany this example. You can

see that the consumer key and consumer secret are blurred out. There’s also a button

for resetting these values in case I forget to delete them from the example code that

accompanies this book. We shall see if I remember.

Examples in Code
In our sample application, the user can click on a button to authenticate with Twitter.

Listing 7–7 shows the method this action calls.

CHAPTER 7: Using REST with Facebook and Twitter 262

Listing 7–7. TweetFace.java (loginTwitter)

private final static String URL_OAUTH_REQUEST_TOKEN = "https://api.twitter.com/oauth/
request_token";
private final static String URL_OAUTH_ACCESS_TOKEN = "http://twitter.com/oauth/
access_token";
private final static String URL_OAUTH_AUTHORIZE = "http://twitter.com/oauth/authorize";

//Twitter provides these values.
private final static String CONSUMER_KEY = "XXXXXXXXXXXXXXXXXXX";
private final static String CONSUMER_SECRET = "YYYYYYYYYYYYYYYYYYYY";

public final static String URL_CALLBACK = "tweetface://twitter";

//..
private OAuthProvider provider = new CommonsHttpOAuthProvider(
 URL_OAUTH_REQUEST_TOKEN, URL_OAUTH_ACCESS_TOKEN,
 URL_OAUTH_AUTHORIZE);
private CommonsHttpOAuthConsumer consumer = new CommonsHttpOAuthConsumer(
 CONSUMER_KEY, CONSUMER_SECRET);
//..
private void loginTwitter() {
 try {
 String authUrl = provider.retrieveRequestToken(consumer,
 URL_CALLBACK);
 startActivity(new Intent(Intent.ACTION_VIEW, Uri.parse(authUrl)));
 } catch (Exception e) {
 Log.e(APP, e.getMessage());
 throw new RuntimeException(e);
 }
}

As you can see, a number of URLs are stored as constants, as defined by the Twitter

API. The consumer key and consumer secret are also provided with your Twitter

application. And there are two variables named provider and consumer that are supplied

by an open source project called Signpost (oauth-signpost). Signpost provides a simple

API for working with OAuth. Using Signpost is not technically required, but OAuth

requires that HTTP requests be constructed in a very particular way and

cryptographically signed. Writing code to accomplish these tasks is educational, but not

practical, when a library like Signpost exists to do it for you.

NOTE: Signpost can be downloaded from http://code.google.com/p/oauth-signpost/

The method loginTwitter creates a URL using the provider variable. This URL is where

the user will be directed to authenticate. The provider variable has properly encoded

the URL with all of the information Twitter needs to trust who is sending the message

and to redirect the user when the authentication is done. Figure 7–6 shows the web

page where the user will authenticate with Twitter.

https://api.twitter.com/oauth/%ED%AF%80%ED%B0%81request_token
https://api.twitter.com/oauth/%ED%AF%80%ED%B0%81request_token
http://twitter.com/oauth/%ED%AF%80%ED%B0%81access_token
http://twitter.com/oauth/%ED%AF%80%ED%B0%81access_token
http://twitter.com/oauth/authorize
http://code.google.com/p/oauth-signpost/

CHAPTER 7: Using REST with Facebook and Twitter 263

Figure 7–6. The Twitter authentication page

The Twitter authentication page shows where the user can enter her username and

password to authenticate with Twitter. Once she hits the Allow button, Twitter sends her

to the URL stored in the URL_CALLBACK constant. Note that the scheme for this URL is

“tweetface,” which is handled by the TweetFace Activity. Listing 7–8 shows how the

TweetFace Activity in the AndroidManifest.xml file registers this protocol.

Listing 7–8. AnrdoidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.ljordan.facetweet"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name" >
 <activity android:name=".FaceTweet"
 android:label="@string/app_name"
 android:launchMode="singleInstance">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>
 <category android:name="android.intent.
category.DEFAULT"/>
 <category android:name="android.intent.
category.BROWSABLE"/>
 <!-- URL_CALLBACK = "tweetface://twitter" -->
 <data android:scheme="tweetface"
 android:host="twitter"/>
 </intent-filter>

http://schemas.android.com/apk/res/android

CHAPTER 7: Using REST with Facebook and Twitter 264

 </activity>

</application>
 <uses-permission android:name="android.permission.INTERNET" />

</manifest>

The AndroidManifest.xml file has two intent-filter elements. The first is what you’d

expect for most Android applications. The second is used to associate this Activity with

the callback URL used in authentication. If you look at the data element, you can see

that the scheme and host match our callback URL.

Normally, when an Activity passes control to another Activity, the original Activity may

be shut down. To prevent state from being lost when our Activity passes control to the

authentication web page, we set the launchMode to singleInstance on the activity

element. This prevents Android from destroying the original TweetFace Activity and

creating a new one when the callback URL is encountered.

When the TweetFace Activity is reactivated by the callback URL, the application must

carry out a few last steps to complete the authentication process and be authorized to

perform actions on the user’s behalf. Listing 7–9 shows the onNewIntent method that’s

called when the intent is activated.

Listing 7–9. TweetFace.java (onNewIntent)

@Override
protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);

 Uri uri = intent.getData();
 if (uri != null) {
 String uriString = uri.toString();
 if (uriString.startsWith(URL_CALLBACK)) {
 try {
 String verifier = uri
 .getQueryParameter
(OAuth.OAUTH_VERIFIER);
 provider.retrieveAccessToken(consumer, verifier);
 statusView.setText("Authenticated with Twitter!");
 replyOnTwitterButton.setEnabled(true);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }

 }
 } else {
 //probably the first time Activity is loaded.
 }
}

The onNewIntent method is called when the application is first loaded, as well as when it

is loaded after the user authenticates. When the application first starts, the intent has no

data and is simply ignored. When onNewIntent is called after user authentication, the

CHAPTER 7: Using REST with Facebook and Twitter 265

intent contains the URL that Twitter constructed to make the callback. As you can see in

Listing 7–10, there is some additional information.

Listing 7–10. Callback From Twitter

tweetface://twitter?oauth_token=kO1BQ...cWqI&oauth_verifier=kkOgu2Dxi5...3XRsKlZPM8

Besides the expected scheme and domain our application supplied, we can see some

new information. The oauth_verifier parameter is used by the provider, from Listing 7–

9, to retrieve an access token. This is the last step in authenticating. The TweetFace

application is now able to perform operations on the user’s behalf.

Tweeting on Behalf of the User
The authentication workflow required to post a tweet for a user is a bit complex, both

from a developer’s viewpoint and from a user experience perspective. However, once all

the pieces are in place, interacting with the many web services that Twitter provides is

very straightforward, as long as you use the Twitter4J library. Listing 7–11 shows how to

update the status of a user with this library.

Listing 7–11. TweetFace.java (updateStatus)

public void updateStatus() {
 try {
 Configuration conf = new ConfigurationBuilder()
 .setOAuthConsumerKey(consumer.getConsumerKey())
 .setOAuthConsumerSecret(consumer.getConsumerSecret())
 .build();

 AccessToken accessToken = new AccessToken(consumer.getToken(),
 consumer.getTokenSecret());
 Twitter twitter = new TwitterFactory(conf)
 .getOAuthAuthorizedInstance(accessToken);

 String tweetText = "@lucasljordan is trying to count up to: "
 + System.currentTimeMillis();

 // finally, we can update twitter.
 twitter.updateStatus(tweetText);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
}

In Listing 7–11, a Configuration object is created with the consumer key and consumer

secret. An AccessToken is also created, containing the token and token secret. Both the

AccessToken and Configuration classes are from the Twittter4J library and are used to

initialize a Twitter object via a TwitterFactory. Once the Twitter object is created, it is

ready to interact with the Twitter web services. By calling updateStatus on the Twitter

object, a new tweet is created for the logged-in user. The tweet text in this example

includes a timestamp to make sure the text is unique each time this code is run. Twitter

does not post duplicate tweets, so when debugging a Twitter application, make sure

you change the text each time to make sure your application is actually working.

CHAPTER 7: Using REST with Facebook and Twitter 266

Confirming the User Wants to Tweet
In this example application, we pop up a dialog asking the user if he wants to tweet. We

do this because we are using a service on the user’s behalf and don’t want to perform

any action he is not aware of. Of course, this isn’t strictly necessary, but it brings up the

topic of using dialogs in Android, which is worth understanding. Figure 7–7 shows the

confirmation dialog.

Figure 7–7. Confirmation dialog

This is a simple dialog with a yes or no option. The dialog is modal, meaning it blocks all

input to the background application. To indicate its modal nature, it darkens the

background application, focusing the user on the dialog itself. Dialogs in Android are a

bit different from those in other UI libraries. One thing that makes them different is that

they are tightly bound to an Activity and are invoked by calling the special showDialog

method. Listing 7–12 contains the code required to show a dialog.

Listing 7–12. Showing A Dialog

private final static int DIALOG_CONFIRM_TWEET = 10;
private final static int DIALOG_CONFIRM_WALL = 20;

//...
@Override
public void onClick(View v) {
 if (v == loginTwitterButton) {
 loginTwitter();
 } else if (v == loginFacebookButton) {
 facebook.authorize(this, new String[] { "publish_stream" },
 authorizeListener);
 } else if (v == replyOnTwitterButton) {
 showDialog(DIALOG_CONFIRM_TWEET);
 } else if (v == facebookWallButton) {

CHAPTER 7: Using REST with Facebook and Twitter 267

 showDialog(DIALOG_CONFIRM_WALL);
 }
 //unknown button.
}

//...
@Override
protected Dialog onCreateDialog(int id) {
 if (id == DIALOG_CONFIRM_TWEET) {
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setMessage("Do you want to create a tweet?")
 .setCancelable(false)
 .setPositiveButton("Yes",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 statusView.setText("Creating tweet...");
 new UpdateStatus().execute("Not Used");
 }
 })
 .setNegativeButton("No",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 }
 });
 return builder.create();
 } else if (id == DIALOG_CONFIRM_WALL) {
 //.. method continues

The code shows two methods. The first is onClick, which handles all of the button

actions in the application. If the user clicks the replyOnTwitterButton, we make a call to

showDialog and pass in the constant DIALOG_CONFIRM_TWEET. The showDialog method is

defined by the class Activity and performs a number of operations to make sure the

dialogs created in the method onCreateDialog are correctly associated with the Activity.

In onCreateDialog we have to see which dialog is being asked for, which we do by

checking the value of the argument id. In this application we create a confirmation dialog

before interacting with Twitter or Facebook. The code in Listing 7–12 creates the dialog

for Twitter. The dialog for the Facebook workflow looks almost exactly the same and is

omitted for brevity.

Dialogs are created by creating a new instance of AlertDialog.Builder and passing in

an Activity. Once the builder is instantiated, we can use it to create the AlertDialog and

return it. The builder object is an object that implements the builder pattern. In the

builder pattern, the set methods return the builder object. In this way, commands can be

chained together. In the example in Listing 7–12, we see that setCancelable is called on

the object returned from setMessage; this is because setCancelable is returning the

builder object. In fact, the calls to setMessage and setCancelable could be reversed, so

that setMessage is called on the result of setCancelable.

CHAPTER 7: Using REST with Facebook and Twitter 268

The method setPositiveButton accepts the text to be displayed and an instance of

DialogInterface.OnClickListener. The listener is called when the positive button is

clicked, in our case creating an UpdateStatus object and executing it. Since creating a

tweet is a network call, we want to make sure we do it in a background thread. The

class UpdateStatus is very much like the class ReadTweet from Listing 7–5, and simply

calls updateStatus from Listing 7–11.

Once the builder is configured correctly, it is used to actually create a Dialog object and

return it. Android handles the details of getting it on the screen and providing the nice

fade effects.

In conclusion, Twitter on Android is very easy to use when you take advantage of the

excellent third-party libraries available. The Signpost project makes using OAuth a lot

easier and is real time-saver for developers. Twitter offers about 40-50 different web

services; each is represented in the Twitter4J project and provides an elegant API.

Understanding the Facebook API
At one point, Facebook had the most confusing API I had ever seen, riddled with

exceptions and secretly deprecated APIs. However, the company recently introduced

the Social Graph API, which provides a comprehensive view into Facebook data with

just a handful of services and data types. In addition to enhancing the API as a whole,

Facebook now has a number of official libraries to help facilitate working with it on a

number of platforms. Android is one of these supported platforms, and we would be

foolish not to take advantage the official Android Facebook Library.

Under the hood the Facebook API is doing all the same things that are done in the

Twitter example. It communicates with a web server by creating a GET or POST request,

it parses a JSON response, and it handles authentication through OAuth. In this section

we’ll take a look at how Facebook improves the user’s authentication experience. We

will also explore the Social Graph API.

To work with the sample code for this project, download and install the Facebook

Android SDK and make sure you include that project in your Eclipse workspace. This will

enable the Facebook features to function properly.

NOTE: You can download the Android Facebook API from

https://github.com/facebook/facebook-android-sdk/.

Facebook and Authentication
The Android Facebook API authenticates users by bringing up a web page so they can

log directly into Facebook, just like Twitter does. The Facebook API streamlines this

process by bringing up a web view within a modal dialog. Figure 7–8 shows the

Facebook authentication dialog.

https://github.com/facebook/facebook-android-sdk/

CHAPTER 7: Using REST with Facebook and Twitter 269

Figure 7–8. Facebook authentication screens

The dialog on the left is for the sample application, with fields for entering your

username and password. Facebook allows an application like ours to specify additional

permissions when authenticating; in our case we want to be able to post to the user

wall. Since we have requested this additional permission, users are shown the screen on

the right, asking if they wish to allow this.

Once permissions are granted to an application, the user must explicitly revoke that

permission through his Facebook privacy settings. Figure 7–9 shows the Facebook

privacy settings for applications.

Figure 7–9. Facebook application settings

Finding the information shown in Figure 7–9 is pretty tricky. In the year I have worked

with the Facebook API, the location of this page has changed a few times. Basically,

start with the privacy settings in your Facebook account and look for a link directing you

to application settings.

Since the granting of permissions from Facebook is effectively permanent, the user is

prompted only once to grant permissions. In fact, authentication is effectively permanent

CHAPTER 7: Using REST with Facebook and Twitter 270

as well. If you kill the application and restart it, you will notice that clicking the “Login to

Facebook” button does not require you to log in again. Remember, to kill the FaceTweet

application you have to kill it through the application manager or power cycle your

device, since FaceTweet is a singleton application.

The rationale for making authentication permanent is questionable from a privacy

standpoint, but very practical from a user experience perspective. Requiring users to

authenticate only once means they will never be bothered to authenticate again, which

removes an annoying step and increases participation. Listing 7–13 shows the code

required to bring up the authentication dialog.

Listing 7–13. Facebook Authentication Dialog

public final static String FB_APPLICATION_ID = "158406107535204";
private Facebook facebook = new Facebook(FB_APPLICATION_ID);
private AuthorizeListener authorizeListener = new AuthorizeListener();
//...
facebook.authorize(this, new String[] { "publish_stream" }, authorizeListener);

As you can see, there’s not much to authentication with Facebook. A Facebook object is

created with an application id. The authorize method is called on the facebook object,

passing on the Activity, a collection of permission strings, and an AuthorizeListener.

The array of strings in Listing 7–13 specifies which permissions we are requesting. Even

though the granting of permissions is basically permanent, we want to pass this

information in every time. The user experience does not change if the permissions are

already granted and it is one less thing for our application to keep track of.

NOTE: Facebook offers a lot of different extended permissions, a complete list can be found at

http://developers.facebook.com/docs/authentication/permissions.

The AuthorizeListener class in Listing 7–13 is used for receiving callback calls from the

Facebook authentication process. Listing 7–14 shows the implementation of this class.

Listing 7–14. AuthorizeListener

private class AuthorizeListener implements DialogListener {
 @Override
 public void onComplete(Bundle values) {
 statusView.setText("Authenticated with Facebook!");
 facebookWallButton.setEnabled(true);
 }
 @Override
 public void onFacebookError(FacebookError e) {
 Log.w("FaceTweet", e);
 statusView.setText("Trouble With FB, see logs");
 }
 @Override
 public void onError(DialogError e) {
 Log.w("FaceTweet", e);
 statusView.setText("Trouble With Dialog, see logs");
 }
 @Override

http://developers.facebook.com/docs/authentication/permissions

CHAPTER 7: Using REST with Facebook and Twitter 271

 public void onCancel() {
 statusView.setText("Did not authenticate.");
 }
}

This class has four methods, each of which is called depending on the user action or

application error. The method onComplete is the happy path, where the user successfully

authenticates and we update the UI appropriately. The method onCancel is called when

the user cancels the authentication process. The other two methods are called when

there is some sort of error. Our application basically ignores this case, but a more

sophisticated application could do something smarter.

Just like in the Twitter example, you must create an application with Facebook in order

to make API calls of any type. When an application is created, it is given an ID, which is

the constant FB_APPLICATION_ID from Listing 7–13. The application’s ID is public

information, which is weird, since it means you can authenticate users for any Facebook

application. Figure 7–10 shows the Facebook application page I used to develop this

example.

Figure 7–10. Facebook application page

CHAPTER 7: Using REST with Facebook and Twitter 272

This page shows an overview of the application as well as the application ID. There is a

bunch of other information that goes along with a Facebook application, and this, as

well as the picture, is used to identify the application to the user.

Facebook’s Social Graph API
Once authenticated to Facebook, the application has access to the user’s view of

Facebook. This means, given the correct permissions, the application can perform any

operation the user can perform, except changing privacy settings. In order to interact

with the Facebook API, we must understand a little of how it is organized. Facebook

obviously has users, but it also has pages, pictures, friend relationships, posts, and a lot

more. Each of these entities has an ID and can be accessed through a REST service. To

view a JSON presentation of a Facebook object, you use the URL

https://graph.facebook.com/ID. Figure 7–11 is a screenshot showing the information for

the application in Figure 7–10.

Figure 7–11. Application details via Facebook Graph API

Here we see that the URL specifies the ID of the application. In the window we see the

JSON representation of the application. Try looking at the source of some different

Facebook pages—you can usually pull out the ids of all kinds of things. Looking at the

source for my Facebook home page, I learned my account has the id of

100001911096243. Just stick it at the end of the graph URL and there is a JSON

representation of my account.

As a shortcut, you can replace the authenticated user’s ID in the URL with the string

‘me’. For example, https://graph.facebook.com/me will return the user’s information. But to

use the “me” shorthand, you must pass an access token in with the request.

Once you know the ID of something you can inspect that object further by appending a

type to the end of the URL. Table 7–2 shows some examples.

https://graph.facebook.com/ID
https://graph.facebook.com/me

CHAPTER 7: Using REST with Facebook and Twitter 273

Table 7–2. Example Social Graph Calls

Object Type Returned URL

Friends https://graph.facebook.com/me/friends?access_token=…

Home https://graph.facebook.com/me/home?access_token=…

Likes https://graph.facebook.com/me/likes?access_token=

Photo Tags https://graph.facebook.com/me/photos?access_token=

This shows how simple this API is—we just add the type of thing we want to access to

the URL and specify the access token.

In Facebook, when you create an item or update something, it is called publishing. To

publish an object to Facebook, you simply POST your object to the same URL you’d

expect to read it from. So, if you read a user’s feeds from

https://graph.facebook.com/arjun/feed, you would create a POST request and send it to

the same URL. When you make the POST, you include the access token as well as the

text of the feed item, in addition to any other values supported by the feed type.

NOTE: To learn all about the different types of objects Facebook uses, go to

http://developers.facebook.com/docs/reference/api/.

Though the Facebook Graph API is refreshingly simple to use, the Android Facebook

API comes with a utility class for interacting with these services. In our sample

application, we post to the user’s wall. Listing 7–15 shows how this is done.

Listing 7–15. postOnWall

private void postOnWall() throws FileNotFoundException,
 MalformedURLException, IOException {
 Bundle bundle = new Bundle();
 bundle.putString("message",
 "Working through the examples for the book Practical Android
 Projects.");
 bundle.putString("link",
 "http://www.facebook.com/apps/application.php?id=
158406107535204");

 facebook.request("me/feed", bundle, "POST");
}

This code creates a Bundle object, which is a lot like a JSONObject in that is a utility for

mapping keys to values. In this case, we are mapping the key “message” to the text we

want displayed on the wall. We also want a link included, so we map the key “link” to

the URL of the Facebook application page I created for this book. Lastly, we use the

facebook object created in Listing 7–13 to send the request. Note that we use the POST

method, since this is a write operation.

https://graph.facebook.com/me/friends?access_token=%E2%80%A6
https://graph.facebook.com/me/home?access_token=%E2%80%A6
https://graph.facebook.com/me/likes?access_token=
https://graph.facebook.com/me/photos?access_token=
https://graph.facebook.com/arjun/feed
http://developers.facebook.com/docs/reference/api/
http://www.facebook.com/apps/application.php?id=%ED%AF%80%ED%B0%81158406107535204
http://www.facebook.com/apps/application.php?id=%ED%AF%80%ED%B0%81158406107535204

CHAPTER 7: Using REST with Facebook and Twitter 274

The Facebook Social Graph API is easy to use. The Android Facebook library makes it

even easier. Facebook has a large investment in third-party application developers using

its services. The simplicity of these services shows the fruits of this investment.

Unfortunately, it does not take long working with the API to realize just how freewheeling

the company is with user data.

Summary
In this chapter we reviewed the basic concepts of REST and how it uses HTTP methods

as the “‘verbs” in a web service. We looked at an example of constructing an HTTP

request using the built-in Apache libraries to read a tweet. We explored using the

Signpost library for managing the OAuth process, in addition to setting up our

application for authenticating with OAuth. We used the Twitter4J library to make an

authenticated web service call to Twitter. Lastly, we looked at Facebook, showing how

the Android Facebook API improves the user login experience and how the Facebook

Social Graph API works.

275

275

 Chapter

Using the Google App
Engine with Android
There are increasingly few applications written today that don’t communicate with a web
service of some type. Android applications are no exception: it is because an Android
device is always connected to the Internet that it is such a compelling platform for
application development. There are many options when it comes to developing the web
services consumed by an Android device. From PHP to ASP, people have been creating
web applications and services for many years. Java also offers a number of excellent
web platforms, and if you find the use of Java attractive in Android, then you might find
Java attractive for implementing your server-side logic. The traditional way of writing a
web service in Java might include Java Enterprise Edition (J2EE) or Spring. These are
powerful tools, but by definition they require a server or servers to run on, and servers
require management.

Another consideration when creating a web service is scaling the application across a
number of servers. This is a requirement for any application that becomes popular. I
think it best to start planning for success from the beginning and choose a technology
that is ready to scale. If you are going down the Spring or J2EE path, this means getting
access to a number of servers, deploying your application, managing load balancing,
and session handling. Not to mention setting up a database that can scale to hundreds
of thousands of transactions a day – something that may require a commercial
database, such as Oracle.

Although we have worked on many server-side projects and have spent time addressing
the issues of scaling an application, we have grown a little tired of it all. In an ideal world,
we would like to write our server-side logic and upload it to some service that simply
handles the details of deployment, scaling, versioning, and high availability. The Google
App Engine (GAE) is not perfect, but it is the closest thing we have found to an ideal
server-side solution.

In this chapter we will cover GAE from a high level, exploring what it offers, how
applications are developed to work with it, and some of its limitations. Following that, we
will look at an example GAE project that serves a simple web service for tracking high

8

CHAPTER 8: Using the Google App Engine with Android 276

scores. Lastly, we will see how to write an Android application to interact with this
service, including displaying the location of users on a map.

Introducing Google App Engine
Google App Engine (GAE) is a service for running Internet-facing applications on Google
hardware. This means you can write a web application using Java or Python, upload it to
GAE, and have your application automatically scale up to meet user demand, in the
same way Google’s applications do. This is different from other hosting services, with
which you are given a server or number of servers on which you can install and manage
your application. Some people confuse GAE with services like Amazon’s EC2, with
which you can create and provision servers through a web service. Amazon’s EC2 is an
amazing service if your application requires access to the underlying OS – whether it is
Windows, Linux, or something else. If your application fits nicely into the category of
applications that don’t require this level of access, GAE can save you the hassle of
managing the hardware and OS your application is running on.

GAE supports two languages for handling the dynamic portion of your application: Java
and Python. This chapter will focus on using Java and the Eclipse plugins that facilitate
development and deployment. While GAE supports Java, it is not a full implementation
of J2EE or any other web framework. GAE does support a subset of J2EE, allowing a lot
of existing code and technologies to be used. For example, JSP is supported, along with
most of the underlying technologies, like HttpServlets. If you are familiar with the basics
of J2EE, you will be at home developing applications for GAE. As mentioned, GAE is a
subset of J2EE, and a developer can get into trouble assuming a particular J2EE
technology will work as expected or at all. After we discuss the basics of GAE, we will
take a look at the portions of J2EE that are supported and to what extent.

GAE Java is also a subset of J2SE. Like Android, not all J2SE classes are present in the
runtime. For example, AWT and Swing are missing. This makes sense because web
applications do not use these libraries for rendering. However, AWT includes the
Graphics2D classes, which are useful for image manipulation outside of a desktop
environment. The absence of libraries like Graphics2D can be a bit of a shock when
porting an existing an application. It is important to review the supported classes before
committing to GAE.

NOTE: The JRE classes supported by GAE are listed on the JRE Class White List, which can be

found here: http://code.google.com/appengine/docs/java/jrewhitelist.html

Getting Started with GAE
You must sign up with Google to get access to GAE. Do so at
http://code.google.com/appengine/. Once you are logged in to the GAE application, you
will see a web page like the one shown in Figure 8–1.

http://code.google.com/appengine/docs/java/jrewhitelist.html
http://code.google.com/appengine/

CHAPTER 8: Using the Google App Engine with Android 277

Figure 8–1. List of applications

Figure 8–1 lists a number of applications from my GAE account. When you first log in, no
applications are listed, but the button at the bottom of the page allows you to create a
new application. Figure 8–2 shows the page where a new application can be registered.

Figure 8–2. Creating a new GAE application

There is a place to enter a domain where your application will be available. By default,
your application will be a sub-domain of the domain appspot.com. Your application will
be available at this URL, but you can also set up your application to be any domain of
your choosing. You are also prompted to enter an application title. This is just used to
give your application a human readable name.

Once you create a new application, you will be brought to the dashboard view of the
application. From this view, you can see statistics about your application as well as
manage a number of settings. Figure 8–3 shows the dashboard for the GAE application
we created to accompany this chapter.

CHAPTER 8: Using the Google App Engine with Android 278

Figure 8–3. Dashboard for pap-game-service

The chart in Figure 8–3 shows the usage of the application in terms of request per
second. As you can see, this application is not very active. As your usage increases, the
data on this view becomes invaluable in understanding the usage of your application. On
the left side of the page, you see a number of links that will display other details about
your application.

Once you have an application set up with GAE, you will want to download and install the
Eclipse plugin for GAE.

NOTE: Install the Eclipse GAE plugin by following the directions found here:

http://code.google.com/appengine/docs/java/tools/eclipse.html

Using Eclipse with GAE
Once Eclipse is configured with the GAE plugin, you can create a new GAE project by
selecting Web Application Project from the New Projects menu. Figure 8–4 shows the
dialog that is presented.

http://code.google.com/appengine/docs/java/tools/eclipse.html

CHAPTER 8: Using the Google App Engine with Android 279

Figure 8–4. Creating a web application project

In this dialog, you must provide a project name and a package for the source code. The
project name can be anything – it does not need to be the same as the application
created with GAE. The package can also be anything you find useful. At the bottom of
Figure 8–4, you have the option to use two possible Google SDKs. At minimum you
must select Use Google App Engine in order for this project to work with GAE. The
option Use Google Web Toolkit allows you to use GWT with your application. GWT or
Google Web Toolkit is a framework for writing your client-side logic in Java. We won’t be
covering GWT, but the combination of GWT and GAE is a powerful one. We encourage
any Java developer to check out GWT, as it makes your Java skills relevant in the
domain of web-based, client-side application development.

Once your application is created, you run it locally by right-clicking on your project and
selecting Run As and then Web Application, as shown in Figure 8–5.

CHAPTER 8: Using the Google App Engine with Android 280

Figure 8–5. Running GAE locally

When you are developing your GAE application, you do so by running a version of it
locally. Eclipse handles the details of this, but basically the GAE plug in launches a local
web server and deploys your application. The local web server includes an
implementation similar to the live GAE, and can reliably used to test your application.
Once you run your application, it will be available at http://localhost:8888.

GAE Project Structure
Java-based GAE projects are organized like most typical Java web applications. Figure
8–6 shows how a project is organized in Eclipse.

Figure 8–6. GAE Project structure in Eclipse

In Figure 8–6, you see the file called index.html under the ‘war’ directory. This file is the
default web page served by this application. The war directory is used to store all static
content for the web application; this includes html, css, image files, and JSP files. Also
under the ‘war’ directory is a directory called WEB-INF. This contains a web.xml file,
which is used to describe the dynamic resources for this application. There is nothing
special about a web.xml file used by GAE versus a web.xml from other Java web
applications. It contains the definition of servlets, their access points, and other

http://localhost:8888

CHAPTER 8: Using the Google App Engine with Android 281

information one would expect in a web.xml file. In addition to the web.xml file in the
WEB-INF directory, there is a folder called appengine-genereated. This contains a
number of configuration files that are automatically generated. In general, these files can
be ignored.

The rest of the project includes the Java source code and a file called jdoconfig.xml,
which is used to configure a technology called Java Data Objects (JDO). JDO is a
relational object mapping technology like Hibernate or JPA. We will take a closer look at
the persistence features of GAE later.

A new GAE project is uninteresting, but is ready to be deployed once it is configured to
your GAE account. Figure 8–7 shows the panel used to configure your project for
deployment.

Figure 8–7. Configure GAE application for deployment

In Figure 8–7 the GAE-specific project settings are displayed. To prepare for
deployment, you must fill out the Application ID field. The Application ID is the value you
filled out when you created a new GAE application. It is the value you entered as the
Application Identifier, as shown in Figure 8–7. The version should be the value 1. GAE
has the ability to upload multiple versions of an application and then switch between
them. This is a handy feature as an application grows in complexity, but we are going to
work with a single version.

Once you have the GAE project settings filled out, the application can be deployed by
right-clicking on your project and selecting Google, then Deploy to App Engine. Figure
8–8 shows the menu item.

CHAPTER 8: Using the Google App Engine with Android 282

Figure 8–8. Deploy menu item

After selecting the menu item as shown in Figure 8–8, the dialog shown in Figure 8–9 is
displayed. In this dialog, you must enter the credentials you used to create you GAE
account.

Figure 8–9. Entering your Google credentials

After hitting the Deploy button, the GAE plugin will perform a number of steps to prepare
your application for deployment, and then deploy it. Figure 8–10 shows the type of
output you should expect in the Eclipse Console.

Figure 8–10. Output from a successful deployment

CHAPTER 8: Using the Google App Engine with Android 283

Eclipse and the GAE plugin provide a simple way to get a web page deployed on GAE.
However, the default application is little more then a stub of an application. It is worth
exploring some of the details of GAE so it can be appropriately evaluated as a possible
solution for implementing a web service consumed by an Android application.

Charges for the Google App Engine Service
GAE is free to set up and free to deploy your application on. Google does charge for this
service, but not until your application has consumed more than its daily quota for a
particular service. This is handy for start-ups, which only have to pay once their
application becomes popular enough to exceed the quota. Hopefully, a web application
that exceeds its quota is profitable enough to at least cover those addition charges. The
current costs and quotas for the most important GAE resources are shown in Table 8–1.
GAE does have a number of other quotas for less commonly used resources.

Table 8–1. Google app engine quotas and costs for major resources

Resource Free Quota Unit Cost

CPU Time 6.5 CPU hours $0.10/CPU hour

Bandwidth Out 1.00 GBytes $0.12/GByte

Bandwidth In 1.00 GBytes $0.10/Gbyte

Stored Data 1.00 GBytes $0.005/GByte-day

Recipients Emailed 2,000 Emails 0.0001/Email

GAE does not charge for overages; you just get a warning that you have exceeded your
quota. But we are sure that you would be shut off at some point. In order to increase the
amount of a particular resource available, you set a budget and select how you want
that money spent. For example, you can choose to spend an additional $5.00 a day and
select the Bandwidth Intensive budget preset. This option makes the most sense for a
site one of us runs, because the Bandwidth Out resource was maxing out, while the
CPU Time barely changed when the number of users increased. This was due to the
large number of images and the limited amount of dynamic content. The Bandwidth
Intensive budget distributes that $5.00 as shown in Table 8–2.

CHAPTER 8: Using the Google App Engine with Android 284

Table 8–2. Bandwidth Intensive budget preset for $5.00

Resource Budget ($5.00) Unit Cost Paid Quota Free Quota Total Daily Quota

CPU Time $0.50 $0.10 5.00 6.50 11.50 CPU hours

Bandwidth Out $2.80 $0.12 23.33 1.0 24.33 GBytes

Bandwidth In $0.70 $0.10 6.99 1.0 7.99 GBytes

Stored Data $1.00 $0.005 200.00 1.0 201.00 GBytes

Recipients Emailed $0.00 $0.0001 0 2000 2000 Emails

By setting a budget and increasing your daily quotas, Google will continue to server your
application and only charge for the resources you consume over the free quotas. The
budget presents are as follows:

 Standard (evenly distribute your budget over the available resources)

 CPU Intensive

 Bandwidth Intensive

 Storage Intensive

 Custom (select how your budget is applied to resources)

Google App Engine Services
Any web application of reasonable complexity will have to do more than just serve static
content. In order to enable more complex applications, Google offers a number of
services. Most of these are things you would expect from any application container,
such as sending email. The GAE services use the normal Java classes to perform these
functions where available. For example, to send email, your application would use the
normal J2EE classes from the javax.mail package for most operations. But again, using
the email example, there are some differences and limitations when running your code in
GAE. These differences exist because any coding running on GAE must be scalable, so
Google has removed the portions of each Java API that don’t make sense in a massively
distributed application. The biggest assumption GAE makes about your application is
that it is stateless. Since your GAE application will be distributed among any number of
servers and client requests will be disturbed evenly among these servers, your
application must never assume that client request will be sent to the same server twice.

In some cases, Google’s decisions make sense. In other cases, the limitations seem
arbitrary or incomplete. The next section is an overview of each service, giving high-level
detail and some notes on limitations.

CHAPTER 8: Using the Google App Engine with Android 285

App Engine Datastore
In a tiered web application, each server uses a database to store data. This database is
queried to respond to users’ requests and updated by their actions according to the
application’s business logic. When creating an application for GAE, Google provides
access to a powerful, scalable data persistence service called the App Engine datastore.
The App Engine datastore is a schema-less object datastore that supports custom
queries and atomic transactions.

The App Engine datastore is what people are calling a No-SQL database, much like
CouchDB or MongoDB. Basically each “row” in the App Engine datastore is a collection
of key-value pairs. The key can be thought of as the column name, but this can lead to
some confusion, because not all rows in a given table have to have the same keys.
There are good reasons for this, and Google’s track record for storing and serving data
is proof that it knows what it’s doing.

Not every developer is going to want to learn this new API for storing data, so GAE
offers two wrappers around their App Engine datastore to make life easier for Java
developers. The first wrapper is the Java Data Objects (JDO) API and the second is Java
Persistence API (JPA). Neither of these two specifications is fully implemented by
Google, and both offer only cursory functionality. Don’t expect to be able to easily port
an existing application that uses either of these technologies. However, if all you want to
do is persist a handful of Plain Old Java Objects (POJOs), then Google’s implementation
of JDO and JPA will suffice.

Blobstore Java API
The Blobstore Java API is an API that allows GAE applications to store data that is too
large for the App Engine datastore. In addition to storing larger chunks of data, the
Blobstore API allows portions of a blob to be served without reading the entire blob into
memory. This feature allows GAE applications to create scalable and efficient streaming
applications, which might otherwise be impossible given GAE’s stateless nature.

The Blobstore Java API does not have any particular limitations, since it is in effect a
service to overcome the limitations of the App Engine datastore.

Channel API
The Channel API is used to create a persistent connection between your application and
the client. This is done in many applications so messages or other data can be pushed
from the server to the client. Historically, the client polling the server for messages has
accomplished this, but in recent years, this has been accomplished by not closing a
connection on the server side and sending new bytes to the client when available. With
the advent of HTML5, this client-server behavior has been further refined and
standardized. It makes sense that Google would want to support this type of messaging,
given its support for HTML5 as a whole. It is interesting, though, that the HTML5

CHAPTER 8: Using the Google App Engine with Android 286

technology WebSockets is not used to implement this. We suspect that will change in
the future, as HTML5 becomes more common.

Since GAE blocks access to a lot of the low level functions that would normally be used
to accomplish this type of communication, they have provided a dedicated service to
implement this. We don’t consider this a limitation at all, since the API provided is the
easiest we have ever used, when a comet-like service is required.

Images API
As mentioned, the AWT packages are absent from the Java implementation available on
GAE. Since AWT contains a fully functionally image manipulation stack, this is a pretty
big hole in the GAE runtime. Many simple web applications require some level of image
manipulation, even if it is just to scale images before they are saved. To help plug this
hole, GAE provides a number of canned functions for manipulating images. These
include

 Resize

 Rotate

 Flip Horizontally

 Flip Vertically

 Crop

 I’m Feeling Lucky

The I’m Feeling Lucky function enhances dark and bright colors, which generally
improves the visual quality of the image. The GAE supports the manipulation of images
in the JPEG, PNG, GIF, BMP, TIFF, and ICO formats. If you application has no or limited
image manipulation requirements, then GAE might still be valid option.

Mail API
The Mail API allows GAE applications to send and receive email. When it comes to
sending email, a GAE application uses the standard javax.mail package. Your
application can respond to any email address of the form
[anyname]@appid.appspotmail.com. Emails sent to these types of addresses are treated
as HTTP POST requests sent to the URL /_ah/mail/address.

The only limitation with the Mail API is that a quota governs the number of emails sent
by your application, and incoming emails are counted toward your Bandwidth In quota.
The limit on the number of emails that can be sent out makes sense, as this prevents the
GAE from being a powerful tool to spammers.

mailto:anyname]@appid.appspotmail.com.EmailssenttothesetypesofaddressesaretreatedasHTTPPOSTrequestssenttotheURL/_ah/mail/address.TheonlylimitationwiththeMailAPIisthataquotagovernsthenumberofemailssentbyyourapplication
mailto:anyname]@appid.appspotmail.com.EmailssenttothesetypesofaddressesaretreatedasHTTPPOSTrequestssenttotheURL/_ah/mail/address.TheonlylimitationwiththeMailAPIisthataquotagovernsthenumberofemailssentbyyourapplication
mailto:anyname]@appid.appspotmail.com.EmailssenttothesetypesofaddressesaretreatedasHTTPPOSTrequestssenttotheURL/_ah/mail/address.TheonlylimitationwiththeMailAPIisthataquotagovernsthenumberofemailssentbyyourapplication
mailto:anyname]@appid.appspotmail.com.EmailssenttothesetypesofaddressesaretreatedasHTTPPOSTrequestssenttotheURL/_ah/mail/address.TheonlylimitationwiththeMailAPIisthataquotagovernsthenumberofemailssentbyyourapplication

CHAPTER 8: Using the Google App Engine with Android 287

Memcache
Web applications often make use of a shared, in-memory cache to improve performance
when dealing with common data. GAE provides this functionality as the Memcache
service. The GAE API for working with Memcache is identical to the JCache API
specified by JSR 107. Memcache is important in GAE applications, not only through
providing a caching API, but also through providing a way to store session data, since
GAE is largely stateless. Calls to Memcache are governed by a Mamcache API Quota,
which can be increased as needed.

Task Queues
The GAE JRE does not allow threads to be created or run. In order to create a
background process, the Task Queues API must be used. The Task Queue API allows
the developer to define a task by specifying an HTTP request be sent to given URL at a
given time. In order to actually do the work of the task, the developer implements a
Servlet that listens to the given URL. Since the Task API allows you to define repeating
tasks, you can set up scheduled work, much like a CRON service.

Users and Authentication
At the time of this writing, GAE provides applications with the ability to authenticate
users with OpenID and OAuth. This is a real value add, since you can have users simply
use their existing Google (or other) account to log in to your application. Users can be
marked as admins, allowing you some basic roll-based authentication.

XMPP
The XMPP service provides an API communicating with other XMPP services. XMPP
services are things like Google Talk: you can send messages, receive messages,
request invitations, and do other chat-related things. This is an interesting feature and a
simple API to use; it is purely a value add for GAE application.

The Google App Engine is a unique development environment that offers a rich set of
features and some inconvenient shortcomings. If your application fits with its limitations,
it can be a powerful tool, freeing you from managing your own servers.

Examining a Sample GAE Application
In the accompanying source code to this chapter you will find an Eclipse project called
08_GameService. This project is a GAE application that provides a simple service for
recording and querying high scores. These two services end points are defined by two
Servlets. Let’s take a look at the web.xml file for this project, shown in Listing 8–1.

CHAPTER 8: Using the Google App Engine with Android 288

Listing 8–1. web.xml

<?xml version="1.0" encoding="utf-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">

 <servlet>
 <servlet-name>AddHighScoreServlet</servlet-name>
 <servlet-class>com.ljordan.gameservice.AddHighScoreServlet</
servlet-class>
 </servlet>

 <servlet>
 <servlet-name>QueryHighScoresServlet</servlet-name>
 <servlet-class>com.ljordan.gameservice.QueryHighScoresServlet</
servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>AddHighScoreServlet</servlet-name>
 <url-pattern>/add_high_score</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>QueryHighScoresServlet</servlet-name>
 <url-pattern>/query_high_scores</url-pattern>
 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

</web-app>

As shown in Listing 9-1, there are two servlets defined, AddHighScoreServlet and
QueryHighScoresServlet. These servlets respond to HTTP request at the URLs
add_high_score and query_high_scores, respectively. In addition to the servlets, the
web.xml file also indicates that the index.html file should be served when no page is
specified. The index.html file contains a number of links that that can be used to interact
with these services. Listing 8–2 shows a partial listing of the index.html file.

Listing 8–2. Links from index.html

//Add Highscore
<a href="
add_high_score?highscore=%7B%22username%22%3A%22ljordan%22%2C%22score%22%3A50%2C%22
longitude%22%3A-77.67%2C%22latitude%22%3A43.12%2C%22date%22%3A12345678%2C%22
gameName%22%3A%22orb+quest%22%7D
">Add Score: ljordan(50)

//Query Highscores
All
ljordan's orb quest

http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

CHAPTER 8: Using the Google App Engine with Android 289

 scores'
a href="query_high_scores?game_name=orb%20quest&username=ljordan>r_score=
100">ljordan's orb quest scores' higher then 100

In Listing 8–2, the first link will add a high score to the service. This is done by sending
an HTTP GET to the URL add_high_score and specifying the parameter highscore. The
value of highscore is a URL-encoded string, which in turn is a JSON representation of a
HighScore object. To query for high scores, send an HTTP GET to the URL
query_high_score and specify a number of parameters. The first query specifies no
parameters and returns all high score values. The second query request high scores for
the game “orb quest” that were earned by the user ljordan. The last query is similar to
the previous, but restricts the high scores to those over the value 100. We will take a
look at how these services are implemented, but first let’s take a look at the Java
representation of the HighScore class, as shown in Listing 8–3.

Listing 8–3. HighScore.java

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class HighScore {

 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Long key;
 @Persistent
 private String username;
 @Persistent
 private Long score;
 @Persistent
 private String gameName;
 @Persistent
 private Double longitude;
 @Persistent
 private Double latitude;
 @Persistent
 private Long date;

 public HighScore() {

 }

 public HighScore(JSONObject jsonObject) throws JSONException {
 if (jsonObject.has("key")) {
 key = jsonObject.getLong("key");
 }
 if (jsonObject.has("username")) {
 username = jsonObject.getString("username");
 }
 if (jsonObject.has("score")) {
 score = jsonObject.getLong("score");
 }
 if (jsonObject.has("gameName")) {
 gameName = jsonObject.getString("gameName");
 }
 if (jsonObject.has("longitude")) {
 longitude = jsonObject.getDouble("longitude");
 }

CHAPTER 8: Using the Google App Engine with Android 290

 if (jsonObject.has("latitude")) {
 latitude = jsonObject.getDouble("latitude");
 }
 if (jsonObject.has("date")) {
 date = jsonObject.getLong("date");
 }
 }

 public JSONObject toJSONObject() throws JSONException {
 JSONObject result = new JSONObject();
 result.put("key", key);
 result.put("username", username);
 result.put("score", score);
 result.put("gameName", gameName);
 result.put("longitude", longitude);
 result.put("latitude", latitude);
 result.put("date", date);

 return result;
 }
//get/set methods omitted

In Listing 8–3 we see the interesting parts of the HighScore class. The HighScore class
is a simple POJO annotated with some JDO specific annotations. As mentioned, JDO is
an object-relation mapping tool. What this means is that JDO provides a way for you to
specify a class as persistable, and JDO handles the details of setting up a table in a
database to store instances of this class. In general, this happens by creating a table
with the same name as the class, and creating columns for each field. There is a lot
more to how object relational mapping technologies work, but for now, you just have to
know that JDO marks a class as persistable by annotating it with PersistenceCapable.
Each persistable class also requires a field to be used as the primary key for the table
backing the class. In this case, we use the field called key of type Long. Lastly, JDO
requires you to specify exactly which fields should be included when an Object is
persisted. This is done by adding the annotation Persistable to each field that should be
included.

There is a special constructor that takes a JSON object. It is used to create a HighScore
object from any JSON sent by the client. Conversely, the method toJSONObject is used
to serialize a HighScore object so it can be sent back to the client in valid JSON.

Adding the HighScore Service
The first service we should look at is the one for adding high scores. The class
AddHighScoreServlet implements this service. Let’s take a look at the source code,
shown in Listing 8–4.

Listing 8–4. AddHighScoreServlet

@SuppressWarnings("serial")
public class AddHighScoreServlet extends HttpServlet {

 public final static String PARAM_HIGHSCORE = "highscore";

CHAPTER 8: Using the Google App Engine with Android 291

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 String json = req.getParameter(PARAM_HIGHSCORE);

 resp.setContentType("application/json");
 Writer writer = resp.getWriter();

 PersistenceManager pm = PMF.get().getPersistenceManager();
 try {

 HighScore highScore = new HighScore(new JSONObject(json));

 pm.makePersistent(highScore);

 writer.write(highScore.toJSONObject().toString());
 } catch (Exception e) {
 throw new IOException(e);
 } finally {
 pm.close();
 writer.close();
 }

 }
}

The AddHighScoreServlet class in Listing 8–4 extends HttpServlet and responds to GET
request in the method doGet. The method doGet looks for a JSON object as the value of
the parameter highscore. The JSON text is parsed by creating a JSONObject, which is
in turn used to create a new HighScore object. As the name of this class implies, its job
is to write a HighScore object to the database. This is done by first getting an instance
of PersistenceManager from the PFM factory class. The PersistenceManager, named
pm, is used to write the object highScore to the database by calling makePersistent.
Since adding the variable highScore to the database populates its key field, the object is
written back to the client with the writer object.

Once JDO is set up, it is really easy to write objects to a database, or in this case, to the
App Engine datastore. Getting JDO setup requires a little boilerplate. Let’s start by
taking a look at the PMF class, shown in Listing 8–5.

Listing 8–5. PMF.java

public final class PMF {
 private static final PersistenceManagerFactory pmfInstance = JDOHelper
 .getPersistenceManagerFactory("transactions-optional");

 private PMF() {
 }

 public static PersistenceManagerFactory get() {
 return pmfInstance;
 }
}

In Listing 8–5 we see the class PMF, which is a simple class implementing a factory
pattern. The whole point of the PMF class is to provide a convenient way to get at a
PersistenceManagerFactory singleton from anyplace in your code. A

CHAPTER 8: Using the Google App Engine with Android 292

PersistenceManagerFactory is the main class for interacting with the underlying
datastore. As such, it is important to only create one per datastore, since scanning the
persistent classes and validating the datastore is a lot of work.

The example project 08_GameService was created with the GAE tool in Eclipse, and by
default JDO is automatically configured to work with JDO. The configuration is found in
the file jdoconfig.xml as shown in Listing 8–6.

Listing 8–6. jdoconfig.xml

<?xml version="1.0" encoding="utf-8"?>
<jdoconfig xmlns="http://java.sun.com/xml/ns/jdo/jdoconfig"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://java.sun.com/xml/ns/jdo/jdoconfig">

 <persistence-manager-factory name="transactions-optional">
 <property name="javax.jdo.PersistenceManagerFactoryClass"
 value="org.datanucleus.store.appengine.jdo.
DatastoreJDOPersistenceManagerFactory"/>
 <property name="javax.jdo.option.ConnectionURL" value="appengine"/>
 <property name="javax.jdo.option.NontransactionalRead" value="true"/>
 <property name="javax.jdo.option.NontransactionalWrite" value="true"/>
 <property name="javax.jdo.option.RetainValues" value="true"/>
 <property name="datanucleus.appengine.autoCreateDatastoreTxns" value="true"/>
 </persistence-manager-factory>
</jdoconfig>

In Listing 8–6 we can see that some assumptions are made by GAE. The first is that
non-transactional reads and writes are enabled. This is not a big deal in our simple
application, but more complex, more data sensitive applications my find this setting
problematic. As mentioned previously, there are some holes in Google’s JDO
implementation. If transactional reading and writing is required, be sure to read Google’s
documentation closely. They are adding features all the time. Another thing to notice is
that the ConnectionURL is set to appengine. Figure 8–11 shows this URL for a local
version of the app engine.

http://java.sun.com/xml/ns/jdo/jdoconfig
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/jdo/jdoconfig

CHAPTER 8: Using the Google App Engine with Android 293

Figure 8–11. Local datastore

In Figure 8–11 we see the local datastore that is used while developing a GAE
application. On the right, you can see instances of HighScore that have been persisted
through the SaveHighScoreServlet. This view into persisted object is handy when
debugging your application, as you can write little scripts that populate this datastore
with sample data. On the left side of Figure 8–11 we can see that there are options for
interacting with a local version of a Task Queue, XMPP, and Inbound Mail. These other
tools allow you to simulate running your code on the live GAE.

Querying the HighScore Service
To query for high scores, an HTTP GET request is sent to the QueryHighScoresServlet.
This servlet converts the HTTP GET request into a valid JDO query and returns the
results. Listing 8–7 shows the doGet method of QueryHighScoresServlet.

Listing 8–7. QueryHighScoresServlet.doGet()

@SuppressWarnings("serial")
public class QueryHighScoresServlet extends HttpServlet {

 private static final String PARAM_COUNT = "count";
 private static final String PARAM_GTR_LAT = "gtr_lat";
 private static final String PARAM_LST_LAT = "lst_lat";
 private static final String PARAM_GTR_LON = "gtr_lon";
 private static final String PARAM_LST_LON = "lst_lon";
 private static final String PARAM_GTR_SCORE = "gtr_score";
 private static final String PARAM_USERNAME = "username";
 private static final String PARAM_LST_SCORE = "lst_score";
 private static final String PARAM_GAMENAME = "game_name";

 public void doGet(HttpServletRequest req, HttpServletResponse resp)

CHAPTER 8: Using the Google App Engine with Android 294

 throws IOException {

 String count = req.getParameter(PARAM_COUNT);
 String gtrLat = req.getParameter(PARAM_GTR_LAT);
 String lstLat = req.getParameter(PARAM_LST_LAT);
 String gtrLon = req.getParameter(PARAM_GTR_LON);
 String lstLon = req.getParameter(PARAM_LST_LON);
 String username = req.getParameter(PARAM_USERNAME);
 String gtrScore = req.getParameter(PARAM_GTR_SCORE);
 String lstScore = req.getParameter(PARAM_LST_SCORE);
 String gameName = req.getParameter(PARAM_GAMENAME);

 List<HighScore> highScores = queryHighScores(count, lstLat, gtrLat,
 lstLon, gtrLon, username, lstScore, gtrScore, gameName);

 resp.setContentType("application/json");
 Writer writer = resp.getWriter();

 try {

 JSONArray result = new JSONArray();
 for (HighScore highscore : highScores) {
 result.put(highscore.toJSONObject());
 }
 writer.write(result.toString());

 } catch (Exception e) {
 throw new IOException(e);
 } finally {
 writer.close();
 }
 }

In Listing 8–7, the doGet method finds all parameters passed in with the request. The
values of these parameters are passed to the queryHighScores method. The result of
the queryHighScores method is converted into JSONObjects, added to a JSONArray,
and returned to the client. The heavy lifting of the doGet method is done in the
queryHighScores method, shown in Listings 8–8 and 8–9.

Listing 8–8. QueryHighScoresServlet.queryHighScores()

 private List<HighScore> queryHighScores(String count, String lstLat,
 String gtrLat, String lstLon, String gtrLon, String username,
 String lstScore, String gtrScore, String gameName) {

 List<HighScore> results = new ArrayList<HighScore>();

 PersistenceManager pm = null;
 try {
 pm = PMF.get().getPersistenceManager();

 Map<String, String> paramNameToType = new HashMap<String,
 String>();
 Map<String, Object> paramNameToValue = new HashMap<String,
 Object>();
 List<String> filters = new ArrayList<String>();

CHAPTER 8: Using the Google App Engine with Android 295

 if (lstLat != null) {
 filters.add("latitude < plstLat");
 paramNameToType.put("plstLat", "Double");
 paramNameToValue.put("plstLat",
 Double.parseDouble(lstLat));
 }
 if (gtrLat != null) {
 filters.add("latitude > pgtrLat");
 paramNameToType.put("pgtrLat", "Double");
 paramNameToValue.put("pgtrLat",
 Double.parseDouble(gtrLat));
 }
 if (lstLon != null) {
 filters.add("longitude < plstLon");
 paramNameToType.put("plstLon", "Double");
 paramNameToValue.put("plstLon",
 Double.parseDouble(lstLon));
 }
 if (gtrLon != null) {
 filters.add("longitude > pgtrLon");
 paramNameToType.put("pgtrLon", "Double");
 paramNameToValue.put("pgtrLon",
 Double.parseDouble(gtrLon));
 }
 if (username != null) {
 filters.add("username == pusername");
 paramNameToType.put("pusername", "String");
 paramNameToValue.put("pusername", username);
 }
 if (lstScore != null) {
 filters.add("score < plstScore");
 paramNameToType.put("plstScore", "Long");
 paramNameToValue.put("plstScore",
 Double.parseDouble(lstScore));
 }
 if (gtrScore != null) {
 filters.add("score > pgtrScore");
 paramNameToType.put("pgtrScore", "Long");
 paramNameToValue.put("pgtrScore",
 Long.parseLong(gtrScore));
 }
 if (gameName != null) {
 filters.add("gameName == pgameName");
 paramNameToType.put("pgameName", "String");
 paramNameToValue.put("pgameName", gameName);
 }

 Query query = pm.newQuery(HighScore.class);

 query.setOrdering("score desc");
 if (count != null) {
 query.setRange(0, Long.parseLong(count));
 }

In Listing 8–8 we must figure out which parameters are passed from the client. If a
parameter is null, the client has not included that it in their query string. If a parameter is
not null, append the appropriate String to the variable filters and populate the maps

CHAPTER 8: Using the Google App Engine with Android 296

paramNameToType and paramNameToValue. These maps will be used later to propertyl
construct our JDO query, as shown in Listing 8–9.

Listing 8–9. QueryHighScoresServlet.queryHighScores() (continued)

 if (filters.size() == 0) {
 for (Object obj : (List) query.execute()) {
 results.add((HighScore) obj);
 }
 return results;
 } else {

 StringBuffer filter = new StringBuffer();

 ListIterator<String> li = filters.listIterator();
 while (li.hasNext()) {
 filter.append(li.next());
 if (li.hasNext()) {
 filter.append(" & ");
 }
 }

 List values = new ArrayList();
 StringBuffer parameters = new StringBuffer();
 Iterator<Map.Entry<String, String>> i = paramNameToType
 .entrySet().iterator();

 while (i.hasNext()) {
 Map.Entry<String, String> param = i.next();
 parameters.append(param.getValue());
 parameters.append(' ');
 parameters.append(param.getKey());
 if (i.hasNext()) {
 parameters.append(',');
 }
 values.add(paramNameToValue.get
(param.getKey()));
 }
 query.setFilter(filter.toString());
 query.declareParameters(parameters.toString());

 for (Object obj : (List) query.executeWithArray(values
 .toArray())) {
 results.add((HighScore) obj);
 }
 return results;
 }

 } finally {
 pm.close();
 }
 }

Listing 8–9 uses the bookkeeping done by Listing 8–8 to construct a JDO query with the
correct information. The filters are basically the ‘where’ clause from SQL. The map
paramNameToType is used to tell JDO which strings in the filter are parameters and
what their expected type is. Lastly, the map paramNameToValue is used to assign the

CHAPTER 8: Using the Google App Engine with Android 297

parameters in the query their correct values. This is more complicated than simply
constructing a big query string from the parameters because this technique prevents
security threats similar to SQL injection. Once the query object is created with all the
parts and pieces of the query, it is executed by calling executeWithArray. The method
executeWithArray returns an untyped list containing the desired HighScore objects,
which are returned to the client as JSON.

Creating a simple service to be run on GAE is not much different from creating a web
application that lives in a servlet container like Tomcat, Glassfish, or the many other
servlet containers. Taking advantage of the App Engine datastore is made easy by the
preconfigured JDO setup. To help simulate other GAE services, the local version of the
app engine provides a simple UI. We have several applications running on GAE, and
every once in a while we are annoyed at GAEs’ idiosyncrasies, but then we remember
that it has never gone down in the three years we have used it.

Consuming GAE Services with Android
We have looked at the Google App Engine and a sample web service designed to run on
it. We are now going to look at an Android application that uses this service. No, it is not
a game – that’s coming in another chapter. It is an application designed to give the user
an overview of the high scores stored in the service. This sample Android project is
called 09_GameManager. Figure 8–12 shows the first screen of the app.

Figure 8–12. 09_GameManager

In Figure 8–12 we see three buttons. The first allows the user to view the top ten highest
scores. The second allows the user to view scores based on user name and the game

CHAPTER 8: Using the Google App Engine with Android 298

played. The last button displays a map of the top 100 high scores. Let’s start by looking
at the layout for the starting activity that is defined in main.xml, as shown in Listing 8–10.

Listing 8–10. main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/viewTopTen"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="View Top Ten Scores"
/>
<Button
 android:id="@+id/usersOfGame"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Views Users Of Game"
/>
<Button
 android:id="@+id/viewLocation"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="View Location Of Scores"
/>
</LinearLayout>

In Listing 8–10 we see a very simple layout, starting with a vertically oriented
LinearLayout and then adding a button for each sub-activity. Listing 8–11 shows how
these buttons are wired up to display different activities.

Listing 8–11. GameManager.java

public class GameManager extends Activity implements View.OnClickListener {

 public final static String SERVICE_URL = "http://pap-game-service.appspot.com/";

 private Button topTenButton;
 private Button usersOfGameButton;
 private Button locationButton;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 topTenButton = (Button) findViewById(R.id.viewTopTen);
 usersOfGameButton = (Button) findViewById(R.id.usersOfGame);
 locationButton = (Button) findViewById(R.id.viewLocation);

 topTenButton.setOnClickListener(this);
 usersOfGameButton.setOnClickListener(this);

http://schemas.android.com/apk/res/android
http://pap-game-service.appspot.com/

CHAPTER 8: Using the Google App Engine with Android 299

 locationButton.setOnClickListener(this);
 }

 @Override
 public void onClick(View button) {
 if (button == topTenButton) {
 Intent intent = new Intent(this, TopTenActivity.class);
 startActivity(intent);
 } else if (button == usersOfGameButton) {
 Intent intent = new Intent(this, UsersOfGameActivity.class);
 startActivity(intent);
 } else if (button == locationButton) {
 Intent intent = new Intent(this, UsersLocationActivity.class);
 startActivity(intent);
 }
 //unknown button.
 }
}

In Listing 8–11 we see the content of main.xml is set as the content by calling
setContentView. Once the content has been set, each of the three buttons is found by
passing their IDs to the method findViewById. In order to respond to a user clicking a
button, we register this instance of GameManager as the click listener for each button
by calling setOnClickListener.

NOTE: The sample project 08_GameManager is configured to use a live version of the

08_GameServices deployed at http://pap-game-service.appspot.com. You can change

this to localhost:8888 and run game services locally if you wish.

When the user does click a button, the onClick method is called, where we test to see
which button was pressed. Each button has a new activity associated with it and is
started by first creating a new Intent and then calling startActivity. Each activity is
declared in the AndroidManafest.xml file, as shown in Listing 8–12.

Listing 8–12. AndroidManafest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.ljordan.gamemanager"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />

 <activity android:name=".GameManager"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity android:name=".TopTenActivity" android:label="Top Ten
 Scores!" />

http://pap-game-service.appspot.com
http://schemas.android.com/apk/res/android

CHAPTER 8: Using the Google App Engine with Android 300

 <activity android:name=".UsersOfGameActivity" android:label="Top Scores
For User of Game" />
 <activity android:name=".UsersLocationActivity" android:label="Location
of Best Players" />

 UserAndGameActivity
 </application>

 <uses-permission android:name="android.permission.INTERNET" />

</manifest>

The three sub-activities are defined within the element application, under the main
activity. Activities are defined in the AndroidManafiest.xml file are given a name and a
label. The label is displayed at the top of the activity when it is active. Also in this
AndroidManafest.xml file we see that we require the INTERNET permission, this is done
because we want to make an external service call to retrieve the high score information.
We also want to use a map. This permission allows us to download the map tiles
displayed in the MapView component.

Exploring the Top Ten Activity
Lets take a look at each of the three sub activities in turn, starting with the top ten
scores as shown in Figure 8–13.

Figure 8–13. Top ten activity

In Figure 8–13 we see a simple list of scores. The highest at the top. This data was
retrieved by the live GAE application described earlier in this chapter. Let’s take a look at
the source code for this activity and piece together how this information was retrieved
and displayed. See Listing 8–13.

CHAPTER 8: Using the Google App Engine with Android 301

Listing 8–13. TopTenActivity.java (Constructor)

public class TopTenActivity extends Activity {

 public HttpClient client = new DefaultHttpClient();

 private TableLayout tableLayout;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.topten);

 tableLayout = (TableLayout) findViewById(R.id.tableLayout);

 new GetTopTen().execute(10);

 }
//class continues…

In Listing 8–13 we see that the class TopTenActivity extends Activity and its onCreate
method is called when it is displayed. The layout for this class is very simple; it just
contains a TableLayout that is found in the onCreate method and stored in the variable
tableLayout. The last thing done in the onCreate method is to create a new GetTopTen
and call execute on it. GetTopTen is an AsyncTask that is responsible for making the
service call. GetTopTen is shown in Listing 8–14.

Listing 8–14. TopTenActivity (GetTopTen class)

private class GetTopTen extends AsyncTask<Integer, Integer, JSONArray> {
 @Override
 protected JSONArray doInBackground(Integer... counts) {
 try {
 StringBuilder fullUrl = new StringBuilder(
 GameManager.SERVICE_URL);

 fullUrl.append("query_high_scores?count=");
 fullUrl.append(counts[0]);

 HttpGet get = new HttpGet(fullUrl.toString());
 HttpResponse response = client.execute(get);

 int statusCode = response.getStatusLine().getStatusCode();

 if (statusCode == 200) {
 HttpEntity entity = response.getEntity();
 String json = EntityUtils.toString(entity);
 return new JSONArray(json);
 } else {
 String reason =
response.getStatusLine().getReasonPhrase();
 throw new RuntimeException("Trouble getting
scores(code="
 + statusCode + "):" + reason);
 }

CHAPTER 8: Using the Google App Engine with Android 302

 } catch (Exception e) {
 Log.w("TopTenActivity", e);
 throw new RuntimeException(e);
 }
 }

 protected void onPostExecute(final JSONArray result) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 try {
 displayResults(result);
 } catch (JSONException e) {
 Log.w("TopTenActivity", e);
 }
 }
 });
 }
}

Listing 8–14 shows that TopTenActivity extends AsyncTask. The doInBackground is
called in a separate thread from the UI, and is responsible for getting the top ten scores
from the sample services. This is done by first creating an HttpGet object with the
desired URL and then passing it into an HttpClient to execute. The URL is constructed
concatenating the base URL defined as GameManager.SERVICE_URL with the service
name query_high_scores. The number of results is specified by including the parameter
count in the URL set to the first integer in the array counts.

An HttpResponse is the result of calling client.execute(). If this response has a
successful return code (200), then we parse the result by constructing a new JSONArray
and returning it.

The method onPostExecute is passed the JSONArray that was created at the end of
doInBackground. This JSONArray then passed to the displayResults method by creating
a new Runnable and passing it to the runOnUiThread. The method displayResults is
shown in Listing 8–15.

Listing 8–15. TopTenActivity.java (displayResults())

protected void displayResults(JSONArray result) throws JSONException {
 tableLayout.removeAllViews();

 TableRow row = new TableRow(this);
 row.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));

 TextView userTitleView = new TextView(this);
 userTitleView.setText("Username:");
 userTitleView.setTextSize(18);
 userTitleView.setPadding(10, 10, 100, 2);
 row.addView(userTitleView);

 TextView scoreTitleView = new TextView(this);
 scoreTitleView.setText("Score:");
 scoreTitleView.setTextSize(18);
 row.addView(scoreTitleView);

x

CHAPTER 8: Using the Google App Engine with Android 303

 for (int i = 0; i < result.length(); i++) {
 HighScore highscore = new HighScore(result.getJSONObject(i));

 row = new TableRow(this);
 row.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));

 TextView userView = new TextView(this);
 userView.setText(highscore.getUsername());
 userView.setTextSize(16);
 userView.setPadding(10, 10, 100, 2);
 row.addView(userView);

 TextView scoreView = new TextView(this);
 scoreView.setText("" + highscore.getScore());
 scoreView.setTextSize(16);
 row.addView(scoreView);
 tableLayout.addView(row, new TableLayout.LayoutParams(
 LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT));
 }
}

The displayResults method first creates a TableRow containing TextViews that will serve
as headers for each column. Once the first row is created, a loop iterates over each
entry in the JSONArray called result. Each entry in result is a JSONObject representing a
single high score entry. This JSONObject is used to create HighScore object. The class
HighScore is identical to the HighScore class used on the server, from Listing 8–3,
except that all of the JDO related annotations are removed. Once we have a HighScore
object, we simply create another TableRow and populate it with TextViews displaying
the username and their score.

Viewing the Users of a Game
The second Activity available in this sample application allows the user to view the high
scores for a particular user, for a particular game. Our purely utilitarian interface is
displayed in Figure 8–14.

CHAPTER 8: Using the Google App Engine with Android 304

Figure 8–14. Users of game activity

In Figure 8–14 we see a place for the user to enter the their username and the name of a
game. By clicking the button, the top ten scores for that user for that game are
displayed. Much of the code for this Activity is identical, or only slightly different from the
TopTenActivity. There are few differences worth pointing out, and these are found in the
AsyncTask called GetUsersOfGame, which is analogous to the class GetTopTen from
Listing 8–14. Listing 8–16 shows the AsyncTask GetUsersOfGame.

Listing 8–16. UsersOfGameActivity.java (GetUsersOfGame class)

private class GetUsersOfGame extends AsyncTask<Integer, Integer, JSONArray> {
 @Override
 protected JSONArray doInBackground(Integer... counts) {
 try {

 String username = usernameEditText.getText().toString();
 String gamename = gamenameEditText.getText().toString();

 StringBuilder fullUrl = new StringBuilder(
 GameManager.SERVICE_URL);

 fullUrl.append("query_high_scores?count=10");
 fullUrl.append("&username=");
 fullUrl.append(URLEncoder.encode(username, "UTF-8"));
 fullUrl.append("&game_name=");
 fullUrl.append(URLEncoder.encode(gamename, "UTF-8"));

 HttpGet get = new HttpGet(fullUrl.toString());
 HttpResponse response = client.execute(get);

 int statusCode = response.getStatusLine().getStatusCode();

 if (statusCode == 200) {

CHAPTER 8: Using the Google App Engine with Android 305

 HttpEntity entity = response.getEntity();
 String json = EntityUtils.toString(entity);
 return new JSONArray(json);
 } else {
 String reason =
response.getStatusLine().getReasonPhrase();
 throw new RuntimeException("Trouble getting
scores(code="
 + statusCode + "):" + reason);
 }

 } catch (Exception e) {
 Log.w("TopTenActivity", e);
 throw new RuntimeException(e);
 }
 }

 protected void onPostExecute(final JSONArray result) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 try {
 displayResults(result);
 } catch (JSONException e) {
 Log.w("TopTenActivity", e);
 }
 }
 });
 }
}

Listing 8–16 shows the class GetUsersOfGame that is responsible for making the
network call to our GAE services. The interesting thing about this class is how it
constructs the query. The variable fullUrl is a StringBuilder that is constructed by
appending the service name the base URL found in the variable
GameManager.SERVICE_URL. The values for the parameters username and
game_name are pulled from the EditText variables usernameEditText and
gamenameEditText. Once the query is constructed and executed, the UI is updated in
exactly the same way as the TopTenActivity.

Viewing a User’s Location (MapView)
The UsersLocationActivity allows the user to view the location in the world where the
highest scores are achieved. This gives us a real-time look at which region of the world
is currently getting the highest scores. Figure 8–15 shows this activity.

CHAPTER 8: Using the Google App Engine with Android 306

Figure 8–15. User’s location activity

The map displayed in Figure 8–15 is from an optional Android package that provides a
MapView component. On the map, you can see there is a circle over western New York.
This is the location of the highest scored at the time of this writing. As people work
through the example in this book, we should see the locations of other Android
developers if they choose to submit scores to this service.

In order to enable an optional package, information must be entered into the
AndroidManifest.xml file. Listing 8–12 shows the AndroidManifest.xml file for this project
and the use-library element directs Android to include the map API.

In order to use a MapView, you must obtain a key from Google and include that key in
your layout xml file. If you don’t get a key, the example code for this project will not work
correctly when you run it. The steps to generate a key for use with Google’s Map API is
different if you want to use the API on Android rather than a web page. In order obtain a
key for use with Android, you first have to find the certificate fingerprint of the keystore
you are using to sign your Android application. If you have not set up your own keystore,
then chances are you are using the default one. Check in your home directory for a
folder named “.android.” This should contain a file named “debug.keystore” that is used
to sign applications while you are debugging your application. Figure 8–16 shows a
terminal on a development machine.

CHAPTER 8: Using the Google App Engine with Android 307

Figure 8–16. Terminal showing content of debug.keystore

In Figure 8–16, you can see the command keytool was used to inspect the debug
keystore. The command keytool comes with your JDK and should be on your command
path if java is. The fuzzy bit at the bottom is where the md5 certificate fingerprint is
displayed. You use this fingerprint at http://code.google.com/android/maps-api-signup.html
to generate your Android Maps API key. Once you have that key, you can set up a
MapView to work properly. In this example, this was done in the layout xml file called
user_location.xml as shown in Listing 8–17.

Listing 8–17. user_location.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <com.google.android.maps.MapView
 android:id="@+id/mapview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:clickable="true"
 android:apiKey="YOUR_MAP_API_KEY_GOES HERE"
 />

</LinearLayout>

In Listing 8–17 we see a single MapView element in a LinearLayout. The apiKey attribute
of the MapView is where we want to stick our Android Map API key. If you run the
application and no map tiles are displayed, there is a good chance something is wrong
with your key.

http://code.google.com/android/maps-api-signup.html
http://schemas.android.com/apk/res/android

CHAPTER 8: Using the Google App Engine with Android 308

The next thing to take a look at is the activity, and see how we add items to the map.
Listing 8–18 shows this activity is setup in code.

Listing 8–18. UsersLocationActivity.java (partial)

public class UsersLocationActivity extends MapActivity {

 private MapView mapView;
 public HttpClient client = new DefaultHttpClient();

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.user_location);
 mapView = (MapView) findViewById(R.id.mapview);
 mapView.setBuiltInZoomControls(true);

 new GetTopTen().execute(100);
 }

 @Override
 protected boolean isRouteDisplayed() {
 // TODO Auto-generated method stub
 return false;
 }

In Listing 8–18 we see UsersLocationActivity extends MapActivity. MapActivity is a
special subclass of Activity that must be used in order to display a MapView object.
MapActivity is abstract and does not contain an implementation of the method
isRouteDisplayed, so we must include an implementation in UsersLocationActivity. The
isRouteDisplayed method simply returns false, since we don’t want to display a route.

In the onCreate method of UsersLocationActivity the mapView variable is located in the
layout in the usual way. Once the map view is found, we add the default controls by
calling setBuiltInZoomControls to true. Lastly, we create a GetTopTen and execute it.
GetTopTen is an AsyncTask and is shown in Listing 8–14. When GetTopTen is done
running it passes the top 100 high scores to the method displayResults that adds the
high scores to the map. Listing 8–19 shows this method.

Listing 8–19. UsersLocationActivity (displayResults)

protected void displayResults(JSONArray result) throws JSONException {
 Drawable drawable = this.getResources().getDrawable(
 R.drawable.green_orb);

 HighscoreOverlay highscoreOverlay = new HighscoreOverlay(drawable);

 for (int i = 0; i < result.length(); i++) {
 HighScore highscore = new HighScore(result.getJSONObject(i));

 String username = highscore.getUsername();
 String score = "" + highscore.getScore();
 int latitude = (int) highscore.getLatitude().doubleValue() * 1000000;
 int longitude = (int) highscore.getLongitude().doubleValue() * 1000000;

 List<Overlay> mapOverlays = mapView.getOverlays();

CHAPTER 8: Using the Google App Engine with Android 309

 GeoPoint point = new GeoPoint(latitude, longitude);

 OverlayItem item = new OverlayItem(point, username, "Score: "
 + score);

 highscoreOverlay.addOverlay(item);
 mapOverlays.add(highscoreOverlay);
 }
}

In Listing 8–19, the displayResults method takes a JSONArray called result. The result
variable contains a number of JSONObjects that are used to construct HighScore
objects. For each HighScore object, an OverlayItem is created and added to an instance
of HighScoreOverlay, which we will look at in a moment. Each OverlayItem is
constructed with a GeoPoint, specifying the location of the OverlayItem, and the
username and score. The HighScoreOverlay class is used to aggregate multiple
OverlayItems that share an icon. The icon used to display each point on the map is
defined by the Drawable that is passed to the constructor of HighScoreOverlay.
HighScoreOverlay is shown in Listing 8–20.

Listing 8–20. HighScoreOverlay Class

public class HighscoreOverlay extends ItemizedOverlay<OverlayItem> {

 private ArrayList<OverlayItem> mOverlays = new ArrayList<OverlayItem>();

 public HighscoreOverlay(Drawable defaultMarker) {
 super(boundCenterBottom(defaultMarker));
 }

 public void addOverlay(OverlayItem overlay) {
 mOverlays.add(overlay);
 populate();
 }

 @Override
 protected OverlayItem createItem(int i) {
 return mOverlays.get(i);
 }

 @Override
 public int size() {
 return mOverlays.size();
 }

 @Override
 protected boolean onTap(int index) {
 OverlayItem item = mOverlays.get(index);
 AlertDialog.Builder dialog = new AlertDialog.Builder(
 UsersLocationActivity.this);
 dialog.setTitle(item.getTitle());
 dialog.setMessage(item.getSnippet());
 dialog.show();
 return true;
 }
}

CHAPTER 8: Using the Google App Engine with Android 310

Listing 8–20 shows that HighScoreOverlay extends the class ItemizedOverlay.
ItemizedOverlay is class provided by the Android Maps API and is used as a starting
point for creating collections of MapOverlays. In the constructor of HighScoreOverlay,
we see that a Drawable is passed in and is used as the icon drawn on the map. The
method boundCenterBottom is used to indicate that the bottom center of the icon
should be drawn at the actual point on the map described by the longitude and latitude
of the OverlayItems. The onTap method brings up a small dialog, displaying the name of
the user and the high score they achieved, as shown in Figure 8–17.

Figure 8–17. Dialog for single map item

Consuming a web service hosted by Google App Engine is no different than consuming
a service hosted on any platform. The advantage to using GAE with android is the
simplicity of deployment and using Google’s Eclipse plugins. If you want a low-cost,
high availability server backing your Android application, GAE is an excellent choice.

Summary
In this chapter we explored Google App Engine in some detail. We looked at how an
application is set up to run on Google’s hardware and what tools are available to create
that application. We also looked at some of the limitations of the Google App Engine,
and a number of the services Google offers to help offset these limitations. The sample
Google App Engine application in this chapter implements a simple web service for
recording high scores earned by users. This service utilizes JDO and the App Engine
datastore in order to save and serve HighScore objects. In the last section, we looked at
an Android application that queries this service and displays information about user’s
high scores in different ways, including displaying the high scores on map.

311

311

 Chapter

Game Development:
Graphics
Casual games were once the domain of Flash and the Web. Today, casual gaming is

making big waves in the mobile space. While there have been mobile gaming devices for

some time, the advent of smartphones that are capable of playing games has in effect

put a gaming device in the pockets of millions of people who would never buy a

dedicated gaming devices. By definition, this new group of game players is casual; they

play games while waiting in line or on the bus. At least at first, these folks are not

interested in big name titles with huge budgets; they want to check in on their virtual

farms or solve a few puzzles. As a result, most casual games are 2D.

The first thing a game developer must do is select which technology they will use to

implement their game. Basically, the developer has to choose between 2D and 3D. If 3D

is required for the design of the game, they choose OpenGL ES because that library

offers everything they will need to develop their game. If 2D is the choice, they can still

use OpenGL ES, but the complexity of OpenGL ES might get in their way. The other

choice for 2D is to use the graphics capabilities built into the Androids Java runtime.

In this chapter we will take a look at implementing a 2D game, this will serve the many

developers looking to ride the wave of mobile casual game development. We will learn

that there are really two ways of drawing things on the screen and will explore both. We

will also take a look at some of the fundamentals of dealing with different size screens

as well some other odds and ends that turn up while writing a game.

Figure 9–1 shows the starting screen of the game on the left and the game itself on the

right. The starting screen allows players to start a new game, view their high scores or

view the About screen. The user plays the game by trying to create vertical or horizontal

lines of similar, orbs. They can rearrange orbs by selecting two to be swapped. When a

matching line is created the orbs are animated off-screen and their score is

incremented.

9

CHAPTER 9: Game Development: Graphics 312

Figure 9–1. Orb Quest

Introducing the Android View Package
The most basic way to render a scene in Android is to use the component library

provided with the Android software development kit (SDK). This SDK includes all the

basic widgets one would expect in a modern user interface (UI) library, including

dynamic layouts, buttons, sliders, and so on. The core class for getting content onto the

screen is the View class, which is found on the android.view package. This package and

its subpackages contain all classes required to draw whatever you want onto the

screen. These packages also contain methods for layout, intercepting user actions,

binding the UI to data, and applying style. The class itself is not particularly useful in and

of itself, but it does provide a base functionality inherited by all its subclasses. These

subclasses include both Views that the user interacts with, like a Button, and Views used

for layout, like a LinearLayout. There are two basic methods for getting content onto the

scene: the first is to use XML files to describe the layout of a View and the second is to

describe the layout of a scene with code. Both techniques use the same application

programming interface (API), but there are advantages and disadvantages to both

techniques. Most applications will use a combination of these techniques. Let’s start by

looking at how layouts are described in XML.

Understanding XML Layout
Most developers are familiar with the concept of the Model View Controller (MVC)

pattern. The idea with MVC is to separate the Model (the raw data) from the code that is

responsible for controlling and validating the data. Further, the controller is separated

from how the data is actually rendered to the screen. This separation of interests is

CHAPTER 9: Game Development: Graphics 313

helpful because it allows for code reuse and divides the responsibility of the application

into common divisions of labor. Let’s consider a hypothetical web page as an example

of MVC.

Say you have a web page that displays a table containing all upcoming events for an

office. The data for this page is probably a number of rows returned from a database.

Each row contains the name and time for each event. This data is considered the Model;

the people actually putting the web page together don’t know exactly what the data will

be on each given day, but they know there will be data and it will be of a particular type,

so they can move forward with their work, even before the database is fully set up and

populated.

The finished web page will be composed of HTML, CSS, and JavaScript. The CSS is

solidly in the camp of the View because it describes the color of the page; nothing in the

CSS should care about the data that is being returned or even that there is data. The

HTML will provide the table itself, and the JavaScript will be responsible for populating

the table with rows. This means that the HTML and the table it provides is part of the

View while the JavaScript is the controller since it interprets the data in way that is

meaningful to the table.

With Android, we have the ability to break up our application in a way similar to the web

page we described. This is done in part by describing the layout of an application in a

special XML file. The XML files that describe layout are generally stored in the layout

directory under the res directory. An application can have any number of XML files

describing layout, and each file contains an element describing a single root View (and

possibly sub-Views). In general, each element in the XML file describes a View class that

will be instantiated at runtime. Figure 9–2 shows a dialog from our example application

that is defined by one of these XML files.

Figure 9–2. The Score dialog is defined by XML

CHAPTER 9: Game Development: Graphics 314

Figure 9–2 shows a dialog with the title “High Score.” This dialog is displayed to users

after the end of the game; it gives them the option of entering a username and deciding

whether they want their score sent to a web service. The XML used to describe the

layout of the text and buttons is shown in Listing 9–1 (taken from the example code

accompanying this chapter).

Listing 9–1. score_dialog.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/dialogRoot"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical"
 android:gravity="center"
 android:padding="20px"
 android:background="#333333"
 >
 <TextView
 android:text="Share Your Score With The World?"
 android:textColor="#FBB040"
 android:textStyle="bold"
 android:textSize="24px"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:gravity="center">
 <TextView
 android:text="Player Name: "
 android:textColor="#FBB040"
 android:textStyle="bold"
 android:textSize="18px"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 <EditText
 android:text="User Name"
 android:id="@+id/playerNameEditText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:gravity="center">
 <Button
 android:id="@+id/noButton"
 android:text="No"
 android:textSize="24px"
 android:textStyle="bold"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />

http://schemas.android.com/apk/res/android

CHAPTER 9: Game Development: Graphics 315

 <Button
 android:id="@+id/yesButton"
 android:text="Yes"
 android:textSize="24px"
 android:textStyle="bold"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>

</LinearLayout>

Listing 9–1 shows a root element called LinearLayout, which is an Android class that

extends GroupView. GroupView extends View and is the root class for any View that

contains children. So in the case of LinearLayout, we know that this class is intended to

contain child Views and lay them out in a line. The attribute orientation (of namespace

android) is set to vertical, which directs the LinearLayout to place each child View

lower on the screen then its predecessor. The other possible value for the attribute

orientation is horizontal, which would lay out the children from left to right.

The attributes layout_width and layout_height are required attributes and describe the

size of this View. The size being set is not absolute and is either driven by the size of its

parent or its children. This is done to allow the description of a layout independent of the

size of the screen or region where this component is being drawn. The possible values

for these attributes are the following:

 fill_parent: This directs the View to consume as much space as is

available within the bounds of its parent View. If the View using this

layout directive is the only child of its parent, it will be the same size as

its parent, minus any padding.

 wrap_content: This directs the View to be the minimum size required

to display its children Views. So if a View has two Buttons in it, it will

take up just enough screen space to display those two children, plus

any padding on the children.

 match_parent: This directs the View to use the same value for either

layout_width or layout_height used by the parent.

The children of a View might not take up all the space a View takes up, especially if the

parent View is using fill_parent for either layout_width or layout_height, so there

needs to be a way of describing where the children should go. When this is the case, the

gravity attribute can be used to indicate where in the parent View the children should

be located. The root LinearLayout in Listing 9–1 has its gravity attribute set to center,

which indicates that space taken up by all its children should be in the middle, both

vertically and horizontally. The gravity attribute can also be set to lay out the children

so they are aligned with the top, right, bottom, or left edge of the parent View, or just

centered vertically or horizontally.

CHAPTER 9: Game Development: Graphics 316

TIP: Each View class has a number of attributes that can be set, these are all well documented
on the Android website (http://developer.android.com/reference/
packages.html), but remember, for quick reference, code completion works in Eclipse when

editing layout XML files.

The LinearLayout root in Listing 9–1 also has its padding and background attributes set.

The padding attribute indicates how much space should be left between itself and any

containing View. The background attribute specifies how the background should be

drawn; in this case, a solid gray color. The background can also be set to an image or

any other Drawable class. More on the Drawable class later.

In Listing 9–1, the three children Views of the LinearLayout root contain the content of

this View. The first View is a TextView, which displays text on the screen. In this case, the

TextView is displaying a question to the user: “Share Your Score With The World?” The

layout_width and layout_height are set to wrap_content, which indicate that the

TextView should be the minimum size to display its text, given the length of the text and

the attributes textSize and textStyle. The other two children Views of the root

LinearLayout contain additional Views laid out horizontally. The first child LinearLayout

contains another TextView and an EditText view. EditText is a View that allows the user

to enter text; in this case, the name they wish to associate with their score. EditText,

along with the two buttons in the second LinearLayout, have their id attributes set. The

id attribute is a way of naming a View with the XML so it can be accessed

programmatically. We will look at how View IDs are used in the following section, when

we look at the Java side of things.

Beyond LinearLayout there are a host of other layouts available in Android, each

providing the developer with unique layout options. The following is a selection of the

most popular layouts with a brief description:

 FrameLayout: FrameLayout is the simplest layout; it just draws all its

children at the upper-left corner (0,0). This layout is handy when you

want to provide a container for a single View. For example, say you

have a spot in your application where you display an image that needs

to change. You can use a FrameLayout to mark the location where the

image should be displayed; then remove the old image and add a new

one when required.

 LinearLayout: As mentioned, LinearLayout is used to lay out Views

either vertically or horizontally. This is a very common strategy for

laying out Views.

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html

CHAPTER 9: Game Development: Graphics 317

 TableLayout: TableLayout, as the name suggests, is a View that is

used to lay out Views in a table-like way. TableLayout is different from

the other layout Views in that it expects its children to be of type

TableRow. A TableRow can contain zero or more Views, where each

View is a cell in that row. TableLayout is like an HTML table in that it is

organized by rows (<tr> in HTML), but it is unlike the HTML table

because cells cannot span more than one column.

 RelativeLayout: RelativeLayout provides a mechanism for laying out

children relative to each other. This is a layout mechanism I have never

run across on other platforms, but the idea is that you can say things

like “place this button to the right of this text”.

 AbsoluteLayout: If you want to specify the exact location of a child,

you can use AbsoluteLayout. It should be noted that this class is

deprecated because this layout can easily break when used on

devices with different screen sizes.

The previous layouts may seem limiting compared with other UI libraries, but Android

makes up for this by making the creation of custom layouts pretty simple. We will take a

look at an example of a custom layout later in this chapter.

Layout in Code
Know we have our layout declared in XML we will want to display this content on the

screen. Displaying content from an XML file is very similar to laying out a screen

programmatically. Let’s take a look at both these techniques and how they can be used.

Listing 9–2 shows the constructor of ScoreDialog, which is the dialog displayed in Figure

9–2.

Listing 9–2. ScoreDialog.java (constructor)

public class ScoreDialog extends Dialog implements
 android.view.View.OnClickListener {

 public final static String PREF_USER_NAME = "PREF_USER_NAME";

 public final static String SERVICE_URL = "http://pap-game-service
.appspot.com/add_high_score?highscore=";

 private EditText playerNameEditText;
 private Button yesButton;
 private Button noButton;

 private GameActivity activity;

 public ScoreDialog(GameActivity activity) {
 super(activity);
 this.activity = activity;

 setContentView(R.layout.score_dialog);
 setTitle("High Score");

http://pap-game-service%ED%AF%80%ED%B0%81.appspot.com/add_high_score?highscore=
http://pap-game-service%ED%AF%80%ED%B0%81.appspot.com/add_high_score?highscore=

CHAPTER 9: Game Development: Graphics 318

 playerNameEditText = (EditText) findViewById(R.id.playerNameEditText);
 yesButton = (Button) findViewById(R.id.yesButton);
 noButton = (Button) findViewById(R.id.noButton);

 SharedPreferences settings = getContext().getSharedPreferences(
 HighScoreView.PREFS_ORB_QUEST, 0);
 String unsername = settings.getString(PREF_USER_NAME, "User Name");
 playerNameEditText.setText(unsername);

 yesButton.setOnClickListener(this);
 noButton.setOnClickListener(this);

 LinearLayout rootLayout = (LinearLayout) findViewById(R.id.dialogRoot);

 BitmapDrawable bitmapDrawable = (BitmapDrawable) activity
 .getResources().getDrawable(R.drawable.dialog_graphic);

 ImageView imageView = new ImageView(activity);
 imageView.setImageDrawable(bitmapDrawable);

 rootLayout.addView(imageView);

 }

In Listing 9–2 we see that the constructor requires a GameActivity object. A

GameActivity is the class defined in our example project. At this point, the only thing we

need to know about GameActivity is that it extends Context and is passed to the

required superconstructor. The first thing the constructor does, as related to layout, is to

call the setContentView() method and pass in the constant R.layout.score_dialog. R is

a class that is automatically generated by the Android SDK and is used as a way to

reference the artifacts declared in the res folder of an Android project. In Listing 9–1 we

showed the content of the file score_dialog.xml. Because this file is located in the

subfolder layout, the Android SDK creates a constant called score_dialog in the inner

class layout. Listing 9–3 shows R.java and should help explain what is going on here.

Listing 9–3. R.java

/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package org.ljordan.orb_quest;

public final class R {
 public static final class anim {
 public static final int scale_down=0x7f040000;
 }
 public static final class attr {
 }
 public static final class drawable {
 public static final int background=0x7f020000;
 public static final int blue_orb=0x7f020001;

CHAPTER 9: Game Development: Graphics 319

 public static final int dialog_graphic=0x7f020002;
 public static final int green_orb=0x7f020003;
 public static final int icon=0x7f020004;
 public static final int nine_patch=0x7f020005;
 public static final int red_orb=0x7f020006;
 }
 public static final class id {
 public static final int aboutButton=0x7f060006;
 public static final int dialogRoot=0x7f060007;
 public static final int gameView=0x7f060000;
 public static final int highScoreButton=0x7f060005;
 public static final int noButton=0x7f060009;
 public static final int playGameButton=0x7f060004;
 public static final int playerNameEditText=0x7f060008;
 public static final int root=0x7f060001;
 public static final int scoreTextView=0x7f060003;
 public static final int turnsTextView=0x7f060002;
 public static final int yesButton=0x7f06000a;
 }
 public static final class layout {
 public static final int about=0x7f030000;
 public static final int game=0x7f030001;
 public static final int high_score=0x7f030002;
 public static final int main=0x7f030003;
 public static final int score_dialog=0x7f030004;
 }
 public static final class string {
 public static final int about_text=0x7f050005;
 public static final int about_text_title=0x7f050006;
 public static final int app_name=0x7f050001;
 public static final int hello=0x7f050000;
 public static final int play_game=0x7f050002;
 public static final int view_about=0x7f050004;
 public static final int view_highscores=0x7f050003;
 }
}

In Listing 9–3, the R class has a number of inner classes defined. Each of these classes

corresponds with a type of resource defined in the res folder of the project. Continuing our

example, we see that the score_dialog constant is defined in the class layout. Further, the

constant yesButton is defined in the class id. So if we want to refer to either of these

components, we have a handy constant available to do so. In Listing 9–2, we sent the

content of the dialog to the content of the score_dialog.xml file by referring to

R.layout.score_dialog. In that file we define a pair of buttons; one of them is the yes

button for the dialog. Since we need access to this view in order to register a listener, we

can call findViewById and pass in the constant R.id.yesButton and get a pointer to it.

Normally referring to an external resource by an int constant would be a very fragile

design pattern. Imagine if one developer changed the file score_dialog.xml so that the

yes button was referred to as the confirm button and did not change R.java to reflect

this change. Normally, you would have a runtime error, but since R.java is automatically

generated you get a compile time error (since R.id.yesButton would no longer be a valid

symbol). In this way we have a tightly coupled relationship between the XML and the

Java code.

CHAPTER 9: Game Development: Graphics 320

So we know that calling setContentView and passing in the right constant will populate

the dialog with the Views described in score_dialog.xml. And we know that we can find

those sub-Views by calling findViewById. But what if we want to add a new View to the

scene? At the end of Listing 9–2, we do this by adding the image with the three orbs on

it, as seen in Figure 9–2.

In Listing 9–2 we see that the root layout is also pulled out by calling findViewById and

passing in R.id.dialogRoot. Once we have a reference to this object, we can add Views

to it, but first we need to construct one. In this case, we want to add an image, and the

easiest way to add an image to the scene is to put an image in the res directly and get a

handle to it by calling Context.getResources().getDrawable() and passing in the

correct id. The returned object is of type BitmapDrawable. The Drawable class is a

generic class that provides an abstraction for things that are drawn. As can be guessed,

BitmapDrawable is a subclass of Drawable and is used to draw bitmaps. There are other

types of Drawables, and we will get to them, but for now we just want BitmapDrawable,

so we can create an ImageView.

Once we have created an ImageView and passed bitmapDrawable to its

setImageDrawable() method, we are ready to add the image to the scene. This is done

by calling addView on rootLayout and passing the ImageView. Conceptually, this is

identical to declaring an ImageView within score_dialog.xml.

It is up to each developer to decide whether they prefer to lay out their application in

XML or in Java code. Personally, I think using XML makes more sense when working on

a team, since it helps enforce the MVC pattern.

Custom Component
The Score dialog shows us how to use the existing components and layouts to create a

UI. For any game, it is unlikely that the out-of-the-box widgets will be sufficient. By

definition, games provide some unique form of interaction. However, we can take

advantage of the existing View classes as a foundation for our game. For our game, we

are going to create an Activity called GameActivity that will have its layout defined in

XML, but one of the Views we add will be of type GameView, which is defined by us.

Figure 9–3 shows the GameActivity. In Figure 9–3 we see a big square area with 25 orbs

drawn on it. This region is defined by the GameView class. We also see four TextViews for

displaying the number of remaining turns as well as the current score. The background

is composed of the big orbs and the text “Orb Quest” and “The Quest for Orbs.”

CHAPTER 9: Game Development: Graphics 321

Figure 9–3. The GameActivity of Orb Quest

Let’s start by looking Listing 9–4, which shows the content game.xml. We will look at the

GameView class after that.

Listing 9–4. game.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/root"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center"
 android:background="@drawable/background" android:orientation="vertical">

<LinearLayout
 android:orientation="horizontal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingBottom="2px"
 >
 <TextView
 android:layout_width="wrap_content"
 android:text="Turns: "
 android:layout_height="wrap_content"
 android:textSize="24px"
 android:textStyle="bold"
 android:paddingBottom="5px"
 android:textColor="#FFFFFF"
 android:shadowColor="#000000"
 android:shadowRadius="2.0"
 android:shadowDx="1.0"

http://schemas.android.com/apk/res/android

CHAPTER 9: Game Development: Graphics 322

 android:shadowDy="1.0"
 />
 <TextView android:id="@+id/turnsTextView"
 android:layout_width="wrap_content"
 android:text="10"
 android:layout_height="wrap_content"
 android:textSize="24px"
 android:textStyle="bold"
 android:textColor="#FFFFFF"
 android:shadowColor="#000000"
 android:shadowRadius="2.0"
 android:shadowDx="1.0"
 android:shadowDy="1.0"
 />
 <TextView
 android:layout_width="wrap_content"
 android:text="Score: "
 android:layout_height="wrap_content"
 android:textSize="24px"
 android:textStyle="bold"
 android:textColor="#FFFFFF"
 android:shadowColor="#000000"
 android:shadowRadius="2.0"
 android:shadowDx="1.0"
 android:shadowDy="1.0"
 />
 <TextView android:id="@+id/scoreTextView"
 android:layout_width="wrap_content"
 android:text="10"
 android:layout_height="wrap_content"
 android:textSize="24px"
 android:textStyle="bold"
 android:textColor="#FFFFFF"
 android:shadowColor="#000000"
 android:shadowRadius="2.0"
 android:shadowDx="1.0"
 android:shadowDy="1.0"
 />

</LinearLayout>
<view class="org.ljordan.orb_quest.GameView"
 android:id="@+id/gameView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
/>

</LinearLayout>

In Listing 9–4, we see that the root View is again a LinearLayout. There are four

TextViews in a LinearLayout with a horizontal orientation. Two of these TextViews have

IDs set (turnsTextView and scoreTextView) and will be updated dynamically in code. The

last component is a GameView. To use Views of your own design in an XML layout file,

you simply create a View element and specify the class attribute with the fully qualified

name of your class. Listing 9–5 shows the GameActivity class.

CHAPTER 9: Game Development: Graphics 323

Listing 9–5. GameActivity.java

public class GameActivity extends Activity {

 private final static int DIALOG_CONFIRM_SHARE = 10;

 private TextView turnsTextView;
 private TextView scoreTextView;
 private GameView gameView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 setContentView(R.layout.game);

 turnsTextView = (TextView) findViewById(R.id.turnsTextView);
 scoreTextView = (TextView) findViewById(R.id.scoreTextView);

 gameView = (GameView) findViewById(R.id.gameView);

 gameView.reset(this);
 }

 public void updateValues(int score, int turns) {
 scoreTextView.setText("" + score);
 turnsTextView.setText("" + turns + " ");
 }

 public Long getScore() {
 return Long.parseLong(scoreTextView.getText().toString());
 }

 public void endGame() {
 showDialog(DIALOG_CONFIRM_SHARE);
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 if (id == DIALOG_CONFIRM_SHARE) {
 return new ScoreDialog(this);
 } else {
 return null;
 }
 }

 public void dialogClosed() {
 gameView.reset(this);
 }
}

In Listing 9–5 we see that the class GameActivity extends Activity. In the onCreate()

method, we call requestWindowFeature and pass the constant Windw.FEATURE_NO_TITLE

so we don’t have a title. We also call setFlags on the object returned by getWindow and

pass the flag FLAG_FULLSCREEN with the mask FLAG_FULLSCREEN. This removes the default

CHAPTER 9: Game Development: Graphics 324

Android status bar at the top of the screen, which is the bar that usually indicates the

time and battery levels.

Once we have claimed as much screen real estate as possible, we add content by

calling setContentView and passing R.layout.game. Finally we pull out the Views we will

need access to later by calling findViewById and passing in the constants as defined by

the R class. Calling gameView.reset at the very end simply prepares the GameView for the

first round.

In Listing 9–5, we see a couple of convenience methods such as updateValues,

getScore(), endGame(), and dialogClosed(). These are called by GameView and

ScoreDialog during the lifecycle of the application. There is not much to GameActivity;

the meat of the application is in the class GameView, and the first chunk of that class is

shown in Listing 9–6.

Listing 9–6. GameView.java (partial)

public class GameView extends ViewGroup implements View.OnClickListener {

 private int orb_ids[] = new int[3];
 private Random random = new Random();

 private OrbView selectedOrbView = null;
 private boolean acceptInput = true;

 private int score = 0;
 private int turns = 10;

 private GameActivity gameActivity;

 public GameView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 public GameView(Context context) {
 super(context);
 init();
 }

 private void init() {
 setBackgroundDrawable(new Background());

 orb_ids[0] = R.drawable.red_orb;
 orb_ids[1] = R.drawable.green_orb;
 orb_ids[2] = R.drawable.blue_orb;
 }

 public void reset(GameActivity gameActivity) {
 this.gameActivity = gameActivity;
 score = 0;
 turns = 10;
 acceptInput = true;

 removeAllViews();

CHAPTER 9: Game Development: Graphics 325

 for (int c = 0; c < 5; c++) {
 for (int r = 0; r < 5; r++) {
 OrbView orbView = new OrbView(getContext(), c, r,
 random.nextInt(3));
 addView(orbView);
 }
 }
 gameActivity.updateValues(score, turns);
 }

In Listing 9–6, we see that GameView extends ViewGroup and implements

View.OnClickListener. GameView has a number of private fields. The field orb_ids is an

array that stores the IDs of the three different orb images; they are set in the init()

method. The field random is of type Random from the core Java classes. The fields

selectedOrbView and acceptInput are used to track game state. The score and turns

fields track the current score and number of remaining turns. Finally, a reference to the

containing GameActivity is held so we can update the TextViews it maintains reference

to.

In Listing 9–6, you see that GameView has two constructors: the first takes a Context and

an AttributeSet; the second takes only a Context. The constructor that takes two

arguments is the constructor that is called when a View is instantiated from XML and is

required if you intend to do so. The second constructor is actually never called in our

application, but is included to illustrate that you would require such a constructor if you

want to create an instance of GameView programmatically.

The method reset in Listing 9–6 is called whenever a new game should be started

(including the first time) and is responsible for setting up the game state. Beyond

resetting the score and the number of turns, 25 OrbViews are added as children to the

GameView, one for each row and column. Before you look at how the orbs are laid out in

the grid pattern, take a look at the class OrbView in Listing 9–7.

Listing 9–7. OrbView.java

protected class OrbView extends ImageView {
 private int orbType;
 private int col;
 private int row;

 protected OrbView(Context context, int col, int row, int orbType) {
 super(context);
 this.col = col;
 this.row = row;
 this.orbType = orbType;

 Drawable image = getResources().getDrawable(orb_ids[orbType]);
 setImageDrawable(image);
 setClickable(true);
 setOnClickListener(GameView.this);
 }

 public int getOrbType() {
 return orbType;
 }

CHAPTER 9: Game Development: Graphics 326

 public void setRandomType() {
 orbType = random.nextInt(3);
 Drawable image = getResources().getDrawable(orb_ids[orbType]);
 setImageDrawable(image);
 }

 public int getCol() {
 return col;
 }

 public int getRow() {
 return row;
 }

 public void setCol(int col) {
 this.col = col;
 }

 public void setRow(int row) {
 this.row = row;
 }
}

Listing 9–7 shows the OrbView class, which is used to represent a single orb on the

screen. OrbView extends ImageView, and in its constructor you can see that one of the

three IDs for the images is used as the OrbView image. The GameView is also registered to

receive click events by passing it to the setOnClickListener() method.

To understand how the OrbViews are laid out in a grid, look at two more methods from

the GameView class, as shown in Listing 9–8 and Listing 9–9.

Listing 9–8. GameView.java (onMeasure)

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 int parentWidth = MeasureSpec.getSize(widthMeasureSpec);
 int parentHeight = MeasureSpec.getSize(heightMeasureSpec);
 int size = Math.min(parentHeight - 20, parentWidth - 20);
 this.setMeasuredDimension(size, size);
}

Listing 9–8 shows the onMeasure() method, which is defined in the View class. We are

overriding it for two reasons. First, we want to give ourselves a 20-pixel border. Second,

and more importantly, we want to make the GameView square. The onMeasure() method,

if overridden, requires that the setMeasuredDimension()method be called. Failing to do

so will cause a runtime exception. The ints passed in as arguments to the onMeasure

method describe the parent View requirements for how the child (GameView) may specify

its size. The possible values for the specs are the dimension of the parent masked with

either UNSPECIFIED, EXACTLY, or AT_MOST as defined by the class View.MeasuredSpec. The

meaning of these masks is as follows:

 UNSPECIFIED: The parent does not care what size the child wants to

be; any value will be honored.

CHAPTER 9: Game Development: Graphics 327

 EXACTLY: Regardless of size the child wants to be, it will be set to

precisely one size.

 AT_MOST: The child may specify any size as long as it is smaller then

some size, probably the size of the parent.

Given specs for the required size, we can get the actual parent size by calling

MeasureSpec.getSize and passing in the widthMeasureSpec and the heightMeasureSpec.

In our case, the spec being passed for both dimensions is AT_MOST, so we can’t specify

an actual size any larger. That’s fine; we just take the smaller of the two values (minus

20) and pass that as both the width and height to setMeasuredDevice. This makes our

GameView square and fit within our parent View. Subtracting 20 gives us a bit of

padding purely for aesthetics.

onMeasure() is called just before our GameView is laid out. The onLayout()method is

called during the GameView parent’s layout and gives us a chance to specify the location

of any children Views. Listing 9–9 shows the onLayout() method.

Listing 9–9. GameView (onLayout)

@Override
protected void onLayout(boolean changed, int l, int t, int r, int b) {
 int size = getWidth();
 int oneFifth = size / 5;

 int count = getChildCount();
 for (int i = 0; i < count; i++) {
 OrbView orbView = (OrbView) getChildAt(i);
 int left = oneFifth * orbView.getCol();
 int top = oneFifth * orbView.getRow();
 int right = oneFifth * orbView.getCol() + oneFifth;
 int bottom = oneFifth * orbView.getRow() + oneFifth;
 orbView.layout(left, top, right, bottom);
 }
}

By the time onLayout() (from Listing 9–10) is called, we know there are 25 OrbViews that

are sub-Views of this GameView. Since we assigned each OrbView a column and row

value, we can simply iterate through them and use those values to calculate the space

each OrbView should occupy.

In order to calculate the location for each OrbView, we note in the variable size the

current size of the game View by calling getWidth (getHeight will return an identical

value). Since we have five columns and rows, we record what one-fifth of the total size is

and store it in the variable oneFifth. To place each OrbView, we calculate the number of

pixels from the left and top of the GameView by multiplying the OrbView col and row by

oneFifth, respectively. The OrbView.layout() method is used to set the location of each

OrbView. The layout() method is defined by the View class (a superclass of OrbView) and

takes four ints. The first two are the left and top distances relative to the origin of the

parent; the second two are right and bottom, also relative to the origin of the parent

View. So, by adding one-fifth to the left and top values, we can calculate the right and

bottom values.

CHAPTER 9: Game Development: Graphics 328

I find the View.layout() method sort of weird. Why doesn’t it specify the x,y width and

height values, like so many other UI libraries? Further, by naming the second two

arguments right and bottom, I was confused when I first used this method, since in

HTML, for example, right and bottom specify the distance from the right and bottom of

the parent container. In View.layout(), right and bottom specify the distance from the

origin (top,left/0,0) of the parent container. I have never seen it done this way.

The GameView class gives us a custom layout specific to the requirements of the game

Orb Quest. We did this by first extending ViewGroup and then overriding onMeasure()

and onLayout(). The background grid is draw using a custom Drawable and will be

explored in the next section.

Understanding the Drawable Class
Android uses the View class and its subclasses to describe the layout of the

components on the screen. This is pretty normal for a UI library. Android extends this

common pattern by introducing the Drawable class. A class that extends Drawable

represents content that can be drawn. This is an anemic definition I know; let me

explain. Drawables are different from Views in that they don’t specify a size or a layout

and don’t respond to user interaction. They simply represent content that can be

displayed at different sizes. The idea is that Drawable provides an important abstraction

that can be exploited to facilitate the rendering of content, agnostic of the size of the

host devices screen or any of its display limitations.

We used Drawables earlier in this chapter (in Listing 9–2 we created a BitmapDrawable

that presented an image stored in the res directory). Let’s take a closer look at the

Drawable class and learn what else it can do.

Drawable Class
The Drawable class extends Object and is abstract. It provides a number of useful

methods that are useful for all its subclasses. Listing 9–10 shows a number of method

signatures defined by the Drawable class (this code was taken from the Android source

code).

Listing 9–10. Methods from Drawable.java

public abstract void draw(Canvas canvas);
public void setBounds(int left, int top, int right, int bottom);
public void setDither(boolean dither);
public void setFilterBitmap(boolean filter);
public abstract void setAlpha(int alpha);
public abstract void setColorFilter(ColorFilter cf);
public boolean setState(final int[] stateSet);
public final boolean setLevel(int level);
public int getIntrinsicWidth();
public int getIntrinsicHeight();
public int getMinimumWidth();
public int getMinimumHeight();

CHAPTER 9: Game Development: Graphics 329

In Listing 9–10 we see the signature for a number of important methods defined by the

Drawable class. The draw()method takes a Canvas object and is where the actual

drawing code for a particular Drawable resides. The Canvas class is analogous to the

Graphics2D class from Swing and provides a number of low-level drawing commands.

Each subclass if Drawable will implement the draw() method differently.

Before a Drawable is drawn, it will have its bounds set by the setBounds()method. The

View using Drawable will ultimately define the bounds being passed to this method. The

bounds set by the View may or may not have a direct relation to the content being

drawn. For example, if we create a BitmapDrawable from an image, the Drawable has an

intrinsic size: the width and height of the image. However, the BitmapDrawable class

must honor whatever bounds are passed to it. In practical terms, BitmapDrawable simply

scales the image to fit within the bounds. For other Drawables, this behavior may be

different.

As mentioned, some Drawables have an intrinsic size; the getIntrinsicHeight() and

getIntrinsicWidth() methods are used to query a Drawable object for this information.

We used the example of a BitmapDrawable as a Drawable with an intrinsic size, since

these methods are defined on Drawable, all Drawables may specify these intrinsic size

values. If the Drawable does not have an intrinsic size, it may return -1 for either of these

two methods. An example of a Drawable that does not have any intrinsic size is

ColorDrawable, which simply fills its bounds with a given color.

Similarly, a Drawable may specify a minimum size by returning a value in either the

getMinimumWidth() or getMinimumHeight() methods. The minimum size of a Drawable is

simply a suggestion, and there are no guarantees that Drawable will not be passed

bounds that are smaller then the defined minimums. If a Drawable has no need to specify

a minimum, it returns 0 for both of these methods.

In Listing 9–10, the Drawable class has a number of methods for adjusting how the

content is drawn. These methods include setAlpha(), setDither(), setFilterBitmap(),

and setColorFilter(). The setAlpha()method allows the caller to specify a

transparency level for any Drawable. The setDither()method instructs the Drawable to

dither its colors when it is being drawn on a device with fewer than 8-bits per color.

setDither() has no effect otherwise.

The setFilterBitmap() method instructs Drawable to filter any bitmap that is being

drawn by Drawable when scaled or rotated. This is a rendering hint that will improve the

visual quality of any image being drawn at something besides its native scale. There may

be a performance hit when setting setFilterBitmap to true. If Drawable does not use

any bitmap data to draw, this method does nothing.

The setColorFilter() method is used to apply a ColorFilter to a Drawable. The

ColorFilter class is a class that describes some color adjustment or enhancement that

should be applied when Drawable is drawn. An example of a ColorFilter is the

PorterDuffColorFilter class. PorterDuffColorFilter allows you to specify how the

alpha channel in an image is applied to the final result. If you have ever used Adobe’s

Photoshop or the GIMP, you know that each layer in the image can be set to things like

ADD or MULTIPLY. This is what PorterDuffColorFilter does.

CHAPTER 9: Game Development: Graphics 330

The remaining methods in Listing 9–10 to be talked about are setState() and

setLevel(). The setState() method is used on Drawables that have different states,

think buttons. A button may have a pressed state, a highlighted state, or even more

states. The states and visual representations of a Drawable are not defined; it is up the

implementation of a specific Drawable to handle these values. It is also not necessary for

a Drawable to have a state; in that case, calls to the setState() method are ignored. The

setLevel() method is used with Drawables that have some visual indication of level. A

progress bar, for example, has a level. The setLevel() method could there for be used

with a Drawable that represents a progress bar to set how far along it should be drawn.

As can be seen by the description of some of the methods of Drawable methods, not all

methods make sense with all types of Drawables. It is sort of a weird design pattern to

stick these methods in an abstract superclass. I think this can cause confusion when

working with specific subclasses of Drawable, since we don’t immediately know whether

a given method will have any effect. It requires us to go to the documentation and check

each class. This confusion also exists when using a third-party library that offers

implementations of Drawable.

Drawable Subclasses
We have taken a look at the Drawable class and explored some of its features. Now let’s

take a look at some of the subclasses of Drawable available in the Android SDK. There is

a host of different types, and we are going to look at some of the most common used

Drawables to illustrate how these classes can be used and combined to create a number

of platform-independent visual effects.

 BitmapDrawable: BitmapDrawable is a Drawable that draws an image

to the screen. While a common use for BitmapDrawable is to draw an

image provided as a resource to an application, BitmapDrawable is

really used to describe how an image should be drawn. For example,

BitmapDrawable is used to specify whether the image should be drawn

with dithering or with antialiasing, or even if the image should be tiled.

 AnimationDrawable: To create a simple static animation in an

application, it is common practice to create a sequence of images,

where each image is a single frame of the animation. By replacing

each image with the next image in the sequence. a sense of animation

can be created. The AnimationDrawable class provides an API to

handle this common use case. To use this class simply create it with a

number of images and then call run on it.

 ColorDrawable: ColorDrawable is a Drawable that simply fills its

bounds with specific color. A common use for this class is to set the

background on a View to a specific color. Of course, it can be used

anywhere a rectangular region should have a specific color.

CHAPTER 9: Game Development: Graphics 331

GradientDrawable: Much like ColorDrawable, GradientDrawable is

used to fill its bounds with a gradient. GradientDrawable allows a

number of different gradients to specify by setting the colors, shape,

and gradient style. The gradient style can be any of the usual

suspects: LINEAR_GRADIENT, RADIAL_GRADIENT, or SWEEP_GRADIENT.

PaintDrawable: Android obviously allows you to define the colors of

things. Sometimes, however, it is desirable to describe how a color

should be drawn, which is where the Paint class comes in. The Paint
class provides a way of designating a color and some other values

about how those colors should be applied. For example, when

drawing a line, the Paint class is used to specify what type of end

caps the line should have. For another example, when drawing text,

the Paint class can be used to specify that a strikethrough line or an

underline should be used. The PaintDrawable class fills a rectangular

region with the specified Paint, optionally with rounded corners with a

particular Paint.

ShapeDrawable: ShapeDrawable draws a Shape with a particular Paint.

The Shape is a superclass to various classes that present different

types of shapes, including basic shapes such as OvalShape and

RoundedRectShape, and also complex shapes that can be defined by

the PathShape class. When drawing a shape the Paint object defines

the thickness of the lines and other shape-related properties.

RotateDrawable and ScaleDrawable: RotateDrawable and

ScaleDrawable are wrapper Drawables that apply a transformation to

another Drawable.

LayerDrawable: A LayerDrawable draws an array of Drawables from

back (index 0) to front. When used with RotateDrawable,

ScaleDrawable, and other LayerDrawables, combining more content-

oriented Drawables together can render complex scenes.

Let’s take a look at an example from the game Orb Quest and see how some of these

Drawable classes can be used in an application. Figure 9–4 shows the grid rendered

behind the orbs.

CHAPTER 9: Game Development: Graphics 332

Figure 9–4. Background grid

Figure 9–4 shows a grid composed of eight lines, four running vertically and four running

horizontally. This grid is defined in the Background class, as seen in Listing 9–11.

Listing 9–11. Background.java

public class Background extends LayerDrawable {

 public Background() {
 super(new Drawable[] { new ColorDrawable(Color.WHITE),
 new GridDrawable() });
 }

 private static class GridDrawable extends ShapeDrawable {
 private GridDrawable() {
 super(createGridPath());
 getPaint().setColor(Color.GRAY);
 getPaint().setStrokeWidth(1.0f);
 getPaint().setStyle(Paint.Style.FILL);
 }
 }

 private static PathShape createGridPath() {
 float size = 1000;
 float colOrRowSize = size / 5.0f;
 float fivePercent = size * 0.05f;

 float onePercent = size * 0.01f;

 Path lines = new Path();
 for (int i = 0; i < 4; i++) {
 float x = i * colOrRowSize + colOrRowSize;

CHAPTER 9: Game Development: Graphics 333

 lines.moveTo(x - onePercent, fivePercent);
 lines.lineTo(x + onePercent, fivePercent);
 lines.lineTo(x + onePercent, size - fivePercent);
 lines.lineTo(x - onePercent, size - fivePercent);
 lines.close();
 }
 for (int i = 0; i < 4; i++) {
 float y = i * colOrRowSize + colOrRowSize;

 lines.moveTo(fivePercent, y - onePercent);
 lines.lineTo(fivePercent, y + onePercent);
 lines.lineTo(size - fivePercent, y + onePercent);
 lines.lineTo(size - fivePercent, y - onePercent);
 lines.close();
 }

 return new PathShape(lines, size, size);
 }

}

In Listing 9–11, the Background class extends LayerDrawable so we know that

Background will be a composite of other Drawables. Looking at the constructor we see

that we are creating an array of two Drawables. The first Drawable is the ColorDrawable

type. Because this Drawable is the first in the array, it gives us a nice white background

to draw our grid on. The second Drawable in the array is of type GridDrawable, an inner

class of our own design. The GridDrawable class extends ShapeDrawable, and we are

using the superclasses’ constructor to pass in a PathShaped defined by the static

createGridPath method. Before we look at the createGridPath() method, let’s look at

the rest of the GridDrawable constructor. Here we are modifying the ShapeDrawable

Paint field by setting the color to gray, setting the stroke width to 1.0, and specifying

that we want the shape filled.

The createGridPath() method creates a PathShaped used by GridDrawable. A PathShape

object describes a shape in terms of paths. This is a pretty common abstraction in

graphical libraries and similar to Java Swing class’ GeneralPath. The first thing we do in

this method is to define some values that we will use when describing the paths that

make up the PathShape object. The first thing to note is that we declare the variable size

as 1000. The value of size can be almost any value, since we want to describe this grid

in a resolution-independent way. In fact, if you changed this value to 100, for example,

you would not see any difference in the rendering. The other values colOrRowSize,

fivePercent, and onePercent are derived from size.

To define the lines, we create a Path object in which we describe the paths that make up

this shape. The paths are defined in two loops, one for the vertical lines and one for the

horizontal line. In each loop, we describe the path a pen would take if it were outlining

each line (describing a rectangle for each gray line). Once all these little rectangles are

described in the object lines, we use it to create our result, the PathShape. Note that we

also pass the size value to the constructor of the PathShape object, which tells the

PathShape to draw the lines in terms of the size when PathShape is scaled.

CHAPTER 9: Game Development: Graphics 334

So to create our background, we use the class LayerDrawable class to draw two other

Drawables, one on top of the other. The first Drawable simply defines a colored region

and provides our white background. The second Drawable extends ShapeDrawable and

specifies a grid shape and how this grid should be drawn.

There are other Drawables available in Android; most are just extensions of the ideas

presented previously. There is, however, a very useful type of Drawable called

NinePatchDrawable that deserves special attention.

NinePatchDrawable
When creating buttons and other components for an application, it is common to

include a decorative border and background to a component. It is often desirable for this

decoration to be fairly elaborate, and the best way to create elaborate graphics is by

creating a bitmap image. However, it can be time-consuming and difficult to create a

background image for every component. For example, if an application has lots of

buttons, each of a different size, you don’t want to create a background image for each

button. You want to be able to create a single image that somehow describes the border

and background for all your buttons. This is where the NinePatchDrawable comes in.

Figure 9–5 shows a close-up of three buttons using a NinePatchDrawable for their

background.

Figure 9–5. Buttons using a NinePatchDrawable

Figure 9–5 shows the opening screen of the Orb Quest game. There are three buttons,

each with a different size. They each share a common theme in terms of border and

background. The image that describes the background of these three buttons is a special

PNG image that describes how the image should be stretched and scaled in order to be

visually consentient at different size. Android distinguishes images that should be used as

a NinePatchDrawable from regular images by the extension of the file, which should be

.9.png. The image used as the NinePatchDrawable is shown in Figure 9–6.

CHAPTER 9: Game Development: Graphics 335

Figure 9–6. The nine_patch.9.png file zoomed in

Figure 9–6 shows the nine_patch.9.png file zoomed in; it looks like a square button from

Figure 9–5. What makes this file different from other PNG files are the black bars along

the sides of the image. These black bars are never drawn in the application; they simply

describe how the image should be cut up so it can be displayed correctly as a border

and background. Figure 9–7 shows a graphical depiction of how these black lines break

the image up.

Figure 9–7. Regions of a nine-patch PNG file

Figure 9–7 shows the image from Figure 9–6 twice. On the left, we have extended four

imaginary lines coming from the ends of the top and left black lines. These four lines

break the image up into nine regions. These nine regions are then used to draw this

image at different sizes. The four corner regions are used as is, to draw the corners of

the buttons. The four edge areas are scaled to fill in any extra space along the sides of

each button. Finally the center region is scaled to fill in the middle of the button.

On the right of Figure 9–7 is a rectangular region that is described drawing imaginary

lines from the ends of the right and bottom black lines. This rectangular region describes

the area where content (the text of the button) can be drawn without requiring the image

to be scaled. In this particular case, the right and bottom lines allow text to get closer to

CHAPTER 9: Game Development: Graphics 336

the top of the image than to the sides. The right and bottom black lines are optional; if

they are omitted, the region described by the top and left lines will describe the region

where scaling is not required.

Specifying a NinePatchDrawable as the background of a View is easiest in XML, as

Listing 9–12 shows.

Listing 9–12. main.xml (partial)

<Button
 android:id="@+id/playGameButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/play_game"
 android:background="@drawable/nine_patch"
 android:textSize="24px"
 android:textStyle="bold"
/>

In Listing 9–12, the background of a button is being set to use out the nine_patch.9.png

file by assigning the attribute background to “@drawable/nine_patch”. Note that the

extension of the filename is not used. This also assumes that the nine_patch.9.png file

is stored in the drawable directory found in the res directory.

Direct Rendering
We have looked at two related techniques for using Android’s built-in components for

drawing content on the screen: Views and Drawables. Using these technologies can be a

huge time-saver when creating an application since they offer a wide range of features,

including layout and resolution-independent drawing. There are plenty of times,

however, when greater control is required. In these cases, we want to use the Canvas

class to get direct access to pixel-level rendering.

A View customizes how it is drawn by overriding the onDraw() method. The onDraw()

method takes a Canvas object as its only parameter. The Canvas class is much like the

Java Swing Graphics2D class in that it provides a number of low-level graphics functions

for drawing line, shapes, text, and images. For demonstration purposes, the

HighScoreView of the Orb Quest application was written to draw itself using a Canvas

object. Figure 9–8 shows the HighScoreView.

Figure 9–8 shows the title “Your High Scores” drawn at the top of the screen. The title is

drawn along a curved path and has a shadow. Just below the title is a horizontal bar that

looks a little like an indent. Finally there are 10 scores, comprised of a username (Lucas)

and a score value. Listing 9–13 shows the HighScoreView class and how we use the

onDraw() method to achieve these visual effects.

CHAPTER 9: Game Development: Graphics 337

Figure 9–8. HighScoreView rendered within onDraw with Canvas

Listing 9–13. HighScoreView.java

public class HighScoreView extends View {

 public final static String PREFS_ORB_QUEST = "PREF_ORB_QUEST";
 public final static String PREF_HIGH_SCORE = "PREF_HIGH_SCORE";

 private List<HighScore> highscores;

 public HighScoreView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 public HighScoreView(Context context) {
 super(context);
 init();
 }

 private void init() {
 SharedPreferences settings = getContext().getSharedPreferences(
 PREFS_ORB_QUEST, 0);
 String json = settings.getString(PREF_HIGH_SCORE,
 HighScore.createDefaultScores());
 try {
 JSONArray jsonArray = new JSONArray(json);

 highscores = HighScore.toList(jsonArray);
 } catch (JSONException e) {
 throw new RuntimeException(e);
 }
 }

CHAPTER 9: Game Development: Graphics 338

 @Override
 public void onDraw(Canvas canvas) {
 int width = getWidth();
 int height = getHeight();

 //Draw Background
 canvas.drawColor(Color.GRAY);

 Rect innerRect = new Rect(5, 5, width - 5, height - 5);
 Paint innerPaint = new Paint();
 LinearGradient linearGradient = new LinearGradient(0, 0, 0, height,
 Color.LTGRAY, Color.DKGRAY, Shader.TileMode.MIRROR);
 innerPaint.setShader(linearGradient);

 canvas.drawRect(innerRect, innerPaint);

 //Draw Title
 Path titlePath = new Path();
 titlePath.moveTo(10, 70);
 titlePath.cubicTo(width / 3, 90, width / 3 * 2, 50, width - 10, 70);

 Paint titlePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 titlePaint.setColor(Color.RED);
 titlePaint.setTextSize(38);
 titlePaint.setShadowLayer(5, 0, 5, Color.BLACK);

 canvas.drawTextOnPath("Your High Scores", titlePath, 0, 0, titlePaint);

 //Draw Line
 Paint linePaint = new Paint();
 linePaint.setStrokeWidth(10);
 linePaint.setColor(Color.WHITE);
 linePaint.setStrokeCap(Cap.ROUND);

 float[] direction = new float[] { 0, -5, -5 };
 EmbossMaskFilter maskFilter = new EmbossMaskFilter(direction, .5f,
 8, 3);
 linePaint.setMaskFilter(maskFilter);

 canvas.drawLine(15, 100, width - 15, 100, linePaint);

 //Draw Scores
 Paint scorePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 scorePaint.setShadowLayer(5, 0, 5, Color.BLACK);
 scorePaint.setTextSize(20);

 RadialGradient radialGradient = new RadialGradient(width / 2,
 height / 2, width, Color.WHITE, Color.GREEN,
 TileMode.MIRROR);
 scorePaint.setShader(radialGradient);

 int index = 0;
 for (HighScore score : highscores) {
 canvas.drawText(score.getUsername(), 40, 150 + index * 30,
 scorePaint);
 canvas.drawText("" + score.getScore(), width - 115,

CHAPTER 9: Game Development: Graphics 339

 150 + index * 30, scorePaint);

 index++;
 }

 }
}

Listing 9–13 shows the HighScoreView class that is responsible for reading the current

high scores from the user preferences and then drawing them on the screen. The high

scores are found in the init() method where a SharedPreferences object is retrieved

from the context. The SharedPreferences object called settings is used to get a json-

encoded string representation of a collection of HighScore objects. The String json is

converted to a List containing HighScore objects by using the HighScore.toList()

utility method.

Once we have our list of HighScore objects, we can focus on the actual drawing. The

first thing done in the onDraw() method is to call drawColor and pass in the color gray.

This fills the entire screen with a gray color; in our final rendered scene, it winds up just

being a gray border around the rest of the content.

The next step in the onDraw() method is to draw the large rectangle with the gradient.

Drawing a rectangle is pretty straightforward; we simply create a Rect object called

innerRect and pass it to the drawRect() method of the Canvas object. The gradient

effect is created by the second parameter passed to the drawRect() method: the

innerPaint variable, which is a Paint object that has had its shader set to a

LinearGradient. The first four parameters to the LinearGradient constructor tell

LinearGradient that it should draw the gradient starting at the top left and complete at

the bottom left. The constants Color.LTGRAY and Color.DKGRAY are the start and end

colors, respectively. The last parameter indicates what the LinearGradient should do

when drawing pixels outside of the region defined by the start and end points. In our

case we don’t really care because we have included the entire screen in the region

specified by our points. The possible values are as follows:

 CLAMP: Pixels that are before the start of the gradient line should be

the color of the first color. Conversely, pixels past the end of the

gradient line should be the color of the last color in the gradient.

 MIRROR: Pixels beyond the range of the gradient line should be

colored as if a mirror of the current gradient were applied. This creates

a seamless gradation with no obvious indication of where the gradient

starts and stops.

 REPEAT: This indicates that the pixels beyond the range of the

gradient line should be colored as if an identical gradient existed just

beyond the range of the line. This can create an abrupt edge in the

gradation if the start and end colors are dissimilar.

The title text at the top of the screen is drawn along a curve, which is specified by

creating a Path object and calling moveTo, followed by cubicTo. Figure 9–9 shows the

drawn path.

CHAPTER 9: Game Development: Graphics 340

Figure 9–9. Line for the title text

Figure 9–9 shows the black line that the text is drawn on using the drawTextOnPath()

method of the Canvas class. The Paint object specified for this drawing operation is

called titlePaint and is constructed with the rendering flag ANTI_ALIAS_FLAG. This flag

is important as it greatly improves the visual quality of text. The titlePaint Paint object

is set to be red and size 38. The last thing you need to do to modify the titlePaint

object is to specify a shadow by calling setShadowLayer. The first parameter indicates

the radius of the blurred shadow, the next parameters indicate the x and y offset for the

shadow, and the last parameter sets the color to black.

In Figure 9–8 there is a horizontal line under the title text. This line has two distinct

decorations applied to it. First is the fact that it looks like it is recessed into the

background, which is accomplished by creating an EmbossMaskFilter and assigning it

the Paint object named linePaint. Second, the ends of the line are rounded, which is

accomplished by calling setStrokeCap in linePaint and passing in the constant

Cap.ROUND.

Once the linePaint is set up the way we want, we simply call drawLine on Canvas and

pass in coordinates for the line and the linePaint object.

The last thing we need to do to is to draw the scores. To do this, we create a new Paint

object called scorePaint. We set a shadow on scorePaint by calling setShadowLayer in

the same way we did the title. For scorePaint, we will apply a subtle radial gradient to

help break up the visual impact of the text, creating a RadialGradient object. When

creating a RadialGradient object, the first two parameters specify a center point, and

the third parameter specifies a radius. The last parameter indicates how pixels should be

drawn outside the defined circle. The same options apply here as they did the

LinearGradient.

Once the scorePaint object is all set up, we simply iterate through each HighScore

object and draw its username and its score by calling the drawText() method.

Summary
In this chapter, we used the example application Orb Quest to explore how Views can be

laid out using subclasses of ViewGroup such as LinearLayout. You looked at how the

objects that define a set of Views can be defined in XML or constructed in code. You

looked at the Drawable class and its many subclasses to understand how to define

resolution-independent graphical content. Finally, you looked at direct pixel-level

rendering with the Canvas class.

341

341

 Chapter

Game Development:
Animation
There are really two types of animations in any application—one that can be described
during the development of the application and another that is dynamically defined at
runtime. Depending on the type of game you are creating, you may find that all of your
animations can be defined beforehand, or you may realize that the location of each
game element must be calculated frame by frame. There are no hard and fast rules that
tell us which type of animations will be required for a given game. In fact, any game of
any complexity will have both types.

In this chapter we are going to look at two strategies for creating animations in Android.
The first will be to use the existing View framework to describe the location and
animations of our game elements. The second strategy will show how to create an
animation in which each frame is drawn by our code. The first offers simplicity while the
second allows control.

Android Animations
In Chapter 9 we looked at the View class, which is the base class for all user interface
elements. The Android SDK provides a number of classes for animating Views within
their parent ViewGroup. The base class for animations is Animation, which can be found
in the package android.view.animation.

The class Animation defines the duration, repeat count, start time offset, and a number
of other related properties. Subclasses of Animation define the specific visual effect that
will be applied to a View. These subclasses include:

AlphaAnimation: This animation describes a change in the transparency
of a view over time. You can use it to make a view fade out or in, or to
create some other visual experience involving transparency.

10

CHAPTER 10: Game Development: Animation 342

 RotateAnimation: This animation describes the rotation of a view over
time. The point about which the rotation happens can be described in
terms of the View on which the rotation is happening, or its parent View.
This flexibility makes the RotateAnimation class nice to use.

 ScaleAnimation: If you want your View to change size over time,
ScaleAnimation will get the job done. Like RotateAnimation,
ScaleAnimation allows you to define the point about which the scaling
happens in terms of the current View or its parent.

 TranslateAnimation: Moving a View from one place to another is an
extremely common use case, which TranslateAnimation lets you
describe. A TranslateAnimation can be constructed to describe either
the changes in the x and y position of the View or an animation over a
fixed start and end point. The fixed point can be described in terms of
the View’s coordinate space or the parent View’s coordinate space.

 AnimationSet: Use the class AnimationSet to combine animations. Any
number of Animations can be added to an AnimationSet, including other
AnimationSets. Since each Animation describes a period of time during
which the Animation is applied, AnimationSet can be used to describe a
sequence of animations by adjusting the starting offset for each
Animation added. When adding Animations to an AnimationSet, keep
mind that the order in which they are added describes the order in
which they are applied, not the order in which they happen over time.

As mentioned, each Animation describes a period of time in which the animation affects
the View. During this period, specifying an Interpolator can further refine the animation.
For example, if we have a TranslateAnimation that describes a View moving from an x
value of 0 to an x value of 100, we can specify an Interpolator to control whether the
View simply moves at a constant speed or some other rate.

The interface Interpolator defines a single method, getInterpolation, that takes a
value ranging from 0.0 to 1.0. It is up to implementing classes to define how this input
value should be modified to control how the View moves. The following built-in classes
allow a developer to easily pick from a number of prebuilt functions.

 LinearInterpolator: The default Interpolator for an Animation is the
LinearInterpolator. In this class’s implementation of the method
getInterpolation, the input value is simply returned as the result. This causes
the Animation to apply its effects evenly during the active period of its
animation.

 AccelerateDecelerateInterpolator: In real life, when an object starts moving
it must accelerate from its stopped state. Likewise, when an object stops
moving it must decelerate to a stop. The AccelerateDecelerateInterpolator
provides a short period of acceleration at the beginning of the animation and
short period of deceleration at the end. Using this Interpolator instead of a
LinearInterpolator can provide a subtle elegance to an animation. An

CHAPTER 10: Game Development: Animation 343

AccelerateInterpolator and a DecelerateInterpolator are also available if
you only want this effect at just the start or end of an animation.

 AnticipateOvershootInterpolator: The AnticipateOvershootInterpolator
starts by going backwards a little before going forward. Just before the end
the animation this Interpolator goes past the maximum value before
returning to the maximum. This Interpolator is a great way to make an
Animation feel more energetic. Both an AnticipateInterpolator and an
OvershootInterpolator are available if only the starting or ending behavior is
desired.

 BounceInterpolator: The BounceInterpolator reaches its maximum value a
little before the end of the animation period, at which point it reverses and then
reversed again, finally ending at the maximum value. This gives the impression
of a bounce for TranslateAnimations and RotateAnimations, but can be used
with any Animation to create interesting visual results.

There are a number of other built-in interpolators, and implementing Interpolator can
easily create more. Now that we’ve described the type of animations available in
Android, let’s continue looking at our sample game, Orb Quest, and see how these
classes are used in code.

Creating Views and Animations
In Orb Quest, we have elected to use the View class to represent each orb in our game.
In Chapter 9 we saw how to lay out these orbs in a 5 5 grid. Now let’s look at the code
that animates these orbs when the user clicks on them. Figure 10–1 shows an animation
sequence in the game Orb Quest.

Figure 10–1. Screen captures 0, 1, and 2—an orb shrinking

As you can see, there are twenty five orbs laid out in a grid. The cursor is over the orb in
the middle column, second-to-last row. The orb starts at its base size in Screen Capture
0. When the user clicks on the orb, it shrinks over half a second to the size shown in
Screen Capture 2. Screen Capture 1 shows the animation about half way through.
Recall from Listing 9-7 in Chapter 9 that each orb in Figure 10–1 is an OrbView object
and that it uses the containing GameView as the click listener. Listing 10–1 shows the
onClick method of GameView.

CHAPTER 10: Game Development: Animation 344

Listing 10–1. GameView.java (onClick)

@Override
public void onClick(View v) {
 if (acceptInput) {
 if (v instanceof OrbView) {
 OrbView orbView = (OrbView) v;
 if (selectedOrbView == null) {
 selectedOrbView = orbView;
 Animation scale = AnimationUtils.loadAnimation(
 getContext(), R.anim.scale_down);

 orbView.startAnimation(scale);
 } else {
 if (orbView != selectedOrbView) {
 swapOrbs(selectedOrbView, orbView);
 selectedOrbView = null;
 } else {
 Animation scale = AnimationUtils.loadAnimation(
 getContext(), R.anim.scale_up);

 orbView.startAnimation(scale);
 selectedOrbView = null;
 }

 }
 }
 }
}

This is the method that is called when a user clicks (or touches) an orb. The first thing
this method does is check if the variable acceptInput is true. This variable is set to false
whenever there is an animation in progress, and set back to true when the animation is
over, thus preventing user interaction during an animation. If we are accepting user
input, we have to check whether this is the first or second of a pair of orbs selected. We
know it’s the first if the variable selectedOrbView is equal to null.

When the user clicks on the first of two orbs, we set the variable selectedOrb to be the
orbView that was clicked. We then want to scale the orb down to indicate that it is
selected. To do this, we want to use a ScaleAnimation that defines a starting scale and
an ending scale. Animations can be created programmatically or defined in XML. In this
case, we are using the class AnimationUtils to load an animation called scale_down
from an XML file. The Animation called scale is applied to our OrbView by calling
startAnimation and passing it the Animation. Like all resources in an Android project,
these are defined in the res directory of a project. Listing 10–2 shows the
scale_down.xml file from the anim directory, found in the rest directory.

Listing 10–2. scale_down.xml

<?xml version="1.0" encoding="utf-8"?>
<scale xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromXScale="1.0"
 android:toXScale="0.5"
 android:fromYScale="1.0"
 android:toYScale="0.5"
 android:pivotX="50%"

http://schemas.android.com/apk/res/android

CHAPTER 10: Game Development: Animation 345

 android:pivotY="50%"
 android:duration="500"
 android:fillAfter="true"
 android:interpolator="@android:anim/anticipate_overshoot_interpolator"
/>

The root element in Listing 10–2 is a scale element. By setting attributes on this
element, we can define a ScaleAnimation object. We are setting both fromXScale and
fromYScale to 1.0. This indicates we want the animation to start with scale at its native
value. The attributes toXScale and toYScale are set to 0.5, which indicates the scale the
View should be at when the Animation is done. The attributes pivotX and pivotY specify
a percentage that means the actual point is in the View’s coordinate space. The value of
50 percent for both pivotX and pivotY is, of course, the center of the View.

The attribute duration is the number of milliseconds the animation should take to
complete. The attribute interpolate indicates we want to use an instance of
AnticipateOvershootInterpolator. The effect of this interpolator is not visible in Figure
10–1, but if you run the code, you’ll notice that the orb grows a little before it shrinks and
shrinks past its final size briefly at the end of the animation.

The attribute fillAfter in Listing 10–2 tells the animation to apply itself to the
transformation of the animated View when the animation is done. This means that when
the animation is over, the orb will stay scaled down. If fillAfter is not set or is set to
false, the orb would snap back to full size when the animation was over.

In Listing 10–1, if the variable selectedOrbView is not null, we want to check to see if the orb
reporting the click event is the same orb as the selectedOrbView. If the user has selected the
same orb twice, we want to scale the orb back up and set selectedOrbView to null. This
basically allows users to change their minds about which orb they want to swap. If the user
clicked on a different orb, we want to create an animation that swaps these orbs. Figure 10–2
shows a sequence of screen shots where two orbs are changing places.

Figure 10–2. Screen captures 3–7, orbs changing place

CHAPTER 10: Game Development: Animation 346

In Figure 10–2, five screen shots depict the animation that occurs when two orbs trade
place. Screen Capture 3 shows the user clicking on the top left orb, which will shrink
down to the same size as the previously selected orb, as shown in Screen Capture 4.
Screen Capture 5 shows the two orbs a little over half way through trading places. In
Screen Capture 6, we see each node in its final destination, where it grows back to full
size, as Screen Capture 7 shows. This animation consists of a series of individual
animations; Listing 10–3 shows the code that creates this effect.

Listing 10–3. GameView.java (swapOrbs)

protected void swapOrbs(OrbView orb1, OrbView orb2) {
 turns--;

 acceptInput = false;
 //swap locations
 int col1 = orb1.getCol();
 int row1 = orb1.getRow();
 int col2 = orb2.getCol();
 int row2 = orb2.getRow();

 orb1.setCol(col2);
 orb1.setRow(row2);
 orb2.setCol(col1);
 orb2.setRow(row1);

 //Animate Orb1
 TranslateAnimation trans1 = new TranslateAnimation(0, orb2.getLeft()
 - orb1.getLeft(), 0, orb2.getTop() - orb1.getTop());
 trans1.setDuration(500);
 trans1.setStartOffset(500);

 ScaleAnimation scaleUp1 = new ScaleAnimation(0.5f, 1.0f, 0.5f, 1.0f,
 Animation.RELATIVE_TO_SELF, .5f, Animation.RELATIVE_TO_SELF,
 .5f);
 scaleUp1.setDuration(500);
 scaleUp1.setStartOffset(1000);

 AnimationSet set1 = new AnimationSet(false);
 set1.addAnimation(scaleUp1);
 set1.addAnimation(trans1);

 orb1.startAnimation(set1);

 //Animate Orb2
 ScaleAnimation scaleDown2 = new ScaleAnimation(1.0f, 0.5f, 1.0f, 0.5f,
 Animation.RELATIVE_TO_SELF, .5f, Animation.RELATIVE_TO_SELF,
 .5f);
 scaleDown2.setDuration(500);
 scaleDown2.setInterpolator(new AnticipateOvershootInterpolator());

 TranslateAnimation trans2 = new TranslateAnimation(0, orb1.getLeft()
 - orb2.getLeft(), 0, orb1.getTop() - orb2.getTop());
 trans2.setDuration(500);
 trans2.setStartOffset(500);

 ScaleAnimation scaleUp2 = new ScaleAnimation(1.0f, 2.0f, 1.0f, 2.0f,

CHAPTER 10: Game Development: Animation 347

 Animation.RELATIVE_TO_SELF, .5f, Animation.RELATIVE_TO_SELF,
 .5f);
 scaleUp2.setDuration(500);
 scaleUp2.setStartOffset(1000);

 AnimationSet set2 = new AnimationSet(false);
 set2.addAnimation(scaleDown2);
 set2.addAnimation(scaleUp2);
 set2.addAnimation(trans2);

 set2.setAnimationListener(new RunAfter() {
 @Override
 public void run() {
 requestLayout();
 checkMatches();
 }
 });
 orb2.startAnimation(set2);
}

The first thing we do here is take care of a little bookkeeping. We decrement the number
of available turns, set acceptInput to false, and swap the row and column values for the
two orbs. The method swapOrbs continues with an AnimationSet for each orb.

The first AnimationSet is called set1 and consists of a TranslateAnimation called trans1
and a ScaleAnimation called scaleUp1. The variable trans1 is constructed with a
constructor that uses the starting and ending deltas for the x and y values. Since we
want the animation to start at the current location of the orb, we pass 0s for the starting
X and Y deltas. The ending deltas are calculated by subtracting the second orb’s
coordinate from the coordinate of the first for both X and Y. The duration and starting
offset are set to 500. Setting the duration to 500 indicates that the translation from the
starting location to the destination location should take half a second. Setting the
starting offset to 500 causes this animation to wait half a second before starting, which
gives the second orb time to shrink.

The second animation added to set1 in Listing 10–3 is a ScaleAnimation called
scaleUp1. The constructor used to instantiate scaleUp1 contains the same sort of
information used in the XML definition of a ScaleAnimation from Listing 10–2. We
specify a starting scale of .5 for both the scale X and scale Y values. The end scale is
set to 1.0 for both scale X and scale Y. We also use the constant RELATIVE_TO_SELF to
indicate that the last two 0.5fs should indicate a point at 50 percent of the width and
height of the orb. The duration for scaleUp1 is also set to half a second. The starting
offset is set to 1000 milliseconds or a full second. We get the value of 1000 because
trans1 will take 500 milliseconds and start after 500 milliseconds (500+500=1000).

Once both trans1 and scaleUp1 are defined, we add them to set1 by calling
addAnimation. Note that we add scaleUp1 before we add trans1. We do this because
the order in which Animations are added to addAnimations indicates the order in which
underlying transformation matrixes are composed. If we swapped the order these two
Animations were added, they would still affect the orb the same temporally, but the
resulting location and scale would be messed up. Once set1 is fully configured, we call
startAnimation on orb1 to kick off the animation we defined.

CHAPTER 10: Game Development: Animation 348

In Listing 10–3, we create a second AnimationSet called set2 to describe the animation
of the second orb. The second orb, orb2, is full size when this method is called, so we
have to include an addition ScaleAnimation called scaleDown2 to scale the orb down
before it starts to move. The ScaleAnimation scaleDown2 is constructed to animate the
scale from 1.0 to .5 for both x and y, and the scale should use a point in the middle of
the orb. The duration for scaleDown2 is set to 500 milliseconds and the interpolator is set
to a new AntisipateOvershootInterpolator. Though we used code to create
scaleDown2, its functionality happens to be identical to the interpolator defined in XML in
Listing 10–2.

To complete our setup of the AnimationSet set2, we construct a TranslationAnimation
called trans2 and a ScaleAnimation called scaleUp2. The animation trans2 is slightly
different from trans1; trans2’s ending deltas for x and y have signs opposite trans1’s.
The ScaleAnimation scaleUp2 is also different from scaleUp1— the scale range goes
from 1.0 to 2.0. The reason for the difference is that scaleUp2 must compensate for the
fact that scaleDown2 is added to set2. Remember that even after a given Animation’s
duration has passed, its ending value will still be applied. Figure 10–3 shows a time line
for how these three Animations interact.

Figure 10–3. Effect on three animations of the full duration of set2

We see on the left that from time 0 to 500, the Animation scaleDown2 is interpolating.
The line is curved due to the use of the AnticipateOvershootInterpolator. During this
first period of time, the resulting animation is the combination of the interpolated value
for scaleDown2, the starting value for scaleUp2, and the starting value for trans2. From
time 500 to 1000, the Animation trans2 is interpolating and the resulting transformation
is defined by the ending value of scaleDown2, the starting value of scaleUp2, and the
interpolating value of trans2. During the last period of time, from 1000ms to 1500ms, the
resulting transformation is defined by the end value of scaleDown2, the interpolating
value of scaleUp2, and the end value of trans2.

The last thing to do in the swapOrbs method is to register a listener with set2 so we know
when the animation is done, at which point we will call requestLayout and checkMatches.
The method requestLayout is defined by the class View and tells the system to call the
method onLayout (see Listing 9-9). The method checkMatches will inspect the orbs and
see if any columns or rows contain orbs of the same types. But let’s look first at the
class RunAfter, which we’re using with the method setAnimationListener, as shown in
Listing 10–4.

CHAPTER 10: Game Development: Animation 349

Listing 10–4. GameView.java (RunAfter)

private abstract class RunAfter implements Animation.AnimationListener,
 Runnable {

 @Override
 public void onAnimationEnd(Animation animation) {
 run();
 }

 @Override
 public void onAnimationRepeat(Animation animation) {
 }

 @Override
 public void onAnimationStart(Animation animation) {
 }

}

Here we see an inner class named RunAfter, a utility class we’re using to call methods
after an animation is complete. As you can see, RunAfter implements the interfaces
Animation.AnimationListener and Runnable. Thus, looking back to Listing 10–3, you
can see we are creating a concrete instance of RunAfter and defining the method run,
which is called from onAnimationEnd.

In Listing 10–3, we make sure onLayout gets called by calling requestLayout when the
animation set2 is complete. We have to do this because Animations are a little strange
in Android. While it is true that they move where a View is drawn, they do not, for some
reason, change where the View receives events. If we did not call requestLayout at the
end of the animation, the orbs would appear in their new location, but clicking one of
them would result in an event being generated for the other orb.

The other thing we do when the animation set2, from Listing 10–3, is complete is call
checkMatches, as shown in Listing 10–5.

Listing 10–5. GameView.java (checkMatches)

protected void checkMatches() {
 Set<OrbView> matchingRows = new HashSet<OrbView>();
 Set<OrbView> matchingCols = new HashSet<OrbView>();

 for (int r = 0; r < 5; r++) {
 Set<OrbView> oneSet = new HashSet<OrbView>();

 OrbView zero = findOrbView(0, r);
 boolean allSame = true;
 for (int c = 0; c < 5; c++) {
 OrbView orbView = findOrbView(c, r);
 if (orbView.getOrbType() != zero.getOrbType()) {
 allSame = false;
 break;
 }
 oneSet.add(orbView);
 }

 if (allSame) {

CHAPTER 10: Game Development: Animation 350

 matchingRows.addAll(oneSet);
 }
 }

 for (int c = 0; c < 5; c++) {
 Set<OrbView> oneSet = new HashSet<OrbView>();

 OrbView zero = findOrbView(c, 0);
 boolean allSame = true;
 for (int r = 0; r < 5; r++) {
 OrbView orbView = findOrbView(c, r);
 if (orbView.getOrbType() != zero.getOrbType()) {
 allSame = false;
 break;
 }
 oneSet.add(orbView);
 }

 if (allSame) {
 for (OrbView orb : oneSet) {
 if (!matchingRows.contains(orb)) {
 matchingCols.add(orb);
 }
 }
 }
 }

 if (matchingRows.size() == 0 && matchingCols.size() == 0) {
 doneAnimating();
 return;
 }

 int size = getWidth();
 boolean runAfterSet = false;

 final Set<OrbView> allOrbs = new HashSet<GameView.OrbView>(matchingCols);
 allOrbs.addAll(matchingRows);

 if (matchingRows.size() != 0) {
 for (OrbView orbView : matchingRows) {

 ScaleAnimation scaleDown = new ScaleAnimation(1.0f, 0.5f, 1.0f,
 0.5f, Animation.RELATIVE_TO_SELF, 0.5f,
 Animation.RELATIVE_TO_SELF, 0.5f);
 scaleDown.setDuration(500);
 scaleDown.setFillAfter(true);

 TranslateAnimation trans = new TranslateAnimation(0, size, 0,
0);
 trans.setDuration(500);
 trans.setStartOffset(500);
 trans.setFillAfter(true);

 AnimationSet set = new AnimationSet(false);
 set.addAnimation(scaleDown);
 set.addAnimation(trans);

CHAPTER 10: Game Development: Animation 351

 if (!runAfterSet) {
 runAfterSet = true;
 set.setAnimationListener(new RunAfter() {
 @Override
 public void run() {
 updateRemovedOrbs(allOrbs);
 }
 });
 }

 orbView.startAnimation(set);
 }
 }

 if (matchingCols.size() != 0) {
 for (OrbView orbView : matchingCols) {
 ScaleAnimation scaleDown = new ScaleAnimation(1.0f, 0.5f, 1.0f,
 0.5f, Animation.RELATIVE_TO_SELF, 0.5f,
 Animation.RELATIVE_TO_SELF, 0.5f);
 scaleDown.setDuration(500);
 scaleDown.setFillAfter(true);

 TranslateAnimation trans = new TranslateAnimation(0, 0, 0,
size);
 trans.setDuration(500);
 trans.setStartOffset(500);
 trans.setFillAfter(true);

 AnimationSet set = new AnimationSet(false);
 set.addAnimation(scaleDown);
 set.addAnimation(trans);

 if (!runAfterSet) {
 runAfterSet = true;
 set.setAnimationListener(new RunAfter() {
 @Override
 public void run() {
 updateRemovedOrbs(allOrbs);
 }
 });
 }

 orbView.startAnimation(set);
 }
 }

}

In Listing 10–5, we create two HashSets where we record all OrbViews that are in
matching rows or columns. By iterating over each row and testing if all of the orbs are of
the same type, we can find the matching rows, and we repeat the process for each
column as well. Once all of the rows and columns are inspected, we check to see if any
columns or rows were found. If not, we call doneAnimating and return. If we do find
matching rows and columns, we create an animation sequence for each OrbView to
produce the sequence shown in Figure 10–4.

CHAPTER 10: Game Development: Animation 352

Figure 10–4. Screen Captures 7–11, column match animation

In Screen Capture 7, the left column contains all the same type. This triggers the
animation starting in Screen Capture 8, where each orb shrinks. When the orbs have
shrunk, they begin moving to a point off the bottom of the screen, as shown in Screen
Capture 9. Screen Capture 10 shows that all of the matching orbs are gone, and Screen
Capture 11 shows five fresh orbs filling the empty space. At this point, it is possible that
the new orbs create new matches, in which case the animation would be repeated for
the newly matching sets.

As Listing 10–5 shows, we create an animation for each OrbView in a match. The
animation called set is an AnimationSet and is composed of a ScaleAnimation and a
TranslateAnimation. These Animations are almost identical to the Animations we looked
at in Listing 10–3. ScaleAnimation scales the orb from 1.0 to 0.5 over 500 milliseconds
and TranslateAnimation moves the orb either off the right or the bottom of the screen.

We do have to do a little bookkeeping as we create these animations, since we only
registered one RunAfter with one animation. To keep track of this, we use the variable
runAfterSet to make sure we register only the one RunAfter. RunAfter is configured to
call updateRemovedOrbs when the animations are complete (all of the animations
complete at the same time). Listing 10–6 shows the method updateRemovedOrbs.

Listing 10–6. GameView.java (updateRemovedOrbs)

private void updateRemovedOrbs(Set<OrbView> allOrbs) {
 score += allOrbs.size() * 5;
 for (OrbView orbView : allOrbs) {
 orbView.setRandomType();
 }
 requestLayout();
 checkMatches();
}

CHAPTER 10: Game Development: Animation 353

The method updateRemovedOrbs is called when the animation that removes the nodes is
complete. A Set called allOrbs is passed to updateRemovedOrbs and contains all orbs
that were part of a matching column or row. The size of allOrbs is used to update the
current score, then each OrbView in allOrbs is assigned a new random type. Lastly we
call requestLayout to reset the location of the OrbView, and call checkMatches to see if
any of the new orbs create matches. If no new matches are found, we call
doneAnimating from checkMatches. The method doneAnimating is shown in Listing 10–7.

Listing 10–7. GameView.java (doneAnimating)

protected void doneAnimating() {
 requestLayout();
 acceptInput = true;
 gameActivity.updateValues(score, turns);
 if (turns <= 0) {
 gameActivity.endGame();
 }
}

The method doneAnimating is responsible for doing some clean-up. The call to
requestLayout makes sure the correct orb responds to a touch event. We start
accepting user input again by setting acceptInput to true. The method updateValues is
called on gameActivity to update TextViews to show the score and remaining turns.
Lastly, we check if any turns remain. If not, we call endGame to bring up the dialog
described at the beginning of Chapter 9.

In conclusion, using Views and the related classes to implement a game can save a lot
of time because you’re using the same API for the game as for the rest of the
application. The Animation classes are a little tricky at first, especially when creating
sequences of animations. Perhaps the best part about using Views is that registering
event listeners is taken care of for you. Nowhere in our code did we have to try to figure
out what the user was interacting with; we simply listened for onClick events.

Overall, this strategy seems appropriate for games where a specific animation is
generated for a specific user interaction. Basically, the state of the game oscillates
between waiting for user interaction and running an animation. I would recommend this
pattern for puzzle games, but probably not for games where there is continuous action
driven by game logic.

Frame By Frame Animations
In Chapter 9 we explored how to override the onDraw method so we could do pixel-level
rendering with an instance of the Canvas class. In this section we are going to extend
this concept to create an animation where each frame of an animation is drawn using a
Canvas object. Since we will want to redraw the scene many times a second, we have to
do a little more work than simply overriding the onDraw method. We have to set up a
rendering thread that correctly synchronizes with the underlying graphics system to
create a smooth, performant animation. Figure 10–5 shows the animations will be
implementing.

CHAPTER 10: Game Development: Animation 354

Figure 10–5. About screen animation

These are screen captures from Orb Quest’s About screen. There are three orbs, each
moving in a straight line. When an orb reaches the end of the screen, it bounces off the
edge of the screen and changes direction. Behind the three balls is some text describing
the game. Listing 10–8 shows the first part of the class AboutView.

Listing 10–8. AboutView.java (partial)

public class AboutView extends SurfaceView implements SurfaceHolder.Callback {

 public static Random random = new Random();

 private boolean animating = true;
 private AnimationThread thread;

 private List<Sprite> sprites = new ArrayList<Sprite>();

 public AboutView(Context context, AttributeSet attrs) {
 super(context, attrs);

 SurfaceHolder surfaceHolder = getHolder();
 surfaceHolder.addCallback(this);
 thread = new AnimationThread(surfaceHolder);
 }

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {
 //called when the size of the surface changes, we are not handling
 this case.
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 animating = true;
 thread.start();

CHAPTER 10: Game Development: Animation 355

 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 boolean retry = true;
 animating = false;
 while (retry) {
 try {
 thread.join();
 retry = false;
 } catch (InterruptedException e) {
 }
 }
 }

As you can see, AboutView extends SurfaceView and implements
SurfaceHolder.Callback. The class SurfaceView is a special type of View that provides
access to a Surface object, which is a handle to the raw bytes used by the underlying
compositor. Basically, the Surface class gives us low-level access for rendering. The
interface SurfaceHolder.Callback is used by any object interested in any changes in
status of an underlying Surface object.

In the constructor, we see that we get access to a SurfaceHolder by calling getHolder.
Once we have the holder we register this instance of AboutView as a callback to the
SurfaceHolder. This causes the methods surfaceCreated, surfaceChanged, and
surfaceDestroyed to be called when the Surface we are rendering is created, changes
size, or is destroyed. The last thing done in the constructor is to create an instance of
AnimationThread and pass in the surface holder. AnimationThread is a class of our own
design and handles the rendering logic. Note that the thread is started in the
surfaceCreated method; this prevents the thread from trying to draw to a Surface that
does not yet exist. When the surface is destroyed, we stop the AnimationThread by
setting animation to false, then we call join on it. The method join causes the calling
thread to block until the AnimationThread stops execution. This is done to make sure
AnimationThread is completely finished before exiting the surfaceDestroyed method,
preventing an application crash.

As mentioned, the actual animation happens in the AnimationThread class, which is
shown in Listing 10–9.

Listing 10–9. AboutView.java (AnimationThread)

private class AnimationThread extends Thread {
 private SurfaceHolder surfaceHolder;

 AnimationThread(SurfaceHolder surfaceHolder) {
 this.surfaceHolder = surfaceHolder;
 }

 @Override
 public void run() {
 while (animating) {
 Canvas c = null;
 try {
 c = surfaceHolder.lockCanvas(null);

CHAPTER 10: Game Development: Animation 356

 synchronized (surfaceHolder) {
 doDraw(c);
 }
 } finally {
 if (c != null) {
 surfaceHolder.unlockCanvasAndPost(c);
 }
 }
 }
 }

Here we see that the constructor for the AnimationThread class simply keeps a reference
to the SurfaceHolder passed in. As with most Thread classes, the interesting stuff is in
the run methods, so let’s take a look at that.

In the run method we create a while loop that will run as long as the variable animating
is true. To get a reference to a Canvas object, we call lockCanvas on surfaceHolder. This
method not only gives us access to a Canvas object, it also prevents SurfaceView from
creating, modifying, or destroying the Canvas until unlockCanvasAndPost is called. This
happens when we are done drawing and want the changed pixels to be displayed on the
screen. Before we do any actual drawing in the doDraw method, we synchronize on
surfaceHolder to prevent another instance of AnimationThread from drawing to the
same canvas. This synchronization is a defensive measure, since our application never
intentionally creates two instances of AnimationThread. To do the drawing, let’s look at
the method doDraw shown in Listing 10–10.

Listing 10–10. AboutView.java (doDraw and addSprites)

public void doDraw(Canvas canvas) {
 addSprites();

 canvas.drawColor(Color.WHITE);

 for (Sprite sprite : sprites) {
 sprite.update(getWidth(), getHeight());
 sprite.draw(canvas);
 }

}

private void addSprites() {
 if (sprites.size() == 0) {
 Drawable rOrb = getResources().getDrawable(R.drawable.red_orb);
 Drawable gOrb = getResources()
 .getDrawable(R.drawable.green_orb);
 Drawable bOrb = getResources().getDrawable(R.drawable.blue_orb);

 int width = getWidth();
 int height = getHeight();

 sprites.add(new Sprite(rOrb, width, height));
 sprites.add(new Sprite(gOrb, width, height));
 sprites.add(new Sprite(bOrb, width, height));
 }
}

CHAPTER 10: Game Development: Animation 357

Listing 10–10 shows two methods, doDraw and addSprites. The method addSprites is
the first thing called in doDraw and it adds the three orbs the first time it is called. The
orbs are instances of a class called Sprite that we define; each Sprite is constructed
with a Drawable and the size of the region in which it is being drawn. The Sprite class
encapsulates the visual component of the orb (the Drawable), where the Sprite should
be drawn, and how the Sprite should move for each frame of the animation.

In the doDraw method, we clear the canvas by calling drawColor; then, for each Sprite,
we update its location and then call draw in the Sprite. In this way, each time the while
loop from Listing 10–9 iterates, doDraw clears the screen, updates the location of the
orbs, and draws them in a new location. Listing 10–11 shows the Sprite class.

Listing 10–11. Sprite.java

public class Sprite extends Drawable {
 public static Random random = new Random();

 //current location
 private float x;
 private float y;
 private float radius;

 //used for updates
 private float deltaX;
 private float deltaY;
 private float deltaRadius;

 //what the Sprite looks like
 private Drawable drawable;

 public Sprite(Drawable drawable, float width, float height) {
 this.drawable = drawable;

 //Randomize radius
 radius = 10 + random.nextFloat() * 30;

 //Randomize Location
 x = radius + random.nextFloat() * (width - radius);
 y = radius + random.nextFloat() * (height - radius);

 //Randomize Direction
 double direction = random.nextDouble() * Math.PI * 2;
 float speed = random.nextFloat() * .3f + .7f;

 deltaX = (float) Math.cos(direction) * speed;
 deltaY = (float) Math.sin(direction) * speed;

 //Randomize
 if (random.nextBoolean()) {
 deltaRadius = random.nextFloat() * .2f + .1f;
 } else {
 deltaRadius = random.nextFloat() * -.2f - .1f;
 }

 }

CHAPTER 10: Game Development: Animation 358

 public void update(int width, int height) {
 if (radius > 40 || radius < 15) {
 deltaRadius *= -1;
 }
 radius += deltaRadius;

 if (x + radius > width) {
 deltaX *= -1;
 x = width - radius;
 } else if (x - radius < 0) {
 deltaX *= -1;
 x = radius;
 }

 if (y + radius > height) {
 deltaY *= -1;
 y = height - radius;
 } else if (y - radius < 0) {
 deltaY *= -1;
 y = radius;
 }
 x += deltaX;
 y += deltaY;

 }

 @Override
 public void draw(Canvas canvas) {

 Rect bounds = new Rect(Math.round(x - radius), Math.round(y - radius),
 Math.round(x + radius), Math.round(y + radius));
 drawable.setBounds(bounds);

 drawable.draw(canvas);
 }

 @Override
 public int getOpacity() {
 return drawable.getOpacity();
 }

 @Override
 public void setAlpha(int alpha) {
 drawable.setAlpha(alpha);
 }

 @Override
 public void setColorFilter(ColorFilter cf) {
 drawable.setColorFilter(cf);
 }

The Sprite class has a number of fields. The x and y fields represent where the center of
the Sprite should be drawn. The radius field describes how big it should be. The three
fields starting with the word delta describe how the sprite should change for every frame
of animation. The fields deltaX and deltaY indicate how much the x and y values should
change and the field deltaRadius specifies how much the radius should change per call

CHAPTER 10: Game Development: Animation 359

to update. The last field in Sprite is drawable, which is used to actually draw the Sprite.
Even though our simple example only uses bitmaps for Drawables, this Sprite class
could use any kind of Drawable.

The constructor for the Sprite class uses the static variable random to randomize the
location, direction, speed, and how much the Sprite shrinks or grows. Once the sprite is
constructed, future calls to update will cause it to change location based on the rules of
our application. In the method update, we see that radius will fluctuate in value between
15 and 40. For the x and y, we simply add the deltaX and deltaY values to them. To
implement the bouncing, we change the sign of the deltaX or deltaY values whenever
the sprite reaches the sides of the screen.

The draw method in Listing 10–11 uses the x and y locations of the sprite, along with the
radius, to define a Rect named bounds. This Rect is used to set the bounds of the
drawable, so that the subsequent call to draw causes the drawable to draw in the correct
location, at the correct size.

Mixing Views and SurfaceViews
The About view, shown in Figure10–5, displays text as well as orbs. The text is not being
drawn by the rendering logic. The text is, in fact, just a normal TextView. Listing 10–12
shows the about.xml file that defines this layout.

Listing 10–12. about.xml

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#00000000"
 >
 <view class="org.ljordan.orb_quest.AboutView"
 android:id="@+id/gameView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />

 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center"
 android:orientation="vertical"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="24px"
 android:text="@string/about_text_title"
 android:textColor="#000000"
 />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

http://schemas.android.com/apk/res/android

CHAPTER 10: Game Development: Animation 360

 android:text="@string/about_text"
 android:textColor="#000000"
 android:padding="30px"
 />
 </LinearLayout>

</FrameLayout>

Here we see that the root element is a FrameLayout. The class FrameLayout simply draws
its children on top of each other. This is perfect for our About page, so we create a view
element that will be an instance of our AboutView class. AboutView has its layout_width
and layout_height attributes set to fill_parent, so it will take up the entire screen. The
second child of the root FrameLayout is a LinearLayout that also fills the entire screen,
but has its gravity set to center. This causes the two TextViews to be centered on the
screen.

Mixing components in this way is very handy and speaks to the power of the Android
compositing logic. However, I have noticed a significant performance hit when doing
this. As an experiment, delete the LinearView (and its children) from about.xml and rerun
the application. I think you’ll find that it runs faster and smoother.

In conclusion, rendering a scene frame by frame provides the most control over an
animation. Android makes it pretty painless to set up a rendering loop, giving you direct
access to the screen. You will have to create your layout classes, like our Sprite class,
but there are lots of Java libraries out there to help with this.

Summary
In this chapter, we explored creating animations using the View and Animation classes.
We learned how to chain animations together and to create callback code to be run
when the animations are complete. We also saw how to get a handle to the screen so
we could create our own rendering thread. In this rendering thread we looked at a
simple example of managing our own scene graph and how to draw the frames of our
animation.

361

361

 Chapter

App Inventor
There have been many attempts over the years to simplify the development process and
allow more people to develop apps. Google’s App Inventor is another tool that can bring
software development to the masses, rather than being in the hands of a small number
of professionals. The value of App Inventor can seem dubious to a professional
developer with years of Java experience. Why use App Inventor at all? The answer to
that lies in understanding that more and more non-technical people will discover App
Inventor, and it behooves the professional developer to understand the tools these
people will use. It gives us the ability to understand the challenges they face, and gives
us a context for helping would-be software developers move to the next step. If you are
working professionally with Java or Android, it is just a matter of time before you will be
approached with demo or prototype developed with App Inventor.

App Inventor is a tool that allows people to drag and drop components together to
create a fully functional Android app without writing a single line of code. Like most
Google applications, App Inventor is a web page, though it does require the user to
install a package on their local machine. On this web page, the user sees a mockup of
an Android phone, along with a number of tools for creating applications.

This chapter will cover the basics of getting App Inventor up and running. We will
explore the features of App Inventor so we can understand what it can do. We will finish
by reviewing the current limitations of App Inventor and where it might go in the future.

Setting Up App Inventor
App Inventor is really a number of applications working together to provide the full set of
functionality. There is a web page where you manage your applications and do the
layout, and there is special version of the Android SDK called App Inventor Setup that
must be installed. The App Inventor Setup provides the connectivity between a
connected device or emulator. Lastly, there is Java application called App Inventor for
Android Blocks Editor, which we will simply call the Blocks Editor. The Blocks Editor is
where you “write” the code for your application. We put write in quotes because you
don’t write traditional code, you assemble graphical items (called blocks) that describes
the behavior of your app.

11

CHAPTER 11: App Inventor 362

Setting up App Inventor is pretty simple: just go to http://appinventor.googlelabs
.com/ and follow the directions for your platform. You will install App Inventor Setup,
which will be a native installer for Windows, Linux (Debian package), or OS X. This
installs a special version of the Android SDK. Figure 11–1 shows the installer running on
an OS X machine.

Figure 11–1. Files installed on an OS X machine

In Figure 11–2 we see a typical installation screen. When this installer runs, it will create
a number of files on your machine. Figure 11–2 shows the file structure installed on an
OS X machine.

Figure 11–2. App Inventor setup files

http://appinventor.googlelabs

CHAPTER 11: App Inventor 363

In Figure 11–2 we see files that look familiar to a standard Android SDK installation. The
App Inventor Setup is a subset of a full install, but it does come with an emulator
preconfigured to be used during development. Once the installer is finished, it is time to
log in to App Inventor and start creating your first application.

To log in to the App Inventor web page, go to the main App Inventor page and click My
Projects. If you are not signed in with a Google account you will be prompted to do so.
Once you log in, you will see a screen something like Figure 11–3.

Figure 11–3. Just logged in

In Figure 11–3 we see an almost empty web page. There are a number of buttons at the
top for managing your projects. You can either create a new project or, in the More
Actions drop-down menu, you will find an option for uploading a project. The
accompanying source code for this book contains the project used in this chapter. You
can upload that project if want; it is a file called Sample_01.zip. Once you are actually
working with a project, you will see something like Figure 11–4.

CHAPTER 11: App Inventor 364

Figure 11–4. Design view

Figure 11–4 shows our sample project. On the left we see the palette that contains all of
the components available in an App Inventor project. The components are both visual
and non-visual elements of an application. As can be seen under Basic, there are things
like buttons and also a TinyDB component. To add components to your application,
simply drag it onto the View. When a visual component is added, it will be placed in the
Viewer according the layout rules of the containing component. Non-visual components
are listed below the screen area. All added components are also accessible from the
Components section of the screen, which shows the hierarchy of the visual components
in a tree. Selecting a component on either the Viewer or the Components section will
display those components properties under the Properties section.

Up to this point, App Inventor is very much like any other visual design tool. It is perhaps
lacking in the number of available components, but we should remember it is a work in
progress.

For our sample application we added a Button, a Canvas, and three ImageSprites found
under the Animation section. A button is pretty self-explanatory: it works just like any
other button. The Canvas is special type of visual component that allows drawing
commands to be defined and provides a container for ImageSprites. An ImageSprite is a

CHAPTER 11: App Inventor 365

component with a number of built-in animation behaviors. To specify an image for an
ImageSprite, you must first upload your image under the Media section. Once uploaded,
you can select the desired image from the ImageSprite’s properties panel.

In our case we uploaded the now familiar orb images. This sample application is going
to mimic the animation behavior found in Chapter 10 for the About View. Each orb will
animate around the screen and bounce of the edges of the screen.

In order to make these ImageSprites animate the way we want, we have to set the
property Interval to 33 for each orb. The Interval value is the number of milliseconds
between each step in the animation. Setting it to 33 will cause the orb to animate at
about 30 frames per second.

When we added the Canvas, we noticed that the layout rules didn’t seem to be working
as advertised. We had to specify a fixed size for this component. It’s not a critical bug,
but there are lots of little annoying quirks like this.

Now that the components are laid out, we are ready to specify some behaviors for our
application.

Working with Blocks
App Inventor defines behavior using a visual programming application called App
Inventor for Android Blocks Editor. The idea with visual programming is that you connect
graphical components – called blocks – together to create your application. This is
intended to make programming more accessible, because you can only connect the
right types of components together. In this section we take a look at the Blocks Editor
and work through a couple of examples of using blocks.

You launch this Blocks Editor application by clicking the Open the Blocks Editor button
shown in Figure 11–4. Launching the Blocks Editor can be a little strange, since the
button actually causes the browser to download a JNLP file. A JNLP file is a file used by
Java’s WebStart technology to install and run a Java application. Depending on your
platform, your experience will be different. On OS X, each time you want to start the
Blocks Editor you wind up downloading another copy of the JNLP file. Double-clicking
on any of the downloaded files launched the application. No big deal, but if you have
never worked with a WebStart application, it can be a little confusing.

Once the Blocks Editor has launched, you will be prompted by a dialog asking if you
want to use a connected device, an emulator, or proceed without a device. Figure 11–5
shows this dialog.

CHAPTER 11: App Inventor 366

Figure 11–5. Select your device

Once you have made your device selection, the Blocks Editor will try and establish a
connection with either your real device or a running emulator. If you selected emulator
and no emulator is running, one will be started. You don’t have to wait for the emulator
to start before you can start exploring the Blocks Editor, as shown in Figure 11–6.

Figure 11–6. Blocks editor

The Blocks Editor has three parts. At the top are a number of buttons for managing your
project and device. On the left is a tabbed panel containing all of the built-in blocks, as
well as blocks we will define. If you started a fresh project, the area in the middle will be
blank; if you uploaded the sample project, it will be populated with the blocks shown in
Figure 11–6.

CHAPTER 11: App Inventor 367

Before we take a look at the blocks defined in the sample project, we should take a
closer look at some the built-in blocks so we know what we are working with.

Understanding the Types of Blocks
The fundamentals of an App Inventor application’s behavior are defined by a relatively
small set of built-in blocks. Blocks are grouped together by function, like Text and Logic
as shown on the left side of Figure 11–6. Let’s take a look these groups and a sample of
blocks from each one.

Definition Blocks
The Definition group contains blocks that are used to define variables and procedures.
These are the general organizational blocks used in any app. The Definition blocks are
shown in Figure 11–7.

Figure 11–7. Definition blocks

Procedures: A procedure is a collection of procedure calls – think Java method. Like a
Java method, a procedure can be defined to have a return type or not. A procedure can
also take a number of arguments. When defining a procedure, you can draw other
blocks into it to describe the program logic. If the procedure has a return type it must be
specified in the result connector.

Variable: A variable is a block that defines a global variable. You create a variable by
dragging it out into the center of the application and specifying a name. The value of the
variable block is set by attaching a block to the right side of the variable block. Once a
variable is created, it is used by dragging the value or setter block from the My
Definitions group found under My Blocks. There does not seem to be any way to create
variables that exist within the scope of a procedure.

CHAPTER 11: App Inventor 368

Cap: Among the definition blocks is a block used to ignore the result of a procedure.
Graphically it is depicted with a “|” char. This is a purely utility block and is used when
you have defined a procedure with a return type, but you are using that procedure in a
place that does not take a value.

Text Blocks
Text blocks are used to manipulate string values. There are a good number of them, and
we suspect new ones are added regularly. Figure 11–8 shows most of the available text
blocks.

Figure 11–8. Text blocks

CHAPTER 11: App Inventor 369

 Text: Text is the most basic text block; it is used to define a string
value.

 Make Text: The Make Text block is used to concatenate two or more
strings into a single string.

 Length: The Length block takes a string and returns the number of
characters in the string.

 Greater Than, Equal To, and Less Than: The Equal To block takes
two strings and evaluates their equality. The Greater Than and Less
Than blocks will return true or false if the string arguments are in
alphabetical order. These block returns a Boolean value that can be
used with control blocks.

 Upcase and Downcase: These blocks are used to force a string to be
either all uppercase or all lowercase, respectively.

 Starts At: The Starts At block is used to find the first index of a
substring. If the substring is not present, a 0 is returned. Note that this
is different from Java; with App Inventor the first letter in a string has
an index of 1. In Java the index of the first letter would be 0.

 Split: The Split block is used to find all of the pieces of a string
separated by a specified delimiter. The return type of this block is a
list.

List Blocks
The group called Lists contains blocks for creating and querying lists. You will find
blocks for determining the size as well as blocks for list manipulation. Figure 11–9 shows
a selection of lists blocks.

 Make a List: Lists are created using the make a list block. Zero or
more starting items can be added to a new list. In Figure 11–9, the
Make a List block is shown with a single empty slot labeled item.
When a value is placed in the spot, a new empty item slot is created,
allowing you at add additional items.

 Select List Item: The Select List Item block is used to pull out a single
item from a list by specifying the index of the desired item. Like strings,
lists are not zero-based. The first item in a list has an index of 1.

CHAPTER 11: App Inventor 370

Figure 11–9. Lists block

 Replace List Item: The Replace List Item block is used to replace an
item in the list. This block requires you to specify the list being
modified, the index of the item to be replaced, and the replacement
value.

 Remove List Item: The Remove List Item block removes an item from
the list. Keep in mind that the first item has an index of 1.

 Length of List: The Length of List block reports the number of items in
a list.

 Append to List: The Append to List block adds the contents of the
second list to the first. The second list is unmodified by this operation.

CHAPTER 11: App Inventor 371

Add Items to List: The Add Items to List block allows any number of
values to be added to a list. Like the Make a List block, the block will
update after dragging a value into the item slot to make room for
additional items.

Is in List: The Is in List block tests to see if the given item is a member
of the provided list.

Position in List: The Position in List block will return the index of the
given thing in the given list. A value of 0 is returned if the thing is not in
the list.

Pick Random Item: The Pick Random Item block returns one of the
values from a provided list. This block could be reproduced blocks
from the Math and List groups, but is provided for convenience.

Is List Empty: The Is List Empty block returns true if the provided list
has no items in it. This block prevents us from having to get the size of
a list and see if it is 0 or not.

Is a List: The Is a List block tests to see if the given value is a list at all.
This is handy, because the type system in this graphical language is
not very strict.

Math Blocks
The blocks in the Math group define a number of common mathematical functions. This
includes blocks for testing equality and inequality, and blocks for creating new values
through addition, subtraction, and the like. There are also blocks for all of the functions
you would find in the Java class Math, in addition to blocks for creating random values.
Figure 11–10 shows a number of blocks from the Math group.

123: The block labeled 123 is used to create a new numeric value.
After adding this block to the center are of the application, you can
double-click on the value 123 and change it to any valid numeric
value.

Equality and Inequality: The block with the label = is used for testing
if numbers are the same. There are four more blocks for testing
inequality: greater than, greater than or equals, less than, and less than
or equals, designated by the characters >, >=, <, and <=, respectively.

CHAPTER 11: App Inventor 372

Figure 11–10. Math blocks

 Addition, Subtraction, Multiplication, and Division: For each basic
numeric operation there is a corresponding block. When two number
values are added to these blocks, they return a new value according to
the function of the block. For example, to add to two numbers, create
a block with the + symbol, and then drag a number value into each of
the two open spots. The result is the sum.

 Random Fraction: The Random Fraction block returns a random
value between 0.0 and 1.0. There is no indication in the documentation
if this value is single or double precision.

CHAPTER 11: App Inventor 373

 Random Integer: The Random Integer block takes two values and
returns an integer value between the two provided values, inclusively.

 Random Set Seed: The Random Set Seed is used set the seed for the
underlying random number generator.

 Other Functions: For each function found in the Java class Math,
there is a corresponding block that performs the same functions.
These include, sqrt, negate, min, max, quotient, remainder, modulo,
abs, round, floor, ceiling, expt, exp, log, sin, cos, tan, asin, acos, atan,
and atan2.

 Is a Number: The Is a Number block is used to test if a given value is
a number. We don’t see any way of testing if a value is an integer or
floating point value.

Logic Blocks
The blocks found in the Logic group are used to test and manipulate Boolean values.
Figure 11–11 shows the six Logic blocks.

Figure 11–11. Logic blocks

 True and False: The True and False blocks are used to create a value
of either true or false. Once you create a True or False block, you can
change it by using a little pull-down menu to set the value. This is
handy, because you don’t have to drag out a new block just to swap
values.

 Not: The Not block takes a Boolean value and inverts its value.

CHAPTER 11: App Inventor 374

 Equals: The Logic group contains a block for testing equality. This
seems to be the same as the one from the Math group; we suspect it
is included in both groups so it is easy to find.

 And and OR: The And block and the OR block are used to apply the and
or or function to two or more Boolean values. In Figure 11–11, they are
shown with only a single connector for values. When a value is added,
a new open connector appears for you to add additional values.

Control Blocks
Control blocks provide a way to control the flow of a program. This includes if-else
statements as well as loops. There are also a few blocks used to interact with the
environment your application is running in. Figure 11–12 shows the Control blocks.

Figure 11–12. Control blocks

CHAPTER 11: App Inventor 375

 If: The If block takes a test value and a number of command blocks to
be executed of the test value is true.

 Ifelse: The Ifelse block is just like the if block, except it has an
additional spot for adding blocks the test value is false.

 Choose: The Choose block is similar to the Ifelse block, except it is
used to set a value. The Choose block is much like the ternary
statement in Java.

 Foreach: The Foreach block is used to iterate over the contents of a
list. The blocks in the do section are run for each item in a list.

 While: The While block executes the blocks in the do section until the
value test is false. If the value test starts out as false, the do block is
not executed.

 Get Start Text: The Get Start Text block is used to get any arguments
passed to this application. This does not return a value during the
normal App Inventor workflow.

 Close Screen: The Close Screen block is used to exit the application.

 Close Screen with Result: The Close Screen with Result block is
used to exit the application with a particular value. This block is not
used during the normal App Inventor workflow.

Color Blocks
App Inventor has a special set of blocks for presenting the available colors available to
the application. Listing 11–13 shows the Color blocks.

In Figure 11–13 we see 14 color blocks – one for each color available to the application,
including the color None. Each block is the color indicated by the text, e.g., the block
Pink is displayed in a pink color. Note that there is no way to specify a custom color
through RGB values or any other way. While images used in an App Inventor application
seem to support a full range of colors, the components in the application can only use
one of these colors. This seems like an odd limitation to us; hopefully it will be
addressed in future version of App Inventor.

CHAPTER 11: App Inventor 376

Figure 11–13. Color blocks

Creating Application Logic with the Block Editor
The example application that comes with this chapter includes some logic defined with
the Block Editor application. The logic enables the button in the application to start and
stop an animation. For every component you add to your application, a corresponding
item is added the My Blocks tab in Block Editor. Figure 11–14 shows the My Blocks
items.

CHAPTER 11: App Inventor 377

Figure 11–14. My Blocks with Screen1 open

On the left of Figure 11–14 we see an item for each component in our application, as
well as an item called My Definitions. Clicking any of these items will open a panel
containing the associated blocks for each item. In Figure 11–14 we see the contents of
the Screen1 item. The first two blocks labeled Screen1.ErrorOccured and
Screen1.Initialize are Event blocks, and will be executed when any error occurs in the
application and when the application first launches. Figure 11–15 shows the
Screen1.Initialize block used in our application.

Figure 11–15. Screen1.Initialize block

CHAPTER 11: App Inventor 378

By dragging the Screen1.Initialize block from Figure 11–14 out into the center of the
Block Editor application, we can populate it so it looks like Figure 11–15. In the Initialize
block we want to set the Heading property of each orb to a random value. So for the red
orb, we open the block panel for the component RedOrb and drag out the block used
for setting the Heading property and drop it into the do section of the Screen1.Initialize
block. Any value can be dragged into the right side of the Heading block to set the
value. In our case, we want to use a procedure of our own design called
randomHeading, shown in Figure 11–16.

Figure 11–16. randomHeading

In Figure 11–16 we see the procedure randomHeading that we defined in our
application. This is a very simple procedure and does not actually call any other blocks
in the do section. It does however create a random value by adding three blocks to the
return connector. The first of the three blocks is a Multiplier block that contains the other
two blocks, a random value and the value 360. Once the randomHeading block is added
to the application it becomes available under the My Definitions blocks found under the
My Blocks tab, as shown in Figure 11–17.

Figure 11–17. My Definitions

In Figure 11–17 we see all of the definitions in our application. At the top is the block
randomHeading. This block is dragged out from here and added to the right side of the
Heading blocks found as shown in Figure 11–15. When the application first launches,

CHAPTER 11: App Inventor 379

the Screen1.Initialize procedure is called, but there is no animation running yet, as
shown in Figure 11–18.

Figure 11–18. Running application in emulator

Once the application launches, as shown in Figure 11–18, the application displays the
three orbs and a button. When the user clicks the button, the text on the button will
change and the orbs will start animating. In order to define the logic that is executed
when the user clicks the button, we have to find the Click procedure for Button1, as
shown in Figure 11–19.

CHAPTER 11: App Inventor 380

Figure 11–19. Blocks for Button1

In Figure 11–19 we see the blocks available for the component Button1. We can see that
there are three blocks that correspond to an event: Click, GotFocus, and LostFocus.
Under the Event blocks are a number of blocks for reading and setting the different
properties for Button1. The bottom most block in Figure 11–19 is the block we are going
to use to set the text of the button. Figure 11–20 shows our definition of the
Button1.Click procedure.

CHAPTER 11: App Inventor 381

Figure 11–20. Button1.Click procedure

In Figure 11–20 we see our implementation of the Button1.Click procedure. There is a
single block directly connected to the Button1.Click block that is an ifelse block. The
ifelse block uses the value stored in the global variable isRunning. If isRunning is true we
set isRunning to false, set the text of the button to say “Start Animation,” and call the
procedure setSpeedsOnOrbs and pass the value 0. If isRunning is false we do the
opposite: we set isRunning to true, update the button text to say “Stop Animation,” and
use the setSpeedsOnOrbs procedure to set the orb’s speed to 1. There are two blocks
used in Figure 11–20 that are defined elsewhere by our application: the block isRunning
and setSpeedsOnOrbs. These are shown in Figure 11–21.

Figure 11–21. The isRunning block and setSpeedsOnOrbs block

In Figure 11–21 there are two blocks defined. The first is a global variable called
isRunning and has an initial value of false. The second clock is a procedure called
setSpeedsOnOrbs and takes a single argument called speed. The block speed is used

CHAPTER 11: App Inventor 382

to set the speed property of each of the three orbs. To use these blocks in other parts of
the application, you drag them out of the panel shown in Figure 11–17.

When the speed of the orbs is set to 1, as is the case in Figure 11–20, the orbs will start
moving according to the their heading and speed value. When the orbs reach the edge
of the Canvas they are on, they bounce off the edge and continue animating. Each orb is
a component of the type ImageSprite. The type ImageSprite has a number blocks
associated with it. Figure 11–22 shows some of these blocks.

Figure 11–22. Blocks for ImageSprites

Figure 11–22 shows a number of blocks that are associated with the component
RedOrb. RedOrb is an ImageSprite so a lot of its blocks deal with common uses of
sprites. To implement our bouncing effect, we are interested in the blocks EdgeReached

CHAPTER 11: App Inventor 383

and Bounce for all three of our orbs. Figure 11–23 shows our use of the blocks
EdgeReached and Bounces.

Figure 11–23. EdgeReached and Bounce blocks

In Figure 11–23 we see that we have define behavior for each of the three orbs. When
they reach the edge of a Canvas, the corresponding procedure is executed calling
Bounces on that orb. Make note that each of these three procedures has an argument
defined. For the RedOrb.EdgeEached procedure the argument is called edge, while the
version for the GreenOrb is called edge1 and the BlueOrb version is called edge2. If we
were defining three Java methods we would be free to name the arguments the same
thing. It might even be considered bad form to name them differently. In the Block Editor
we must name all of the arguments differently. This is done, we think, so that there is a
unique block created within the My Definitions panel, allowing the user to select the right
block for the right procedure.

We have discussed all of the blocks required to get our application running the way we
want. It is time to consider some of the limitations we have encountered along the way.

Limitations of App Inventor
App Inventor and the corresponding application Block Editor go a long way to simplify
app development. But as can be clearly seen in this chapter, only a specific set
functionality is exposed by the App Inventor components. There are also limitations
brought about by the visual programming language, as well as generally bugginess of
the current release. Let’s explore each of these facets to understand the limitations of
App Inventor.

CHAPTER 11: App Inventor 384

Limited Set of Components
App Inventor provides the “developer” with a fixed set of components and each
component brings a fixed set of functionality. If functionality outside of the provided
components is required, the developer is out of luck: there is simply no way to extend
the library of components in App Inventor. Figure 11–24 shows four sets of components
out of the total of ten groups.

Figure 11–24. Four out of ten component groups

In Figure 11–24 we see four groups of components. The Basic group contains the
fundamental widget components used to create an application. However, there are
some big omissions. For example, there is no table component or a web view
component. There is a check box, but no radio button. The Social group contains a
number of interesting items. Providing access to the host device’s contacts, email, and
phone dialer definitely increases the scope of usefulness. The inclusion of the Twitter
button is nice, but without the ability to create a component to work with other social
media web sites, we are very limited.

The Media group provides controls for capturing and playing media. These are required
components, and we are happy to see them included. Even when using the normal
Android SDK, widgets for playing media are fully built components with little space for
modification. The Sensor group extends the reach of the application into the domain of

CHAPTER 11: App Inventor 385

phone specific development that we consider the most interesting. Having access to the
unique sensors available on phones is the one thing that really separates mobile
development from desktop development.

All in all we look forward to seeing more components available in App Inventor, but more
important, we want to see the ability to add new components.

Limitations in Block Editor
The Block Editor application provides a unique way of expressing programming logic. It
is certainly a different way to program. The Block Editor is really bringing two things to
the table. The first is the graphical nature of the tool, which allows users to click and
drag blocks together. The second is the underlying language that Block Editor is writing.

The graphical nature of the Block Editor application is a little buggy, but when things are
working as expected it can be pleasure to use. For example, the editor simply prevents
you from making mistakes common to new developers. For example, you can’t forget a
semicolon because there are no semicolons. Basically your application is always in a
compilable state, if not necessarily in a correct state.

The language being used by the Block Editor seems to be something called YAIL (Yet
Another Intermediate Language) in combination with some custom XML. At least we
think that is what it is using – the documentation from Google on the topic is very
limited. If you unzip the project code that comes with this chapter, you will find a number
of different files that describe the project. One of the files is a YAIL file and a couple of
other oddball files types.

We don’t mean to be critical of YAIL; frankly we know almost nothing about it. What
concerns us is there is no Java code being produced at all. This is problematic because
it reduces the value of App Inventor as a learning tool. A new developer using App
Inventor is learning to put a program together with tools that are used by no one else.
There is no path for them to extend their knowledge and move beyond App Inventor;
they simply have to start over with Java.

Another concern we have with the language used by Block Editor is that there is no way
to call a procedure on a component in a dynamic way. When we first put this application
together, we tried to put all three orbs into a list. We were going to write the procedure
that iterated over the orbs and set each orbs speed. We couldn’t do this because the
items returned by the foreach block are type-less values. There is no concept of variable
for any type more complex than numbers, strings, and Booleans.

At the time of this writing, we would not recommend App Inventor for any real work. It is
definitely worth keeping an eye on, and perhaps Google will open up its development
process to third parties. This would allow the community to add new component types,
which could catapult this experimental product into something really useful.

CHAPTER 11: App Inventor 386

Summary
In this chapter we looked at the steps required to get App Inventor set up. We explored
the web-based tool used for laying out the application, and how it connects with the
Block Editor application. Using the Block Editor we took a detailed look at the types of
functions – or blocks – that are available in that tool. We used those blocks to create a
very simple animation. Lastly, we discussed the limitations of App Inventor and some
hopes for the future.

387

387

Index

■ Special Characters
and Numbers

~/.android/avd/ directory, 52

123 math block, 371

■ A
aapt utility, 25

About CocoaDroid menu item, 125

About menu item, 151

AboutView class, 354, 360

about.xml file, 359–360

AbsoluteLayout, 317

Abstract Window Toolkit (AWT), 106

AccelerateDecelerateInterpolator, 342

acceptInput field, 325

acceptInput variable, 344, 347, 353

AccessToken class, 265

ActionScript, for Flash applications, 246

.actionScriptProperties file, 241

Activity class, 11, 65, 76, 79, 95, 244

Activity class source files, 126–128

Activity Java source files, 79–81

activity tag, 75

ADB (Android Debug Bridge) shell, 95

adb help command, 50

adb install command, 25

adb install sl4a_r3.apk command, 197

adb logcat command, 84

adb tool, 242

Add (a New Software Site) button, Eclipse,

29

Add Items to List block, 371

Add menu item, 202

Add Movie service, 252

addAnimation, 347

AddHighScoreServlet class, 288, 290–291

Addition math block, 372

addJavascriptInterface method, 225

addSprites method, 357

addView() method, 88–89, 91

ADK (Android Development Kit), 1, 50–53

Adobe AIR, web applications with, 238–250

ActionScript for, 246

building and deploying, 240–244

Flex UI for, 244–246

overview, 239–240

Adobe Flash. See Flash, web applications

with

ADT (Android Development Tools)

Eclipse IDE, 29

Google Eclipse official update site, 29

migrating applications to, 97–104

creating new projects from copies of

projects, 97–98

creating signed APKs of applications,

101

deploying to devices, 99–101

Eclipse with ADT plugin, 97

making copies of projects, 97

tools plugin for, 28

Advanced tab, System Properties dialog

box, 5

alert dialogs, 90

AlertDialog class, 267

AlertDialog.Builder class, 90, 267

AlphaAnimation, 341

And logic block, 374

android-9 Android platform API Level, 120

Android APIs, 210

Android AsyncTask class, 176–177

android command, 53

android create avd command, 52

android create avd -n

android23api9_hvga_32mb-t

android-9 -c 32M command, 121

android create project command, 53, 59–60,

75

Android Debug Bridge (ADB), 17–18, 95

Index 388

android delete avd -n

android23api9_hvga_32mb

command, 121

android delete command, 52

Android Development Kit (ADK), 1, 50,

52–53

Android Development Tools. See ADT

Android Device Chooser dialog box, 100

Android Devices node, NetBeans, 37

.android directory, 52, 306

Android emulator, 13

Android Facebook Library, 268, 274

Android GUI Manipulation Methods in

KahluaDroid.java (partial), 180

android list avd command, 121

Android Manifest tab, 101

Android-Mode utility, 54

Android node, Eclipse, 31

Android Platform directory, 46

Android Preferences editor, Eclipse, 31

Android Project option, 31

Android SDK and AVD Manager tool, 14, 53

Android Toast, 212

android variable, 225, 231

Android Virtual Devices. See AVDs

android.bat command, 53

androidinterpreter, 162

AndroidMain-app.xml file, 240–241

AndroidMain.mxml file, 244

AndroidManifest.xml file, 12, 224–225,

241–242, 263–264, 299–300, 306

android_version function, 171

anim directory, 344

Animate class, 249–250

Animation class. See also frame by frame

animations

implementing, 343–353

overview, 341–342

animation, in JavaScript, 231–235

Animation scaleDown2, 348

Animation section, App Inventor project, 364

Animation trans2, 348

Animation.AnimationListener interface, 349

AnimationDrawable, 330

AnimationSet, 342, 347–348, 352

AnimationThread class, 355–356

AnimationUtils class, 344

ANR Dialog box, 109

ANR state, 109

Ant Build Debug command, 60

Ant Build Debug tool, 53

Ant Build Install tool, 53

Ant Build Uninstall tool, 53

ant build.xml file, 53

ant clean command, 53

Ant Clean tool, 53

ant compile command, 53, 60

Ant Compile tool, 53

ant debug command, 53, 60

ant install command, 53

ant install process, 17

ant install step, 17, 25

ant uninstall command, 53

ant.bat clean command, 53

ant.bat compile command, 53

ant.bat debug command, 53

ant.bat install command, 53

ant.bat uninstall command, 53

ANTI_ALIAS_FLAG flag, 340

AnticipateOvershootInterpolator, 343, 345,

348

Apache Ant tool, 9

Apache Harmony JVM and DVM, 26–27

API (application programming interface), 5,

49, 312

apiKey attribute, 307

.apk application package, path to, 25–26

apk-debug utility, 241

apkbuilder utility, 25

APKs (application packages)

creating signed, 101

and SL4A

downloading, 197

installing, 197

installing interpreters with archives,

208–209

App Engine datastore, GAE service, 285

App Inventor Setup, 361–363

App Inventor tool, 361–386

Block Editor application in, 365–383

Color blocks, 375

Control blocks, 374–375

creating logic, 376–383

Definition blocks, 367–368

List blocks, 369–371

Logic blocks, 373–374

Math blocks, 371–373

Text blocks, 368–369

limitations of, 383–386

in Block Editor, 385–386

components, 384–385

setting up, 361–365

Index 389

App Inventor web page, 363

Append to List block, 370

Application Framework, 22

Application Launcher icon, 64

application methods

calling as Lua functions, KahluaDroid

snippets file, 183–185

exposing to KahluaDroid project,

180–183

implementing small Lua callable

runtime methods, 182–183

sharing data between Java and Lua,

180–181

Application Not Responding state, 109

application packages. See APKs

application programming interface (API), 5,

49, 312

applications

core files, 74–81

default String table files, 78–79

GUIs, 76

layout file for example code, 76–77

main Activity Java source file, 79–81

main layout files, 75

Manifest files, 74–75

and View class, 76

creating signed APKs, 101

design, 112–113, 121–122

example project, 58–59

exiting activities, 86–87

extending

by embedding interpreters, 107–108

interpreters by embedding, 108–109

generating foundation projects, 59–61

GUI initialization code, 85–86

layer, 22–23

loading asset resources, 144–145

migrating to Eclipse/ADT, 97–104

creating new projects from copies of

projects, 97–98

creating signed APKs of applications,

101

deploying to devices, 99–101

Eclipse with ADT plugin, 97

making copies of projects, 97

preparing to run, 61–66

creating log filter in DDMS

application, 64–66

replacing default generated code,

63–64

starting debugging session, 61–63

private files for, 92–95

browsing with ADB shell, 95

browsing with DDMS File Explorer,

93–94

running, 66–81, 122–153

Activity class source file, 126–128

application asset resources, 144–145

BASIC code, 133–136, 151–153

CocoaDroid, 123–125, 143–151

core files, 74–81

custom ArrayAdapter class, 128–129

demo, 67–74

desktop, 114–118

Hello Android BASIC! script, 131–133

main XML layout resource file, 125–

126

MenuInflater object, 131

saving sessions in scratch files,

136–139

viewing files in DDMS File Explorer,

142

Work Files, 139–142

XML menu layout resources,

130–131

XML strings table, 129–130

runtime, 22

architecture, 20–27

components, 23

platform stack, 21–23

Application Framework, 22

C/C++ runtime libraries, 22

HALs, 21

runtime platform, DVM, 23–27

ArrayAdapter class, implementing custom,

128–129

asset resources, loading, 144–145

assets directory, 144

assets folder, 183

Asynchronous Threading Implementation in

KahluaDroid.java (partial), 177

AsyncTask class

executing background code with,

177–178

extending, 258–259

running BASIC code asynchronously

using, 133–136

atest2.bas file, 115

AT_MOST masks, 327

AttributeSet constructor, 325

authenticating users

for GAE services, 287

Index 390

with REST

for Facebook, 268–272

for Twitter, 261–265

AuthorizeListener class, 270

Automatic setting, Run Configuration, 100

Available Plugins tab, NetBeans, 36

Available Software dialog box, Eclipse, 30

AVDs (Android Virtual Devices)

image locations, 52

preparing, 51–52

AWT (Abstract Window Toolkit), 106

■ B
background attribute, 316

Background class, 332–333

background code, multi-threading for, 110

BaseLib runtime support library, 167

BASIC (Beginner's All-purpose Symbolic

Instruction Code), 111

BASIC class, 113

Basic group, App Inventor, 384

BASIC language

asynchronously running using

AsyncTask class, 133–136

CocoaDroid samples, 142–143

programming with, 110–112

background, 111

Cocoa-BASIC interpreter for Java,

111–112

running CocoaDroid

sample programs, 149–151

sample scripts, 145–148

BASIC.java file, 118

Beginner's All-purpose Symbolic Instruction

Code (BASIC), 111

BitmapDrawable class, 320, 329–330

BitmapDrawable object, 320

Blobstore Java API, GAE (Google App

Engine) service, 285

Block Editor application, 365–383

Color blocks, 375

Control blocks, 374–375

creating logic, 376–383

Definition blocks, 367–368

limitations in, 385–386

List blocks, 369–371

Logic blocks, 373–374

Math blocks, 371–373

Text blocks, 368–369

block randomHeading, 378

Blocks Editor, 361, 366

Bluefish utility, 55

body element, 229

Bounce block, 383

BounceInterpolator, 343

boundCenterBottom method, 310

Build Commands, 56

Build tab, Project Properties dialog box,

56–57

Building utilities task, 195

build.xml file, 53

Button class, 87

Button Maker Button button, 68, 70

Button1. Click procedure, 380

Button1 component, 380

Button1.Click block, 381

Button1.Click procedure, 52, 381

buttons, disabling and enabling, 87–88

■ C
C/C++ runtime libraries, 22

C main function, 212

C Main Module for Accessing SL4A (ndk-to-

sl4a.c) \b, 212

C Support Functions for Accessing SL4A

(ndk-to-sl4a.c) \b, 213

Canvas class, direct rendering with, 336–

340

canvas element, 228, 230, 233–236, 238

Canvas object, 336

canvas tag, 232

canvasClick function, 235

canvas.getContext("2d"), 232

Cap block, 368

Cap.ROUND constant, 340

cat command, 4

Categories list, NetBeans, 40

cert.p12 file, 241

Channel API, GAE (Google App Engine)

service, 285–286

charges, for GAE (Google App Engine),

283–284

checkForGroups function, 236–237

checkForMatches function, 237

checkMatches method, 348–349, 353

Choose control block, 375

CLAMP value, 339

classes.dex file, 11, 25

Clear All Movies service, 252

Clear button, 124, 138

Index 391

Clear Button (button_clear) control, 169

Clear Single Movie service, 252

clicked method, 246, 248–249

client variable, 256

client.execute() method, 302

cloning SL4A source code, Mercurial

program, 216–218

Close Screen control block, 375

Close Screen with Result control block, 375

Cocoa-BASIC AWT project, 112–120

application design, 112–113

running desktop application, 114–118

source code for, 118–120

cocoa-basic-awt.jar file, 114–115

Cocoa-BASIC interpreter for Java

programming language, 111–112

CocoaDroid, 120–153

application design, 121–122

BASIC samples

overview, 142–143

programs, 149–151

scripts, 145–148

checklist, 120–121

main Activity screen, 123–125

running applications, 122–153

Activity class source file, 126–128

BASIC code asynchronously using

Android AsyncTask class, 133–136

custom ArrayAdapter class, 128–129

Hello Android BASIC! script, 131–133

loading application asset resources,

144–145

main XML layout resource file,

125–126

MenuInflater object, 131

saving sessions in scratch files,

136–139

viewing files in DDMS File Explorer,

142

Work Files, 139–142

XML menu layout resources,

130–131

XML strings table, 129–130

CocoaDroidActivity class, 122, 131

CocoaDroidActivity.java file, 132

CocoaDroidCommandInterpreter class, 122,

124, 135

cocoadroid_main_menu.xml file, 131

code editors, 53–58

configuring, 56–58

selecting, 53–55

editor alternatives, 54–55

Geany code editor, 55

Code Input Text Field (edittext_input)

control, 169

code repositories, SL4A, 195–196

coding techniques, 81–96

centralizing application GUI initialization

code, 85–86

creating controls dynamically at runtime,

88–89

disabling buttons, 87–88

enabling buttons, 87–88

exiting application activities, 86–87

Log API, 81–84

methods, 81–82

SDK log viewers, 83–84

styles, 81–82

making menus, 95–96

making toasts, 90

private application files, 92–95

browsing with ADB shell, 95

browsing with DDMS File Explorer,

93–94

showing alert dialogs, 90

system notifications, 91

Color blocks, in Block Editor application,

375

Color.DKGRAY constants, 339

ColorDrawable type, 330, 333

Color.LTGRAY constants, 339

colOrRowSize value, 333

com.example.myandroid.MyAndroidSdkApp

Activity2 class, 75

command line, and AVDs, 51–52

CommandInterpreter class, 113, 119, 122

CommonAndroidCodeLibrary class, 122,

145

Configuration class, 265

ConsoleWindow class, 113, 119

consumer varaible, 262

CONSUMER_KEY constant, 261

CONSUMER_SECRET constant, 261

Context constructor, 318, 325

Context.getResources() method, 320

contrib folder, 162

Control blocks, in Block Editor application,

374–375

controls, creating dynamically at runtime in

code, 88–89

Copy operation, 146

CoroutineLib runtime support library, 167

Index 392

Create AVD button, 14

Create new Android Virtual Device form, 13

Create project from existing sample option,

32

Create project from existing source radio

button, 32, 97

Create project from scratch option, IntelliJ

IDEA, 44

Create Read Update Delete (CRUD), 252

createGridPath() method, 333

CRUD (Create Read Update Delete), 252

ctx variable, 235

currentTick variable, 232

■ D
Dalvik Debug Monitor Server. See DDMS

Dalvik Debug Monitor tool, 53

Dalvik Virtual Machine. See DVM

/data/data/ directory, 142

DataInputStream class, 113

ddms command, 53

DDMS (Dalvik Debug Monitor Server)

application, creating log filter in, 64–66

File Explorer

accessing startup scripts from, 190

browsing device file systems with,

93–94

viewing files in, 142

ddms.bat command, 53

Debug logging level, 82

debugging starting session, 61–63

debug.keystore file, .android directory, 306

Definition blocks, in Block Editor application,

367–368

DELETE method, 252

deltaRadius field, 358

deltaX field, 358

deltaX value, 359

deltaY field, 358

deltaY value, 359

Deploy button, 282

development environment

running SL4A in emulator, 196

for using Kahlua2 in Java, 158

development tools, 49–104

ADK, 52–53

and code editors, 53–58

configuring, 56–58

selecting, 53–55

coding techniques, 81–96

centralizing application GUI

initialization code, 85–86

creating controls dynamically at

runtime in code, 88–89

disabling buttons, 87–88

enabling buttons, 87–88

exiting application activities, 86–87

Log API, 81–84

making menus, 95–96

making toasts, 90

private application files, 92–95

showing alert dialogs, 90

coding with SDK, 50

environment dependencies, 50–52

ensuring development kit locations

are on path, 50

preparing AVDs, 51–52

example application project, 58–59

generating foundation projects, 59–61

migrating applications to Eclipse/ADT,

97–104

creating new projects from copies of

projects, 97–98

creating signed APKs of applications,

101

deploying to devices, 99–101

making copies of projects, 97

opening Eclipse with ADT plugin

installed, 97

preparing to run applications, 61–66

creating log filter in DDMS

application, 64–66

replacing default generated code,

63–64

starting debugging session, 61–63

running applications, 66–81

core files, 74–81

demo, 67–74

.dex file, path to, 25–26

dialogClosed() method, 324

DIALOG_CONFIRM_TWEET constant, 267

DialogInterface.OnClickListener class, 268

direct rendering, with Canvas class,

336–340

directory structure, 60–61

displayResults method, 302–303, 308

Division math block, 372

doDraw method, 356–357

doGet method, 291, 293–294

doInBackground method, 134, 258, 302–303

domain specific languages (DSLs), 105

Index 393

doneAnimating, 351, 353

Downcase block, 369

draw method, 359

Drawable class, game development with,

328–336

methods for, 328–330

and NinePatchDrawable class, 334–336

subclasses of, 330–334

drawable directory, 336

drawRect() method, 339

drawText() method, 340

drawTextOnPath() method, 340

DSLs (domain specific languages), 105

DVM (Dalvik Virtual Machine), 23–27

and Apache Harmony JVM, 26–27

JVM performance, 27

path to .apk application package, 25–26

path to .dex file, 25–26

dx program, 24–25

■ E
easeboth function, 233

Eclim utility, 54

Eclipse

download area, 28

with GAE, 278–280

home page, 28

Eclipse ADT (Android Development Tools)

Eclipse IDE, 29

Google ADT Eclipse official update site,

29

plugin setup, 29–32

creating projects, 31–32

installing, 29–31

tools plugin for, 28

Eclipse IDE (Integrated Development

Environment), 28–32

development with

with ADT, 29

Eclipse download area, 28

Eclipse home page, 28

Google ADT Eclipse update site, 29

tools plugin for Eclipse ADT, 28

migrating applications to, 97–104

creating new projects from copies of

projects, 97–98

creating signed APKs of applications,

101

deploying to devices, 99–101

making copies of projects, 97

opening with ADT plugin installed, 97

Eclipse IDE plugin, 216

Eclipse Mercurial plugin, 217

Eclipse plugin, using Mercurial program

with, 217

EdgeReached block, 383

Edit button, 5

EditText field, 87

EditText view, 316

EditText View class, 124

Emacs utility, 54

embedding Kahlua2, 165–168

EmbossMaskFilter, 340

emulator, running SL4A in, 196–209

development environment configuration,

196

downloading APKs, 197

installing APKs, 197

installing interpreters, 202–209

endCheck function, 237–238

endGame() method, 324

environment dependencies, preparing AVDs

deleting from command line, 51–52

image locations, 52

Environment Variables button, System

Properties dialog box, 5

Environment Variables window, 5

Equal To block, 369

Equality and Inequality math block, 371

Equals logic block, 374

Error logging level, 82

eval method, 135, 253

evalCodeString method, 134–135, 153

EvalCodeStringAsyncTask class, 133

evalCodeStringSync method, 151–153

EXACTLY masks, 327

exampleFunction function, 240

execute method, 134, 256, 259

executeSync method, 189

executeWithArray method, 297

exposeGlobalFunctions, 168, 180

extending AsyncTask class, 258–259

Extensible Markup Language. See XML

■ F
Facebook authentication dialog box, 268

Facebook Social Graph API, 274

Facebook, with REST

authenticating user, 268–272

overview, 268

Index 394

Social Graph API for, 272

FaceTweet application, 270

FaceTweet class, 261

FB_APPLICATION_ID constant, 271

File Explorer menu item, DDMS application,

93

File Explorer tool, 142

file systems

browsing with ADB shell, 95

browsing with DDMS, 93–94

fillAfter attribute, 345

fill_parent attribute, 315

fillRect method, 234

Filter Name field, 64

findOrbForXY function, 236

findViewById method, 77, 299, 319–320,

324

fivePercent value, 333

FLAG_FULLSCREEN, 323

Flash Builder plug-in, Eclipse, 222

Flash, web applications with, 238–250

ActionScript for, 246

building and deploying, 240–244

Flex UI for, 244–246

overview, 239–240

Flex. See Flash, web applications with

Flex UI, for Flash applications, 244–246

.flexProperties file, 241

Foreach control block, 375

frame by frame animations, 353–360

FrameLayout class, 316, 360

FrameLayout root, 360

function keyword, 240

fx:Script tag, 248

■ G
GAE (Google App Engine), 275–310

charges for, 283–284

creating application in, 276–278

Eclipse with, 278–280

example using, 287–297

accessing services with Android,

297–300

adding HighScore service, 290–293

querying HighScore service, 293–297

querying top ten scores, 300–303

querying top ten scores for user,

303–305

viewing user location on map,

305–310

project structure for, 280–283

services of, 284–287

App Engine datastore, 285

authenticating users for, 287

Blobstore Java API, 285

Channel API, 285–286

Images API, 286

Mail API, 286

Memcache, 287

Task Queues API, 287

XMPP, 287

signing up, 276–278

game development, 311–360

Animation class, 341–353

direct rendering with Canvas class,

336–340

with Drawable class, 328–336

methods for, 328–330

and NinePatchDrawable class,

334–336

subclasses of, 330–334

frame by frame animations for, 353–360

with View class, 312–328

custom classes, 320–328

displaying layout in code, 317–320

XML layout for, 312–317

GameActivity class, 318, 320, 322–323, 325

GameManager.SERVICE_URL variable, 305

game_name parameter, 305

gamenameEditText variable, 305

GameView class, 320–322, 324–328

GameView square, 326

gameView.reset, 324

game.xml file, 321

Geany code editor, 55

Geany utility, 53

GET method, 252

Get Single Movie service, 252

Get Start Text control block, 376

get variable, 256

getDrawable() method, 320

getHighScore function, 231

getInterpolation method, 342

getIntrinsicHeight() method, 329

getIntrinsicWidth() method, 329

getMinimumHeight() method, 329

getMinimumWidth() method, 329

getScore() method, 324

getScreenHeight method, 230–231

getScreenWidth method, 230–231

getString() method, 78, 129, 258

Index 395

getTag() method, 89

GetTopTen class, 301, 304, 308

GetUsersOfGame class, 304

getView method, 129

getWidth, 327

getWindow, 323

Google ADT (Android Development Tools)

Eclipse official update site, 29

Google Android Platform, 38

Google App Engine. See GAE

GradientDrawable, 331

graphical user interfaces (GUIs), 15, 49, 76,

176

Graphics2D class, 336

gravity attribute, 315

Greater Than block, 369

GridDrawable class, 333

GridDrawable constructor, 333

Group element, 245–246, 248

GroupView, 315

GUI threads, running Lua code on, 176–179

executing background code with

AsyncTask class, 177–178

executing UI code on main thread,

178–179

GUIs (graphical user interfaces), 15, 49, 76,

176

■ H
HALs (hardware abstraction layers), 21

Heading blocks, 378

Heading property, 378

heightMeasureSpec, 327

Hello Android BASIC! script, 131–133

Hello World examples, with SL4A (Scripting

Layer for Android), 219–220

HelloAndroidSdk directory, 9

Hg executable file, 216–217

hg -v command, 216

High Score dialog, 314

HighScore class, 289–290, 303

highscore element, 230

HighScore objects, 339–340

highscore parameter, 291

HighScore service, GAE example

adding, 290–293

querying, 293–297

highScore variable, 291

HighScoreOverlay class, 309–310

HighScore.toList() utility method, 339

HighScoreView class, 336, 339

History List, 124

HtmlOnAndroid class, 223

HtmlOnAndroid.java file, 225

HttpClient class, 256

HttpGet class, 256

HttpServlet class, 291

■ I
id attributes, 316

id class, 319

IDEs (Integrated Development

Environments), 27, 49

If control block, 375

Ifelse control block, 375

I'm Feeling Lucky function, 286

image variable, 240

ImageButton View class, 124

Images API, GAE (Google App Engine)

service, 286

ImageSprite type, 382

ImageSprites, App Inventor project, 364

ImageSprites properties panel, App Inventor

project, 365

ImageView, 320, 326

index.html file, 227–229, 232, 280, 288

Information logging level, 82

init() method, 248, 325, 339

initialize() method, 85, 87, 128

innerPaint variable, 339

innerRect Rect object, 339

Input field, 124

Install button, NetBeans, 36

Install Selected button, 8

Installed tab, NetBeans, 36

installing, 2–9

Eclipse ADT plugin setup, 29–31

JDK, 3

SDK, 3–9

Apache Ant tool, 9

API levels, 5

platform setup, 6–9

install.sh script, 241

int constant, 319

int type, 246

Integrated Development Environment,

Eclipse. See Eclipse IDE

IntelliJ IDEA

Community Edition

code repository, 43

Index 396

home page, 42

project repository, 43

download areas, 42

Early Access Program, 42

IDE, development with, 42

official sites, 43

plugin, using Mercurial program with,

218

interface controls, user, 169–170

INTERNET permission, 225–226, 300

interpolate attribute, 345

interpreter project, 162–168

building

from console, 163

from IDEs, 163–164

embedding Kahlua2, 165–168

running, 164–165

setting up, 162–163

interpreters

extending applications by embedding,

107–108

extending by embedding applications,

108–109

for SL4A, installing, 202–209

Interpreters entry, 199

Interpreters screen, 202

Is a List block, 371

Is a Number math block, 373

Is in List block, 371

Is List Empty block, 371

isRouteDisplayed method, 308

isRunning block, 381

isRunning variable, 381

ItemizedOverlay class, 310

■ J
J2EE (Java Enterprise Edition), 275

J2SEPlatform constructor, 166

J2SEPlatform newEnvironment method, 166

J2SEPlatform newTable method, 168

J2SEPlatform.java class, 167

J2SEPlatform.java (partial) method, 166

Java

sharing data between Lua and, 180–181

using Kahlua2 in, 157–158

Java class math, 371

Java Data Objects (JDO), 281, 285

Java Development Kit (JDK), 3

Java Enterprise Edition (J2EE), 275

Java Native Interface (JNI), 23

Java Persistence API (JPA), 285

Java programming language, Cocoa-BASIC

interpreter for, 111–112

Java SE (JSE), 23

Java Virtual Machine (JVM), 22, 27

javac utility, 25

JavaScript Object Notation. See JSON

JavaScript, web applications with, 222–238

animation in, 231–235

application files, 226–231

calling Android methods from, 225–226

overview, 238

project for, 223–225

user interaction in, 235–238

JavaScriptInterface class, 225–226, 231

javax.mail package, 284

JDK (Java Development Kit), 3

JDO (Java Data Objects), 281, 285

jdoconfig.xml file, 292

jEdit utility, 54

JetBrains IntelliJ IDEA IDE Community

Edition, 42–47

JNI (Java Native Interface), 23

JNLP file, 365

JPA (Java Persistence API), 285

JRE Class White List, 276

JSE (Java SE), 23

JSON (JavaScript Object Notation),

209–210, 251, 253–255

json string, 256

json_array, 212

JSONArray class, 256

JSONObject class, 256, 258

JVM (Java Virtual Machine), 22, 27

■ K
Kahlua2

interpreter project, 162–168

building, 163–164

embedding, 165–168

running, 164–165

setting up, 162–163

Lua embedding with, 156–157

projects, 158–162

building, 160–161

runtime files, 159

runtime libraries, 161–162

using in Java, 157–158

kahlua2interpreter project root directory, 163

Kahlua2Interpreter.java, 162, 165

Index 397

KahluaAsyncTask class, 177

KahluaConverterManager, 167

KahluaDroid executeAsync method, 177

KahluaDroid Load Snippets Menu, 183

KahluaDroid loaded snippets, 184

KahluaDroid Lua Code Snippets Asset

File-lua_snippets.lua, 184

KahluaDroid Main Layout Resource

main.xml, 170

KahluaDroid Main Menu Resource-

kahluadroid_main_menu.xml menu

latout resource file, 172

KahluaDroid Main String Table Resource-

strings.xml, 174

KahluaDroid project, 168–192

calling application methods as Lua

functions, 183–185

exposing application methods to,

180–183

implementing small Lua callable

runtime, 182–183

sharing data between Java and Lua,

180–181

implementing application startup scripts,

185–192

accessing from DDMS File Explorer,

190

removing broken, 191–192

running applications with, 187–189

saving Lua code as, 185–186

using Lua comment blocks in,

189–190

running application, 169–176

initialization code, 174–176

menu, 172–173

running Lua code, 170–172

strings table, 174

user interface controls, 169–170

running Lua code on main GUI thread,

176–179

executing background code with

AsyncTask class, 177–178

executing UI code on main thread,

178–179

snippets file, 183–185

KahluaInterpreter.java, 162

KahluaThread instance, 168

KeyboardBuffer class, 113

keystore Alias, 102

Keystore selection dialog box, 102

Kurtz, 111

■ L
LAUNCHER category, 75

LayerDrawable class, 331, 334

Layout class, 76

layout files, 75–77

layout, for View class

displaying in code, 317–320

in XML, 312–317

layout() method, 327

layout_height attribute, 315–316

LayoutParams class, 89

layout_width attribute, 315–316

Length block, 369

Length of List block, 370

Less Than block, 369

libs subdirectory, 162

linear function, 233

LinearGradient constructor, 339

LinearInterpolator, 342

LinearLayout, 312, 315–316, 322

LinearView, 360

linePaint object, 340

List blocks, in Block Editor application,

369–371

list command, 116

LIST command, 150

List Movies service, 252

LIST statement, 151

Load button, 124, 139

Load Samples menu item, 125, 143

Load Snippets, 183

Load Snippets (menu_itm_snippets_load)

menu item, 172

Load Startup Script

(menu_itm_startup_script_load)

menu item, 172

Load Work menu item, 125, 139

loadUrl method, 224

localStorage varible, 231

Log API, 81–84

methods, 81–82

SDK log viewers, 83–84

styles, 81–82

Log class, 65, 81

log filters, creating in DDMS (Dalvik Debug

Monitor) application, 64–66

Log tab, DDMS application, 62

Log Tag, 64–65, 82

Log.d(String tag, String msg) method, 82

Log.d(String tag, String msg, Throwable tr)

method, 82

Index 398

Log.e(String tag, String msg) method, 82

Log.e(String tag, String msg, Throwable tr)

method, 82

Logic blocks, in Block Editor application,

373–374

logic, creating with Block Editor application,

376–383

Login to Facebook button, 270

loginTwitter method, 262

Log.i(String tag, String msg) method, 82

Log.i(String tag, String msg, Throwable tr)

method, 82

Log.v(String tag, String msg) method, 82

Log.v(String tag, String msg, Throwable tr)

method, 82

Log.w(String tag, String msg) method, 83

Log.w(String tag, String msg, Throwable tr)

method, 82

Lua

calling application methods as functions,

183–185

embedding of, 155–192

with Kahlua2, 156–157

Kahlua2 interpreter project, 162–168

Kahlua2 project, 158–162

KahluaDroid project, 168–192

using Kahlua2 in Java, 157–158

entering code, 170–172

implementing small callable runtime

methods, 182–183

running code, 170–179

sharing data between Java and, 180–181

and startup scripts

saving code as, 185–186

using comment blocks in, 189–190

Lua Callable Android Runtime Methods in

KahluaDroid.java (partial), 182

Lua Environment Variable Manipulation

Methods in KahluaDroid.java

(partial), 180

LuaCompiler runtime support library, 167

LuaJavaClassExposer class, 168, 180

■ M
Mail API, GAE (Google App Engine) service,

286

MAIN action, 75

Main-app.xml file, src directory, 240

Main Menu, 124

main method, 113

main thread, executing UI code on, 178–179

main.xml file, 298–299

Make a List block, 369

Make Text block, 369

make utility, 9

makePersistent method, 291

Maker button, 68

makeWideButton() method, 88–89

Manage apps menu item, 191

Manifest files, 74–75

manifest tag, 75

maps, viewing user location on, 305–310

mapView variable, 308

match_parent attribute, 315

Math blocks, in Block Editor application,

371–373

MathLib runtime support library, 167

McManis, Chuck, 111

MeasureSpec.getSize, 327

Media group, App Inventor, 384

Media section, App Inventor project, 365

Memcache, GAE (Google App Engine)

service, 287

Menu Implementation Methods in

KahluaDroid.java (partial), 173

MenuInflater object, 131

menus

for KahluaDroid application, 172–173

making, 95–96

Mercurial program

installing, 216

using Hg executable file, 216–217

using with Eclipse plugin, 217

using with IntelliJ IDEA, 218

Mercurial repository, 217

methods

calling from JavaScript, 225–226

for Drawable class, 328–330

MIRROR value, 339

modal dialogs, Twitter with REST example,

266–268

Model View Controller (MVC), 312–313

multi-threading, for background code, 110

Multiplication math block, 372

Multiplier block, 378

MVC (Model View Controller), 312–313

My Blocks tab, 376, 378

My Definitions blocks, 378

My Definitions panel, Block Editor, 383

MyAndroidSdkApp-debug.apk file, 11

MyAndroidSdkApp2-debug.apk package, 63

Index 399

MyAndroidSdkAppActivity application, 19

MyAndroidSdkAppActivity2 log filter tab,

DDMS application, 66

MyAndroidSdkAppActivity2.java file, 77, 79,

89

MyAndroidSdkAppActivity.java file, 11

/MyAndroidSdkAppProject/bin directory, 11

MyAndroidSdkAppProject folder, 16

MyAndroidSdkAppProject project, 59

MyAndroidSdkAppProject2 directory, 60,

63, 97

MyAndroidSdkAppProject2 project, 59

/MyAndroidSdkAppProject2_Eclipse

directory, 97, 224

MyAndroidSdkAppProject2_Eclipse project,

97

MyButtonTagData class, 89

■ N
NBAndroid (NetBeans Android)

creating projects, 40–41

official update site, 34

plugin, 33–34, 41

NetBeans

download area, 33

home page, 33

with NBAndroid plugin, 33

official update site, 34

NetBeans Android. See NBAndroid

NetBeans IDE, 33–41

development with

download area, 33

home page, 33

with NBAndroid plugin, 33

official update site, 34

NBAndroid plugin, 34–41

New Android Application screen, NetBeans,

41

New Project wizard, IntelliJ IDEA, 43–46

New Projects menu, GAE plugin, 278

newOrbAt function, 237

nine_patch.9.png file, 335–336

NinePatchDrawable class, 334–336

Not logic block, 373

Notification class, 91

NotificationManager class, 91

notifications, system, showing, 91

ns:OrbQuest element, 245

■ O
OAuth (Open Authentication), 251

oauth_verifier parameter, 265

onAnimationEnd, 349

onCancel method, 271

onClick events, 353

onClick method, 132, 267

OnClickListener class, 132

onComplete method, 271

onCreate() method, 85, 223, 231, 259, 301,

308, 323

onCreateDialog method, 267

onCreateOptionsMenu() method, 95

onDraw() method, 336, 339, 353

oneFifth variable, 327

onePercent value, 333

onLayout() method, 327–328

onLoad function, 229–230

onMeasure() method, 326–328

onNewIntent method, 264

onOptionsItemSelected() method, 95–96

onPostExecute method, 134–135, 258–259,

302

onProgressUpdate method, 134

onTap method, 310

Open Authentication (OAuth), 251

OR logic block, 374

Orb class, 240

Orb.as file, 239

orb_ids array, 325

OrbQuest class, 248

orb_quest.js file, 228–229

OrbQuest.mxml file, 245–246

orbScale variable, 249

OrbView class, 326, 351–352

OrbView image, 326

OrbView.layout() method, 327

OrbViews, 325–327

org.json package, 256

OsLib runtime support library, 167

Other Functions math block, 374

Output field, 124

OutputStringArrayAdapter class, 128

OvalShape, 331

■ P
p switch, 52

package tag, 75

package.sh script, 241

Index 400

padding attribute, 316

Paint class, 331, 340

PaintDrawable, 331

Paste operation, 147

PATH entry, 197

Path object, 333, 339

PATH variable, 4–5, 216

PathShape class, 331, 333

Perl APK file, 208

Perl scripting interpreter, 208

PersistenceManager class, 291

PFM factory class, 291

Pick Random Item block, 371

Plain Old Java Objects (POJOs), 285

platform setup, 6–9

platform stack, 21–23

Application Framework, 22

applications

layer, 22–23

runtime, 22

C/C++ runtime libraries, 22

HALs, 21

platform.newEnvironment platform instance,

166

Please enter a message and save it field, 68

plugins

JetBrains IntelliJ IDEA IDE Community

Edition, 43–47

NBAndroid, 33

opening Eclipse with ADT, 97

tools for Eclipse ADT, 28

PMF class, 291

POJOs (Plain Old Java Objects), 285

PorterDuffColorFilter class, 329

Position in List block, 371

POST method, 252, 273

PrintStream class, 113, 168

private application files, 92–95

browsing with ADB shell, 95

browsing with DDMS File Explorer,

93–94

Procedures calls, 367

Program class, 113, 122

PROGRAMS area, 142

program_templates directory, 144

program_templates/lua_snippets.lua code

file, 183

Project Checks dialog box, 101

Project Properties dialog box, Geany utility,

56–57

project structure, for GAE (Google App

Engine), 280–283

Properties section, App Inventor project,

364

provider variable, 262, 265

proxy implementations, using SL4A

(Scripting Layer for Android),

211–215

PUT method, 252

Python interpreter files, 205

Python Module for Accessing the

AndroidProxy, 211

Python script language, 206

■ Q
queryHighScores method, 294

QueryHighScoresServlet class, 288, 293

■ R
R class, 318–319, 324

RAD programming task, 194

RadialGradient object, 340

Random Fraction math block, 372

Random Integer math block, 373

Random Set Seed math block, 374

randomHeading block, 378

readStatus method, 258

ReadTweet class, 258–259, 268

RedOrb component, 378, 382

RedOrb.EdgeEached procedure, 383

RelativeLayout, 317

RELATIVE_TO_SELF constant, 347

remote procedure calls (RPC), 210, 251

Remove List Item block, 370

renderScene method, 232–234

REPEAT value, 339

Replace List Item block, 370

Representational State Transfer. See REST

requestLayout, 348–349, 353

res folder, 319

resource-constrained systems, designing

for, 109–110

rest directory, 344

REST (Representational State Transfer),

251–274

extending AsyncTask class, 258–259

with Facebook, 268–274

authenticating user, 268–272

Index 401

Social Graph API for, 272

and JSON, 253–255

overview, 252–259

with Twitter, 259–268

authenticating user, 261–265

modal dialog to confirm user request,

266–268

tweeting, 265

using in Android application, 255–257

restore method, 235

result variable, 309

Results Output Field (textview_output)

control, 169

R.id.dialogRoot, 320

R.id.yesButton constant, 319

R.java file, 77–78, 318–319

R.layout.game, 324

R.layout.score_dialog, 318–319

root LinearLayout, 315

root View, 313

rootLayout, 320

RotateAnimation class, 342

RotateDrawable and ScaleDrawable, 331

RPC (remote procedure calls), 210, 251

RPC server, 210

Run button, 124, 131–132

Run Code Asynchronously Button

(button_run_async) control, 169

Run Code Synchronously (on GUI Thread)

Button (button_run_sync) control,

169

run command, 117

RUN command, 150

Run Configuration, 100

run configurations

creating new, 98–99

deploying to devices, 99–101

testing, 98–99

Run logcat menu item, DDMS application,

83

run method, 356

Run on GUI Thread, 176

RunAfter class, 348–349, 352

Runnable interface, 349

running applications, role of View class, 76

runOnUiThread method, 244–245, 258

runtime methods, implementing small Lua

callable, 182–183

runtime platform, DVM (Dalvik Virtual

Machine), 23–27

and Apache Harmony JVM, 26–27

JVM performance, 27

path to .apk application package, 25–26

path to .dex file (and APK), 25–26

■ S
Sample_01.zip file, 363

Save button, 68, 124, 137

Save Message button, 67, 69

Save Startup Script menu item, 172, 185

Save Work menu item, 125

SaveHighScoreServlet class, 293

ScaleAnimation, 342, 345, 347–348

scaleDownAnimate method, 249

scale_down.xml file, 344

score element, 230

score variable, 237, 246, 248

ScoreDialog, 317, 324

score_dialog constant, 318–319

score_dialog.xml file, 318–320

scorePaint object, 340

scoreTextView, 322

scratch files, saving sessions in, 136–139

Screen1.ErrorOccured block, 377

Screen1.Initialize block, 377–378

Screen1.Initialize procedure, 379

screen_name parameter, 256

screenName string, 256

screenName variable, 256

scripting environment, 105–153

BASIC language, 110–112

background, 111

Cocoa-BASIC interpreter for Java,

111–112

Cocoa-BASIC AWT project, 112–120

application design, 112–113

reviewing source code, 118–120

running desktop application,

114–118

CocoaDroid project, 120–153

application design, 121–122

checklist, 120–121

running application, 122–153

code projects, 112

designing, 106–110

component roles in scripting

systems, 107–109

components of scripting systems,

106–107

multi-threading for background code,

110

Index 402

for resource-constrained systems,

109–110

Scripting Layer for Android. See SL4A

SCRIPTS area, 142

SDK Manager.exe utility, 8

SDK (software development kit), 3–9

Apache Ant tool, 9

API levels, 5

platform setup, 6–9

and programmer editors, coding with, 50

<sdk>/tools/ directory, 4

se.krka.kahlua.android, 163

Select List Item block, 369

Select Path dialog box, IntelliJ IDEA, 45

selectedOrb variable, 236, 344

selectedOrbView field, 325

selectedOrbView variable, 344–345

Sensor group, App Inventor, 384

services, of GAE, 284–287

App Engine datastore, 285

authenticating users for, 287

Blobstore Java API, 285

Channel API, 285–286

Images API, 286

Mail API, 286

Memcache, 287

Task Queues API, 287

XMPP, 287

Services tab, NetBeans, 37

Set Build Commands menu item, Geany

utility, 56

setAlpha() method, 329

setAnimationListener method, 348

setBounds()method, 329

setBuiltInZoomControls method, 308

setButtonsEnabled() method, 87–88

setCancelable method, 267

setColorFilter() method, 329

setContentView() method, 244, 299, 318,

320, 324

setDither() method, 329

setEnabled() method, 87

setFilterBitmap() method, 329

setFlags, 323

setHighScore function, 231, 238

setImageDrawable() method, 320

setInterval("renderScene()", 1000/30), 232

setLevel() method, 330

setMeasuredDevice, 327

setMeasuredDimension()method, 326

setMessage method, 267

setOnClickListener() method, 299, 326

setPositiveButton method, 268

setScrollBarStyle method, 224

setShadowLayer, 340

setSpeedsOnOrbs procedure, 381

setState() method, 330

setTag() method, 89

setText method, 259

Settings main menu, 191

Settings tab, NetBeans, 34–35

SharedObject class, 248

SharedPreferences object, 339

Shell interpreter, 199–201

Show Details option, 36

show() method, 90

showDialog method, 266–267

showOkAlertDialog method, 137

signing up, for GAE (Google App Engine),

276–278

Signpost project, 262

Silly Exit Button button, 67, 86

Simple Object Access Protocol (SOAP), 252

SL4A APK file, 197

SL4A application Activity screen, 198

SL4A Application Launcher icon, 198

SL4A (Scripting Layer for Android), 193–220

architecture, 210–211

code repository, 195–196

communicating using JSON data format,

209–210

getting source code, 215–218

Hello World examples, 219–220

license for, 194

local proxy implementations, 211–215

overview, 194

resources, 195

running in emulator, 196–209

development environment

configuration, 196

downloading APKs, 197

installing APKs, 197

installing interpreters, 202–209

using, 194–195

SL4A toolbox, 202

sl4a_rpc function, 212

SOAP (Simple Object Access Protocol), 252

Social Graph API, for Facebook with REST,

272

Social group, App Inventor, 384

software development kit. See SDK

source code, reviewing, 118–120

Index 403

Split block, 369

Sprite class, 357–360

Sprite variable, 232–235, 238

src folder, 162, 240

Start button, 15

startAnimation, 347

Starts At block, 369

Startup Script Implementation-

KahluaDroid.java (partial), 187

startup scripts, implementing, 185–192

accessing from DDMS File Explorer, 190

removing broken, 191–192

running applications with, 187–189

saving Lua code as, 185–186

using Lua comment blocks in, 189–190

String tables, default files, 78–79

stringFromAssetFile method, 144

stringFromInputStream method, 135, 145

stringFromPrivateApplicationFile method,

137

StringLib runtime support library, 167

strings table, for KahluaDroid application,

174

strings.xml file, 79, 129, 144

style.css file, 228

sub-Views, 327

subclasses, of Drawable class, 330–334

Subtraction math block, 372

surfaceCreated method, 355

SurfaceHolder.Callback interface, 355

SurfaceView class, mixing with View class,

359–360

swapOrbs method, 347–348

Synchronous Threading Implementation

Methods in KahluaDroid.java

(partial), 179

system notifications, 91

System Properties dialog box, Windows, 5

■ T
TableLayout, 317

TableLib runtime support library, 167

TableRow type, 317

target command, apk-debug utility, 241

Target tab, Run Configuration, 100

Task Queues API, GAE (Google App Engine)

service, 287

text attribute, 246

Text blocks, in Block Editor application,

368–369

TextMate utility, 54

textSize, 316

textStyle, 316

TextViews, 316, 320, 322, 325, 359–360

Thread classes, 356

titlePaint Paint object, 340

Toast class, 90

toasts, 90

top command, 200

TopTenActivity class, 301–302

toString method, 256

toXScale attribute, 345

toYScale attribute, 345

<tr> rows, 317

Transformation function, 232–234, 236–237

TranslateAnimation, 342, 347, 352

True and False logic block, 373

turnsTextView, 322

TweetFace application, 265

Twitter, with REST, 259–268

authenticating user, 261–265

modal dialog to confirm user request,

266–268

tweeting, 265

Twitter4J library, 265

Twitter4J project, 268

■ U
UI (User Interface) code, executing on main

thread, 178–179

Uninstall button, 205

UNIX top command, 200

unlockCanvasAndPost, 356

UNSPECIFIED masks, 326

Upcase block, 369

Update Center Customizer, NetBeans, 34

Update Movie Info service, 252

updateRemovedOrbs method, 352–353

UpdateStatus class, 268

updateStatus method, 265, 268

updateValues method, 324, 353

URL_CALLBACK constant, 263

USB Debugging setting, 99

Use Google App Engine option, 279

Use the Export Wizard link, 101

user interaction, in JavaScript, 235–238

User Interface (UI) code, executing on main

thread, 178–179

UserdataArray runtime support library, 167

user_location.xml file, 307

Index 404

username parameter, 305

usernameEditText variable, 305

UsersLocationActivity class, 305, 308

■ V
value attribute, 249

value field, 233

var keyword, 240

Variable block, 368

Verbose logging level, 82

View class

and Android GUIs, 76

game development with, 312–328

custom classes, 320–328

displaying layout in code, 317–320

XML layout for, 312–317

mixing with SurfaceView class, for frame

by frame animations, 359–360

View element, 322

View menu item, 199

ViewGroup class, 76, 325

ViewIDs, 316

View.layout() method, 328

View.MeasuredSpec class, 326

View.OnClickListener. GameView, 325

Views, 316

Vim utility, 54

Virtual Devices list, 15

virtual machines

Apache Harmony JVM, 26–27

DVM, 23–27

and Apache Harmony JVM, 26–27

JVM performance, 27

path to .dex file (and APK), 25–26

JVM performance, 27

■ W
war directory, 280

Warning logging level, 82

Web Application Project menu item, GAE

plugin, 278

web applications, 221–250

with Flash and AIR, 238–250

ActionScript for, 246

building and deploying, 240–244

Flex UI for, 244–246

overview, 239–240

with JavaScript, 222–238

animation in, 231–235

application files, 226–231

calling Android methods from,

225–226

overview, 238

project for, 223–225

user interaction in, 235–238

WEB-INF directory, 280–281

WebStart application, 365

webView.getSettings(

).setJavaScriptEnabled(true)

method, 224

web.xml file, 280–281, 287–288

whenDone function, 234

While control block, 375

while loop, 356–357

widthMeasureSpec, 327

Windows USB Driver package, 7, 99

windupovershoot function, 233

Windw.FEATURE_NO_TITLE constant, 323

Work Files, 139–142

wrap_content attribute, 315–316

write method, 168

Writing test scripts task, 194

■ X
XML (Extensible Markup Language)

menu layout resources, 130–131

strings table, 129–130

XML layout, for View class, 312–317

XML layout resource files, 125–126

XMPP, GAE (Google App Engine) service,

287

■ Y, Z
YAIL (Yet Another Intermediate Language),

385

yesButton constant, 319

Yet Another Intermediate Language

(YAIL), 385

 i

Practical Android
Projects

■ ■ ■

Lucas Jordan
Pieter Greyling

ii

Practical Android Projects

Copyright © 2011 by Lucas Jordan and Pieter Greyling

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3243-8

ISBN-13 (electronic): 978-1-4302-3244-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Frank Pohlmann
Developmental Editor: Douglas Pundick
Technical Reviewer: Tony Hillerson
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade,
Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editors: Nancy Sixsmith, Sharon Terdeman, Tracy Brown
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

 iii

To Sandy Pond.

—Lucas Jordan

To Paula and Guilhem for their love during the good times and the bad times. To precious Caitlin

and Aaron, who are my guiding stars. To my relentlessly supportive and loyal mother Christina,

my brother Cornelius, and my sister Hester. I could not have done this without all of you.

Thank you.

—Pieter Greyling

 v

Contents

■Contents at a Glance ... iv
■About the Authors ... x
■About the Technical Reviewer .. xi
■Acknowledgments ... xii
■Preface ... xiii

■Chapter 1: Android Fundamentals ... 1

What Is Android? ... 2
Installing the Android SDK .. 2

Java Development Kit (JDK) ... 3
Android SDK and Target Platforms .. 3

Android SDK Test Drive ... 9
Android Architecture and Background .. 20

The Android Platform Stack ... 21
Android Component Architecture ... 23
The Android Runtime: Dalvik Virtual Machine (DVM) ... 23

Using an Integrated Development Environment (IDE) ... 27
Working with Eclipse .. 28

On the Web: Eclipse for Android Development .. 28
Quickstart: The Eclipse Android Development Tools (ADT) Plugin ... 29

Working with NetBeans .. 33
On the Web: NetBeans for Android Development .. 33
Quickstart: The NetBeans Android (NBAndroid) Plugin .. 34

Working with IntelliJ IDEA Community Edition .. 42
On the Web: JetBrains IntelliJ IDEA for Android Development ... 42
Quickstart: The IntelliJ IDEA Android Plugin .. 43

Summary .. 47

■ CONTENTS

vi

■Chapter 2: Development Tools in Practice .. 49
Coding with the SDK and a Programmer’s Editor ... 50
Development Environment Dependencies .. 50

Ensure that Development Kit Locations Are on the Path ... 50
Preparing an Android Virtual Device (AVD) .. 51

Frequently Used Android Development Kit Tools .. 52
Working with the Android Tools and a Code Editor ... 53

Selecting a Code Editor .. 53
Configuring the Editor for Android Work .. 56

The Example Application Project .. 58
Generating the Foundation Android Project .. 59

The Android Project Directory Structure .. 60
Preparing to Run the Example Application ... 61

Starting a Debugging Session .. 61
Replacing the Default Generated Code .. 63
Building and Installing the Project Example Code ... 64
Creating a Log Filter for the Application in the DDMS ... 64

Running the Example Application ... 66
What Does the Demo Application Do? ... 67
A Walk through the Core Application Files ... 74

Android Coding How to ... 81
Using the Android Log API ... 81
Centralizing Application GUI Initialization Code ... 85
Exiting an Application Activity .. 86
Enabling and Disabling Buttons (and other Views) .. 87
Creating Controls Dynamically (at Runtime in Code) ... 88
Making an Android Toast ... 90
Showing an Android Alert Dialog ... 90
Creating and Showing an Android System Notification ... 91
Using a Private Application File ... 92
Making Menus ... 95

Migrating the Example Application to Eclipse/ADT ... 97
Make a Copy of the Project .. 97
Open Eclipse with the ADT Plugin Installed ... 97
Create a New Android Project from the Copy of the Project .. 97
Create and Test a New Run Configuration for the Project ... 98
Deploying to a Real Device .. 99
Creating a Signed APK Package of the Example Application ... 101

Summary .. 104

■Chapter 3: Roll Your Own Android Scripting Environment 105
Designing a Scripting Environment ... 106

The Components of a Scripting System ... 106
The Component Roles in a Scripting System ... 107
Designing for Resource-Constrained Systems .. 109
Multi-Threading for Background Code ... 110

Programming with BASIC .. 110
A BASIC Backgrounder ... 111

■ CONTENTS

 vii

Cocoa—A BASIC Interpreter for Java .. 111
Outlining the Code Projects for This Chapter .. 112
The Cocoa-BASIC AWT Project .. 112

Understanding the Cocoa-BASIC AWT Application Design ... 112
Running the Cocoa-BASIC AWT Desktop Application ... 114
Reviewing the Cocoa-BASIC AWT Source Code ... 118

The CocoaDroid Project .. 120
A Preflight Checklist ... 120
Understanding the CocoaDroid Application Design ... 121
Running the CocoaDroid Android Application .. 122

Summary .. 153

■Chapter 4: Embedding Lua in Android Applications 155
Introducing Lua and Kahlua2 .. 156

Lua Resources ... 156
Kahlua2 Resources .. 157

Using Kahlua2 in Your Android Java Applications .. 157
Development Environment Configuration .. 158

The Kahlua2 Project .. 158
Setting up the Kahlua2 Runtime Files Project ... 159
Building from the Console .. 160
Building from an IDE .. 160
The Kahlua2 Runtime Libraries .. 161

The Kahlua2 Android Interpreter Project ... 162
Setting up the Project .. 162
Building from the Console .. 163
Building from an IDE .. 163
Running the Kahlua2 Android Interpreter .. 164
Understanding the Basics of Embedding Kahlua2 ... 165

The KahluaDroid Project ... 168
Running the KahluaDroid Application .. 169
Running Lua Code On or Off the Main GUI Thread ... 176
Exposing Android Application Methods to Kahlua2 ... 180
Calling Application Methods as Lua Functions .. 183
Implementing an Application Startup Script .. 185

Summary .. 192

■Chapter 5: Introducing SL4A: The Scripting Layer for Android 193
What Is Scripting Layer for Android? .. 194

About SL4A .. 194
The SL4A License ... 194
Using SL4A ... 194
SL4A Resources ... 195
The SL4A Code Repository ... 195

Running SL4A in the Android Emulator ... 196
Development Environment Configuration .. 196
Downloading the SL4A APKs .. 197
Installing the SL4A APK on the Android Emulator .. 197
Running SL4A on the Android Emulator ... 198

■ CONTENTS

viii

Installing SL4A Interpreters 202
Understanding Scripting Layer for Android 209

Communicating Using JavaScript Object Notation (JSON) ... 209
Summarizing the SL4A Architecture . .. 210
Reviewing Local Proxy Implementations 211

Getting the SL4A Source Code . .. 215
Cloning the SL4A Source Code . .. 216

SL4A Hello World Examples . .. 219
Summary .. 220

■Chapter 6: Creating a GUI with HTML/JavaScript and AIR 221
Setting Up an Android Project to Display a Web Application ... 222

The Android Project 223
Calling Android Methods from JavaScript 225
JavaScript Application 226
Graphics and Animation 231
User Interaction ... 235
JavaScript Summary . .. 238

Using Flash and Flex Apps on Android with AIR 238
Writing a Flex Application for Android 239
Building and Deploying . .. 240
Creating the Flex UI with MXML 244
Writing ActionScript 246

Summary .. 250

■Chapter 7: Using REST with Facebook and Twitter 251
Understanding REST ... 252

REST and JSON .. 253
REST from an Android Application 255
Asynchronous Tasks .. 258

Twitter ... 259
Examples in Code .. 261
Tweeting on Behalf of the User . .. 265
Confirming the User Wants to Tweet 266

Understanding the Facebook API . .. 268
Facebook and Authentication . .. 268
Facebook’s Social Graph API 272

Summary .. 274

■Chapter 8: Using the Google App Engine with Android 275
Introducing Google App Engine 276

Getting Started with GAE 276
Using Eclipse with GAE . .. 278
GAE Project Structure . .. 280
Charges for the Google App Engine Service . .. 283
Google App Engine Services . .. 284

Examining a Sample GAE Application 287
Adding the HighScore Service 290
Querying the HighScore Service . .. 293

Consuming GAE Services with Android 297

■ CONTENTS

 ix

Exploring the Top Ten Activity ... 300
Viewing the Users of a Game ... 303
Viewing a User’s Location (MapView) .. 305

Summary .. 310

■Chapter 9: Game Development: Graphics .. 311
Introducing the Android View Package ... 312

Understanding XML Layout .. 312
Layout in Code ... 317
Custom Component .. 320

Understanding the Drawable Class ... 328
Drawable Class .. 328
Drawable Subclasses ... 330
NinePatchDrawable ... 334

Direct Rendering ... 336
Summary .. 340

■Chapter 10: Game Development: Animation .. 341
Android Animations ... 341

Creating Views and Animations ... 343
Frame By Frame Animations ... 353

Mixing Views and SurfaceViews .. 359
Summary .. 360

■Chapter 11: App Inventor .. 361
Setting Up App Inventor .. 361
Working with Blocks ... 365

Understanding the Types of Blocks ... 367
Creating Application Logic with the Block Editor ... 376

Limitations of App Inventor ... 383
Limited Set of Components .. 384
Limitations in Block Editor ... 385

Summary .. 386

■Index .. 387

■ PREFACE

x

About the Authors

Lucas Jordan (www.lucasjordan.com) is a lifelong computer enthusiast and has
worked for more than 13 years as a Java developer. He worked at the Children’s
Hospital Boston for a multidisciplinary applied research and education
program called CHIP. After leaving Boston, Lucas settled in Rochester, New
York and now works for EffectiveUI as a lead developer. He has contributed to
his local Java User’s Group (RJUG.org), presenting on JavaFX and GWT. In his
free time, Lucas is starting a company called ClayWare Games, LLC with his
wife Debra Lewis. ClayWare Games, LLC makes accessories and apps for
mobile touch devices.

Pieter Greyling (www.pietergreyling.com) is an information technology expert
and software architect with two and half decades of software development
experience. He has worked on distributed software engineering projects with
teams on several continents for many years. Pieter enjoys software
programming and sees smartphone mobile technology as a wonderful way to
add an extra element of fun into computing. In his copious free time, he likes
to play console video games with his family and take a far too occasional
bicycle ride.

http://www.lucasjordan.com
http://www.pietergreyling.com

■ CONTENTS

 xi

About the Technical
Reviewer

Tony Hillerson is a software architect for EffectiveUI. He graduated from
Ambassador University with a BA in MIS. On any given day, Tony might be
working with Android, Rails, Objective-C, Java, Flex, or shell scripts. He has
been interested in developing for Android since early betas. Tony has created
Android screencasts, tech reviewed Android books, and spoken on Android at
conferences. He also sometimes gets to write some Android code.

Tony is interested in all levels of usability and experience design, from the
database to the server to the glass.

In his free time, Tony enjoys playing the bass, playing World of Warcraft,
and making electronic music. Tony lives outside Denver, Colorado with his

wife and two sons.

■ PREFACE

xii

Acknowledgments

We would like to acknowledge the excellent staff at Apress who managed to get this book
completed on time after numerous delays. Good job, everyone!

A very special thank you goes to our coordinating editor, Corbin Collins, and Douglas Pundick,
our developmental editor.

We also thank Frank Pohlmann, the lead editor, and Assistant Editorial Director Steve Anglin.

Thank you to our technical reviewer, Tony Hillerson, for giving us really valuable input and
feedback.

■ PREFACE

 xiii

Preface

Android is a well-thought-out platform for developing mobile applications. Google has done a
wonderful job of providing third-party developers with a world-class development environment.
The ease of development combined with the enormous user base makes Android a very
compelling platform for developers.

What this Book Is
When you’re building an Android application, many things are straightforward; however, there
are facets to the Android platform for which the voice of experience is an invaluable guide. Each
chapter in this book explores one of these facets and aims to guide the reader to a better
understanding of the topic. By presenting a concrete example project and the steps required to
make it work, the reader will gain insight into Android and avoid some pitfalls along the way.

In addition, we have tried to show alternative ways to develop with the Android SDK Tools
and IDEs. There are projects here that not only cover programming Android applications with
Java but also get you started working with other languages such as JavaScript and Lua.

What You Will Need
Chapters 1 and 2 cover the groundwork of the Android development environment in detail. These
chapters provide full instructions for creating and working with the Android SDK Tools and other
development software such as IDEs and plugins.

In summary, to work with the projects in this book you will need the following:

■ A desktop computer running Windows, Linux, or Mac OS X
The book projects were developed using a mix of Windows XP, Ubuntu Linux, and Mac
OS X. All the projects were tested for compatibility on these platforms.

■ Java SDK
The book uses the Java JDK 1.6.0_18 and later.

■ Apache Ant
We have found a stand-alone installation of Apache Ant to be very convenient and useful
when working with the Android SDK terminal command-line tools. Full coverage of this
aspect is given in the first two chapters of the book.

■ Google Android SDK
All the projects in this book were developed and built using the Android 2.3
“Gingerbread” SDK.

■ PREFACE

xiv

■ Integrated development environment (IDE)
We have used the following IDEs for the projects in the book: Eclipse, NetBeans, and
IntelliJ IDEA Community Edition. All the IDE projects have been tested for compatibility,
so you are free to choose your own IDE. In fact, we provide enough coverage using only
the Android terminal command-line tools and Apache Ant for you to choose to forego an
IDE altogether.

As we mentioned, Chapters 1 and 2 cover working with the core Android SDK and the
installation and configuration of an Android development environment suited to your tastes.

All other chapters describe the setup and installation of any extra tools and software
dependencies required for the content of that particular chapter.

What You Need to Know
We expect you to be proficient in the Java programming language and perhaps JavaScript, plus
another scripting language such as Python, Lua, Ruby, or Perl.

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface

	Android Fundamentals
	What Is Android?
	Installing the Android SDK
	Java Development Kit (JDK)
	Android SDK and Target Platforms

	Android SDK Test Drive
	Android Architecture and Background
	The Android Platform Stack
	Android Component Architecture
	The Android Runtime: Dalvik Virtual Machine (DVM)

	Using an Integrated Development Environment (IDE)
	Working with Eclipse
	On the Web: Eclipse for Android Development
	Quickstart: The Eclipse Android Development Tools (ADT) Plugin

	Working with NetBeans
	On the Web: NetBeans for Android Development
	Quickstart: The NetBeans Android (NBAndroid) Plugin

	Working with IntelliJ IDEA Community Edition
	On the Web: JetBrains IntelliJ IDEA for Android Development
	Quickstart: The IntelliJ IDEA Android Plugin

	Summary

	Development Tools in Practice
	Coding with the SDK and a Programmer’s Editor
	Development Environment Dependencies
	Ensure that Development Kit Locations Are on the Path
	Preparing an Android Virtual Device (AVD)

	Frequently Used Android Development Kit Tools
	Working with the Android Tools and a Code Editor
	Selecting a Code Editor
	Configuring the Editor for Android Work

	The Example Application Project
	Generating the Foundation Android Project
	The Android Project Directory Structure

	Preparing to Run the Example Application
	Starting a Debugging Session
	Replacing the Default Generated Code
	Building and Installing the Project Example Code
	Creating a Log Filter for the Application in the DDMS

	Running the Example Application
	What Does the Demo Application Do?
	A Walk through the Core Application Files

	Android Coding How to
	Using the Android Log API
	Centralizing Application GUI Initialization Code
	Exiting an Application Activity
	Enabling and Disabling Buttons (and other Views)
	Creating Controls Dynamically (at Runtime in Code)
	Making an Android Toast
	Showing an Android Alert Dialog
	Creating and Showing an Android System Notification
	Using a Private Application File
	Making Menus

	Migrating the Example Application to Eclipse/ADT
	Make a Copy of the Project
	Open Eclipse with the ADT Plugin Installed
	Create a New Android Project from the Copy of the Project
	Create and Test a New Run Configuration for the Project
	Deploying to a Real Device
	Creating a Signed APK Package of the Example Application

	Summary

	Roll Your Own Android Scripting Environment
	Designing a Scripting Environment
	The Components of a Scripting System
	The Component Roles in a Scripting System
	Designing for Resource-Constrained Systems
	Multi-Threading for Background Code

	Programming with BASIC
	A BASIC Backgrounder
	Cocoa—A BASIC Interpreter for Java

	Outlining the Code Projects for This Chapter
	The Cocoa-BASIC AWT Project
	Understanding the Cocoa-BASIC AWT Application Design
	Running the Cocoa-BASIC AWT Desktop Application
	Reviewing the Cocoa-BASIC AWT Source Code

	The CocoaDroid Project
	A Preflight Checklist
	Understanding the CocoaDroid Application Design
	Running the CocoaDroid Android Application

	Summary

	Embedding Lua in Android Applications
	Introducing Lua and Kahlua2
	Lua Resources
	Kahlua2 Resources

	Using Kahlua2 in Your Android Java Applications
	Development Environment Configuration

	The Kahlua2 Project
	Setting up the Kahlua2 Runtime Files Project
	Building from the Console
	Building from an IDE
	The Kahlua2 Runtime Libraries

	The Kahlua2 Android Interpreter Project
	Setting up the Project
	Building from the Console
	Building from an IDE
	Running the Kahlua2 Android Interpreter
	Understanding the Basics of Embedding Kahlua2

	The KahluaDroid Project
	Running the KahluaDroid Application
	Running Lua Code On or Off the Main GUI Thread
	Exposing Android Application Methods to Kahlua2
	Calling Application Methods as Lua Functions
	Implementing an Application Startup Script

	Summary

	Introducing SL4A: The Scripting Layer for Android
	What Is Scripting Layer for Android?
	About SL4A
	The SL4A License
	Using SL4A
	SL4A Resources
	The SL4A Code Repository

	Running SL4A in the Android Emulator
	Development Environment Configuration
	Downloading the SL4A APKs
	Installing the SL4A APK on the Android Emulator
	Running SL4A on the Android Emulator
	Installing SL4A Interpreters

	Understanding Scripting Layer for Android
	Communicating Using JavaScript Object Notation (JSON)
	Summarizing the SL4A Architecture
	Reviewing Local Proxy Implementations

	Getting the SL4A Source Code
	Cloning the SL4A Source Code

	SL4A Hello World Examples
	Summary

	Creating a GUI with HTML/JavaScript and AIR
	Setting Up an Android Project to Display a Web Application
	The Android Project
	Calling Android Methods from JavaScript
	JavaScript Application
	Graphics and Animation
	User Interaction
	JavaScript Summary

	Using Flash and Flex Apps on Android with AIR
	Writing a Flex Application for Android
	Building and Deploying
	Creating the Flex UI with MXML
	Writing ActionScript

	Summary

	Using REST with Facebook and Twitter
	Understanding REST
	REST and JSON
	REST from an Android Application
	Asynchronous Tasks

	Twitter
	Examples in Code
	Tweeting on Behalf of the User
	Confirming the User Wants to Tweet

	Understanding the Facebook API
	Facebook and Authentication
	Facebook’s Social Graph API

	Summary

	Using the Google App Engine with Android
	Introducing Google App Engine
	Getting Started with GAE
	Using Eclipse with GAE
	GAE Project Structure
	Charges for the Google App Engine Service
	Google App Engine Services

	Examining a Sample GAE Application
	Adding the HighScore Service
	Querying the HighScore Service

	Consuming GAE Services with Android
	Exploring the Top Ten Activity
	Viewing the Users of a Game
	Viewing a User’s Location (MapView)

	Summary

	Game Development: Graphics
	Introducing the Android View Package
	Understanding XML Layout
	Layout in Code
	Custom Component

	Understanding the Drawable Class
	Drawable Class
	Drawable Subclasses
	NinePatchDrawable

	Direct Rendering
	Summary

	Game Development: Animation
	Android Animations
	Creating Views and Animations

	Frame By Frame Animations
	Mixing Views and SurfaceViews

	Summary

	App Inventor
	Setting Up App Inventor
	Working with Blocks
	Understanding the Types of Blocks
	Creating Application Logic with the Block Editor

	Limitations of App Inventor
	Limited Set of Components
	Limitations in Block Editor

	Summary

	Index
	Special Characters and Numbers
	A
	B
	C
	D
	E
	F
	G
	I
	H
	J
	K
	L
	M
	O
	N
	P
	Q
	R
	S
	U
	T
	V
	X
	W
	Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

