Get started with game apps development
for the Android platform

Beginning

Android Games

Mario Zechner

Apress’

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

VN

Apress®

iv

Contents at a Glance

Contents........ccuvmmmmmmimmms s ———————————————=_ v
About the AUtROF..........cccnismmmismnmsses s e Xii
About the Technical REVIEWETcccussmssssamsssssssmsssnsssssssssssnsssssnsssssnsssssnsssssnnss xiii
Acknowledgments...........cccmmusmmmmsmsmmsssmmsnsmmsnsmmsssnasssa s snns xiv
INtroductioncccceiiimmnnesnssessn s ———————— Xv
Chapter 1: Android, the New Kid on the BIOCKcccccumssemsmsssmsssssnsssssnsssssnnas 1
Chapter 2: First Steps with the Android SDK.............ccoonmmmmmmmmnnnnnsssssssssnnnnnns 25
Chapter 3: Game Development 101ccccvieemmmmmnsssnnmmmsssssssmsssssssesssssssnsnns 51
Chapter 4: Android for Game Developerscciuussmsmmmsssssssssssssnnsssssssssnsssss 103
Chapter 5: An Android Game Development Frameworkcccuvursnssiansns 185
Chapter 6: Mr. Nom Invades Androidccusessssansssssnsssssssssssnsssssnsssssnnsnas 229
Chapter 7: OpenGL ES: A Gentle Introduction.........ccccoocmmmmmmnnnnnssssssssnnnnnns 269
Chapter 8: 2D Game Programming TriCKScccccumsrrssssssssssssnnssssssssssssssnnssnnas 351
Chapter 9: Super Jumper: A 2D OpenGL ES GaMecccceememmmrrrssssssssnnsnnnnnnas 429
Chapter 10: OpenGL ES: GoINg 3D......ccocccmmmmssmnnmmssssnsnsssssssssssssssnssssssssssnsssss 489
Chapter 11: 3D Programming TrickS ...cccuuumssmmmmsmmmmmmsssssssssssssssssssssssssssnnsnnnss 525
Chapter 12: Droid Invaders: the Grand Finaleccccconmsemmmssnsssssnsssssnnnnns 577
Chapter 13: Publishing Your Game.........cccccusssmmnmnssssnsnssssssssnsssssssssssssssnsnnssss 625
Chapter 14: What’s Next?.........cccucmmmmsmmmmmssmmmsssssmsssssmsssssssssssssssssssssnsssssnnsnns 637
INA@X ceiuemnnrnsssnnnnnasssnnnnmsssssnnnnsssssnnnnessssnnnnessssnnnsessssnnnnessssnnnnessssnnnnesssnnnnnsssssnnnnss 641

Introduction

Hi there, and welcome to the world of Android game development. My name is Mario; I'll be your
guide for the next fourteen chapters. You came here to learn about game development on
Android, and I hope to be the person who enables you to realize your ideas.

Together we’ll cover quite a range of materials and topics: Android basics, audio and
graphics programming, a little math and physics, and a scary thing called OpenGL ES. Based on
all this knowledge we’ll develop three different games, one even being 3D.

Game programming can be easy if you know what you're doing. Therefore I've tried to
present the material in a way that not only gives you helpful code snippets to reuse, but actually
shows you the big picture of game development. Understanding the underlying principles is the
key to tackling ever more complex game ideas. You'll not only be able to write games similar to
the ones developed over the course of this book, but you'll also be equipped with enough
knowledge to go to the Web or the bookstore and take on new areas of game development on
your own.

A Word About the Target Audience

This book is aimed first and foremost at complete beginners in game programming. You don’t
need any prior knowledge on the subject matter; I'll walk you through all the basics. However, I
need to assume a little knowledge on your end about Java. If you feel rusty on the matter, I'd
suggest refreshing your memory by reading the online edition of Thinking in Java, by Bruce Eckel
(Prentice Hall, 2006), an excellent introductory text on the programming language. Other than
that, there are no other requirements. No prior exposure to Android or Eclipse is necessary!

This book is also aimed at the intermediate-level game programmer that wants to get her
hands dirty with Android. While some of the material may be old news for you, there are still a lot
of tips and hints contained that should make reading this book worthwhile. Android is a strange
beast at times, and this book should be considered your battle guide.

How This Book Is Organized

This book takes an iterative approach in that we’ll slowly but surely work our way from the
absolute basics to the esoteric heights of hardware-accelerated game programming goodness.
Over the course of the chapters, we’ll build up a reusable code base, so I'd suggest going through
the chapters in sequence. More experienced readers can of course skip certain sections they feel
confident with. Just make sure to read through the code listings of sections you skim over a little,
so you will understand how the classes and interfaces are used in subsequent, more advanced
sections.

Xv

INTRODUCTION

Getting the Source Code

This book is fully self-contained; all the code necessary to run the examples and games is
included. However, copying the listings from the book to Eclipse is error prone, and games do not
consist of code alone, but also have assets that you can’t easily copy out of the book. Also, the
process of copying code from the book's text to Eclipse can introduce errors. Robert (the book’s
technical reviewer) and I took great care to ensure that all the listings in this book are error free,
but the gremlins are always hard at work.

To make this a smooth ride, I created a Google Code project that offers you the following:

¢ The complete source code and assets, licensed under the GPL version 3,
available from the project’s Subversion repository.

e A quickstart guide showing you how to import the projects into Eclipse in
textual form, and a video demonstration for the same.

e Anissue tracker that allows you to report any errors you find, either in the
book itself or in the code accompanying the book. Once you file an issue in
the issue tracker, I can incorporate any fixes in the Subversion repository.
This way you’ll always have an up-to-date, (hopefully) error-free version of
this book’s code from which other readers can benefit as well.

e Adiscussion group that is free for everybody to join and discuss the
contents of the book. I'll be on there as well of course.

For each chapter that contains code, there’s an equivalent Eclipse project in the Subversion
repository. The projects do not depend on each other, as we'll iteratively improve some of the
framework classes over the course of the book. Each project therefore stands on its own. The code
for both Chapters 5 and 6 is contained in the ch06-mrnom project.

The Google Code project can be found at http://code.google.com/p/beginning-android-
games.

Chapter

Android, the New Kid on
the Block

As a kid of the early nineties, | naturally grew up with my trusty Nintendo Game Boy. |
spent countless hours helping Mario rescue the princess, getting the highest score in
Tetris, and racing my friends in RC Pro-Am via link cable. | took this awesome piece of
hardware with me everywhere and every time | could. My passion for games made me
want to create my own worlds and share them with my friends. | started programming
on the PC but soon found out that | couldn’t transfer my little masterpieces to the Game
Boy. | continued being an enthusiastic programmer, but over time my interest in actually
playing video games faded. Also, my Game Boy broke . . .

Fast forward to 2010. Smartphones are becoming the new mobile gaming platforms of
the era, competing with classic dedicated handheld systems such as the Nintendo DS
or the Playstation Portable. That caught my interest again, and | started investigating
which mobile platforms would be suitable for my development needs. Apple’s iOS
seemed like a good candidate to start coding games for. However, | quickly realized that
the system was not open, that I’'d be able to share my work with others only if Apple
allowed it, and that I’d need a Mac to develop for the iOS. And then | found Android.

| immediately fell in love with Android. Its development environment works on all the
major platforms, no strings attached. It has a vibrant developer community happy to
help you with any problem you encounter as well as comprehensive documentation. |
can share my games with anyone without having to pay a fee to do so, and if | want to
monetize my work, | can easily publish my latest and greatest innovation to a global
market with millions of users in a matter of minutes.

The only thing | was left with was actually figuring out how to write games for Android
and how to transfer my PC game development knowledge to this new system. In the
following chapters, | want to share my experience with you and get you started with
Android game development. This is of course a rather selfish plan: | want to have more
games to play on the go!

Let’s start by getting to know our new friend: Android.

CHAPTER 1: Android, the New Kid on the Block

A Brief History of Android

Android was first publicly noticed in 2005 when Google acquired a small startup called
Android, Inc. This fueled speculation that Google wanted to enter the mobile space. In
2008, the release of version 1.0 of Android put an end to all speculation, and Android
became the new challenger on the mobile market. Since then, it's been battling it out
with already established platforms such as iOS (then called iPhone OS) and BlackBerry,
and its chances of winning look rather good.

Because Android is open source, handset manufacturers have a low barrier of entry
when using the new platform. They can produce devices for all price segments,
modifying Android itself to accommodate the processing power of a specific device.
Android is therefore not limited to high-end devices but can also be deployed to low-
budget devices, thus reaching a wider audience.

A crucial ingredient for Android’s success was the formation of the Open Handset
Alliance (OHA) in late 2007. The OHA includes companies such as HTC, Qualcomm,
Motorola, and NVIDIA, which collaborate to develop open standards for mobile devices.
Although Android’s core is developed mainly by Google, all the OHA members
contribute to its source in one form or another.

Android itself is a mobile operating system and platform based on the Linux kernel
version 2.6 and is freely available for commercial and noncommercial use. Many
members of the OHA build custom versions of Android for their devices with modified
user interfaces (Uls)—for example, HTC’s HTC Sense and Motorola’s MOTOBLUR. The
open source nature of Android also enables hobbyists to create and distribute their own
versions of Android. These are usually called mods, firmwares, or ROMs. The most
prominent ROM at the time of this writing was developed by a fellow known as
Cyanogen and is aimed at bringing the latest and greatest improvements to all sorts of
Android devices.

Since its release in 2008, Android has received seven version updates, all code-named
after desserts (with the exception of Android 1.1, which is irrelevant nowadays). Each
version has added new functionality to the Android platform that has relevance in one
way or another for game developers. Version 1.5 (Cupcake) added support for including
native libraries in Android applications, which were previously restricted to being written
in pure Java. Native code can be very beneficial in situations where performance is of
upmost concern. Version 1.6 (Donut) introduced support for different screen resolutions.
We will revisit this fact a couple of times in this book because it has some impact on
how we approach writing games for Android. With version 2.0 (Eclair) came support for
multi-touch screens, and version 2.2 (Froyo) added just-in-time (JIT) compilation to the
Dalvik virtual machine (VM), which powers all the Java applications on Android. The JIT
speeds up the execution of Android applications considerably—depending on the
scenario, up to a factor of five. At the time of this writing, the latest version is 2.3, called
Gingerbread. It adds a new concurrent garbage collector to the Dalvik VM. If you haven’t
noticed yet: Android applications are written in Java.

A special version of Android, targeted at tablets, is also being released in 2011. It is
called Honeycomb and represents version 3.0 of Android. Honeycomb is not meant to

CHAPTER 1: Android, the New Kid on the Block

run on phones at this point. However, some features of Honeycomb will be ported to the
main line of Android. At the time of this writing, Android 3.0 is not available to the public,
and no devices on the market are running it. Android 2.3 can be installed on many
devices using custom ROMs. The only handset using Gingerbread is the Nexus S, a
developer phone sold by Google directly.

Fragmentation

The great flexibility of Android comes at a price: companies that opt to develop their
own user interfaces have to play catch-up with the fast pace at which new versions of
Android are released. This can lead to handsets not older than a few months becoming
outdated really fast as carriers and handset manufacturers refuse to create updates that
incorporate the improvements of new Android versions. The big bogeyman called
fragmentation is a result of this process.

Fragmentation has many faces. For the end user, it means being unable to install and
use certain applications and features because of being stuck on an old Android version.
For developers, it means that some care has to be taken when creating applications that
should work on all versions of Android. While applications written for earlier versions of
Android will usually run fine on newer versions, the reverse is not true. Some features
added in newer Android versions are of course not available on older versions, such as
multi-touch support. Developers are thus forced to create separate code paths for
different versions of Android.

But fear not. Although this sounds terrifying, it turns out that the measures that have to
be taken are minimal. Most often, you can even completely forget about the whole issue
and pretend there’s only a single version of Android. As game developers, we’re less
concerned with differences in APls and more concerned about hardware capabilities.
This is a different form of fragmentation, which is also a problem for platforms such as
iOS, albeit not as pronounced. Throughout this book, | will cover the relevant
fragmentation issues that might get in your way while you develop your next game for
Android.

The Role of Google

Although Android is officially the brainchild of the Open Handset Alliance, Google is the
clear leader when it comes to implementing Android itself as well as providing the
necessary ecosystem for Android to grow.

The Android Open Source Project

Google’s efforts are summarized under the name Android Open Source Project. Most of
the code is licensed under Apache License 2, a very open and nonrestrictive license
compared to other open source licenses such as the GNU General Public License (GPL).
Everyone is free to use this source code to build their own systems. However, systems
that are claimed to be Android compatible first have to pass the Android Compatibility

CHAPTER 1: Android, the New Kid on the Block

Program, a process ensuring baseline compatibility with third-party applications written
by developers like us. Compatible systems are allowed to participate in the Android
ecosystem, which also includes the Android Market.

The Android Market

The Android Market was opened to the public in October 2008 by Google. It’s an online
software store that enables users to find and install third-party applications. The market
is generally accessible only through the market application on a device. This situation
will change in the near future, according to Google, which promises the deployment of a
desktop-based online store accessible via the browser.

The market allows third-party developers to publish their applications either for free or
as paid applications. Paid applications are available for purchase in only about 30
countries. Selling applications as a developer is possible in a slightly smaller number.
Table 1-1 shows you the countries in which apps can be bought and sold.

Table 1-1. Purchase and Selling Options per Country.

Country User Can Purchase Apps Developer Can Sell Apps
Australia Yes Yes
Austria Yes Yes
Belgium Yes Yes
Brazil Yes Yes
Canada Yes Yes
Czech Republic Yes No
Denmark Yes Yes
Finland Yes Yes
France Yes Yes
Germany Yes Yes
Hong Kong Yes Yes
Hungary Yes Yes
India Yes Yes

Ireland Yes Yes

CHAPTER 1: Android, the New Kid on the Block

Country User Can Purchase Apps Developer Can Sell Apps
Israel Yes Yes
Italy Yes Yes
Japan Yes Yes
Mexico Yes Yes
Netherlands Yes Yes
New Zealand Yes Yes
Norway Yes Yes
Pakistan Yes No
Poland Yes No
Portugal Yes Yes
Russia Yes Yes
Singapore Yes Yes
South Korea Yes Yes
Spain Yes Yes
Sweden Yes Yes
Switzerland Yes Yes
Taiwan Yes Yes
United Kingdom Yes Yes
United States Yes Yes

Users get access to the market after setting up a Google account. Applications can be
bought only via credit card at the moment. Buyers can decide to return an application
within 15 minutes from the time of purchasing it and will receive a full refund. Previously,
the refund time window was 24 hours. The recent change to 15 minutes has not been
well received by end users.

Developers need to register an Android Developer account with Google for a one-time
fee of $25 in order to be able to publish applications on the market. After successful

CHAPTER 1: Android, the New Kid on the Block

registration, a developer can immediately start to publish a new application in a matter
of minutes.

The Android Market has no approval process but relies on a permission system. A user
is presented with a set of permissions needed by an application before the installation of
the program. These permissions handle access to phone services, networking access,
access to the Secure Digital (SD) card, and so on. Only after a user has approved these
permissions is the application installed. The system relies on the user doing the right
thing. On the PC, especially on Windows systems, this concept didn’t work out too well.
On Android, it seems to have worked so far; only a few of applications have been pulled
from the market because of malicious behavior.

To sell applications, a developer has to additionally register a Google Checkout
Merchant Account, which is free of charge. All financial business is handled through this
account.

Challenges, Device Seeding, and Google 1/0

In an ongoing effort to draw more developers to the Android platform, Google started to
hold challenges. The first challenge, called the Android Developer Challenge (ADC) was
launched in 2008, offering relatively high cash prices for the winning projects. The ADC
was carried out in the subsequent year and was again a huge success in terms of
developer participation. There was no ADC in 2010, which can probably be attributed to
Android now having a considerable developer base and thus not needing any further
actions to get new developers on board.

Google also started a device-seeding program in early 2010. Each developer who had
one or more applications on the market with more than 5,000 downloads and an
average user rating of 3.5 stars or above received a brand new Motorola Droid, Motorola
Milestone, or Nexus One phone. This was a very well-received action within the
developer community, although it was initially met with disbelief. Many considered the e-
mail notifications that came out of the blue to be an elaborate hoax. Fortunately, the
promotion turned out to be a reality, and thousands of devices were sent to developers
across the planet—a great move by Google to keep its third-party developers happy and
make them stick with the platform and to potentially attract new developers.

Google also provides the special Android Dev Phone (ADP) for developers. The first ADP
was a version of the T-Mobile G1 (also known as HTC Dream). The next iteration, called
ADP 2, was a variation of the HTC Magic. Google also released its own phone in the
form of the Nexus One, available to end users. Although initially not released as an ADP,
it was considered by many as the successor to the ADP 2. Google eventually stopped
selling the Nexus One to end users, and it is now available for shipment only to partners
and developers. At the end of 2010, the latest ADP was released; this Samsung device
running Android 2.3 (Gingerbread) is called the Nexus S. ADPs can be bought via the
Android Market, which requires you to have a developer account. The Nexus S can be
bought via a separate Google site at www.google.com/phone.

http://www.google.com/phone

CHAPTER 1: Android, the New Kid on the Block

The annual Google I/0O conference is an event every Android developer looks forward to
each year. At Google /0O, the latest and greatest Google technologies and projects are
revealed, among which Android has gained a special place in recent years. Google 1/0
usually features multiple sessions on Android-related topics, which are also available as
videos on YouTube’s Google Developers channel.

Android’s Features and Architecture

Android is not just another Linux distribution for mobile devices. While you develop for
Android, you’re not all that likely to meet the Linux kernel itself. The developer-facing
side of Android is a platform that abstracts away the underlying Linux kernel and is
programmed via Java. From a high-level view, Android possesses several nice features:

An application framework providing a rich set of APIs to create various
types of applications. It also allows the reuse and replacement of
components provided by the platform and third-party applications.

The Dalvik virtual machine, which is responsible for running
applications on Android.

A set of graphics libraries for 2D and 3D programming.

Media support for common audio, video, and image formats such as
Ogg Vorbis, MP3, MPEG-4, H.264, and PNG. There’s even a
specialized API for playing back sound effects, which will come in
handy in our game development adventures.

APIs for accessing peripherals such as the camera, Global Positioning
System (GPS), compass, accelerometer, touch screen, trackball, and
keyboard. Note that not all Android devices have all of these
peripherals —hardware fragmentation in action.

There’s of course a lot more to Android than the few features | just mentioned. For our
game development needs, these features are the most relevant, though.

Android’s architecture is composed of a stack of components, and each component
builds on the components in the layer below it. Figure 1-1 gives an overview of
Android’s major components.

CHAPTER 1: Android, the New Kid on the Block

APPLICATIONS

Contacts Phone

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Telephony Resource Location Notification

Package Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries
Framework

OpenGL | ES FreeType WebKit Machine

SGL SSL libc

LINUX KERNEL

Display

Flash Memory Binder (IPC)
Driver

Camera Driver Drver Driver

5 M~ Audio Power
Keypad Driver WiFi Driver Orivers Management

Figure 1-1. Android architecture overview

The Kernel

Starting from the bottom of the stack, you can see that the Linux kernel provides the
basic drivers for the hardware components. Additionally, the kernel is responsible for
such mundane things as memory and process management, networking, and so on.

The Runtime and Dalvik

The Android runtime is built on top of the kernel and is responsible for spawning and
running Android applications. Each Android application is run in its own process with its
own Dalvik virtual machine.

Dalvik runs programs in the DEX bytecode format. Usually you transform common Java
.class files to the DEX format via a special tool called dx that is provided by the
software development kit. The DEX format is designed to have a smaller memory
footprint compared to classic Java .class files. This is achieved by heavy compression,
tables, and merging of multiple .class files.

The Dalvik virtual machine interfaces with the core libraries, which provide the basic
functionality exposed to Java programs. The core libraries provide some but not all of

CHAPTER 1: Android, the New Kid on the Block

the classes available in Java SE through the use of a subset of the Apache Harmony
Java implementation. This also means that there’s no Swing or Abstract Window Toolkit
(AWT) available, nor any classes that can be found in Java ME. However, with some
care, you can still use many of the third-party libraries available for Java SE on Dalvik.

Before Android 2.2 (Froyo), all bytecode was interpreted. Froyo introduces a tracing JIT
compiler, which compiles parts of the bytecode to machine code on the fly. This
increases the performance of computationally intensive applications considerably. The
JIT compiler can use CPU features specifically tailored for special computations such as
a dedicated Floating Point Unit (FPU).

Dalvik also has an integrated garbage collector (GC). It's a mark-and-sweep
nongenerational GC that has the tendency to drive developers a tad bit mad at times.
With some attention to details, you can peacefully coexist with the GC in your day-to-
day game development, though. The latest Android release (2.3) has an improved
concurrent GC, which relieves some of the pain. We’ll investigate GC issues in more
detail later in the book.

Each application running in an instance of the Dalvik VM has a total of 16MB to 24MB of
heap memory available. We’ll have to keep that in mind as we juggle our image and
audio resources.

System Libraries

Besides the core libraries, which provide some Java SE functionality, there’s also a set
of native C/C++ libraries that build the basis for the application framework (located in the
next layer of Figure 1-1). These system libraries are mostly responsible for the
computationally heavy tasks such as graphics rendering, audio playback, and database
access, which would not be so well suited for the Dalvik virtual machine. The APIs are
wrapped via Java classes in the application framework, which we’ll exploit when we
start writing our games. We’ll abuse the following libraries in one form or another:

Skia Graphics Library (Skia): This software renderer for 2D graphics is
used for rendering the Ul of Android applications. We'll use it to draw
our first 2D game.

OpenGL for Embedded Systems (OpenGL ES): This is the industry
standard for hardware-accelerated graphics rendering. OpenGL ES 1.0
and 1.1 are exposed in Java on all versions of Android. OpenGL ES 2.0,
which brings shaders to the table, is supported from only Android 2.2
(Froyo) onward. It should be mentioned that the Java bindings for
OpenGL ES 2.0 are incomplete and lack a few vital methods. Also, the
emulator and most of the older devices that still make up a considerable
share of the market do not support OpenGL ES 2.0. We’ll be concerned
with OpenGL ES 1.0 and 1.1, to stay compatible as much as possible.

CHAPTER 1: Android, the New Kid on the Block

OpenCore: This is a media playback and recording library for audio and
video. It supports a good mix of formats such as Ogg Vorbis, MP3,
H.264, MPEG-4 and so on. We’ll be mostly concerned with the audio
portion, which is not directly exposed to the Java side but wrapped in a
couple of classes and services.

FreeType: This is a library to load and render bitmap and vector fonts,
most notably the TrueType format. FreeType supports the Unicode
standard, including right-to-left glyph rendering for Arabic and similar
peculiarities. Sadly, this is not entirely true for the Java side, which to
this point does not support Arabic typography. As with OpenCore,
FreeType is not directly exposed to the Java side but is wrapped in a
couple of convenient classes.

These system libraries cover a lot of ground for game developers and perform most of
the heavy lifting for us. They are the reason why we can write our games in plain old
Java.

Note: Although the capabilities of Dalvik are usually more than sufficient for our purposes, at
times you might need more performance. This can be the case for very complex physics
simulations or heavy 3D calculations—for which we would usually resort to writing native code. |
do not cover this aspect in this book. A couple of open source libraries for Android already exist
that can help you stay on the Java side of things. See http://code.google.com/p/1ibgdx/
for an example. Also worth noting is the excellent book Pro Android Games by Vladimir Silva
(Apress, 2009), which goes into depth about interfacing with native code in the context of game
programming.

The Application Framework

The application framework ties together the system libraries and the runtime, creating
the user side of Android. The framework manages applications and provides an
elaborate framework within which applications operate. Developers create applications
for this framework via a set of Java APIs that cover such areas as Ul programming,
background services, notifications, resource management, peripheral access, and so
on. All core applications provided out of the box by Android, such as the mail client, are
written with these APlIs.

Applications, whether they are Uls or background services, can communicate their
capabilities to other applications. This communication enables an application to reuse
components of other applications. A simple example is an application that needs to take
a photo and then perform some operations on it. The application queries the system for
a component of another application that provides this service. The first application can
then reuse the component (for example, a built-in camera application or photo gallery).
This significantly lowers the burden on programmers and also enables you to customize
a plethora of aspects of Android’s behavior.

http://code.google.com/p/libgdx/

CHAPTER 1: Android, the New Kid on the Block

As game developers, we will create Ul applications within this framework. As such, we
will be interested in an application’s architecture and life cycle as well as its interactions
with the user. Background services usually play a small role in game development,
which is why | will not go into details about them.

The Software Development Kit

To develop applications for Android, we will use the Android software development kit
(SDK). The SDK is composed of a comprehensive set of tools, documentation, tutorials,
and samples that will help you get started in no time. Also included are the Java libraries
needed to create applications for Android. These contain the APIs of the application
framework. All major desktop operating systems are supported as development
environments.

Prominent features of the SDK are as follows:

B The debugger, capable of debugging applications running on a device
or in the emulator

B A memory and performance profile to help you find memory leaks and
identify slow code

B The device emulator, based on QEMU (an open source virtual machine
to simulate different hardware platforms), which, although accurate,
can be a bit slow at times

B Command-line utilities to communicate with devices
B Build scripts and tools to package and deploy applications

The SDK can be integrated with Eclipse, a popular and feature-rich open source Java
integrated development environment (IDE). The integration is achieved through the
Android Development Tools (ADT) plug-in, which adds a set of new capabilities to
Eclipse to create Android projects; to execute, profile and debug applications in the
emulator or on a device; and to package Android applications for their deployment to
the Android Market. Note that the SDK can also be integrated into other IDEs such as
NetBeans. There is, however, no official support for this.

NOTE: Chapter 2 covers how to set up the development environment with the SDK and Eclipse.

The SDK and the ADT plug-in for Eclipse receive constant updates that add new
features and capabilities. It’s therefore a good idea to keep them updated.

Alongside any good SDK comes extensive documentation. Android’s SDK does not fall
short in this area and comes with a lot of sample applications. You can also find a
developer guide and a full API reference for all the modules of the application framework
at http://developer.android.com/guide/index.html.

http://developer.android.com/guide/index.html

CHAPTER 1: Android, the New Kid on the Block

The Developer Community

Part of the success of Android is its developer community, which gathers in various
places around the Web. The most frequented site for developer exchange is the Android
Developers group at http://groups.google.com/group/android-developers. This is the
number one place to ask questions or seek help when you stumble across a seemingly
unsolvable problem. The group is visited by all sorts of Android developers, from system
programmers, to application developers, to game programmers. Occasionally, the
Google engineers responsible for parts of Android also help out with valuable insights.
Registration is free, and | highly recommend starting reading the group now! Apart from
providing a place for you to ask questions, it’s also a great place to search for already
answered questions and solutions to problems. So, before asking a question, check
whether it has been answered already.

Every developer community worth its salt has a mascot. Linux has Tux the penguin,
GNU has its, well, gnu, and Mozilla Firefox has its trendy Web 2.0 fox. Android is no
different and has selected a little green robot as its mascot of choice. Figure 1-2 shows
you that little devil.

Figure 1-2. Android’s nameless mascot

Although its choice of color may be disputable, this nameless little robot already starred
in a couple of popular Android games. Its most notable appearance was in Replica
Island, a free and open source platfom created by Google engineer Chris Pruett as a 20
percent project.

Devices, Devices, Devices!

Android is not locked into a single hardware ecosystem. Many prominent handset
manufacturers such asHTC, Motorola, and Samsung have jumped onto the Android

http://groups.google.com/group/android-developers

CHAPTER 1: Android, the New Kid on the Block

wagon and offer a wide range of devices running Android. Besides handsets, there’s
also a slew of tablet devices coming to the market that build upon Android. Some key
concepts are shared by all devices, though, which makes our lives as game developers
a little easier.

Hardware

There are no hard minimum requirements for an Android device. However, Google has
recommended the following hardware specifications, which virtually all available Android
devices fulfill and most often surpass significantly:

ARM-based CPU: At the time of writing this book, this requirement was
relaxed. Android now also runs on the x86 architecture. The latest ARM-
based devices are also starting to feature dual-core CPUs.

128MB RAM: This specification is a minimum. Current high-end devices
already include 512MB RAM, and 1GB RAM devices are expected in the
very near future.

256MB flash memory: This minimum amount of memory is for storing
the system image and applications. For a long time, this lack of memory
was the biggest gripe among Android users because third-party
applications could be installed only to flash memory. This changed with
the release of Froyo.

Mini or Micro SD card storage: Most devices come with a few gigabytes
of SD card storage, which can be replaced with bigger SD cards by the
user.

16-bit color Half-Size Video Graphics Array (HVGA) TFT LCD with touch
screen: Before Android version 1.6, only HVGA screens (480x320 pixels)
were supported by the operating system. Since version 1.6, lower- and
higher-resolution screens are supported. The current high-end devices
have Wide Video Graphis Array (WVGA) screens (800x480, 848x480, or
852x480 pixels), and some low-end devices sport Quarter-Size Video
Graphics Array (QVGA) (320x280 pixels) screens. Touch screens are
almost always capacitive and are only single-touch capable on most
older devices.

Dedicated hardware keys: These keys are used for navigation. Most
phones to date have at least a menu, search, home, and a back key.
Some manufacturers have started to deviate from this and are including
a subset of these keys or no keys at all.

Of course, there’s a lot more hardware in actual Android devices. Almost all handsets
have GPS, an accelerometer, and a compass. Many also feature proximity and light
sensors. These peripherals offer game developers new ways to let the user interact -
with the game, and we’ll have a look at some of them later on. A few devices have a full
QWERTY keyboard as well as a trackball. The latter is most often found in HTC devices.

CHAPTER 1: Android, the New Kid on the Block

Cameras are also available on almost all current devices. Some handsets and tablets
have two cameras, one on the back and one on the front for video chat.

Especially crucial for game development are dedicated graphics processor units (GPUSs).
The earliest handset to run Android already had an OpenGL ES 1.0compliant GPU.
More-modern devices have GPUs comparable in performance to the Xbox or
PlayStation 2 and support OpenGL ES 2.0. If no graphics processor is available, a
fallback in the form of a software renderer called PixelFlinger is provided by the platform.
Many low-budget handsets rely on the software renderer, which is often sufficiently fast
for low-resolution screens.

Along with the graphics processor, any currently available Android device also has
dedicated audio hardware. Many hardware platforms also have special circuitry to
decode different media formats such as H.264 in hardware. Connectivity is provided via
hardware components for mobile telephony, Wi-Fi, and Bluetooth. All these hardware
modules of an Android device are most often integrated in a single system on a chip
(SoC), a system design also found in embedded hardware.

First Gen, Second Gen, Next Gen

Given the differences in capabilities, especially in terms of performance, Android
developers usually group devices into first-, second-, and next-generation devices. This
terminology comes up a lot, even more so when it comes to game development for
Android. Let’s try to define these terms.

Each generation has a specific set of characteristics, mostly a combination of the
Android version(s) used, the CPU/GPU, and the screen resolution of the devices within a
generation. Although the hardware specifications are static, this might not be the case
for the Android version used on a device.

In the Beginning: First Generation

First-generation devices are the current baseline and are best described by examining
one of their most prominent specimens, the HTC Hero, shown in Figure 1-3.

CHAPTER 1: Android, the New Kid on the Block

Figure 1-3. The HTC Hero

This was one of the first Android phones that was said to be an iPhone Killer, released in
October 2009. The Hero was first shipped with Android version 1.5 installed, which was
the standard for most Android handsets for most of 2009. The last official update for the
Hero was to Android version 2.1. Newer updates can be installed only if the phone is
rooted, a process that grants full system access.

The Hero has a 3.2-inch HVGA capacitive LCD touch screen, a 528MHz Qualcomm
MSM7201A CPU/GPU combination, an accelerometer, and a compass, as well as a 5-
megapixel camera. It also has the typical set of navigational hardware keys that most
first-generation devices exhibit, along with a trackball.

The Hero is a prime example of first-generation devices. The touch screen has only
limited support for multi-touch gestures such as the pinch zoom and no true multi-touch
capability. Note that multi-touch gestures are not officially supported by the device and
are also not exposed through the APIs of the official Android version 1.5. In this regard,
the Hero was a major diasppointment for game developers who had hoped for similar
multi-touch capabilities as those found on the iPhone.

Another common trait of first-generation devices is the screen resolution of 480x320
pixels, the standard resolution up until Android version 1.6.

In the CPU/GPU department, the Hero employs the very common MSM7201A series by
Qualcomm. This chip does not support hardware floating-point operations, another
feature of high importance to game developers. The MSM7201A is OpenGL ES 1.0
compliant, which translates to a fixed-function pipeline as opposed to a programmable,

CHAPTER 1: Android, the New Kid on the Block

shader-based pipeline. The GPU is reasonably fast but outperformed by the PowerVR
MBX Lite chip found in the iPhone 3G, which was available at the same time. HTC used
the same chip in a couple of other first-generation handsets, such as the famous HTC
Dream (T-Mobile G1). The MSM7201A is considered the low end when it comes to
hardware-accelerated 3D graphics and is thus your greatest enemy when you want to
target all generations of Android devices.

First-generation devices can thus be identified by the following features:
A CPU running at up to ~500MHz without hardware floating-point support
A GPU, mostly in the form of the MSM7201A chip, supporting OpenGL ES 1.x

A screen resolution of 480x320 pixels

Limited multi-touch support
B |nitially deployed with Android 1.5/1.6 or even earlier versions

This classification is of course not strict. Many low-budget devices just coming out
share a similar feature set. Although they are not exactly first generation, we can still put
them in the same category as the Hero and similar devices.

First-generation devices still have a considerable market share at the time of writing this
book. If we want to reach the biggest possible audience, we have to consider their
limitations and adapt our games accordingly.

More Power: Second Generation

At the end of 2009, a new generation of Android devices entered the scene.
Spearheaded by the Motorola Droid and Nexus One (released in January 2010), this new
generation of handsets demonstrated raw computational power previously unseen in
mobile phones.

The Nexus One is powered by a 1GHz Qualcomm QSD8250, a member of the
Snapdragon family of chips. The Motorola Droid uses a 550MHz Texas Instruments
OMAP3430. Both CPUs support vector hardware floating-point operations via the
Vector Floating Point (VFP) and NEON ARM extensions. The Nexus One has 512MB
RAM, and the Motorola Droid has 256MB RAM. Figure 1-4 shows their designs.

CHAPTER 1: Android, the New Kid on the Block

Figure 1-4. The Nexus One and Motorola Droid

Both phones have a WVGA screen, an 800x480 pixel Active-Matrix Organic Light-
Emiting Diode (AMOLED) screen (in the case of the Nexus One) or a 854x480 pixel LCD
screen (in the case of the Motorola Droid). Both screens are capacitive multi-touch
screens. Although both devices were advertised as multi-touch capable, they do not
work as expected in a couple of situations. The most common problem is the reporting
of false touch positions when two fingers are close on either the x- or y-axis on the
screen.

The Nexus One was first shipped with Android version 2.1, and the Motorola Droid was
shipped with version 2.0. Both phones have received updates to Android version 2.2.

Of special interest to game developers are the built-in GPUs. The PowerVR SGX530 is a
very potent GPU also used in the iPhone 3GS. Note that the screen size of the iPhone
3GS is actually half that of the Motorola Droid, which gives the iPhone 3GS a slight
performance advantage, because it has to draw fewer pixels per frame. The Adreno 200
chip used in the Nexus One is a Qualcomm product and slightly slower than the
PowerVR SGX530. Depending on the rendered scene, both chips can be nearly a
magnitude faster than the MSM7201A found in many first-generation devices.

Second-generation devices can be identified by the following features:

A CPU running between 550MHz and 1GHz with hardware floating-point
support

A programmable GPU supporting OpenGL ES 1.x and 2.0
A WVGA screen

Multi-touch support

Android version 2.0, 2.0.1, 2.1, or 2.2

CHAPTER 1: Android, the New Kid on the Block

Note that a few first-generation devices received updates to Android version 2.1, which
has some positive impact on overall system performance but does not, of course,
change the fact that their hardware specifications are inferior to second-generation
devices. The distinction between first- and second-generation devices can thus be
made only if all factors such as CPU, GPU, or screen resolution are taken into account.

Over the course of 2010, many more second-generation devices appeared, such as the
HTC Evo or the Samsung i9200 Galaxy S. Although they feature some improvements
over the Nexus One and Motorola Droid such as bigger screens and slightly faster
CPUs/GPUs, they are still considered second-generation devices.

The Future: Next Generation

Device manufacturers try to keep their latest and greatest handsets a secret for as long
as possible, but there are always some leaks of specifications.

General trends for all future devices are dual-core CPUs, more RAM, better GPUs, and
higher screen resolutions. One such future device is the Samsung 9200 Galaxy S2,
which is rumored to have a 1280x720 pixel AMOLED 2 display, a 2GHz dual-core CPU,
and 1GB RAM. Not much is known about the GPU this handset will use. A possible
candidate would be the new NVIDIA Tegra 2 family of chips, which promises a
significant boost in graphics performance. The next generation is also expected to ship
with the latest Android version (2.3).

Although mobile phones will probably remain the focus of Android for the immediate
future, new form factors will also play a role in Android’s evolution. Hardware
manufacturers are creating tablet devices and netbooks, using Android as the operating
system. Ports of Android for other architectures such as x86 are also already in the
making, increasing the number of potential target platforms. And with Android 3.0,
there’s even a dedicated Android version for tablets available.

Whatever the future will bring, Android is here to stay!

Game Controllers

Given the differences of input methods available on various Android handsets, a few
manufacturers produce special game controllers. Because there’s no API in Android for
such controllers, game developers have to integrate support separately by using the
SDK provided by the game controller manufacturer.

One such game controller is called the Zeemote JS1, shown in Figure 1-5. It features an
analog stick as well as a set of buttons.

CHAPTER 1: Android, the New Kid on the Block

Figure 1-5. The Zeemote JS1 controller

The controller is coupled with the device via Bluetooth. Game developers integrate
support for the controller via a separate API provided by the Zeemote SDK. A couple of
Android games already support this controller when available.

Users could in theory also couple the Nintendo Wii controller with their device via
Bluetooth. A couple of prototypes exploiting the Wii controller exist, but there’s no
officially supported SDK—which makes integration a tad bit awkward.

The Game Gripper, shown in Figure 1-6, is an ingenious invention specifically designed
for the Motorola Droid and Milestone. It is a simple rubber accessory that slides over the
QWERTY keyboard of the phone and overlays a more or less standard game controller
layout on top of the actual hardware keyboard. Game developers need only add
keyboard controls to their game and don’t have to integrate a special library to
communicate with the Gripper. It’s just a piece of rubber, after all.

Android, the New Kid on the Block

BASES, ee GBS 1iee
SUPCR

wiare

o oNEMNGD L

- A PLAVER Gamr
> I AviR G

TOW« OOOOO

Figure 1-6. The Game Gripper in action

Game controllers are still a bit esoteric in the realm of Android. However, some
successful titles have integrated support for some controllers, a move generally well
received by Android gamers. Integrating support for such peripherals should therefore
be considered.

Mobile Gaming Is Different

Gaming was already huge way before the likes of the iPhone and Android started to
conquer this market segment. However, with those new forms of hybrid devices, the
landscape has started to change. Gaming is no longer something for nerdy kids. Serious
businesspeople have been caught playing the latest trendy game on their mobile phones
in public, newspapers pick up stories of successful small game developers making a
fortune on mobile phone application markets, and established game publishers have a
hard time keeping up with the developments in the mobile space. We game developers
must recognize this change and adjust accordingly. Let’s see what this new ecosystem
has to offer.

A Gaming Machine in Every Pocket

Smartphones are ubiquitous. That’s probably the key statement to take away from this
section. From this, we can easily derive all the other facts about mobile gaming.

As hardware prices are constantly dropping and new cell phones have ever-increasing
computational power, they also become ideal gaming devices. Mobile phones are a
must-have nowadays, so market penetration is huge. Many people who are exchanging
their old, classic mobile phones with the new generation of smartphones are discovering
the new options available to them in the form of an incredibly wide range of applications.

CHAPTER 1: Android, the New Kid on the Block

Previously, people had to make the conscious decision to buy a video game system or a
gaming PC in order to play video games. Now they get that functionality for free from
their mobile phones. There’s no additional cost involved (at least if you don’t count the
data plan you’ll likely have), and your new gaming device is available to you at any time.
Just grab it from your pocket or purse, and you are ready to go—no need to carry a
second dedicated system with you, because everything’s integrated in one package.

Apart from the benefit of having to carry only a single device for your telephony, Internet,
and gaming needs, another factor makes gaming on mobile phones incredibly
accessible to a much larger audience: you can fire up a dedicated market application on
your phone, pick a game that looks interesting, and immediately start to play. There’s no
need to go to a store or download something via your PC only to find out, for example,
that you lost the USB cable needed to transfer that game to your phone.

The increased processing power of current-generation smartphones also has an impact
on what’s possible for us as game developers. Even the middle class of devices is
capable of generating gaming experiences similar to titles found on the older Xbox and
PlayStation 2 systems. Given these capable hardware platforms, we can also start
experimenting with more-elaborate games with physics simulations, an area offering
great potential for innovation.

With new devices also come new input methods, which we have already discussed a
little. A couple of games already exploit the GPS and/or compass available in most
Android devices. The use of the accelerometer is already a mandatory feature of most
games, and multi-touch screens offer new ways for the user to interact with the game
world. Compared to classic gaming consoles (and ignoring the Wii for the moment), this
is quite a change for game developers. A lot of ground has been covered already, but
there are still new ways to use all this functionality in an innovative way.

Always Gonnected

Smartphones are usually bought along with data plans. They are not only used for pure
telephony anymore but actually drive a lot of traffic to popular Internet sites. A user
having a smartphone is very likely to be connected to the Web at any point in time
(neglecting for a moment poor reception, for example, caused by hardware design
failures).

Permanent connectivity opens up a completely new world for mobile gaming. People
can challenge other people across the planet for a quick match of chess, explore virtual
worlds together, or try fragging their best friend in another city in a fine death match of
gentlemen. And all of this occurs on the go, on the bus or train or in their most beloved
corner of the local park.

Apart from multiplayer functionality, social networks have also started to play a huge
role in mobile gaming. Games provide functionality to tweet your latest high score
directly to your Twitter account or to inform a friend of your latest achievements earned
in that racing game you both love. Although growing social networks exist in the
classical gaming world (for example, Xbox Live or the equivalent PlayStation service),

CHAPTER 1: Android, the New Kid on the Block

the market penetration of services such as Facebook and Twitter is a lot higher, and so
the user is relieved of the burden of managing multiple networks at once.

Casual and Hardcore

The huge user adaption of smartphones also means that people who have never even
touched a NES controller suddenly discover the world of gaming. Their mental image of
a good game often deviates quite a bit from the one a hardcore gamer might have.

Given the use cases for mobile phones, users tend to lean toward the more casual sort
of games that they can fire up for a couple of minutes while on the bus or waiting in line
at their preferred fast food restaurant. These games are equivalent toall those small flash
games on the PC that are forcing many people in the workforce to Alt+Tab frantically
each time they sense the presence of someone watching their back. Ask yourself this:
how much time would you be willing to spend playing games on your mobile phone?
Can you imagine playing a “quick” game of Civilization on such a device?

Surely there are people who would actually offer their firstborn if only they could play
their beloved Advanced Dungeons & Dragons variant on a mobile phone. But this group
is a small minority, as evidenced by the top-selling games on the iPhone and Android
Markets. The top-selling games are usually extremely casual but have a nice trick under
their sleeves: The average time taken to play a round of such a game is in the range of
minutes, but the games make you come back by employing various evil schemes. The
game might provide an elaborate online achievement system that lets you virtually brag
about your skills. But it could also be an actual hardcore game in disguise. Offer users
an easy way to save their progress, and you are set to sell them your hardcore game as
a casual game!

Big Market, Small Developers

The low entry barrier is a main attractor for many hobbyists and independent
developers. In the case of Android, this barrier is especially low: just get yourself the
SDK and program away. You don’t even need a device, just use the emulator (although |
highly recommend having at least one development device). The open nature of Android
also leads to a lot of activity on the Web. Information on all aspects of programming for
the system can be found for free online. There’s no need to sign an Non-Disclosure
Agreement or wait for some authority to grant you access to their holy ecosystem.

At the time of this writing, the most successful games on the market were developed by
one-person companies and small teams. Major publishers have not yet set foot in the
market, at least not successfully. Gameloft serves as a prime example. Although big on
the iPhone, Gameloft couldn’t get a hold of the Android market and decided to sell their
games on their own website instead. Gameloft might not have been happy with the
missing Digital Rights Managment scheme (which is available on Android now)—a move
that of course lowers the number of people who actually know about their games
considerably.

CHAPTER 1: Android, the New Kid on the Block

The environment also allows for a lot of experimentation and innovation as bored people
surfing the market are longing for little gems, including new ideas and game play
mechanics. Experimentation on classic gaming platforms such as the PC or consoles
are often met with failure. However, the Android Market enables you to reach a much
larger audience that is willing to try experimental new ideas, and to reach them with a lot
less effort.

This doesn’t mean, of course, that you don’t have to market your game. One way to do
so is to inform various blogs and dedicated sites on the Web about your latest game.
Many Android users are enthusiasts and regularly frequent such sites, checking in on
the latest and greatest.

Another way to reach a large audience is to get featured in the Android Market. Once
featured, your application will appear to users in a list immediately after they start the
market application. Many developers have reported a tremendous increase in
downloads directly correlated to getting featured on the market. How to get featured is a
bit of a mystery, though. Having an awesome idea and executing it in the most polished
way is your best bet, whether you are a big publisher or a small one-person shop.

Summary

Android is an exciting little beast. You have seen what it’s made of and have gotten to
know its developer ecosystem a little. It offers us a very interesting system in terms of
software and hardware to develop for, and the barrier of entry is extremely low given the
freely available SDK. The devices themselves are pretty powerful for handheld devices
and will enable us to present visually rich gaming worlds to our users. The use of
sensors such as the accelerometer let us create innovative game ideas with new user
interactions. And after we have finished developing our games, we can deploy them to
millions of potential gamers in a matter of minutes. Sounds exciting? Then let’s get our
hands dirty with some codel!

Chapter

First Steps with the
Android SDK

The Android SDK provides a set of tools that allows creating applications in no time.
This chapter will guide you through the process of building a simple Android application
with the SDK tools. This involves the following steps:

1. Setting up the development environment

2. Creating a new project in Eclipse and writing our code
3. Running the application on the emulator or on a device
4. Debugging and profiling the application

Let’s start with setting up the development environment.

Setting Up the Development Environment

The Android SDK is pretty flexible and integrates well with a couple of development
environments. Purists might choose to go all hard-core with command-line tools. We
want things to be a little bit more comfortable, though, so we’ll go for the simpler, more
visual route using an IDE (integrated development environment).

Here’s the grocery list of software you’ll need to download and install in the given order:
The Java Development Kit (JDK), version 5 or 6. | suggest going for 6.
The Android Software Development Kit (Android SDK).

Eclipse for Java Developers, version 3.4 or 3.5.
B The Android Development Tools (ADT) plug-in for Eclipse.
Let’s go through the steps required to set everything up properly.

25

CHAPTER 2: First Steps with the Android SDK

NOTE: As the Web is a moving target, | don’t provide URLs here. Fire up your favorite search
engine and find the appropriate places to get ahold of the above items.

Setting Up the JDK

Download the JDK with one of the specified versions for your operating system. On
most systems it comes in the form of an installer or package, so there shouldn’t be any
hurdles. Once the JDK is installed, it is advisable to add a new environment variable
called JDK_HOME pointing to the root directory of the JDK installation. Additionally, you
should add the $IDK_HOME/bin (%IDK_HOME%\bin on Windows) directory to your PATH
environment variable.

Setting Up the Android SDK

The Android SDK is also available for the three mainstream desktop operating systems.
Choose the one fitting for your platform and download it. The SDK comes in the form of
a ZIP or tar gzip file. Just uncompress it to a convenient folder (e.g., c:\android-sdk on
Windows or /opt/android-sdk on Linux). The SDK comes with a couple of command-
line utilities located in the tools/ folder. Create an environment variable called

ANDROID HOME pointing to the root directory of the SDK installation and add
$ANDROID_HOME/tools (%ANDROID_HOME%\tools on Windows) to your PATH environment
variable. This way you can easily invoke the command-line tools from a shell later on if
the need arises.

After performing the preceding steps, you’ll have a bare-bones installation that consists
of the basic command-line tools needed to create, compile, and deploy Android
projects, as well as the SDK and AVD manager, a tool for installing SDK components
and creating virtual devices used by the emulator. These tools alone are not sufficient to
start developing, so you need to install additional components. That’s were the SDK and
AVD manager comes in. The manager is a package manager, much like the package
management tools you find on Linux. The manager allows you to install the following
types of components:

Android platforms: For every official Android release there’s a platform component
for the SDK that includes the runtime libraries, a system image used by the
emulator, and any version-specific tools.

SDK add-ons: Add-ons are usually external libraries and tools that are not specific
to a platform. Some examples of these are the Google APIs that allow you to
integrate Google maps in your application.

USB driver for Windows: These are necessary for running and debugging your
application on a physical device on Windows. On Mac OS X and Linux you don’t
need a special driver.

CHAPTER 2: First Steps with the Android SDK

Samples: For each platform there’s also a set of platform-specific samples. These
are great resources for seeing how to achieve specific goals with the Android

runtime library.

Documentation: This is a local copy of the documentation for the latest Android

framework API.

Being the greedy developers we are, we want to install all of these components to have
the full set of functionality at our disposal. For this, we first have to start the SDK and
AVD manager. On Windows there’s an executable called SDK manager.exe in the root
directory of the SDK. On Linux and Mac OS X you simply start the script android in the

tools directory of the SDK.

Upon first startup, the SDK and AVD manager will connect to the package server and
fetch a list of available packages. It will then present you with the dialog in Figure 2-1,
which allows you to install individual packages. Simply check Accept All, click the Install
button, and make yourself a nice cup of tea or coffee. The manager will take a while to

install all the packages.

<+ Choose Packages to Install

Packages

~ SDK Platform &ndroid 2.2, 4P| 8, revision 2 [*] IA_]
~ SDK Platform &ndroid 2.1, AP 7, revision 2 [*]

~ SDK Platform &ndroid 2.0.1, AP E, revision 1...

~ SDK Platform &ndroid 2.0, &P 5, revision 1 [...

~ SDK Platform &ndroid 1.6, &4P1 4, revision 3] | =
~ SDK Platform &ndroid 1.5, AP 3, revision 4 [*)]
~ SDK Platform &ndroid 1.1, AP 2, revision 1 [...
~ Samples for SDK &Pl 8, revision 1

~ Samples for SDK AP 7, revision 1

? Google 4PIs by Google Inc., Android &P 8, 1...
? Google 4PIs by Google Inc., Android &P1 7, 1...
? Google 4Pls by Google Inc., Android &P 6, ...

? Google APIs by Google Inc., Android AP1 5, ... [v]

Package Description & License
Package Description

Android SDK Platform 2.2_r1
Revision 2

Dependencies
This package is a dependency for:
- Google APls by Google Inc., &ndroid AP 8, revision 2

Archive Description

Archive for Windows

Size: 73 MiB

SHAT: eB0ddc2fBf3929bc8d4Ebe579be86d4331 7adbs7

Site
httns: A/dl-ssl annnle ~omandrnid rennsitnru/rennsitan kol

@® accept O Reject

=

A

O Accept Al

[

Install ” Cancel

Figure 2-1. First contact with the SDK and AVD manager

You can use the SDK and AVD manager at any time to update components or install
new ones. The manager is also used to create new AVDs, which will be necessary later
on when we start running and debugging our applications on the emulator.

Once the installation process is finished, we can move on to the next step in setting up

our development environment.

CHAPTER 2: First Steps with the Android SDK

Installing Eclipse

Eclipse comes in a couple of different flavors. For Android developers, | suggest using
Eclipse for Java Developers version 3.6, Like the Android SDK, Eclipse comes in the
form of a ZIP or tar gzip package. Simply extract it to a folder of your choice. Once it’s
uncompressed, you can create a nice little shortcut on your desktop to the eclipse
executable in the root directory of your Eclipse installation.

The first time you start Eclipse, you will be prompted to specify a workspace directory.
Figure 2-2 shows you the dialog for this.

& Workspace Launcher 5

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: |C:\Documents and Settings\mzechner\workspace [ZI [Browse...

[] Use this as the default and do not ask again

[0K] [Cancel

Figure 2-2. Choosing a workspace

A workspace is Eclipse’s notion of a folder containing a set of projects. Whether you use
a single workspace for all your projects or multiple workspaces that group just a few
projects is completely up to you. The sample projects accompanying this book are all
organized in a single workspace, which you could specify in this dialog. For now, we’ll
simply create an empty workspace somewhere.

Eclipse will then greet us with a welcome screen, which we can safely ignore and close.
This will leave us with the default Eclipse Java perspective. We’ll get to know Eclipse a
little better in a later section. For now it suffices to have it running.

Installing the ADT Eclipse Plug-in

The last piece in our setup puzzle is installing the ADT Eclipse plug-in. Eclipse is based
on a plug-in architecture that is used to extend its capabilities by third-party plug-ins.
The ADT plug-in marries the tools found in the Android SDK with the powers of Eclipse.
Given this combination, we can completely forget about invoking all the command-line
Android SDK tools; the ADT plug-in integrates them transparently into our Eclipse
workflow.

CHAPTER 2: First Steps with the Android SDK

Installing plug-ins for Eclipse can be done either manually, by dropping the contents of a
plug-in ZIP file into the plug-ins folder of Eclipse, or via the Eclipse plug-in manager
integrated with Eclipse. Here we’ll choose the second route.

1. Toinstall a new plug-in, go to Help » Install New Software..., which will
open the installation dialog. In this dialog you can choose from which
source to install what plug-in. First, you have to add the plug-in
repository from which the ADT plug-in is fetched. Click the Add button,
and you will be presented with the dialog depicted in Figure 2-3.

2. In the first text field, you can enter the name of the repository;
something like “ADT repository” will do. The second text field specifies
the URL of the repository. For the ADT plug-in, this field should be
https://dl-ssl.google.com/android/eclipse/. Note that this URL
might be different for newer versions, so check the ADT plug-in site for
an up-to-date link.

& Add Repository X
Name: || || Local. |
Location: lhtlp:.-"e’ | [Archive...]

©

Figure 2-3. Adding a repository

3. After you’ve confirmed the dialog, you’ll be brought back to the
installation dialog, which should now be fetching the list of available
plug-ins in the repository. Check the Developer Tools check box and
click the Next button.

4. Eclipse will now calculate all the necessary dependencies, and then
present you a new dialog that lists all the plug-ins and dependencies
that are going to be installed. Confirm that dialog with a click on the
Next button.

5. Yet another dialog will pop up, prompting you to accept the licenses of
each plug-in to be installed. You should of course accept those
licenses, and finally initiate the installation with a click on the Finish
button.

https://dl-ssl.google.com/android/eclipse/

CHAPTER 2: First Steps with the Android SDK

NOTE: During the installation you will be asked to confirm the installation of unsigned software.
Don’t worry, the plug-ins simply do not have a verified signature. Agree to the installation to
continue the process.

6. Finally, Eclipse will ask you whether it should restart to apply the
changes. You can opt for a full restart or for applying the changes
without a restart. To play it safe, choose Restart Now, which will restart
Eclipse as expected.

After all this dialog madness, you’ll be presented with the same Eclipse window as
before. The toolbar features a couple of new buttons specific to Android, which allow
you to start the SDK and AVD manager directly from within Eclipse, as well as create
new Android projects. Figure 2—4 shows these new shiny toolbar buttons.

Figure 2-4. ADT toolbar buttons

The first button on the left allows you to open the AVD and SDK Manager. The next
button is a shortcut to creating a new Android project. The other two buttons will create
a new unit test project or Android manifest file (functionality we won’t use in this book).

As one last step in finishing the installation of the ADT plug-in, you have to tell the plug-
in where the Android SDK is located.

1. Open Window » Preferences, and select Android in the tree view in the
upcoming dialog.

2. On the right side, click the Browse button to chose the root directory of
your Android SDK installation.

3. Click the OK button to close the dialog, and you’ll finally able to create
your first Android application.

A Quick Tour of Eclipse

Eclipse is an open source IDE that you can use to develop applications written in various
languages. Usually, Eclipse is used in connection with Java development. Given its plug-
in architecture, a lot of extensions have been created, so it is also possible to develop
pure C/C++, Scala, or Python projects as well. The possibilities are endless; there even
exist plug-ins to write LaTeX projects, for example —something only slightly resembling
your usual code development tasks.

An instance of Eclipse works with a workspace that holds one or more projects. We
defined a workspace at startup earlier. All new projects we create will be stored in the
workspace directory, along with configuration that defines the look of Eclipse when
using the workspace, among other things.

CHAPTER 2: First Steps with the Android SDK

The user interface (Ul) of Eclipse revolves around two concepts:

B Aview, which is a single Ul component such as a source code editor,
an output console, or a project explorer

B A perspective, which is a set of specific views that you’ll most likely
need for a specific development task, such as editing and browsing
source code, debugging, profiling, synchronization with a version
control repository, and so on.

Eclipse for Java Developers comes with a couple of predefined perspectives. The ones
we are most interested in are called Java and Debug. The Java perspective is the one
shown in Figure 2-5. It features the Package Explorer view on the left side, a source-
editing view in the middle (it's empty as we didn’t open a source file yet), a Task List
view to the right, an Outline view, and a tabbed view that contains subviews called
Problems view, Javadoc view, and Declaration view.

& Java - Eclipse g

(X

File Edit Run Source Refactor Mavigate Search Project Window Help

rEEEe B BRd 0@ HG- B (&2 Java |
- Nr=00 2R S A ¢ :

ﬁ Package Explore ﬁ i = 8 = 0| E Task List 52 -0

Bg &~ - (% ¢ xXB 4@°
(@ Connect Mylyn 3
IEE Outline 82 ; A)

An outline is not available.

[’L Problems 52 _@ Javadoc @ Declaration @ ~ T O]
0items
Description & Resource Path

[] 11]

e

Figure 2-5. Eclipse in action—the Java perspective

You are free to rearrange the place of any view within a perspective via drag-and-drop.
You can also resize views. Additionally, you can add and remove views to and from a
perspective. To add a view, go to Window » Show View and either select one from the list
that is presented to you or choose Other... to get a list of all views that are available.

CHAPTER 2: First Steps with the Android SDK

To switch to another perspective, you can go to Window » Open Perspective and choose
the one you want. A faster way to switch between already open perspectives is given to
you in the top-left corner of Eclipse. There you will see which perspectives are already
open and which perspective is the active one. In Figure 2-5, notice that the Java
perspective is open and active. It’s the only currently open perspective. Once you open
additional perspectives, they will also show up in that part of the Ul.

The toolbars shown in Figure 2-5 are also just views. Depending on the perspective you
are in, the toolbars may change as well. Recall that a couple of new buttons appeared in
the toolbar after we installed the ADT plug-in. This is common behavior of plug-ins: they
will in general add new views and perspectives. In the case of the ADT plug-in, we can
now also access a perspective called DDMS (which is specific to debugging and
profiling Android applications) in addition to the standard Java Debug perspective. The
ADT plug-in also adds a couple of new views, including the LogCat view, which displays
the live logging information of any attached device or emulator.

Once you get comfortable with the perspective and view concepts, Eclipse is a lot less
intimidating. In the following subsections, we will explore some of the perspectives and
views we’ll use to write Android games. | can’t possibly cover all the details of
developing with Eclipse, as it is such a huge beast. | therefore advise you to learn more
about Eclipse via its extensive help system if the need arises.

Hello World, Android Style

With our development set up, we can now finally create our first Android project in
Eclipse. The ADT plug-in installed a couple of wizards for us to make the creation of new
Android projects really easy.

Creating the Project

There are two ways to create a new Android project. The first one works by right-clicking
in the Package Explorer view (see Figure 2-4) and selecting New » Project... from the
pop-up menu. In the new dialog, select Android Project under the Android category. As
you can see, there are a lot of other options for project creation in that dialog. This is the
standard way to create a new project of any type in Eclipse. After confirming the dialog,
the Android project wizard will open.

The second way is a lot easier: just click the button responsible for creating a new
Android project (shown earlier in Figure 2-4).

Once you are in the Android project wizard dialog, you have to make a few choices.

1. First, you must define the project name. A usual convention is to keep it
all lowercase. For this example, name the project “hello world.”

2. Next, you have to specify the build target. For now, simply select the
Android 1.5 build target, since this is the lowest common denominator
and you don’t need any fancy features like multitouch yet.

CHAPTER 2: First Steps with the Android SDK

NOTE: In Chapter 1 you saw that each new release of Android adds new classes to the Android
framework API. The build target specifies which version of this APl you want to use in your
application. For example, if you choose the Android 2.3 build target, you get access to the latest
and greatest API features. This comes at a risk, though: if your application is run on a device that
uses a lower API version (say, a device running Android version 1.5), then your application will
crash if you access API features that are only available in version 2.3. In this case, you’d need to
detect the supported SDK version during runtime and only access the 2.3 features when you’re
sure that the Android version on the device supports it. This may sound pretty nasty, but as you’ll
see in Chapter 5, given a good application architecture you can easily enable and disable certain
version-specific features without running the risk of crashing.

3. Next, you have to specify the name of your application (e.g., Hello
World), the name of the Java package in which all your source files will
eventually be located (e.g., com.helloworld), and an activity name. An
activity is similar to a window or dialog on a desktop operating system.
Let’s just name it HelloWorldActivity.

4. The Min SDK Version field allows you to specify what minimum Android
version your application requires to run. This parameter is not required,
but it’s good practice to specify it. SDK versions are numbered starting
from 1 (1.0) and increase with each release. Since 1.5 is the third
release, specify 3 here. Remember that you had to specify a build target
previously, which might be newer than the minimum SDK version. This
allows you to work with a higher API level, but also deploy to older
versions of Android (making sure that you only call the supported API
methods for that version, of course).

5. Click Finish to create your first Android project.

NOTE: Setting the minimum SDK version has some implications. The application can only be run
on devices with an Android version equal to or greater than the minimum SDK version you
specify. When a user browses the Android Market via the Market application, only applications
with a fitting minimum SDK version will be shown to her.

Exploring the Project

In the Package Explorer, you should now see a project called “hello world.” If you
expand it and all its children, you’ll see something like Figure 2-6. This is the general
structure of most Android projects. Let’s explore it a little bit.

CHAPTER 2: First Steps with the Android SDK

B AndroidManifest.xml describes your application. It defines what
activities and services it is composed of, what minimum and target
Android version it is supposed to run on, and what permissions it needs
(e.g., access to the SD card or networking).

B default.properties holds various settings for the build system. We
won’t touch this, as the ADT plug-in will take care of modifying it when
necessary.

B src/ contains all your Java source files. Notice that the package has
the same name as the one you specified in the Android project wizard.

B gen/ contains Java source files generated by the Android build
system. You shouldn’t mess with them, as they get regenerated
automatically in some cases.

B assets/ is where you store file our application needs (e.g.,
configuration files or audio files and the like). These files get packaged
with your Android application.

B res/ holds resources your application needs, such as icons, strings for
internationalization, and Ul layouts defined via XML. Like assets, they
also get packaged with your application.

B Android 1.5 tells us that we are building against an Android version 1.5
target. This is actually a dependency in the form of a standard JAR file
that holds the classes of the Android 1.5 API.

The Package Explorer view hides another directory, called bin/, which holds the
compiled code that is ready for deployment to a device or emulator. As with the gen/
folder, we usually don’t care what happens in this folder.

CHAPTER 2: First Steps with the Android SDK

= & hello world
=- -} com helloworld
: - [J) Helloworldactivity. java
2 @ gen [Generated Java Files]
=R -} com helloworld
; [[] R.java
- Android 1.5
""" O@ assets
=- Qﬁ>res
El [B drawable
P e @ icon.png
[] EEbIayout
§ ~~~~~ [X] main.xml
== values
- [X] strings.xml
~~~~~ Q] Androidianifest.xm
~~~~~ default. properties

Figure 2-6. Hello World project structure

We can easily add new source files, folders, and other resources in the Package
Explorer view by right-clicking the folder we want to put the new resources in, and
selecting New plus the corresponding resource type we want to create. For now,
though, we’ll leave everything as is. Next, let’s modify the source code a little.

Writing the Application Code

We still haven’t written a single line of code, so let’s change that. The Android project
wizard created a template activity class for us called HelloWorldActivity, which will get
displayed when we run the application on the emulator or a device. Open the source of
the class by double-clicking the file in the Package Explorer view. We'll replace that
template code with the code in Listing 2-1.

Listing 2-1. HelloWorldActivity.java

package com.helloworld;
import android.app.Activity;
import android.os.Bundle;

import android.view.View;
import android.widget.Button;

public class HelloWorldActivity extends Activity

CHAPTER 2: First Steps with the Android SDK

implements View.OnClickListener {
Button button;
int touchCount;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
button = new Button(this);
button.setText("Touch me!");
button.setOnClickListener(this);
setContentView(button);

}
public void onClick(View v) {

touchCount++;

button.setText("Touched me " + touchCount + " time(s)");
}

}

Let’s dissect Listing 2-1 so you can understand what it’s doing. We’ll leave the nitty-
gritty details for later chapters. All we want is to get a sense of what’s happening here.

The source code file starts off with the standard Java package declaration and a couple
of imports. Most Android framework classes are located in the android package.

package com.helloworld;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

Next, we define our HelloWorldActivity and let it extend the base class Activity,
which is provided by the Android framework API. An Activity is a lot like a window in
classical desktop Uls, with the constraint that it always fills the complete screen (except
for the notification bar at the top of the Android Ul). Additionally, we let it implement the
interface OnClickListener. If you have experience with other Ul toolkits, you’'ll probably
see what’s coming next. More on that in a second.

public class HelloWorldActivity extends Activity
implements View.OnClickListener {

We let our Activity have two members: a Button and an integer that counts how often
the Button was clicked.

Button button;
int touchCount;

Every Activity must implement the abstract method Activity.onCreate(), which gets
called once by the Android system when the activity is first started. This replaces a
constructor you’d normally expect to use to create an instance of a class. It is mandatory
to call the base class onCreate() method as the first statement in the method body.

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

CHAPTER 2: First Steps with the Android SDK

Next, we create a Button and set its initial text. Button is one of the many widgets that
the Android framework API provides. Widgets are synonymous with so called Views on
Android. Note that button is a member of our HelloWorldActivity class. We’ll need a
reference to it later on.

button = new Button(this);
button.setText("Touch me!");

The next line in onCreate() sets the OnClickListener of the Button. OnClickListener is a
callback interface with a single method, OnClickListener.onClick(), that gets called
when the Button is clicked. We want to be notified of clicks, so we let our
HelloWorldActivity implement that interface and register it as the OnClicklListener of
the Button.

button.setOnClickListener(this);

The last line in the onCreate() method sets the Button as the so-called content View of
our Activity. Views can be nested, and the content View of the Activity is the root of
this hierarchy. In our case, we simply set the Button as the View to be displayed by the
Activity. For simplicity’s sake, we won’t get into details on how the Activity will be
laid out given this content View.

setContentView(button);
}

The next step is simply the implementation of the OnClickListener.onClick() method,
which the interface requires of our Activity. This method gets called each time the
Button is clicked. In it we increase the touchCount counter and set the Button’s text to a
new string.

public void onClick(View v) {
touchCount++;
button.setText("Touched me" + touchCount + "times");

So, to summarize our Hello World application, we construct an Activity with a Button.
Each time the Button is clicked, we reflect this by setting its text accordingly. (This may
not be the most exciting application on the planet, but it will do for further demonstration
purposes.)

Note that we never had to manually compile anything. The ADT plug-in together with
Eclipse will recompile the project every time we add, modify, or delete a source file or
resource. The result of this compilation process is an APK file that is ready to be
deployed to the emulator or an Android device. The APK file is located in the bin/ folder
of the project.

You’ll use this application in the following sections to learn how to run and debug
Android applications on emulator instances as well as devices.

CHAPTER 2: First Steps with the Android SDK

Running and Debugging Android Applications

Once we’ve written the first iteration of our application code, we want to run and test it
to identify potential problems or just be amazed at its glory. We have two ways we can
achieve this:

We can run our application on a real device connected to the
development PC via USB.

We can fire up the emulator that is included in the SDK and test our
application there.

In both cases we have to do a little bit of setup work before we can finally see our
application in action.

Connecting a Device

Before we can connect our device for testing purposes, we have to make sure that it is
recognized by the operating system. On Windows, this involves installing an appropriate
driver, which is part of the SDK installation we installed earlier. Just connect your device
and follow the standard driver installation project for Windows, pointing the process to
the driver/ folder in your SDK installation’s root directory. For some devices, you might
have to get the driver from the manufacturer’s web site.

On Linux and Mac OS X, you usually don’t need to install any drivers, as these come
with the operating system. Depending on your Linux flavor, you might have to fiddle with
your USB device discovery a little bit, usually in the form of creating a new rules file for
udev. This varies from device to device. A quick web search should bring up a solution
for your device.

Creating an Android Virtual Device

The SDK comes with an emulator that will run so-called Android virtual devices (AVDs).
A virtual device consists of a system image of a specific Android version, a skin, and a
set of attributes, which include the screen resolution, SD-card size, and so on.

To create an AVD, you have to fire up the SDK and AVD manager. You can either do this
as described previously in the SDK installation step, or directly from within Eclipse by
clicking the SDK manager button in the toolbar.

1. Select Virtual Devices in the list on the left, and you will be presented
with a list of currently available AVDs. Unless you’ve already messed
around with the SDK manager, this list should be empty; let’'s change
that.

2. To create a new AVD, click the New... button on the right, which will
bring up the dialog shown in Figure 2-7.

CHAPTER 2: First Steps with the Android SDK

& Create new Android Virtual Device {AVD)

Name: | |
Target: | |E]
SD Card:

® Size: I | M

OFile: | | | Browse
Skin:

(® Built-in:

O Resolution: l % | |
Hardware:

Property Value

Delete

Override the existing AYD with the same name

Create AVD Cancel

Figure 2-7. The AVD creation dialog of the SDK manager

3. Each AVD has a name by which you can refer to it later on. The target
specifies the Android version that the AVD should use. Additionally, you
can specify the size of the SD card of the AVD, as well as the screen
size. For our simple Hello World project, you can select an Android 1.5
target and leave everything else as it is. For real-life testing, you’d
usually want to create multiple AVDs that cover all the Android versions
and screen sizes you want your application to handle.

NOTE: Unless you have dozens of different devices with different Android versions and screen
sizes, it is advisable to use the emulator for additional testing of Android version/screen size
combinations.

Running an Application

Now that you’ve set up your devices and AVDs, you can finally run the Hello World
application. You can easily do this in Eclipse by right-clicking the “hello world” project in
the Package Explorer view, and then selecting Run As > Android Application (or you can

CHAPTER 2: First Steps with the Android SDK

click the Run button on the toolbar). Eclipse will then perform the following steps for us
in the background:

1. Compile the project to an APK file if any files have changed since the
last compilation.

2. Create a new Run configuration for the Android project if one does not
already exist. (We’ll have a look into Run configurations in a minute.)

3. Install and run the application by starting or reusing an already running
emulator instance with a fitting Android version, or by deploying and
running the application on a connected device (which must also run at
least the minimum Android version you specified as the Min SDK Level
parameter when you created the project).

If you only created an Android 1.5 AVD, as suggested in the previous section, then the
ADT Eclipse plug-in will fire up a new emulator instance running that AVD, deploy the
Hello World APK file, and start the application. The output should look like Figure 2-8.

€ 5554:android1.5

Hello World

12 3 456 7 89
QWERTYUTIO
ASDFGH] KL @

fou me! £Z X CVBNM. €
M @ — /

Figure 2-8. The awesome Hello World application in action!

CHAPTER 2: First Steps with the Android SDK

The emulator works almost exactly like a real device, and you can interact with it via
your mouse just as you would with your finger on a device. Here are a few differences
between a real device and the emulator:

B The emulator only supports single-touch input. Simply use your mouse
cursor and pretend it is your finger.

B The emulator is missing some applications, such as the Android
Market.

B To change the orientation of the device on the screen, don't tilt your
monitor! Instead, use the 7 key on your numpad to change it. For this,
you have to first press the Num Lock key above the numpad to disable
its number functionality.

B The emulator is really, really slow. Do not assess the performance of
your application by running it on the emulator.

B The emulator currently only supports OpenGL ES 1.0 with a few
extensions. We'll talk about OpenGL ES in Chapter 7. For our
purposes this is fine, except that the OpenGL ES implementation on
the emulator is buggy and will often give you different results from
those you’ll get on a real device. For now, just keep in mind that you
should not test any OpenGL ES applications on the emulator.

Play around with it a little and get comfortable with it.

NOTE: Starting a fresh emulator instance takes considerable time (up to minutes depending on
your hardware). You can leave the emulator running for your whole development session so you
don’t have to restart it over and over again.

Sometimes when we run an Android application, the automatic emulator/device
selection performed by the ADT plug-in is a hindrance. For example, we might have
multiple devices/emulators connected, and want to test our application on a specific
device/emulator. To deal with this, we can turn off the automatic device/emulator
selection in the Run configuration of the Android project. So, what is a Run
configuration?

A Run configuration provides a way to tell Eclipse how it should start your application
when you tell it to run it. A Run configuration usually allows you to specify things like
command-line arguments passed to the application, VM arguments (in the case of Java
SE desktop applications), and so on. Eclipse and third-party plug-ins offer different Run
configurations for specific project types. The ADT plug-in adds an Android Application
Run configuration to the set of available Run configurations. When we first ran our
application earlier in the chapter, Eclipse and ADT created a new Android Application
Run configuration for us in the background with default parameters.

CHAPTER 2: First Steps with the Android SDK

To get to the Run configuration of your Android project, do the following:

1. Right-click the project in the Package Explorer view and select Run As >
Run Configurations.

2. From the list on the left side, select the “hello world” project.

3. On the right side of the dialog, you can now modify the name of the Run
configuration, and change other settings on the Android, Target, and
Commons tabs.

4. To change automatic deployment to manual deployment, click the
Target tab and select Manual.

When you run your application again, you’ll be prompted to select a compatible
emulator or device to run the application on. Figure 2-9 shows the dialog. In this figure, |
added a couple more AVDs with different targets and also connected two devices.

& Android Device Chooser X

Select a device compatible with target Android 1.5.
(®) Choose a running Android device

Serial Number AYD Name Target Debug State
Eemulalor-5554 android1.5 " Android 1.5 Yes Online
Q HT97JL901583 N/ v 15 Online
Q HT019P803783 N/ v 221 Online

O Launch a new &ndroid Virtual Device

AYD Name Target Name Platform AP Level Details
android2.2 Android 2.2 22 8
tart
Refresh
Manager.

Figure 2-9. Choosing an emulator/device to run the application on

The dialog shows all the running emulators and currently connected devices, as well as
all other AVDs that are not running at the moment. You can choose any emulator or
device to run your application on.

Debugging an Application

Sometimes our application will behave in unsuspected ways or crash. To figure out what
exactly is going wrong, we want to be able to debug our application.

Eclipse and ADT provide us with incredibly powerful debugging facilities for Android
applications. We can set breakpoints in our source code, inspect variables and the
current stack trace, and so forth.

CHAPTER 2: First Steps with the Android SDK

Before we can debug our application, we have to modify its AndroidManifest.xml file
first to enable debugging. This presents a bit of a chicken-and-egg problem, as we
haven’t looked into manifest files in detail yet. For now, it suffices to know that the
manifest file specifies some attributes of our application. One of those attributes is
whether the application is debuggable. This attribute is specified in the form of an xml
attribute of the <application> tag in the manifest file. To enable debugging, we add the
following attribute to the <application> in the manifest file:

android:debuggable="true"

While developing your application, you can safely leave that attribute in the manifest file.
But don’t forget to remove it before you deploy your application to the market.

Now that you’ve set up your application to be debuggable, you can debug it on an
emulator or device. Usually, you will set breakpoints before debugging to inspect the
program state at certain points in the program.

To set a breakpoint, simply open the source file in Eclipse and double-click the gray
area in front of the line you want to set the breakpoint at. For demonstration purposes,
do that for line 23 in the HelloWorldActivity class. This will make the debugger stop
each time you click the button. The source code view should show you a small circle in
front of that line after you double-click, as in Figure 2-10. You can remove breakpoints
by again double-clicking them in the source code view.

o= public void onClick(View wv) {
® touchCount++;
button.setText ("Touched me "+touchCount+" time(s) ™)

}
Figure 2-10. Setting a breakpoint

Starting the debugging is much like running the application, as described in the previous
section. Right-click the project in the Package Explorer view and select Debug As »
Android Application. This will create a new Debug configuration for your project, just like in
the case of simply running the application. You can change the default settings of that
Debug configuration by choosing Debug As » Debug Configurations from the context menu.

NOTE: Instead of going through the context menu of the project in the Package Explorer view,
you can use the Run menu to run and debug applications, as well as get access to the
configurations.

If you start your first debugging session, Eclipse will ask you whether you want to switch
to the Debug perspective, which you can happily confirm. Let’s have a look at that
perspective first. Figure 2-11 shows how it would look after starting debugging our Hello
World application.

CHAPTER 2: First Steps with the Android SDK

& Debug - hello worldfsrcicom/elloworld/HelloWorldActivity .java - Eclipse

File Edit Run Source MNavigate Search Project Refactor Window Help

MRS A B -0 &G - 5 (%5 Debug | & Java
P A [E M ;¥ 1 R

m =8| (w- Variables 53 _fo Breakpoints'[x) <t v =0

% O» "TIEEY I
=] llo world [Android Application] :
kiM[loc Ll

-3 Thread [<3> main] (Running) =
& . .

"B defaul properies | (3] Helloworldctivit java 52 “ |5 Outine 52 BV Y e w oY —0O|

button.setText{ "Touch me!" j; b] com.helloworld

import declarations
Helloworldactivity

4 button : Button

4 touchCount : int

@ a onCreate(Bundle) : void
@ o onClick[View) : void

hutton.setOnClickListener (this);
setContentView(button) ;

i

a o public void onClick(View w) {
2 touchCount++;
button.setText ("Touched me "+touchC

@ I | @
"Bl Console 53 _»@Tasks“ % bl 2 B~ 9 = 0| Logtat 2 VOO@®® + o - ¥ = 0|
Android

u1u- HIKH Up loading Log
[2010-10-12 22:03:59 - hello world] Installing Tine pid tag Hessage b]
[2010-10-12 22:04:18 - hello world] Success! 10-12 19:56... D 964 dalvikwvm Heapworke@
[2010-10-12 22:04:18 - hello world] Starting ac &‘]“ 12 19.C¢ = D_0cd4 sSiee LD, "‘"["i]
[2010-10-12 22:04:32 - hello world] Attemptingi

.

. - Filter:
& w_ | [l] | |
2 O° - Launching hello world

Figure 2-11. The Debug perspective

If you remember our quick tour of Eclipse, then you know that there are a couple of
different perspectives, which consist of a set of views for a specific task. The Debug
perspective looks a lot different from the Java perspective.

B The first new view to notice is the Debug view at the top left. It shows
all currently running applications and the stack traces of all their
threads if they are run in debug mode.

B Below the Debug view is the source-editing view we also used in the
Java perspective.

B The Console view prints out messages from the ADT plug-in, telling us
what it is doing.

CHAPTER 2: First Steps with the Android SDK

B The LogCat view will be one of our best friends on our journey. It
shows us logging output from the emulator/device that our application
is running on. The logging output comes from system components,
other applications, and our own application. It will show us a stack
trace when our application crashes, and will also allow us to output
our own logging messages at runtime. We’ll have a closer look at
LogCat in the next section.

B The Outline view is not very useful in the Debug perspective. You will
usually be concerned with breakpoints and variables, and the current
line that the program is suspended at while debugging. | often remove
the Outline view from the Debug perspective to leave more space for
the other views.

B The Variables view is especially useful for debugging purposes. When
the debugger hits a breakpoint, we will be able to inspect and modify
the variables in the current scope of the program.

B Finally, the Breakpoints view shows a list of breakpoints we’ve set so far.

If you are curious, you’ve probably already clicked the button in the running application
to see how the debugger reacts. It will stop at line 23, as we instructed it by setting a
breakpoint there. You will also have noticed that the Variables view now shows the
variables in the current scope, which consist of the activity itself (this) and the
parameter of the method (v). You can further drill down into the variables by expanding
them.

The Debug view shows us the stack trace of the current stack down to the method we
are currently in. Note that you might have multiple threads running and can pause them
at any time in the Debug view.

Finally, notice that the line where we set the breakpoint is highlighted, indicating the
position in the code where the program is currently paused.

You can instruct the debugger to execute the current statement (by pressing F6), step
into any methods that get called in the current method (by pressing F5), or continue the
program execution normally (by pressing F8). Alternatively, you can use the items on the
Run menu to achieve the same. Also notice that there are more stepping options than the
ones I've just mentioned. As with everything, | suggest you experiment to see what
works for you and what doesn’t.

NOTE: Curiosity is a building block for successfully developing Android games. You have to get
really intimate with your development environment to get the most out of it. A book of this scope
can’t possible explain all the nitty-gritty details of Eclipse, so again | urge you to experiment.

CHAPTER 2: First Steps with the Android SDK

LogCat and DDMS

The ADT Eclipse plug-in installs many new views and perspectives to be used in Eclipse.
One of the most useful views—already briefly touched on in the last section—is the
LogCat view.

LogCat is the Android event-logging system, which allows system components and
applications to output logging information of various logging levels. Each log entry is
composed of a time stamp, a logging level, the process ID the log came from, a tag
defined by the logging application itself, and the actual logging message.

The LogCat view gathers and displays this information from a connected emulator or
device. Figure 2-12 shows some sample output from the LogCat view.

A VOOO®E® + '~ B~7
Time pid tag Hessage kj
10-13 23:16. .. D 393 dalvikvm GC freed 1231 objects ~ 49136 byt. ..
10-13 23:16. .. D 119 dalvikvm GC freed 949 objects ~ 35712 byte. ..
10-13 23:16. .. D 212 dalvikwvm GC freed 1480 objects ~ 70632 byt...
10-13 23:18. .. D 69 Keygu... receive ACTION_BATTERY_CHANGED
10-13 23:18. .. D 69 Htclo... onRefreshBatteryInfo: 45
10-13 23:18. .. I 69 Htclo... updateStatusViewByPriority
10-13 23:18. .. I 69 Htclo... createDeviceStatusView
10-13 23:18. .. D 295 UsbCo... ACTION_BATTERY_CHANGED
10-13 23:18. .. D 295 UsbCo... unplugged = 2
10-13 23:18. .. D 295 UsbCo... USE Connected.
10-13 23:18. .. D 295 UsbCo... mObexServerStarted=true
10-13 23:18. .. D 295 UsbCo... mAatCommandServerStarted=true
10-13 23:18. .. D 295 UsbCo... Show Notification..
10-13 23:18. .. I 124 Conta... android.intent.action. NOTIFICATIO...
10-13 23:20. .. I 9195 jdwp received file descriptor 24 from ADB
10-13 23:20 W 9195 Syste Can't dispatch DDM chunk 46454154

Figure 2-12. The LogCat view

Notice that there are a number of buttons at the top right of the LogCat view.

B The first five allow you to select the logging levels you want to see
displayed.

B The green plus button lets you define a filter based on the tag, the
process ID, and the log level, which comes in handy if you want to
show only the log output of your own application (which will probably
use a specific tag for logging).

B The rest of the buttons allow you to edit a filter, delete a filter, or clear
the current output.

If several devices and emulators are currently connected, then the LogCat view will only
output the logging data of one of these. To get finer-grained control and even more
inspection options, you can switch to the DDMS perspective.

DDMS (Dalvik Debugging Monitor Server) provides a lot of in-depth information about
the processes and Dalvik VMs running on all connected devices. You can switch to the
DDMS perspective at any time via Window » Open Perspective » Other > DDMS. Figure 2-13
shows what the DDMS perspective usually looks like.

CHAPTER 2: First Steps with the Android SDK

As always, there are a couple of specific views that are suitable for our task at hand. In
this case, we want to gather information about all the processes, their VMs and threads,
the current state of the heap, LogCat information about a specific connected device,
and so on.

B The Devices view displays all currently connected emulators and
devices, as well as all the processes running on them. Via the toolbar
buttons of this view, you can perform various actions, including
debugging a selected process, recording heap and thread information,
and taking a screenshot.

B The LogCat view is the same as in the previous perspective, with the
difference that it will display the output of the device currently selected
in the Devices view.

B The Emulator Control view lets you alter the behavior of a running
emulator instance. You can force the emulator to spoof GPS
coordinates for testing, for example.

& DDMS - hello world/defautt.properties - Eclipse - O0X
File Edit Refactor Run Mavigate Search Project Window Help
- A S8d: Q- @B e [|1 DDMS | %5 Debug & Ja
ik S LS
IEIW. ﬁ- = 0% Thieads &2 77 Heap‘ Allocation Tracker‘ 151 File Explorer =0
~1| ID Tid Status utime stime Name
= Y 1 1198 wait 63 15 main
* & @ % @ “ "2 1193 vmwait 2 0 HeapWorker
Name [: 3 1200 vmwait 0 0 Signal Catcher
P | 1201 running 1 0 JDWP
com.baq 9135 81l s 1202 vmwait 76 11 Compier
= [HTO019P803 Onine 2=\ g 1203 native 0 0 Binder Thread #1
com.bac 1198 % 86 7 1204 native 0 0 Binder Thread #2
E 9 1206 native 33 0 android. hardware.SensorManager$SensorThread
<] fm | m
E Ernulator Control 52 =
Telephony Status [ﬁ_
i Speed ‘ = Class Method File Lin
Data [Latency
Telephony Actions
Incoming number [:]
Yoice M U I | L]
(o LooCat 7 QODOO® + /- B 0
Log
Tine pid tag Hessage ~
10-13 23:31... D 456 dalvikwm GC_EXPLICIT freed 6493 objects ~ ... [vJ
Filter: I |
D<>

Figure 2-13. DDMS in action

CHAPTER 2: First Steps with the Android SDK

The Threads view will display information about the threads running on
the process currently selected in the Devices view. It will only show
this information if you also enable thread tracking, which can be
achieved by clicking the fifth button from the left in the Devices view.

The Heap view, which is not shown in Figure 2-13, gives information
about the status of the heap on a device. As with the thread
information, you have to explicitly enable heap tracking in the Devices
view by clicking the second button from the left.

The Allocation Tracker view shows what classes have been allocated
the most within the last few moments. It provides a great way to hunt
down memory leaks.

Finally, there’s the File Explorer view, which allows you to modify files
on the connected Android device or emulator instance. You can drag
and drop files into this view as you would with your standard operating
system file explorer.

DDMS is actually a standalone tool that is integrated with Eclipse via the ADT plug-in.
You can also start it as a standalone application from the $ANDROID HOME/tools directory
(%ANDROID HOME%/tools on Windows). It does not directly connect to devices, but uses
the Android Debug Bridge (ADB), another tool included in the SDK. Let’s have a look at
ADB to round off your knowledge about the Android development environment.

Using ADB

ADB lets you manage connected devices and emulator instances. It is actually a
composite of three different components:

A client that runs on the development machine, which you can start
from the command line by issuing the command adb (which should
work if you set up your environment variables as described earlier).
When we talk about ADB, we refer to this command-line program.

A server that also runs on your development machine. It is installed as
a background service and is responsible for communication between
an ADB program instance and any connected device or emulator
instance.

The ADB daemon, which also runs as a background process on every
emulator and device. The ADB server connects to this daemon for
communication.

Usually, we use ADB via DDMS transparently and ignore its existence as a command-
line tool. Sometimes it can come in handy for small tasks, so let’s just go quickly over
some of its functionality.

CHAPTER 2: First Steps with the Android SDK

NOTE: Check out the ADB documentation on the Android Developers site at
http://developer.android. com for a full reference of the available commands.

A very useful task to perform with ADB is to query for all devices and emulators that are
connected to the ADB server (and hence your development machine). To do this,
execute the following command on the command line (note that > is not part of the
command).

> adb devices

This will print a list of all connected devices and emulators with their respective serial
numbers, and will resemble the following output:
List of devices attached

HT97JL901589 device
HT019P803783 device

The serial number of a device or emulator is used to target specific subsequent
commands at it. The following command will install and APK file called myapp.apk
located on the development machine on the device with the serial number HT019P803783.

> adb -s HT019P803783 install myapp.apk

The -s argument can be used with any ADB command that performs an action that is
targeted at a specific device.

There also exist commands that will copy files to and from the device or emulator. The
following command copies a local file called myfile.txt to the SD card of a device with
the serial number HT019P803783.

> adb -s HT019P803783 push myfile.txt /sdcard/myfile.txt

To pull a file called myfile.txt from the SD card, you could issue the following
command:

> abd pull /sdcard/myfile.txt myfile.txt

If there’s only a single device or emulator currently connected to the ADB server, you
can omit the serial number. The adb tool will automatically target the connected device
or emulator for you.

There are of course a lot more possibilities offered by the ADB tool. Most of them are
exposed through DDMS, and we’ll usually use that instead of going to the command
line. For quick tasks, though, the command-line tool is ideal.

Summary

The Android development environment can be a little bit intimidating at times. Luckily,
you only need a subset of the available options to get started, and the last couple of
pages of this chapter should have given you enough information to get started with
some basic coding.

http://developer.android.com

CHAPTER 2: First Steps with the Android SDK

The big lesson to take away from this chapter is how the pieces fit together. The JDK
and the Android SDK provide the basis for all Android development. They offer the tools
to compile, deploy, and run applications on emulator instances and devices. To speed
up development, we use Eclipse along with the ADT plug-in, which abstracts away all
the hard work we’d otherwise have to do on the command line with the JDK and SDK
tools. Eclipse itself is built on a few core concepts: workspaces, which manage projects;
views, which provide specific functionality, such as source editing or LogCat output;
perspectives, which tie together views for specific tasks such as debugging; and Run
and Debug configurations, which allow us to specify the startup settings used when we
run or debug applications.

The secret to mastering all this is practice, as dull as it may sound. Throughout the
book, we’ll implement a couple of projects that should make you more comfortable with
the Android development environment. At the end of the day, though, it is up to you to
take it all one step further.

With all this information stuck in your head, you can move on to what you came here for
in the first place: developing games.

Chapter

Game Development 101

Game development is hard. Not so much because it’s rocket science, but because
there’s a huge amount of information to digest before you can actually start writing the
game of your dreams. On the programming side, you have to worry about such
mundane things as file input/output (I/0), input handling, audio and graphics
programming, and networking code. And those are only the basics! On top of that, you
will want to build your actual game mechanics. That code needs structure as well, and it
is not always obvious how to create the architecture of your game. You’ll have to decide
how to actually make your game world move. Can you get away with not using a
physics engine, but roll your own simple simulation code? What are the units and scale
your game world is set in? How does it translate to the screen?

But there’s actually another problem many beginners overlook: before you start hacking
away, you actually have to have a game design first. Countless projects never see the
light of day and get stuck in the tech-demo phase due to there being no clear idea of
how the game should actually behave. And I’m not talking about the basic game
mechanics of your average first-person shooter. That’s the easy part: WASD plus
mouse, and you’re done. You should ask yourself questions like, Is there a splash
screen? What does it transition to? What’s on the main menu screen? What head-up
display elements are available on the actual game screen? What happens if | press the
pause button? What options should be offered on the settings screen? How will my Ul
design work out on different screen sizes and aspect ratios?

The fun part is that there’s no silver bullet; there’s no standard way to approach all these
questions. | will not pretend to give you the be-all, end-all solution to developing games.
Instead, I’ll try to illustrate how | usually approach designing a game. You may decide to
adapt it completely or modify it to better fit your needs. There are no rules—whatever
works for you is OK. You should, however, always strive for an easy solution, in code
and on paper.

Genres: To Each One’s Taste

At the start of your project, you usually decide what genre your game will belong to.
Unless you come up with something completely new and previously unseen, chances

51

CHAPTER 3: Game Development 101

are high that your game idea fits into one of the broad genres currently popular. Most
genres have established game mechanic standards (e.g., control schemes, specific
goals, etc.). Deviating from these standards can make a game a great hit, as gamers
always long for something new. It can also be a great risk, though, so consider carefully
if your new platformer/first-person shooter/real-time strategy game actually has an
audience.

Let’s check out some examples for the more popular genres on the Android Market.

Causal Games

Probably the biggest segment of games on the Android Market consists of so-called
causal games. So what exactly is a causal game? That question has no concrete
answer, but causal games share a few common traits. Usually, they feature great
accessibility, so even nongamers can pick them up easily, increasing the pool of
potential players immensely. A game session is meant to take just a couple of minutes at
most. However, the addictive nature of a causal game’s simplicity often gets players
hooked for hours. The actual game mechanics range from extremely simplistic puzzle
games to one-button platformers to something as simple as tossing a paper ball into a
basket. The possibilities are endless due to the causal genre having such a blurry
definition.

Abduction and Abduction 2 (Figure 3-1), by the one-man shop Psym Mobile, is the
perfect causal game. It belongs to the subgenre of jump-’em-up games (at least that’s
what | call them). The goal of the game is it to direct the always-jumping cow from
platform to platform and reach the top of the level. On the way up you’ll battle breaking
platforms, spikes, and flying enemies. You can pick up power-ups that help you reach
the top and so on. You control the cow by tilting the phone, thereby influencing the
direction it is jumping/falling. Easy-to-understand controls, a clear goal, and cute
graphics made this game one of the first hits on the Android Market.

CHAPTER 3: Game Development 101

Figure 3-1. Abduction (left) and Abduction 2 (right), by Psym Mobile

Antigen (Figure 3-2), by Battery Powered Games, is a completely different animal. You
play an antibody that fights against different kinds of viruses. The game is actually a
hybrid action puzzler. You control the antibody with the onscreen D-pad and rotation
buttons at the top right. Your antibody has a set of connectors at each side that allow
you to connect to viruses and thereby destroy them—a simple but highly addictive
concept. While Abduction only features a single input mechanism via the accelerometer,
the controls of Antigen are a little bit more involved. As some devices do not support
multitouch, the developers came up with a couple of input schemes for all possible
devices, Zeemote controls being one of them. To reach the largest possible audience,
special care was taken to make the game work even on low-end devices with 320x240
pixel screens.

CHAPTER 3: Game Development 101

Health: Score: 829296

Figure 3-2. Antigen, by Battery Powered Games

Listing all the possible subgenres of the causal game category would probably fill up
most of this book. Many more innovative game concepts can be found in this genre, and
it is worth checking out the respective category in the market to get some inspiration.

Puzzle Games

Puzzle games need no introduction. We all know great games like Tetris and Bejeweled.
They are a big part of the Android gaming market and highly popular with all segments
of the demographic. In contrast to PC-based puzzle games, many puzzle games on
Android deviate from the classic match-3 formula and use more elaborate, physics-
based puzzles.

Super Tumble (Figure 3-3) is a superb example of a physics puzzler. The goal of the
game is it to remove blocks by touching them, and get the star sitting on top of the
blocks safely to the bottom platform. While this may sound fairly simple, it can get rather
involved in later levels. The game is powered by Box2D, a 2D physics engine.

CHAPTER 3: Game Development 101

Figure 3-3. Super Tumble, by Camel Games

U Connect (Figure 3-4), by BitLogik, is a minimalistic but entertaining little brain-teaser.
The goal is it to connect all the dots in the graph with a single line. Computer science
students will probably recognize a familiar problem here.

Figure 3-4. U Connect, by BitLogik

Of course, you can also find all kinds of Tetris clones, match-3 games, and other
standard formulas on the market. The preceding games demonstrate that a puzzle game
can be more than yet another clone of a 20-year-old concept.

CHAPTER 3: Game Development 101

Action and Arcade Games

Action and arcade games usually unleash the full potential of the Android platform.
Many of them feature stunning 3D visuals, demonstrating what is possible on the current
generation of hardware. The genre has many subgenres, including racing games, shoot-
’em-ups, first- and third-person shooters, and platformers. This segment of the Android
Market is still a little underdeveloped, as big companies that have the resources to
produce such titles are hesitant to jump on the Android wagon. Some indie developers
have taken it upon themselves to fill that niche, though.

Replica Island (Figure 3-5) is probably the most successful platformer on Android to
date. It was developed by Google engineer and game development advocate Chris
Pruett in an attempt to show that one can write high-performance games in pure Java
on Android. The game tries to accommodate all potential device configurations by
offering a huge variety of input schemes. Special care was taken that the game performs
well even on low-end devices. The game itself involves a robot that is instructed to
retrieve a mysterious artifact. The game mechanics resemble the old SNES 16-bit
platformers. In the standard configuration, the robot is moved via an accelerometer and
two buttons, one for enabling its thruster to jump over obstacles, and the other to stomp
enemies from above. The game is also open source, which is another plus.

Figure 3-5. Replica Island, by Chris Pruett

Exzeus (Figure 3-6), by HyperDevBox, is a classic rail shooter in the spirit of Starfox on
the SNES, with high-fidelity 3D graphics. The game features it all: different weapons,
power-ups, big boss fights, and a ton of things to shoot. As with many other 3D titles,
the game is meant to be played on high-end devices only. The main character is
controlled via tilt and onscreen buttons—a rather intuitive control scheme for this type of
game.

CHAPTER 3: Game Development 101

Score

Shield = . D141450
)

Lock{Energy|System 4'50"91

Time

s
Energy Gold '‘Bomb

Figure 3-6. Exzeus, by HyperDevBox

Deadly Chambers (Figure 3-7), by Battery Powered Games, is a third-person shooter in
the style of such classics as Doom and Quake. The main character, Dr. Chambers, tries
to get out of the dungeons of the evil wizard in the tower. Battery Powered Games also
sticks to the standard of not having an elaborate backstory for their shooter. But who
needs that if you can just mindlessly kill everything that gets in your way with a fine set
of exquisite weapons? The main character is controlled via an onscreen analog stick.
Additional buttons allow the player to switch into a first-person perspective for more
fine-grained aiming, switching weapons, and so on. In contrast to Exzeus, the developer
took great care to make the game run even on low-end devices. The game also offers a
variety of input schemes, so you can even play the game on single-touch screens.
Technically, the game is a major feat, especially considering that it was programmed by
a single person over a period of roughly six months.

CHAPTER 3: Game Development 101

Figure 3-7. Deadly Chambers, by Battery Powered Games

Radiant (Figure 3-8), by Hexage, represents a brilliant evolutionary step from the old
Space Invaders concept. Instead of offering a static playfield, the game presents side-
scrolling levels, and has quite a bit of variety in level and enemy design. You control the
ship by tilting the phone, and you can upgrade the ship’s weapon systems by buying
new weapons with points you’ve earned by shooting enemies. The semi-pixelated style
of the graphics give this game a unique look and feel while bringing back memories of
the old days.

Figure 3-8. Radiant, by Hexage

CHAPTER 3: Game Development 101

The action and arcade genre is still a bit underrepresented on the market. Players are
longing for good action titles, so maybe that is your niche!l

Tower-Defense Games

Given their immense success on the Android platform, | felt the need to discuss tower-
defense games as their own genre. Tower-defense games became popular as a variant
of PC real-time strategy games developed by the modding community. The concept
was soon translated to standalone games. Tower-defense games currently represent the
best-selling genre on Android.

In a typical tower-defense game, some mostly evil force is sending out critters in so-
called waves to attack your castle/base/crystals/you name it. Your task is to defend that
special place on the game map by placing defense turrets that shoot the incoming
enemies. For each enemy you Kkill, you usually get some amount of money or points that
you can invest in new turrets or upgrades.

The concept is extremely simple, but getting the balance of such a game right is quite
difficult.

Robo Defense (Figure 3-9), by Lupis Labs Software, is the mother of all tower-defense
games on Android. It has occupied the number-one paid game spot in the market for
most of Android’s lifetime. The game follows the standard tower-defense formula
without any bells and whistles attached. It’s a straightforward and dangerously addictive
tower-defense implementation, with different pannable maps, achievements, and high
scores. The presentation is sufficient to get the concept across, but not stellar, which
offers more proof that a selling game doesn’t necessarily need to feature cream-of-the-
crop graphics and audio.

:3% -4

CHAPTER 3: Game Development 101

Innovation

Some games just can’t be put into a category. They exploit the new capabilities and
features of Android devices, such as the camera or the GPS, to create new sorts of
experiences. This innovative crop of new games is social and location-aware, and even
introduces some elements from the field of augmented reality.

SpecTrek (Figure 3—-10) is one of the winners of the second Android Developer
Challenge. The goal of the game is to roam around with GPS enabled to find ghosts and
catch them with your camera. The ghosts are simply laid over a camera view, and it is
the player’s task to keep them in focus and press the Catch button to score points.

€

08:36

§ 00:

Hold phone flat (like a map) for rade mode.
Figure 3-10. SpecTrek, by SpecTrekking.com

So, now that you know what’s already available on Android, | suggest firing up the
Market application and checking out some of the games presented previously. Pay
attention to their structure (e.g., what screens lead to what other screens, what buttons
do what, how game elements interact with each other, and so on). Getting a feeling for
these things can actually be achieved by playing games with an analytic mindset. Push
away the entertainment factor for a moment and concentrate on deconstructing the
game. Once you’re done, come back and read on. We are going to design a very simple
game on paper.

Game Design: The Pen Is Mightier Than the Code

As | said earlier, it is rather tempting to fire up the IDE and just hack together a nice tech
demo. This is OK if you want to prototype experimental game mechanics and see if
those actually work. However, once you do that, throw away the prototype. Pick up a
pen and some paper, sit down in a comfortable chair, and think through all high-level

CHAPTER 3: Game Development 101

aspects of your game. Don’t concentrate on technical details yet—you’ll do that later on.
Right now, you want to concentrate on designing the user experience of your game. For
me, the best way to do this is by sketching up the following things:

B The core game mechanics
B A rough backstory with the main characters

B A rough sketch of the graphics style based on the backstory and
characters

B Sketches of all the screens involved, as well as diagrams of transitions
between screens, along with transition triggers (e.g., for the game-over
state).

If you've peeked at the Table of Contents, you know that we are going to implement
Snake on Android. Snake is one of the most popular games ever to hit the mobile
market. If you don’t know about Snake already, look it up on the Web before reading on.
I’ll wait here in the meantime . . .

Welcome back. So, now that you know what Snake is all about, let us pretend we just
came up with the idea ourselves and start laying out the design for it. Let’s begin with
the game mechanics.

Core Game Mechanics

Before we start, here’s a list of what we need:
B A pair of scissors
B Something to write with
B Plenty of paper

In this phase of our game design, everything’s a moving target. Instead of carefully
crafting nice images in Paint, Gimp, or Photoshop, | suggest creating basic building
blocks out of paper and rearranging them on a table until they fit. We can easily change
things physically, without having to cope with a silly mouse. Once we are OK with our
paper design, we can take photos or scan the design in for future reference. Let’s start
by creating those basic blocks of our core game screen. Figure 3—11 shows you my
version of what is needed for our core game mechanics.

CHAPTER 3: Game Development 101

GloN

alale
-nn'

| {12348
67890

Figure 3-11. Game design building blocks

The leftmost rectangle is our screen, roughly the size of my Nexus One’s screen. That’s
where we’ll place all the other elements on. The next building blocks are two buttons that
we’ll use to control the snake. Finally, there’s the snake’s head, a couple of tail parts, and
a piece it can eat. | also wrote out some numbers and cut them out. Those will be used to
display the score. Figure 3-12 illustrates my vision of the initial playing field.

(OO

Figure 3-12. The initial playing field

CHAPTER 3: Game Development 101

Let’s define the game mechanics:

B The snake advances in the direction its head is pointed in, dragging
along its tail. Head and tail are composed of equally sized parts that
only differ in their visuals a little.

B |f the snake goes outside the screen boundaries, it reenters the screen
on the opposite side.

B If the right or left button is pressed, the snake takes a 90 degree
clockwise (right) or counterclockwise (left) turn.

B If the snake hits itself (e.g., a part of its tail), the game is over.

B If the snake hits a piece with its head, the piece disappears, the score
is increased by 10 points, and a new piece appears on the playing field
in a location that is not occupied by the snake itself. The snake also
grows by one tail part. That new tail part is attached to the end of the
snake.

This is quite a big description for such a simple game. Note that | ordered the items by
ascending complexity somewhat. The behavior of the game when the snake eats a
piece on the playing field is probably the most complex one. More elaborate games can
of course not be described in such a concise manner. Usually, you’d split these up into
separate parts and design each part individually, connecting them in a final merge step
at the end of the process.

The last game mechanics item has an implication: the game will end eventually, as all
space on the screen will be used up by the snake.

Now that our totally original game mechanics idea looks good, let’s try to come up with
a backstory for it.

A Story and an Art Style

While an epic story with zombies, spaceships, dwarves, and lots of explosions would be
fun, we have to realize that we are limited in resources. My drawing skills, as exemplified
in Figure 3-12, are somewhat lacking. | couldn’t draw a zombie if my life depended on it.
So | do what any self-respecting indie game developer would do: | resort to the doodle
style and adjust my settings accordingly.

Enter the world of Mr. Nom. Mr. Nom is a paper snake who'’s always eager to eat drops
of ink that fall down from an unspecified source on his paper land. Mr. Nom is utterly
selfish and has only a single, not-so-noble goal: becoming the biggest ink-filled paper
snake in the world!

This little backstory allows us to define a few more things:

B The art style is doodly. We will actually scan in our building blocks
later and use them in our game as graphical assets.

CHAPTER 3: Game Development 101

B As Mr. Nom is an individualist, we will modify his blocky nature a little
and give him a proper snake face. And a hat.

B The digestible piece will be transformed into a set of ink stains.

B We’'ll trick out the audio aspect of the game by letting Mr. Nom grunt
each time he eats an ink stain.

B |Instead of going for a boring title like “Doodle Snake,” let us call the
game “Mr. Nom,” a much more intriguing title.

Figure 3—13 shows Mr. Nom in his full glory along with some ink stains that will replace
the original block. | also sketched a doodly Mr. Nom logo that we can reuse throughout
the game.

W re

Figure 3-13. Mr. Nom, his hat, ink stains, and the logo

Screens and Transitions

With the game mechanics, the backstory, the characters, and the art style fixed, we can
now design our screens and the transitions between them. First, however, it’'s important
to understand exactly what makes up a screen:

B A screen is an atomic unit that fills the entire display and is responsible
for exactly one part of the game (e.g., the main menu, the settings
menu, or the game screen where the action is happening).

B A screen can be composed of multiple components (e.g., buttons,
controls, head-up displays, or the rendering of the game world).

B A screen allows the user to interact with the screen’s elements. These
interactions can trigger screen transitions (e.g., pressing a New Game
button on the main menu could exchange the currently active main
menu screen with the game screen or a level-selection screen).

With those definitions, we can put on our thinking caps and design all the screens of our
Mr. Nom game.

CHAPTER 3: Game Development 101

The first thing our game will present to the player is the main menu screen. What makes
a good main menu screen?

B Displaying the name of our game is a good idea in principle, so we’ll
put in the Mr. Nom logo.

B To make things look more consistent, we also need a background.
We'll reuse the playing field background for this.

B Players will usually want to actually play the game, so let’s throw in a
Play button. This will be our first interactive component.

B Players want to keep track of their progress and awesomeness, so
we’ll also add a high-score button, another interactive component.

B There might be people out there that don’t know Snake. Let’s give
them some help in the form of a Help button that will transition to a
help screen.

B While our sound design will be lovely, some players might still prefer to
play in silence. Giving them a symbolic toggle button to enable and
disable the sound will do the trick.

How we actually lay out those components on our screen is a matter of taste. You could
start studying a subfield of computer science called human computer interfaces (HCI) to get
the latest scientific opinion on how to present your application to the user. For Mr. Nom, that
might be a little overkill, though. | settled with the simplistic design in Figure 3-14.

MR
Nl
- PERN
06 i SCORES
HELP

Figure 3-14. The main menu screen

CHAPTER 3: Game Development 101

Note that all those elements (the logo, the menu buttons, etc.) are all separate images.

Starting with the main menu screen has an immediate advantage: from the interactive
components, we can directly derive more screens. In Mr. Nom’s case we will need a
game screen, a high-scores screen, and a help screen. We get away with not including a
settings screen since the only setting (sound) is present on the main screen already.

Let’s ignore the game screen for a moment and concentrate on the high-scores screen
first. | decided that high scores will be stored locally in Mr. Nom, so we’ll only keep track
of a single player’s achievements. | also decided that only the five highest scores will be
recorded. The high-scores screen will therefore look like Figure 3-15, showing the
“HIGHSCORES” text at the top, followed by the five top scores and a single button with
an arrow on it indicating that you can transition back to something. We’ll reuse the
background of the playing field again because we like it cheap.

| e nscores

Is Slo
Zo LD
3, 870
| &'Jo 8@
CYSERR /I,

- e cppe—]

Figure 3-15. The high-scores screen

Next up is the help screen. It will inform the player of the backstory and the game
mechanics. Now, all that information is a bit too much to be presented on a single
screen. We’'ll therefore split up the help screen into multiple screens. Each of these
screens will present one essential piece of information of the user: who Mr. Nom is and
what he wants, how to control Mr. Nom to make him eat ink stains, and what Mr. Nom
doesn’t like (namely eating himself). That’s a total of three screens, as shown in Figure
3-16. Note that | added a button to each screen indicating that there’s more information
to be read. We’ll hook those screens up in a bit.

CHAPTER 3: Game Development 101

MR NOW
DI LIRES

@aa
w/
daa

TIRG
E%uﬁ‘%@ &

TEIS 15
MR NO™

0T %
%
”®

| mgu&ﬁbwﬁ

Figure 3-16. The help screens

Finally, there’s our game screen, which we already saw in action. There are a few details
we left out so far, though. First, the game shouldn’t start immediately; we should give
the player some time to get ready. The screen will thus start of with a request to touch
the screen to start the munching. This does not warrant a separate screen; we will
directly implement that initial pause in the game screen.

Speaking of pauses, we’ll also add a button that allows pausing the game. Once it’s
paused, we also need to give the user a way to resume the game. We’ll just display a big
Resume button in that case. In the pause state, we’ll also display another button that will
allow the user to return to the main menu screen.

In case Mr. Nom bites his own tail, we need to inform the player that the game is over.
We could implement a separate game-over screen, or we could stay within the game
screen and just overlay a big “Game Over” message. In this case we’ll opt for the latter.
To round things out, we’ll also display the score the player achieved along with a button
to get back to the main menu.

Think of those different states of the game screen as subscreens. We have four
subscreens: the initial get-ready state, the normal game-playing state, the paused state,
and the game-over state. Figure 3-17 shows those.

CHAPTER 3: Game Development 101

i e

READX? i , i
(F00¢m S¢REEW) G D‘% || & % @RO OVE
O 4 “
® § RESOHE | Do

O O]
|

&)

o 1@ @ s | [

Figure 3-17. The game screen and its four different states

Now it’s time to hook up the screens with each other. Each screen has some interactive
components that are made for transitioning to another screen.

From the main menu screen, we can get to the game screen, the high-
scores screen, and the help screen via the respective buttons.

From the game screen we can get back to the main screen either via
the button in the paused state or via the button in the game-over state.

From the high-scores screen we can get back to the main screen.

From the first help screen we can go to the second help screen, from
the second to the third, and from the third to the fourth; from the fourth
we’ll return back to the main screen.

That’s all of our transitions! Doesn’t look so bad, does it? Figure 3-18 summarizes all the
transitions visually with arrows from each interactive component to the target screen. |
also put in all the elements our screens are composed of.

CHAPTER 3: Game Development 101

.® | rﬁi\amém JEEt

@) S 15 SURMS R oW
| @m@&ﬂl&@@

mn
RERBN? @m
(FODEm S6REET) Rk 2
GNRE BER » L AEE :
[PERAN . === A
EASCoRE Qm& i éts0e
I}J@ﬂﬁ o B0
e g N(@" % LEd
sl PRAY | | B 370

@@ﬁ Aghscors— b 6o
12355678 —EELP || Co O
o@gs (388 |

EHrw _

DR pEAND

(06T SEREET) —
Mo I
) Lk
e
i adie i SN0l MIRCOHN
| aEE mﬁ@m% i
| entons | g |
@

S R OIS e

Figure 3-18. All design elements and transitions

CHAPTER 3: Game Development 101

With this we just finished our first full game design. What’s left is the implementation.
How do we actually make this design into an executable game?

NOTE: The method we just used to create our game design is nice and dandy for smaller games.
This book is called Beginning Android Games, so it’s a fitting methodology. For larger projects
you will most likely work on a team, with each team member specializing in one aspect. While
you can still apply the preceding methodology in that context, you might need to tweak and tune
it a little to accommaodate the different environment. You will also work more iteratively,
constantly refining your design.

Code: The Nitty-Gritty Details

Here’s another chicken-and-egg situation: we only want to get to know the Android APIs
relevant for game programming. But we still don’t know how to actually program a
game. We have an idea of how to design one, but transforming it into an executable is
still voodoo magic to us. In the following subsections, | want to give you an overview of
what a game is usually composed of. We’ll look at some pseudocode for interfaces we’ll
later implement with what Android offers us. Interfaces are awesome for two reasons:
they allow us to concentrate on the semantics without needing to know the
implementation details, and they allow us to later exchange the implementation (e.g.,
instead of using 2D CPU rendering, we could exploit OpenGL ES to display Mr. Nom on
the screen).

Every game needs some basic framework that abstracts away and eases the pain of
communicating with the underlying operating system. Usually this is split up into
modules, as follows:

Window management: This is responsible for creating a window and coping with
things like closing the window or pausing/resuming the application on Android.

Input: This is related to the window management module, and keeps track of user
input (e.g., touch events, keystrokes, and accelerometer readings).

File 1/O: This allows us to get the bytes of our assets into our program from disk.

Graphics: This is probably the most complex module besides the actual game. It is
responsible for loading graphics and drawing them on the screen.

Audio: This module is responsible for loading and playing everything that will hit our
ears.

Game framework: This ties all the above together and provides an easy-to-use base
to write our games.

Each of these modules is composed of one or more interfaces. Each interface will have
at least one concrete implementation that implements the semantics of the interface
based on what the underlying platform (in our case Android) provides us with.

CHAPTER 3: Game Development 101

NOTE: Yes, | deliberately left out networking from the preceding list. We will not implement
multiplayer games in this book, I’'m afraid. That is a rather advanced topic depending on the type
of game. If you are interested in this topic, you can find a range of tutorials on the Web.
(www.gamedev.net is a good place to start).

In the following discussion we will be as platform agnostic as possible. The concepts are
the same on all platforms.

Application and Window Management

A game is just like any other computer program that has a Ul. It is contained in some
sort of window (if the underlying operating system’s Ul paradigm is window based,
which is the case on all mainstream operating systems). The window serves as a
container, and we basically think of it as a canvas that we draw our game content on.

Most operating systems allow the user to interact with the window in a special way
besides touching the client area or pressing a key. On desktop systems you can usually
drag the window around, resize it or minimize it to some sort of taskbar. On Android,
resizing is replaced with accommodating an orientation change, and minimizing is
similar to putting the application in the background via a press of the home button or as
a reaction to an incoming call.

The application and window management module is also responsible for actually setting
up the window and making sure it is filled by a single Ul component that we can later
render to and that receives input from the user in the form of touching or pressing keys.
That Ul component might be rendered to via the CPU or it can be hardware accelerated
as it is the case with OpenGL ES.

The application and window management module does not have a concrete set of
interfaces. We’ll merge it with the game framework later on. What we have to remember
are the application states and window events that we have to manage:

Create: Called once when the window (and thus the application) is started up.
Pause: Called when the application is paused by some mechanism.

Resume: Called when the application is resumed and the window is in the
foreground again.

NOTE: Some Android aficionados might roll their eyes at this point. Why only use a single
window (activity in Android speak)? Why not use more than one Ul widget for the game—say, for
implementing complex Uls that our game might need? The main reason is that we want
complete control over the look and feel of our game. It also allows me to focus on Android game
programming instead of Android Ul programming, a topic for which better books exist—for
example, Mark Murphy’s excellent Beginning Android 2 (Apress, 2010).

http://www.gamedev.netisagoodplacetostart

CHAPTER 3: Game Development 101

Input

The user will surely want to interact with our game in some way. That’s where the input
module comes in. On most operating systems, input events such as touching the screen
or pressing a key are dispatched to the currently focused window. The window will then
further dispatch the event to the Ul component that has the focus. The dispatching
process is usually transparent to us; all we need to care about is getting the events from
the focused Ul component. The Ul APIs of the operating system provide a mechanism
to hook into the event dispatching system so we can easily register and record the
events. This hooking into and recording of events is the main task of the input module.

What can we do with the recorded information? There are two modi operandi:

Polling: With polling, we only check the current state of the input devices. Any states
between the current check and the last check will be lost. This way of input handling
is suitable for checking things like whether a user touches a specific button, for
example. It is not suitable for tracking text input, as the order of key events is lost.

Event-based handling: This gives us a full chronological history of the events that
have occurred since we last checked. It is a suitable mechanism to perform text
input or any other task that relies on the order of events. It’s also useful to detect
when a finger first touched the screen or when it was lifted.

What input devices do we want to handle? On Android, we have three main input
methods: touchscreen, keyboard/trackball, and accelerometer. The first two are suitable
for both polling and event-based handling. The accelerometer is usually just polled. The
touchscreen can generate three events:

Touch down: This happens when a finger is touched to the screen.

Touch drag: This happens when a finger is dragged across the screen. Before a
drag there’s always a down event.

Touch up: This happens when a finger is lifted from the screen.

Each touch event has additional information: the position relative to the Ul components
origin, and a pointer index used in multitouch environments to identify and track
separate fingers.

The keyboard can generate two types of events:
Key down: This happens when a key is pressed down.

Key up: This happens when a key is lifted. This event is always preceded by a key-
down event.

Key events also carry additional information. Key-down events store the pressed key’s
code. Key-up events store the key’s code and an actual Unicode character. There’s a
difference between a key’s code and the Unicode character generated by a key-up
event. In the latter case, the state of other keys are also taken into account, such as the
Shift key. This way, we can get upper- and lowercase letters in a key-up event, for

CHAPTER 3: Game Development 101

example. With a key-down event, we only know that a certain key was pressed; we have
no information on what character that keypress would actually generate.

Finally, there’s the accelerometer. We will always poll the accelerometer’s state. The
accelerometer reports the acceleration exerted by the gravity of our planet on one of
three axes of the accelerometer. The axes are called x, y, and z. Figure 3-19 depicts
each axis’s orientation. The acceleration on each axis is expressed in meters per second
squared (m/s?). From our physics class, we know that an object will accelerate at
roughly 9.8 m/s? when in free fall on planet Earth. Other planets have a different gravity,
so the acceleration constant is also different. For the sake of simplicity, we’ll only deal
with planet Earth here. When an axis points away from the center of the Earth, the
maximum acceleration is applied to it. If an axis points toward the center of the Earth,
we get a negative maximum acceleration. If you hold your phone upright in portrait
mode, then the y-axis will report an acceleration of 9.8 m/s?, for example. In Figure 3-19,
the z-axis would report an acceleration of 9.8 m/s2, and the x- and y-axes would report
and acceleration of zero.

Figure 3-19. The accelerometer axes on an Android phone. The z-axis points out of the phone.

Now let’s define an interface that gives us polling access to the touchscreen, the
keyboard, and the accelerometer, and gives us event-based access to the touchscreen
and keyboard (see Listing 3-1).

Listing 3-1. The Input Interface and the KeyEvent and TouchEvent Classes
package com.badlogic.androidgames.framework;

import java.util.list;

public interface Input {

public static class KeyEvent {
public static final int KEY DOWN = 0;

CHAPTER 3: Game Development 101

public static final int KEY UP = 1;

public int type;

public int keyCode;

public char keyChar;
}

public static class TouchEvent {
public static final int TOUCH DOWN = 0;
public static final int TOUCH UP = 1;
public static final int TOUCH DRAGGED = 2;

public int type;
public int x, y;
public int pointer;

}

public boolean isKeyPressed(int keyCode);
public boolean isTouchDown(int pointer);
public int getTouchX(int pointer);

public int getTouchY(int pointer);

public float getAccelX();

public float getAccelY();

public float getAccelZ();

public List<KeyEvent> getKeyEvents();

public List<TouchEvent> getTouchEvents();
}

Our definition is started off by two classes, KeyEvent and TouchEvent. The KeyEvent
class defines constants that encode a KeyEvent’s type; the TouchEvent class does the
same. A KeyEvent instance records its type, the key’s code, and its Unicode character in
case the the event’s type is KEY_UP.

The TouchEvent code is similar, and holds the TouchEvent’s type, the position of the
finger relative to the Ul component’s origin, and the pointer ID that was given to the
finger by the touchscreen driver. The pointer ID for a finger will stay the same for as long
as that finger is on the screen. The first finger that goes down gets the pointer ID 0, the
next the ID 1, and so on. If two fingers are down and finger 0 is lifted, then finger 1
keeps its ID for as long as it is touching the screen. A new finger will get the the first free
ID, which would be 0 in this example.

Next are the polling methods of the Input interface, which should be pretty self-
explanatory. Input.isKeyPressed() takes a keyCode and returns whether the
corresponding key is currently pressed or not. Input.isTouchDown(),
Input.getTouchX(), and Input.getTouchY() return whether a given pointer is down, as

CHAPTER 3: Game Development 101

well as its current x- and y-coordinates. Note that the coordinates will be undefined if
the corresponding pointer is not actually touching the screen.

Input.getAccelX(), Input.getAccelY(), and Input.getAccelZ() return the respective
acceleration values of each accelerometer axis.

The last two methods are used for event-based handling. They return the KeyEvent and
TouchEvent instances that got recorded since the last time we called these methods.
The events are ordered according to when they occurred, with the newest event being at
the end of the list.

With this simple interface and these helper classes, we have all our input needs covered.
Let’s move on to handling files.

NOTE: While mutable classes with public members are an abomination, we can get away with
them in this case for two reasons: Dalvik is still slow when calling methods (getters in this case),
and the mutability of the event classes does not have an impact on the inner workings of an
Input implementation. Just note that this is bad style in general, but we will resort to this
shortcut every once in a while for performance reasons.

File 1/0

Reading and writing files is quite essential for our game development endeavor. Given that
we are in Java land, we are mostly concerned with creating InputStream and OutputStream
instances, the standard Java mechanisms for reading and writing data from and to a
specific file. In our case, we are mostly concerned with reading files that we package with
our game, such as level files, images, and audio files. Writing files is something we’ll do a
lot less often. Usually we only write files if we want to persist high-scores or game
settings, or save a game state so users can pick up from where they left off.

We want the easiest possible file-accessing mechanism; Listing 3-2 shows my proposal
for a simple interface.

Listing 3-2. The FilelO Interface

package com.badlogic.androidgames.framework;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

public interface FileIO {
public InputStream readAsset(String fileName) throws IOException;

public InputStream readFile(String fileName) throws IOException;

public OutputStream writeFile(String fileName) throws IOException;
}

CHAPTER 3: Game Development 101

That’s rather lean and mean. We just specify a filename and get a stream in return. As
usual in Java, we will throw an I0Exception in case something goes wrong. Where we
read and write files from and to is dependent on the implementation, of course. Assets
will be read from our application’s APK file, and files will be read from and written to on
the SD card (also known as external storage).

The returned InputStreams and OutputStreams are plain-old Java streams. Of course, we
have to close them once we are finished using them.

Audio

While audio programming is a rather complex topic, we can get away with a very simple
abstraction. We will not do any advanced audio processing; we’ll just play back sound
effects and music that we load from files, much like we’ll load bitmaps in the graphics
module.

Before we dive into our module interfaces, though, let’s stop for a moment and get
some idea what sound actually is and how it is represented digitally.

The Physics of Sound

Sound is usually modeled as a set of waves that travel in a medium such as air or water.
The wave is not an actual physical object, but rather the movement of the molecules
within the medium. Think of a little pond in which you throw in a stone. When the stone
hits the pond’s surface, it will push away a lot of water molecules within the pond, and
eventually those pushed-away molecules will transfer their energy to their neighbors,
which will start to move and push as well. Eventually you will see circular waves emerge
from where the stone hit the pond. Something similar happens when sound is created.
Instead of a circular movement, you get spherical movement, though. As you may know
from the highly scientific experiments you may have carried out in your childhood, water
waves can interact with each other; they can cancel each other out or reinforce each
other. The same is true for sound waves. All sound waves in an environment combine to
form the tones and melodies you hear when you listen to music. The volume of a sound
is dictated by how much energy the moving and pushing molecules exert on their
neighbors and eventually on your ear.

Recording and Playback

The principle of recording and playing back audio is actually pretty simple in theory: for
recording, we keep track of when in time how much pressure was exerted on an area in
space by the molecules that form the sound waves. Playing back this data is a mere
matter of getting the air molecules surrounding the speaker to swing and move like they
did when we recorded them.

In practice, it is of course a little more complex. Audio is usually recorded in one of two
ways: in analog or digitally. In both cases, the sound waves are recorded with some sort
of microphone, which usually consists of a membrane that translates the pushing from

CHAPTER 3: Game Development 101

the molecules to some sort of signal. How this signal is processed and stored is what
makes the difference between analog and digital recording. We are working digitally, so
let’s just have a look at that case.

Recording audio digitally means that the state of the microphone membrane is
measured and stored at discrete time steps. Depending on the pushing by the
surrounding molecules, the membrane can be pushed inward or outward with regard to
a neutral state. This process is called sampling, as we take membrane state samples at
discrete points in time. The number of samples we take per time unit is called the
sampling rate. Usually the time unit is given in seconds, and the unit is called Hertz (Hz).
The more samples per second, the higher the quality of the audio. CDs play back at a
sampling rate of 44,100 Hz, or 44.1 KHz. Lower sampling rates are found, for example,
when transferring voice over the telephone line (8 KHz is common in this case).

The sampling rate is only one attribute responsible for a recording’s quality. The way we
store each membrane state sample also plays a role, and is also subject to digitalization.
Let’s recall what the membrane state actually is: it’s the distance of the membrane from
its neutral state. As it makes a difference whether the membrane is pushed inward or
outward, we record the signed distance. Hence, the membrane state at a specific time
step is a single negative or positive number. We can store such a signed number in a
variety of ways: as a signed 8-, 16-, or 32-bit integer, as a 32-bit float, or even as a 64-
bit float. Every data type has limited precision. An 8-bit signed integer can store 127
positive and 128 negative distance values. A 32-bit integer provides a lot more
resolution. When stored as a float, the membrane state is usually normalized to a range
between -1 and 1. The maximum positive and minimum negative values represent the
farthest distance the membrane can have from its neutral state. The membrane state is
also called the amplitude. It represents the loudness of the sound that it gets hit by.

With a single microphone we can only record mono sound, which loses all spatial
information. With two microphones, we can measure sound at different locations in
space, and thus get so-called stereo sound. You might achieve stereo sound, for
example, by placing one microphone to the left and another to the right of an object
emitting sound. When the sound is played back simultaniously through two speakers,
we can sort of reproduce the spatial component of the audio. But this also means that
we need to store twice the number of samples when storing stereo audio.

The playback is a simple matter in the end. Once we have our audio samples in digital
form, with a specific sampling rate and data type we can throw that data at our audio
processing unit, which will transform the information into a signal for an attached
speaker. The speaker interprets this signal and translates it into the vibration of a
membrane, which in turn will cause the surrounding air molecules to move and produce
sound waves. It’s exactly what is done for recording, only reversed!

Audio Quality and Compression

Wow, lots of theory. Why do we care? If you paid attention, you can now tell whether an
audio file has a high quality or not depending on the sampling rate and the data type
used to store each sample. The higher the sampling rate and the higher the data type

CHAPTER 3: Game Development 101

precision, the better the quality of the audio. However, that also means that we need
more storage room for our audio signal.

Imagine we record the same sound with a length of 60 seconds twice: once at a
sampling rate of 8 KHz at 8 bits per sample, and once at a sampling rate of 44 KHz at
16-bit precision. How much memory would we need to store each sound? In the first
case, we need 1 byte per sample. Multiply this by the sampling rate of 8,000 Hz, and we
need 8,000 bytes per second. For our full 60 seconds of audio recording, that’s 480,000
bytes, or roughly half a megabyte (MB). Our higher-quality recording needs quite a bit
more memory: 2 bytes per sample, and 2 times 44,000 bytes per second. That’s 88,000
bytes per second. Multiply this by 60 seconds, and we arrive at 5,280,000 bytes, or a
little over 5 MB. Your usual 3—-minute pop song would take up over 15 MB at that
quality, and that’s only a mono recording. For a stereo recording, we’d need twice that
amount of memory. Quite a lot of bytes for a silly song!

Many smart people have come up with ways to reduce the number of bytes needed for
an audio recording. They’ve invented rather complex psychoacoustic compression
algorithms that analyze an uncompressed audio recording and output a smaller,
compressed version. The compression is usually /ossy, meaning that some minor parts
of the original audio are omitted. When you play back MP3s or OGGs, you are actually
listening to compressed lossy audio. So, using formats such as MP3 or OGG will help us
reduce the amount of space needed to store our audio on disk.

What about playing back the audio from compressed files? While there exists dedicated
decoding hardware for various compressed audio formats, common audio hardware can
often only cope with uncompressed samples. Before actually feeding the audio card
with samples, we have to first read them in and decompress them. We can do this once
and store the all uncompressed audio samples in memory, or only stream in partitions
from the audio file as needed.

In Practice

You have seen that even 3—-minute songs can take up a lot of memory. When we play
back our game’s music, we will thus stream the audio samples in on the fly instead of
preloading all audio samples to memory. Usually, we only have a single music stream
playing, so we only have to access the disk once.

For short sound effects, such as explosions or gunshots, the situation is a little different.
We often want to play a sound effect multiple times simultaneously. Streaming the audio
samples from disk for each instance of the sound effect is not a good idea. We are
lucky, though, as short sounds do not take up a lot of memory. We will therefore read in
all samples of a sound effect to memory, from where we can directly and simultaneously
play them back.

So, we have the following requirements:

We need a way to load audio files for streaming playback and for
playback from memory.

CHAPTER 3: Game Development 101

B We need a way to control the playback of streamed audio.
B We need a way to control the playback of fully loaded audio.

This directly translates into the Audio, Music, and Sound interfaces (shown in Listings 3-3
through 3-5, respectively).

Listing 3-3. The Audio Interface

package com.badlogic.androidgames.framework;

public interface Audio {
public Music newMusic(String filename);

public Sound newSound(String filename);

The Audio interface is our way to create new Music and Sound instances. A Music
instance represents a streamed audio file. A Sound instance represents a short sound
effect that we keep entirely in memory. The methods Audio.newMusic() and
Audio.newSound() both take a filename as an argument and throw an I0Exception in
case the loading process fails (e.g., when the specified file does not exist or is corrupt).
The filenames refer to asset files in our application’s APK file.

Listing 3-4. The Music Interface

package com.badlogic.androidgames.framework;

public interface Music {
public void play();

public void stop();

public void pause();

public void setlLooping(boolean looping);
public void setVolume(float volume);
public boolean isPlaying();

public boolean isStopped();

public boolean isLooping();

public void dispose();

}

The Music interface is a little bit more involved. It features methods to start playing the
music stream, pausing and stopping it, and setting it to loop playback, which means it
will start from the beginning automatically when it reaches the end of the audio file.
Additionally, we can set the volume as a float in the range of 0 (silent) to 1 (maximum
volume). There are also a couple of getter methods that allow us to poll the current state
of the Music instance. Once we no longer need the Music instance, we have to dispose
of it. This will close any system resources, such as the file the audio was streamed from.

CHAPTER 3: Game Development 101

Listing 3-5. The Sound Interface

package com.badlogic.androidgames.framework;

public interface Sound {
public void play(float volume);

public void dispose();

The Sound interface is simpler. All we need to do is call its play() method, which again
takes a float parameter to specify the volume. We can call the play() method anytime
we want (e.g., when a shot is fired or a player jumps). Once we no longer need the Sound
instance, we have to dispose of it to free up the memory that the samples use, as well
as other system resources potentially associated.

NOTE: While we covered a lot of ground in this chapter, there’s a lot more to learn about audio
programming. | simplified some things to keep this section short and sweet. Usually you wouldn’t
specify the audio volume linearly, for example. In our context, it’s OK to overlook this little detail.
Just be aware that there’s more to it!

Graphics

The last module close to the metal is the graphics module. As you might have guessed,
it will be responsible for drawing images (also known as bitmaps) to our screen. That
may sound easy, but if you want high-performance graphics, you have to know at least
the basics of graphics programming. Let’s start with the basics of 2D graphics.

The first question we need to ask goes like this: how on Earth are the images output to
my display? The answer is rather involved, and we do not necessarily need to know all
the details. We’ll just quickly review what’s happening inside our computer and the
display.

Of Rasters, Pixels, and Framebuffers

Today’s displays are raster based. A raster is a two-dimensional grid of so-called picture
elements. You might know them as pixels, and we’ll refer to them as such in the
subsequent text. The raster grid has a limited width and height, which we usually
express as the number of pixels per row and per column. If you feel brave, you can turn
on your computer and try to make out individual pixels on your display. Note that I’'m not
responsible for any damage that does to your eyes, though.

A pixel has two attributes: a position within the grid and a color. A pixel’s position is
given as two-dimensional coordinates within a discrete coordinate system. Discrete
means that a coordinate is always at an integer position. Coordinates are defined within
a Euclidean coordinate system imposed on the grid. The origin of the coordinate system
is the top-left corner of the grid. The positive x-axis points to the right and the y-axis

CHAPTER 3: Game Development 101

points downward. The last item is what confuses people the most. We’ll come back to it
in a minute; there’s a simple reason why this is the case.

Ignoring the silly y-axis, we can see that due to the discrete nature of our coordinates,
the origin is coincident with the top-left pixel in the grid, which is located at (0,0). The
pixel to the right of the origin pixel is located at (1,0), the pixel beneath the origin pixel is
at (0,1), and so on (see the left side of Figure 3-20). The display’s raster grid is finite, so
there’s a limited number of meaningful coordinates. Negative coordinates are outside
the screen. Coordinates greater than or equal to the width or height of the raster are also
outside the screen. Note that the biggest x-coordinate is the raster’s width minus 1, and
the biggest y-coordinate is the raster’s height minus 1. That’s due to the origin being
coincident with the top-left pixel. Off-by-one errors are a common source of frustration
in graphics programming.

The display receives a constant stream of information from the graphics processor. It
encodes the color of each pixel in the display’s raster as specified by the program or
operating system in control of drawing to the screen. The display will refresh its state a
few dozen times per second. The exact rate is called the refresh rate. It is expressed in
Hertz. Liquid crystal displays (LCDs) usually have a refresh rate of 60 Hz per second;
cathode ray tube (CRT) monitors and plasma monitors often have higher refresh rates.

The graphics processor has access to a special memory area known as video memory,
or VRAM. Within VRAM there’s a reserved area for storing each pixel to be displayed on
the screen. This area is usually called the framebuffer. A complete screen image is
therefore called a frame. For each pixel in the display’s raster grid, there’s a
corresponding memory address in the framebuffer that holds the pixel’s color. When we
want to change what’s displayed on the screen, we simply change the color values of
the pixels in that memory area in VRAM.

Display X color[] vram = new color[3*2];

vram([O] vram[1] vram[2] vram[3] vram[4] vram[5]

(1.0)

Q1)

y
Figure 3-20. Display raster grid and VRAM, oversimplified

Time to explain why the y-axis in the display’s coordinate system is pointing downward.
Memory, be it VRAM or normal RAM, is linear and one dimensional. Think of it as a one-
dimensional array. So how do we map the two-dimensional pixel coordinates to one-
dimensional memory addresses? Figure 3-20 shows a rather small display raster grid of
three-by-two pixels, as well as its representation in VRAM (we assume VRAM only
consists of the framebuffer memory). From this we can easily derive the following
formula to calculate the memory address of a pixel at (x,y):

CHAPTER 3: Game Development 101

int address = x + y * rasterWidth;

We can also go the other way around, from an address to the x- and y-coordinates of a
pixel:
int x
int y

address % rasterWidth;
address / rasterWidth;

So, the y-axis is pointing downward because of the memory layout of the pixel colors in
VRAM. This is actually a sort of legacy inherited from the early days of computer
graphics. Monitors would update the color of each pixel on the screen starting at the
top-left corner moving to the right, tracing back to the left on the next line, until they
reached the bottom of the screen. It was convenient to have the VRAM contents laid out
in a manner that eased the transfer of the color information to the monitor.

NOTE: If we had full access to the framebuffer, we could use the preceding equation to write a
full-fledged graphics library to draw pixels, lines, rectangles, images loaded to memory, and so
on. Modern operating systems do not grant us direct access to the framebuffer for various
reasons. Instead we usually draw to a memory area that is then copied to the actual framebuffer
by the operating system. The general concepts hold true in this case as well, though! If you are
interested in how to do these low-level things efficiently, search the Web for a guy called
Bresenham and his line- and circle-drawing algorithms.

Vsync and Double-Buffering

Now, if you remember the paragraph about refresh rates, you might have noticed that
those rates seem rather low, and that we might be able to write to the framebuffer faster
than the display will refresh. That can happen. Even worse, we don’t know when the
display is grabbing its latest frame copy from VRAM, which could be a problem if we’re
in the middle of drawing something. In this case, the display will then show parts of the
old framebuffer content and parts of the new state—an undesirable situation. You can
see that effect in many PC games, where it expresses itself as tearing (in which the
screen shows parts of the last frame and parts of the new frame simultaneously).

The first part of the solution to this problem is called double-buffering. Instead of having
a single framebuffer, the graphics processing unit (GPU) actually manages two of them,
a front buffer and a back buffer. The front buffer is available to the display to fetch the
pixel colors from, and the back buffer is available to draw our next frame while the
display happily feeds off the front buffer. When we finish drawing our current frame, we
tell the GPU to switch the two buffers with each other, which usually means just
swapping the address of the front and the back buffer. In graphics programming
literature and APl documentation, you may find the terms page flip and buffer swap,
which refer to this process.

Double-buffering alone does not solve the problem entirely, though: the swap can still
happen while the screen is in the middle of refreshing its content. That’s where vertical

CHAPTER 3: Game Development 101

synchronization (also known as vsync) comes into play. When we call the buffer swap
method, the GPU will block until the display signals that it has finished its current refresh.
If that happens, the GPU can safely swap the buffer addresses, and all will be well.

Luckily, we barely need to care about those pesky details nowadays. VRAM and the
details of double-buffering and vsyncing are securely hidden from us so we cannot
wreak havoc with them. Instead we are provided with a set of APIs that usually limit us
to manipulating the contents of our application window. Some of these APls, such as
OpenGL ES, expose hardware acceleration, which basically does nothing more than
manipulate VRAM with specialized circuits on the graphics chip. See, it’s not magic! The
reason you should be aware of the inner works, at least at a high level, is that it allows
you to understand the performance characteristics of your application. When vsync is
enabled, you can never go above the refresh rate of your screen, which might be
puzzling if all you’re doing is drawing a single pixel.

When we render with non-hardware-accelerated APIs, we don’t directly deal with the
display itself. Instead we draw to one of the Ul components in our window. In our case
we deal with a single Ul component that is stretched over the whole window. Our
coordinate system will therefore not stretch over the entire screen, but only our Ul
component. The Ul component effectively becomes our display, with its own virtual
framebuffer. The operating system will then manage compositing the contents of all the
visible windows and make sure their contents are correctly transferred to the regions
they cover in the real framebuffer.

What Is Color?

You will notice that | have conveniently ignored colors so far. | made up a type called
color in Figure 3-20 and pretended all is well. Let’s see what color really is.

Physically, color is the reaction of your retina and visual cortex to electromagnetic
waves. Such a wave is characterized by its wavelength and its intensity. We can see
waves with a wavelength between roughly 400 and 700 nm. That subband of the
electromagnetic spectrum is also known as the visible light spectrum. A rainbow shows
all the colors of this visible light spectrum, going from violet to blue to green to yellow,
followed by orange and ending at red. All a monitor does is emit specific
electromagnetic waves for each pixel, which we experience as the color of each pixel.
Different types of displays use different methods to achieve that goal. A simplified
version of this process goes like this: every pixel on the screen is made up of three
different fluorescent particles that will emit light with one of the colors red, green, or
blue. When the display refreshes, each pixel’s fluorescent particles will emit light by
some means (e.g., in the case of CRT displays, the pixel’s particles get hit by a bunch of
electrons). For each particle, the display can control how much light it emits. For
example, if a pixel is entirely red, only the red particle will be hit with electrons at full
intensity. If we want colors other than the three base colors, we can achieve that by
mixing the base colors. Mixing is done by varying the intensity with which each particle
emits its color. The electromagnetic waves will overlay each other on the way to our

CHAPTER 3: Game Development 101

retina. Our brain interprets this mix as a specific color. A color can thus be specified by a
mix of intensities of the base colors red, green, and blue.

Color Models

What we just discussed is called a color model, specifically the RGB color model. RGB
stands for red, green, and blue, of course. There are many more color models we could
use, such as YUV and CMYK. In most graphics programming APIs, the RGB color
model is pretty much the standard, though, so we’ll only discuss that here.

The RGB color model is called an additive color model, due to the fact that the final
color is derived via mixing the additive primary colors red, green, and blue. You’ve
probably experimented with mixing primary colors in school. Figure 3-21 shows you
some examples for RGB color mixing to refresh your memory a little bit.

red Ed blue EBlmagenta

red gagreen

greengd blue K&

red Edgreengd blue ERNHNIE

Figure 3-21. Having fun with mixing the primary colors red, green, and blue

We can of course generate a lot more colors than the ones shown in Figure 3-21 by
varying the intensity of the red, green, and blue components. Each component can have
an intensity value between 0 and some maximum value (say, 1). If we interpret each
color component as a value on one of the three axes of a three-dimensional Euclidian
space, we can plot a so-called color cube, as depicted in Figure 3-22. There are a lot
more colors available to us if we vary the intensity of each component. A color is given
as a triplet (red, green, blue) where each component is in the range between 0.0 and 1.0.
0.0 means no intensity for that color, and 1.0 means full intensity. The color black is at
the origin (0,0,0), and the color white is at (1,1,1).

CHAPTER 3: Game Development 101

Figure 3-22. The mighty RGB color cube

Encoding Colors Digitally

How can we encode an RGB color triplet in computer memory? First we have to define
what data type we want to use for the color components. We could use floating-point
numbers and specify the valid range as being between 0.0 and 1.0. This would give us
quite some resolution for each component and make a lot of different colors available to
us. Sadly, this approach uses up a lot of space (3 times 4 or 8 bytes per pixel,
depending on whether we use 32-bit or 64-bit floats).

We can do better at the expense of losing a few colors, which is totally OK, as displays
usually have a limited range of colors they can emit. Instead of using a float for each
component, we can use an unsigned integer. Now, if we use a 32-bit integer for each
component, we haven’t gained anything. Instead, we use an unsigned byte for each
component. The intensity for each component then ranges from 0 to 255. For 1 pixel, we
thus need 3 bytes, or 24 bits. That’s 2 to the power of 24 (16,777,216) different colors.
I’d say that’s enough for our needs.

Can we get that down even more? Yes, we can. We can pack each component into a
single 16-bit word, so each pixel needs 2 bytes of storage. Red uses 5 bits, green uses
6 bits, and blue uses the rest of 5 bits. The reason green gets 6 bits is that our eyes can
see more shades of green than red and blue. All bits together make 2 to the power of 16
(65,536) different colors we can encode. Figure 3-23 shows how a color is encoded with
the three encodings described previously.

CHAPTER 3: Game Development 101

float: (1.0, 0.5, 0.75)
24-bit: (255, 128, 196) = OxFF80C4
16-bit: (31, 31, 45) = OxFCOD

Figure 3-23. Color encodings of a nice shade of pink (which will be gray in the print copy of this book, sorry)

In the case of the float, we could use three 32-bit Java floats. In the 24-bit encoding
case, we have a little problem: there’s no 24-bit integer type in Java, so we could either
store each component in a single byte or use a 32-bit integer with the upper 8 bits being
unused. In case of the 16-bit encoding, we can again either use two separate bytes or
store the components in a single short value. Note that Java does not have unsigned
types. Due to the power of the two’s complement, we can safely use signed integer
types to store unsigned values, though.

For both 16- and 24-bit integer encodings, we need to also specify the order in which
we store the three components in the short or integer value. There are usually two ways
that are used: RGB and BGR. Figure 3-23 uses RGB encoding. The blue component is
in the lowest 5 or 8 bits, the green component uses up the next 6 or 8 bits, and the red
component uses the upper 5 or 8 bits. BGR encoding just reverses the order. The green
bits stay where they are, and the red and blue bits swap places. We’ll use the RGB order
throughout this book, as Android’s graphics APIs work with that order as well. Let’s
summarize the color encodings discussed so far:

B A 32-bit float RGB encoding has 12 bytes for each pixel, and
intensities that vary between 0.0 and 1.0.

B A 24-bit integer RGB encoding has 3 or 4 bytes for each pixel, and
intensities that vary between 0 and 255. The order of the components
can be RGB or BGR. This is also known as RGB888 or BGR888 in
some circles, where 8 specifies the number of bits per component.

B A 16-bit integer RGB encoding has 2 bytes for each pixel; red and blue
have intensities between 0 and 31, and green has intensities between
0 and 63. The order of the components can be RGB or BGR. This is
also known as RGB565 or BGR565 in some circles, where 5 and 6
specify the number of bits of the respective component.

The type of encoding we use is also called the color depth. Images we create and store
on disk or in memory have a defined color depth, and so do the framebuffer of the
actual graphics hardware and the display itself. Today’s displays usually have a default
color depth of 24 bit, and can be configured to use less in some cases. The framebuffer
of the graphics hardware is also rather flexible, and can use many different color depths.
Our own images can of course also have any color depth we like.

CHAPTER 3: Game Development 101

NOTE: There are a lot more ways to encode per-pixel color information. Apart from RGB colors,
we could also have grayscale pixels, which only have a single component. As those are not used
a lot, we’ll ignore them at this point.

Image Formats and Compression

At some point in our game development process, our artist will provide us with images
she created with some graphics software like Gimp, Paint.NET, or Photoshop. These
images can be stored in a variety of formats on disk. Why is there a need for these
formats in the first place? Can’t we just store the raster as a blob of bytes on disk?

Well, we could, but let’s check how much memory that would take up. Say we want the
best quality, so we choose to encode our pixels in RGB888, at 24 bits per pixel. The
image would be 1,024 x 1,024 in size. That’s 3 MB for that single puny image alone!
Using RGB565, we can get that down to roughly 2 MB.

As in the case of audio, there’s been a lot of research on how to reduce the memory
needed to store an image. As usual, compression algorithms are employed, specifically
tailored for the needs of storing images and keeping as much of the original color
information as possible. The two most popular formats are JPEG and PNG. JPEG is a
lossy format. This means that some of the original information is thrown away in the
process of compression. PNG is a lossless format, and will reproduce an image that’s
100 percent true to the original. Lossy formats usually exhibit better compression
characteristics and take up less space on disk. We can therefore chose what format to
use depending on the disk memory constraints.

Similar to sound effects, we have to fully decompress an image when we load it into
memory. So, even if your image is 20 KB compressed on disk, you still need the full
width times height times color depth storage space in RAM.

Once loaded and decompressed, the image will be available in the form of an array of
pixel colors, in exactly the same way the framebuffer is laid out in VRAM. The only
difference is that the pixels are located in normal RAM and that the color depth might
differ from the framebuffer’s color depth. A loaded image also has a coordinate system
like the framebuffer, with the origin being in its top-left corner, the x-axis pointing to the
right, and the y-axis pointing downward.

Once an image is loaded, we can draw it in RAM to the framebuffer by simply
transferring the pixel colors from the image to appropriate locations in the framebuffer.
We don’t do this by hand; instead we use an API that provides that functionality.

Alpha Compositing and Blending

Before we can start designing our graphics module interfaces, we have to tackle one
more thing: image compositing. For the sake of this discussion, assume that we have a
framebuffer we can render to, as well as a bunch of images loaded into RAM that we’ll

CHAPTER 3: Game Development 101

throw at the framebuffer. Figure 3-24 shows a simple background image, as well as
Bob, a zombie-slaying ladies man.

Figure 3-24. A simple background, and Bob, master of the universe

To draw Bob’s world, we’d first draw the background image to the framebuffer, followed
by Bob over the background image in the framebuffer. This process is called
compositing, as we compose different images into a final image. The order in which we
draw images is relevant, as any new draw call will overwrite the current contents in the
framebuffer. So, what would be the final output of our compositing? Figure 3-25 shows

TITT

Figure 3-25. Compositing the background and Bob into the framebuffer (not what we wanted)

Ouch, that’s not what we wanted. In Figure 3-24, notice that Bob is surrounded by white
pixels. When we draw Bob on top of the background to the framebuffer, those white
pixels also get drawn, effectively overwriting the background. How can we draw Bob’s
image so that only Bob’s pixels are drawn, and the white background pixels are
ignored?

Enter alpha blending. Well, in Bob’s case it’s technically called alpha masking, but that’s
just a subset of alpha blending. Graphics software usually lets us not only specify the
RGB values of a pixel, but also its translucency. Think of it as yet another component of

CHAPTER 3: Game Development 101

a pixel’s color. We can encode it just like we encoded the red, green, and blue
components.

| hinted earlier that we could store a 24-bit RGB triplet in a 32-bit integer. There are 8
unused bits in that 32-bit integer that we can grab and store our alpha value in. We can
then specify the translucency of a pixel from 0 to 255, where 0 is fully transparent and
255 is opaque. This encoding is known as ARGB8888 or BGRA8888 depending on the
order of the components. There are also RGBA8888 and ABGR8888 formats, of course.

In the case of 16-bit encoding, we have a little problem: all bits of our 16-bit short are
taken up by the color components. Let’s instead imitate the ARGB8888 format and
define an ARGB4444 format analogously. That leaves 12 bits for our RGB values in
total—4 bits per color component.

We can easily imagine how a rendering method for pixels that’s fully translucent or
opaque would work. In the first case, we’d just ignore pixels with an alpha component of
zero. In the second case, we’d simply overwrite the destination pixel. When a pixel has
neither a fully translucent nor fully opaque alpha component, however, things get a tiny
bit more complicated.

When talking about blending in a formal way, we have to define a few things:

B Blending has two inputs and one output, each represented as an RGB
triplet (C) plus an alpha value (a).

B The two inputs are called source and destination. The source is the
pixel from the image we want to draw over the destination image (e.g.,
the framebuffer). The destination is the pixel we are going to (partially)
overdraw with our source pixel.

B The output is again a color expressed as an RGB triplet and an alpha
value. Usually we just ignore the alpha value, though. For simplicity
we’ll do that in this chapter.

B To simplify our math a little bit, we’ll represent RGB and alpha values
as floats in the range of 0.0 to 1.0.

Equipped with those definitions, we can create so-called blending equations. The
simplest equation looks like this:
red = src.red * src.alpha + dst.red * (1 - src.alpha)

blue = src.green * src.alpha + dst.green * (1 - src.alpha)
green = src.blue * src.alpha + dst.blue * (1 - src.alpha)

src and dst are the pixels of the source and destination we want to blend with each
other. We blend the two colors component-wise. Note the absence of the destination
alpha value in these blending equations. Let’s try an example and see what it does:
src = (1, 0.5, 0.5), src.alpha = 0.5, dst = (0, 1, 0)

red =1 *0.5+0* (1-0.5)=0.5

blue = 0.5 * 0.5 + 1 * (1 - 0.5) = 0.75
red = 0.5 * 0.5 + 0 * (1 - 0.5) = 0.25

CHAPTER 3: Game Development 101

Figure 3-26 illustrates the preceding equation. Our source color is a shade of pink, and
the destination color is a shade of green. Both colors contribute equally to the final
output color, resulting in a somewhat dirty shade of green or olive.

0.5+ *0.5=

Figure 3-26. Blending two pixels

Two fine gentlemen called Porter and Duff came up with a slew of blending equations.
We will stick with the preceding equation, though, as it covers most of our use cases.
Try experimenting with it on paper or in your graphics software of choice to get a feeling
for what blending will do to your composition.

NOTE: Blending is a wide field. If you want to exploit it to its fullest potential, | suggest searching
the Web for Porter and Duff’s original work on the subject. For the games we will write, though,
the preceding equation is sufficient.

Notice that there are a lot of multiplications involved in the preceding equations (six, to
be precise). Multiplications are costly, and we should try to avoid them where possible.
In the case of blending, we can get rid of three of those multiplications by premultiplying
the RGB values of the source pixel color with the source alpha value. Most graphics
software supports premultiplication of an image’s RGB values with the respective
alphas. If that is not supported, you can do it at load time in memory. However, when we
use a graphics API to draw our image with blending, we have to make sure that we use
the correct blending equation. Our image will still contain the alpha values, so the
preceding equation would output incorrect results. The source alpha must not be
multiplied with the source color. Luckily, all Android graphics APIs allow us to fully
specify how we want to blend our images.

In Bob’s case, we just set all the white pixels’ alpha values to zero in our graphics
software of choice, load the image in ARGB8888 or ARGB4444 format, maybe
premultiply the alpha, and use a drawing method that does the actual alpha blending
with the correct blending equation. The result would look like Figure 3-27.

CHAPTER 3: Game Development 101

Figure 3-27. On the left is Bob blended; on the right is Bob in Paint.NET. The checkerboard illustrates that the
alpha of the white background pixels is zero, so the background checkerboard shines through.

NOTE: The JPEG format does not support storing alpha values per pixel. Use the PNG format in
that case.

In Practice

With all this information, we can finally start to design the interfaces for our graphics
module. Let’s define the functionality of those interfaces. Note that when | refer to the
framebuffer, | actually mean the virtual framebuffer of the Ul component we draw to. We
just pretend we directly draw to the real framebuffer. We’ll need to be able to perform
the following operations:

B Load images from disk and store them in memory for drawing them
later on.

m Clear the framebuffer with a color so we can erase what’s still there
from the last frame.

B Set a pixel in the framebuffer at a specific location to a specific color.
B Draw lines and rectangles to the framebuffer.

B Draw previously loaded images to the framebuffer. We’d like to be
able to either draw the complete image or portions of it. We also need
to be able to draw images with and without blending.

B Get the dimensions of the framebuffer.

| propose two simple interfaces: Graphics and Pixmap. Let’s start with the Graphics
interface, shown in Listing 3-6.

CHAPTER 3: Game Development 101

Listing 3-6. The Graphics Interface

package com.badlogic.androidgames.framework;

public interface Graphics {
public static enum PixmapFormat {
ARGB8888, ARGB4444, RGB565

public Pixmap newPixmap(String fileName, PixmapFormat format);

public void clear(int color);

public void drawPixel(int x, int y, int color);

public void drawLine(int x, int y, int x2, int y2, int color);

public void drawRect(int x, int y, int width, int height, int color);

public void drawPixmap(Pixmap pixmap, int x, int y, int srcX, int srcy,
int srcWidth, int srcHeight);

public void drawPixmap(Pixmap pixmap, int x, int y);
public int getWidth();

public int getHeight();
}

We start with a public static enum called PixmapFormat. It encodes the different pixel
formats we will support. Next we have the different methods of our Graphics interface:

B The Graphics.newPixmap() method will load an image given in either
JPEG or PNG format. We specify a desired format for the resulting
Pixmap, which is a hint for the loading mechanism. The resulting Pixmap
might have a different format. We do this so we can somewhat control
the memory footprint of our loaded images (e.g., by loading RGB888
or ARGB8888 images as RGB565 or ARGB4444 images). The filename
specifies an asset in our application’s APK file.

B The Graphics.clear() method clears the complete framebuffer with
the given color. All colors in our little framework will be specified as
32-bit ARGB8888 values (Pixmaps might of course have a different
format).

B The Graphics.drawPixel() method will set the pixel at (x,y) in the
framebuffer to the given color. Coordinates outside the screen will be
ignored. This is called clipping.

B The Graphics.drawLine() method is analogous to the
Graphics.drawPixel() method. We specify the start point and
endpoint of the line, along with a color. Any portion of the line that is
outside the framebuffer’s raster will be ignored.

CHAPTER 3: Game Development 101

B The Graphics.drawRect() method draws a rectangle to the
framebuffer. The (x,y) specifies the position of the rectangle’s top-left
corner in the framebuffer. The arguments width and height specify the
number of pixels in x and y, and the rectangle will fill starting from (x,y).
We fill downward in y. The color argument is the color that is used to
fill the rectangle.

B The Graphics.drawPixmap() method draws rectangular portions of a
Pixmap to the framebuffer. The (x,y) coordinates specify the top-left
corner’s position of the Pixmap’s target location in the framebuffer. The
arguments srcX and srcY specify the corresponding top-left corner of
the rectangular region that is used from the Pixmap, given in the
Pixmap’s own coordinate system. Finally, stcWidth and srcHeight
specify the size of the portion that we take from the Pixmap.

B Finally, the Graphics.getWidth() and Graphics.getHeight() methods
return the width and height of the framebuffer in pixels.

All the drawing methods except Graphics.clear() will automatically perform blending
for each pixel they touch, as outlined in the previous section. We could disable blending
on a case-by-case basis to speed up the drawing a little bit, but that would complicate
our implementation. Usually we can get away with having blending enabled all the time
for simple games like Mr. Nom.

The Pixmap interface is given in Listing 3-7.
Listing 3-7. The Pixmap Interface

package com.badlogic.androidgames.framework;
import com.badlogic.androidgames.framework.Graphics.PixmapFormat;

public interface Pixmap {
public int getWidth();

public int getHeight();
public PixmapFormat getFormat();

public void dispose();

We keep it very simple and immutable, as the compositing is done in the framebuffer.

B The Pixmap.getWidth() and Pixmap.getHeight() methods return the
width and the height of the Pixmap in pixels.

B The Pixmap.getFormat() method returns the PixelFormat that the
Pixmap is stored with in RAM.

B Finally, there’s the Pixmap.dispose() method. Pixmap instances use up
memory and potentially other system resources. If we no longer need
them, we should dispose of them with this method.

CHAPTER 3: Game Development 101

With this simple graphics module, we can implement Mr. Nom easily later on. Let’s finish
this chapter with a discussion of the game framework itself.

The Game Framework

After all the groundwork we’ve done, we can finally talk about how to actually implement
the game itself. For that, let’s identify what tasks have to be performed by our game:

B The game is split up into different screens that each perform the same
tasks: evaluating user input, applying the input to the state of the
screen, and rendering the scene. Some screens might not need any
user input, but transition to another screen after some time has passed
(e.g., a splash screen).

B The screens need to be managed somehow (e.g., we need to keep
track of the current screen and have a way to transition to a new
screen, which boils down to destroying the old screen and setting the
new screen as the current screen).

B The game needs to grant the screens access to the different modules
(for graphics, audio, input, etc.) so they can load resources, fetch user
input, play sounds, render to the framebuffer, and so on.

B As our games will be in real time (that means things will be moving and
updating constantly), we have to make the current screen update its
state and render itself as often as possible. We’d normally do that
inside a loop called the main loop. The loop will terminate when the
user quits the game. A single iteration of this loop is called a frame.
The number of frames per second (FPS) that we can compute is called
the frame rate.

B Speaking of time, we also need to keep track of the time span that has
passed since our last frame. This is used for frame-independent
movement, which we’ll discuss in a minute.

B The game needs to keep track of the window state (e.g., whether it got
paused or resumed), and inform the current screen of these events.

B The game framework will deal with setting up the window and creating
the Ul component we render to and receive input from.

Let’s boil this down to some pseudocode, ignoring the window management events like
pause and resume for a moment:

createlWindowAndUIComponent();

Input input = new Input();

Graphics graphics = new Graphics();
Audio audio = new Audio();

Screen currentScreen = new MainMenu();
Float lastFrameTime = currentTime();

CHAPTER 3: Game Development 101

while(!userQuit()) {
float deltaTime = currentTime() - lastFrameTime;
lastFrameTime = currentTime();

currentScreen.updateState(input, deltaTime);
currentScreen.present(graphics, audio, deltaTime);

}

cleanupResources();

We start off by creating our game’s window and the Ul component we render to and
receive input from. Next we instantiate all our modules necessary to do the low-level
work. We instantiate our starting screen and make it the current screen, and record the
current time. Then we enter the main loop, which will terminate if the user indicates that
he wants to quit the game.

Within the game loop, we calculate the so-called delta time. This is the time that has
passed since the beginning of the last frame. We then record the time of the beginning
of the current frame. The delta time and the current time are usually given in seconds.
For the screen, the delta time indicates how much time has passed since it was last
updated —information that is needed if we want to do frame-independent movement
(which we’ll come back to in a minute).

Finally, we simply update the current screen’s state and present it to the user. The
update depends on the delta time as well as the input state, hence we provide those to
the screen. The presentation consists of rendering the screen’s state to the framebuffer,
as well as playing back any audio the screen’s state demands (e.g., due to a shot that
got fired in the last update). The presentation method might also need to know how
much time has passed since it was last invoked.

When the main loop is terminated, we can clean up and release all resources and close
the window.

And that is how virtually every game works at a high level. Process the user input,
update the state, present the state to the user, and repeat ad infinitum (or until the user
is fed up with our game).

Ul applications on modern operating systems do not usually work in real time. They
work with an event-based paradigm, where the operating system informs the application
of input events, as well as when to render itself. This is achieved by callbacks that the
application registers with the operating system on startup; these are then responsible for
processing received event notifications. All this happens in the so-called Ul thread —the
main thread of a Ul application. It is generally a good idea to return from the callbacks
as fast as possible, so we would not want to implement our main loop in one of these.

Instead, we host our game’s main loop in a separate thread that we’ll span when our
game is firing up. This means that we have to take some precautions when we want to
receive Ul thread events, such as input events or window events. But those are details
we’ll deal with later on when we implement our game framework for Android. Just
remember that we need to synchronize the Ul thread and the game’s main loop thread
at certain points.

CHAPTER 3: Game Development 101

The Game and Screen Interfaces

With all that said, let’s try to design a game interface. Here’s what an implementation of
this interface has to do:

B Set up the window and Ul component and hook into callbacks so we
can receive window and input events.

B Start the main loop thread.

B Keep track of the current screen and tell it to update and present itself
in each main loop iteration (aka frame).

B Transfer any window events (e.g., pause and resume events) from the
Ul thread to the main loop thread and pass them on to the current
screen so it can change its state accordingly.

B Grant access to all the modules we developed earlier: Input, FileIO,
Graphics, and Audio.

As game developers, we want to be agnostic about what thread our main loop is running
on and whether we need to synchronize with a Ul thread or not. We’d like to just
implement the different game screens with a little help from the low-level modules and
some notifications of window events. We will therefore create a very simple Game
interface that hides all this complexity from us, as well as an abstract Screen class that
we’ll use to implement all our screens. Listing 3-8 shows the Game interface.

Listing 3-8. The Game Interface

package com.badlogic.androidgames.framework;

public interface Game {
public Input getInput();

public FileIO getFileIO();

public Graphics getGraphics();
public Audio getAudio();

public void setScreen(Screen screen);
public Screen getCurrentScreen();

public Screen getStartScreen();

}

As expected, there are a couple of getter methods that return the instances of our low-
level modules, which the Game implementation will instantiate and keep track off.

The Game.setScreen() method allows us to set the current Screen of the Game. These
methods will be implemented once, along with all the internal thread creation, window
management, and main loop logic that will constantly ask the current screen to present
and update itself.

CHAPTER 3: Game Development 101

The Game.getCurrentScreen() method returns the currently active Screen.

We’ll use an abstract class called AndroidGame later on to implement the Game interface,
which will implement all methods except the Game.getStartScreen() method. This
method will be an abstract method. If we create the AndroidGame instance for our actual
game, we’ll derive from it and override the Game.getStartScreen() method, returning an
instance to the first screen of our game.

To give you an impression of how easy it will be to set up our game, here’s an example
(assuming we have already implemented the AndroidGame class):

public class MyAwesomeGame extends AndroidGame {
public Screen getStartScreen () {
return new MySuperAwesomeStartScreen(this);

}

That is pretty awesome, isn’t it? All we have to do is implement the screen we want our
game to start with, and the AndroidGame class we’ll derive from will do the rest for us.
From that point onward, we’ll have our MySuperAwesomeStartScreen be asked to update
and render itself by the AndroidGame instance in the main loop thread. Note that we pass
the MyAwesomeGame instance itself to the constructor of our Screen implementation.

NOTE: If you’re wondering what actually instantiates our MyAwesomeGame class, I'll give you a
hint: AndroidGame will be derived from Activity, which will be automatically instantiated by
the Android operating system when a user starts our game.

The last piece in the puzzle is the abstract class Screen. We make it an abstract class
instead of an interface so we can already implement some bookkeeping. This way we
have to write less boilerplate code in the actual implementations of the abstract Screen
class. Listing 3-9 shows the abstract Screen class.

Listing 3-9. The Screen Class

package com.badlogic.androidgames.framework;

public abstract class Screen {
protected final Game game;

public Screen(Game game) {

this.game = game;
public abstract void update(float deltaTime);
public abstract void present(float deltaTime);
public abstract void pause();
public abstract void resume();

public abstract void dispose();

CHAPTER 3: Game Development 101

It turns out that the bookkeeping isn’t so bad after all. The constructor receives the Game
instance and stores it in a final member that’s accessible to all subclasses. Via this
mechanism we can achieve two things:

We can get access to the low-level modules of the Game to play back
audio, draw to the screen, get user input, and read and write files.

We can set a new current Screen by invoking Game.setScreen() when
appropriate (e.g., when a button is pressed that triggers a transition to
a new screen).

The first point is pretty much obvious: our Screen implementation needs access to these
modules so that it can actually do something meaningful, like rendering huge amounts
of unicorns with rabies.

The second point allows us to implement our screen transitions easily within the Screen
instances themselves. Each Screen can decide when to transition to which other Screen
based on its state (e.g., when a menu button was pressed).

The methods Screen.update() and Screen.present() should be self-explanatory by
now: they will update the screen state and present it accordingly. The Game instance will
call them once in each iteration of the the main loop.

The methods Screen.pause() and Screen.resume() will be called when the game is
paused or resumed. This is again done by the Game instance and applied to the currently
active Screen.

The method Screen.dispose() will be called by the Game instance in case
Game.setScreen() is called. The Game instance will dispose of the current Screen via this
method and thereby give the Screen an opportunity to release all its system resources
(e.g., graphical assets stored in Pixmaps) to make room for the new screen’s resources in
memory. The call to the Screen.dispose() method is also the last opportunity for a
screen to make sure that any information that needs persistence is saved.

A Simple Example

Continuing with our MySuperAwesomeGame example, here is a very simple implementation
of the MySuperAwesomeStartScreen class:

public class MySuperAwesomeStartScreen extends Screen {
Pixmap awesomePic;
int x;

public MySuperAwesomeStartScreen(Game game) {
super(game);
awesomePic = game.getGraphics().newPixmap("data/pic.png",
PixmapFormat.RGB565);
}

@0verride
public void update(float deltaTime) {
X += 1;

}

CHAPTER 3: Game Development 101

if (x > 100)
X = 0;
}
@0verride

public void present(float deltaTime) {
game.getGraphics().clear(0);
game.getGraphics().drawPixmap(awesomePic, x, 0, 0, O,
awesomePic.getWidth(), awesomePic.getHeight());
}

@0verride
public void pause() {

// nothing to do here
}

@0verride
public void resume() {

// nothing to do here
}

@0verride
public void dispose() {
awesomePic.dispose();

Let’s see what this class in combination with the MySuperAwesomeGame class will do:

1.

When the MySuperAwesomeGame class is created, it will set up the window,
the Ul component we render to and receive events from, the callbacks
to receive window and input events, and the main loop thread. Finally, it
will call its own MySuperAwesomeGame . getStartScreen() method, which
will return an instance of the MySuperAwesomeStartScreen() class.

In the MySuperAwesomeStartScreen constructor, we load a bitmap from
disk and store it in a member variable. This completes our screen setup,
and the control is handed back to the MySuperAwesomeGame class.

The main loop thread will now constantly call the
MySuperAwesomeStartScreen.update() and
MySuperAwesomeStartScreen.render() methods of the instance we just
created.

In the MySuperAwesomeStartScreen.update() method, we increase a
member called x by one each frame. This member holds the x-
coordinate of the image we want to render. When the x-coordinate is
bigger than 100, we reset it to 0.

In the MySuperAwesomeStartScreen.render() method, we clear the
framebuffer with the color black (0x00000000 = 0) and render our Pixmap
at position (x,0).

CHAPTER 3: Game Development 101

6. The main loop thread will repeat steps 3 to 5 until the user quits the
game by pressing the back button on his device. The Game instance will
call then call the MySuperAwesomeStartScreen.dispose() method, which
will dispose of the Pixmap.

And that’s our first (not so) exciting game! All a user will see is that an image is moving
from left to right on the screen. Not exactly a pleasant user experience, but we’ll work on
that later. Note that on Android, the game can be paused and resumed at any point in
time. Our MyAwesomeGame implementation will then call the
MySuperAwesomeStartScreen.pause() and MySuperAwesomeStartScreen.resume()
methods. The main loop thread will be paused for as long as the application itself is
paused.

There’s one last problem we have to talk about: frame-rate independent movement.

Frame Rate-Independent Movement

Let’s assume that the user’s device can run our game from the last section at 60 FPS.
Our Pixmap will advance 100 pixels in 100 frames as we increment the
MySuperAwesomeStartScreen.x member by 1 pixel each frame. At a frame rate of 60 FPS,
it will take roughly 1.66 seconds to reach position (100,0).

Now let’s assume that a second user plays our game on a different device. That device
is capable of running our game at 30 FPS. Each second, our Pixmap advances by 30
pixels, so it takes 3.33 seconds to reach position (100,0).

This is bad. It may not have an impact on the user experience our simple game
generates. But replace the Pixmap with Super Mario and think about what it would mean
to move him in a frame-dependent manner. Say we hold down the right D-pad button so
that Mario runs to the right. In each frame, we advance him by 1 pixel, as we do in case
of our Pixmap. On a device that can run the game at 60 FPS, Mario would run twice as
fast as on a device that runs the game at 30 FPS! This would totally change the user
experience depending on the performance of the device. We need to fix this.

The solution to this problem is called frame-independent movement. Instead of moving
our Pixmap (or Mario) by a fixed amount each frame, we specify the movement speed in
units per second. Say we want our Pixmap to advance 50 pixels per second. In addition
to the 50-pixels-per-second value, we also need information on how much time has
passed since we last moved the Pixmap. And this is where this strange delta time comes
into play. It tells us exactly how much time has passed since the last update. So our
MySuperAwesomeStartScreen.update() method should look like this:

@0verride
public void update(float deltaTime) {
X += 50 * deltaTime;
if(x > 100)
X = 0;

CHAPTER 3: Game Development 101

If our game runs at a constant 60 FPS, the delta time passed to the method will always
be 1 /60 ~ 0.016 seconds. In each frame we therefore advance by 50 x 0.016 ~ 0.83
pixels. At 60 FPS we advance 60 x 0.85 ~ 100 pixels! Let’s test this with 30 FPS: 50 x 1
/ 30 ~ 1.66. Multiplied by 30 FPS, we again move 100 pixels total each second. So, no
matter how fast the device our game is running on can execute our game, our animation
and movement will always be consistent with actual wall clock time.

If we actually tried this with our preceding code, our Pixmap wouldn’t move at all at 60
FPS, though. This is because of a bug in our code. I'll give you some time to spot it. It's
rather subtle, but a common pitfall in game development. The x member we increase
each frame is actually an integer. Adding 0.83 to an integer will have no effect. To fix this
we simply have to store x as a float instead of an int. This also means that we have to
add a cast to int when we call Graphics.drawPixmap().

NOTE: While floating-point calculations are usually slower on Android than integer operations,
the impact is mostly negligible, so we can get away with using more costly floating-point
arithmetic.

And that is all there is to our game framework. We can directly translate the screens of
our Mr. Nom design to our classes and interface of the framework. Of course, there are
still some implementation details to tend to, but we’ll leave that for a later chapter. For
now you can be mighty proud of yourself that you kept on reading this chapter to the
end: you are now ready to become a game developer for Android (and other platforms)!

Summary

Fifty highly condensed and informative pages later, you should have a good idea of what
is involved in creating a game. We checked out some of the most popular genres on the
Android Market and drew some conclusions. We designed a complete game from the
ground up using only a scissor, a pen, and some paper. Finally, we explored the
theoretical basis of game development, and even created a set of interfaces and
abstract classes that we’ll use throughout this book to implement our game designs
based on those theoretical concepts. If you feel like you want to go beyond the basics
covered here, then by all means consult the Web for more information. You are holding
all the keywords in your hand. Understanding the principles is the key to developing
stable and well-performing games. With that said, let's implement our game framework
for Android!

Chapter

Android for Game
Developers

Android’s application framework is vast and confusing at times. For every possible task
you could think of, there’s an API you can use. Of course, you have to learn the APIs
first. Luckily for us game developers, we only need an extremely limited set of these
APls. All we want is a window with a single Ul component to draw to and receive input
from, as well as the ability to play back audio. This covers all our needs to implement the
game framework we designed in the last chapter in a rather platform-agnostic way.

In this chapter you'll learn the bare minimum of Android’s APIs to make Mr. Nom a
reality. You’ll be surprised how little you actually need to know about those APIs to
achieve that goal. Let’s recall what ingredients we need:

Window management
Input

File I/0

Audio

Graphics

For each of these modules, there’s an equivalent in the application framework APIs.
We’ll pick and choose the APIs needed to handle those modules, discuss their internals,
and finally implement the respective interfaces of the game framework we designed in
the last chapter.

Before we can dive into window management on Android, however, we have to revisit
something we only shortly discussed in Chapter 2: defining our application via the
manifest file.

103

CHAPTER 4: Android for Game Developers

Defining an Android Application: The Manifest File

An Android application can consist of a multitude of different components:
Activities: These are user-facing components that present a Ul to interact with.

Services: These are processes that work in the background and don’t have a visible UL.
A service might be responsible for polling a mail server for new e-mails, for example.

Content providers: These components make parts of your application data available
to other applications.

Intents: These are messages created by the system or applications themselves, that
are then passed on to any interested party. Intents might notify us of system events
such as the SD card being removed or the USB cable being connected. Intents are
also used by the system for starting components of our application, such as
activities. We can also fire our own intents to ask other applications to perform an
action, such as opening a photo gallery to display an image or starting the Camera
application to take a photo.

Broadcast receivers: These react to specific intents, and might execute an action
such as starting a specific activity or sending out another intent to the system.

An Android application has no single point of entry, as we are used to having on a
desktop operating system (e.g., in the form of Java’s main() method). Instead,
components of an Android application are started up or asked to perform a certain
action by specific intents.

What components our application is composed of and which intents these components
react to are defined in the application’s manifest file. The Android system uses this
manifest file to get to know what our application is made of, such as the default activity
to display when the application is started.

NOTE: We are only concerned about activities in this book, so we’ll only discuss the relevant
portions of the manifest file for this type of component. If you want to get your head dizzy, you
can learn more about the manifest file on the Android Developers site.

The manifest file serves many more purposes than just defining an application’s
components. The following list summarizes the relevant parts of a manifest file in the
context of game development:

The version of our application as displayed and used on the Android Market
The Android versions our application can run on

Hardware profiles our application requires (e.g., multitouch, specific
screen resolutions, or support for OpenGL ES 2.0)

Permissions for using specific components, such as for writing to the
SD card or accessing the networking stack

CHAPTER 4: Android for Game Developers

We will create a template manifest in the following subsections that we can reuse in a
slightly modified manner in all the projects we’ll develop throughout this book. For this
we’ll go through all the relevant XML tags we need to define our application.

The <manifest> Element

The <manifest> tag is the root element of an AndroidManifest.xml file. Here’s a basic
example:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.helloworld"

android:versionCode="1
android:versionName="1.0"
android:installlocation="preferExternal">

;}ﬁanifest>

Assuming you have worked with XML before, you should be familiar with the first line.
The <manifest> tag specifies a namespace called android, which is used throughout the
rest of the manifest file. The package attribute defines the root package name of our

application. Later on, we’ll reference specific classes of our application relative to this
package name.

The versionCode and versionName attributes specify the version of our application in two
forms. The versionCode is an integer we have to increment each time we publish a new
version of our application. It is used by the Android Market to track our application’s
version. The versionName is displayed to users of the Android Market when they
browses our application. We can use any string we like here.

The installlocation attribute is only available to us if we set the build target of our
Android project in Eclipse to Android 2.2 or newer. It specifies where our application
should be installed. The string preferExternal tells the system that we’d like our
application to be installed to the SD card. This will only work on Android 2.2 or newer,
and is ignored by all earlier Android applications. On Android 2.2 or newer the
application will always get installed to the internal storage if possible.

All attributes of the XML elements in a manifest file are generally prefixed with the
android namespace, as shown previously. For brevity, | will not specify the namespace
in the following sections when talking about a specific attribute.

Inside the <manifest> element, we then define the application’s components,
permissions, hardware profiles, and supported Android versions.

The <application> Element

As in the case of the <manifest> element, let’s discuss the <application> element in the
form of an example:

<application android:icon="@drawable/icon" android:label="@string/app_name"
android:debuggable="true">

;}épplication>

http://schemas.android.com/apk/res/android

CHAPTER 4: Android for Game Developers

Now this looks a little bit strange. What’s up with the @drawable/icon and
@string/app_name strings? When developing a standard Android application, we usually
write a lot of XML files, each defining a specific portion of our application. To be able to
fully define those portions, we must also be able to reference resources that are not
defined in the XML file, such as images or internationalized strings. These resources are
located in subfolders of the res/ folder, as discussed in Chapter 2 when we dissected
the Hello World project in Eclipse.

To reference resources, we use the preceding notation. The @ specifies that we want to
reference a resource defined elsewhere. The following string identifies the type of the
resource we want to reference, which directly maps to one of the folders or files in the
res/ directory. The final part specifies the name of the resource—in the preceding case
an image called icon and a string called app_name. In the case of the image, it’s the
actual filename we specify, as found in the res/drawable/ folder. Note that the image
name does not have a suffix like .png or . jpg. Android will infer that automatically based
on what’s in the res/drawable/ folder. The app_name string is defined in the
res/values/strings.xml file, a file where all the strings used by the application will be
stored. The name of the string was defined in the strings.xml file.

NOTE: Resource handling on Android is an extremely flexible but also complex thing. For this
book, | decided to skip most of it for two reasons: it’s utter overkill for game development and we
want to have full control over our resources. Android has the habit of modifying resources placed
in the res/ folder, especially images (called drawables). That’s something we do not want as
game developers. The only thing I'd suggest using the Android resource system for in game
development is internationalizing strings. We won'’t get into that in this book; instead we’ll use
the more game development—friendly assets/ folder, which leaves our resources untouched
and allows us to specify our own folder hierarchy.

The meaning of the attributes of the <application> element should become a bit clearer
now. The icon attribute specifies the image from the res/drawable/ folder to be used as
an icon for the application. This icon will be displayed in the Android Market as well as in
the application launcher on the device. It is also the default icon for all the activities we
define within the <application> element.

The label attribute specifies the string being displayed for our application in the
application launcher. In the preceding example, this references a string in the
res/values/string.xml file, which is what we specified when we created the Android
project in Eclipse. We could also set this to a raw string, such as My Super Awesome
Game. The label is also the default label for all the activities we define in the
<application> element. The label will be shown in their title bar of our application.

The debuggable attribute specifies whether our application can be debugged or not. For
development, we should usually set this to true. When you deploy your application to
the market, just switch it to false. If you don’t set this to true, you won’t be able to
debug the application in Eclipse.

CHAPTER 4: Android for Game Developers

We have only discussed a very small subset of the attributes you can specify for the
<application> element. However, these are sufficient for our game development needs.
If you want to know more, you can find the full documentation on the Android
Developers site.

The <application> element contains the definitions of all the application components,
including activities and services, as well as any additional libraries used.

The <activity> Element

Now it’s getting interesting. Here’s a hypothetical example for our Mr. Nom game:

<activity android:name=".MrNomActivity"
android:label="Mr. Nom"
android:screenOrientation="portrait">
android:configChanges="keyboard|keyboardHidden|orientation">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Let’s have a look at the attributes of the <activity> tag first.

name: This specifies the name of the activity’s class relative to the package attribute
we specified in the <manifest> element. You can also specify a fully qualified class
name here.

label: We already specified the same attribute in the <application>. This label is
displayed in the title bar of the activity (if it has one).The label will also be used as
the text displayed in the application launcher if the activity we define is an entry
point to our application. If we don’t specify it, the label from the <application>
element will be used instead. Note that | used a raw string here instead of a
reference to a string in the string.xml file.

screenOrientation: This attribute specifies what orientation the activity will use.
Here | specified portrait for our Mr. Nom game, which will only work in portrait
mode. Alternative, we could specify landscape if we wanted to run in landscape
mode. Both configurations will force the orientation of the activity to stay the same
over the activity’s life cycle, no matter how the device is actually oriented. If we
leave out this attribute, then the activity will use whatever the current orientation of
the device is, usually based on accelerometer data. This also means that whenever
the device orientation changes, the activity will be destroyed and restarted —
something that’s undesirable in the case of a game. Usually we fix the orientation of
our game’s activity to either landscape or portrait mode.

CHAPTER 4: Android for Game Developers

configChanges: Reorienting the device or sliding out the keyboard is
considered a configuration change. In the case of such a change,
Android will destroy and restart our application to accommodate the
change. That’s not so good in the case of a game. The configChanges
attribute of the <activity> element comes to the rescue. It allows us
to specify which configuration changes we want to handle ourselves
without destroying and recreating our activity. Multiple configuration
changes can be specified by using the | character to concatenate
them. In the preceding case, we handle the changes keyboard,
keyboardHidden, and orientation ourselves.

As with the <application> element, there are of course more attributes that you can
specify for an <activity> element. For game development, though, we get away with
the four attributes just discussed.

Now, you might have noticed that the <activity> element isn’t empty, but houses
another element, which itself contains two more elements. What are those for?

As | pointed out earlier, there’s no notion of a single main entry point to your application
on Android. Instead, we can have multiple entry points in the form of activities and
services that are started due to specific intents being sent out by the system or a third-
party application. Somehow we need to communicate to Android which activities and
services of our application will react (and in what ways) to specific intents. That’s where
the <intent-filter> element comes into play.

In the preceding example, we specify two types of intent filters: an <action> and a
<category>. The <action> element tells Android that our activity is a main entry point to
our application. The <category> element specifies that we want that activity to be added
to the application launcher. Both elements together allow Android to infer that when the
icon in the application launcher for the application is pressed, it should start that specific
activity.

For both the <action> and <category> elements, all that gets specified is the name
attribute, which identifies the intent the activity will react to. The intent
android.intent.action.MAIN is a special intent that the Android system uses to start the
main activity of an application. The intent android.intent.category.LAUNCHER is used to
tell Android whether a specific activity of an application should have an entry in the
application launcher.

Usually we’ll only have one activity that specifies these two intent filters. However, a
standard Android application will almost always have multiple activities, and these need
to be defined in the manifest.xml file as well. Here’s an example definition of such a
subactivity:
<activity android:name=".MySubActivity"

android:label=“Sub Activity Title"

android:screenOrientation="portrait">
android:configChanges="keyboard|keyboardHidden|orientation"/>

Here, no intent filters are specified—only the four attributes of the activity we discussed
earlier. When we define an activity like this, it is only available to our own application. We

CHAPTER 4: Android for Game Developers

start such an activity programmatically with a special kind of intent, say, when a button
is pressed in one activity to cause a new activity to open. We’ll see in a later section how
we can start an activity programmatically.

To summarize, we have one activity for which we specify two intent filter so that it
becomes the main entry point of our application. For all other activities, we leave out the
intent filter specification so that they are internal to our application. We’ll start these
programmatically.

NOTE: As said earlier, we’ll only ever have a single activity in our games. This activity will have
exactly the same intent filter specification as shown previously. The reason | discussed how to
specify multiple activities is that we are going to create a special sample application in a minute
that will have multiple activities. Don’t worry, it’s going to be easy.

The <uses-permission> Element

We are leaving the <application> element now and coming back to elements we define
as children of the <manifest> element. One of these elements is the <uses-permission>
element.

Android has an elaborate security model. Each application is run in its own process and
VM, with its own Linux user and group, and cannot influence other applications. Android
also restricts the use of system resources, such as networking facilities, the SD card,
and the audio-recording hardware. If our application wants to use any of these system
resources, we have to ask for permission. This is done with the <uses-permission>
element.

A permission always has the following form, where string specifies the name of the
permission we want to be granted:

<uses-permission android:name="string"/>
Here are a few permission names that might come in handy:

android.permission.RECORD_AUDIO: This grants us access to the
audio-recording hardware.

android.permission.INTERNET: This grants us access to all the
networking APIs so we can, for example, fetch an image from the Net
or upload high-scores.

android.permission.WRITE_EXTERNAL_STORAGE: This allows us to read
and write files on the external storage, usually the SD card of the
device.

CHAPTER 4: Android for Game Developers

android.permission.WAKE_LOCK: This allows us to acquire a so-called
wake lock. With this wake lock we can keep the device from going to
sleep if the screen hasn’t been touched for some time. This could
happen in a game that is controlled only by the accelerometer, for
example.

To get access to the networking APIs, we’d thus specify the following element as a child
of the <manifest> element:

<uses-permission android:name="android.permission.INTERNET"/>

For any additional permissions, we simply add more <uses-permission> elements. There
are many more permissions you can specify; | again refer you to the official Android
documentation. We’ll only need the set just discussed.

Forgetting to add a permission for something like accessing the SD card is a common
error source that manifests itself as a message in LogCat, which might survive
undetected due to all the clutter in LogCat. Think about the permissions your game will
need and specify them when you create the project initially.

Another thing to notice is that when a user installs your application, she will first be
asked to review all the permissions your application wants. Many users will just skip
reading those and happily install whatever they can get ahold of. Some users are more
conscious about their decisions and will review the permissions in detail. If you request
suspicious permissions, like the ability to send out costly SMS messages or get a user’s
location, you may receive some nasty feedback from users in the Comments section for
your application in the market. If you use one of those problematic permissions, then tell
the user why you’re using it in your application description. The best thing is to avoid
those permissions in the first place, though.

The <uses-feature> Element

If you are an Android user yourself and possess an older device with an old Android
version like 1.5, you will have noticed that some awesome applications won’t show up in
the Android Market application on the device. One reason for this can be the use of the
<uses-feature> element in the manifest file of the application.

The Android Market application will filter all available applications by your hardware
profile. With the <uses-feature> element, an application can specify which hardware
features it needs—for example, multitouch or support for OpenGL ES 2.0. Any device
that does not have the specified features will trigger that filter so that the end user isn’t
shown the application in the first place.

A <uses-feature> element has the following attributes:

<uses-feature android:name="string" android:required=["true" | "false"]
android:glEsVersion="integer" />

The name attribute specifies the feature itself. The required attribute tells the filter
whether we really need the feature under all circumstances or if it’s just nice to have.

CHAPTER 4: Android for Game Developers

The last attribute is optional and only used in conjunction with requiring a specific
OpenGL ES version.

For game developers, the following features are most relevant:

android.hardware.touchscreen.multitouch: This requests that the device have a
multitouch screen capable of basic multitouch interactions, such as pinch zooming
and the like. These types of screens have problems with tracking multiple fingers
independently, so you have to evaluate if those capabilities are sufficient for your
game.

android.hardware.touchscreen.multitouch.distinct: This is the big brother of the
last feature. This requests full multitouch capabilities suitable to implement things
like onscreen virtual dual sticks for controls.

We’ll look into multitouch in a later section of this chapter. For now it suffices to
remember that when our game requires a multitouch screen, we can weed out all
devices that don’t support that feature by specifying a <uses-feature> element with one
of the preceding feature names, like so:

<uses-feature android:name="android.hardware.touchscreen.multitouch"
android:required="true"/>

Another useful thing for game developers is to specify which OpenGL ES version is
needed. Now, in this book we’ll be concerned with OpenGL ES 1.0 and 1.1. For these,
we usually don’t specify a <uses-feature> element, as they aren’t all that different from
each other. However, any device that implements OpenGL ES 2.0 can be assumed to be
a graphics powerhouse. If our game is visually complex and needs a lot of processing
power, we can require OpenGL ES 2.0 so that the game only shows up for devices that
are able to render our awesome visuals at an acceptable frame rate. Note that we don’t
use OpenGL ES 2.0, but just filter by hardware type so that our OpenGL ES 1.x code
gets enough processing power. Here’s how we can do this:

<uses-feature android:glEsVersion="0x00020000" required="true"/>

This will make our game only show up on devices that support OpenGL ES 2.0 and are
thus assumed to have a fairly powerful graphics processor.

NOTE: This feature is reported incorrectly by some devices out there, making your application
invisible to otherwise perfectly fine devices. Use it with caution.

Now, every specific requirement you have in terms of hardware potentially decreases
the amount of devices your game can be installed on, directly affecting your sales. Think
twice before you specify any of the above. For example, if the standard mode of our
game requires multitouch but we can also think of a way to make it work on single-touch
devices, we should strive for having two code paths, one for each hardware profile, to
be able to deploy to a bigger market.

CHAPTER 4: Android for Game Developers

The <uses-sdk> Element

The last element we’ll put in our manifest file is the <uses-sdk> element. It is a child of
the <manifest> element. We implicitly defined this element when we created our Hello
World project in Chapter 2 when we specified the minimum SDK version in the New
Android Project dialog. So what does this element do? Here’s an example:

<uses-sdk android:minSdkVersion="3" android:targetSdkVersion="9"/>

As we discussed in Chapter 2, each Android version has an integer assigned, also
known as an SDK version. The <uses-sdk> element specifies what minimum version our
application supports and what the target version of our application is.

This element allows us to deploy an application that uses APIs that are only available in
newer versions to devices that have a lower version installed. One prominent example
would be the multitouch APIs, which are supported from SDK version 5 (Android 2.0)
onward. When we set up our Android project in Eclipse, we use a build target that
supports that API—for example, SDK version 5 or higher (I usually set it to the latest
SDK version, which is 9 at the time of writing). If we want our game to run on devices
with SDK version 3 (Android 1.5) as well, we specify the minSdkVersion as before in the
manifest file. Of course we must be careful not to use any APIs that are not available on
the lower version, at least on a 1.5 device. On a device with a higher version, we can use
the newer APIs as well.

The preceding configuration is usually fine for most games (unless you can’t provide a
separate fallback code path for the higher-version APIs, in which case you will want to
set the minSdkVersion attribute to the minimum SDK version you actually support).

Android Game Project Setup in Ten Easy Steps

Let’s now combine all the preceding information and develop a simple step-by-step
method to create a new Android game project in Eclipse. Here’s what we want from our
project:

It should be able to use the latest SDK version’s features while
maintaining compatibility with the lowest SDK version that some
devices still run. That means we want to support Android 1.5 and
above.

It should be installed to the SD card when possible so we don’t fill up
the internal storage of the device.

It should be debuggable.

It should have a single main activity that will handle all configuration
changes itself so it doesn’t get destroyed when the hardware
keyboard is revealed or the orientation of the device is changed.

The activity should be fixed to either portrait or landscape mode.

It should allow us to access the SD card.

CHAPTER 4: Android for Game Developers

It should allow us to get ahold of a wake lock.

Those are some easy goals to achieve with the information you just acquired. So here
are the steps:

1. Create a new Android project in Eclipse by opening the New Android
Project dialog, as described in Chapter 2.

2. Inthe New Android Project dialog, specify your project’s name and set
the build target to the latest available SDK version.

3. Inthe same dialog, specify the name of your game, the package all your
classes will be stored in, and the name of your main activity, Then set
the minimum SDK version to 3. Press Finish to make the project a
reality.

4. Open the AndroidManifest.xml file.

5. To make Android install the game on the SD card when available, add
the installlocation attribute to the <manifest> element and set it to
preferExternal.

6. To make the game debuggable, add the debuggable attribute to the
<application> element and set it to true.

7. To fix the orientation of the activity, add the screenOrientation attribute
to the <activity> element and specify the orientation you want
(portrait or landscape).

To tell Android that we want to handle the keyboard, keyboardHidden,
and orientation configuration changes, set the configChanges
attribute of the <activity> element to
keyboard|keyboardHidden|orientation.

8. Add two <uses-permission> elements to the <manifest> element and
specify the name attributes android.permission.WRITE_EXTERNALSTORAGE
and android.permission.WAKE_LOCK.

9. Finally, add the targetSdkVersion attribute to the <uses-sdk> element
and specify your target SDK. It should be the same as the one you
specified for the build target in step 1.

And there you have it. Ten easy steps that will generate a fully defined application that
will be installed to the SD card (on Android 2.2 and over), is debuggable, has a fixed
orientation, will not explode on a configuration change, allows you to access the SD
card and wake locks, and will work on all Android versions starting from 1.5 up to the
latest version. Here’s the final AndroidManifest.xml content after executing the
preceding steps:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

http://schemas.android.com/apk/res/android

CHAPTER 4: Android for Game Developers

package="com.badlogic.awesomegame"
android:versionCode="1"
android:versionName="1.0"
android:installlLocation="preferExternal”>
<application android:icon="@drawable/icon"
android:label="Awesomnium"
android:debuggable="true">
<activity android:name=".GameActivity"
android:label="Awesomnium"
android:screenOrientation="landscape"
android:configChanges="keyboard|keyboardHidden|orientation">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_ STORAGE"/>
<uses-permission android:name="android.permission.WAKE_LOCK"/>
<uses-sdk android:minSdkVersion="3" android:targetSdkVersion="9"/>
</manifest>

As you can see, | got rid of the @string/app_name in the label attributes of the
<application> and <activity> element. This is not really necessary, but | like having my
application definition in one place. From now on, it’s all about the code! Or is it?

Defining the Icon of Your Game

When you deploy your game to a device and open the application launcher, you will see
that its entry has a nice but not really unique Android icon. The same icon would be
shown for your game in the market. How can we change it to a custom icon?

Have a closer look at the <application> element again. There we defined an attribute
called icon. It references an image in the res/drawable directory called icon. So it
should be obvious what to do: replace the icon image in the drawable folder with our
own icon image.

When you inspect the res/ folder, you’ll see more than one drawable folder, as depicted
in Figure 4-1.

CHAPTER 4: Android for Game Developers

4 |',"ZG‘ awesomium|
b B src
[E':? gen [Generated Java Files]
> = Android 2.2
G@ assets
4 3= res
b (= drawable-hdpi
b (= drawable-ldpi
b (&= drawable-mdpi
b (= layout
b (= values
i AndroidManifest.xml
default.properties

Figure 4-1. What happened to my res/ folder?

Now, this is again a classic chicken-and-egg problem. In Chapter 2 there was only a
single res/drawable folder in our Hello World project. This was due to the fact that we
specified SDK version 3 as our build target. That version only supported a single screen
size. That changed with Android 1.6 (SDK version 4). We saw in Chapter 1 that devices
can have different sizes, but we didn’t talk about how Android handles those. It turns out
that there’s an elaborate mechanism that allows you to define your graphical assets for a
set of so-called screen densities. Screen density is a combination of physical screen
size and the number of pixels of the screen. We’ll look into that topic in a later section in
more detail. For now it suffices to know that Android defines three densities: Idpi for
low-density screens, mdpi for standard-density screen and hdpi for high-density
screens. For lower-density screens we usually use smaller images, and for higher-
density screens we use high-resolution assets.

So, in the case of our icon we need to provide three versions, one for each density. But
how big should those versions each be? Luckily, we already have default icons in the
res/drawable folders from which we can reengineer the sizes our own icons should
have. The icon in res/drawable-1dpi has a resolution of 36x36 pixels, the icon in
res/drawable-mdpi has a resolution of 48x48 pixels, and the icon in res/drawable-hdpi
has a resolution of 72x72 pixels. All we need to do is create versions of our custom icon
with the same resolutions and replace the icon.png file in each of the folders with our
own icon.png file. We can leave the manifest file unaltered as long as we call our icon
image file icon.png. Note that file references in the manifest file are case sensitive.
Always use all lowercase letters in resource files to play it safe.

For true Android 1.5 compatibility, we need to add a folder called res/drawable/ and
place the icon image from the res/drawable-mdpi/ folder there. Android 1.5 does not
know about the other drawable folders, so it might not find our icon.

Finally we are ready to get some Android coding done.

CHAPTER 4: Android for Game Developers

Android API Basics

In the rest of the chapter we’ll concentrate on playing around with those Android APls
that are relevant to our game development needs. For this, we’ll do something rather
convenient: we’'ll set up a test project that will contain all our little test examples for the
different APIs we are going to use. Let’s get started.

Creating a Test Project

From the last section we already know how to set up all our projects. So the first thing
we do is execute the ten steps outlined earlier. | followed these steps, creating a project
named ch04-android-basics with a single main activity called AndroidBasicsStarter.
We are going to use some older and some newer APIs, so | set the minimum SDK
version to 3 (Android 1.5) and the build target as well as the target SDK version to 9
(Android 2.3). From here on, all we’ll do is create new activity implementations, each
demonstrating parts of the Android APlIs.

But remember that we only have one main activity. So what does our main activity look
like? We want a convenient way to add new activities as well as the ability to easily start
a specific activity. With one main activity, it should be clear that that activity will
somehow provide us with a means to start a specific test activity. The main activity will
be specified as the main entry point in the manifest file, as discussed earlier. Each
additional activity we add will be specified without the <intent-filter> child element.
We’ll start those programmatically from the main activity.

The AndroidBasicsStarter Activity

The Android API provides us with a special class called ListActivity, which derives
from the Activity class we used in the Hello World project. The ListActivity is a
special type of activity who'’s single purpose it is to display a list of things (e.g., strings).
We use it to display the names of our test activities. When we touch one of the list items,
we’ll start the corresponding activity programmatically. Listing 4-1 shows the code for
our AndroidBasicsStarter main activity.

Listing 4-1. AndroidBasicsStarter.java, Our Main Activity Responsible for Listing and Starting All Our Tests

package com.badlogic.androidgames;

import android.app.ListActivity;
import android.content.Intent;
import android.os.Bundle;

import android.view.View;

import android.widget.ArrayAdapter;
import android.widget.ListView;

public class AndroidBasicsStarter extends ListActivity {
String tests[] = { "LifeCycleTest", "SingleTouchTest", "MultiTouchTest",
"KeyTest", "AccelerometerTest", "AssetsTest",
"ExternalStorageTest", "SoundPoolTest", "MediaPlayerTest",

CHAPTER 4: Android for Game Developers

"FullScreenTest", "RenderViewTest", "ShapeTest", "BitmapTest",
"FontTest", "SurfaceViewTest" };

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1, tests));

}

@0verride
protected void onListItemClick(ListView 1list, View view, int position,
long id) {
super.onListItemClick(1list, view, position, id);
String testName = tests[position];

try {
Class clazz = Class
.forName("com.badlogic.androidgames." + testName);
Intent intent = new Intent(this, clazz);
startActivity(intent);
} catch (ClassNotFoundException e) {
e.printStackTrace();

}

The package name | chose is com.badlogic.androidgames. The imports should also be
pretty self-explanatory; those are simply all the classes we are going to use in our code.
Our AndroidBasicsStarter class derives from the ListActivity class—still nothing
special. The field tests is a string array holding the names of all the test activities our
starter application should display. Note that the names in that array are the exact Java
class names of the activity classes we are going to implement later on.

The next piece of code should be familiar; it’s the onCreate() method we have to
implement for each of our activities, which will be called when the activity is created.
Remember that we must call the onCreate() method of the base class of our activity. It’s
the first thing we must do in the onCreate() method of our own Activity
implementation. If we don’t, an exception will be thrown and the activity will not be
displayed.

With that out of the way, the next thing we do is call a method called setListAdapter().
That method is provided to us by the ListActivity class we derived from. It lets us
specify the list items we want the ListActivity to display for us. These need to be
passed to the method in the form of a class instance that implements the ListAdapter
interface. We use the convenient ArrayAdapter to do this. The constructor of this class
takes three arguments: the first is our activity, the second one I’ll explain in a bit, and the
third is the array of items the ListActivity should display. We happily specify the tests
array we defined earlier for the third argument, and that’s all we need to do.

So what’s this second argument to the ArrayAdapter constructor? To explain this, I’d
have to go through all the Android Ul API stuff, which we are not going to use in this
book. So instead of wasting pages on something we are not going to need, I'll give
you the quick-and-dirty explanation: each item in the list is displayed via a View. The

CHAPTER 4: Android for Game Developers

argument defines the layout of each View, along with what type each View has. The
value android.R.layout.simple list_item_1 is a predefined constant provided by the
Ul API for getting up and running quickly. It stands for a standard list item View that
will display text. Just as a quick refresher, a View is a Ul widget on Android, such as a
button, a text field, or a slider. We talked about that while dissecting the HelloWorld
activity in Chapter 2.

If we start our activity with just this onCreate() method, we’ll see something like in
Figure 4-2.

Android Basics

LifeCycleTest
SingleTouchTest
MultiTouchTest
KeyTest
AccelerometerTest

AssetsTest

ExternalStorageTest

CArndPAnITect

Figure 4-2. Our test starter activity, which looks fancy but doesn’t do a lot yet

Now let’s make something happen when a list item is touched. We want to start the
respective activity that is represented by the list item we touched.

Starting Activities Programmatically

The ListActivity class has a protected method called onListItemClick() that will be
called when an item is clicked. All we need to do is to override that method in our
AndroidBasicsStarter class. And that’s exactly what we did in Listing 4-1.

The arguments to this method are the ListView that the ListActivity uses to display
the items, the View that got touched and that’s contained in that ListView, the position
of the touched item in the list, and an ID, which doesn’t interest us all that much. All we
really care about is the position argument.

CHAPTER 4: Android for Game Developers

The onListItemClicked() method starts of by being a good citizen and calls the base
class method first. This is always a good thing to do if we override methods of an
activity. Next we fetch the class name from the tests array based on the position
argument. That’s the first piece of the puzzle.

We discussed earlier that we can start activities we defined in the manifest file
programmatically via an Intent. The Intent class has a nice and simple constructor to
do this, which takes two arguments: a Context instance and a Class instance, which
represents the Java class of the activity we want to start.

The Context is an interface that provides us with global information about our
application. It is implemented by the Activity class, so we simply pass the this
reference to the Intent constructor.

To get the Class instance representing the activity we want to start, we use a little
reflection, which you will probably familiar with if you’ve worked with Java. The static
method Class.forName() takes a string containing the fully qualified name of a class we
want to get a Class instance for. All the test activities we’ll implement later will be
contained in the com.badlogic.androidgames package. Concatenating the package
name with the class name we fetched from the tests array will give us the fully qualified
name of the activity class we want to start. We pass that name to Class.forName() and
get a nice Class instance that we can pass to the Intent constructor.

Once the Intent is constructed, we can start it with a call to the startActivity()
method. That method is also defined in the Context interface. Since our activity
implements that interface, we just call its implementation of that method. And that’s it!

So how will our application behave? First the starter activity will be displayed. Each time
we touch an item on the list, the corresponding activity will be started. The starter
activity will be paused and go into the background. The new activity will be created by
the intent we send out and replace the starter activity on the screen. When we press the
back button on the phone, the activity is destroyed and the starter activity is resumed,
taking back the screen.

Creating the Test Activities
When we create a new test activity, we have to perform the following steps:

1. Create the corresponding Java class in the com.badlogic.androidgames
package and implement its logic.

2. Add an entry for it in the manifest file, using whatever attributes it needs
(e.g., android:configChanges or android:screenOrientation). Note that
we won'’t specify an <intent-filter> element, as we’ll start the activity
programmatically.

3. Add the activity’s class name to the tests array of the
AndroidBasicsStarter class.

CHAPTER 4: Android for Game Developers

As long as we stick to this procedure, everything else will be taken care of by the logic
we implemented in the AndroidBasicsStarter class. The new activity will automatically
show up in the list and can be started by a simple touch.

One thing you might wonder is whether the test activity that gets started on a touch is
running in its own process and VM. It is not. An application composed of activities has
something called an activity stack. Each time we start a new activity, it gets pushed onto
that stack. When we close the new activity, the last activity that got pushed to the stack
will get popped and resumed, becoming the new active activity on the screen.

This also has some other implications. First, all the activities of the application (those on
the stack that are paused and the one that is active) share the same VM. They also
share the same memory heap. That can be a blessing and a curse. If you have static
fields in your activities, they will get memory on the heap as soon as they are started.
Being static fields, they will survive the destruction of the activity and the subsequent
garbage collection of the activity instance. This can lead to some nice memory leaks if
you carelessly use static fields. Think twice before using a static field.

As stated a couple of times already, though, we’ll only ever have a single activity in our
actual games. The preceding activity starter is an exception to this rule to make our lives
a little easier. But don’t worry, we’ll have enough opportunities to get into trouble even
with a single activity.

NOTE: This is as deep as we’ll get into Android Ul programming. From here on we’ll always use a
single View in an activity to output things and receive input. If you want to learn about things like
layouts, view groups, and all the bells and whistles the Android Ul library offers, | suggest you
check out Mark Murphy’s book, Beginning Android 2 (Apress, 2010), or the excellent developer
guide on the Android Developers site.

The Activity Life Cycle

The first thing we have to figure out when programming for Android is how an activity
behaves. On Android, this is called the activity life cycle. It describes the states and
transitions between those states that an activity can live through. Let’s start by
discussing the theory behind this.

In Theory
An activity can be in three states:

Running: In this state, it is the top-level activity that takes up the screen and directly
interacts with the user.

Paused: This happens when the activity is still visible on the screen but partially
obscured by either a transparent activity or a dialog, or if the phone screen is
locked. A paused activity can be killed by the Android system at any point in time

CHAPTER 4: Android for Game Developers

(e.g., due to low memory). Note that the activity instance itself is still alive and
kicking in the VM heap and waiting to be brought back to a running state.

Stopped: This happens when the activity is completely obscured by another activity
and thus is no longer visible on the screen. Our AndroidBasicsStarter activity will
be in this state if we start one of the test activities, for example. It also happens
when a user presses the home button to go to the home screen temporarily. The
system can again decide to kill the activity completely and remove it from memory if
memory gets low.

In both the paused and stopped states, the Android system can decide to kill the activity
at any point in time. It can do so politely, by first informing the activity of that by calling
its finished() method, or by being bad and silently killing its process.

The activity can be brought back to a running state from a paused or stopped state.
Note again that when an activity is resumed from a paused or stopped state, it is still the
same Java instance in memory, so all the state and member variables are the same as
before the activity was paused or stopped.

An activity has some protected methods that we can override to get informed of state
changes:

Activity.onCreate(): This is called when our activity is started up for the first time.
Here we set up all the Ul components and hook into the input system. This will only
get called once in the life cycle of our activity.

Activity.onRestart(): This is called when the activity is resumed from a stopped
state. It is preceded by a call to onStop().

Activity.onStart(): This is called after onCreate() or when the activity is resumed
from a stopped state. In the latter case, it is preceded by a call to onRestart().

Activity.onResume(): This is called after onStart() or when the activity is resumed
from a paused state (e.g., the screen is unlocked).

Activity.onPause(): This is called when the activity enters the paused state. It
might be the last notification we receive, as the Android system might decide to
silently kill our application. We should thus save all state we want to persist in this
method!

Activity.onStop(): This is called when the activity enters the stopped state. It is
preceded by a call to onPause(). This means that before an activity is stopped, it is
paused first. As with onPause(), it might be the last thing we get notified of before
the Android system silently kills the activity. We could also save persistent state
here. However, the system might decide not to call this method and just kill the
activity. As onPause() will always be called before onStop() and before the activity is
silently killed, we’d rather save all our stuff in the onPause() method.

Activity.onDestroy(): This is called at the end of the activity life cycle when the
activity is irrevocably destroyed. It’s the last time we can persist any information
we’d like to recover the next time our activity is created anew. Note that this method

CHAPTER 4: Android for Game Developers

might actually never be called if the activity was destroyed silently after a call to

onPause() or onStop() by the system.

Figure 4-3 illustrates the activity life cycle and the method call order.

User navigates
back to the
activity)

Other applications
need memory

onRestart()

Another activity comes

in front of the activity

onPause()

(The activity is no longer visible)

onStop()

'

onDestroy()

]
()

Figure 4-3. The mighty, confusing activily life cycle

Here are the three big lessons we should take away from this:

Before our activity enters the running state, the onResume() method is
always called, no matter whether we resume from a stopped state or
from a paused state. We can thus safely ignore the onRestart() and
onStart() methods. We don’t care whether we resumed from a
stopped or a paused state. For our games, it is only necessary to
know that we are now actually running, and the onResume() method
signals that to us.

CHAPTER 4: Android for Game Developers

The activity can be destroyed silently after onPause(). We should thus
never assume that either onStop() or onDestroy() get called. We also
know that onPause() will always be called before onStop(). We can
thus safely ignore the onStop() and onDestroy() methods, and just
override onPause(). In this method, we have to make sure that all the
states we want to persist, like high-scores and level progress, get
written to an external storage like the SD card. After onPause(), all bets
are off, and we won’t know whether our activity will ever get the
chance to run again.

We know that onDestroy() might never be called if the system decides
to kill the activity after onPause() or onStop(). However, sometimes
we’d like to know whether the activity is actually going to be killed. So
how do we do that if onDestroy() is not going to get called? The
Activity class has a method called Activity.isFinishing() that we
can call at any time to check whether our activity is going to get killed.
We are guaranteed that at least the onPause() method is called before
the activity is killed. All we need to do is call this isFinishing()
method inside the onPause() method to decide whether the activity is
going to die after the onPause() call.

This makes life a lot easier. We only override the onCreate(), onResume(), and onPause()
methods.

In onCreate(), we set up our window and Ul component that we
render to and receive input from.

In onResume(), we (re)start our main loop thread (discussed in the last
chapter).

In onPause(), we simply pause our main loop thread, and if
Activity.isFinishing() returns true, we also save any state we want
to persist to disk.

Many people struggle with the activity life cycle, but if we follow these simple rules, our
game will be capable of handling pausing and resuming as well as cleaning up.

In Practice

Let’s write our first test example that demonstrates the activity life cycle. We’ll want to
have some sort of output that displays which state changes have happened so far. We’ll
do this in two ways:

The sole Ul component that the activity will display is a so-called
TextView. It displays text—we’ve already used it implicitly for
displaying each entry in our starter activity. Each time we enter a new
state, we append a string to the TextView, which will display all the
state changes that happened so far.

CHAPTER 4: Android for Game Developers

Since we won’t be able to display the destruction event of our activity
in the TextView, as it will vanish from the screen too fast, we also
output all state changes to LogCat. We do this with the Log class,
which provides a couple of static methods to append messages to
LogCat.

Remember what we need to do to add a test activity to our test
application. First, we define it in the manifest file in the form of an
<activity> element, which is a child of the <application> element:

<activity android:label="Life Cycle Test"
android:name=".LifeCycleTest"
android:configChanges="keyboard|keyboardHidden [orientation" />

Next we add a new Java class called LifeCycleTest to our com.badlogic.androidgames
package. Finally we add the class name to the tests member of the
AndroidBasicsStarter class we defined earlier (of course, we already have that in there
from when we wrote the class for demonstration purposes). We’ll have to repeat all
these steps for any test activity we create in the following sections. For brevity, | won’t
mention those steps again. Also note that | didn’t specify an orientation for the
LifeCycleTest activity. In this example we can thus be either in landscape or portrait
mode depending on the device orientation. | did this so you can see the effect on an
orientation change on the life cycle (none, due to how we set the configChanges
attribute). Listing 4-2 shows you the code of the entire activity.

Listing 4-2. LifeCycleTest.java, Demonstrating the Activity Life Cycle

package com.badlogic.androidgames;

import android.app.Activity;
import android.os.Bundle;
import android.util.log;

import android.widget.TextView;

public class LifeCycleTest extends Activity {
StringBuilder builder = new StringBuilder();
TextView textView;

private void log(String text) {
Log.d("LifeCycleTest", text);
builder.append(text);
builder.append('\n');
textView.setText(builder.toString());

}

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
textView = new TextView(this);
textView.setText(builder.toString());
setContentView(textView);
log("created");

CHAPTER 4: Android for Game Developers

@0verride

protected void onResume() {
super.onResume();
log("resumed");

}

@0Override

protected void onPause() {
super.onPause();
log("paused");

if (isFinishing()) {
log("finishing");

}
}

Let’s go through this code real quick. The class derives from Activity —not a big
surprise. We define two members: a StringBuilder, which will hold all the messages we
have produced so far, and the TextView, which we use to display those messages
directly in the Activity.

Next we define a little private helper method that will log text to LogCat, append it to our
StringBuilder, and update the TextView text. For the LogCat output, we use the static
Log.d() method, which takes a tag as the first argument and the actual message as the
second argument.

In the onCreate() method, we call the superclass method first as always. We create the
TextView and set it as the content view of our activity. It will fill the complete space of
the activity. Finally we log the message created to LogCat and update the TextView text
with our previously defined helper method log().

Next we override the onResume() method of the activity. As with any activity methods we
override, we first call the superclass method. All we do is call log() again with resumed
as the argument.

The overridden onPause () method looks much like the onResume() method. We log the
message as “paused” first. We also want to know whether the activity is going to be
destroyed after the onPause() method call, so we check the Activity.isFinishing()
method. If it returns true, we log the finishing event as well. Of course, we won’t be able to
see the updated TextView text, as the activity will be destroyed before the change is
displayed on the screen. Thus, we also output everything to LogCat, as discussed earlier.

Run the application and play around with this test activity a little. Here’s a sequence of
actions you could execute:

1. Start up the test activity from the starter activity.
2. Lock the screen.

3. Unlock the screen.
4

Press the home button (which will get you back to the home screen).

CHAPTER 4: Android for Game Developers

5. On the home screen, hold the home button until you are presented with
the currently running applications. Select the Android Basics Starter app
to resume (which will bring the test activity back onscreen).

6. Press the back button (which will bring you back to the starter activity).

If your system didn’t decide to kill the activity silently at any point it was paused, you will
see the output in Figure 4-4 (of course, only if you haven’t pressed the back button yet).

Ef0 B &Q 4570w
Life Cycle Test -

created

Figure 4-4. Running the LifeCycleTest activity

On startup, onCreate() is called, followed by onResume(). When we lock the screen,
onPause() is called. When we unlock the screen, onResume() is called. When we press
the home button, onPause() is called. Going back to the activity will call onResume()
again. The same messages are of course shown in LogCat, which you can observe in
Eclipse in the LogCat view. Figure 4-5 shows what we wrote to LogCat while executing
the preceding sequence of actions (plus pressing the back button).

CHAPTER 4: Android for Game Developers

LifeCycleTest

Time pid tag Hessage
11-10 17:03... D 2243 LifeCycleTest created
11-10 17:03... D 2243 LifeCycleTest resuned
11-10 17:03... D 2243 LifeCycleTest paused
11-10 17:03... D 2243 LifeCycleTest resuned
11-10 17:03... D 2243 LifeCycleTest paused
11-10 17:03... D 2243 LifeCycleTest resuned
11-10 17:03... D 2243 LifeCycleTest paused
£11-10 17:03... D 2243 LifeCycleTest finishing

Figure 4-5. The LogCat output of LifeCycleTest

Pressing the back button again invokes the onPause() method. As it also destroys the
activity, the conditional in onPause() also gets triggered, informing us that this is the last
we’ll see from that activity.

And that was the activity life cycle, demystified and simplified four our game
programming needs. We now can easily handle any pause and resume events, and are
guaranteed to be notified when the activity is destroyed.

Input Device Handling

As discussed in previous chapters, there are many different input devices we can get
information from on Android. In this section we’ll discuss the three of the most relevant
input devices on Android and how to work with them: the touchscreen, the keyboard,
and the accelerometer.

Getting (Multi-)Touch Events

The touchscreen is probably the most important way to get input from the user. Until
Android version 2.0, the API only supported processing single-finger touch events.
Multitouch was introduced in Android 2.0 (SDK version 5). The multitouch event
reporting was tagged onto the single-touch API, with some mixed results in usability.
We’'ll first investigate handling single-touch events, which are available on all Android
versions.

Processing Single-Touch Events

When we processed clicks on a button in Chapter 2, we saw that listener interfaces are
the way Android reports events to us. Touch events are no different. Touch events are
passed to an OnTouchListener interface implementation that we register with a View. The
OnTouchListener interface has only a single method:

public abstract boolean onTouch (View v, MotionEvent event)

The first argument is the View that the touch events get dispatched to. The second
argument is what we’ll dissect to get the touch event.

CHAPTER 4: Android for Game Developers

An OnTouchListener can be registered with any View implementation via the
View.setOnTouchListener() method. The OnTouchListener will be called before the
MotionEvent is dispatched to the View itself. We can signal to the View in our
implementation of the onTouch() method that we have already processed the event by
returning true from the method. If we return false, the View itself will process the event.

The MotionEvent instance has three methods that are relevant to us:

MotionEvent.getX() and MotionEvent.getY(): These methods report
the x- and y-coordinate of the touch event relative to the View. The
coordinate system is defined with the origin in the top left of the view,
the x-axis points to the right, and the y-axis points downward. The
coordinates are given in pixels. Note that the methods return floats,
and thus the coordinates have subpixel accuracy.

MotionEvent.getAction(): This returns the type of the touch event. It
is an integer that takes on one of the values MotionEvent.ACTION_ DOWN,
MotionEvent.ACTION_MOVE, MotionEvent.ACTION_ CANCEL, and
MotionEvent.ACTION_UP.

Sounds simple, and it really is. The MotionEvent.ACTION DOWN event happens when the
finger touches the screen. When the finger moves, events with type
MotionEvent.ACTION_MOVE are fired. Note that you will always get
MotionEvent.ACTION_MOVE events, as you can’t hold your finger still enough to avoid
them. The touch sensor will recognize the slightest change. When the finger is lifted up
again, the MotionEvent.ACTION_UP event is reported. MotionEvent.ACTION_CANCEL events
are a bit of a mystery. The documentation says they will be fired when the current
gesture is canceled. | have never come across that event in real life yet. However, we’ll
still process it and pretend it is a MotionEvent.ACTION_UP event when we start
implementing our first game.

Let’s write a simple test activity to see how this works in code. The activity should
display the current position of the finger on the screen, as well as the event type. Listing
4-3 shows you what | came up with.

Listing 4-3. SingleTouchTest.java; Testing Single-Touch Handling

package com.badlogic.androidgames;

import android.app.Activity;

import android.os.Bundle;

import android.util.log;

import android.view.MotionEvent;

import android.view.View;

import android.view.View.OnTouchListener;
import android.widget.TextView;

public class SingleTouchTest extends Activity implements OnTouchListener {
StringBuilder builder = new StringBuilder();
TextView textView;

public void onCreate(Bundle savedInstanceState) {

CHAPTER 4: Android for Game Developers

super.onCreate(savedInstanceState);

textView = new TextView(this);

textView.setText("Touch and drag (one finger only)!");
textView.setOnTouchListener(this);
setContentView(textView);

}

@0verride
public boolean onTouch(View v, MotionEvent event) {
builder.setLength(0);
switch (event.getAction()) {
case MotionEvent.ACTION DOWN:
builder.append("down, ");
break;
case MotionEvent.ACTION MOVE:
builder.append("move, ");
break;
case MotionEvent.ACTION CANCEL:
builder.append(“cancle, ");
break;
case MotionEvent.ACTION UP:
builder.append("up, ");
break;

builder.append(event.getX());
builder.append(", ");
builder.append(event.getY());
String text = builder.toString();
Log.d("TouchTest", text);
textView.setText(text);

return true;

}

We let our activity implement the OnTouchListener interface. We also have two
members, one for the TextView, and a StringBuilder we’ll use to construct our event
strings.

The onCreate() method is pretty self-explanatory. The only novelty is the call to
TextView.setOnTouchListener(), where we register our activity with the TextView so it
receives MotionEvents.

What’s left is the onTouch() method implementation itself. We ignore the view argument,
as we know that it must be the TextView. All we are interested in is getting the touch
event type, appending a string identifying it to our StringBuilder, appending the touch
coordinates, and updating the TextView text. That’s it. We also log the event to LogCat
so we can see the order in which the events happen, as the TextView will only show the
last event that we processed (we clear the StringBuilder every time onTouch() is
called).

One subtle detail in the onTouch() method is the return statement, where we return true.
Usually we’d stick to the listener concept and return false to not interfere with the
event-dispatching process. If we do this in our example, we won’t get any events other
than the MotionEvent.ACTION_DOWN event. So we tell the TextView that we just consumed

CHAPTER 4: Android for Game Developers

the event. That behavior might differ between different View implementations. Luckily
we’ll only need three other views in the rest of this book, and those will happily let us
consume any event we want.

If we fire that application up on the emulator or a connected device, we can see how the
TextView will always display the last event type and position reported to the onTouch()
method. Additionally, you can see the same messages in LogCat.

I did not fix the orientation of the activity in the manifest file. If you rotate your device so
that the activity is in landscape mode, the coordinate system of course changes. Figure
4-6 shows you the activity in portrait and landscape mode. In both cases | tried to touch
the middle of the View. Note how the x- and y-coordinates seem to get swapped. The
figure also shows you the x- and y-axes in both cases (the yellow lines) along with the
point on the screen that | roughly touched (the green circle). In both cases the origin is in
the upper-left corner of the TextView, with the x-axis pointing to the right and the y-axis
pointing downward.

ﬂ m@ 7:58 pm

Eﬂ Ema@ 7:58pm

Figure 4-6. Touching the screen in portrait and landscape modes

Depending on the orientation, our maximum x and y values change, of course. The
preceding images were taken on a Nexus One, which has a screen resolution of 480x800
pixels in portrait mode (800x480 in landscape mode). Since the touch coordinates are
given relative to the View, and since the view doesn’t fill the complete screen, our
maximum y value will be smaller than the resolution height. We’ll later see how we can
enable full-screen mode so the title bar and notification bar don’t get in our way.

CHAPTER 4: Android for Game Developers

Sadly there are a few issues with touch events on older Android versions and first-
generation devices:

Touch event flood: The driver will report as many touch events as possible when a
finger is down on the touchscreen—on some devices hundreds per second. We can
fix this issue by putting a Thread. sleep(16) call into our onTouch() method, which
will put the Ul thread on which those events are dispatched to sleep for 16
milliseconds. With this we’ll get 60 events per second at most, which is more than
enough to have a responsive game. This is only a problem on devices with Android
version 1.5.

Touching the screen eats the CPU: Even if we sleep in our onTouch() method, the
system has to process the events in the kernel as reported by the driver. On old
devices such as the Hero or G1, this can use up to 50 percent of the CPU, which
leaves a lot less processing power for our main loop thread. As a consequence, our
perfectly fine frame rate will drop considerably, sometimes to the point where the
game becomes unplayable. On second-generation devices, the problem is a lot less
pronounced and can usually be neglected. Sadly, there’s no solution for this on
older devices.

In general you will want to put Thread.sleep(16) in all your onTouch() methods just to
make sure. On newer devices it will have no effect; on older devices it at least prevents
the touch event flooding.

With the first generation of devices slowly dying out, this becomes less of a problem the
more time passes. It still causes major grief among game developers, though. Try to
explain to your users that your game runs like molasses cause something in the driver is
using up all the CPU. Yeah, nobody will care.

Processing Multitouch Events

Warning, major pain ahead. The multitouch API has been tagged onto the MotionEvent
class, which originally only handled single touches. This makes for some major
confusion when trying to decode multitouch events. Let’s try to make some sense of it.

NOTE: The multitouch API is apparently also confusing for the Android engineers that created it.
It received a major overhaul in SDK version 8 (Android 2.2) with new methods, new constants,
and even renamed constants. These changes should make working with multitouch a little bit
easier. However, they are only available from SDK version 8 onward. To support all multitouch-
capable Android versions (2.0 through 2.2.1), we have to use the API of SDK version 5.

Handling multitouch is very similar to handling single-touch events. We still implement
the same OnTouchListener interface we implemented for single-touch events. We also
get a MotionEvent instance to read the data from. We also process the event types we
processed before, like MotionEvent.ACTION UP, plus a couple of new ones that aren’t too
big of a deal.

CHAPTER 4: Android for Game Developers

Pointer IDs and Indices

The differences start when we want to access the coordinates of a touch event.
MotionEvent.getX() and MotionEvent.getY() return the coordinates of a single finger on
the screen. When we process multitouch events, we use overloaded variants of these
methods that take a so-called pointer index. This might look as follows:

event.getX(pointerIndex);
event.getY(pointerIndex);

Now, one would expect that pointerIndex directly corresponds to one of the fingers
touching the screen (e.g., the first finger that went down has pointerIndex 0O, the next
finger that went down has pointerIndex 1, etc.). Sadly this is not the case.

The pointerIndex is an index into internal arrays of the MotionEvent that hold the
coordinates of the event for a specific finger that is touching the screen. The real
identifier of a finger on the screen is called the pointer identifier. There’s a separate
method called MotionEvent.getPointerIdentifier(int pointerIndex) that returns the
pointer identifier based on a pointer index. A pointer identifier will stay the same for a
single finger as long as it touches the screen. This is not necessarily true for the pointer
index.

Let’s start by examining how we can get to the pointer index of an event. We’ll ignore
the event type for now.

int pointerIndex = (event.getAction() & MotionEvent.ACTION_POINTER_ID MASK) >>
MotionEvent.ACTION POINTER_ID SHIFT;

You probably have the same thoughts as | had when | first implemented this. Before we
lose all faith in humanity, let’s try to decipher what’s happening here. We fetch the event
type from the MotionEvent via MotionEvent.getAction(). Good, we’ve done that before.
Next we perform a bitwise AND operation, using the integer we get from the
MotionEvent.getAction() method and a constant called

MotionEvent.ACTION_ POINTER ID MASK. Now the fun begins.

That constant has a value of 0xff00, so we essentially make all bits 0, other than bits 8
to 15, which hold the pointer index of the event. The lower eight bits of the integer
returned by event.getAction() hold the value of the event type, such as
MotionEvent.ACTION DOWN and its siblings. We essentially throw away the event type by
this bitwise operation. The shift should make a bit more sense now. We shift by
MotionEvent.ACTION_POINTER_ID_ SHIFT, which has a value of 8, so we basically move
bits 8 through 15 to bits 0 through 7, arriving at the actual pointer index of the event.
With this, we can then get the coordinates of the event as well as the pointer identifier.

Notice that our magic constants are called XXX_POINTER_ID XXX instead of
XXX_POINTER_INDEX XXX (which would make more sense, as we actually want to extract
the pointer index, not the pointer identifier). Well, the Android engineers must have been
confused as well. In SDK version 8, they deprecated those constants and introduced
new constants called XXX_POINTER_INDEX_XXX, which have the exact same values as the
deprecated ones. In order for legacy applications that are written against SDK version 5

CHAPTER 4: Android for Game Developers

to continue working on newer Android versions, the old constants are of course still
made available.

So we now know how to get that mysterious pointer index with which we can query for
the coordinates and the pointer identifier of the event.

The Action Mask and More Event Types

Next we have to get the pure event type minus the additional pointer index that is
encoded in the integer returned by MotionEvent.getAction(). We just need to mask the
pointer index out:

int action = event.getAction() & MotionEvent.ACTION_ MASK;

OK, that was easy. Sadly you’ll only understand it if you know what that pointer index is
and that it is actually encoded in the action.

What’s left is to decode the event type as we did before. | already said that there are a
few new event types, so let’s go through them:

MotionEvent.ACTION_POINTER DOWN: This event happens for any additional finger that
touches the screen after the first finger touches. The first finger will still produce a
MotionEvent.ACTION_DOWN event.

MotionEvent.ACTION_POINTER_UP: This is analogous the previous action. This gets
fired when a finger is lifted up from the screen and more than one finger is touching
the screen. The last finger on the screen to go up will produce a
MotionEvent.ACTION_UP event. This finger doesn’t necessarily have to be the first
finger that touched the screen.

Luckily we can just pretend that those two new event types are the same as the old
MotionEvent.ACTION_UP and MotionEvent.ACTION_DOWN events.

The last difference is the fact that a single MotionEvent can have data for multiple
events. Yes, you read that right. For this to happen, the merged events have to have the
same type. In reality this will only happen for the MotionEvent.ACTION_MOVE event, so we
only have to deal with this fact when processing said event type. To check how many
events are contained in a single MotionEvent, we use the
MotionEvent.getPointerCount() method, which tells us for how many fingers the
MotionEvent contains coordinates for. We then can fetch the pointer identifier and
coordinates for the pointer indices 0 to MotionEvent.getPointerCount() - 1 viathe
MotionEvent.getX(), MotionEvent.getY(), and MotionEvent.getPointerId() methods.

In Practice

Let’s write an example for this fine API. We want to keep track of ten fingers at most
(there’s no device yet that can track more, so we are on the safe side here). Android will
assign pointer identifiers from 0 to 9 to these fingers in the sequence they touch the
screen. So we keep track of each pointer identifier’s coordinates and touch state

CHAPTER 4: Android for Game Developers

(touching or not), and output this information to the screen via a TextView. Let’s call our
test activity MultiTouchTest. Listing 4—4 shows the complete code.

Listing 4-4. MultiTouchTest.java; Testing the Multitouch APl

package com.badlogic.androidgames;

import android.app.Activity;

import android.os.Bundle;

import android.view.MotionEvent;

import android.view.View;

import android.view.View.OnTouchListener;
import android.widget.TextView;

public class MultiTouchTest extends Activity implements OnTouchListener {
StringBuilder builder = new StringBuilder();
TextView textView;
float[] x = new float[10];
float[] y = new float[10];
boolean[] touched = new boolean[10];

private void updateTextView() {

builder.setlLength(0);

for(int i = 0; 1 < 10; i++) {
builder.append(touched[i]);
builder.append(", ");
builder.append(x[i]);
builder.append(", ");
builder.append(y[i]);
builder.append("\n");

}
textView.setText(builder.toString());
}

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
textView = new TextView(this);
textView.setText("Touch and drag (multiple fingers supported)!");
textView.setOnTouchListener(this);
setContentView(textView);

}

@0verride
public boolean onTouch(View v, MotionEvent event) {
int action = event.getAction() & MotionEvent.ACTION MASK;
int pointerIndex = (event.getAction() & MotionEvent.ACTION POINTER ID MASK) >>
MotionEvent.ACTION_POINTER ID SHIFT;
int pointerId = event.getPointerId(pointerIndex);

switch (action) {

case MotionEvent.ACTION DOWN:

case MotionEvent.ACTION POINTER DOWN:
touched[pointerId] = true;
x[pointerId] = (int)event.getX(pointerIndex);
y[pointerId] = (int)event.getY(pointerIndex);
break;

CHAPTER 4: Android for Game Developers

case MotionEvent.ACTION UP:

case MotionEvent.ACTION POINTER UP:

case MotionEvent.ACTION CANCEL:
touched[pointerId] = false;
x[pointerId] = (int)event.getX(pointerIndex);
y[pointerId] = (int)event.getY(pointerIndex);
break;

case MotionEvent.ACTION MOVE:
int pointerCount = event.getPointerCount();
for (int i = 0; i < pointerCount; i++) {
pointerIndex = i;
pointerId = event.getPointerId(pointerIndex);
x[pointerId] = (int)event.getX(pointerIndex);
y[pointerId] = (int)event.getY(pointerIndex);

}

break;
}
updateTextView();

return true;

}

We implement the OnTouchListener interface as before. To keep track of the coordinates
and touch state of the ten fingers, we add three new member arrays that will hold that
information for us. The arrays x and y hold the coordinates for each pointer ID, and the
array touched stores whether the finger with that pointer ID is down or not.

Next, | took the freedom to create a little helper method that will output the current state
of the fingers to the TextView. It simply iterates through all the ten finger states and
concatenates them via a StringBuilder. The final text is set to the TextView.

The onCreate() method sets up our activity and registers it as an OnTouchListener with
the TextView. We already know that part by heart.

Now for the scary part: the onTouch() method. We start off by getting the event type by
masking the integer returned by event.getAction(). Next we extract the pointer index
and fetch the corresponding pointer identifier from the MotionEvent, as discussed
earlier.

The heart of the onTouch() method is that big nasty switch statement, which we already
used in a reduced form to process single-touch events. We group all the events into
three categories on a high level:

A touch-down event happened (MotionEvent.ACTION_ DOWN,
MotionEvent.ACTION_PONTER_DOWN). We set the touch state for the
pointer identifier to true, and also save the current coordinates of that
pointer.

CHAPTER 4: Android for Game Developers

A touch-up event happened (MotionEvent.ACTION_UP,
MotionEvent.ACTION POINTER UP, MotionEvent.CANCEL). We set the
touch state to false for that pointer identifier and save its last known
coordinates.

One or more fingers were dragged across the screen
(MotionEvent.ACTION MOVE). We check how many events are contained
in the MotionEvent and then update the coordinates for the pointer
indices 0 to MotionEvent.getPointerCount() - 1. For each event, we
fetch the corresponding pointer identifier and update the coordinates.

Once the event is processed, we update the TextView via a call to the updateView()
method we defined earlier. Finally we return true, indicating that we processed the
touch event.

Figure 4-7 shows the output of the activity after | touch two fingers on my Nexus One
and drag them around a little.

@B Emgﬁ 10:47 pm

COOOOO00 0"
cocoocoocoocoo);
)

Figure 4-7. Fun with multitouch

CHAPTER 4: Android for Game Developers

There are a few things we can observe when we run this example:

If we start it on a device or emulator with an Android version lower
than 2.0, we get a nasty exception, as we’re use an API that is not
available on those earlier versions. We can work around that by
determining which Android version the application is running on, using
the single-touch code on devices with Android 1.5 and 1.6, and using
the multitouch code on devices with Android 2.0 or newer. We’'ll get
back to that in the next chapter.

There’s no multitouch on the emulator. The API is there if we create an
emulator running Android version 2.0 or higher, but we only have a
single mouse. And even if we had two mice, it wouldn’t make a
difference.

Touch two fingers down, lift the first one, and touch it down again. The
second finger will keep its pointer identifier after the first finger is lifted.
When the first finger is touched down for the second time, it gets the
first free pointer identifier, which is 0 in this case. Any new finger that
touches the screen will get the first free pointer identifier. That’s a rule
to remember.

If you try this on a Nexus One or a Droid, you will notice some strange
behavior when your cross two fingers on one axis. This is due to the
fact that the screens of those devices do not fully support the tracking
of individual fingers. It’s a big problem, but we can work around it
somewhat by designing our Uls with some care. We’ll have another
look at the issue in a later chapter. The phrase to keep in mind is don’t
cross the streams!

And that’s how multitouch processing works on Android. It is a pain in the buttocks, but
once you untangle all the terminology and come to peace with the bit twiddling, it
becomes somewhat OK to use.

NOTE: I'm sorry if this made your head explode. This section was rather heavy duty. Sadly, the
official documentation for the API is extremely lacking, and most people “learn” the API by simply
hacking away at it. | suggest you play around with the preceding code example until you fully
grasp what’s going on.

Processing Key Events

After the insanity of the last section, we deserve something dead simple. Welcome to
processing key events.

To catch key events, we implement another listener interface, called OnKeylListener. It
has a single method called onKey(), with the following signature:

public boolean onKey(View view, int keyCode, KeyEvent event)

CHAPTER 4: Android for Game Developers

The View specifies the view that received the key event, the keyCode argument is one of
the constants defined in the KeyEvent class, and the final argument is the key event
itself, which has some additional information.

What is a key code? Each key on the (onscreen) keyboard and each of the system keys
has a unique number assigned to it. These key codes are defined in the KeyEvent class
as static public final integers. One such key code is KeyCode.KEYCODE_A, which is the
code for the A key. This has nothing to do with the character that is generated in a text
field when a key is pressed. It really just identifies the key itself.

The KeyEvent class is similar to the MotionEvent class. It has two methods that are
relevant for us:

KeyEvent.getAction(): This method returns KeyEvent.ACTION_DOWN,
KeyEvent.ACTION_UP, and KeyEvent.ACTION_MULTIPLE. For our purposes we can
ignore the last key event type. The other two will be sent when a key is either
pressed or released.

KeyEvent.getUnicodeChar(): This returns the Unicode character the key would
produce in a text field. Say we hold down the Shift key and press the A key. This
would be reported as an event with a key code of KeyEvent.KEYCODE_A, but with a
Unicode character A. We can use this method if we want to do text input ourselves.

To receive keyboard events, a View must have the focus. This can be forced with the
following method calls:

View.setFocusableInTouchMode(true);
View.requestFocus();

The first method will guarantee that the View can be focused. The second method
requests that the specific view gets the focus.

Let’s implement a simple test activity to see how this works in combination. We want to
get key events and display the last one we received in a TextView. The information we’ll
display is the key event type, along with the key code and the Unicode character, if one
would be produced. Note that some keys do not produce a Unicode character on their
own, but only in combination with other characters. Listing 4-5 demonstrates how we
can achieve all this in a couple of code lines.

Listing 4-5. KeyTest.Java; Testing the Key Event APl

package com.badlogic.androidgames;

import android.app.Activity;

import android.os.Bundle;

import android.util.log;

import android.view.KeyEvent;

import android.view.View;

import android.view.View.OnKeylListener;
import android.widget.TextView;

public class KeyTest extends Activity implements OnKeylListener {
StringBuilder builder = new StringBuilder();
TextView textView;

CHAPTER 4: Android for Game Developers

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
textView = new TextView(this);
textView.setText("Press keys (if you have some)!");
textView.setOnKeylListener(this);
textView.setFocusableInTouchMode(true);
textView.requestFocus();
setContentView(textView);

}

@0verride
public boolean onKey(View view, int keyCode, KeyEvent event) {
builder.setLength(0);
switch (event.getAction()) {
case KeyEvent.ACTION DOWN:
builder.append("down, ");
break;
case KeyEvent.ACTION UP:
builder.append("up, ");
break;

}

builder.append(event.getKeyCode());
builder.append(", ");

builder.append((char) event.getUnicodeChar());
String text = builder.toString();
Log.d("KeyTest", text);
textView.setText(text);

if (event.getKeyCode() == KeyEvent.KEYCODE BACK)
return false;

else
return true;

}

We start off by declaring that the activity implements the OnKeyListener interface. Next
we define two members we are already familiar with: a StringBuilder to construct the
text to be displayed and a TextView to display the text.

In the onCreate() method we make sure the TextView has the focus so it can receive
key events. We also register the activity as the OnKeyListener via the
TextView.setOnKeylListener() method.

The onKey () method is also pretty straightforward. We process the two event types in
the switch statement, appending a proper string to the StringBuilder. Next we append
the key code as well as the Unicode character from the KeyEvent itself and output it to
LogCat as well as the TextView.

The last if statement is interesting: in case the back key is pressed, we return false
from the onKey () method, making the TextView process the event. Otherwise we return
true. Why differentiate here?

If we were to return true in the case of the back key, we’d mess with the activity life
cycle a little. The activity would not be closed, as we decided to consume the back key

CHAPTER 4: Android for Game Developers

ourselves. Of course, there are scenarios where we’d actually want to catch the back
key so that our activity does not get closed. However, it is strongly advised not to do
this unless absolutely necessary.

Figure 4-8 illustrates the output of the activity while | hold down the Shift and A keys on
the keyboard of my Droid.

M @ 12:00 PM

Figure 4-8. Pressing the Shift and A keys simultaneously

There are couple of things to note here:

When you look at the LogCat output, notice that we can easily process
simultaneous key events. Holding down multiple keys is not a problem.

Pressing the D-pad and rolling the trackball are both reported as key events.

As with touch events, key events can eat up considerable CPU
resources on old Android versions and first-generation devices.
However, they will not produce a flood of events.

That was pretty relaxing compared to the previous section, wasn’t it?

NOTE: The key processing APl is a bit more complex than what | have shown here. For our game
programming projects, the information contained here is more than sufficient, though. If you
need something a bit more complex, refer to the official documentation on the Android
Developers site.

CHAPTER 4: Android for Game Developers

Reading the Accelerometer State

A very interesting input option for games is the accelerometer. All Android devices are
required to contain a three-axis accelerometer. We talked about accelerometers in the
last chapter a little bit. We’ll generally only poll the state of the accelerometer.

So how do we get that accelerometer information? You guessed correctly, by registering
a listener. The interface we need to implement is called SensorEventListener, which has
two methods:

public void onSensorChanged(SensorEvent event);
public void onAccuracyChanged(Sensor sensor, int accuracy);

The first method is called when a new accelerometer event arrives. The second method
is called when the accuracy of the accelerometer changes. We can safely ignore the
second method for our purposes.

So where do we register our SensorEventListener? For this we have to do a little bit of
work. First we need to check whether there actually is an accelerometer installed in the
device. Now, | just told you that all Android devices must contain an accelerometer. This
is still true, but might change in the future. We therefore want to make 100 percent sure
that that input method is available to us.

The first thing we need to do is get an instance of the so-called SensorManager. That guy
will tell us whether an accelerometer is installed, and is also where we register our
listener. To get the SensorManager we use a method of the Context interface:

SensorManager manager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);

The SensorManager is a so-called system service that is provided by the Android system.
Android is composed of multiple system services, each serving different pieces of
system information to anyone who asks nicely.

Once we have the manager, we can check whether the accelerometer is available:
boolean hasAccel = manager.getSensorList(Sensor.TYPE_ACCELEROMETER).size() > 0;

With this bit of code we poll the manager for all the installed sensors that have the type
accelerometer. While this implies that a device can have multiple accelerometers, in
reality this will only ever return one accelerometer sensor, though.

If an accelerometer is installed, we can fetch it from the SensorManager and register the
SensorEventlListener with it as follows:
Sensor sensor = manager.getSensorlList(Sensor.TYPE_ACCELEROMETER).get(0);

boolean success = manager.registerListener(listener, sensor,
SensorManager.SENSOR_DELAY_GAME);

The argument SensorManager.SENSOR_DELAY GAME specifies how often the listener should
be updated with the latest state of the accelerometer. This is a special constant that is
specifically designed for games, so we happily use that. Notice that the
SensorManager.registerListener() method returns a boolean indicating whether the
registration process worked or not. That means we have to check the boolean afterward
to make sure we’ll actually get any events from the sensor.

CHAPTER 4: Android for Game Developers

Once we have registered the listener, we’ll receive SensorEvents in the
SensorEventListener.onSensorChanged() method. The method name implies that it is
only called when the sensor state has changed. This is a little bit confusing, as the
accelerometer state is changed constantly. When we register the listener, we actually
specify the frequency with which we want to get sensor state updates.

So how do we process the SensorEvent? That’s rather easy. The SensorEvent has a
public float array member called SensorEvent.values that holds the current acceleration
values of each of the three axes of the accelerometer. SensorEvent.values[0] holds the
value of the x-axis, SensorEvent.values[1] holds the value of the y-axis, and
SensorEvent.values[2] holds the value of the z-axis. We discussed what these values
mean in Chapter 3, so if you forgot that, go and check out the “Input” section again.

With this information we can write a simple test activity. All we want to do is output the
accelerometer values for each accelerometer axis in a TextView. Listing 4-6 shows you
how to do this.

Listing 4-6. AccelerometerTest.java; Testing the Accelerometer APl

package com.badlogic.androidgames;

import android.app.Activity;

import android.content.Context;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventlListener;
import android.hardware.SensorManager;
import android.os.Bundle;

import android.widget.TextView;

public class AccelerometerTest extends Activity implements SensorEventlListener {
TextView textView;
StringBuilder builder = new StringBuilder();

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
textView = new TextView(this);
setContentView(textView);

SensorManager manager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);
if (manager.getSensorList(Sensor.TYPE ACCELEROMETER).size() == 0) {
textView.setText("No accelerometer installed");
} else {
Sensor accelerometer = manager.getSensorList(
Sensor.TYPE ACCELEROMETER).get(0);
if (!manager.registerListener(this, accelerometer,
SensorManager.SENSOR DELAY GAME)) {
textView.setText("Couldn't register sensor listener");

}

CHAPTER 4: Android for Game Developers

@0verride

public void onSensorChanged(SensorEvent event) {
builder.setLength(0);
builder.append("x: ");
builder.append(event.values[0]);
builder.append(", y: ");
builder.append(event.values[1]);
builder.append(", z: ");
builder.append(event.values[2]);
textView.setText(builder.toString());

}

@0verride
public void onAccuracyChanged(Sensor sensor, int accuracy) {
// nothing to do here

}

We start with checking whether an accelerometer sensor is available. If it is, we fetch it
from the SensorManager and try to register our activity, which implements the
SensorEventlListener interface. If any of this fails, we set the TextView to display a
proper error message.

The onSensorChanged() method simply reads the axis values from the SensorEvent it
gets passed and updates the TextView text accordingly.

The onAccuracyChanged() method is just there so that we fully implement the
SensorEventlListener interface. It serves no real other purpose.

Figure 4-9 shows you what values the axes take on in portrait mode and landscape
modes when the device is held perpendicular to the ground.

BE@Q 313m

Accelerometer Test

BE@Q 3:15am

Accelerometer Test

Figure 4-9. Accelerometer axis values in portrait mode (left) and landscape mode (right) when the device is held
perpendicular to the ground

CHAPTER 4: Android for Game Developers

Here are a few closing comments on accelerometers:

As you can see in the right screenshot in Figure 4-9, the
accelerometer values might sometimes get over their specified range.
This is due to small inaccuracies in the sensor, so you have to adjust
for that if you need those values to be as exact as possible.

The accelerometer axes always get reported in the same order, no
matter what orientation our activity is displayed in.

With this, we have discussed all the input processing-related classes of the Android API
we’ll need for game development.

NOTE: As the name implies, the SensorManager class grants you access to other sensors as
well. This includes the compass and light sensors. If you wanted to be creative, you could come
up with a game idea that uses these sensors. Processing their events is similar to how we
processed the data of the accelerometer. The documentation over at the Android Developers site
will give you more information.

File Handling

Android offers us a couple of ways to read and write files. In this section we’ll check out
assets and accessing the external storage, mostly implemented as an SD card. Let’s
start with assets.

Reading Assets

In Chapter 2 we had a brief look at all the folders an Android project has. We identified
the assets/ and res/ folders to be the ones we can put files in that should get
distributed with our application. When we discussed the manifest file, | told you that
we’re not going to make use of the res/ folder, as it implies restrictions on how we
structure our file set. The assets/ directory is the place to put all our files, in whatever
folder hierarchy we want.

The files in the assets/ folder are exposed via a class called AssetManager. We can get a
reference to that manager for our application as follows:

AssetManager assetManager = context.getAssets();

We already saw the Context interface earlier; it is implemented by the Activity class. In
real life we’d fetch the AssetManager from our activity.

Once we have the AssetManager, we can start opening files like crazy:
InputStream inputStream = assetManager.open("dir/dir2/filename.txt");

This method will return a plain-old Java InputStream, which we can use to read-in any
sort of file. The only argument to the AssetManager.open() method is the filename
relative to the asset directory. In the preceding example we have two directories in the

CHAPTER 4: Android for Game Developers

assets/ folder, where the second one (dir2/) is a child of the first one (dir/). In our
Eclipse project the file would be located in assets/dir/dir2/.

Let’s write a simple test activity testing out this functionality. We want to load a text file
named myawesometext.txt from a subdirectory of the assets/ directory called texts.
The content of the text file will be displayed in a TextView. Listing 4-7 shows the source
for this awe-inspiring activity.

Listing 4-7. AssetsTest.java, Demonstrating How to Read Asset Files

package com.badlogic.androidgames;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;

import android.app.Activity;

import android.content.res.AssetManager;
import android.os.Bundle;

import android.widget.TextView;

public class AssetsTest extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView textView = new TextView(this);
setContentView(textView);

AssetManager assetManager = getAssets();
InputStream inputStream = null;
try {
inputStream = assetManager.open("texts/myawesometext.txt");
String text = loadTextFile(inputStream);
textView.setText(text);
} catch (IOException e) {
textView.setText("Couldn't load file");
} finally {
if (inputStream != null)
try {
inputStream.close();
} catch (IOException e) {
textView.setText("Couldn't close file");
}

}

public String loadTextFile(InputStream inputStream) throws IOException {
ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
byte[] bytes = new byte[4096];
int len = 0;
while ((len = inputStream.read(bytes)) > 0)
byteStream.write(bytes, 0, len);
return new String(byteStream.toByteArray(), "UTF8");

CHAPTER 4: Android for Game Developers

No big surprises, other than that loading simple text from an InputStreanm is rather
verbose in Java. | wrote a little method called loadTextFile() that will squeeze all the
bytes out of the InputStream and return the bytes in the form of a string. | assume that
the text file is encoded as UTF-8. The rest is just catching and handling various
exceptions. Figure 4-10 shows you the output of this little activity.

EE0 BH@Q 12:38am
Assets Test :
orem ipsum dolor sit amet, consetetur sadipscing
elitr, sed diam nonumy eirmod tempor invidunt ut
labore et dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et justo duo
dolores et ea rebum. Stet clita kasd gubergren, no
sea takimata sanctus est Lorem ipsum dolor sit
amet. Lorem ipsum dolor sit amet, consetetur
sadipscing elitr, sed diam nonumy eirmod tempor
invidunt ut labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et accusam et justo
duo dolores et ea rebum. Stet clita kasd gubergren,
no sea takimata sanctus est Lorem ipsum dolor sit
amet.

Figure 4-10. The text output

You should take away the following from this section:

Loading a text file from an InputStream in Java is a mess! Usually we’d
do that with something like Apache IOUtils. I’ll leave that up for you as
an excercise.

We can only read assets, not write them.

We could easily modify the loadTextFile() method to load binary data
instead. We would just need to return the byte array instead of the
string.

Accessing the External Storage

While assets are superb for shipping all our images and sounds with our application,
there are times when we need to be able to persist some information and reload it later
on. A common example would be with high-scores.

CHAPTER 4: Android for Game Developers

Android offers many different ways of doing this: you can use local shared preferences
of an application, a small SQLite database, and so on. All these options have one thing
in common: they don’t handle large binary files all that gracefully. Why would we need
that anyway? While we can tell Android to install our application on the external storage,
and thus not waste memory on the internal storage, this will only work on Android
version 2.2 and above. For earlier versions all our application data would get installed on
the internal storage. In theory we could only include the code of our application in the
APK file and download all the asset files from a server to the SD card the first time our
application is started. Many of the high-profile games on Android do this.

There are also other scenarios where we’d want to have access to the SD card (which is
pretty much synonymous with the term external storage on all currently available
devices). We could allow our users to create their own levels with an in-game editor.
We’'d need to store them somewhere, and the SD card is just perfect for that purpose.

So, now that I've convinced you not to use the fancy mechanisms Android offers us to
store application preferences, let’s have a look at how to read and write files on the SD
card.

The first thing we have to do is request the permission to actually access the external
storage. This is done in the manifest file with the <uses-permission> element as
discussed earlier in this chapter.

The next thing we have to do is to check whether there is actually an external storage
available on the device we run. For example, if you create an AVD, you have the option
of not having it simulate an SD card, so you couldn’t write to it in your application.
Another reason for not getting access to the SD card could be that the external storage
is currently in use by something else (e.g., the user may be exploring it via USB on a
desktop PC). So here’s how we get the state of the external storage:

String state = Environment.getExternalStorageState();

Hmm, we get a string. The Environment class defines a couple of constants. One of
these is called Environment.MEDIA MOUNTED. It is also a string. If the string returned by
the preceding method equals this constant, we have full read/write access to the
external storage. Note that you really have to use the equals() method to compare the
two strings; reference equality won’t work in every case.

Once we have determined that we can actually access the external storage, we need to
get its root directory name. If we then want to access a specific file, we need to specify
it relative to this directory. To get that root directory, we use another Environment static
method:

File externalDir = Environment.getExternalStorageDirectory();
From here on we can use the standard Java I/O classes to read and write files.

Let’s write a quick example that writes a file to the SD card, reads it back in, displays its
content in a TextView, and then deletes the file from the SD card again. Listing 4-8
shows the source code for that.

CHAPTER 4: Android for Game Developers

Listing 4-8. The ExternalStorageTest Activity

package com.badlogic.androidgames;

import java.io.BufferedReader;
import java.io.Bufferedwriter;
import java.io.File;

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

import android.app.Activity;
import android.os.Bundle;
import android.os.Environment;
import android.widget.TextView;

public class ExternalStorageTest extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView textView = new TextView(this);
setContentView(textView);

String state = Environment.getExternalStorageState();
if (!state.equals(Environment.MEDIA MOUNTED)) {
textView.setText("No external storage mounted");
} else {
File externalDir = Environment.getExternalStorageDirectory();
File textFile = new File(externalDir.getAbsolutePath()
+ File.separator + "text.txt");
try {
writeTextFile(textFile, "This is a test. Roger");
String text = readTextFile(textFile);
textView.setText(text);
if (!textFile.delete()) {
textView.setText("Couldn't remove temporary file");

}
} catch (IOException e) {
textView.setText("something went wrong!
}

+ e.getMessage());

}

private void writeTextFile(File file, String text) throws IOException {
BufferedWriter writer = new BufferedWriter(new FileWriter(file));
writer.write(text);
writer.close();

}

private String readTextFile(File file) throws IOException {
BufferedReader reader = new BufferedReader(new FileReader(file));
StringBuilder text = new StringBuilder();
String line;
while ((line = reader.readlLine()) != null) {
text.append(line);
text.append("\n");

CHAPTER 4: Android for Game Developers

reader.close();
return text.toString();

}
}

First we check whether the SD card is actually mounted. If not we bail out early. Next we
get the external storage directory and construct a new File instance that points to the
file we are going to create in the next statement. The writeTextFile() method uses
standard Java I/O classes to do its magic. If the file doesn’t exist yet, this method will
create it; otherwise it will overwrite an already existing file. After we successfully dump
our test text to the file on the external storage, we read it in again and set it as the text of
the TextView. As a final step we delete the file from the external storage again. All this is
done with standard safety measures in place that will report if something went goes by
outputting an error message to the TextView. Figure 4-11 shows the output of the
activity.

Ea0 BEISQ 136

(External Storage Test

This is a test. Roger

Figure 4-11. Roger!

Here are the lessons to take away from this section:

Don’t mess with any files that don’t belong to you. Your users will be
angry if you delete the photos of their last holiday.

Always check whether the external storage is mounted.

Do not mess with any of the files on the external storage! | mean it!

CHAPTER 4: Android for Game Developers

Seeing how easy it is to delete all the files on the external storage, you might think twice
before you install your next app from the market that requests permissions to the SD
card. The app has full control over your files once it’s installed.

Audio Programming

Android offers a couple of easy-to-use APIs for playing back sound effects and music
files—just perfect for our game programming needs. Let’s have a look at those APIs.

Setting the Volume Controls

If you possess an Android device, you will have noticed that when you press the volume
up and down buttons, you control different volume settings depending on what
application you are currently in. In a call you control the volume of the incoming voice
stream. In the YouTube application you control the volume of the video’s audio. On the
home screen you control the volume of the ringer.

Android has different audio streams for different purposes. When we play back audio in
our game, we use classes that output sound effects and music to a specific stream
called the music stream. Before we think about playing back sound effects or music,
though, we have to first make sure that the volume buttons will control the correct audio
stream. For this we use another method of the Context interface:

context.setVolumeControlStream(AudioManager.STREAM MUSIC);

As always, the Context implementation of our choice will be our activity. After this call,
the volume buttons will control the music stream, to which we’ll later output our sound
effects and music. We need to call this method only once in our activity life cycle. The
Activity.onCreate() method is the best place to do this.

Writing an example that only contains a single line of code is a bit of overkill. I'll thus
refrain from doing that at this point. Just remember to use this method in all the activities
that output sound.

Playing Sound Effects

In Chapter 3 we discussed the difference between streaming music and playing back
sound effects. The latter are stored in memory and are usually no longer than a few
seconds. Android provides us with a class called SoundPool that makes playing back
sound effects really easy.

We can simply instantiate a new SoundPool instances as follows:
SoundPool soundPool = new SoundPool(20, AudioManager.STREAM _MUSIC, 0);

The first parameter defines how many sound effects we can play simultaneously at
most. This does not mean that we can’t have more sound effects loaded, it only restricts
how many sound effects can be played concurrently. The second parameter defines
which audio stream the SoundPool will output the audio to. We choose the music stream

CHAPTER 4: Android for Game Developers

that we have set the volume controls for as well. The final parameter is currently unused
and should default to 0.

To load a sound effect from an audio file into heap memory, we can use the
SoundPool.load() method. We store all our files in the assets/ directory, so we need to
use the overloaded SoundPool.load() method, which takes an AssetFileDescriptor.
How do you we get that AssetFileDescriptor? Easy, via the AssetManager we worked
with before. Here’s how we’d load an OGG file called explosion.ogg from the assets/
directory via the SoundPool:

AssetFileDescriptor descriptor = assetManager.openFd("explosion.ogg");
int explosionId = soundPool.load(descriptor, 1);

Getting the AssetFileDescriptor is straightforward via the AssetManager.openFd()
method. Loading the sound effect via the SoundPool is just as easy. The first argument of
the SoundPool.load() method is our AssetFileDescriptor, and the second argument
specifies the priority of the sound effect. This is currently not used, and should be set to
1 for future compatibility.

The SoundPool.load() method returns an integer, which serves as a handle to the
loaded sound effect. When we want to play the sound effect, we specify this handle so
the SoundPool knows what effect to play.

Playing the sound effect is again very easy:
soundPool.play(explosionld, 1.0f, 1.0f, 0, 0, 1);

The first argument is the handle we received from the SoundPool.load() method. The
next two parameters specify the volume to be used for the left and right channels. These
values should be in a range between 0 (silent) and 1 (ears explode). Next come two
arguments we’ll rarely use. The first one is the priority, which is currently unused and
should be set to 0. The other argument specifies how often the sound effect should be
looped. | wouldn’t recommend looping sound effects, so you should generally use 0
here. The final argument is the playback rate. Setting it to something higher than 1 will
play back the sound effect faster than it was recorded, and setting it to something lower
than 1 will play back the sound effect slower.

When we don’t need a sound effect anymore and want to free some memory, we can
use the SoundPool.unload() method:

soundPool.unload(explosionId);

We simply pass in the handle we received from the SoundPool.load() method for that
sound effect and it will get unloaded from memory.

Generally we’ll have a single SoundPool instance in our game, which we’ll use to load,
play, and unload sound effects as needed. When we are done with all our audio output
and don’t need the SoundPool anymore, we should always call the SoundPool.release()
method, which will release all resources the SoundPool uses up. After the release you
can’t use the SoundPool anymore, of course. Also, all sound effects loaded by that
SoundPool will be gone.

CHAPTER 4: Android for Game Developers

Let’s write a simple test activity that will play back an explosion sound effect each time
we tap the screen. We already know everything we need to know to implement this, so
Listing 4-9 shouldn’t hold any big surprises.

Listing 4-9. SoundPoolTest.java; Playing Back Sound Effects

package com.badlogic.androidgames;
import java.io.IOException;

import android.app.Activity;

import android.content.res.AssetFileDescriptor;
import android.content.res.AssetManager;

import android.media.AudioManager;

import android.media.SoundPool;

import android.os.Bundle;

import android.view.MotionEvent;

import android.view.View;

import android.view.View.OnTouchListener;
import android.widget.TextView;

public class SoundPoolTest extends Activity implements OnTouchListener {
SoundPool soundPool;
int explosionId = -1;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView textView = new TextView(this);
textView.setOnTouchListener(this);
setContentView(textView);

setVolumeControlStream(AudioManager.STREAM MUSIC);
soundPool = new SoundPool(20, AudioManager.STREAM MUSIC, 0);

try {
AssetManager assetManager = getAssets();
AssetFileDescriptor descriptor = assetManager
.openFd("explosion.ogg");
explosionId = soundPool.load(descriptor, 1);
} catch (IOException e) {
textView.setText("Couldn't load sound effect from asset,
+ e.getMessage());

}

@0verride
public boolean onTouch(View v, MotionEvent event) {
if (event.getAction() == MotionEvent.ACTION UP) {
if (explosionId != -1) {
soundPool.play(explosionld, 1, 1, 0, 0, 1);
}
}

return true;

CHAPTER 4: Android for Game Developers

We start off by deriving our class from Activity and letting it implement the
OnTouchListener interface so we can later process taps on the screen. Our class has
two members: the SoundPool, and the handle to the sound effect we are going to load
and play back. We set that to —1 initially, indicating that the sound effect has not yet
been loaded.

In the onCreate() method, we do what we’ve done a couple of times before: create a
TextView, register the activity as an OnTouchListener, and set the TextView as the
content view.

The next line sets the volume controls to control the music stream, as discussed before.
We then create the SoundPool and configure it so it can play 20 concurrent effects at
once. That should suffice for the majority of games.

Finally we get an AssetFileDescriptor for the explosion.ogg file | put in the assets/
directory from the AssetManager. To load the sound, we simply pass that descriptor to
the SoundPool.load() method and store the returned handle. The SoundPool.load()
method throws an exception in the case something goes wrong while loading, in which
case we catch that and display an error message.

In the onTouch() method we simply check whether a finger went up, which indicates that
the screen was tapped. If that’s the case and the explosion sound effect was loaded
successfully (indicated by the handle not being —1), we simply play back that sound
effect.

When you execute that little activity, simply touch the screen to make the world explode.
If you touch the screen in rapid succession, you’ll notice that the sound effect is played
multiple times in an overlapping manner. It would be pretty hard to exceed the 20
playbacks maximum we configured the SoundPool with. However, if that happened, one
of the currently playing sounds would just be stopped to make room for the new
requested playback.

Notice that we didn’t unload the sound or released the SoundPool in the preceding
example. This is for brevity. Usually you’d release the SoundPool in the onPause()
method when the activity is going to be destroyed. Just remember to always release or
unload anything you no longer need.

While the SoundPool class is very easy to use, there are a couple of caveats you have to
be aware of:

The SoundPool.load() method executes the actual loading
asynchronously. This means that you have to wait for a little bit before
you call the SoundPool.play() method with that sound effect, as the
loading might not be finished yet. Sadly there’s no way to check when
the sound effect is done loading. That’s only possible with the SDK
version 8 of SoundPool, and we want to support all Android versions.
Usually it’s not a big deal, though, as you will most likely load other
assets as well before the sound effect is played for the first time.

CHAPTER 4: Android for Game Developers

SoundPool is known to have problems with MP3 files and long sound
files, where long is defined as “longer than 5 to 6 seconds.” Both
problems are undocumented, so there are no strict rules for deciding
whether your sound effect will be troublesome or not. As a general rule
I’d suggest sticking to OGG audio files instead of MP3s, and trying for
the lowest possible sampling rate and duration you can get away with
before the audio quality becomes poor.

NOTE: As with any API we discuss, there’s more functionality in SoundPool. | briefly told you that
you can make sound effects loop. For this you get an ID from the SoundPool. play() method
that you can use to pause or stop a looped sound effect. Check out the SoundPool
documentation on the Android Developers site if you need that functionality.

Streaming Music

Small sound effects fit into the limited heap memory an Android application gets from
the operating system. Bigger audio files containing longer music pieces don’t. For this
reason we need to stream the music to the audio hardware, which means that we only
read-in a small chunk at a time, enough to decode it to raw PCM data and throw that at
the audio chip.

That sounds intimidating. Luckily there’s the MediaPlayer class, which handles all that
business for us. All we need to do is point it at the audio file and tell it to play it back.

Instantiating the MediaPlayer class is dead simple:

MediaPlayer mediaPlayer = new MediaPlayer();

Next we need to tell the MediaPlayer what file to play back. That’s again done via an
AssetFileDescriptor:

AssetFileDescriptor descriptor = assetManager.openFd("music.ogg");
mediaPlayer.setDataSource(descriptor.getFileDescriptor(), descriptor.getStartOffset(),
descriptor.getlength());

There’s a little bit more going on here than in the SoundPool case. The
MediaPlayer.setDataSource() method does not directly take an AssetFileDescriptor.
Instead it wants a FileDescriptor, which we get via the
AssetFileDescriptor.getFileDescriptor() method. Additionally we have to specify the
offset and the length of the audio file. Why the offset? Assets are all stored in a single file
in reality. For the MediaPlayer to get to the start of the file we have to provide it with the
offset of the file within the containing asset file.

Before we can start playing back the music file, we have to call one more method that
prepares the MediaPlayer for playback:

mediaPlayer.prepare();

CHAPTER 4: Android for Game Developers

This will actually open the file and check whether it can be read and played back by the
MediaPlayer instance. From here on we are free to play the audio file, pause it, stop it,
set it to be looped, and change the volume.

To start the play back we simply call the following method:
mediaPlayer.start();

Note that this can only be called after the MediaPlayer.prepare() method has been
called successfully (you’ll notice if it throws a runtime exception).

We can pause the playback after having started it with a call to the pause() method:
mediaPlayer.pause();

Calling this method is again only valid if we have successfully prepared the MediaPlayer
and started playback already. To resume a paused MediaPlayer, we can call the
MediaPlayer.start() method again without any preparation.

To stop the playback we call the following method:
mediaPlayer.stop();

Note that when we want to start a stopped MediaPlayer, we have to first call the
MediaPlayer.prepare() method again.

We can set the MediaPlayer to loop the playback with the following method:
mediaPlayer.setLooping(true);

To adjust the volume of the music playback, we can use this method:
mediaPlayer.setVolume(1, 1);

This will set the volume of the left and right channels. The documentation does not
specify what range these two arguments have to be in. From experimentation, the valid
range seems to be 0 to 1.

Finally, we need a way to check whether the playback has finished. We can do this in
two ways. For one, we can register an OnCompletionlListener with the MediaPlayer that
will be called when the playback has finished:

mediaPlayer.setOnCompletionListener(listener);

If we want to poll for the state of the MediaPlayer, we can use the following method
instead:

boolean isPlaying = mediaPlayer.isPlaying();

Note that if the MediaPlayer is set to loop, none of the preceding methods will indicate
that the MediaPlayer has stopped.

Finally, if we are done with that MediaPlayer instance, we make sure all the resources it
takes up are released by calling the following method:

mediaPlayer.release();

It’s considered good practice to always do this before throwing away the instance.

CHAPTER 4: Android for Game Developers

In case we didn’t set the MediaPlayer to be looped and the playback has finished, we
can restart the MediaPlayer by calling the MediaPlayer.prepare() and
MediaPlayer.start() methods again.

Most of these methods work asynchronously, so even if you called MediaPlayer.stop()
the MediaPlayer.isPlaying() method might return for a short period after that. It’s
usually nothing we worry about too much. In most games we set the MediaPlayer to be
looped and stop it when the need arises (e.g., when we switch to a different screen that
we want other music to be played on).

Let’s write a small test activity where we play back a sound file from the assets/
directory in looping mode. This sound effect will be paused and resumed according to
the activity life cycle; when our activity gets paused, so should the music, and when the
activity is resumed, the music playback should pick up from where it left off. Listing 4—
10 shows you how that’s done.

Listing 4-10. MediaPlayerTest java; Playing Back Audio Streams

package com.badlogic.androidgames;
import java.io.IOException;

import android.app.Activity;

import android.content.res.AssetFileDescriptor;
import android.content.res.AssetManager;

import android.media.AudioManager;

import android.media.MediaPlayer;

import android.os.Bundle;

import android.widget.TextView;

public class MediaPlayerTest extends Activity {
MediaPlayer mediaPlayer;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView textView = new TextView(this);
setContentView(textView);

setVolumeControlStream(AudioManager.STREAM MUSIC);

mediaPlayer = new MediaPlayer();

try {
AssetManager assetManager = getAssets();
AssetFileDescriptor descriptor = assetManager.openFd("music.ogg");
mediaPlayer.setDataSource(descriptor.getFileDescriptor(),

descriptor.getStartOffset(), descriptor.getlength());

mediaPlayer.prepare();
mediaPlayer.setLooping(true);

} catch (IOException e) {
textView.setText("Couldn't load music file,
mediaPlayer = null;

+ e.getMessage());

}
}

@0verride

CHAPTER 4: Android for Game Developers

protected void onResume() {
super.onResume();
if (mediaPlayer != null) {
mediaPlayer.start();

}

protected void onPause() {
super.onPause();
if (mediaPlayer != null) {
mediaPlayer.pause();
if (isFinishing()) {
mediaPlayer.stop();
mediaPlayer.release();

}

We keep a reference to the MediaPlayer in the form of a member of our activity. In the
onCreate() method we simply create a TextView for outputting any error messages, as
always.

Before we start playing around with the MediaPlayer, we make sure the volume controls
actually control the music stream. Having that set up, we instantiate the MediaPlayer.
We fetch the AssetFileDescriptor from the AssetManager for a file called music.ogg
located in the assets/ directory, and set it as the data source of the MediaPlayer. All
that’s left is preparing the MediaPlayer instance and setting it to loop the stream. In case
anything goes wrong, we set the mediaPlayer member to null so we can later determine
whether loading was successful or not. Additionally we output some error text to the
TextView.

In the onResume () method we simply start the MediaPlayer (if creating it was successful).
The onResume() method is the perfect place to do this, as it is called after onCreate()
and after onPause(). In the first case it will start the playback for the first time; in the
second case it will simply resume the paused MediaPlayer.

The onResume() method pauses the MediaPlayer. If the activity is going to be killed, we
stop the MediaPlayer and then release all its resources.

If you play around with this, make sure to also test out how it reacts to pausing and
resuming the activity by either locking the screen or temporarily switching to the home
screen. When resumed, the MediaPlayer will pick up from where it left when it was
paused.

Here are couple of things to remember:

The methods MediaPlayer.start(), MediaPlayer.pause(), and
MediaPlayer.resume() can only be called in certain states as just
discussed. Never try to call them when you haven’t prepared the
MediaPlayer yet. Call MediaPlayer.start() only after preparing the
MediaPlayer or when you want to resume it after you’ve explicitly
paused it via a call to MediaPlayer.pause().

CHAPTER 4: Android for Game Developers

MediaPlayer instances are pretty heavyweight. Having many of them
instanced will take up considerable resources. We should always try to
have only one for music playback. Sound effects are better handled
with the SoundPool class.

Remember to set the volume controls to handle the music stream, or
else your players won’t be able to adjust the volume of your game.

We are almost done with this chapter, but one big topic still lies ahead of us: 2D
graphics.

Basic Graphics Programming

Android offers us two big APIs for drawing to the screen. One is mainly used for simple
2D graphics programming, and the other is used for hardware-accelerated 3D graphics
programming. This and the next chapter will focus on 2D graphics programming with the
Canvas API, which is a nice wrapper around the Skia library and suitable for modestly
complex 2D graphics. Before we get to that, though, there are two things we need to
talk about first: going full-screen and wake locks.

Using Wake Locks

If you leave the tests we wrote so far alone for a few seconds, the screen of your phone
will dim. Only if you touch the screen or hit a button will the screen go back to its full
brightness. To keep our screen awake at all times, we can use a so-called wake lock.

The first thing we need to do is add a proper <uses-permission> tag in the manifest file
with the name android.permission.WAKE_LOCK. This will allow us to actually use the
Wakelock class.

We can get a Wakelock instance from the PowerManager like this:

PowerManager powerManager =
(PowerManager)context.getSystemService(Context.POWER_SERVICE);
WakeLock wakeLock = powerManager.newWakelLock(PowerManager.FULL_WAKE_LOCK, "My Lock");

Like all other system services, we acquire the PowerManager from a Context instance. The
PowerManager . newhakeLock () method takes two arguments: the type of the lock and a tag
we can freely define. There are a couple of different wake lock types; for our purposes the
PowerManager.FULL_WAKE_LOCK type is the correct one. It will make sure that the screen will
stay on, the CPU will work at full speed, and] the keyboard will stay enabled.

To enable the wake lock we have to call its acquire() method:
wakelLock.acquire();

The phone will be kept awake from this point on, no matter how much time passes
without user interaction. When our application is paused or destroyed, we have to
disable or release the wake lock again:

wakeLock.release();

CHAPTER 4: Android for Game Developers

Usually we instantiate the WakeLock instance on the Activity.onCreate() method, call
WakeLock.acquire() in the Activity.onResume() method, and call the
WakeLock.release() method in the Activity.onPause() method. This way we guarantee
that our application still performs well in the case of being paused or resumed. Given
that there are only four lines of code to add, we’re not going to write a full-fledged
example. Instead | suggest you simply add it to the full-screen example of the next
section and observe the effects.

Going Full-Screen

Before we dive headfirst into drawing our first shapes with the Android APIs, let’s fix
something else. Up until this point, all our activities have shown their title bars. The
notification bar was visible as well. We’d like to immerse our players a little bit more by
getting rid of those. We can do that with two simple calls:

requestWindowFeature(Window.FEATURE_NO TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG_FULLSCREEN);

The first call gets rid of the activity’s title bar. To make the activity go full-screen and
thus eliminate the notification bar as well, we call the second method. Note that we have
to call these methods before we set the content view of our activity.

Listing 4-11 shows you a very simple test activity that demonstrates how to go full-
screen.

Listing 4-11. FullScreenTest java;, Making Our Activity Go Full-Screen

package com.badlogic.androidgames;

import android.os.Bundle;
import android.view.Window;
import android.view.WindowManager;

public class FullScreenTest extends SingleTouchTest {

@0verride
public void onCreate(Bundle savedInstanceState) {
requestWindowFeature(Window.FEATURE NO TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG FULLSCREEN);
super.onCreate(savedInstanceState);

}

What’s happening here? We simply derive from the TouchTest class we created earlier
and override the onCreate() method. In the onCreate() method, we enable full-screen
mode and then call the onCreate() method of the superclass (in this case the TouchTest
activity), which will set up all the rest of the activity. Note again that we have to call
those two methods before we set the content view. Hence, the superclass onCreate()
method is called after we execute these two methods.

CHAPTER 4: Android for Game Developers

We also fixed the orientation of the activity to portrait mode in the manifest file. You
didn’t forget to add <activity> elements in the manifest file for each test we wrote,
right? From now on we’ll always fix it to either portrait or landscape mode, since we
don’t want a changing coordinate system all the time.

By deriving from TouchTest, we have a fully working example with which we can explore
the coordinate system we are going to draw in. The activity will show you the
coordinates at which you touch the screen, as in the old TouchTest example. The
difference is that this time we are full-screen, which means that the maximum
coordinates of our touch events are equal to the screen resolution (minus one in each
dimension, as we start at [0,0]). For a Nexus One, the coordinate system would span the
coordinates (0,0) to (479,799) in portrait mode (for a total of 480x800 pixels).

While it may seem that the screen is redrawn continuously, it actually is not. Remember
from our TouchTest class that we update the TextView every time a touch event is
processed. This in turn makes the TextView redraw itself. If we don’t touch the screen,
the TextView will not redraw itself. For a game, we need to be able to redraw the screen
as often as possible, preferably within our main loop thread. We’ll start off easy, though,
and begin with continuous rendering in the Ul thread.

Continuous Rendering in the Ul Thread

All we've done up until now is set the text of a TextView when needed. The actual
rendering has been performed by the TextView itself. Let’s create our own custom View
whose sole purpose it is to let us draw stuff to the screen. We also want it to redraw
itself as often as possible, and we want a simple way to perform our own drawing in that
mysterious redraw method.

Although this may sound complicated, in reality Android makes it really easy for us to
create such a thing. All we have to do is create a class that derives from the View class,
and override a method called View.onDraw(). This method is called by the Android
system every time it needs our View to redraw itself. Here’s what that could look like:
class RenderView extends View {

public RenderView(Context context) {
super (context);

protected void onDraw(Canvas canvas) {
// to be implemented
}

}

Not exactly rocket science, is it? We get an instance of a class called Canvas passed to
the onDraw() method. This will be our workhorse in the following sections. It lets us draw
shapes and bitmaps to either another bitmap or a View (or a surface, which we’ll talk
about that in a bit).

We can use this RenderView as we’d use a TextView. We just set it as the content view of
our activity and hook up any input listeners we need. However, it’s not all that useful yet,
for two reasons: it doesn’t actually draw anything, and even if it did, it would only do so

CHAPTER 4: Android for Game Developers

when the activity needed to be redrawn (i.e., when it is created or resumed, or when a
dialog that overlaps it becomes invisible). How can we make it redraw itself?

Easy, like this:

protected void onDraw(Canvas canvas) {
// all drawing goes here
invalidate();

The call to the View.invalidate() method at the end of onDraw() will tell the Android
system to redraw the RenderView as soon as it finds time to do that again. All this still
happens on the Ul thread, which is a bit of a lazy horse. But we actually have continuous
rendering with the onDraw() method, albeit relatively slow continuous rendering. We’'ll fix
that later; for now it suffices for our needs.

So let’s get back to the mysterious Canvas class again. It is a pretty powerful class that
wraps a custom low-level graphics library called Skia, specifically tailored to perform 2D
rendering on the CPU. The Canvas class provides us with many drawing methods for
various shapes, bitmaps, and even text.

Where do the draw methods draw to? That depends. A Canvas can render to a Bitmap
instance; Bitmap is another class provided by the Android’s 2D API, which we’ll look into
later on. In this case, it is drawing to the area on the screen that the View is taking up. Of
course, this is an insane oversimplification. Under the hood, it will not directly draw to
the screen, but to some sort of bitmap that the system will later use in combination with
the bitmaps of all other Views of the activity to composite the final output image. That
image will then be handed over to the GPU, which will display it on the screen through
another set of mysterious paths.

We don’t really need to care about the details. From our perspective, our View seems to
stretch over the whole screen, so it may as well be drawing to the framebuffer of the
system. For the rest of this discussion, we’ll pretend that we directly draw to the
framebuffer, with the system doing all the nifty things like vertical retrace and double-
buffering for us.

The onDraw() method will be called as often as the system permits. For us, it is very
similar to the body of our theoretical game main loop. If we were to implement a game
with this method, we’d place all our game logic into this method. We won’t do that for
various reasons, though, performance being one of them.

So let’s do something interesting. Every time | get access to a new drawing API, | write a
little test that checks if the screen is really redrawn frequently. It’s a sort of a poor man’s
light show. All | do in each call to the redraw method is fill the screen with a new random
color. That way | only need to find the method of that API that allows me to fill the
screen, without needing to know a lot about the nitty-gritty details. Let’s write such a
test with our own custom RenderView implementation.

The method of the Canvas to fill its rendering target with a specific color is called
Canvas.drawRGB():

Canvas.drawRGB(int r, int g, int b);

CHAPTER 4: Android for Game Developers

The 1, g, and b arguments each stand for one component of the color we want to fill the
“screen” with. Each of them has to be in the range 0 to 255, so we actually specify a
color in the RGB888 format here. If you don’t remember the details regarding colors,
take a look at the “Encoding Colors Digitally” section of Chapter 3 again, as we’ll be
using that info throughout the rest of this chapter.

Listing 4-12 shows you the code for our little light show.

CAUTION: Running this code will rapidly fill the screen with a random color. If you have epilepsy
or are otherwise light-sensitive in any way, don’t run it.

Listing 4-12. The RenderViewTest Activity

package com.badlogic.androidgames;
import java.util.Random;

import android.app.Activity;
import android.content.Context;
import android.graphics.Canvas;
import android.os.Bundle;

import android.view.View;

import android.view.Window;

import android.view.WindowManager;

public class RenderViewTest extends Activity {
class RenderView extends View {
Random rand = new Random();

public RenderView(Context context) {
super(context);

protected void onDraw(Canvas canvas) {
canvas.drawRGB(rand.nextInt(256), rand.nextInt(256),
rand.nextInt(256));
invalidate();

}

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE NO TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG FULLSCREEN);
setContentView(new RenderView(this));

}

For our first graphics demo, this is pretty concise. We define the RenderView class as an
inner class of the RenderViewTest activity. The RenderView class derives from the View
class, as discussed earlier, and has a mandatory constructor, as well as the overridden

CHAPTER 4: Android for Game Developers

onDraw() method. It also has an instance of the Random class as a member; we’ll use that
to generate our random colors.

The onDraw() method is dead simple. We first tell the Canvas to fill the whole view with a
random color. For each color component, we simply specify a random number between
0 and 255 (Random.nextInt() is exclusive). After that we tell the system that we want the
onDraw() method to be called again as soon as possible.

The onCreate() method of the activity enables full-screen mode and sets an instance of
our RenderView class as the content view. To keep the example short, we’re leaving out
the wake lock for now.

Taking a screenshot of this example is a little bit pointless. All it does is fill the screen
with a random color as fast as the system allows on the Ul thread. It’s nothing to write
home about. Let’s do something more interesting instead: draw some shapes.

NOTE: While the preceding method of continuous rendering works, | strongly recommend not to
use it! We should do as little work on the Ul thread as possible. We’ll discuss in a minute how to
do it properly in a separate thread, where we can also implement our game logic later on.

Getting the Screen Resolution (and Coordinate Systems)

In Chapter 2 we talked a lot about the framebuffer and its properties. Remember that a
framebuffer holds the colors of the pixels that get displayed on the screen. The number
of pixels available to us is defined by the screen resolution, which is given by its width
and height in pixels.

Now, with our custom View implementation, we don’t actually render directly to the
framebuffer. But since our View spans the complete screen, we can pretend it does. In
order to know where we can render our game elements to, we need to know how many
pixels there are on the x-axis and on the y-axis, or the width and height of the screen.

The Canvas class has two methods that provide us with that information:

int width = canvas.getWidth();
int height = canvas.getHeight();

This returns the width and height in pixels of the target the Canvas renders to. Note that,
depending on what orientation our activity has, the width might be smaller or larger than
the height. My Nexus One, for example, has a resolution of 480x800 pixels in portrait
mode, so the Canvas.getWidth() method would return 480 and the Canvas.getHeight()
method would return 800. In landscape mode, the two values are simply swapped:
Canvas.getWidth() would return 800 and Canvas.getHeight() would return 480.

The second piece of information we need to know is how the coordinate system we
render to is organized. First of all, only integer pixel coordinates make sense (there is a
concept called subpixels, but we will ignore it). We also already know that the origin of
that coordinate system at (0,0) is always at the top-left corner of the display, be it in
portrait or landscape mode. The positive x-axis is always pointing to the right, and the y-

CHAPTER 4: Android for Game Developers

axis is always pointing downward. Figure 4-12 shows a hypothetical screen with a
resolution of 48x32 pixels, in landscape mode.

P

\AJ

,

A 4 =4

Figure 4-12. The coordinate system of a 48x32-pixel-wide screen

Note how the origin of the coordinate system in Figure 4-12 coincides with the top-left
pixel of the screen. The bottom-left pixel of the screen is thus not at (48,32), as we’'d
expect, but at (47,31). In general, (width — 1, height — 1) is always the position of the
bottom-right pixel of the screen.

Figure 4—12 shows you a hypothetical screen coordinate system in landscape mode. By
now you should be able to image how the coordinate system would look in portrait
mode.

All the drawing methods of Canvas operate within such a coordinate system. Usually we
can address a lot more pixels than in our 48x32-pixel example (e.g., 800x480). That
said, let’s finally draw some pixels, lines, circles, and rectangles.

NOTE: You may have noticed that different devices can have difference screen resolutions. We’'ll
look into that problem in the next chapter. For now let’s just concentrate on finally getting
something on the screen ourselves.

Drawing Simple Shapes

One hundred fifty pages later and we are finally on our way to drawing our first pixel.
We’ll quickly go over some of the drawing methods provided to us by the Canvas class.

CHAPTER 4: Android for Game Developers

Drawing Pixels

The first thing we want to know is how to draw a single pixel. That’s done with the
following method:

Canvas.drawPoint(float x, float y, Paint paint);

Two things to notice immediately are that the coordinates of the pixel are specified with
floats, and that the Canvas doesn’t let us specify the color directly, but instead wants an
instance of the Paint class from us.

Don’t get confused by the fact that we specify coordinates as floats. Canvas has some
very advanced functionality that actually allows us to render to noninteger coordinates,
and that’s where this is coming from. We won’t need that functionality just yet, though;
we’ll come back to it in the next chapter.

The Paint class holds style and color information to be used for drawing shapes, text,
and bitmaps. For drawing shapes, there are only two things we are interested in: the
color the paint holds and the style. Since a pixel doesn’t really have a style, let’s
concentrate on the color first. Here’s how we instantiate the Paint class and set the
color:

Paint paint = new Paint();
paint.setARGB(alpha, red, green, blue);

Instantiating the Paint class is pretty painless. The Paint.setARGB() method should also
be easy to decipher. The arguments each represent one of the color components of the
color, in the range from 0 to 255. We therefore specify an ARGB8888 color here.

Alternatively we can use the following method to set the color of a Paint instance:
Paint.setColor(oxffooffoo);

We pass a 32-bit integer to this method. It again encodes an ARGB8888 color; in this
case it’s the color green with alpha set to full opacity. The Color class defines some
static constants that encode some standard colors like Color.RED, Color.YELLOW, and so
on. You can use these if you don’t want to specify a hexadecimal value yourself.

Drawing Lines

To draw a line we can use the following Canvas method:
Canvas.drawLine(float startX, float startY, float stopX, float stopY, Paint paint);

The first two arguments specify the coordinates of the starting point of the line, the next

two arguments specify the coordinates of the endpoint of the line, and the last argument
specifies a Paint instance. The line that gets drawn will be one pixel thick. If we want the
line to be thicker, we can specify its thickness in pixels by setting the stroke width of the
Paint:

Paint.setStrokeWidth(float widthInPixels);

CHAPTER 4: Android for Game Developers

Drawing Rectangles

We can also draw rectangles with the Canvas:

Canvas.drawRect(float topleftX, float topleftY, float bottomRightX, float bottomRightY,
Paint paint);

The first two arguments specify the coordinates of the top-left corner of the rectangle,
the next two arguments specify the coordinates of the bottom-left corner of the
rectangle, and the Paint specifies the color and style of the rectangle. So what can the
style be and how do we set it?

To set the style of a Paint instance we call the following method:
Paint.setStyle(Style style);

Style is an enumeration that has the values Style.FILL, Style.STROKE, and
Style.FILL AND STROKE. If we specify Style.FILL, the rectangle will be filled with the
color of the Paint. If we specify Style.STROKE, only the outline of the rectangle will be
drawn, again with the color and stroke width of the Paint. If Style.FILL_AND_STROKE is
set, the rectangle will be filled, and the outline will be drawn with the given color and
stroke width.

Drawing Circles

More fun can be had by drawing circles, filled or stroked, or both:

Canvas.drawCircle(float centerX, float centerY, float radius, Paint paint);

The first two arguments specify the coordinates of the center of the circle, the next
argument specifies the radius in pixels, and the last argument is again a Paint instance.
As with the Canvas.drawRectangle() method, the color and style of the Paint will be
used to draw the circle.

One last thing of importance is that all these drawing methods will perform alpha
blending. Just specify the alpha of the color as something other than 255 (0xff), and your
pixels, lines, rectangles, and circles will be translucent.

Putting It All Together

Let’s write a quick test activity that demonstrates the preceding methods. This time |
want you to analyze the code in Listing 4-13 first. Figure out where on a 480x800 screen
in portrait mode the different shapes will be drawn. When doing graphics programming,
it is of upmost importance to imagine how the drawing commands you issue will
behave. It takes some practice, but it really pays off.

Listing 4-13. ShapeTest.java; Drawing Shapes Like Crazy
package com.badlogic.androidgames;
import android.app.Activity;

import android.content.Context;
import android.graphics.Canvas;

CHAPTER 4: Android for Game Developers

import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Paint.Style;
import android.os.Bundle;

import android.view.View;

import android.view.Window;

import android.view.WindowManager;

public class ShapeTest extends Activity {
class RenderView extends View {
Paint paint;

public RenderView(Context context) {
super (context);
paint = new Paint();

}

protected void onDraw(Canvas canvas) {
canvas.drawRGB(255, 255, 255);
paint.setColor(Color.RED);
canvas.drawLine(0, 0, canvas.getWidth()-1, canvas.getHeight()-1, paint);

paint.setStyle(Style.STROKE);
paint.setColor(oxffooffoo);
canvas.drawCircle(canvas.getWidth() / 2, canvas.getHeight() / 2, 40, paint);

paint.setStyle(Style.FILL);
paint.setColor(0x770000ff);
canvas.drawRect (100, 100, 200, 200, paint);
invalidate();

}

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE NO TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG FULLSCREEN);
setContentView(new RenderView(this));

}

Did you create that mental image already? Then let’s analyze the RenderView.onDraw()
method quickly. The rest is the same as in the last example.

We start off by filling the screen with the color white. Next we draw a line from the origin
to the bottom-right pixel of the screen. We use a paint that has its color set to red, so
the line will be red.

Next we modify the paint a little and set its style to Style.STROKE, its color to green, and
its alpha to 255. The circle is drawn in the center of the screen with a radius of 40 pixels
using the Paint we just modified. Only the outline of the circle will be drawn, due to the

Paint’s style.

CHAPTER 4: Android for Game Developers

Finally we modify the Paint again. We set its style to Style.FILL and the color to full
blue. Notice that | set the alpha to 0x77 this time, which equals 119 in decimal. This
means that the shape we draw with the next call will be roughly 50 percent translucent.

Figure 4-13 shows you the output of the test activity on 480x800 and 320x480 screens
in portrait mode.

Figure 4-13. The ShapeTest output on a 480x800 screen (left) and a 320x480 screen (right) (black border added
afterward)

Oh my, what happened here? That’s what you get for rendering with absolute
coordinates and sizes on different screen resolutions. The only thing that is constant in
both images is the red line, which simply draws from the top-left corner to the bottom-
right corner. This is done in a screen resolution-independent manner.

The rectangle is positioned at (100,100). Depending on the screen resolution, the
distance to the screen center will differ. Also, the size of the rectangle is 100x100 pixels.
On the bigger screen, it takes up far less relative space than on the smaller screen.

The circle’s position is again screen resolution independent, but its radius is not. Thus, it
again takes up more relative space on the smaller screen than on the bigger one.

We already see that handling different screen resolutions might be a bit of a problem. It
gets even worse when we factor in different physical screen sizes. But we’ll try to solve
that issue in the next chapter. Just keep in mind that screen resolution and physical size
matter.

NOTE: The Canvas and Paint classes offer a lot more than what we just talked about. In fact,
all the standard Android Views draw themselves with this API, so you can image that there’s
more behind it. As always, check out the Android Developers site for more information.

CHAPTER 4: Android for Game Developers

Using Bitmaps

While making a game with basic shapes such as lines or circles is a possibility, it’s not
exactly sexy. We want an awesome artist to create sprites and backgrounds and all that
jazz for us, which we can then load from PNG or JPEG files. Doing this on Android is
extremely easy.

Loading and Examining Bitmaps

The Bitmap class will become our best friend. We load a bitmap from a file by using the
BitmapFactory singleton. As we store our images in the form of assets, let’s see how we
can load an image from the assets/ directory:

InputStream inputStream = assetManager.open("bob.png");

Bitmap bitmap = BitmapFactory.decodeStream(inputStream);

The Bitmap class itself has a couple of methods that are of interest to us. First we want
to get to know its width and height in pixels:

int width = bitmap.getWidth();

int height = bitmap.getHeight();

The next thing we might want to know is what color format the Bitmap is stored in:
Bitmap.Config config = bitmap.getConfig();

Bitmap.Config is an enumeration with the values:
Config.ALPHA 8
Config.ARGB_4444
Config.ARGB_8888
Config.RGB_565

From Chapter 3, you should know what these values mean. If not | strongly suggest that
you read the “Encoding Colors Digitally” section of Chapter 3 again.

Interestingly there’s no RGB888 color format. PNG only supports ARGB8888, RGB888,
and palettized colors. What color format would an RGB888 PNG be loaded to?
BitmapConfig.RGB_565 is the answer. This happens automatically for any RGB888 PNG
we load via the BitmapFactory. The reason for this is that the actual framebuffer of most
Android devices works with that color format. It would be a waste of memory to load an
image with a higher bit depth per pixel, as the pixels would need to be converted to
RGB565 anyway for final rendering.

So why is there the Config.ARGB_8888 configuration then? Because image composition
can be done on the CPU prior to actually drawing the final image to the framebuffer. In
the case of the alpha component, we also have a lot more bit depth than with

Config.ARGB_4444, which might be necessary for some high-quality image processing.

An ARGB8888 PNG image would be loaded to a Bitmap with a Config.ARGB_8888
configuration. The other two color formats are barely used. We can, however, tell the

CHAPTER 4: Android for Game Developers

BitmapFactory to try to load an image with a specific color format, even if its original
format is different.

InputStream inputStream = assetManager.open("bob.png");

BitmapFactory.Options options = new BitmapFactory.Options();

options.inPreferredConfig = Bitmap.Config.ARGB_4444;
Bitmap bitmap = BitmapFactory.decodeStream(inputStream, null, options);

We use the overloaded BitmapFactory.decodeStream() method to pass a hint in the
form of an instance of the BitmapFactory.Options class to the image decoder. We can
specify the desired color format of the Bitmap instance via the
BitmapFactory.Options.inPreferredConfig member, as shown previously. In this
hypthotical example, the bob.png file would be a ARGB8888 PNG, and we want the
BitmapFactory to load it and convert it to an ARGB4444 bitmap. The factory can ignore
the hint, though.

This will free all the memory used by that Bitmap instance. Of course, you can’t use the
bitmap for rendering anymore after a call to this method.

You can also create an empty Bitmap with the following static method:
Bitmap bitmap = Bitmap.createBitmap(int width, int height, Bitmap.Config config);

This might come in handy if you want to do custom image compositing yourself on the
fly. The Canvas class also works on bitmaps:

Canvas canvas = new Canvas(bitmap);

You can then modify your bitmaps in the same way you modify the contents of a View.

Disposing of Bitmaps

The BitmapFactory can help us reduce our memory footprint when we load images.
Bitmaps take up a lot of memory, as discussed in Chapter 3. Reducing the bits per pixel
by using a smaller color format helps, but ultimately we will run out of memory if we
keep on loading bitmap after bitmap. We should thus always dispose of any Bitmap
instance we no longer need via the following method:

Bitmap.recycle();

Drawing Bitmaps

Once we have loaded our bitmaps, we can draw them via the Canvas. The easiest
method to do this looks as follows:

Canvas.drawBitmap(Bitmap bitmap, float topLeftX, float topLeftY, Paint paint);

The first argument should be obvious. The arguments topLeftX and topLeftY specify the
coordinates on the screen where the top-left corner of the bitmap will be placed. The
last argument can be null. We could specify some very advanced drawing parameters
with the Paint, but we don’t really need those.

CHAPTER 4: Android for Game Developers

There’s another method that will come in handy, as well:

Canvas.drawBitmap(Bitmap bitmap, Rect src, Rect dst, Paint paint);

This method is super-awesome. It allows us to specify a portion of the Bitmap to draw
via the second parameter. The Rect class holds the top-left and bottom-right corner
coordinates of a rectangle. When we specify a portion of the Bitmap via the src, we do it
in the Bitmap’s coordinate system. If we specify null, the complete Bitmap will be used.

The third parameter defines where the portion of the the Bitmap should be drawn to,
again in the form of a Rect instance. This time the corner coordinates are given in the
coordinate system of the target of the Canvas, though (either a View or another Bitmap).
The big surprise is that the two rectangles do not have to be the same size. If we specify
the destination rectangle to be smaller in size than the source rectangle, then the Canvas
will automatically scale for us. The same is true for specifying a larger destination
rectangle, of course. The last parameter we’ll usually set to null again. Note, however,
that this scaling operation is very expensive. We should only use it when absolutely
necessary.

So, you might wonder, if we have Bitmap instances with different color formats, do we
need to convert them to some kind of standard format before we can draw them via a
Canvas? The answer is no. The Canvas will do this for us automatically. Of course, it will
be a bit faster if we use color formats that are equal to the native framebuffer format.
Usually we just ignore this, though.

Blending is also enabled by default, so if our images contain an alpha component per
pixel, it is actually interpreted.

Putting It All Together

With all this information, we can finally load and render some Bobs. Listing 4-14 shows
you the source of the BitmapTest activity | wrote for demonstration purposes.

Listing 4-14. The BitmapTest Activity

package com.badlogic.androidgames;

import java.io.IOException;
import java.io.InputStream;

import android.app.Activity;

import android.content.Context;

import android.content.res.AssetManager;
import android.graphics.Bitmap;

import android.graphics.BitmapFactory;
import android.graphics.Canvas;

import android.graphics.Rect;

import android.os.Bundle;

import android.util.log;

import android.view.View;

import android.view.Window;

import android.view.WindowManager;

CHAPTER 4: Android for Game Developers

public class BitmapTest extends Activity {
class RenderView extends View {
Bitmap bob565;
Bitmap bob4444;
Rect dst = new Rect();

public RenderView(Context context) {
super(context);

try {
AssetManager assetManager = context.getAssets();
InputStream inputStream = assetManager.open("bobrgh888.png");
bob565 = BitmapFactory.decodeStream(inputStream);
inputStream.close();
Log.d("BitmapText",
"bobrgb888.png format: " + bob565.getConfig());

inputStream = assetManager.open("bobargh8888.png");
BitmapFactory.Options options = new BitmapFactory.Options();
options.inPreferredConfig = Bitmap.Config.ARGB_4444;
bob4444 = BitmapFactory

.decodeStream(inputStream, null, options);
inputStream.close();
Log.d("BitmapText",

"bobargh8888.png format: " + bob4444.getConfig());

} catch (IOException e) {
// silently ignored, bad coder monkey, baaad!
} finally {
// we should really close our input streams here.

}

protected void onDraw(Canvas canvas) {
dst.set(50, 50, 350, 350);
canvas.drawBitmap(bob565, null, dst, null);
canvas.drawBitmap(bob4444, 100, 100, null);
invalidate();

}

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE NO TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG FULLSCREEN);
setContentView(new RenderView(this));

}
The onCreate() method of our activity is old hat, so let’s move on to our custom View.

It has two Bitmap members, one storing an image of Bob (introduced in Chapter 3) in
RGB565 format, and another storing Bob in ARGB4444 format. We also have a Rect
member where we store the destination rectangle for rendering.

CHAPTER 4: Android for Game Developers

In the constructor of the RenderView class, we first load Bob into the bob565 member of
the View. Note that the image is loaded from an RGB888 PNG file, and that the
BitmapFactory will automatically convert this to an RGB565 image. To prove this, we
also output the Bitmap.Config of the Bitmap to LogCat. The RGB888 version of Bob has
an opaque white background, so no blending needs to be performed.

Next we load Bob from an ARGB8888 PNG file stored in the assets/ directory. To save
some memory, we also tell the BitmapFactory to convert this image of Bob to an
ARGB4444 bitmap. The factory may not obey this request (for unknown reasons). To see
whether it was nice to us, we ouput the Bitmap.Config file of this Bitmap to LogCat as well.

The onDraw() method is puny. All we do is draw bob565 scaled to 250x250 pixels (from
his original size of 160x183 pixels) and draw bob4444 on top of him, unscaled but
blended (which is done automagically by the Canvas). Figure 4-14 shows you the two
Bobs in all their glory.

=7

Figure 4-14. Two Bobs on top of each other (at 480x800-pixel resolution)

LogCat reports that bob565 indeed has the color format Config.RGB_565, and that
bob4444 was converted to Config.ARGB_4444. The BitmapFactory did not fail us!
Here are some things you should take away from this section:

Use the minimum color format you can get away with to conserve
memory. This might, however, come at the price of less visual quality
and slightly reduced rendering speed.

CHAPTER 4: Android for Game Developers

Unless absolutely necessary, refrain from drawing bitmaps scaled. If
you know their scaled size, prescale them offline or during loading
time.

Always make sure you call the Bitmap.recycle() method if you no
longer need a Bitmap. Otherwise you’ll get some memory leaks or run
low on memory.

Using LogCat all this time for text output is a bit tedious. Let’s see how we can render
text via the Canvas.

NOTE: As with other classes, there’s more to Bitmap than what | could describe in this couple of
pages. | covered the bare minimum we need to write Mr. Nom. If you want more, check out the
documentation on the Android Developers site.

Rendering Text

While the text we’ll output in the Mr. Nom game will be drawn by hand, it doesn’t hurt to
know how to draw text via TrueType fonts. Let’s start by loading a custom TrueType
font file from the assets/ directory.

Loading Fonts

The Android API provides us with a class called Typeface that encapsulates a TrueType
font. It provides a simple static method to load such a font file from the assets/
directory:

Typeface font = Typeface.createFromAsset(context.getAssets(), "font.ttf");

Interestingly enough, this method does not throw any kind of Exception if the font file
can’t be loaded. Instead a RuntimeException is thrown. Why no explicit exception is
thrown for this method is a bit of a mystery to me.

Drawing Text with a Font

Once we have our font, we set it as the Typeface of a Paint instance:
paint.setTypeFace(font);

Via the Paint instance, we also specify the size we want to render the font at:
paint.setTextSize(30);

The documentation of this method is again a little sparse. It doesn’t tell whether the text
size is given in points or pixels. We just assume the latter.

Finally, we can draw text with this font via the following Canvas method:

canvas.drawText("This is a test!", 100, 100, paint);

CHAPTER 4: Android for Game Developers

The first parameter is the text to draw. The next two parameters are the coordinates
where the text should be drawn to. The last argument is familiar to us: it’s the Paint
instance that specifies the color, font, and size of the text to be drawn. By setting the
color of the Paint, you also set the color of the text to be drawn.

Text Alignment and Boundaries

Now, you might wonder how the coordinates of the preceding method relate to the
rectangle the text string fills. Do they specify the top-left corner of the rectangle the text
is contained in? The answer is a bit more complicated. The Paint instance has an
attribute called the align setting. It can be set via this method of the Paint class:

Paint.setTextAlign(Paint.Align align);

The Paint.Align enumeration has three values: Paint.Align.LEFT, Paint.Align.CENTER,
and Paint.Align.RIGHT. Depending on what alignment is set, the coordinates passed to
the Canvas.drawText() method are interpreted as either the top-left corner of the
rectangle, the top-center pixel of the rectangle, or the top-right corner of the rectangle.
The standard alignment is Paint.Align.LEFT.

Sometimes it’s also useful to know the bounds of a specific string in pixels. For this, the
Paint class offers the following method:

Paint.getTextBounds(String text, int start, int end, Rect bounds);

The first argument is the string we want to get the bounds for. The second and third
arguments specify the start character and the end character within the string that should
be measured. The end argument is exclusive. The final argument, bounds, is a Rect
instance we allocate ourselves and pass into the method. The method will write the
width and height of the bounding rectangle into the Rect.right and Rect.bottom fields.
For convenience we can call Rect.width() and Rect.height() to get the same values.

Note that all these methods work on a single line of text only. If we want to render
multiple lines, we have to do the layout ourselves.

Putting It All Together

Enough talk, let’s do some more coding. Listing 4-15 shows you text rendering in
action.

Listing 4-15.The FontTest Activity

package com.badlogic.androidgames;

import android.app.Activity;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Rect;
import android.graphics.Typeface;
import android.os.Bundle;

CHAPTER 4: Android for Game Developers

import android.view.View;
import android.view.Window;
import android.view.WindowManager;

public class FontTest extends Activity {
class RenderView extends View {
Paint paint;
Typeface font;
Rect bounds = new Rect();

public RenderView(Context context) {

super(context);

paint = new Paint();

font = Typeface.createfFromAsset(context.getAssets(), "font.ttf");
}

protected void onDraw(Canvas canvas) {
paint.setColor(Color.YELLOW);
paint.setTypeface(font);
paint.setTextSize(28);
paint.setTextAlign(Paint.Align.CENTER);
canvas.drawText("This is a test!", canvas.getWidth() / 2, 100,
paint);

String text = "This is another test o _0";

paint.setColor(Color.WHITE);

paint.setTextSize(18);

paint.setTextAlign(Paint.Align.LEFT);

paint.getTextBounds(text, 0, text.length(), bounds);

canvas.drawText(text, canvas.getWidth() - bounds.width(), 140,
paint);

invalidate();

}

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE NO TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG FULLSCREEN);
setContentView(new RenderView(this));

}
We won’t discuss the onCreate() method of the activity, since we’ve seen it before.

Our RenderView implementation has three members: a Paint, a Typeface, and a Rect,
where we’ll store the bounds of a text string later on.

In the constructor we create a new Paint instance and load a font from the file font.ttf
in the assets/ directory.

In the onDraw() method, we set the Paint to the color yellow, set the font and its size,
and specify the text alignment to be used when interpreting the coordinates in the call to

CHAPTER 4: Android for Game Developers

Canvas.drawText (). The actual drawing call renders the string This is a test!,
centered horizontally at coordinate 100 on the y-axis.

For the second text-rendering call, we do something else: we want the text to be right-
aligned with the right edge of the screen. We could do this by using Paint.Align.RIGHT
and an x-coordinate of Canvas.getWidth() - 1. Instead we do it the hard way by using
the bounds of the string to practice very basic text layout a little. We also change the
color and the size of the font for rendering. Figure 4-15 shows the output of this activity.

This is a test!
This is another test o 0

Figure 4-15. Fun with text (480x800-pixel resolution)

Another mystery of the Typeface class is that it does not allow us to explicitly release all
its resources. We have to rely on the garbage collector to do the dirty work for us.

NOTE: We only scratched the surface of text rendering here. If you want to know more . . . well, |
guess by now you know where to look.

Continuous Rendering with SurfaceView

This is the section where we become real women and men. It involves threading and all
the pain that is associated with it. We’ll get through it alive. | promise!

CHAPTER 4: Android for Game Developers

Motivation

When we first tried to do continuous rendering, we did it the wrong way. Hogging the Ul
thread is unacceptable; we need a solution that does all the dirty work in a separate
thread. Enter SurfaceView.

As the name gives away, the SurfaceView class is a View that handles a Surface, another
class of the Android API. What is a Surface? It’s an abstraction of a raw buffer that is
used by the screen compositor for rendering that specific View. The screen compositor
is the mastermind behind all rendering on Android, and is ultimately responsible for
pushing all pixels to the GPU. The Surface can be hardware accelerated in some cases.
We don’t care that much about that fact, though. All we need to know is that it is a more
direct way to render things to the screen.

Our goal is it to perform our rendering in a separate thread so that we do not hog the Ul
thread, which is busy with other things. The SurfaceView class provides us with a way to
render to it from a thread other than the Ul thread.

SurfaceHolder and Locking

In order to render to a SurfaceView from a different thread than the Ul thread, we need
to acquire an instance of the SurfaceHolder class, like this:

SurfaceHolder holder = surfaceView.getHolder();

The SurfaceHolder is a wrapper around the Surface, and does some bookkeeping for
us. It provides us with two methods:

Canvas SurfaceHolder.lockCanvas();
SurfaceHolder.unlockAndPost(Canvas canvas);

The first method locks the Surface for rendering and returns a nice Canvas instance we
can use. The second method unlocks the Surface again and makes sure that what
we’ve drawn via the Canvas gets displayed on the screen. We will use these two
methods in our rendering thread to acquire the Canvas, render with it, and finally make
the image we just rendered visible on the screen. The Canvas we have to pass to the
SurfaceHolder.unlockAndPost() method must be the one we received from the
SurfaceHolder.lockCanvas() method.

The Surface is not immediately created when the SurfaceView is instantiated. Instead it
is created asynchronously. The surface will be destroyed each time the activity is
paused and recreated when the activity is resumed again.

Surface Creation and Validity

We cannot acquire the Canvas from the SurfaceHolder as long as the Surface is not yet
valid. However, we can check whether the Surface has been created or not via the
following statement:

boolean isCreated = surfaceHolder.getSurface().isValid();

CHAPTER 4: Android for Game Developers

If this method returns true, we can safely lock the surface and draw to it via the Canvas
we receive. We have to make absolutely sure that we unlock the Surface again after a
call to SurfaceHolder.lockCanvas(), or else our activity might lock up the phone!

Putting It All Together

So how do we integrate all this with a separate rendering thread, as well as with the
activity life cycle? The best way to figure this out is to look at some actual code. Listing
4-16 shows you a complete example that performs the rendering in a separate thread
on a SurfaceView.

Listing 4-16. The SurfaceViewTest Activity

package com.badlogic.androidgames;

import
import
import
import
import
import
import
import

public

android.
android.
android.

android

android

app.Activity;
content.Context;
graphics.Canvas;

.0s.Bundle;
android.
android.

view.SurfaceHolder;
view.SurfaceView;

.view.Window;
android.

view.WindowManager;

class SurfaceViewTest extends Activity {
FastRenderView renderView;

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

requestWindowFeature(Window.FEATURE NO TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG FULLSCREEN);
renderView = new FastRenderView(this);
setContentView(renderView);

}

protected void onResume() {
super.onResume();
renderView.resume();

protected void onPause() {
super.onPause();
renderView.pause();

}

class FastRenderView extends SurfaceView implements Runnable {

Thread

renderThread = null;

SurfaceHolder holder;
volatile boolean running = false;

public

FastRenderView(Context context) {

super(context);
holder = getHolder();

CHAPTER 4: Android for Game Developers

public void resume() {
running = true;
renderThread = new Thread(this);
renderThread.start();

}

public void run() {
while(running) {
if(!holder.getSurface().isValid())
continue;

Canvas canvas = holder.lockCanvas();
canvas.drawRGB(255, 0, 0);
holder.unlockCanvasAndPost(canvas);

}

public void pause() {
running = false;
while(true) {

try {
renderThread. join();

} catch (InterruptedException e) {
// retry

}
}
}

This doesn’t look all that intimidating, does it? Our activity holds a FastRenderView
instance as a member. This is a custom SurfaceView subclass that will handle all the
thread business and surface locking for us. To the activity, it looks like a plain-old View.

In the onCreate() method we enable full-screen mode, create the FastRenderView
instance, and set it as the content view of the activity.

We also override the onResume () method this time. In this method we will start our
rendering thread indirectly by calling the FastRenderView.resume() method, which does
all the magic internally. This means that the thread will get started when the activity is
initially created (because onCreate() is always followed by a call to onResume()). It will
also get restarted when the activity is resumed from a paused state.

This of course implies that we have to stop the thread somewhere; otherwise we’d
create a new thread every time onResume() was called. That’s where onPause() comes
in. It calls the FastRenderView.pause() method, which will completely stop the thread.
The method will not return before the thread is completely stopped.

So let’s look at the core class of this example: FastRenderView. It’s similar to the
RenderView classes we implemented in the last couple of examples in that it derives from
another View class. In this case we directly derive it from the SurfaceView class. It also
implements the Runnable interface so that we can pass it to the rendering thread in order
for it to run the render thread logic.

CHAPTER 4: Android for Game Developers

The FastRenderView class has three members. The renderThread member is simply a
reference to the Thread instance that will be responsible for executing our rendering
thread logic. The holder member is a reference to the SurfaceHolder instance we get
from the SurfaceView superclass we derive from. Finally, the running member is a
simple boolean flag we will use to signal the rendering thread that it should stop
execution. The volatile modifier has a special meaning we’ll get to in a minute.

All we do in the constructor is call the superclass constructor and store the reference to
the SurfaceHolder in the holder member.

Next comes the FastRenderView.resume() method. It is responsible for starting up the
rendering thread. Notice that we create a new Thread each time this method is called.
This is in line with what we discussed when we talked about the activity’s onResume()
and onPause() methods. We also set the running flag to true. You’ll see how that’s used
in the rendering thread in a bit. The final piece to take away is that we set the
FastRenderView instance itself as the Runnable of the thread. This will execute the next
method of the FastRenderView in that new thread.

The FastRenderView.run() method is the workhorse of our custom View class. Its body
is executed in the rendering thread. As you can see, it’s merely composed of a loop that
will stop executing as soon as the running flag is set to false. If that happens, the
thread will also be stopped and die. Inside the while loop, we first check whether the
Surface is valid, and if it is we lock it, render to it, and unlock it again, as discussed
earlier. In this example we simply fill the Surface with the color red.

The FastRenderView.pause() method looks a little strange. First we set the running flag
to false. If you look up a little, you will see that the while loop in the
FastRenderView.run() method will eventually terminate due to this, and hence stop the
rendering thread. In the next couple of lines we simply wait for the thread to completely
die by invoking Thread. join(). This method will wait for the thread to die, but might
throw an InterruptedException before the thread actually dies. Since we have to make
absolutely sure that the thread is dead before we return from that method, we perform
the join in an endless loop until it is successful.

Let’s come back to the volatile modifier of the running flag. Why do we need it? The
reason is delicate: the compiler might decide to reorder the statements in the
FastRenderView.pause() method if it recognizes that there are no dependencies
between the first line in that method and the while block. It is allowed to do this if it
thinks it will make the code execute faster. However, we depend on the order of
execution that we specified in that method. Imagine if the running flag were set after we
tried to join the thread. We’d go into an endless loop, as the thread would never
terminate.

The volatile modifier prevents this from happening. Any statements where this member
is referenced will be executed in order. This saves us from a nasty heisenbug, a bug that
comes and goes without the ability to be consistently reproduced.

There’s one more thing you might think will make this code explode. What if the surface
is destroyed between the calls to SurfaceHolder.getSurface().isvalid() and

CHAPTER 4: Android for Game Developers

SurfaceHolder.lock()? Well, we are lucky —this can never happen. To understand why,
we have to take a step back and see how the life cycle of the Surface works.

We know that the Surface is created asynchronously. It is likely that our rendering thread
will execute before the Surface is valid. We safeguard against this by not locking the
Surface unless it is valid. So that covers the surface creation case.

The reason the rendering thread code does not explode from the Surface being
destroyed between the validity check and the locking has to with the point in time the
Surface gets destroyed. The Surface is always destroyed after we return from the
activity’s onPause() method. And since we wait for the thread to die in that method via
the call to FastRenderView.pause(), the rendering thread will not be alive anymore when
the Surface is actually destroyed. Sexy, isn’t it? But it’s also confusing.

We now perform our continuous rendering the right way. We do not hog the Ul thread
anymore, but use a separate rendering thread instead. We made it respect the activity
life cycle as well, so that it does not run in the background, eating the battery while the
activity is paused. The whole world is a happy place again. Of course, we’ll need to
synchronize the processing of input events in the Ul thread with our rendering thread.
But that will turn out to be really easy, which you’ll see in the next chapter when we
implement our game framework based on all the information you digested in this
chapter.

Best Practices

Android (or rather Dalvik) has some strange performance characteristics at times. To
round of this chapter, I'll present to you some of the most important best practices you
should follow to make your games as smooth as silk.

The garbage collector is your biggest enemy. Once it gets CPU time to
do its dirty work, it will stop the world for up to 600 ms. That’s half a
second that our game will not update or render. The user will
complain. Avoid object creation as much as possible, especially in
your inner loops.

Objects can get created in some not-so-obvious places, which you’ll
want to avoid. Don’t use iterators, as they create new objects. Don’t
use any of the standard Set or Map collection classes, as they create
new objects on each insertion; use the SparseArray class provided by
the Android APl instead. Use StringBuffers instead of concatenating
strings with the + operator. That will create a new StringBuffer each
time. And for the love of all that’s good in this world, don’t use boxed
primitives!

Method calls have a larger associated cost in Dalvik than in other VMs.
Use static methods if you can, as those perform best. Static methods
are generally regarded as evil, much like static variables, as they
promote bad design. So try to keep your design as clean as possible.
You should maybe avoid getters and setters as well. Direct field

CHAPTER 4: Android for Game Developers

access is about three times faster than method invocations without the
JIT, and about seven times faster with the JIT. Again, think of your
design before removing all your getters and setters, though.

Floating-point operations are implemented in software on older
devices and Dalvik versions without a JIT (anything before Android
version 2.2). Old-school game developers would immediately fall back
to fixed-point math. Don’t do that either, since integer divisions are
slow as well. Most of the time you can get away with floats, though,
and newer devices sport floating-point units (FPUs), which speed
things up quite a bit once the JIT kicks in.

Try to cram frequently accessed values into local variables inside a
method. Accessing local variables is faster than accessing members
or calling getters.

There are of course more things we should be careful with. I'll sprinkle the rest of the
book with some performance hints when the context allows it. If you follow the
preceding recommendations, you should be on the safe side. Just don’t let the garbage
collector win!

Summary

This chapter covered everything we need to write a decent little 2D game for Android.
We looked at how easy it is to set up a new game project with some defaults. We
discussed the mysterious activity life cycle and how to live with it. We battled with touch
(and more importantly, multitouch) events, processed key events, and checked the
orientation of our device via the accelerometer. We explored how to read and write files.
Outputting audio on Android turns out to be child’s play, and apart from the threading
issues with the SurfaceView, drawing stuff to the screen isn’t that hard either. Mr. Nom
can now become a reality—a terrible, hungry reality!

Chapter

An Android Game
Development Framework

We’ve been through four chapters already and haven’t written a single line of game
code. The reason I’'ve put you through all this boring theory and let you implement silly
little test programs is simple: if you want to write games, you have to know exactly
what’s going on. You can’t just copy and paste together code from all over the Web and
hope that it will magically form the next first-person shooter hit. You should now have a
firm grasp on how to design a simple game from the ground up, how to structure a nice
API for 2D game development, and which Android APIs provide the functionality to
implement your ideas.

To make Mr. Nom a reality, we have to do two things: implement the game framework
interfaces and classes we designed in Chapter 3, and based on that, code up the game
mechanics of Mr. Nom. Let’s start with the game framework by merging what we
designed in Chapter 3 with what we discussed in Chapter 4. Ninety percent of the code
should be familiar to you already, since we did most of it in the tests in the last chapter.

Plan of Attack

In Chapter 3 we laid out a very minimal and clean design for a game framework that
abstracts away all the platform specifics and let’s us concentrate on what we are here
for: game development. We’'ll implement all these interfaces and abstract classes now,
in a bottom-up fashion, from easiest to hardest. The interfaces of Chapter 3 are located
in the package com.badlogic.androidgames.framework. We’ll put our implementation in
the package com.badlogic.androidgames.framework.impl, indicating that this holds the
actual implementation of the framework for Android. We’'ll prefix all our interface
implementations with Android so that we can distinguish them from the interfaces. Let’s
start off with the easiest part: file 1/0.

185

CHAPTER 5: An Android Game Development Framework

The code of this and the next chapter will be merged into a single Eclipse project. For
now, just create a new Android project in Eclipse following the steps in the last chapter.
How you name your default activity at this point doesn’t matter for now.

The AndroidFilel0Q Class

The original FileIO interface was lean and mean. It only contained three methods: one
to get an InputStream for an asset, another to get an InputStream for a file on the
external storage, and a third that returns an OutputStream for a file on the external
storage. In Chapter 4 you learned how we can open assets and files on the external
storage with the Android APIs. Listing 5-1 shows you the implementation of the FileIO
interface we’ll use based on the knowledge from Chapter 4.

Listing 5-1. AndroidFilel0.java; Implementing the FilelO Interface

package com.badlogic.androidgames.framework.impl;

import java.io.File;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import android.content.res.AssetManager;
import android.os.Environment;

import com.badlogic.androidgames.framework.FileIO;

public class AndroidFileIO implements FileIO {
AssetManager assets;
String externalStoragePath;

public AndroidFileIO(AssetManager assets) {
this.assets = assets;
this.externalStoragePath = Environment.getExternalStorageDirectory()
.getAbsolutePath() + File.separator;

}

@0verride
public InputStream readAsset(String fileName) throws IOException {
return assets.open(fileName);

@0verride

public InputStream readFile(String fileName) throws IOException {
return new FileInputStream(externalStoragePath + fileName);

}

@0verride

public OutputStream writeFile(String fileName) throws IOException {
return new FileOutputStream(externalStoragePath + fileName);

}

CHAPTER 5: An Android Game Development Framework

Everything’s straightforward. We implement the FileIO interface, store an AssetManager
along with the path of the external storage, and implement the three methods based on
this. We pass through any IOExceptions that get thrown so we’ll know if anything is fishy
on the calling side.

Our Game interface implementation will hold an instance of this class and return it via
Game.getFileIO(). This also means that our Game implementation will need to pass in the
AssetManager later on for the AndroidFilel0 instance to work.

Note that we do not check for the external storage to be available. If it's not available, or
if we forgot to add the proper permission to the manifest file, we’ll get an exception, so
error checking is done implicitly. So we can move on to the next pieces of our
framework: audio.

AndroidAudio, AndroidSound, and AndroidMusic:
Crash, Bang, Boom!

We designed three interfaces in Chapter 3 for all our audio needs: Audio, Sound, and
Music. Audio is responsible for creating Sound and Music instances from asset files. Sound
let’s us playback sound effects completely stored in RAM, and Music streams bigger
music files from disk to the audio card. In Chapter 4 you learned what Android APIs we
need to implement this. We start off with the implementation of AndroidAudio, as shown
in Listing 5-2.

Listing 5-2. AndroidAudio.java; Implementing the Audio Interface

package com.badlogic.androidgames.framework.impl;
import java.io.IOException;

import android.app.Activity;

import android.content.res.AssetFileDescriptor;
import android.content.res.AssetManager;

import android.media.AudioManager;

import android.media.SoundPool;

import com.badlogic.androidgames.framework.Audio;
import com.badlogic.androidgames.framework.Music;
import com.badlogic.androidgames.framework.Sound;

public class AndroidAudio implements Audio {
AssetManager assets;
SoundPool soundPool;

The AndroidAudio implementation has an AssetManager and a SoundPool instance. The
AssetManager is needed so that we can load sound effects from asset files into the
SoundPool on a call to AndroidAudio.newSound(). The SoundPool itself is also managed
by the AndroidAudio instance.

public AndroidAudio(Activity activity) {
activity.setVolumeControlStream(AudioManager.STREAM MUSIC);

CHAPTER 5: An Android Game Development Framework

this.assets = activity.getAssets();
this.soundPool = new SoundPool(20, AudioManager.STREAM MUSIC, 0);

}

In the constructor we pass in the Activity of our game for two reasons: it allows us to
set the volume control to the media stream (remember we always want to do that), and it
gives us an AssetManager instance, which we happily store in the corresponding
member of the class. The SoundPool is configured to be able to play back 20 sound
effects in parallel—enough for our needs.

@verride
public Music newMusic(String filename) {

try {
AssetFileDescriptor assetDescriptor = assets.openFd(filename);

return new AndroidMusic(assetDescriptor);
} catch (IOException e) {

throw new RuntimeException("Couldn't load music
}

+ filename + "'");

}

The newMusic() method creates a new AndroidMusic instance. The constructor of that
class takes an AssetFileDescriptor, from which it creates a MediaPlayer internally
(more on that in a bit). The AssetManager.openFd() method throws an I0Exception in
case something goes wrong. We catch it and rethrow it as a RuntimeException. Why not
hand the I0Exception to the caller? First, it would clutter the calling code considerably,
so we would rather throw a RuntimeException, which does not have to be caught
explicitly. Second, we load the music from an asset file. It will only fail if we actually
forget to add the music file to the assets/ directory or if our music file contains bogus
bytes. These would constitute unrecoverable errors, as we need that Music instance for
our game to function properly. To avoid that, we’ll employ the strategy of throwing a
RuntimeException instead of checked exceptions in a few more places in our game
framework.

@verride
public Sound newSound(String filename) {

try {
AssetFileDescriptor assetDescriptor = assets.openFd(filename);

int soundId = soundPool.load(assetDescriptor, 0);

return new AndroidSound(soundPool, soundId);
} catch (IOException e) {

throw new RuntimeException("Couldn't load sound '" + filename + "'");
}

}

Finally, the newSound() method loads a sound effect from an asset into the SoundPool
and returns an AndroidSound instance. The constructor of that instance takes a
SoundPool and the ID of the sound effect the SoundPool assigned to it. We again throw
any checked exception and rethrow it as an unchecked RuntimeException.

CHAPTER 5: An Android Game Development Framework

NOTE: We do not release the SoundPool in any of the methods. The reason for this is that there
will always be a single Game instance holding a single Audio instance that holds a single
SoundPool instance. The SoundPool instance will thus be alive as long as the activity (and
with it our game) is alive. It will be destroyed automatically as soon as the activity drops dead.

Next up is the AndroidSound class, which implements the Sound interface. Listing 5-3
shows you its implementation.

Listing 5-3. AndroidSound.java; Implementing the Sound Interface

package com.badlogic.androidgames.framework.impl;
import android.media.SoundPool;
import com.badlogic.androidgames.framework.Sound;

public class AndroidSound implements Sound {
int soundId;
SoundPool soundPool;

public AndroidSound(SoundPool soundPool, int soundId) {
this.soundId = soundId;
this.soundPool = soundPool;

}

@0verride
public void play(float volume) {
soundPool.play(soundId, volume, volume, 0, 0, 1);

@0verride

public void dispose() {
soundPool.unload(soundId);

}

}

No surprises here. We simply store the SoundPool and the ID of the loaded sound effect
for later playback and disposal via the play() and dispose() methods. It doesn’t get any
easier. All hail to the Android API.

Finally we have to implement the AndroidMusic class returned by
AndroidAudio.newMusic(). Listing 54 shows the code for that class. It looks a little
more complex than before. That’s due to the state machine that the MediaPlayer really
uses, which will throw exceptions like mad if we call methods in certain states.

Listing 5-4. AndroidMusic.java; Implementing the Music Interface
package com.badlogic.androidgames.framework.impl;

import java.io.IOException;

import android.content.res.AssetFileDescriptor;
import android.media.MediaPlayer;

CHAPTER 5: An Android Game Development Framework

import android.media.MediaPlayer.OnCompletionListener;
import com.badlogic.androidgames.framework.Music;

public class AndroidMusic implements Music, OnCompletionListener {
MediaPlayer mediaPlayer;
boolean isPrepared = false; package com.badlogic.androidgames.framework.impl;

import java.io.IOException;

import android.content.res.AssetFileDescriptor;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;

import com.badlogic.androidgames.framework.Music;

public class AndroidMusic implements Music, OnCompletionListener {
MediaPlayer mediaPlayer;
boolean isPrepared = false;

The AndroidMusic class stores a MediaPlayer instance along with a boolean called
isPrepared. Remember, we can only call MediaPlayer.start()/stop()/pause() when the
MediaPlayer is prepared. This member helps us keep track of the MediaPlayer’s state.

The AndroidMusic class implements not only the Music interface, but also the
OnCompletionListener interface. In Chapter 3 we briefly defined this interface as a
means to get informed about when a MediaPlayer has stopped playing back a music
file. If this happens, then the MediaPlayer needs to be prepared again before we can
invoke any of the other methods on it. The method
OnCompletionListener.onCompletion() might be called in a separate thread, and since
we set the isPrepared member in this method, we have to make sure that it is safe from
concurrent modifications.

public AndroidMusic(AssetFileDescriptor assetDescriptor) {
mediaPlayer = new MediaPlayer();
try {
mediaPlayer.setDataSource(assetDescriptor.getFileDescriptor(),
assetDescriptor.getStartoffset(),
assetDescriptor.getlength());
mediaPlayer.prepare();
isPrepared = true;
mediaPlayer.setOnCompletionListener(this);
} catch (Exception e) {
throw new RuntimeException("Couldn't load music");
}

}

In the constructor we create and prepare the MediaPlayer from the AssetFileDescriptor
that gets passed in, and we set the isPrepared flag, along with registering the
AndroidMusic instance as an OnCompletionListener with the MediaPlayer. If anything
goes wrong, we again throw an unchecked RuntimeException.

@0verride
public void dispose() {

CHAPTER 5: An Android Game Development Framework

if (mediaPlayer.isPlaying())
mediaPlayer.stop();
mediaPlayer.release();

}

The dispose() method first checks if the MediaPlayer is still playing, and if so, stops it.
Otherwise the call to MediaPlayer.release() would throw a runtime exception.

@0verride

public boolean isLooping() {
return mediaPlayer.isLooping();

}

@0verride
public boolean isPlaying() {
return mediaPlayer.isPlaying();

@0verride
public boolean isStopped() {
return lisPrepared;

The methods isLooping(), isPlaying(), and isStopped() are straightforward. The first
two use methods provided by the MediaPlayer; the last one uses the isPrepared flag,
which indicates if the MediaPlayer is stopped —something MediaPlayer.isPlaying()
does not necessarily tell us, as it returns false in case the MediaPlayer is paused but
not stopped.

@0verride
public void play() {
if (mediaPlayer.isPlaying())
return;

try {
synchronized (this) {
if (!isPrepared)
mediaPlayer.prepare();
mediaPlayer.start();

} catch (IllegalStateException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

The play() method is a little involved. If we are already playing, we simply return from
the function. Next we have a mighty try...catch block within which we first check if the
MediaPlayer is already prepared based on our flag, and prepare it if needed. If all goes
well, we call the MediaPlayer.start() method, which will start the playback. All this is
done in a synchronized block, as we use the isPrepared flag, which might get set on a

CHAPTER 5: An Android Game Development Framework

separate thread due to our implementing the OnCompletionListener interface. In case
something goes wrong, we again throw an unchecked RuntimeException.

@0verride
public void setLooping(boolean isLooping) {
mediaPlayer.setLooping(isLooping);

@0verride
public void setVolume(float volume) {
mediaPlayer.setVolume(volume, volume);

The setLooping() and setVolume() methods can be called in any state of the
MediaPlayer, and just delegate to the respective MediaPlayer methods.

@0verride
public void stop() {
mediaPlayer.stop();
synchronized (this) {
isPrepared = false;

}

The stop() method stops the MediaPlayer and sets the isPrepared flag in a
synchronized block again.

@0verride
public void onCompletion(MediaPlayer player) {
synchronized (this) {
isPrepared = false;

}

Finally there’s the OnCompletionListener.onCompletion() method that the AndroidMusic
class implements. All it does is set the isPrepared flag in a synchronized block so the
other methods don’t start throwing exceptions out of the blue.

Next we’ll move on to our input-related classes.

Androidinput and AccelerometerHandler

The Input interface we designed in Chapter 3 grants us access to the accelerometer,
the touchscreen and the keyboard in polling and event modes via a couple of
convenient methods. Putting all the code for an implementation of that interface into a
single file is a bit nasty, though, so we will outsource all the input event handling into
handler classes. The Input implementation will then use those handlers to pretend that it
is actually performing all the work.

CHAPTER 5: An Android Game Development Framework

AccelerometerHandler: Which Side Is Up?

Let’s start with the easiest of all handlers: the AccelerometerHandler. Listing 5-5 shows
you its code.

Listing 5-5. AccelerometerHandler.java; Performing All the Accelerometer Handling

package com.badlogic.androidgames.framework.impl;

import android.content.Context;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventlListener;
import android.hardware.SensorManager;

public class AccelerometerHandler implements SensorEventlListener {
float accelX;
float accely;
float accelZ;

public AccelerometerHandler(Context context) {
SensorManager manager = (SensorManager) context
.getSystemService(Context.SENSOR_SERVICE);
if (manager.getSensorList(Sensor.TYPE ACCELEROMETER).size() != 0) {
Sensor accelerometer = manager.getSensorList(
Sensor.TYPE ACCELEROMETER).get(0);
manager.registerListener(this, accelerometer,
SensorManager.SENSOR _DELAY GAME);

}

@0verride
public void onAccuracyChanged(Sensor sensor, int accuracy) {
// nothing to do here

@0verride

public void onSensorChanged(SensorEvent event) {
accelX = event.values[0];
accelY = event.values[1];
accelZ = event.values[2];

}

public float getAccelX() {
return accelX;

public float getAccelY() {
return accely;
}

public float getAccelZ() {
return accelZ;

CHAPTER 5: An Android Game Development Framework

Unsurprisingly, the class implements the SensorEventListener interface, which we used
in Chapter 4. The class stores three members, holding the acceleration on each of the
three accelerometer axes.

The constructor takes a Context, from which it gets a SensorManager instance to set up
the event listening. The rest of the code is equivalent to what we did in the last chapter.
Note that if no accelerometer is installed, the handler will happily return zero
acceleration on all axes throughout its life. We thus don’t need any extra error-checking
or exception-throwing code.

The next two methods, onAccuracyChanged() and onSensorChanged(), should also be
familiar. In the first we don’t do anything, as there’s nothing much to report. In the
second one we fetch the accelerometer values from the provided SensorEvent and store
them in the handler’s members.

The final three methods simply return the current acceleration for each axis.

Note that we do not need to perform any synchronization here, even though the
onSensorChanged() method might be called in a different thread. The Java memory
model guarantees that writes and reads to and from primitive types such as boolean, int,
or byte are atomic. In this case it’s OK to rely on this fact, as we don’t do anything more
complex than assigning a new value. We’d need to have proper synchronization if this
were not the case (e.g., if we did something with the member variables in the
onSensorChanged() method.

The Pool Class: Because Reuse is Good for You!

What'’s the worst thing that can happen to us as Android developers? World-stopping
garbage collection! If you look at the Input interface definition in Chapter 3, you’ll find
the methods getTouchEvents() and getKeyEvents(). These return lists of TouchEvents
and KeyEvents. In our keyboard and touch event handlers, we’ll constantly create
instances of these two classes and store them in lists internal to the handlers. The
Android input system fires a lot of those events when a key is pressed or a finger is
touching the screen, so we’d constantly create new instances that will get collected by
the garbage collector in short intervals. In order to avoid this, we will implement a
concept known as instance pooling. Instead of creating new instances of a class
frequently, we’ll simply reuse previously created instances. The Pool class is a
convenient way to implement that behavior. Let’s have a look at its code in Listing 5-6.

Listing 5-6. Pool.java; Playing Well with the Garbage Collector

package com.badlogic.androidgames.framework;

import java.util.Arraylist;
import java.util.list;

public class Pool<T> {

Here come generics: the first thing to recognize is that this class is a generically typed
class, much like collection classes, such as ArraylList or HashMap. Generics allow us to

CHAPTER 5: An Android Game Development Framework

store any type of object in our Pool without having to cast like mad. So what does the
Pool class do?

public interface PoolObjectFactory<T> {
public T createObject();

The first thing that’s defined is an interface called PoolObjectFactory, which is again
generic. It has a single method, createObject(), which will return a shiny new object
that has the generic type of the Pool/PoolObjectFactory instance.

private final List<T> freeObjects;
private final PoolObjectFactory<T> factory;
private final int maxSize;

The Pool class has three members: an ArraylList to store pooled objects, a
PoolObjectFactory that is used to generate new instances of the type the class holds,
and a member that stores the maximum number of objects the Pool can hold. The last
bit is needed so that our Pool does not grow indefinitely; otherwise we might run into an
out-of-memory exception.

public Pool(PoolObjectFactory<T> factory, int maxSize) {
this.factory = factory;
this.maxSize = maxSize;
this.freeObjects = new ArraylList<T>(maxSize);

}

The constructor of the Pool class takes a PoolObjectFactory and the maximum number
of objects it should store. We store both parameters in the respective members and
instantiate a new ArraylList with the capacity set to the maximum number of objects.

public T newObject() {
T object = null;

if (freeObjects.size() == 0)
object = factory.createObject();
else
object = freeObjects.remove(freeObjects.size() - 1);

return object;

}

The newObject() method is responsible for either handing us a brand-new instance of
the type that the Pool holds via the PoolObjectFactory.newObject() method, or
returning a pooled instance in case there’s one in the freeObjects Arraylist. If we use
this method, we’ll get recycled objects as long as the Pool has some stored in the
freeObjects list. Otherwise the method will create a new one via the factory.

public void free(T object) {
if (freeObjects.size() < maxSize)
freeObjects.add(object);

CHAPTER 5: An Android Game Development Framework

The free() method lets us reinsert objects we no longer use. All it does is insert the
object into the freeObjects list if it is not filled to capacity yet. If the list is full, the object
is not added, and is likely to be consumed by the garbage collector the next time it
executes.

So how can we use that class? Let’s look at some pseudocode usage of the Pool class
in conjunction with touch events:

PoolObjectFactory<TouchEvent> factory = new PoolObjectFactory<TouchEvent>() {
@0verride
public TouchEvent createObject() {
return new TouchEvent();
}
};

Pool<TouchEvent> touchEventPool = new Pool<TouchEvent>(factory, 50);
TouchEvent touchEvent = touchEventPool.newObject();

.. do something here ..

touchEventPool.free(touchEvent);

We first define a PoolObjectFactory that creates TouchEvent instances. Next we
instantiate the Pool, telling it to use our factory and that it should maximally store 50
TouchEvents. When we want a new TouchEvent from the Pool, we call the Pool’s
newObject() method. Initially the Pool is empty, so it will ask the factory to create a
brand-new TouchEvent instance. When we no longer need the TouchEvent, we can
reinsert it into the Pool by calling the Pool’s free() method. The next time we call the
newObject() method, we will get the same TouchEvent instance again, recycling it so the
garbage collector doesn’t get mad at us. That class will come in handy in a couple of
places. Just note that you have to take care if you reuse objects: it’s easy to not fully
reinitialize them when they’re fetched from the Pool.

KeyboardHandler: Up, Up, Down, Down, Left, Right . ..

The KeyboardHandler has to fulfill a couple of tasks. First it must hook up with the View
from which keyboard events are to be received. Next it must store the current state of
each key for polling. It must also keep a list of KeyEvent instances, which we designed in
Chapter 3 for event-based input handling. Finally it must properly synchronize all this, as
it will receive events on the Ul thread while being polled from our main game loop, which
is executed on a different thread. Quite a lot of work. As a little refresher, let me show
you the KeyEvent class again, which we defined in Chapter 3 as part of the Input
interface:

public static class KeyEvent {
public static final int KEY DOWN = 0;
public static final int KEY UP = 1;

public int type;
public int keyCode;
public char keyChar;

CHAPTER 5: An Android Game Development Framework

It simply defines two constants encoding the key event type along with three members,
holding the type, key code, and Unicode character of the event. With this we can
implement our handler.

Listing 5-7 shows the implementation of the handler with the Android APIs discussed
earlier and our new Pool class.

Listing 5-7. KeyboardHandler.java: Handling Keys Since 2010

package com.badlogic.androidgames.framework.impl;

import java.util.Arraylist;
import java.util.list;

import android.view.View;
import android.view.View.OnKeylListener;

import com.badlogic.androidgames.framework.Input.KeyEvent;
import com.badlogic.androidgames.framework.Pool;
import com.badlogic.androidgames.framework.Pool.PoolObjectFactory;

public class KeyboardHandler implements OnKeylListener {
boolean[] pressedKeys = new boolean[128];
Pool<KeyEvent> keyEventPool;
List<KeyEvent> keyEventsBuffer = new ArraylList<KeyEvent>();
List<KeyEvent> keyEvents = new ArraylList<KeyEvent>();

The KeyboardHandler class implements the OnKeyListener interface so that it can
receive key events from a View. Next up are the members.

The first member is an array holding 128 booleans. We’ll store the current state (pressed
or not) of each key in this array. It is indexed by the key code of a key. Luckily for us, the
android.view.KeyEvent.KEYCODE XXX constants (which encode the key codes) are all in
the range between 0 and 127, so we can store them in this garbage collector—friendly
form. Note that by an unlucky accident our KeyEvent class shares its name with the
Android KeyEvent class, instances of which get passed to our
OnKeyEventListener.onKeyEvent() method. This slight confusion is limited to this
handler code only. As there’s hardly a better name for a key event than KeyEvent, we
chose to live with this short-lived confusion.

The next member is a Pool that holds instances of our KeyEvent class. We don’t want to
make the garbage collector angry, so we recycle all the KeyEvent objects we create.

The third member stores the KeyEvents that have not yet been consumed by our game.
Each time we get a new key event on the Ul thread we’ll add it to this list.

The last member stores the KeyEvents we’ll return upon a call to
KeyboardHandler.getKeyEvents(). We’ll see why we have to double-buffer the key
events in a minute.

public KeyboardHandler(View view) {
PoolObjectFactory<KeyEvent> factory = new PoolObjectFactory<KeyEvent>() {
@0verride
public KeyEvent createObject() {

CHAPTER 5: An Android Game Development Framework

return new KeyEvent();

}
}s
keyEventPool = new Pool<KeyEvent>(factory, 100);
view.setOnKeylListener(this);
view.setFocusableInTouchMode(true);
view.requestFocus();

}

The constructor has a single parameter consisting of the View we want to receive key
events from. We create the Pool instance with a proper PoolObjectFactory, register the
handler as an OnKeyListener with the View, and finally make sure that the View will
receive key events by making it the focused View.

@0verride
public boolean onKey(View v, int keyCode, android.view.KeyEvent event) {
if (event.getAction() == android.view.KeyEvent.ACTION MULTIPLE)
return false;

synchronized (this) {
KeyEvent keyEvent = keyEventPool.newObject();
keyEvent.keyCode = keyCode;
keyEvent.keyChar = (char) event.getUnicodeChar();
if (event.getAction() == android.view.KeyEvent.ACTION DOWN) {
keyEvent.type = KeyEvent.KEY DOWN;
if(keyCode > 0 && keyCode < 127)
pressedKeys[keyCode] = true;

if (event.getAction() == android.view.KeyEvent.ACTION UP) {
keyEvent.type = KeyEvent.KEY UP;
if(keyCode > 0 && keyCode < 127)
pressedKeys[keyCode] = false;

}
keyEventsBuffer.add(keyEvent);

return false;

}

Next up is our implementation of the OnKeyListener.onKey() interface method, which
gets called each time the View receives a new key event. We start by ignoring any
(Android) key events that encode a KeyEvent.ACTION_MULTIPLE event. These are not
relevant in our context. We follow that up with a tasty synchronized block. Remember
that the events are received on the Ul thread and read on the main loop thread, so we
have to make sure none of our members are accessed in parallel.

Within the synchronized block we first fetch a KeyEvent instance (of our KeyEvent
implementation) from the Pool. This will either get us a recycled instance or a brand-new
one, depending on the state of the Pool. Next we set the KeyEvent’s keyCode and
keyChar members based on the contents of the Android KeyEvent that got passed to the
method. We then decode the type of the Android KeyEvent and set the type of our
KeyEvent as well as the element in the pressedKey array accordingly. Finally we add our
KeyEvent to the keyEventBuffer list we defined earlier.

CHAPTER 5: An Android Game Development Framework

public boolean isKeyPressed(int keyCode) {
if (keyCode < 0 || keyCode > 127)
return false;
return pressedKeys[keyCode];

Next we have the isKeyPressed() method, which basically implements the semantics of
Input.isKeyPressed(). We pass in an integer specifying the key code (one of the
Android KeyEvent.KEYCODE_XXX constants) and return whether that key is pressed or not.
We do so by looking up the state of the key in the pressedKey array after some range
checking. Remember that we set the elements of this array in the previous method,
which gets called on the Ul thread. As we are again working with primitive types, there’s
no need for synchronization.

public List<KeyEvent> getKeyEvents() {

synchronized (this) {
int len = keyEvents.size();
for (int i = 0; 1 < len; i++)

keyEventPool.free(keyEvents.get(i));

keyEvents.clear();
keyEvents.addAll(keyEventsBuffer);
keyEventsBuffer.clear();
return keyEvents;

}

The last method of our handler is called getKeyEvents(), and implements the semantics
of the Input.getKeyEvents() method. We start off with a juicy synchronized block again,
remembering that this method will be called from a different thread.

Next we do something very mysterious. We loop through the keyEvents array and insert
all the KeyEvents stored in it into our Pool. Remember that we fetch instances from the
Pool in the onKey() method on the Ul thread. Here we reinsert them into the Pool. But
isn’t the keyEvents list empty? Yes, but only the first time we invoke that method. To
understand why that is, you have to grasp the rest of the method first.

After our mysterious Pool insertion loop, we clear the keyEvents list and fill it with the
events in our keyEventsBuffer list. Finally we clear the keyEventsBuffer list and return
the newly filled keyEvents list to the caller. What is happening here?

Let me illustrate it by giving you a simple example. We’ll examine what happens to the
keyEvents and keyEventsBuffer lists, as well as our Pool each time a new event arrives
on the Ul thread or the game is fetching the events in the main thread:

UI thread: onKey() ->

keyEvents = { }, keyEventsBuffer = {KeyEventi}, pool = { }
Main thread: getKeyEvents() ->

keyEvents = {KeyEventi}, keyEventsBuffer = { }, pool { }
UI thread: onKey() ->

keyEvents = {KeyEventi}, keyEventsBuffer = {KeyEvent2}, pool { }
Main thread: getKeyEvents() ->

keyEvents = {KeyEvent2}, keyEventsBuffer = { }, pool = {KeyEvent1}
UI thread: onKey() ->

CHAPTER 5: An Android Game Development Framework

keyEvents = {KeyEvent2}, keyEventsBuffer = {KeyEventi}, pool = { }

1. First we get a new event in the Ul thread. There’s nothing in the Pool
yet, so a new KeyEvent instance (KeyEvent1) is created and inserted into
the keyEventsBuffer list.

2. Next we call getKeyEvents() on the main thread. It takes KeyEvent1 from
the keyEventsBuffer list and puts it into the keyEvents list it returns to
the caller.

3. We get another event on the Ul thread. We still have nothing in the Pool,
so a new KeyEvent instance (KeyEvent2) is created and inserted into the
keyEventsBuffer list.

4. The main thread calls getKeyEvents() again. Now something interesting
happens. Upon entry into the method, the keyEvents list still holds
KeyEventi. The mysterious insertion loop will place that event into our
Pool. It then clears the keyEvents list and inserts any KeyEvent into the
keyEventsBuffer, in this case KeyEvent2. We just recycled a key event.

5. Finally another key event arrives on the Ul thread. This time we have a
free KeyEvent in our Pool, which we’ll happily reuse. Look mom, no
garbage collection!

This mechanism comes with one caveat, though: we have to call
KeyboardHandler.getKeyEvents() frequently or else the keyEvents list will fill up quickly,
and no objects will be returned to the Pool. As long as we remember this, all is well.

Touch Handlers

And now fragmentation hits us. In the last chapter we talked a little about the fact that
multitouch is supported on Android versions greater than 1.6 only. All the nice constants
we used in our multitouch code (e.g., MotionEvent.ACTION_POINTER_ID MASK) are not
available to us on Android 1.5 or 1.6. While we can use them in our code just fine if we
set the build target of our project to an Android version that has this API, the application
will crash on any device running Android 1.5 or 1.6. We want our games to run on all
currently available Android versions, so how do we solve this problem?

We employ a simple trick. We write two handlers, one using the single-touch API of
Android 1.5 and another using the multitouch API of Android 2.0 and above. As long as
we don’t execute the code of the multitouch handler on a device with a lower Android
version than 2.0, we are safe. The code won’t get loaded by the VM, and it won’t throw
exceptions like crazy. All we need to do is to find out which Android version the device is
running and instantiate the proper handler. You’ll see how that works when we discuss
the AndroidInput class. For now let’s concentrate on the two handlers.

CHAPTER 5: An Android Game Development Framework

The TouchHandler Interface

In order to be able to use our two handler classes interchangeably, we need to define a
common interface. Listing 5-8 shows this interface, called TouchHandler.

Listing 5-8. TouchHandler.java, to Be Implemented for Android 1.5 and 1.6.

package com.badlogic.androidgames.framework.impl;

import java.util.list;

import android.view.View.OnTouchListener;

import com.badlogic.androidgames.framework.Input.TouchEvent;

public interface TouchHandler extends OnTouchListener {
public boolean isTouchDown(int pointer);

public int getTouchX(int pointer);
public int getTouchY(int pointer);

public List<TouchEvent> getTouchEvents();
}

All TouchHandlers must also implement the OnTouchListener interface, which we use to
register the handler with a View. The methods of the interface correspond to the
respective methods in the Input interface defined in Chapter 3. The first three are for
polling the state of a specific pointer, and the last one is for getting TouchEvents so we
can do event-based input handling. Note that the polling methods take a pointer ID.

The SingleTouchHandler Class

In the case of our single-touch handler, we’ll ignore any IDs other than zero. As a
refresher, let’s recall the TouchEvent class defined in Chapter 3 as part of the Input
interface:

public static class TouchEvent {
public static final int TOUCH DOWN = 0;
public static final int TOUCH UP = 1;
public static final int TOUCH DRAGGED = 2;

public int type;
public int x, y;
public int pointer;

}

Like the KeyEvent class, it defines a couple of constants encoding the touch event’s
type, along with the x- and y-coordinates in the coordinate system of the View and the
pointer ID.

Listing 5-9 shows the implementation of the TouchHandler interface for Android 1.5 and
1.6.

CHAPTER 5: An Android Game Development Framework

Listing 5-9. SingleTouchHandler.java; Good with Single Touch, Not So Good with Multitouch

package com.badlogic.androidgames.framework.impl;

import java.util.Arraylist;
import java.util.list;

import android.view.MotionEvent;
import android.view.View;

import com.badlogic.androidgames.framework.Pool;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.Pool.PoolObjectFactory;

public class SingleTouchHandler implements TouchHandler {
boolean isTouched,;
int touchX;
int touchy;
Pool<TouchEvent> touchEventPool;
List<TouchEvent> touchEvents = new ArraylList<TouchEvent>();
List<TouchEvent> touchEventsBuffer = new Arraylist<TouchEvent>();
float scaleX;
float scaleY,

We start off by letting the class implement the TouchHandler interface, which also means
that we have to implement the OnTouchListener interface. Next are a couple of members
that should look familiar. We have three members storing the current state of the
touchscreen for one finger, followed by a Pool and two lists holding TouchEvents. This is
exactly the same thing we had in the KeyboardHandler. We also have two members,
scaleX and scaleY. We’'ll talk about those in a minute. We’ll use these to cope with
different screen resolutions.

NOTE: Of course, we could have made that more elegant by letting the KeyboardHandler and
SingleTouchHandler derive from a base class that handles all this pooling and
synchronization stuff. It would have complicated the explanation even more, though, so instead
we'll just write a few more lines of code.

public SingleTouchHandler(View view, float scaleX, float scaleY) {
PoolObjectFactory<TouchEvent> factory = new PoolObjectFactory<TouchEvent>() {
@0verride
public TouchEvent createObject() {
return new TouchEvent();
}
};

touchEventPool = new Pool<TouchEvent>(factory, 100);
view.setOnTouchListener(this);

this.scaleX
this.scaleY

scaleX;
scaleyY;

CHAPTER 5: An Android Game Development Framework

In the constructor we register the handler as an OnTouchListener and set up the Pool we
use to recycle TouchEvents. We also store the scaleX and scaleY parameters that are
passed to the constructor (and ignore them for now).

@0verride
public boolean onTouch(View v, MotionEvent event) {
synchronized(this) {

TouchEvent touchEvent = touchEventPool.newObject();

switch (event.getAction()) {

case MotionEvent.ACTION DOWN:
touchEvent.type = TouchEvent.TOUCH_DOWN;
isTouched = true;
break;

case MotionEvent.ACTION MOVE:
touchEvent.type = TouchEvent.TOUCH_DRAGGED;
isTouched = true;
break;

case MotionEvent.ACTION CANCEL:

case MotionEvent.ACTION UP:
touchEvent.type = TouchEvent.TOUCH UP;
isTouched = false;
break;

}

touchEvent.x = touchX = (int)(event.getX() * scaleX);
touchEvent.y = touchY = (int)(event.getY() * scaleY);
touchEventsBuffer.add(touchEvent);

return true;

}

The onTouch() method does the same thing as the onKey() method of our
KeyboardHandler, the only difference being that we now handle TouchEvents, not
KeyEvents. All the synchronization, pooling, and MotionEvent handling are already known
to us. The only interesting thing is that we actually multiply the reported x- and y-
coordinates of a touch event by scaleX and scaleY. Remember this, as we’ll take a look
at it again later on.

@0verride
public boolean isTouchDown(int pointer) {
synchronized(this) {
if(pointer == 0)
return isTouched,;
else
return false;

}

@0verride
public int getTouchX(int pointer) {
synchronized(this) {
return touchX;

CHAPTER 5: An Android Game Development Framework

@0verride
public int getTouchY(int pointer) {
synchronized(this) {
return touchy;

}

The methods isTouchDown(), getTouchX(), and getTouchY() allow us to poll the
touchscreen state based on the members that we set in the onTouch() method. The only
noticeable thing about them is that they’ll only return useful data for a pointer ID with a
value zero, as we only support single-touch screens with this class.

@0verride
public List<TouchEvent> getTouchEvents() {
synchronized(this) {
int len = touchEvents.size();
for(int i = 0; 1 < len; i++)
touchEventPool.free(touchEvents.get(i));
touchEvents.clear();
touchEvents.addAll(touchEventsBuffer);
touchEventsBuffer.clear();
return touchEvents;

}

The final method, SingleTouchHandler.getTouchEvents(), should be familiar to you, and
works similarly to the KeyboardHandler.getKeyEvents() methods. Remember that we
need to call this method frequently so that the touchEvents list doesn’t get filled up.

The MultiTouchHandler

For multitouch handling, we have a class called MultiTouchHandler, as shown in Listing
5-10.

Listing 5-10. MultiTouchHandler.java (More of the Same)

package com.badlogic.androidgames.framework.impl;

import java.util.Arraylist;
import java.util.list;

import android.view.MotionEvent;
import android.view.View;

import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.Pool;
import com.badlogic.androidgames.framework.Pool.PoolObjectFactory;

public class MultiTouchHandler implements TouchHandler {
boolean[] isTouched = new boolean[20];
int[] touchX = new int[20];
int[] touchY = new int[20];
Pool<TouchEvent> touchEventPool;

CHAPTER 5: An Android Game Development Framework

List<TouchEvent> touchEvents = new ArraylList<TouchEvent>();
List<TouchEvent> touchEventsBuffer = new ArraylList<TouchEvent>();
float scaleX;

float scaleY,

We again let the class implement the TouchHandler interface and have a couple of
members to store the current state and events. Instead of storing the state for a single
pointer, we simply store the state of 20 pointers. We also have those mysterious scaleX
and scaleY members again.

public MultiTouchHandler(View view, float scaleX, float scaleY) {
PoolObjectFactory<TouchEvent> factory = new PoolObjectFactory<TouchEvent>() {
@0verride
public TouchEvent createObject() {
return new TouchEvent();

};
touchEventPool = new Pool<TouchEvent>(factory, 100);
view.setOnTouchListener(this);

this.scaleX
this.scaleY

scaleX;
scaleyY;

}

The constructor is exactly the same as the constructor of the SingleTouchHandler: we
create a Pool for TouchEvent instances register the handler as an OnTouchListener, and
store the scaling values.

@0verride
public boolean onTouch(View v, MotionEvent event) {
synchronized (this) {
int action = event.getAction() & MotionEvent.ACTION MASK;
int pointerIndex = (event.getAction() & MotionEvent.ACTION POINTER ID MASK)
>> MotionEvent.ACTION POINTER ID SHIFT,
int pointerId = event.getPointerId(pointerIndex);
TouchEvent touchEvent;

switch (action) {
case MotionEvent.ACTION DOWN:
case MotionEvent.ACTION POINTER DOWN:
touchEvent = touchEventPool.newObject();
touchEvent.type = TouchEvent.TOUCH_DOWN;
touchEvent.pointer = pointerId;
touchEvent.x = touchX[pointerId] = (int) (event
.getX(pointerIndex) * scaleX);
touchEvent.y = touchY[pointerId] = (int) (event
.getY(pointerIndex) * scaleY);
isTouched[pointerId] = true;
touchEventsBuffer.add(touchEvent);
break;

case MotionEvent.ACTION UP:
case MotionEvent.ACTION POINTER UP:
case MotionEvent.ACTION CANCEL:
touchEvent = touchEventPool.newObject();

CHAPTER 5: An Android Game Development Framework

touchEvent.type = TouchEvent.TOUCH UP;

touchEvent.pointer = pointerId;

touchEvent.x = touchX[pointerId] = (int) (event
.getX(pointerIndex) * scaleX);

touchEvent.y = touchY[pointerId] = (int) (event
.getY(pointerIndex) * scaleY);

isTouched[pointerId] = false;

touchEventsBuffer.add(touchEvent);

break;

case MotionEvent.ACTION MOVE:
int pointerCount = event.getPointerCount();
for (int i = 0; i < pointerCount; i++) {
pointerIndex = i;
pointerId = event.getPointerId(pointerIndex);

touchEvent = touchEventPool.newObject();
touchEvent.type = TouchEvent.TOUCH_DRAGGED;
touchEvent.pointer = pointerId;
touchEvent.x = touchX[pointerId] = (int) (event
.getX(pointerIndex) * scaleX);
touchEvent.y = touchY[pointerId] = (int) (event
.getY(pointerIndex) * scaleY);
touchEventsBuffer.add(touchEvent);
}
break;

}

return true;

}

The onTouch() method looks as intimidating as in our test example in the last chapter.
All we do is marry that test code with our event pooling and synchronization here (things
we’ve already talked about in detail). The only real difference to the
SingleTouchHandler.onTouch() method is that we handle multiple pointers and set the
TouchEvent.pointer member accordingly (instead of just to zero).

@0verride
public boolean isTouchDown(int pointer) {
synchronized (this) {
if (pointer < 0 || pointer >= 20)
return false;
else
return isTouched[pointer];

}

@0verride
public int getTouchX(int pointer) {
synchronized (this) {
if (pointer < 0 || pointer >= 20)
return O;
else
return touchX[pointer];

CHAPTER 5: An Android Game Development Framework

}
}

@0verride
public int getTouchY(int pointer) {
synchronized (this) {
if (pointer < 0 || pointer >= 20)
return O;
else
return touchY[pointer];

}
}

The polling methods isTouchDown(), getTouchX(), and getTouchY() should look familiar
as well. We perform some error checking and then fetch the corresponding pointer state
from one of the member arrays that we fill in the onTouch() method.

@0verride
public List<TouchEvent> getTouchEvents() {
synchronized (this) {
int len = touchEvents.size();
for (int i = 0; 1 < len; i++)
touchEventPool.free(touchEvents.get(i));
touchEvents.clear();
touchEvents.addAll(touchEventsBuffer);
touchEventsBuffer.clear();
return touchEvents;

}
}

The final method, getTouchEvents(), is again exactly the same as the corresponding
method of SingleTouchHandler.getTouchEvents().

Equipped with all those handlers, we can now implement the Input interface.

Androidinput: The Great Coordinator

The Input implementation of our game framework ties together all the handlers we just
developed. Any method calls will be delegated to the corresponding handler. The only
interesting part of this implementation is where we choose which TouchHandler
implementation we use based on the Android version the device is running. Listing 5-11
shows you the implementation, called AndroidInput.

Listing 5-11. Androidinput java; Handling the Handlers with Style
package com.badlogic.androidgames.framework.impl;
import java.util.list;

import android.content.Context;
import android.os.Build.VERSION;
import android.view.View;

import com.badlogic.androidgames.framework.Input;

CHAPTER 5: An Android Game Development Framework

public class AndroidInput implements Input {
AccelerometerHandler accelHandler;
KeyboardHandler keyHandler;
TouchHandler touchHandler;

We start off by letting the class implement the Input interface we defined in Chapter 3.
Next we find three members: an AccelerometerHandler, a KeyboardHandler, and a
TouchHandler.

public AndroidInput(Context context, View view, float scaleX, float scaleY) {
accelHandler = new AccelerometerHandler(context);
keyHandler = new KeyboardHandler(view);
if(Integer.parseInt(VERSION.SDK) < 5)
touchHandler = new SingleTouchHandler(view, scaleX, scaleY);
else
touchHandler = new MultiTouchHandler(view, scaleX, scaleY);

}

These members get initialized in the constructor, which takes a Context, a View, and
those scaleX and scaleY parameters that we can happily ignore again. The
AccelerometerHandler gets instantiated via the Context parameter, and the
KeyboardHandler needs the View that gets passed in.

To decide which TouchHandler to use, we simply check the Android version the
application runs on. This can be done via the VERSION. SDK string, a constant provided by
the Android API. Why it is a string is unclear, as it directly encodes the SDK version
numbers we use in our manifest file. We therefore need to make it an integer to do some
comparisons. The first Android version to support the multitouch API was version 2.0,
which corresponds to SDK version 5. If the current device runs an Android version
below that, we instantiate the SingleTouchHandler; otherwise we use the
MultiTouchHandler. And that’s all the fragmentation we have to care about at an API
level. When we start doing OpenGL rendering, we’ll hit a few more of these
fragmentation issues —but don’t worry, they can be as easily resolved as the touch API
problems.

@0verride
public boolean isKeyPressed(int keyCode) {
return keyHandler.isKeyPressed(keyCode);
}

@0verride

public boolean isTouchDown(int pointer) {
return touchHandler.isTouchDown(pointer);

}

@0verride
public int getTouchX(int pointer) {
return touchHandler.getTouchX(pointer);

@0verride
public int getTouchY(int pointer) {
return touchHandler.getTouchY(pointer);

CHAPTER 5: An Android Game Development Framework

}

@0verride
public float getAccelX() {
return accelHandler.getAccelX();

@0verride
public float getAccelY() {
return accelHandler.getAccelY();

@0verride
public float getAccelZ() {

return accelHandler.getAccelZ();
}

@0verride

public List<TouchEvent> getTouchEvents() {
return touchHandler.getTouchEvents();

}

@0verride
public List<KeyEvent> getKeyEvents() {
return keyHandler.getKeyEvents();

}

The rest of this class is more than self-explanatory. Each method call is delegated to the
appropriate handler, which does the actual work. And with this, we have finished the
input API of our little game framework. Next we’ll move on to graphics.

AndroidGraphics and AndroidPixmap: Double
Rainbow

It’s time to get back to our most beloved topic: graphics programming. In Chapter 3 we
defined two interfaces, Graphics and Pixmap; we are now going to implement them
based on what you learned in Chapter 4. But there’s one thing we have postponed until
now: how to handle different screen sizes and resolutions.

Handling Different Screen Sizes and Resolutions

Android has supported different screen resolutions since version 1.6; it can handle
resolutions ranging from 240! 320 pixels to a much beefier 480! 854 pixels on some new
devices (in portrait mode; for landscape mode, just swap the values). In the last chapter
we already saw the effect of these different screen resolutions and physical screen
sizes: drawing with absolute coordinates and sizes given in pixels will produce
unexpected results. Figure 5-1 shows you once more what happens when we render a
100! 100-pixel rectangle with the upper-left corner at (219,379) on 480! 800 and

320! 480 screens.

CHAPTER 5: An Android Game Development Framework

B

Figure 5-1. A 100x100-pixel rectangle drawn at (219,379) on a 480x800 screen (leff) and a 320x480 screen
(right)

This difference is bad for two reasons. First, we can’t just draw our game assuming a
fixed resolution. The second reason is subtler ,however. In Figure 5-1, | silently assumed
that both screens have the same density (i.e., that each pixel has the same physical size
on both devices), but this is hardly the case in reality.

Density

Density is usually specified in pixels per inch or pixels per centimeter (you’ll sometimes
also hear dots per inch, which is not technically exact). The Nexus One has a 480! 800-
pixel screen with a physical size of 8! 4.8 centimeters. The HTC Hero has a 320! 480-
pixel screen with a physical size of 6.5! 4.5 centimeters. That’s 100 pixels per centimeter
on both axes on the Nexus One, and roughly 71 pixels per centimeter on both axes on
the Hero. We can calculate the pixels per centimeter easily like this:

pixels per centimeter (on x-axis) = width in pixels / width in centimeters
or this:
pixels per centimeter (on y-axis) = height in pixels / height in centimeters

Usually we only need to calculate this on a single axis, as the physical pixels are square
(well, they’re actually three pixels, but we’ll just ignore that here).

How big would our 100! 100-pixel rectangle be in centimeters? On the Nexus One we’d
have a 1! 1-centimeter rectangle, while on the Hero we’d have a 1.4! 1.4-centimeter
rectangle. That’s something we would need to account for if we had, for example, things

CHAPTER 5: An Android Game Development Framework

like buttons that should be big enough for the average thumb on all screen sizes.
However, while this example makes it look like this issue could present a huge problem,
it usually doesn’t. We just need to make sure that our buttons have a good size on high-
density screens (e.g., the Nexus One). They will automatically be big enough on lower-
density screens.

Aspect Ratio

There’s also another problem we have to cope with, though: aspect ratio. The aspect
ratio of a screen is the ratio between the width and height, either in pixels or
centimeters. We can calculate that like this:

pixel aspect ratio = width in pixels / height in pixels

or this:

physical aspect ratio = width in centimeters / height in centimeters

When we use width and height here, we usually mean the width and height in landscape
mode. The Nexus One has a pixel and physical aspect ratio of ~1.66. The Hero has a
pixel and physical aspect ratio of 1.5. What does this mean? On the Nexus One we have
more pixels available on the x-axis in landscape mode relative to the height than we

have on the Hero. Figure 5-2 illustrates what this means with screenshots from Replica
Island on both devices.

NOTE: In this book we’ll use the metric system. | know that it might be a bit hard to get
comfortable with if you are used to inches and pounds. However, as we will also do a little
physics later on, which is usually defined in the metric system, it's best get used to it now. Just
remember that 1 inch is roughly 2.54 centimeters.

CHAPTER 5: An Android Game Development Framework

Figure 5-2. Replica Island on the Nexus One (top) and the HTC Hero (bottom)

The Nexus One displays a tiny bit more of the world on the x-axis. Everything stays the
same on the y-axis though. Hmm, what did the creator of Replica Island do here?

Coping with Different Aspect Ratios

Replica Island performs a cheap but very useful magic trick in order to deal with the
aspect ratio problem. The game was originally designed for everything to fit on a

480! 320-pixel screen, including all the sprites (e.g., the robot and the doctor), the tiles
of the world, and the Ul elements (e.g., the buttons at the bottom left and the status info
at the top of the screen). When the game is rendered on a Hero, each pixel in the sprite
bitmaps maps to exactly one pixel on the screen. On a Nexus One, everything is scaled
up while rendering, so 1 pixel of a sprite actually takes up 1.5 pixels on the screen. In
other words, a 32! 32-pixel sprite will be 48! 48 pixels big on the screen. This scaling
factor can be easily calculated by

scaling factor (on x-axis) = screen width in pixels / target width in pixels
and

scaling factor (on y-axis) = screen height in pixels / target height in pixels

CHAPTER 5: An Android Game Development Framework

The target width and height equal the screen resolution that the graphical assets were
designed for; in Replica Island, that’s 480! 320 pixels. For the Nexus One, this means

that we have a scaling factor of 1.66 on the x-axis and a scaling factor of 1.5 on the y-
axis. But why are the scaling factors on the two axes different?

This is due to the two screen resolutions having different aspect ratios. If we simply
stretch a 480! 320-pixel image to an 800! 480-pixel image, the original image will be
stretched on the x-axis. For most games, this won’t make too big of an impact, so we
can simply draw our graphical assets for a specific target resolution and stretch them to
the actual screen resolution on the fly while rendering (remember the
Bitmap.drawBitmap() method).

For some games, however, you might want to get a little fancier. Figure 5-3 shows
Replica Island simply scaled up from 480! 320 to 800! 480 pixels, and overlaid with a
faint image of how it actually looks.

Figure 5-3. Replica Island stretched from 480x320 to 800x480 pixels, overlaid with a faint image of how it is
actually rendered on a 800x480-pixel display

Replica Island does something very intelligent here: it performs normal stretching on the
y-axis with the scaling factor we just calculated (1.5). But instead of using the x-axis
scaling factor (1.66), which would make the image look squished, it uses the y-axis
scaling factor. This neat little trick allows all objects on the screen keep their aspect
ratio. A 32! 32-pixel sprite becomes 48! 48 pixels instead of 53! 48 pixels. However, this
also means that our coordinate system is no longer bounded between (0,0) and
(479,319). Instead it now goes from (0,0) to (533,319). And this is why we see more of
the world of Replica Island on a Nexus One than on an HTC Hero.

CHAPTER 5: An Android Game Development Framework

Note, however, that using this fancy method might not be appropriate for some games.
For example, having the world size depend on the screen aspect ratio could give an
unfair advantage to players with wider screens. This would be the case in a game like
Starcraft 2. Also, if you want the entire game world to fit onto a single screen (like in Mr.
Nom), it would be better to use the simpler, stretching method. With the fancier version,
we’d have blank space left over on wider screens.

A Simpler Solution

Replica Island has one advantage: it does all this stretching and scaling via OpenGL ES,
which is hardware accelerated. So far we’ve only discussed how to draw to a Bitmap
and a View via the Canvas class, which doesn’t involve hardware acceleration on the
GPU, but slow number-crunching on the CPU.

We’ll therefore perform a simple trick: we’ll create a framebuffer in the form of a Bitmap
instance that has our target resolution. This way we don’t have to worry about the actual
screen resolution when designing our graphical assets or when rendering them via code.
We just pretend that the screen resolution is the same on all devices. All our draw calls
will target this “virtual” framebuffer Bitmap via a Canvas instance. When we’re done
rendering a frame of our game, we’ll simply draw this framebuffer Bitmap to our
SurfaceView via a call to the Canvas.drawBitmap() method, which allows us to draw a
Bitmap stretched.

If we want to use the same technique as Replica Island, we just need to adjust the size
of our framebuffer on the bigger axis (i.e., on the x-axis in landscape mode, and on the
y-axis in portrait mode). We also have to make sure that we fill the extra pixels we get so
there’s no blank space.

The Implementation
So let’s summarize all this by forming a simple plan of attack:

B We design all our graphic assets for a fixed target resolution (320! 480
in Mr. Nom’s case).

B We create a Bitmap the same size as our target resolution and direct
all our drawing calls to it, effectively working in a fixed-coordinate
system.

B When we are done drawing a frame of our game, we draw our
framebuffer Bitmap stretched to the SurfaceView. On devices with a
lower screen resolution the image will be scaled down, and on devices
with a higher resolution it will be scaled up.

B We have to make sure that all the Ul elements the user interacts with
are big enough at all screen densities when we do our scaling trick.
This is something we can do in the graphic asset-design phase using
the sizes of actual devices in combination with the formulas shown
previously.

CHAPTER 5: An Android Game Development Framework

Now that we know how we will handle different screen resolutions and densities, | can
also explain the scaleX and scaleY variables we met when we implemented the
SingleTouchHandler and MultiTouchHandler a few pages earlier.

All our game code will be tuned to work with our fixed target resolution (320! 480 pixels).
If we receive touch events on a device that has a higher or lower resolution, the x- and
y-coordinates of those events will be defined in the View’s coordinate system, not in our
target resolution coordinate system. Thus we have to transform the coordinates from
their original system to our system based on the scaling factors. Here’s how we do that:

transformed touch x
transformed touch y

real touch x * (target pixels on x axis / real pixels on x axis)
real touch y * (target pixels on y axis / real pixels on y axis)

Let’s calculate a simple example for a target resolution of 320! 480 pixels and a device
with a resolution of 480! 800 pixels. If we touch the middle of the screen, we’ll receive an
event with the coordinates (240,400). Using the two preceding formulas, we arrive at the
following, which is exactly in the middle of our target coordinate system:

160

transformed touch x = 240 * (320 / 480)
= 240

transformed touch y = 400 * (480 / 800)

Let’s do another one, assuming a real resolution of 240! 320, again touching the middle
of the screen, at (120,160):

120 * (320 / 240)
160 * (480 / 320)

160
240

transformed touch x
transformed touch y

Hurray, it works in both directions. If we multiply the real touch event coordinates by the
target factor divided by the real factor, we don’t have to care about all this transforming
in our actual game code. All the touch coordinates will be expressed in our fixed-target
coordinate system.

With that out of our way, let’s implement the last few classes of our game framework.

AndroidPixmap: Pixels for the People

According to the design of our Pixmap interface from Chapter 3, there’s not much to
implement. Listing 5-12 shows the code.

Listing 5-12. AndroidPixmap.java, a Pixmap Implementation Wrapping a Bitmap

package com.badlogic.androidgames.framework.impl;
import android.graphics.Bitmap;

import com.badlogic.androidgames.framework.Graphics.PixmapFormat;
import com.badlogic.androidgames.framework.Pixmap;

public class AndroidPixmap implements Pixmap {
Bitmap bitmap;
PixmapFormat format;

public AndroidPixmap(Bitmap bitmap, PixmapFormat format) {
this.bitmap = bitmap;

CHAPTER 5: An Android Game Development Framework

this.format = format;

}

@0verride

public int getWidth() {
return bitmap.getWidth();

}

@verride
public int getHeight() {
return bitmap.getHeight();

@0verride
public PixmapFormat getFormat() {
return format;

@0verride
public void dispose() {
bitmap.recycle();

}

All we do is store the Bitmap instance that we wrap, along with its format, which is
stored as a PixmapFormat enumeration value, as defined in Chapter 3. Additionally we
implement the required methods of the Pixmap interface so we can query the width and
height of the Pixmap and its format, and also ensure that the pixels can get dumped from
RAM. Note that the bitmap member is package private, so we can access it in
AndroidGraphics, which we’ll implement now.

AndroidGraphics: Serving Our Drawing Needs

The Graphics interface we designed in Chapter 3 is also pretty lean and mean. It will
draw pixels, lines, rectangles, and Pixmaps to the framebuffer. As discussed, we’ll use a
Bitmap as our framebuffer and direct all drawing calls to it via a Canvas. It is also
responsible for creating Pixmap instances from asset files. We’ll thus also need an
AssetManager again. Listing 5-13 shows the code for our implementation of that
interface, AndroidGraphics.

Listing 5-12. AndroidGraphics.java; Implementing the Graphics Interface

package com.badlogic.androidgames.framework.impl;

import java.io.IOException;
import java.io.InputStream;

import android.content.res.AssetManager;
import android.graphics.Bitmap;

import android.graphics.Bitmap.Config;

import android.graphics.BitmapFactory;

import android.graphics.BitmapFactory.Options;
import android.graphics.Canvas;

CHAPTER 5: An Android Game Development Framework

import android.graphics.Paint;
import android.graphics.Paint.Style;
import android.graphics.Rect;

import com.badlogic.androidgames.framework.Graphics;
import com.badlogic.androidgames.framework.Pixmap;

public class AndroidGraphics implements Graphics {
AssetManager assets;
Bitmap frameBuffer;
Canvas canvas;
Paint paint;
Rect srcRect = new Rect();
Rect dstRect = new Rect();

The class implements the Graphics interface. It has an AssetManager member that we’ll
use to load Bitmap instances, a Bitmap member that represents our artificial framebuffer,
a Canvas member that we’ll use to draw to the artificial framebuffer, a Paint we need for
drawing, and two Rect members we’ll need for implementing the
AndroidGraphics.drawPixmap() methods. These last three members are there so that we
don’t have to create new instances of these classes on every draw call. That would
make the garbage collector run wild.

public AndroidGraphics(AssetManager assets, Bitmap frameBuffer) {
this.assets = assets;
this.frameBuffer = frameBuffer;
this.canvas = new Canvas(frameBuffer);
this.paint = new Paint();

}

In the constructor we get an AssetManager and Bitmap representing our artificial
framebuffer from the outside. We store these in the respective members and additionally
create the Canvas instance that will draw to the artificial framebuffer, as well as the
Paint, which we’ll use for some of the drawing methods.

@0verride
public Pixmap newPixmap(String fileName, PixmapFormat format) {
Config config = null;
if (format == PixmapFormat.RGB565)
config = Config.RGB 565;
else if (format == PixmapFormat.ARGB4444)
config = Config.ARGB_4444;
else
config = Config.ARGB_8888;

Options options = new Options();
options.inPreferredConfig = config;

InputStream in = null;

Bitmap bitmap = null;

try {
in = assets.open(fileName);
bitmap = BitmapFactory.decodeStream(in);
if (bitmap == null)

CHAPTER 5: An Android Game Development Framework

throw new RuntimeException("Couldn't load bitmap from asset
+ fileName + "'");
} catch (IOException e) {
throw new RuntimeException("Couldn't load bitmap from asset
+ fileName + "'");
} finally {
if (in !'= null) {
try {
in.close();
} catch (IOException e) {

}
}

if (bitmap.getConfig() == Config.RGB_565)
format = PixmapFormat.RGB565;

else if (bitmap.getConfig() == Config.ARGB 4444)
format = PixmapFormat.ARGB4444;

else
format = PixmapFormat.ARGB8888;

return new AndroidPixmap(bitmap, format);

}

The newPixmap() method tries to load a Bitmap from an asset file, using the
PixmapFormat specified. We start off by translating the PixmapFormat into one of the
constants of the Android Config class we used in Chapter 4. Next we create a new
Options instance and set our preferred color format. We then try to load the Bitmap from
the asset via the BitmapFactory. We throw a RuntimeException if something goes wrong.
Otherwise we check what format the BitmapFactory decided to load the Bitmap with and
translate that into a PixmapFormat enumeration value. Remember that the BitmapFactory
might decide to ignore our desired color format, so we have to check afterward what it
decoded the image to. Finally we construct a new AndroidBitmap instance based on the
Bitmap we loaded and its PixmapFormat, and return it to the caller.

@0verride
public void clear(int color) {
canvas.drawRGB((color & oxff0000) >> 16, (color & oxffoo) >> 8,
(color & oxff));
}

The clear() method simply extracts the red, green, and blue components of the
specified 32-bit ARGB color parameter and calls the Canvas.drawRGB() method, which
will clear our artificial framebuffer with that color. This method ignores any alpha value of
the specified color, so we don’t have to extract it.

@0verride

public void drawPixel(int x, int y, int color) {
paint.setColor(color);
canvas.drawPoint(x, y, paint);

CHAPTER 5: An Android Game Development Framework

The drawPixel() method draws a pixel to our artificial framebuffer via the
Canvas.drawPoint() method. We first set the color of our paint member variable and
pass that to the drawing method in addition to the x- and y-coordinates of the pixel.

@0verride

public void drawLine(int x, int y, int x2, int y2, int color) {
paint.setColor(color);
canvas.drawlLine(x, y, x2, y2, paint);

}

The drawLine() method draws the given line to the artificial framebuffer, again using the
paint member to specify the color when calling the Canvas.drawLine() method.

@0verride

public void drawRect(int x, int y, int width, int height, int color) {
paint.setColor(color);
paint.setStyle(Style.FILL);
canvas.drawRect(x, y, x + width - 1, y + width - 1, paint);

The drawRect () method first sets the Paint member’s color and style attributes so that
we can draw a filled, colored rectangle. In the actual Canvas.drawRect() call, we then
have to transform the x, y, width, and height parameters to the coordinates of the top-
left and bottom-right corners of the rectangle. For the top-left corner we simply use the x
and y parameters. For the bottom-right-corner coordinates, we add the width and height
to x and y and subtract 1. For example, imagine if we were to render a rectangle with an
x and y of (10,10) and a width and height of 2 and 2. If we don’t subtract 1, the resulting
rectangle on the screen would be 3! 3 pixels in size.

@0verride
public void drawPixmap(Pixmap pixmap, int x, int y, int srcX, int srcy,
int srcWidth, int srcHeight) {
srcRect.left = srcX;
srcRect.top = srcY;
srcRect.right = srcX + srcWidth - 1;
srcRect.bottom = srcY + srcHeight - 1;

dstRect.left = x;
dstRect.top = y;
dstRect.right = x + srcWidth - 1;

dstRect.bottom = y + srcHeight - 1;

canvas.drawBitmap (((AndroidPixmap) pixmap).bitmap, srcRect, dstRect,
null);
}

The drawPixmap() method, which allows drawing a portion of a Pixmap, first sets up the
source and destination Rect members that get used in the actual drawing call. As with
drawing a rectangle, we have to translate the x- and y-coordinates together with the
width and height to the top-left and bottom-right corners. We again have to subtract 1,
or else we’ll overshoot by 1 pixel. Next we perform the actual drawing via the
Canvas.drawBitmap() method, which will automatically do blending as well if the Pixmap
we draw has a PixmapFormat.ARGB4444 or PixmapFormat.ARGB8888 color depth. Note that
we have to cast the Pixmap parameter to an AndroidPixmap in order to be able to fetch

CHAPTER 5: An Android Game Development Framework

the bitmap member for drawing with the Canvas. That’s a little bit nasty, but we can be
sure that the Pixmap instance passed in is actually an AndroidPixmap.

@0verride
public void drawPixmap(Pixmap pixmap, int x, int y) {
canvas.drawBitmap (((AndroidPixmap)pixmap).bitmap, x, y, null);
}

The second drawPixmap() method just draws the complete Pixmap to the artificial
framebuffer at the given coordinates. We again do some casting to get to the Bitmap
member of the AndroidPixmap.

@0verride
public int getWidth() {
return frameBuffer.getWidth();
}

@verride
public int getHeight() {

return frameBuffer.getHeight();
}

}

Finally we have the methods getWidth() and getHeight(), which simply return the size
of the artificial framebuffer the AndroidGraphics instance stores and renders to
internally.

There’s one more class we need to implement related to graphics:
AndroidFastRenderView.

AndroidFastRenderView: Loop, Strech, Loop, Stretch

The name of this class should already give away what lies ahead. In the last chapter we
discussed using a SurfaceView to perform continuous rendering in a separate thread
that could also house our game’s main loop. We developed a very simple class called
FastRenderView, which derived from the SurfaceView class, we made sure we play nice
with the activity life cycle, and we set up a thread in which we constantly rendered to the
SurfaceView via a Canvas.

We’ll reuse this FastRenderView class and augment it to do a few more things:

It will keep a reference to a Game instance from which it can get the
active Screen. We will constantly call the Screen.update() and
Screen.present() methods from within the FastRenderView thread.

It will keep track of the delta time between frames that gets passed to
the active Screen.

It will take the artificial framebuffer that the AndroidGraphics instance
draws to and draw it to the SurfaceView, scaled if necessary.

Listing 5-13 shows the implementation of the AndroidFastRenderView class.

CHAPTER 5: An Android Game Development Framework

Listing 5-13. AndroidFastRenderView.java, a Threaded SurfaceView Executing Our Game Code

package com.badlogic.androidgames.framework.impl;

import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Rect;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class AndroidFastRenderView extends SurfaceView implements Runnable {
AndroidGame game;
Bitmap framebuffer;
Thread renderThread = null;
SurfaceHolder holder;
volatile boolean running = false;

This should look very familiar. We just need to add two more members: an AndroidGame
instance and a Bitmap instance representing our artificial framebuffer. The other
members are the same as in our FastRenderView from Chapter 3.

public AndroidFastRenderView(AndroidGame game, Bitmap framebuffer) {
super(game) ;
this.game = game;
this.framebuffer = framebuffer;
this.holder = getHolder();
}

In the constructor we simply call the base class’s constructor with the AndroidGame
parameter (which is an Activity; more on that in a bit) and store the parameters in the
respective members. We also get a SurfaceHolder again, as we did previously.

public void resume() {
running = true;
renderThread = new Thread(this);
renderThread.start();

The resume() method is an exact copy of the FastRenderView.resume() method, so we
don’t need to go over that again. It just makes sure that our thread plays nice with the
activity life cycle.

public void run() {
Rect dstRect = new Rect();
long startTime = System.nanoTime();
while(running) {
if(!holder.getSurface().isValid())
continue;

float deltaTime = (System.nanoTime()-startTime) / 1000000000.0f;

CHAPTER 5: An Android Game Development Framework

startTime = System.nanoTime();

game.getCurrentScreen().update(deltaTime);
game.getCurrentScreen().present(deltaTime);

Canvas canvas = holder.lockCanvas();
canvas.getClipBounds(dstRect);
canvas.drawBitmap(framebuffer, null, dstRect, null);
holder.unlockCanvasAndPost(canvas);

}
}

The run() method has a few more bells and whistles. The first addition is the tracking of
the delta time between each frame. We use System.nanoTime() for this, which returns
the current time in nanoseconds as a long.

NOTE: A nanosecond is one-billionth of a second.

In each loop iteration, we start off by taking the difference between the last loop
iteration’s start time and the current time. To make working with that delta time easier,
we convert it to seconds. Next we save the current time stamp, which we’ll use in the
next loop iteration to calculate the next delta time. With the delta time at hand, we call
the current Screen’s update() and present() methods, which will update the game logic
and render things to the artificial framebuffer. Finally we get ahold of the Canvas for the
SurfaceView and draw the artificial framebuffer. The scaling is performed automatically
in case the destination rectangle we pass to the Canvas.drawBitmap() method is smaller
or bigger than the framebuffer.

Note that we’ve used a shortcut here to get a destination rectangle that stretches over
the whole SurfaceView via the Canvas.getClipBounds() method. It will set the top and

left members of dstRect to 0 and 0, and the bottom and right members to the actual
screen dimensions (480! 800 in portrait mode on a Nexus One). The rest of the method
is exactly the same as what we had in our FastRenderView test. It just makes sure that

the thread stops when the activity is paused or destroyed.

public void pause() {
running = false;
while(true) {
try {
renderThread. join();
break;
} catch (InterruptedException e) {
// retry

}

The last method of this class, pause(), is again exactly the same as the
FastRenderView.pause() method. It simply terminates the rendering/main loop thread
and waits for it to completely die before returning.

CHAPTER 5: An Android Game Development Framework

We are nearly done with our framework. The last piece of the puzzle is the
implementation of the Game interface.

AndroidGame: Tying Everything Together

Our little game development framework is nearly complete. All we need to do is tie together
the loose ends by implementating the Game interface we designed in Chapter 3, using the
classes we created in the previous sections of this chapter. Here’s a list of responsibilities:

B Perform window management. In our context, that means setting up
an activity and an AndroidFastRenderView, and handling the activity life
cycle in a clean way.

B Use and manage a WakelLock so that the screen does not get dimmed.

B |nstantiate and hand out references to Graphics, Audio, FileIO, and
Input to interested parties.

B Manage Screens and integrate them with the activity life cycle.

Our general goal is it to have a single class called AndroidGame from which we
can derive. All we want to do is implement the Game.getStartScreen() method
later on to start off our game, like this:

public class MrNom extends AndroidGame {
@0verride
public Screen getStartScreen() {
return new MainMenu(this);
}

}

I hope you can see why it pays off to design a nice little framework before diving
headfirst into programming the actual game. We can reuse this framework for all future
games that are not to graphically intensive. So let’s discuss Listing 5-14, which shows
the AndroidGame class.

Listing 5-14. AndroidGame.java; Tying Everything Together

package com.badlogic.androidgames.framework.impl;

import android.app.Activity;

import android.content.Context;

import android.content.res.Configuration;
import android.graphics.Bitmap;

import android.graphics.Bitmap.Config;
import android.os.Bundle;

import android.os.PowerManager;

import android.os.PowerManager.Wakelock;
import android.view.Window;

import android.view.WindowManager;

import com.badlogic.androidgames.framework.Audio;
import com.badlogic.androidgames.framework.FileIO;
import com.badlogic.androidgames.framework.Game;

CHAPTER 5: An Android Game Development Framework

import com.badlogic.androidgames.framework.Graphics;
import com.badlogic.androidgames.framework.Input;
import com.badlogic.androidgames.framework.Screen;

public abstract class AndroidGame extends Activity implements Game {
AndroidFastRenderView renderView;
Graphics graphics;
Audio audio;
Input input;
FileIO fileIO;
Screen screen;
WakeLock wakeLock;

The class definition starts off by letting AndroidGame extend the Activity class and
implement the Game interface. Next we define a couple of members that should be
familiar. The first member is the AndroidFastRenderView, which we’ll draw to, and which
will manage our main loop thread for us. The Graphics, Audio, Input, and FileIO
members will be set to instances of AndroidGraphics, AndroidAudio, AndroidInput, and
AndroidFileI0O—no big surprise there. The next member holds the currently active
Screen. Finally there’s a member that holds a WakeLock, which we’ll use to keep the
screen from dimming.

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

requestWindowFeature(Window.FEATURE NO TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG FULLSCREEN);

boolean islLandscape = getResources().getConfiguration().orientation ==
Configuration.ORIENTATION LANDSCAPE;
int frameBufferWidth = islandscape ? 480 : 320;
int frameBufferHeight = islandscape ? 320 : 480;
Bitmap frameBuffer = Bitmap.createBitmap(frameBufferWidth,
frameBufferHeight, Config.RGB_565);

float scaleX = (float) frameBufferWidth

/ getWindowManager().getDefaultDisplay().getWidth();
float scaleY = (float) frameBufferHeight

/ getWindowManager().getDefaultDisplay().getHeight();

renderView = new AndroidFastRenderView(this, frameBuffer);
graphics = new AndroidGraphics(getAssets(), frameBuffer);
fileIO = new AndroidFileIO(getAssets());

audio = new AndroidAudio(this);

input = new AndroidInput(this, renderView, scaleX, scaleY);
screen = getStartScreen();

setContentView(renderView);

PowerManager powerManager = (PowerManager)
getSystemService(Context.POWER SERVICE);
wakelLock = powerManager.newWakelLock(PowerManager.FULL WAKE LOCK, "GLGame");
}

CHAPTER 5: An Android Game Development Framework

The onCreate() method, which is the familiar startup method of the Activity class,
starts off by calling the base class’s onCreate() method, as it is required. Next we make
the Activity full-screen, as we did in a couple of tests in the previous chapter already.
In the next few lines we set up our artificial framebuffer. Depending on the orientation of
the activity, we either want to use a 320! 480 framebuffer (portrait mode) or a 480! 320
framebuffer (landscape mode). To determine what screen orientation the Activity uses,
we fetch the orientation member from a class called Configuration, which we get via a
call to getResources().getConfiguration(). Based on the value of that member, we
then set the framebuffer size and instantiate a Bitmap, which we’ll hand to the
AndroidFastRenderView and AndroidGraphics instances a little later.

NOTE: The Bitmap instance has an RGB565 color format. This way we don’t waste memory,
and all our drawing is a little faster.

We also calculate the scaleX and scaleY values that the SingleTouchHandler and
MultiTouchHandler classes will use to transform the touch event coordinates to our
fixed-coordinate system.

Next we instantiate the AndroidFastRenderView, AndroidGraphics, AndroidAudio,
AndroidInput, and AndroidFileIO with the necessary constructor arguments. Finally we
call the getStartScreen() method, which our actual game will implement, and set the
AndroidFastRenderView as the content view of the Activity. All these helper classes we
just instantiated will do some more work in the background, of course. The
AndroidInput class will tell the touch handler it selected to hook up with the
AndroidFastRenderView, for example.

@0verride

public void onResume() {
super.onResume();
wakelock.acquire();
screen.resume();
renderView.resume();

}

Next up is the onResume() method of the Activity class, which we override. As usual,
the first thing we do is call the superclass method because we are good citizens in
Android land. Next we acquire the WakelLock and make sure the current Screen gets
informed of the fact that the game (and thereby the activity) has just been resumed.
Finally we tell the AndroidFastRenderView to resume the rendering thread, which will also
kick off our game’s main loop, in which we tell the current Screen to update and present
itself in each iteration.

@0verride

public void onPause() {
super.onPause();
wakelLock.release();
renderView.pause();
screen.pause();

if (isFinishing())

CHAPTER 5: An Android Game Development Framework

screen.dispose();

}

The onPause() method first calls the superclass method again. Next it releases the
WakeLock and makes sure that the rendering thread is terminated. If we didn’t terminate
the thread before calling the current Screen’s onPause(), we could run into concurrency
issues since the Ul thread and the main loop thread would both access the Screen at the
same time. Once we are sure the main loop thread is no longer alive, we tell the current
Screen that it should pause itself. In case the Activity is going to be destroyed, we also
inform the Screen of that event so it can do any cleanup work necessary.

@0verride
public Input getInput() {
return input;

@0verride

public FileIO getFileIO() {
return filelIO;

}

@0verride
public Graphics getGraphics() {
return graphics;

@0verride
public Audio getAudio() {
return audio;

The getInput(), getFileIO(), getGraphics(), and getAudio() methods should need no
explanation. We simply return the respective instances to the caller. The caller will
always be one of our Screen implementations of our game later on.

@0verride
public void setScreen(Screen screen) {
if (screen == null)
throw new IllegalArgumentException("Screen must not be null");

this.screen.pause();
this.screen.dispose();
screen.resume();
screen.update(0);
this.screen = screen;

}

The setScreen() method we inherit from the Game interface looks simple at first glance.
We start off with some old-school null-checking, as we can’t allow a null Screen. Next
we tell the current Screen to pause and dispose of itself so it can make room for the new
Screen. The new Screen is asked to resume itself and update itself once with a delta time
of zero. Finally we set the Screen member to the new Screen.

CHAPTER 5: An Android Game Development Framework

Let’s think about who will call this method, and when. When we designed Mr. Nom, we
identified all the transitions between various Screen instances. We’ll usually call the
AndroidGame.setScreen() method in the update() method of one of these Screen
instances.

Say we have a main menu Screen where we check if the Play button is pressed in the
update() method. If that is the case, we’ll want to transition to the next Screen, and we
can do so by calling the AndroidGame.setScreen() method from within the
MainMenu.update() method with a brand-new instance of that next Screen. The MainMenu
screen will get back control after the call to AndroidGame.setScreen(), and should
immediately return to the caller, as it is no longer the active Screen. In this case the caller
is the AndroidFastRenderView in the main loop thread. If you check the portion of the
main loop responsible for updating and rendering the active Screen, you’ll see that the
update() method would be called on the MainMenu class, but the present () method
would be called on the new current Screen. This would be bad, as we defined the Screen
interface in a way that guarantees that the resume() and update() methods will be called
at least once before the Screen is asked to present itself. And that’s why we call these
two methods in the AndroidGame.setScreen() method on the new Screen. All is taken
care of for us by the mighty AndroidGame class.

public Screen getCurrentScreen() {
return screen;
}

}

The last method is called getCurrentScreen(). It simply returns the currently active
Screen.

We’ve now created an easy-to-use Android game development framework. All we need
to do now is implement the Screens of our game. We can also reuse the framework for
any future games we can think of, as long as they do not need immense graphics
power. If we need that, we have to start using OpenGL ES. However, we only need to
replace the graphics part of our framework for that. All the other classes for audio, input,
and file 1/0 can be reused.

Summary

In this chapter, we implemented a full-fledged 2D Android game development
framework from scratch that we can reuse for all our future games (as long as they are
graphically modest). Great care was taken to achieve a good, extensible design. We
could take this code we have and replace the rendering portions with OpenGL ES,
making Mr. Nom go 3D.

With all this boilerplate code in place, let’s concentrate on what we are here for: writing
games!

Chapter

Mr. Nom Invades Android

In Chapter 3 we churned out a full design for Mr. Nom, consisting of the game
mechanics, a simple background story, handcrafted graphical assets, and definitions for
all the screens based on some paper cutouts. In the last chapter we developed a full-
fledged game-development framework that allows us to easily transfer our design
screens to code. But enough talking; let’s start writing our first game!

Creating the Assets

We have two types of assets in Mr. Nom: audio assets and graphical assets. | recorded
the audio assets via a nice open source application called Audacity and a bad netbook
microphone. | created a sound effect for when a button is pressed or a menu item is
chosen, one for when Mr. Nom eats a stain, and one for when he eats himself. | saved
them as OGGs to the assets/ folder, under the names click.ogg, eat.ogg, and
bitten.ogg, respectively.

Earlier, | mentioned that we’ll want to reuse those paper cutouts from the design phase
as our real game graphics. For this, we have to first make them fit with our target
resolution.

| chose a fixed target resolution of 320! 480 (portrait mode) for which we’ll design all our
graphical assets. | scanned in all the paper cutouts and resized them a little. | saved
most of the assets in separate files and merged some of them into a single file. All
images are saved in PNG format. The background is the only image that is RGB888; all
others are ARGB8888. Figure 6-1 shows you what | ended up with.

229

CHAPTER 6: Mr. Nom Invades Android

(8
9

00

buttons.png 128x192

@@@

MR
L(\Joﬁ

background.png 320x380

LAY
(106 i SCORES
MELP
mainmenu.png 192x128
RESVHE
QuIT

pause.png 160x96

READX?
(TOOEM SEREEWY
ready.png 225x96

stain1.png 32x32

logo.png 256x160

GRRE OVER

gameover.png 196x50

numbers.png 210x32

1
headdown.png 42x42
i)
headleft.png 42x42

=
headright.png 42x42
5}
headup.png 42x42

stain2.png 32x32

TElS 15
MR NOW

o

mE LIKED MR
help1.png 192x256

MR NOR
TORWS
LEFT ® 0

help2.png 192x256

MR OB
i bIRES

0B

E‘gﬂ}x A0

help3.png 192x256

O

tail.png 32x32

[w]

stain3.png 32x32

Figure 6-1. All the graphical assets of Mr. Nom, with their respective filenames and sizes in pixels

CHAPTER 6: Mr. Nom Invades Android

Let’s break down those images a little:

background.png: This is our background image, which will be the first thing we’ll
draw to the framebuffer. It has the same size as our target resolution for obvious
reasons.

buttons.png: This contains all the buttons we’ll need in our game. | put them into a
single file, as we can easily draw them via the Graphics.drawPixmap() method,
which allows drawing portions of an image. We’ll use that technique more often
when we start drawing with OpenGL ES, so we better get used to it now. Merging
several images into a single image is often called atlasing, and the image itself is
called an image atlas (or texture atlas, or sprite sheet). Each button has a size of
64! 64 pixels, which will come in handy when we have to decide whether a touch
event has hit a button on the screen.

help1.png, help2.png, help3.png: These are the images we’ll display on the three
help screens of Mr. Nom. They all have the same size, which makes placing them on
the screen easier.

logo.png: This is the logo we’ll display on the main menu screen.

mainmenu.png: This contains the three options that we’ll present to the player on the
main menu. Selecting one of these will trigger a transition to the respective screen.
Each option has a height of roughly 42 pixels, something we can use to easily detect
which option was touched.

ready.png, pause.png, gameover.png: We’ll draw these when the game is about to be
started, when it is paused, and when it is over, respectively.

numbers.png: This holds all the digits we need to render our high scores later on.
What’s to remember about this image is that each digit has the same width and
height, 20! 32 pixels, except for the dot at the end, which is 10! 32 pixels in size. We
can later use this fact to easily render any number that is thrown at us.

tail.png: This is the tail of Mr. Nom, or rather one part of his tail. It’s 32! 32 pixels in
size, which has some implications we’ll discuss in a minute.

headdown.png, headleft.png, headright.png, headup.png: These images are for the
head of Mr. Nom; there’s one for each direction he can be moving in. Because of his
hat, we have to make these images a little bigger than the tail image. Each head
image is 42! 42 pixels in size.

stainl.png, stain2.png, stain3.png: These are the three types of stains we can
render. Having three types will make the game screen a little more diverse. They are
32! 32 pixels in size, just like the tail image.

Great, now let’s start implementing the screens!

CHAPTER 6: Mr. Nom Invades Android

Setting Up the Project

As mentioned in the last chapter, we will merge the code for Mr. Nom with our
framework code. All the classes related to Mr. Nom will be placed in the package
com.badlogic.androidgames.mrnom. Additionally we have to modify the manifest file, as
outlined in Chapter 4. Our default activity will be called MrtNomGame. Just follow the ten
steps outlined in the section “Android Game Project Setup in Ten Easy Steps “ in
Chapter 4 to set the <activity> attributes properly (e.g., so that the game is fixed in
portrait mode and configuration changes are handled by application) and to give our
application the proper permissions (writing to external storage, using a wake lock, etc.).

All the assets from the previous sections are located in the assets/ folder of the project.
Additionally we have to put icon.png files into the res/drawable, res/drawable-1dpi,

res/drawable-mdpi, and res/drawable-hdpi folders. | just took the headright.png of Mr.
Nom, renamed it icon.png, and put a properly resized version of it in each of the folders.

All that’s left is putting our into the com.badlogic.androidgames.mrnom package of the
Eclipse project!

MrNomGame: The Main Activity

Our application needs a main entry point, also known as default Activity on Android.
We will call this default Activity MrNomGame and let it derive from AndroidGame, the class
we implemented in Chapter 5 to run our game. It will be responsible for creating and
running our first screen later on. Listing 6-1 shows you our MrNomGame class.

Listing 6-1. MrNomGame.java, Our Main Activity/Game Hybrid

package com.badlogic.androidgames.mrnom;

import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.impl.AndroidGame;

public class MrNomGame extends AndroidGame {
@0verride
public Screen getStartScreen() {
return new LoadingScreen(this);
}

}

All we need to do is derive from AndroidGame and implement the getStartScreen()
method, which will return an instance of the LoadingScreen class (which we’ll implement
in a minute). Remember, this will get us started with all the things we need for our game,
from setting up the different modules for audio, graphics, input, and file I/O to starting
the main loop thread. Pretty easy, huh?

CHAPTER 6: Mr. Nom Invades Android

Assets: A Convenient Asset Store

The loading screen will load all the assets of our game. But where do we store them? To
store them, we’ll do something that is not seen very often in Java land: we’ll create a
class that has a ton of static public members that hold all the Pixmaps and Sounds that
we’ve loaded from the assets. Listing 6-2 shows you that class.

Listing 6-2. Assets.java, Holding All Our Pixmaps and Sounds for Easy Access

package com.badlogic.androidgames.mrnom;

import com.badlogic.androidgames.framework.Pixmap;
import com.badlogic.androidgames.framework.Sound;

public class Assets {
public static Pixmap background;
public static Pixmap logo;
public static Pixmap mainMenu;
public static Pixmap buttons;
public static Pixmap helpi;
public static Pixmap help2;
public static Pixmap help3;
public static Pixmap numbers;
public static Pixmap ready;
public static Pixmap pause;
public static Pixmap gameOver;
public static Pixmap headUp;
public static Pixmap headleft;
public static Pixmap headDown;
public static Pixmap headRight;
public static Pixmap tail;
public static Pixmap staini;
public static Pixmap stainz;
public static Pixmap stain3;

public static Sound click;
public static Sound eat;
public static Sound bitten;

}

We have a static member for every image and sound we load from the assets. If we
want to use one of these assets, we can do something like this:

game.getGraphics().drawPixmap(Assets.background, 0, 0)
or something like this:
Assets.click.play(1);

Now, that’s convenient. However, note that nothing is keeping us from overwriting those
static members, as they are not final. But as long as we don’t overwrite them, we are
safe. These public, non-final members make this “design pattern” an antipattern,
actually. For our game it’s OK to be a little lazy, though. A cleaner solution would hide
the assets behind setters and getters in a so-called singleton class. We’ll stick to our
poor-man’s asset manager, though.

CHAPTER 6: Mr. Nom Invades Android

Settings: Keeping Track of User Choices and High Scores

There are two other things that we need to load in the loading screen: the user settings
and the high scores. If you look back at the main menu and high-scores screens in
Chapter 3, you’ll see that we allow the user to toggle the sounds, and that we store the
top five high scores. We’ll save these settings to the external storage so that we can
reload them the next time the game starts. For this, we’ll implement another simple
class, called Settings, as shown in Listing 6-3.

Listing 6-3. Settings.java, Which Stores Our Settings and Loads/Saves Them

package com.badlogic.androidgames.mrnom;

import java.io.BufferedReader;
import java.io.Bufferedwriter;
import java.io.IOException;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

import com.badlogic.androidgames.framework.FileIO;

public class Settings {
public static boolean soundEnabled = true;
public static int[] highscores = new int[] { 100, 80, 50, 30, 10 };

Whether sound effects are played back is determined by a public static boolean called
soundEnabled. The high scores are stored in a five-element integer array, sorted from
highest to lowest. We define sensible defaults for both settings. We can access these
two members the same way we access the members of the Assets class.

public static void load(FileIO files) {

BufferedReader in = null;

try {
in = new BufferedReader(new InputStreamReader(

files.readFile(".mrnom")));
soundEnabled = Boolean.parseBoolean(in.readline());
for (int i = 0; 1 < 5; i++) {
highscores[i] = Integer.parseInt(in.readline());

} catch (IOException e) {
// :(It's ok we have defaults
} catch (NumberFormatException e) {
// :/ It's ok, defaults save our day
} finally {
try {
if (in != null)
in.close();
} catch (IOException e) {
}

CHAPTER 6: Mr. Nom Invades Android

The static 1oad() method tries to load the settings from a file called .mrnom from the
external storage. It needs a FileIO instance for that, which we pass to the method. It
assumes that the sound setting and each high-score entry is stored on a separate line
and simple reads them in. If anything goes wrong (e.g., if the external storage is not
available or there is no settings file yet), we simply fall back to our defaults and ignore
the failure.

public static void save(FileIO files) {

BufferedWriter out = null;

try {
out = new BufferedWriter(new OutputStreamhriter(

files.writeFile(".mrnom")));
out.write(Boolean.toString(soundEnabled));
for (int i = 0; 1 < 5; i++) {
out.write(Integer.toString(highscores[i]));

} catch (IOException e) {
} finally {

try {
if (out != null)
out.close();
} catch (IOException e) {

}
}

Next up is a method called save(). It takes the current settings and serializes them to
the .mrnom file on the external storage (e.g., /sdcard/.mrnom).The sound setting and each
high-score entry is stored as a separate line in that file, as expected by the load()
method. If something goes wrong, we just ignore the failure and use the default values
defined earlier. In an AAA title, you might want to inform the user about this loading
error.

public static void addScore(int score) {
for (int i = 0; 1 < 5; i++) {
if (highscores[i] < score) {
for (int j = 4; j > i; j--)
highscores[j] = highscores[j - 1];
highscores[i] = score;
break;

}

}

The final method, addScore(), is a convenience method. We will use it to add a new
score to the high scores, automatically resorting them depending on the value we want
to insert.

CHAPTER 6: Mr. Nom Invades Android

LoadingScreen: Fetching the Assets from Disk

With those classes at hand, we can now easily implement the loading screen. Listing 6-
4 shows you the code.

Listing 6-4. LoadingScreen.java, Which Loads All Assets and the Settings

package com.badlogic.androidgames.mrnom;

import com.badlogic.androidgames.framework.Game;

import com.badlogic.androidgames.framework.Graphics;

import com.badlogic.androidgames.framework.Screen;

import com.badlogic.androidgames.framework.Graphics.PixmapFormat;

public class LoadingScreen extends Screen {
public LoadingScreen(Game game) {
super(game);

We let the LoadingScreen class derive from the Screen class we defined in Chapter 3.
This requires that we implement a constructor that takes a Game instance, which we hand
to the superclass constructor. Note that this constructor will be called in the
MrNomGame.getStartScreen() method we defined earlier.

@0verride

public void update(float deltaTime) {
Graphics g = game.getGraphics();
Assets.background = g.newPixmap("background.png", PixmapFormat.RGB565);
Assets.logo = g.newPixmap("logo.png", PixmapFormat.ARGB4444);
Assets.mainMenu = g.newPixmap("mainmenu.png", PixmapFormat.ARGB4444);
Assets.buttons = g.newPixmap("buttons.png", PixmapFormat.ARGB4444);
Assets.help1 .newPixmap("helpi.png", PixmapFormat.ARGB4444);
Assets.help2 .newPixmap("help2.png", PixmapFormat.ARGB4444);
Assets.help3 = g.newPixmap("help3.png", PixmapFormat.ARGB4444);
Assets.numbers = g.newPixmap("numbers.png", PixmapFormat.ARGB4444);
Assets.ready = g.newPixmap(“ready.png", PixmapFormat.ARGB4444);
Assets.pause = g.newPixmap("pausemenu.png", PixmapFormat.ARGB4444);
Assets.gameOver = g.newPixmap("gameover.png", PixmapFormat.ARGB4444);
Assets.headUp = g.newPixmap("headup.png", PixmapFormat.ARGB4444);
Assets.headleft = g.newPixmap("headleft.png", PixmapFormat.ARGB4444);
Assets.headDown = g.newPixmap("headdown.png", PixmapFormat.ARGB4444);
Assets.headRight = g.newPixmap("headright.png", PixmapFormat.ARGB4444);
Assets.tail = g.newPixmap(“"tail.png", PixmapFormat.ARGB4444);
Assets.staini = g.newPixmap("staini.png", PixmapFormat.ARGB4444);
Assets.stain2 = g.newPixmap("stain2.png", PixmapFormat.ARGB4444);
Assets.stain3 = g.newPixmap("stain3.png", PixmapFormat.ARGB4444);
Assets.click = game.getAudio().newSound("click.ogg");
Assets.eat = game.getAudio().newSound("eat.ogg");
Assets.bitten = game.getAudio().newSound("bitten.ogg");
Settings.load(game.getFileIO());
game.setScreen(new MainMenuScreen(game));

0QoQ Il 0QoQoQ Il

CHAPTER 6: Mr. Nom Invades Android

Next up is our implementation of the update() method, where we load the assets and
settings. For the image assets, we simply create new Pixmaps via the
Graphics.newPixmap() method. Note that we specify which color format the Pixmaps
should have. The background has an RGB565 format, and all other images have an
ARGB4444 format (if the BitmapFactory respects our hint). We do this conserve memory
and increase our rendering speed a little later on. Our original images are stored in
RGB888 and ARGB8888 format as PNGs. We also load in the three sound effects and
store them in the respective members of the Assets class. Next we load the settings
from the external storage via the Settings.load() method. Finally we initiate a screen
transition to a Screen called MainMenuScreen, which will take over execution from that
point on.

@0verride
public void present(float deltaTime) {

}

@0verride
public void pause() {

}

@0verride
public void resume() {

}

@0verride
public void dispose() {

}
}

The other methods are just stubs and do not perform any actions. Since the update()
method will immediatly trigger a screen transition after all assets are loaded, there’s
nothing more to do on this screen.

The Main Menu Screen

The main menu screen is pretty dumb. It just renders the logo, the main menu options,
and the sound setting in the form of a toggle button. All it does is react to touches on
either the main menu options or the sound setting toggle button. To implement this
behaviour we need to know two things: where on the screen we render the images and
what the touch areas are that will either trigger a screen transition or toggle the sound
setting. Figure 6-2 shows where we’ll render the different images on the screen. From
that we can directly derive the touch areas.

CHAPTER 6: Mr. Nom Invades Android

(32,20)

MIRE
NOEY
(64,220) F& mﬁz

(106 (S CORES
HELE

(0,416)

Figure 6-2. The main menu screen. The coordinates specify where we’ll render the different images, and the
outlines show the touch areas.

The x-coordinates of the logo and main menu option images are calculated so that they
are centered on the x-axis.

Next, let’s implement the Screen. Listing 6-5 shows the code.
Listing 6-5. MainMenuScreen.java, the Main Menu Screen

package com.badlogic.androidgames.mrnom;
import java.util.list;

import com.badlogic.androidgames.framework.Game;

import com.badlogic.androidgames.framework.Graphics;

import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.Screen;

public class MainMenuScreen extends Screen {
public MainMenuScreen(Game game) {
super(game);

We let the class derive from Screen again and implement an adequate constructor for it.

@0verride

public void update(float deltaTime) {
Graphics g = game.getGraphics();
List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
game.getInput().getKeyEvents();

int len = touchEvents.size();

CHAPTER 6: Mr. Nom Invades Android

for(int i = 0; 1 < len; i++) {
TouchEvent event = touchEvents.get(i);
if(event.type == TouchEvent.TOUCH UP) {
if(inBounds(event, 0, g.getHeight() - 64, 64, 64)) {
Settings.soundEnabled = !Settings.soundEnabled;
if(Settings.soundEnabled)
Assets.click.play(1);

if(inBounds(event, 64, 220, 192, 42)) {
game.setScreen(new GameScreen(game));
if(Settings.soundEnabled)
Assets.click.play(1);
return;

if(inBounds(event, 64, 220 + 42, 192, 42)) {
game.setScreen(new HighscoreScreen(game));
if(Settings.soundEnabled)
Assets.click.play(1);
return;

if(inBounds(event, 64, 220 + 84, 192, 42)) {
game.setScreen(new HelpScreen(game));
if(Settings.soundEnabled)
Assets.click.play(1);
return;

}
}

}

Next we have the update() method, in which we’ll do all our touch event checking. We
first fetch the TouchEvents and KeyEvents from the Input instance the Game provides to
us. Note that we do not use the KeyEvents, but we fetch them anyway in order to clear
the internal buffer (yes, that’s a tad bit nasty, but let’s make it a habit). We then loop
over all the TouchEvents until we find one with the type TouchEvent.TOUCH_UP. (We could
alternatively look for TouchEvent.TOUCH_DOWN events, but in most Uls the up event is
used to indicate that a Ul component was pressed).

Once we have a fitting event, we check whether it either hit the sound toggle button or
one of the menu entries. To make that code a little cleaner, | wrote a method called
inBounds (), which takes a touch event, x- and y-coordinates, and a width and height.
The method checks whether the touch event is inside the rectangle defined by those
parameters, and returns either true or false.

If the sound toggle button is hit, we simply invert the Settings.soundEnabled boolean
value. In case any of the main menu entries are hit, we transition to the appropriate
screen by instancing it and setting it via Game.setScreen(). We can immediately return in
that case, as the MainMenuScreen doesn’t have anything to do anymore. We also play the
click sounds if either the toggle button or a main menu entry is hit and sound is enabled.

Remember that all the touch events will be reported relative to our target resolution of
320! 480 pixels, thanks to the scaling magic we perform in the touch event handlers
discussed in Chapter 5:

CHAPTER 6: Mr. Nom Invades Android

private boolean inBounds(TouchEvent event, int x, int y, int width, int height) {
if(event.x > x &8 event.x < x + width - 1 8&&
event.y > y 8 event.y < y + height - 1)
return true;
else
return false;

}

The inBounds () method works as just discussed: put in a TouchEvent and a rectangle,
and it tells you whether the touch event’s coordinates are inside that rectangle.

@verride
public void present(float deltaTime) {
Graphics g = game.getGraphics();

g.drawPixmap (Assets.background, 0, 0);
g.drawPixmap(Assets.logo, 32, 20);
g.drawPixmap (Assets.mainMenu, 64, 220);
if(Settings.soundEnabled)

g.drawPixmap (Assets.buttons, 0, 416, 0, 0, 64, 64);
else

g.drawPixmap(Assets.buttons, 0, 416, 64, 0, 64, 64);

The present () method is probably the one you’ve been waiting for most, but I'm afraid it
isn’t all that exciting. Out little game framework makes it really simple to render our main
menu screen. All we do is render the background at (0,0), which will basically erase our
framebuffer, so no call to Graphics.clear() is needed. Next we draw the logo and main
menu entries at the coordinates shown in Figure 6-2. We end that method by drawing the
sound toggle button based on the current setting. As you can see, we use the same Pixmap,
but only draw the appropriate portion of it (the sound toggle button; see Figure 6-1). Now
that was easy.

@0verride
public void pause() {
Settings.save(game.getFileIO());

The final piece we need to discuss is the pause() method. Since we can change one of
the settings on that screen, we have to make sure that it gets persisted to the external
storage. With our Settings class that’s pretty easy!

@0verride
public void resume() {

}

@0verride
public void dispose() {

}
}

The resume() and dispose() methods don’t have anything to do in this Screen.

CHAPTER 6: Mr. Nom Invades Android

The HelpScreen Class(es)

Next, let’s implement the HelpScreen, HighscoreScreen, and GameScreen classes we
used previously in the update() method.

We defined three help screens in Chapter 3, each more or less explaining one aspect of
the game play. We now directly translate those to Screen implementations called
HelpScreen, HelpScreen2, and HelpScreen3. They all have a single button that will initiate
a screen transition. The HelpScreen3 screen will transition back to the MainMenuScreen.
Figure 6-3 shows the three help screens with the drawing coordinates and touch areas.

(64,100) 5 (64,100) (64,100)
oflS 15 ' RA OL
: PR MOK IMRAL!
MR NMO® FORW3 216 LIRES
Sacack (NN e o
» 6838
IS LAKED IR A aeer
(256 @ (256,416) (256,416)

Figure 6-3. The three help screens, drawing coordinates, and touch areas

Now that seems simple enough to implement. Let’s start with the HelpScreen class,
shown in Listing 6-6.

Listing 6-6. HelpScreen.java, the First Help Screen

package com.badlogic.androidgames.mrnom;
import java.util.list;

import com.badlogic.androidgames.framework.Game;

import com.badlogic.androidgames.framework.Graphics;

import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.Screen;

public class HelpScreen extends Screen {
public HelpScreen(Game game) {
super(game);

@verride
public void update(float deltaTime) {
List<TouchEvent> touchEvents = game.getInput().getTouchEvents();

CHAPTER 6: Mr. Nom Invades Android

game.getInput().getKeyEvents();

int len = touchEvents.size();
for(int i = 0; 1 < len; i++) {
TouchEvent event = touchEvents.get(i);
if(event.type == TouchEvent.TOUCH UP) {
if(event.x > 256 && event.y > 416) {
game.setScreen(new HelpScreen2(game));
if(Settings.soundEnabled)
Assets.click.play(1);
return;

}
}
}
}

@0verride
public void present(float deltaTime) {
Graphics g = game.getGraphics();
g.drawPixmap (Assets.background, 0, 0);
g.drawPixmap(Assets.help1, 64, 100);
g.drawPixmap (Assets.buttons, 256, 416, 0, 64, 64, 64);

@0verride
public void pause() {

}

@0verride
public void resume() {

}

@0verride
public void dispose() {

}
}

Again, very simple. We derive from Screen and implement a proper constructor. Next we
have our familiar update () method, which simply checks if the button at the bottom was
pressed. If that’s the case, we play the click sound and transition to HelpScreen2.

The present() method just renders the background again, followed by the help image
and the button.

The HelpScreen2 and HelpScreen3 classes look the same; the only difference is the help
image they draw and the screen they transition to. | guess we can agree that we don’t
have to look at their code. On to the high-scores screen!

CHAPTER 6: Mr. Nom Invades Android

The High-Scores Screen

The high-scores screen simply draws the top five high scores we store in the Settings
class, plus a fancy header telling the player that she is on the high-scores screen, and a
button at the bottom left that will transition back to the main menu when pressed. The
interesting part is how we render the high scores. Let’s first have a look at where we
render the images, which is shown in Figure 6-4.

(64,20)

(006 A SCORES

Figure 6-4. The high-scores screen, without high scores

That looks as easy as the other screens we have implemented. But how can we draw
the dynamic scores?

Rendering Numbers: An Excursion

We have an asset image called numbers.png that contains all digits from 0 to 9 plus a
dot. Each digit is 20! 32 pixels, and the dot is 10! 32 pixels in size. The digits are
arranged from left to right in ascending order. The high-scores screen should display
five lines, each line showing one of the five high scores. One such line would start with

the high score’s position (e.g., “1.” or “5.”), followed by a space, followed by the actual
score. How can we do that?

We have two things at our disposal: the numbers.png image and Graphics.drawPixmap(),
which allows us to draw portions of an image to the screen. Say we want the first line of

CHAPTER 6: Mr. Nom Invades Android

the default high scores (with the string “1. 100”) to be rendered at (20, 100) so that the
top-left corner of the digit 1 coincides with those coordinates. We call
Graphics.drawPixmap() like this:

game.getGraphics().drawPixmap(Assets.numbers, 20, 100, 20, 0, 20, 32);

We know that the digit 1 has a width of 20 pixels. The next character of our string would
have to be rendered at (20+20,100). In the case of the string “1. 100,” this character is
the dot, which has a width of 10 pixels in the numbers.png image:

game.getGraphics().drawPixmap(Assets.numbers, 40, 100, 200, 0, 10, 32);

The next character in the string needs to be rendered at (20+20+10,100). That character
is a space, which we don’t need to draw. All we need to do is advance on the x-axis by
20 pixels again, as we assume that’s the width of the space character. The next
character, 1, would therefore be rendered at (20+20+10+20,100). See a pattern here?

Given the coordinates of the upper-left corner of our first character in the string, we can
loop through each character of the string, draw it, and increment the x-coordinate for
the next character to be drawn by either 20 or 10 pixels, depending on the character we
just drew.

We also need to figure out which portion of the numbers.png image we should draw
given the current character. For that we need the x- and y-coordinates of the upper-left
corner of that portion, as well as its width and height. The y-coordinate will always be
zero, which should be obvious when looking at Figure 6-1. The height is also a constant;
32 in our case. The width is either 20 pixels (if the character of the string is a digit) or 10
pixels (if it is a dot). The only thing that we need to calculate is the x-coordinate of the
portion in the numbers.png image. We can do that by using a neat little trick.

The characters in a string can be interpreted as Unicode characters or as 16-bit
integers. This means that we can actually do calculations with those character codes.
By a lucky coincidence, the characters 0 to 9 have ascending integer representations.
We can use that fact to calculate the x-coordinate of the portion of the number.png
image for a digit like this:

char character = string.charAt(index);
int x = (character - ‘0’) * 20;

That will give us 0 for the character 0, 3! 20 = 60 for the character 3, and so on. That’s
exactly the x-coordinate of the portion of each digit. Of course, this won’t work for the
dot character, so we need to treat that specially. Let’s summarize this in a method that
can render one of our high-score lines given the string of the line and the x- and y-
coordinates that the rendering should start at.

public void drawText(Graphics g, String line, int x, int y) {
int len = line.length();
for (int i = 0; 1 < len; i++) {
char character = line.charAt(i);

if (character == ' ') {
X += 20;
continue;

CHAPTER 6: Mr. Nom Invades Android

}

int srcX = 0;
int srcWidth = o;
if (character == '.") {
srcX = 200;
srcWidth = 10;
} else {
srcX = (character - '0') * 20;
srchWidth = 20;

}

g.drawPixmap (Assets.numbers, x, y, srcX, 0, srcWidth, 32);
X += srcWidth;

}

We iterate over each character of the string. If the current character is a space, we just
advance the x-coordinate by 20 pixels. Otherwise we calculate the x-coordinate and
width of the current character’s region in the numbers.png image. The character is either
a digit or a dot. We then render the current character and advance the rendering x-
coordinate by the width of the character we’ve just drawn. This method will of course
blow up if our string contains anything other than spaces, digits, and dots. Can you think
of a way to make it work with any string?

Implementing the Screen

Equipped with this new knowledge, we can now easily implement the HighscoreScreen
class, as shown in Listing 6-7.

Listing 6-7. HighscoreScreen.java, Showing Us Our Best Achievements So Far

package com.badlogic.androidgames.mrnom;
import java.util.list;

import com.badlogic.androidgames.framework.Game;

import com.badlogic.androidgames.framework.Graphics;

import com.badlogic.androidgames.framework.Screen;

import com.badlogic.androidgames.framework.Input.TouchEvent;

public class HighscoreScreen extends Screen {
String lines[] = new String[5];

public HighscoreScreen(Game game) {
superx(game);

for (int i =
lines[i]

0; i < 5; i++) {
=""+ (i+1)+"." + Settings.highscores[i];

CHAPTER 6: Mr. Nom Invades Android

As we want to stay friends with the garbage collector, we store the strings of the five
high-score lines in a string array member. We construct the strings based on the
Settings.highscores array in the constructor.

@0verride

public void update(float deltaTime) {
List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
game.getInput().getKeyEvents();

int len = touchEvents.size();
for (int i = 0; 1 < len; i++) {
TouchEvent event = touchEvents.get(i);
if (event.type == TouchEvent.TOUCH UP) {
if (event.x < 64 &3 event.y > 416) {
if(Settings.soundEnabled)
Assets.click.play(1);
game.setScreen(new MainMenuScreen(game));
return;

}
}
}
}

Next we define the update() method, which is unsurprisingly boring. All we do is check
for whether a touch-up event hit the button in the bottom-left corner. If that’s the case,
we play the click sound and transition back to the MainMenuScreen.

@verride
public void present(float deltaTime) {
Graphics g = game.getGraphics();

g.drawPixmap (Assets.background, 0, 0);
g.drawPixmap (Assets.mainMenu, 64, 20, 0, 42, 196, 42);

int y = 100;

for (int i = 0; 1 < 5; i++) {
drawText(g, lines[i], 20, y);
y += 50;

g.drawPixmap (Assets.buttons, 0, 416, 64, 64, 64, 64);
}

The present() method is pretty simple with the help of the mighty drawText() method
we just defined. We render the background image first as usual, followed by the
“HIGHSCORES” portion of the Assets.mainmenu image. We could have stored that in a
separate file, but we reuse it to free up more memory.

Next we loop through the five strings for each high-score line we created in the
constructor. We draw each line with the drawText () method. The first line starts at
(20,100), the next line is rendered at (20,150), and so on. We just increase the y-
coordinate for text rendering by 50 pixels for each line so that we have a nice vertical
spacing between the lines. We finish the method off by drawing our button.

CHAPTER 6: Mr. Nom Invades Android

public void drawText(Graphics g, String line, int x, int y) {
int len = line.length();
for (int i = 0; 1 < len; i++) {
char character = line.charAt(i);

if (character == ' ') {
X += 20;
continue;

}

int srcX = 0;
int srcWidth = o;
if (character == '.") {

srcX = 200;
srchWidth = 10;
} else {

srcX = (character - '0') * 20;
srchWidth = 20;

}

g.drawPixmap (Assets.numbers, x, y, srcX, 0, srcWidth, 32);
X += srcWidth;

}

@0verride
public void pause() {

}

@0verride
public void resume() {

}

@0verride
public void dispose() {

}
}

The remaining methods should be self-explanatory. Let’s get to the last missing piece of
our Mr. Nom game: the game screen.

Abstracting...

So far we’ve only implemented boring Ul stuff and some housekeeping code for our
assets and settings. We’ll now abstract the world of Mr. Nom and all the objects in it.
We’ll also free Mr. Nom from the screen resolution and let him live in his own little world
with his own little coordinate system.

CHAPTER 6: Mr. Nom Invades Android

Abstracting the World of Mr. Nom: Model, View, Controller

If you are a long-time coder, you’ve probably heard about design patterns. They are
more or less strategies to design your code given a scenario. Some of them are
academic, and some have uses in the real world. For game development we can borrow
some ideas from the Model-View-Controller (MVC) design pattern. It’s often used by the
database and web community to separate the data model from the presentation layer
and the data manipulation layer. We won’t strictly follow this design pattern, but rather
adapt it in a simpler form.

So what does this mean for Mr. Nom? First of all we need an abstract representation of
our world that is independent of any bitmaps, sounds, framebuffers, or input events.
Instead we’ll model Mr. Nom’s world with a few simple classes in an object-oriented
manner. We’ll have a class for the stains in the world and a class for Mr. Nom himself.
Mr. Nom is composed of a head and tail parts, which we’ll also represent by a separate
class. To tie everything together, we’ll have an all-knowing class representing the
complete world of Mr. Nom, including the stains and Mr. Nom himself. All this
represents the model part of MVC.

The view in MVC will be the code that is responsible for rendering the world of Mr. Nom.
We'll have a class or a method that takes the class for the world, reads its current state,
and renders it to the screen. How it is rendered does not concern the model classes,
though, and this is the most important lesson to take away from MVC. The model
classes are independent of everything, but the view classes and methods depend on the
model classes.

Finally we have the controller in MVC. It tells the model classes to change their state
based on things like user input or the time ticking away. The model classes provide
methods to the controller (e.g., with instructions like “Turn Mr. Nom to the left.”), which
the controller can then use to modify the state of the model. We don’t have any code in
the model classes that directly accesses things like the touchscreen or the
accelerometer. This way we can keep the model classes clear of any external
dependencies.

This may sound complicated, and you may be wondering why we do things this way.
However, there are a lot of benefits to this approach. We can implement all our game
logic without having to know about graphics, audio, or input devices. We can modify the
rendering of the game world without having to change the model classes themselves.
We could even go so far as to exchange a 2D world renderer with a 3D world renderer.
We can easily add support for new input devices by using a controller. All it does is
translate input events to method calls of the model classes. Want to turn Mr. Nom via
the accelerometer? No problem—read the accelerometer values in the controller and
translate them to a “turn Mr. Nom left” or “turn Mr. Nom right” method call on the model
of Mr. Nom. Want to add support for the Zeemote? No problem, just do the same as in
the case of the accelerometer! The best thing about using controllers is that we don’t
have to touch a single line of Mr. Nom’s code to make all this happen.

Let’s start by defining Mr. Nom’s world. To do this we’ll break away from the strict MVC
pattern a little and use our graphical assets to illustrate the basic ideas. This will also

CHAPTER 6: Mr. Nom Invades Android

help us to implement the view component later on (rendering Mr. Nom’s abstract world
in pixels).

Figure 6-5 shows the game screen with the world of Mr. Nom superimposed on it, in the
form of a grid.

0B

WV

% 9.12)

9 (=)

Figure 6-5. Mr. Nom’s world superimposed onto our game screen

Notice that Mr. Nom’s world is confined to a grid of 10! 13 cells. We address cells in a
coordinate system with the origin in the upper-left corner at (0,0) spanning to the
bottom-right corner at (9,12). Any part of Mr. Nom must be in one of these cells, and
thus must have integer x- and y-coordinates within this world. The same is true for the
stains in this world. Each part of Mr. Nom fits into exactly one cell of 1! 1 units. Note that
the type of units doesn’t matter—this is our own fantasy world free from the shackles of
the Sl system or pixels!

Mr. Nom can’t travel outside this small world. If he passes an edge he’ll just come out
the other end, and all his parts will follow. (We have the same problem here on earth by
the way—go in any direction for long enough and you’ll come back to your starting
point). Mr. Nom can also only advance cell by cell. All his parts will always be at integer
coordinates. He’ll never, for example, occupy two and a half cells.

CHAPTER 6: Mr. Nom Invades Android

NOTE: As stated earlier, what we use here is not a strict MVC pattern. If you are interested in the
real definition of an MVC pattern, | suggest taking reading Design Patterns: Elements of Reusable
Object-Oriented Software, by Erich Gamm, Richard Helm, Ralph Johnson, and John M. Vlissides
(aka the Gang of Four) (Addison-Wesley, 1994). In their book, the MVC pattern is knows as the
Observer pattern.

The Stain Class

The simplest object in Mr. Nom’s world is a stain. It just sits in a cell of the world, waiting
to be eaten. When we designed Mr. Nom, we created three different visual
representations of a stain. The type of a stain does not make a difference in Mr. Nom’s
world, but we’ll include it in our Stain class anyway. Listing 6-8 shows the Stain class.

Listing 6-8. Stain.java

package com.badlogic.androidgames.mrnom;

public class Stain {

public static final int TYPE 1 = 0;
public static final int TYPE 2 = 1;
public static final int TYPE 3 = 2;

public int x, y;
public int type;

public Stain(int x, int y, int type) {
this.x = x;
this.y = y;
this.type = type;

}

The Stain class defines three public static constants that encode the type of a stain.
Each Stain has three members, x- and y-coordinates in Mr. Nom’s world, and a type,
which is one of the constants defined earlier. To make our code simple, we don’t include
getters and setters, as is common practice. We finish the class off with a nice
constructor that allows us to instantiate a Stain instance easily.

One thing to notice is the lack of any connection to graphics, sound, or other classes.
The Stain class stands on its own, proudly encoding the attributes of a stain in Mr.
Nom’s world.

The Snake and SnakePart Classes

Mr. Nom is like a moving chain, composed of interconnected parts that will move along
when we pick one part and drag it somewhere. Each part occupies a single cell in Mr.
Nom’s world, much like a stain. In our model, we do not distinguish between the head
and tail parts, so we can have a single class that represents both types of parts of Mr.

CHAPTER 6: Mr. Nom Invades Android

Nom. Listing 6-9 shows called SnakePart class, which is used to define both parts of Mr.
Nom.

Listing 6-9. SnakePart.java

package com.badlogic.androidgames.mrnom;

public class SnakePart {
public int x, y;

public SnakePart(int x, int y) {
this.x = x;
this.y = y;

}
}

This is essentially the same as the Stain class—we just removed the type member. The
first really interesting class of our model of Mr. Nom’s world is the Snake class. Let’s
think about what it has to be able to do:

It must store the head and tail parts.

It must know which way Mr. Nom is currently heading.

It must be able to grow a new tail part when Mr. Nom eats a stain.
It must be able to move by one cell in the current direction.

The first and second items are easy. We just need a list of SnakePart instances—the first
part in that list being the head and the other parts making up the tail. Mr. Nom can move
up, down, left, and right. We can encode that with some constants and store his current
direction in a member of the Snake class.

The third item isn’t all that complicated either. We just add another SnakePart to the list
of parts we already have. The question is, at what position we should add that part? It
may sound surprising, but we give it the same position as the last part in the list. The
reason for this becomes clearer when we look at how we can implement the last item on
the preceding list: moving Mr. Nom.

Figure 6-6 shows Mr. Nom in his initial configuration. He is composed of three
parts, the head, at (5,6), and two tail parts, at (5,7) and (5,8).

CHAPTER 6: Mr. Nom Invades Android

N2 9,12)

(© >

Figure 6-6. Mr. Nom in his initial configuration

The parts in the list are ordered beginning with the head and ending at the last tail part.
When Mr. Nom advances by one cell, all the parts behind his head have to follow.
However, Mr. Nom’s parts might not be laid out in a straight line, as in Figure 6-6, so
simply shifting all the parts in the direction Mr. Nom advances is not enough. We have to
do something a little more sophisticated.

We need to start at the last part in the list, as counterintuitive as that may sound. We
move it to the position of the part before it, and we repeat this for all other parts in the
list except for the head, as there’s no part before it. In the case of the head, we check
which direction Mr. Nom is currently heading and modify the head’s position
accordingly. Figure 6-7 illustrates this with a bit more complicated configuration of Mr.
Nom.

7 > Ooi 7 Oei 7

912)|WV 912)|Vv 9.12) §12)

& 50 E N E N E =

Figure 6-7. Mr. Nom advancing and taking his tail with him

CHAPTER 6: Mr. Nom Invades Android

This movement strategy works well with our eating strategy. When we add a new part to
Mr. Nom, it will stay at the same position as the part before it the next time Mr. Nom
moves. Also note that this will allow us to easily implement wrapping Mr. Nom to the
other side of the world if he passes one of the edges. We just set the head’s position
accordingly, and the rest is done automatically.

With all this information we can now implement the Snake class representing Mr. Nom.
Listing 6-10 shows the code.

Listing 6-10. Snake.java; Mr. Nom in Code

package com.badlogic.androidgames.mrnom;

import java.util.Arraylist;
import java.util.list;

public class Snake {
public static final int UP =
public static final int LEFT
public static final int DOWN
public static final int RIGHT = 3;

1;
2;

public List<SnakePart> parts = new ArraylList<SnakePart>();
public int direction;

We start off by defining a couple of constants that encode the direction of Mr. Nom.
Remember that Mr. Nom can only turn left and right, so the way we define the
constants’ values is critical. It will later allow us to easily rotate the direction by plus and
minus 90 degrees by just incrementing and decrementing the current direction constant
by one.

Next we define a list called parts that holds all the parts of Mr. Nom. The first item in
that list is the head, and the other items are the tail parts. The second member of the
Snake class holds the direction Mr. Nom is currently heading in.

public Snake() {
direction = UP;
parts.add(new SnakePart(5, 6));
parts.add(new SnakePart(5, 7));
parts.add(new SnakePart(5, 8));
}

In the constructor, we set up Mr. Nom to be composed of his head and two additional
tail parts, positioned more or less in the middle of the world, as shown previously in
Figure 6-6. We also set the direction to Snake.UP so that Mr. Nom will advance upward
by one cell the next time he’s asked to advance.

public void turnLeft() {
direction += 1;
if(direction > RIGHT)
direction = UP;

}

public void turnRight() {

CHAPTER 6: Mr. Nom Invades Android

direction -= 1;
if(direction < UP)
direction = RIGHT,
}

The methods turnLeft() and turnRight() just modify the direction member of the Snake
class. For a turn left we increment it by one, and for a turn right we decrement it. We
also have to make sure that we wrap around if the direction value gets outside the range
of the constants we defined earlier.

public void eat() {
SnakePart end = parts.get(parts.size()-1);
parts.add(new SnakePart(end.x, end.y));

Next up is the eat() method. All it does is add a new SnakePart to the end of the list;
this new part will have the same position as the current end part. Next time Mr. Nom
advances, those to overlapping parts will move apart, as discussed earlier.

public void advance() {
SnakePart head = parts.get(0);

int len = parts.size() - 1;

for(int i = len; 1 > 0; i--) {
SnakePart before = parts.get(i-1);
SnakePart part = parts.get(i);
part.x = before.x;
part.y = before.y;

if(direction =
head.y -=
if(direction =
head.x -=
if(direction =
head.y +=
if(direction =
head.x +=

if(head.x < 0)
head.x = 9;
if(head.x > 9)
head.x = 0;
if(head.y < 0)
head.y = 12;
if(head.y > 12)
head.y = 0;
}
The next method, advance(),implements the logic illustrated in Figure 6-7. First we
move each part to the position of the part before it, starting with the last part. We
exclude the head from this mechanism. Then we move the head according to Mr. Nom’s
current direction. Finally we perform some checks to make sure Mr. Nom doesn’t go
outside his world. If that’s the case we just wrap him around so that he comes out at the
other side of the world.

CHAPTER 6: Mr. Nom Invades Android

public boolean checkBitten() {
int len = parts.size();
SnakePart head = parts.get(0);
for(int i = 1; 1 < len; i++) {
SnakePart part = parts.get(i);
if(part.x == head.x && part.y == head.y)
return true;

return false;

}
}
The final method, checkBitten(), is a little helper method that checks if Mr. Nom has
bitten his tail. All it does is check that no tail part is at the same position as the head. If
that’s the case, Mr. Nom will die and the game will end.

The World Class

The last of our model classes is called World. The World class has a couple of tasks to
fulfill:

Keeping track of Mr. Nom (in the form of a Snake instance) as well as
the Stain that dropped on the World. There will only ever be a single
stain in our world.

Providing a method that will update Mr. Nom in a time-based manner
(e.g., he should advance by one cell every 0.5 seconds). This method
will also check if Mr. Nom has eaten a stain or has bitten himself.

Keeping track of the score, which is basically just the number of stains
eaten so far times 10.

Increasing the speed of Mr. Nom after every ten stains he’s eaten.
That will make the game a little bit more challenging.

Keeping track of whether Mr. Nom is still alive. We'll use this to
determine whether the game is over later on.

Creating a new stain after Mr. Nom eats the current one (a subtle but
important and surprisingly complex task).

There are only two items on this task list that we haven’t discussed yet: updating the
world in a time-based manner and placing a new stain.

Time-Based Movement of Mr. Nom

In Chapter 3 we talked about time-based movement. This basically means that we
define velocities of all our game objects, measure the time that has passed since the last
update (aka the delta time), and advance the objects by multiplying their velocity by the
delta time. In the example given in Chapter 3, we used floating-point values to achieve
this. Mr. Nom’s parts have integer positions, though, so we need to figure out how to
advance the objects in this scenario.

CHAPTER 6: Mr. Nom Invades Android

Let’s first define the velocity of Mr. Nom. The world of Mr. Nom has time, and we
measure it in seconds. Initially Mr. Nom should advance by one cell every 0.5 seconds.
All we need to do is keep track of how much time has passed since we last advanced
Mr. Nom. If that accumulated time goes over our 0.5-second threshold, we call the
Snake.advance() method and reset our time accumulator. Where do we get those delta
times from? Remember the Screen.update() method. It gets the frame delta time. We
just pass that on to the update method of our World class, which will do the
accumulation. To make the game more challenging, we will decrease that threshold by
0.05 seconds each time Mr. Nom eats another ten stains. We have to make sure, of
course, that we don’t reach a threshold of 0, or else Mr. Nom would travel at infinite
speed—something Einstein wouldn’t take to kindly.

Placing Stains

The second issue we have to solve is how to place a new stain when Mr. Nom has eaten
the current one. It should appear in a random cell of the world. So, we could just
instantiate a new Stain with a random position, right? Sadly it's not that easy.

Imagine Mr. Nom taking up a considerable number of cells. The probability that the stain
would be placed in a cell that’s already occupied by Mr. Nom will increase the bigger
Mr. Nom gets. We thus have to find a cell that is currently not occupied by Mr. Nom.
Easy again, right? Just iterate over all cells and use the first one that is not occupied by
Mr. Nom.

Well, again, that’s a little suboptimal. If we started our search at the same position, the
stain wouldn’t be placed randomly. Instead we’ll start at a random position in the world,
scan all cells until we reach the end of the world, and then scan all cells above the start
position if we haven’t found a free cell yet.

How do we check whether a cell is free? The naive solution would be to go over all cells,
take each cell’s x- and y-coordinates, and check all the parts of Mr. Nom against those
coordinates. We have 10! 13 = 130 cells, and Mr. Nom can take up 55 cells. That
would be 130! 55 = 7,150 checks! Granted, most devices could handle that, but we
can do better.

We’ll create a two-dimensional array of booleans where each array element represents a
cell in the world. When we have to place a new stain, we first go through all parts of Mr.
Nom and set those elements that are occupied by a part in the array to true. We then
simply choose a random position from which we start scanning until we find a free cell
that we can place the new stain in. With Mr. Nom being composed of 55 parts, that
would take 130 + 55 = 185 checks. That’s a lot better!

Determining When the Game Is Over

There’s one last thing we have to think of: what if all cells are taken up by Mr. Nom? In
that case, the game would be over, as Mr. Nom would officially become the whole
world. Given that we add 10 to the score each time Mr. Nom eats a stain, the maximally

CHAPTER 6: Mr. Nom Invades Android

achievable score is (10! 13 -3)! 10 = 1,000 points (remember, Mr. Nom starts off with
three parts already).

Implementing the World Class

Phew, we have a lot of stuff to implement, so let’s get going. Listing 6-11 shows the
code of the World class.

Listing 6-11. World. java

package com.badlogic.androidgames.mrnom;
import java.util.Random;

public class World {
static final int WORLD WIDTH = 10;
static final int WORLD HEIGHT = 13;
static final int SCORE_INCREMENT = 10;
static final float TICK INITIAL = 0.5f;
static final float TICK DECREMENT = 0.05f;

public Snake snake;

public Stain stain;

public boolean gameOver = false;;
public int score = 0;

boolean fields[][] = new boolean[WORLD WIDTH][WORLD HEIGHT];
Random random = new Random();

float tickTime = 0;

static float tick = TICK INITIAL;

As always, we start off by defining a couple of constants—in this case, the world’s width
and height in cells, the value we increment the score with each time Mr. Nom eats a
stain, the initial time interval used to advance Mr. Nom (called a tick), and the value we
decrement the tick each time Mr. Nom has eaten ten stains in order to speed up things a
little.

Next we have some public members that hold a Snake instance, a Stain instance, a
boolean that stores whether the game is over, and the current score.

We define another four package private members: the 2D array we’ll use to place a new
stain; an instance of the Random class, through which we’ll produce random numbers to
place the stain and generate its type; the time accumulator variable, tickTime, to which
we’ll add the frame delta time; and the current duration of a tick, which defines how
often we advance Mr. Nom.

public World() {
snake = new Snake();
placeStain();

CHAPTER 6: Mr. Nom Invades Android

In the constructor we create an instance of the Snake class, which will have the initial
configuration shown in Figure 6-6. We also place the first random stain via the
placeStain() method.

private void placeStain() {
for (int x = 0; x < WORLD WIDTH; x++) {
for (int y = 0; y < WORLD HEIGHT; y++) {
fields[x][y] = false;

}

int len = snake.parts.size();

for (int i = 0; 1 < len; i++) {
SnakePart part = snake.parts.get(i);
fields[part.x][part.y] = true;

int stainX = random.nextInt(WORLD WIDTH);
int stainY = random.nextInt(WORLD HEIGHT);
while (true) {
if (fields[stainX][stainY] == false)
break;
stainX += 1;
if (stainX >= WORLD WIDTH) {
stainX = 0;
stainY += 1;
if (stainY >= WORLD HEIGHT) {
stainY = 0;
}

}
}
stain = new Stain(stainX, stainY, random.nextInt(3));

}

The placeStain() method implements the placement strategy discussed earlier. We
start off by clearing the cell array. Next we set all the cells occupied by parts of the
snake to true. Finally we scan the array for a free cell starting at a random position.
Once we have found a free cell, we create a Stain with a random type. Note that if all
cells are occupied by Mr. Nom, then the loop will never terminate. We’ll make sure that
will never happen in the next method.

public void update(float deltaTime) {
if (gameOver)
return;

tickTime += deltaTime;

while (tickTime > tick) {
tickTime -= tick;
snake.advance();
if (snake.checkBitten()) {
gameOver = true;
return;

CHAPTER 6: Mr. Nom Invades Android

SnakePart head = snake.parts.get(0);
if (head.x == stain.x 83 head.y == stain.y) {
score += SCORE_INCREMENT;
snake.eat();
if (snake.parts.size() == WORLD WIDTH * WORLD HEIGHT) {
gameOver = true;
return;
} else {
placeStain();

if (score % 100 == 0 8&% tick - TICK DECREMENT > 0) {
tick -= TICK DECREMENT;
}

}
}
}
}

The update() method is responsible for updating the World and all the objects in it
based on the delta time we pass to it. This method will be called each frame in the game
screen so that the World is updated constantly. We start off by checking whether the
game is over. If that’s the case, then we don’t need to update anything, of course. Next
we add the delta time to our accumulator. The while loop will use up as many ticks as
have been accumulated (e.g., when tickTime is 1.2 and one tick should take 0.5
seconds, we can update the world twice, leaving 0.2 seconds in the accumulator). This
is called a fixed-time-step simulation.

In each iteration we first subtract the tick interval from the accumulator. Next we tell Mr.
Nom to advance. We check if he has bitten himself afterward, and set the game-over
flag if that’s the case. Finally we check whether Mr. Nom’s head is in the same cell as
the stain. If that’s the case we increment the score and tell Mr. Nom to grow. Next we
check whether Mr. Nom is composed of as many parts as there are cells in the world. If
that’s the case, the game is over and we return from the function. Otherwise we place a
new stain with the placeStain() method. The last thing we do is check whether Mr.
Nom has just eaten ten more stains. If that’s the case and our threshold is above zero,
we decrease it by 0.05 seconds. The tick will be shorter and thus make Mr. Nom move
faster.

This completes our set of model classes. The last thing we need to implement is the
game screen!

The GameScreen Class

There’s only one more screen to implement. Let’s see what that screen does:

As defined in Mr. Nom’s design in Chapter 3, it can be in one of three
states: waiting for the user to confirm that he’s ready, running the
game, waiting in a paused state, and waiting for the user to click a
button in the game-over state.

CHAPTER 6: Mr. Nom Invades Android

In the ready state we simply ask the user to touch the screen to
start the game.

In the running state we update the world, render it, and also tell
Mr. Nom to turn left and right when the player presses one of the
buttons at the bottom of the screen.

In the paused state we simply show two options: one to resume
the game and one to quit it.

In the game-over state we tell the user that the game is over and
provide him with a button to touch so that he can get back to the
main menu.

For each state we have different update and present methods to
implement, as each state does different things and shows a different
Ul

Once the game is over we have to make sure that we store the score if
it is a high score.

That’s quite a bit of responsibility, which translates to more code than usual. We’ll
therefore split up the source listing of this class. Before we dive into the code, let’s lay
out how we arrange the different Ul elements in each state. Figure 6-8 shows the four
different states.

(O'TJ
(47,100) (80,100) (62,100)
EADXP Q:' % R o
¢ [Emf $6REETY = 13 J
W o (128,200,
Z <Al
(64,416) (256,416)
0 @ J0 = e, 20

Figure 6-8. The game screen in its four states: ready, running, paused, and game-over

Note that we also render the score at the bottom of the screen, along with a line that
separates Mr. Nom’s world from the buttons at the bottom. The score is rendered with
the same routine that we used in the HighscoreScreen. We additionally center it
horizontally based on the score string width.

The last missing bit of information is how to render Mr. Nom’s world based on its model.
That’s actually pretty easy. Take a look at Figure 6-1 and 6-5 again. Each cell is exactly
32! 32 pixels in size. The stain images are also 32! 32 pixels in size, and so are the tail
parts of Mr. Nom. The head images of Mr. Nom for all directions are 42! 42 pixels, so

CHAPTER 6: Mr. Nom Invades Android

they don’t fit entirely into a single cell. That’s not a problem, though. All we need to do to
render Mr. Nom’s world is take each stain and snake part, and multiply its world
coordinates by 32 to arrive at the object’s center in pixels on the screen—for example, a
stain at (3,2) in world coordinates would have its center at 96! 64 on the screen. Based
on these centers, all that’s left to do is take the appropriate asset and render it centered
around those coordinates. Let’s get coding. Listing 6-12 shows the GameScreen class.

Listing 6-12. GameScreen.java

package com.badlogic.androidgames.mrnom;
import java.util.list;
import android.graphics.Color;

import com.badlogic.androidgames.framework.Game;

import com.badlogic.androidgames.framework.Graphics;

import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.Pixmap;

import com.badlogic.androidgames.framework.Screen;

public class GameScreen extends Screen {
enum GameState {
Ready,
Running,
Paused,
GameOver

GameState state = GameState.Ready;
World world;
int oldScore
String score

0;
"o,

We start off by defining an enumeration called GameState that encodes our four states
(ready, running, paused, and game-over). Next we define a member that holds the
current state of the screen, another member that holds the World instance, and two
more members that hold the currently displayed score in the form of an integer and as a
string. The reason we have the last two members is that we don’t want to constantly
create new strings from the World.score member each time we draw the score. Instead
we’ll cache the string and only create a new one when the score changes. That way we
play nice with the garbage collector.

public GameScreen(Game game) {
super(game);
world = new World();

}

The constructor just calls the superclass constructor and creates a new World instance.
The game screen will be in the ready state after the constructor returns to the caller.

@0verride
public void update(float deltaTime) {
List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
game.getInput().getKeyEvents();

CHAPTER 6: Mr. Nom Invades Android

if(state == GameState.Ready)
updateReady(touchEvents);

if(state == GameState.Running)
updateRunning(touchEvents, deltaTime);

if(state == GameState.Paused)
updatePaused(touchEvents);

if(state == GameState.GameOver)
updateGameOver (touchEvents);

Next comes the screen’s update() method. All it does is fetch the TouchEvents and
KeyEvents from the input module and then delegate the update to one of the four update
methods that we implement for each state based on the current state.

private void updateReady(List<TouchEvent> touchEvents) {
if(touchEvents.size() > 0)
state = GameState.Running;

}

The next method is called updateReady(). It will be called when the screen is in the
ready state. All it does is check if the screen was touched. If that’s the case, it changes
the state to running.

private void updateRunning(List<TouchEvent> touchEvents, float deltaTime) {
int len = touchEvents.size();
for(int i = 0; 1 < len; i++) {
TouchEvent event = touchEvents.get(i);
if(event.type == TouchEvent.TOUCH UP) {
if(event.x < 64 &8 event.y < 64) {
if(Settings.soundEnabled)
Assets.click.play(1);
state = GameState.Paused;
return;

}
if(event.type == TouchEvent.TOUCH DOWN) {
if(event.x < 64 83 event.y > 416) {
world.snake.turnLeft();

if(event.x > 256 &3 event.y > 416) {
world.snake.turnRight();

}

world.update(deltaTime);
if(world.gameOver) {
if(Settings.soundEnabled)
Assets.bitten.play(1);
state = GameState.GameOver;

if(oldScore != world.score) {
oldScore = world.score;

score = + oldScore;
if(Settings.soundEnabled)

CHAPTER 6: Mr. Nom Invades Android

Assets.eat.play(1);

}
}

The updateRunning()method first checks whether the pause button in the top-left corner
of the screen was pressed. If that’s the case, it sets the state to paused. It then checks
whether one of the controller buttons at the bottom of the screen was pressed. Note
that we don’t check for touch-up events here, but for touch-down events. If either of the
buttons was pressed, we tell the Snake instance of the World to turn left or right. That’s
right, the updateRunning() method contains the controller code of our MVC schemal!
After all the touch events have been checked, we tell the world to update itself with the
given delta time. If the World signals that the game is over, we change the state
accordingly, and also play the bitten.ogg sound. Next we check if the old score we
have cached is different from the score that the World stores. If it is, then we know two
things: Mr. Nom has eaten a stain, and the score string must be changed. In that case,
we play the eat.ogg sound. And that’s all there is to the running state update.

private void updatePaused(List<TouchEvent> touchEvents) {
int len = touchEvents.size();
for(int i = 0; 1 < len; i++) {
TouchEvent event = touchEvents.get(i);
if(event.type == TouchEvent.TOUCH UP) {
if(event.x > 80 && event.x <= 240) {
if(event.y > 100 && event.y <= 148) {
if(Settings.soundEnabled)
Assets.click.play(1);
state = GameState.Running;
return;

if(event.y > 148 83 event.y < 196) {
if(Settings.soundEnabled)
Assets.click.play(1);
game.setScreen(new MainMenuScreen(game));
return;

}

}

The updatePaused() method again just checks whether one of the menu options was
touched and changes state accordingly.

private void updateGameOver(List<TouchEvent> touchEvents) {
int len = touchEvents.size();
for(int i = 0; 1 < len; i++) {
TouchEvent event = touchEvents.get(i);
if(event.type == TouchEvent.TOUCH UP) {
if(event.x >= 128 88 event.x <= 192 88&
event.y >= 200 8& event.y <= 264) {
if(Settings.soundEnabled)
Assets.click.play(1);
game.setScreen(new MainMenuScreen(game));
return;

CHAPTER 6: Mr. Nom Invades Android

The updateGameOver () method also just checks if the button in the middle of the screen
was pressed. If it has, then we initiate a screen transition back to the main menu screen.

@verride
public void present(float deltaTime) {
Graphics g = game.getGraphics();

g.drawPixmap (Assets.background, 0, 0);

drawhorld(world);

if(state == GameState.Ready)
drawReadyUI();

if(state == GameState.Running)
drawRunningUI();

if(state == GameState.Paused)
drawPausedUI();

if(state == GameState.GameOver)
drawGameOverUI();

drawText(g, score, g.getWidth() / 2 - score.length()*20 / 2, g.getHeight() -
42);

Next up are the rendering methods. The present() method first draws the background
image, as that is needed in all states. Next it calls the respective drawing method for the
state we are in. Finally it renders Mr. Nom’s world and draws the score at the bottom-
center of the screen.

private void drawWorld(World world) {
Graphics g = game.getGraphics();
Snake snake = world.snake;
SnakePart head = snake.parts.get(0);
Stain stain = world.stain;

Pixmap stainPixmap = null;
if(stain.type == Stain.TYPE 1)
stainPixmap = Assets.staini;
if(stain.type == Stain.TYPE 2)
stainPixmap = Assets.stainz;
if(stain.type == Stain.TYPE_3)
stainPixmap = Assets.stain3;
int x = stain.x * 32;
int y = stain.y * 32;
g.drawPixmap(stainPixmap, x, y);

int len = snake.parts.size();
for(int i = 1; 1 < len; i++) {
SnakePart part = snake.parts.get(i);
X = part.x * 32;
y = part.y * 32;
g.drawPixmap(Assets.tail, x, y);
}

CHAPTER 6: Mr. Nom Invades Android

Pixmap headPixmap = null;
if(snake.direction == Snake.UP)
headPixmap = Assets.headUp;
if(snake.direction == Snake.LEFT)
headPixmap = Assets.headleft;
if(snake.direction == Snake.DOWN)
headPixmap = Assets.headDown;
if(snake.direction == Snake.RIGHT)
headPixmap = Assets.headRight;
x = head.x * 32 + 16,
y = head.y * 32 + 16;
g.drawPixmap(headPixmap, x - headPixmap.getWidth() / 2, y -
headPixmap.getHeight() / 2);
}

The drawhorld() method draws the world, as we just discussed. It starts off by choosing
the Pixmap to use for rendering the stain, and then draws it and centers it horizontally at
its screen position. Next we render all the tail parts of Mr. Nom, which is pretty simple.
Finally we choose which Pixmap of the head to use based on Mr. Nom’s direction, and
draw that Pixmap at the position of the head in screen coordinates. As with the other
objects, we also center the image around that position. And that’s the code of the view
in MVC.

private void drawReadyUI() {
Graphics g = game.getGraphics();

g.drawPixmap(Assets.ready, 47, 100);
g.drawLine(0, 416, 480, 416, Color.BLACK);

}

private void drawRunningUI() {
Graphics g = game.getGraphics();

g.drawPixmap(Assets.buttons, 0, 0, 64, 128, 64, 64);
g.drawLine(0, 416, 480, 416, Color.BLACK);
g.drawPixmap (Assets.buttons, 0, 416, 64, 64, 64, 64);
g.drawPixmap (Assets.buttons, 256, 416, 0, 64, 64, 64);

}

private void drawPausedUI() {
Graphics g = game.getGraphics();

g.drawPixmap (Assets.pause, 80, 100);
g.drawLine(0, 416, 480, 416, Color.BLACK);

}

private void drawGameOverUI() {
Graphics g = game.getGraphics();

g.drawPixmap (Assets.gameOver, 62, 100);
g.drawPixmap (Assets.buttons, 128, 200, 0, 128, 64, 64);
g.drawLine(0, 416, 480, 416, Color.BLACK);

}

public void drawText(Graphics g, String line, int x, int y) {

CHAPTER 6: Mr. Nom Invades Android

int len = line.length();
for (int i = 0; 1 < len; i++) {
char character = line.charAt(i);

if (character == ' ') {
X += 20;
continue;

}

int srcX = 0;
int srcWidth = o;
if (character == '.") {
srcX = 200;
srcWidth = 10;
} else {
srcX = (character - '0') * 20;
srchWidth = 20;

g.drawPixmap (Assets.numbers, x, y, srcX, 0, srcWidth, 32);
X += srcWidth;
}
}

The methods drawReadUI(), drawRunningUI(), drawPausedUI(), and drawGameOverUI()
are nothing new. They perform the same old Ul rendering as always, based on the
coordinates shown Figure 6-8. The drawText() method is the same as the one in
HighscoreScreen, so we won'’t discuss that one either.

@0Override
public void pause() {
if(state == GameState.Running)
state = GameState.Paused;

if(world.gameOver) {
Settings.addScore(world.score);
Settings.save(game.getFileIO());

}

@0verride
public void resume() {

}

@0Override
public void dispose() {

}
}

Finally there’s one last vital method, pause(), which gets called when the activity is
paused or the game screen is replaced by another screen. That’s the perfect place to
save our settings. First we set the state of the game to paused. If the paused() method
got called due to the activity being paused, this will guarantee that the user will be asked

CHAPTER 6: Mr. Nom Invades Android

to resume the game when she returns to it. That’s good behavior, as it would be
stressful to immediately pick up from where one left the game. Next we check whether
the game screen is in a game-over state. If that’s the case, we add the score the player
achieved to the high scores (or not, depending on its value) and save all the settings to
the external storage.

And that’s it. We’ve written a full-fledged game for Android from scratch! We can be
proud of ourselves, as we’'ve conquered all the necessary topics to create almost any
game we like. From here on, it’s mostly just cosmetics.

Summary

In this chapter, we implemented a complete game on top of our framework with all the
bells and whistles (minus music). You learned why it makes sense to separate the model
from the view and the controller, and you learned that we don’t need to define our game
world in terms of pixels. We could take this code and replace the rendering portions with
OpenGL ES, making Mr. Nom go 3D. We could also spice up the current renderer by
adding animations to Mr. Nom, adding in some color, adding new game mechanics, and
so on. We have just scratched the surface of the possibilities, however.

Before continuing with the book, | suggest taking the game code and playing around with
it. Add some new game modes, power-ups, and enemies—anything you can think of.

Once you come back, in the next chapter we’ll beef up our knowledge of graphics
programming to make our games look a bit fancier, and we’ll also take the first steps
into the third dimension!

Chapter

OpenGL ES: A Gentle
Introduction

Mr. Nom was a great success. Due to our good initial design and the game framework
we wrote, actually implementing Mr. Nom was a breeze. Best of all, the game runs
smoothly even on low-end devices. Of course, Mr. Nom is not a very complex or
graphically intense game, so using the Canvas API for rendering was a good idea.

However, once you want to do something more complex—say, something like Replica
Island —you will hit a wall: Canvas just can’t keep up with the visual complexity of such a
game. And if you want to go fancy-pants 3D, Canvas won’t help you either. So what can
we do?

This is where OpenGL ES comes to the rescue. In this chapter we'll first briefly look at
what OpenGL ES actually is and does. We’ll then focus on using OpenGL ES for 2D
graphics, without having to dive into the more mathematically complex realms of using
the API for 3D graphics (we’ll get to that in a later chapter). We'll take baby steps at first,
as OpenGL ES can get quite involved. So, let’s get to know OpenGL ES.

What Is OpenGL ES and Why Should |1 Care?

OpenGL ES is an industry standard for (3D) graphics programming. It is especially
targeted at mobile and embedded devices. It is maintained by the Khronos Group,
which is a conglomerate of companies including ATI, NVIDIA, and Intel, who together
define and extend the standard.

Speaking of standards, there are currently three incremental versions of OpenGL ES: 1.0,
1.1, and 2.0. The first two are the ones we are concerned with in this book. All Android
devices support OpenGL ES 1.0, and most also support 1.1, which adds some new
features to the 1.0 specification. OpenGL ES 2.0, however, breaks compatibility with the
1.x versions. You can use either 1.x or 2.0, but not both at the same time. The reason for
this is that the 1.x versions use a programming model called fixed-function pipeline, while
2.0 lets you programmatically define parts of the rendering pipeline via so-called shaders.

269

CHAPTER 7: OpenGL ES: A Gentle Introduction

Many of the second-generation devices already support OpenGL ES 2.0; however, the
Java bindings are currently not in a usable state (unless you target the new Android 2.3).
OpenGL ES 1.x is more than good enough for most games, though, so we will stick to it
here.

NOTE: The emulator only supports OpenGL ES 1.0. The implementation is a little shoddy, though,
so never rely on the emulator for testing. Use a real device.

OpenGL ES is an API that comes in the form of a set of C header files provided by the
Khronos group, along with a very detailed specification of how the API defined in those
headers should behave. This includes things such as how pixels and lines have to be
rendered. Hardware manufacturers then take this specification and implement it for their
GPU on top of the GPU driver. The quality of these implementations varies a little; some
companies strictly adhere to the standard (PowerVR) while others seem to have difficulty
sticking to the standard. This can sometimes result in GPU-dependent bugs in the
implementation that have nothing to do with Android itself, but with the hardware drivers
provided by the manufacturers. I’ll point out any device-specific issues along our way
into OpenGL ES land.

NOTE: OpenGL ES is more or less a sibling of the more feature-rich desktop OpenGL standard. It
deviates from the latter in that some of the functionality is reduced or completely removed.
Nevertheless, it is possible to write an application that can run with both specifications, which is
great if you want to port your game to the desktop as well.

So what does OpenGL ES actually do? The short answer is that’s it’s a lean and mean
triangle-rendering machine. The long answer is a little bit more involved.

The Programming Model: An Analogy

OpenGL ES is in general a 3D graphics programming API. As such it has a pretty nice
and (hopefully) easy-to-understand programming model that we can illustrate with a
simple analogy.

Think of OpenGL ES as working like a camera. To take a picture you have to first go to
the scene you want to photograph. Your scene is composed of objects—say, a table
with more objects on it. They all have a position and orientation relative to your camera,
as well as different materials and textures. Glass is translucent and a little reflective, a
table is probably made out of wood, a magazine has the latest photo of some politician
on it, and so on. Some of the objects might even move around (e.g., a fruit fly you can’t
get rid of). Your camera also has some properties, such as focal length, field of view,
image resolution and size the photo will be taken at, and its own position and orientation
within the world (relative to some origin). Even if both objects and the camera are
moving, when you press the button to take the photo you catch a still image of the
scene (for now we’ll neglect the shutter speed, which might cause a blurry image). For

CHAPTER 7: OpenGL ES: A Gentle Introduction

that infinitely small moment everything stands still and is well defined, and the picture
reflects exactly all those configurations of positions, orientations, textures, materials,
and lighting. Figure 7-1 shows an abstract scene with a camera, a light, and three

objects with different materials.

Figure 7-1. An abstract scene

Each object has a position and orientation relative to the scene’s origin. The camera,
indicated by the eye, also has a position in relation to the scene’s origin. The pyramid in
Figure 7—1 is the so-called view volume or view frustum, which shows how much of the
scene the camera captures and how the camera is oriented. The little white ball with the
rays is our light source in the scene, which also has a position relative to the origin.

We can directly map this scene to OpenGL ES, but to do so we need to define a couple
of things:

B Objects (aka models): These are generally composed of two four: their
geometry, as well as their color, texture, and material. The geometry is
specified as a set of triangles. Each triangle is composed of three
points in 3D space, so we have x-, y-, and z coordinates defined
relative to the coordinate system origin, as in Figure 7-1. Note that the
z-axis points toward us. The color is usually specified as an RGB

CHAPTER 7: OpenGL ES: A Gentle Introduction

triple, as we are already used to. Textures and materials are little bit
more involved. We’ll get to those later on.

Lights: OpenGL ES offers us a couple of different light types with
various attributes. They are just mathematical objects with a position
and/or direction in 3D space, plus attributes such as color.

Camera: This is also a mathematical object that has a position and
orientation in 3D space. Additionally it has parameters that govern how
much of the image we see, similar to a real camera. All this things
together define a view volume, or view frustum (indicated as the
pyramid with the top cut off in Figure 7-1). Anything inside this
pyramid can be seen by the camera; anything outside will not make it
into the final picture.

Viewport: This defines the size and resolution of the final image. Think
of it as the type of film you put into your analog camera or the image
resolution you get for pictures taken with your digital camera.

Given all this, OpenGL ES can construct a 2D bitmap of our scene from the point of view
of the camera. Notice that we define everything in 3D space. So how can OpenGL ES
map that to two dimensions?

Projections

This 2D mapping is done via something called projection. We already mentioned that
OpenGL ES is mainly concerned with triangles. A single triangle has three points defined
in 3D space. To render such a triangle to the framebuffer, OpenGL ES needs to know
the coordinates of these 3D points within the pixel-based coordinate system of the
framebuffer. Once it knows those three corner-point coordinates, it can simply draw the
pixels in the framebuffer that are inside the triangle. We could even write our own little
OpenGL ES implementation by projecting 3D points to 2D, and simply draw lines
between them via the Canvas.

There are two kinds of projections that are commonly used in 3D graphics. :

Parallel, or orthographic, projection: If you have ever played with a
CAD application you might already know about these. A parallel
projection doesn’t care how far an object is away from the camera; the
object will always have the same size in the final image. This type of
projection is typically used for rendering 2D graphics in OpenGL ES.

Perspective projections: These are what we are used to when using
our eyes. Objects further away from us will appear smaller on our
retina. This type of projection is typically used when we do 3D
graphics with OpenGL ES.

In both cases we need something called a projection plane. This is nearly exactly the
same as the retina of our eyes. It's where the light is actually registered to form the final
image. While a mathematical plane is infinite, our retina is limited in area. Our OpenGL

CHAPTER 7: OpenGL ES: A Gentle Introduction

ES “retina” is equal to the rectangle at the top of the view frustum in Figure 7-1. This
part of the view frustum is where OpenGL ES will project the points to. It is called the
near clipping plane and has its own little 2D coordinate system. Figure 7-2 shows that
near clipping plane again, from the point of view of the camera, with the coordinate

system superimposed.

"

(-1,1) | (1,1)

(1.-1)

(-1.-1)

Figure 7-2. The near clipping plane (also known as the projection plane) and its coordinate system.

Note that the coordinate system is by no means fixed. We can manipulate it so that we
can work in any projected coordinate system we like (e.g., we could instruct OpenGL
ESto let the origin be in the bottom-left corner, and let the visible area of the “retina” be
480 units on the x-axis and 320 units on the y-axis). Sounds familiar? Yes, OpenGL ES
allows us to specify any coordinate system we want for the projected points.

Once we specify our view frustum, OpenGL ES then takes each point of a triangle and
shoots a ray from it through the projection plane. The difference between a parallel and
a perspective projection is how the direction of those rays is constructed. Figure 7-3
shows the difference between the two, viewed from above.

CHAPTER 7: OpenGL ES: A Gentle Introduction

Far Clipping Plane Far Clipping Plane

Near Vi Near
Clipping FE Clipping
Plane F Plane

Figure 7-3. A perspective projection (left) and a parallel projection (right)

A perspective projection shoots the rays from the triangle points through the camera (or
eye, in this case). Objects further away will thus appear smaller on the projection plane.
When we use a parallel projection, the rays are shot perpendicular to the projection
plane. In this case an object will keep its size on the projection plane no matter how far
away it is.

Our projection plane is called a near clipping plane in OpenGL ES lingo, as pointed out
earlier. All of the sides of the view frustum have similar names. The one furthest away
from the camera is called the far clipping plane. The others are called the left, right, top,
and bottom clipping planes. Anything outside or behind those planes will not be
rendered. Objects that are partially within the view frustum will be clipped from these
planes, meaning that the parts outside the view frustum get cut away. That’s where the
name clipping plane comes from.

You might be wondering why the view frustum of the parallel projection case in Figure 7-3
is rectangular. It turns out that the projection is actually governed by how we define our
clipping planes. In the case of a perspective projection, the left, right, top, and bottom
clipping planes are not perpendicular to the near and far planes (see Figure 7-3, which
only shows the left and right clipping planes. In the case of the parallel projection, these

CHAPTER 7: OpenGL ES: A Gentle Introduction

planes are perpendicular, which tells OpenGL ES to render everything at the same size
no matter how far away it is from the camera.

Normalized Device Space and the Viewport

Once OpenGL ES has figured out the projected points of a triangle on the near clipping
plane, it can finally translate them to pixel coordinates in the framebuffer. For this, it
must first transform the points to so-called normalized device space. This equals the
coordinate system depicted in Figure 7-2. Based on these normalized device space
coordinates OpenGL ES calculates the final framebuffer pixel coordinates via the
following simple formulas:

(norX + 1) / (viewportWidth + 1) + norX
(norY + 1) / (viewportHeight +1) + norY

pixelX
pixelY

where norX and norY are the normalized device coordinates of a 3D point, and
viewportWidth and viewportHeight are the size of the viewport in pixels on the x- and y-
axes. We don’t have to worry about the normalized device coordinates all that much, as
OpenGL will do the transformation for us automagically. What we do care about, though,
are the viewport and the view frustum.

Matrices

Later you will see how to specify a view frustum, and thus a projection. OpenGL ES
expresses projections in the form of so-called matrices. For our purposes we don’t need
to know the internals of matrices. We only need to know what they do to the points we
define in our scene. Here's the executive summary of matrices:

B A matrix encodes transformations to be applied to a point. A
transformation can be a projection, a translation (in which the point is
moved around), a rotation around another point and axis, or a scale,
among other thing.

B By multiplying such a matrix with a point, we apply the transformation
to the point. For example, multiplying a point with a matrix that
encodes a translation by 10 units on the x-axis will move the point 10
units on the x-axis and thereby modify its coordinates.

B We can concatenate transformations stored in separate matrices into
a single matrix by multiplying the matrices. When we multiply this
single concatenated matrix with a point, all the transformations stored
in that matrix will be applied to that point. The order in which the
transformations are applied is dependent on the order in which we
multiplied the matrices with each other.

CHAPTER 7: OpenGL ES: A Gentle Introduction

B There’s a special matrix called an identity matrix. If we multiply a
matrix or a point with it, nothing will happen. Think of multiplying a
point or matrix by an identity matrix as multiplying a number by 1. It
simply has no effect. The relevance of the identity matrix will become
clear once we learn how OpenGL ES handles matrices (see the section
“Matrix Modes and Active Matrices”). A classic hen and egg problem.

NOTE: When | talk about points in this context, | actually mean 3D vectors.

OpenGL ES has three different matrices that it applies to the points of our models:

B Model-view matrix: We can use this matrix to move, rotate, or scale the points of
our triangles around (this is the model part of the model-view matrix). This matrix
is also used to specify the position and orientation of our camera (this is the
view part).

B Projection matrix: The name says it all—this matrix encodes a projection, and
thus the view frustum of our camera.

B Texture matrix: This matrix allow us to manipulate so-called texture coordinates
(which we’ll discuss later). However, we’ll avoid using this matrix in this book
since this part of OpenGL ES is broken on a couple of devices thanks to buggy
drivers.

The Rendering Pipeline

OpenGL ES keeps track of these three matrices. Each time we set one of the matrices, it
will remember it until we change the matrix again. In OpenGL ES speak, this is called a
state. OpenGL keeps track of more than just the matrix states, though; it also keeps
track of whether we want it to alpha-blend triangles, whether we want lighting to be
taken into account, which texture should be applied to our geometry, and so on. In fact,
OpenGL ES is one huge state machine. We set its current state, feed it the geometries
of our objects, and tell it to render an image for us. Let’s see how a triangle passes
through this mighty triangle-rendering machine. Figure 7-4 shows a very high-level,
simplified view of the OpenGL ES pipeline:

Apply Apply
71| Model-View Projection \

Apply Apply Rasterize
\[Apply] /I Clipping [|Viewport |~ | (Texturing, Blending)

Lights and Materials

Figure 7-4. The way of the triangle

CHAPTER 7: OpenGL ES: A Gentle Introduction

The way of the a triangle through this pipeline looks as follows:

1. Our brave triangle is first transformed by the model-view matrix. This
means that all its points are multiplied with this matrix. This
multiplication will effectively move the triangle’s points around in the
world.

2. The output of this is then multiplied by the projection matrix, effectively
transforming the 3D points onto the 2D projection plane.

3. In between these two steps (or parallel to them), the currently set lights
and materials are also applied to our triangle, giving it its color.

4. Once all that is done, the projected triangle is clipped to our “retina” and
transformed to framebuffer coordinates.

5. As afinal step, OpenGL fills in the pixels of the triangle based on the
colors from the lighting stage, textures to be applied to the triangle, and
the blending state, in which each pixel of the triangle might or might not
be combined with the pixel in the framebuffer.

All we need to learn is how to throw geometry and textures at OpenGL ES, and set the
states used by each of the preceding steps. Before we can do that, though, we need to
check out how Android grants us access to OpenGL ES.

NOTE: While the high-level description of the OpenGL ES pipeline is mostly correct, it is heavily
simplified and leaves out some details that will become important in a later chapter. Another
thing to note is that when OpenGL ES performs projections, it doesn’t actually project onto a 2D
coordinate system. Instead it projects into something called a homogenous coordinate system,
which is actually four dimensional. This is a very involved mathematical topic, so for the sake of
simplicity, we’ll just stick to the simplified belief that OpenGL ES projects to 2D coordinates.

Before We Begin

In the rest of this chapter, we’ll write a lot of small examples, as we did in Chapter 4
when discussing the Android API basics. We’ll use the same starter class as we did in
Chapter 4, which shows us a list of test Activitys we can start. The only things that will
change are the names of the Activitys we instantiate via reflection, and the package
they are located in. All the examples of the rest of this chapter will be in the package
com.badlogic.androidgames.glbasics. The rest of the code will stay the same. Our new
starter Activity will be called GLBasicsStarter. We will also copy over all the source
code from Chapter 5, which contains our framework classes, as we of course want to
reuse those. Finally, we will write some new framework and helper classes, which will go
in the com.badlogic.androidgames.framework package and subpackages.

CHAPTER 7: OpenGL ES: A Gentle Introduction

We also have a manifest file again. As each of the following little examples will be an
Activity, we also have to make sure it has an entry in the manifest. All the examples will
use a fixed orientation (either portrait or landscape, depending on the example), and will
tell Android that they can handle keyboard, keyboardHidden, and orientationChange
events.

With that out of our way, let the fun begin!

GLSurfaceView: Making Things Easy Since 2008

The first thing we need is some type of View that will allow us to draw via OpenGL ES.
Luckily there’s such a View in the Android API. It’s called GLSurfaceView, and it’s a
descendent of the SurfaceView class, which we already used for drawing the world of
Mr. Nom.

We also need a separate main loop thread again so that we don’t bog down the Ul
thread. Surprise: GLSurfaceView already sets up such a thread for us! All we need to do
is implement a listener interface called GLSurfaceView.Renderer and register it with the
GLSurfaceView. The interface has three methods:

interface Renderer {
public void onSurfaceCreated(GL10 gl, EGLConfig config);

public void onSurfaceChanged(GL10 gl, int width, int height);

public void onDrawFrame(GL10 gl);

The onSurfaceCreated() method is called each time the GLSurfaceView surface is
created. This happens the first time we fire up the Activity and each time we come
back to the Activity from a paused state. The method takes two parameters, a GL10
instance and an EGLConfig. The GL10 instance allows us to issue commands to OpenGL
ES. The EGLConfig just tells us about the attributes of the surface, such as the color
depth and so on. We usually ignore it. We will set up our geometries and textures in the
onSurfaceCreated() method.

The onSurfaceChanged() method is called each time the surface is resized. We get the
new width and height of the surface in pixels as parameters, along with a GL10 instance
if we want to issue OpenGL ES commands.

The onDrawFrame() method is where the fun happens. It is similar in spirit to our
Screen.render () method, which gets called as often as possible by the rendering thread
that the GLSurfaceView sets up for us. In this method we perform all our rendering.

Besides registering a Renderer listener, we also have to call
GLSurfaceView.onPause()/onResume() in our Activity’s onPause()/onResume() methods.
The reason for this is simple. The GLSurfaceView will start up the rendering thread in its
onResume() method and tear it down in its onPause() method. This means that our
listener will not be called while our Activity is paused, since the rendering thread which
calls our listener will also be paused.

CHAPTER 7: OpenGL ES: A Gentle Introduction

And here comes the only bummer: each time our Activity is paused, the surface of the
GLSurfaceView will be destroyed. When the Activity is resumed again (and
GLSurfaceView.onResume() is called by us), the GLSurfaceView instantiates a new
OpenGL ES rendering surface for us, and informs us of this by calling our listener’s
onSurfaceCreated() method. This would all be well if not for a single problem: all the
OpenGL ES states we set so far will be lost. This also includes things such as textures
and so on, which we’ll have to reload in that case. This problem is known as a context
loss. The word context stems from the fact that OpenGL ES associates a so-called
context with each surface we create, which holds the current states. When we destroy
that surface, the context is lost as well. It’s not all that bad, though, given that we design
our games properly to handle this context loss.

NOTE: Actually, it’s EGL that is responsible for the context and surface creation and destruction.
EGL is another Khronos Group standard; it defines how an operating system’s Ul works together
with OpenGL ES, and how the operating system grants OpenGL ES access to the underlying
graphics hardware. This includes surface creation as well as context management. Since
GLSurfaceView handles all the EGL stuff for us, we can safely ignore it in almost all cases.

Following tradition, let’s write a small example that will clear the screen with a random
color each frame. Listing 7-1 shows the code.

Listing 7-1. GLSurfaceViewTest java; Screen-Clearing Madness

package com.badlogic.androidgames.glbasics;
import java.util.Random;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.app.Activity;

import android.opengl.GLSurfaceView;

import android.opengl.GLSurfaceView.Renderer;
import android.os.Bundle;

import android.util.log;

import android.view.Window;

import android.view.WindowManager;

public class GLSurfaceViewTest extends Activity {
GLSurfaceView glView;

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE NO TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,

WindowManager.LayoutParams.FLAG FULLSCREEN);

glView = new GLSurfaceView(this);
glView.setRenderer(new SimpleRenderer());
setContentView(glView);

CHAPTER 7: OpenGL ES: A Gentle Introduction

We keep a reference to a GLSurfaceView instance as a member of the class. In the
onCreate() method, we make our application go full-screen, create the GLSurfaceView,
set our Renderer implementation, and make the GLSurfaceView the content view of our
Activity.

@0verride

public void onResume() {

super.onPause();
glview.onResume();

@0verride

public void onPause() {
super.onPause();
glView.onPause();

In the onResume() and onPause() methods, we call the supermethods as well as the
respective GLSurfaceView methods. These will start up and tear down the rendering
thread of the GLSurfaceView, which in turn will trigger the callback methods of our
Renderer implementation at appropriate times.

static class SimpleRenderer implements Renderer {
Random rand = new Random();

@0verride
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
Log.d("GLSurfaceViewTest", "surface created");

@0verride
public void onSurfaceChanged(GL10 gl, int width, int height) {
Log.d("GLSurfaceViewTest", "surface changed: " + width + "x"
+ height);

}

@0verride
public void onDrawFrame(GL10 gl) {
gl.glClearColor(rand.nextFloat(), rand.nextFloat(),
rand.nextFloat(), 1);
gl.glClear(GL10.GL_COLOR BUFFER BIT);

}
}
The final piece of the code is our Renderer implementation. It’s just logs some
information in the onSurfaceCreated() and onSurfaceChanged() methods. The really
interesting part is the onDrawFrame () method.

As said earlier, the GL10 instance gives us access to the OpenGL ES API. The 10 in GL10
indicates that it offers us all the functions defined in the OpenGL ES 1.0 standard. For
now we can be happy with that. All the methods of that class map to a corresponding C
function, as defined in the standard. Each method begins with the prefix g1, an old
tradition of OpenGL ES.

CHAPTER 7: OpenGL ES: A Gentle Introduction

The first OpenGL ES method we call is glClearColor(). You probably already know
what that will do. It sets the color to be used when we issue a command to clear the
screen. Colors in OpenGL ES are almost always RGBA colors where each component
has a range between 0 and 1. There are ways to define a color in, say, RGB565, but for
now let’s stick to the floating-point representation. We could set the color used for
clearing only once and OpenGL ES would remember it. The color we set with
glClearColor() is one of OpenGL ES’s states.

The next call actually clears the screen with the clear color we just specified. The
method glClear() takes a single argument that specifies which buffer to clear. OpenGL
ES does not only have the notation of a framebuffer that holds pixels, but also other
types of buffers. We’ll get to know them in Chapter 10, but for now all we care about is
the framebuffer that holds our pixels. OpenGL ES calls that the color buffer. To tell
OpenGL ES that we want to clear that exact buffer, we specify the constant
GL10.GL_COLOR_BUFFER BIT.

OpenGL ES has a lot of constants, which are all defined as static public members of the
GL10 interface. Like the methods, each constant has the prefix GL_.

And that was our first OpenGL ES application. I’ll spare you the impressive screenshot,
since you probably know what it looks like.

NOTE: Thou shall never call OpenGL ES from another thread! First and last commandment! The
reason is that OpenGL ES is designed to be used in single threaded environments only and is not
thread-safe. It can be made to somewhat work on multiple threads, but many drivers have
problems with this and there’s no real benefit to doing so.

GLGame: Implementing the Game Interface

In the previous chapter, we implemented the AndroidGame class, which ties together all
the submodules for audio, file I/O, graphics, and user input handling. We want to reuse
most of this for our upcoming 2D OpenGL ES game, so let’s implement a new class
called GLGame that implements the Game interface we defined earlier.

The first thing you will notice is that we can’t possibly implement the Graphics interface
with our current knowledge of OpenGL ES. Here’s a surprise: we won’t implement it.
OpenGL does not lend itself well to the programming model of our Graphics interface.
Instead we’ll implement a new class, GLGraphics, which will keep track of the GL10
instance we get from the GLSurfaceView. Listing 7-2 shows the code.

Listing 7-2. GLGraphics.java; Keeping Track of the GLSurfaceView and the GL10 Instance

package com.badlogic.androidgames.framework.impl;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView;

CHAPTER 7: OpenGL ES: A Gentle Introduction

public class GLGraphics {
GLSurfaceView glView;
GL10 gl;

GLGraphics(GLSurfaceView glView) {
this.glView = glView;
}

public GL10 getGL() {
return gl;

void setGL(GL10 gl) {
this.gl = gl;

public int getWidth() {
return glView.getWidth();

public int getHeight() {
return glView.getHeight();

}

This class has just a few getters and setters. Note that we will use this class in the
rendering thread set up by the GLSurfaceView. As such, it might be problematic to call
methods of a View, which lives mostly on the Ul thread. In this case it’s OK, though, as
we only query for the GLSurfaceView’s width and height, so we get away with it.

The GLGame class is a bit more involved. It borrows most of its code from the
AndroidGame class. The only thing that is a little bit more complex is the synchronization
between the rendering and Ul threads. Let’s have a look at it in Listing 7-3.

Listing 7-3. GLGame.java, the Mighty OpenGL ES Game Implementation

package com.badlogic.androidgames.framework.impl;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.app.Activity;

import android.content.Context;

import android.opengl.GLSurfaceView;

import android.opengl.GLSurfaceView.Renderer;
import android.os.Bundle;

import android.os.PowerManager;

import android.os.PowerManager.Wakelock;
import android.view.Window;

import android.view.WindowManager;

import com.badlogic.androidgames.framework.Audio;
import com.badlogic.androidgames.framework.FileIO;
import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Graphics;

CHAPTER 7: OpenGL ES: A Gentle Introduction

import com.badlogic.androidgames.framework.Input;
import com.badlogic.androidgames.framework.Screen;

public abstract class GLGame extends Activity implements Game, Renderer {
enum GLGameState {
Initialized,
Running,
Paused,
Finished,
Idle
}

GLSurfaceView glView;

GLGraphics glGraphics;

Audio audio;

Input input;

FileIO fileIO;

Screen screen;

GLGameState state = GLGameState.Initialized;
Object stateChanged = new Object();

long startTime = System.nanoTime();

WakeLock wakeLock;

The class extends the Activity class and implements the Game and
GLSurfaceView.Renderer interface. It has an enum called GLGameState that keeps track
of the state the GLGame instance is currently in. We’ll see how those are used in a bit.

The members of the class consist of a GLSurfaceView and GLGraphics instance. The
class also has Audio, Input, FileIO, and Screen instances, which we need for writing our
game, just as in the AndroidGame class. The state member keeps track of the state via
one of the GLGameState enums. The stateChanged member is an object we’ll use to
synchronize the Ul thread and the rendering thread. Finally we have a member to keep
track of the delta time and a WakeLock we’ll use to keep the screen from dimming.

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE NO TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,

WindowManager.LayoutParams.FLAG FULLSCREEN);

glview = new GLSurfaceView(this);
glView.setRenderer(this);
setContentView(glView);

glGraphics = new GLGraphics(glview);

fileIO = new AndroidFileIO(getAssets());

audio = new AndroidAudio(this);

input = new AndroidInput(this, glView, 1, 1);

PowerManager powerManager = (PowerManager)
getSystemService(Context.POWER SERVICE);

wakeLock = powerManager.newWakelLock(PowerManager.FULL WAKE LOCK, "GLGame");

}

In the onCreate() we perform the usual setup routine. We make the Activity go full-
screen and instantiate the GLSurfaceView, setting it as the content View. We also

CHAPTER 7: OpenGL ES: A Gentle Introduction

instantiate all the other classes that implement framework interfaces, such as the
AndroidFileIO or AndroidInput classes. Note that we reuse the classes we used in the
AndroidGame class, except for AndroidGraphics. Another important point is that we no
longer let the AndroidInput class scale the touch coordinates to a target resolution, as in
AndroidGame. The scale values are both 1, so we will get the real touch coordinates. It
will become clear later on why we do that. The last thing we do is create the WakeLock
instance.

public void onResume() {
super.onResume();
glView.onResume();
wakelock.acquire();

In the onResume () method we let the GLSurfaceView start the rendering thread with a call
to its onResume() method. We also acquire the WakeLock.

@verride
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
glGraphics.setGL(gl);

synchronized(stateChanged) {
if(state == GLGameState.Initialized)
screen = getStartScreen();
state = GLGameState.Running;
screen.resume();
startTime = System.nanoTime();

}
}

The next thing that will be called is the onSurfaceCreate() method. The method is
invoked on the rendering thread, of course. Here we can see how the state enums are
used. If the application is started for the first time, the state will be
GLGameState.Initialized. In this case we call the getStartScreen() method to return
the starting screen of the game. If the game is not in an initialized state, but was already
been running, we know that we have just resumed from a paused state. In any case we
set the state to GLGameState.Running and call the current Screen’s resume() method. We
also keep track of the current time so we can calculate the delta time later on.

The synchronization is necessary, since the members we manipulate within the
synchronized block could be manipulated in the onPause() method on the Ul thread.
That’s something we have to prevent, so we use an object as a lock. We could have also
used the GLGame instance itself here, or a proper lock.

@verride
public void onSurfaceChanged(GL10 gl, int width, int height) {
}

The onSurfaceChanged() method is basically just a stub. There’s nothing for us to do
here.

@0verride
public void onDrawFrame(GL10 gl) {
GLGameState state = null;

CHAPTER 7: OpenGL ES: A Gentle Introduction

synchronized(stateChanged) {
state = this.state;
}

if(state == GLGameState.Running) {
float deltaTime = (System.nanoTime()-startTime) / 1000000000.0f;
startTime = System.nanoTime();

screen.update(deltaTime);
screen.present(deltaTime);

}

if(state == GLGameState.Paused) {
screen.pause();
synchronized(stateChanged) {
this.state = GLGameState.Idle;
stateChanged.notifyAll();

}
}

if(state == GLGameState.Finished) {
screen.pause();
screen.dispose();
synchronized(stateChanged) {
this.state = GLGameState.Idle;
stateChanged.notifyAll();
}
}
}

The onDrawFrame() method is were the bulk of all the work is performed. It is called by
the rendering thread as often as possible. Here we check which state our game is
currently in and react accordingly. As the state can be set on the onPause() method on
the Ul thread, we have to synchronize the access to it.

If the game is running we calculate the delta time and tell the current Screen to update
and present itself.

If the game is paused we tell the current Screen to pause itself as well. We then change
the state to GLGameState.Idle, indicating that we have received the pause request from
the Ul thread. Since we wait for this to happen in the onPause() method in the Ul thread,
we notify the Ul thread that it can now really pause the application. This notification is
necessary, as we have to make sure that the rendering thread is paused/shut down
properly in case our Activity is paused or closed on the Ul thread.

If the Activity is being closed (and not paused), we react to GLGameState.Finished. In
this case we tell the current Screen to pause and dispose of itself, and then send
another notification to the Ul thread, which waits for the rendering thread to properly
shut things down.

@0verride
public void onPause() {
synchronized(stateChanged) {
if(isFinishing())

CHAPTER 7: OpenGL ES: A Gentle Introduction

state = GLGameState.Finished;
else
state = G
while(true) {
try {
stateChanged.wait();
break;
} catch(InterruptedException e) {
}

LGameState.Paused;

}

wakelLock.release();
glView.onPause();
super.onPause();

}

The onPause() method is our usual Activity notificaton method that’s called on the Ul
thread when the Activity is paused. Depending on whether the application is closed or
paused, we set the state accordingly and wait for the rendering thread to process the
new state. This is achieved with the standard Java wait/notify mechanism.

Finally we release the WakeLock and tell the GLSurfaceView and the Activity to pause
themselves, effectivley shutting down the rendering thread and destroying the OpenGL
ES surface, which triggers the dreaded OpenGL ES context loss mentioned earlier.

public GLGraphics getGLGraphics() {
return glGraphics;

The getGLGraphics() method is a new method that is only accessible via the GLGame
class. It returns the instance of GLGraphics we store so that we can get access to the
GL10 interface in our Screen implementations later on.

@0verride
public Input getInput() {
return input;

@0verride

public FileIO getFileIO() {
return filelO;

}

@verride
public Graphics getGraphics() {

throw new IllegalStateException("We are using OpenGL!");
}

@0Override
public Audio getAudio() {
return audio;

@0verride
public void setScreen(Screen screen) {
if (screen == null)

CHAPTER 7: OpenGL ES: A Gentle Introduction

throw new IllegalArgumentException("Screen must not be null");

this.screen.pause();
this.screen.dispose();
screen.resume();
screen.update(0);
this.screen = screen;

}

@0verride

public Screen getCurrentScreen() {
return screen;

}

}

The rest of the class works as before. In case we accidentially try to access the standard
Graphics instance, we throw an exception, though, as it is not supported by GLGame.
Instead we’ll work with the GLGraphics method we get via the GLGame.getGLGraphics()
method.

Why did we go through all the pain of synchronizing with the rendering thread? Well, it
will make our Screen implementations live entirely on the rendering thread. All the
methods of Screen will be executed there, which is necessary if we want to access
OpenGL ES functionaility. Remeber, we can only access OpenGL ES on the rendering
thread.

Let’s round this out with an example. Listing 7-4 shows how our first example in this
chapter looks when using GLGame and Screen.

Listing 7-4. GLGameTest.java; More Screen Clearing, Now with 100 Percent More GLGame

package com.badlogic.androidgames.glbasics;
import java.util.Random;
import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;

import com.badlogic.androidgames.framework.Screen;

import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class GLGameTest extends GLGame {
@0verride
public Screen getStartScreen() {
return new TestScreen(this);
}

class TestScreen extends Screen {
GLGraphics glGraphics;
Random rand = new Random();

public TestScreen(Game game) {
super(game);
glGraphics = ((GLGame) game).getGLGraphics();

CHAPTER 7: OpenGL ES: A Gentle Introduction

}

@0verride
public void present(float deltaTime) {
GL10 gl = glGraphics.getGL();
gl.glClearColor(rand.nextFloat(), rand.nextFloat(),
rand.nextFloat(), 1);
gl.glClear(GL10.GL_COLOR BUFFER BIT);

@0verride
public void update(float deltaTime) {

}

@0verride
public void pause() {
}

@0verride
public void resume() {

}

@0verride
public void dispose() {
}

}
}

This is the same program as in our last example, except that we now derive from GLGame
instead of Activity, and we provide a Screen implementation instead of a
GLSurfaceView.Renderer implementation.

In the following examples, we’ll only have a look at the relevant parts of each example’s
Screen implementation. The overall structure of our examples will stay the same. Of
course, we have to add the example GLGame implementations to our starter Activity, as
well as to the manifest file.

With that out of our way, let’s render our first triangle.

Look Mom, | Got a Red Triangle!

You already learned that OpenGL ES needs a couple of things set before we can tell it to
draw some geometry. The two things we are most concerned about are the projection
matrix (and with it our view frustum) and the viewport, which governs the size of our
output image and the position of our rendering output in the framebuffer.

Defining the Viewport

OpenGL ES uses the viewport as a way to translate the coordinates of points projected
to the near clipping plane to framebuffer pixel coordinates. We can tell OpenGL ES to
use only a portion of our framebuffer, or all of it, with the following method:

CHAPTER 7: OpenGL ES: A Gentle Introduction

GL10.glViewport(int x, int y, int width, int height)

The x- and y-coordinates specify the top-left corner of the viewport in the framebuffer,
and width and height specify the viewport’s size in pixels. Note that OpenGL ES
assumes the framebuffer coordinate system to have its origin in the lower left of the
screen. Usually we set x and y to zero and width and height to our screen resolution, as
we are using full-screen mode. We could instruct OpenGL ES to only use a portion of
the framebuffer with this method. It would then take the rendering output and
automatically stretch it to that portion.

NOTE: While this method looks like it sets up a 2D coordinate system for us to render to, it
actually does not. It only defines the portion of the framebuffer OpenGL ES uses to output the
final image. Our coordinate system is defined via the projection and model-view matrices.

Defining the Projection Matrix

The next thing we need to define is the projection matrix. As we are only concerned with
2D graphics in this chapter, we want to use a parallel projection. How do we do that?

Matrix Modes and Active Matrices

We already discussed that OpenGL ES keeps track of three matrices: the projection
matrix, the model-view matrix, and the texture matrix (which we’ll continue to ignore).
OpenGL ES offers us a couple of specific methods to modify these matrices. Before we
can use these methods, however, we have to tell OpenGL ES which matrix we want to
manipulate. This is done with the following method:

GL10.glMatrixMode(int mode)

The mode parameter can be GL10.GL_PROJECTION, GL10.GL_MODELVIEW, or
GL10.GL_TEXTURE. It should be clear which of these constants will make which matrix
active. Any subsequent calls to the matrix manipulation methods will target the matrix
we set with this method until we change the active matrix again via another call to this
method. This matrix mode is one of OpenGL ES’s states (which will get lost when we
lose the context if our application is paused and resumed). To manipulate the projection
matrix with any subsequent calls, we can call the method like this:

gl.glMatrixMode (GL10.GL_PROJECTION);

Orthographic Projection with glOrthof

OpenGL ES offers us the following method for setting the active matrix to an
orthographic (parallel) projection matrix:

GL10.glOrthof(int left, int right, int bottom, int top, int near, int far)

CHAPTER 7: OpenGL ES: A Gentle Introduction

Hey, that looks a lot like it has something to do with our view frustum’s clipping planes.
And indeed it does. So what values do we specify here?

OpenGL ES has a standard coordinate system, as depicted in Figure 7-4. The positive
x-axis points to the right, the positive y-axis points upward, and the positive z-axis
points toward us. With glOrthof() we define the view frustum of our parallel projection
in this coordinate system. If you look back at Figure 7-3, you can see that the view
frustum of a parallel projection is a box. We can interpret the parameters for glOrthof()
as specifying two of these corners of our view frustum box. Figure 7-5 illustrates this.

7 kis bottom, near)

Figure 7-5. An orthographic view frustum

The front side of our view frustum will be directly mapped to our viewport. In the case of
a full-screen viewport from, say, (0,0) to (480,320) (e.g., landscape mode on a Hero), the
bottom-left corner of the front side would map to the bottom-left corner of our screen,
and the top-right corner of the front side would map to the top-left corner of our screen.
OpenGL will perform the stretching automatically for us.

Since we want to do 2D graphics, we will specify the corner points (left, bottom, near)
and (right, top, far) (see figure 7-5) in a way that allows us to work in a sort of pixel
coordinate system, as we did with the Canvas and Mr. Nom. Here’s how we could set up
such a coordinate system:

gl.glorthof(o, 480, 0, 320, 1, -1);

CHAPTER 7: OpenGL ES: A Gentle Introduction

Figure 7-6 shows the view frustum.

] 14
Figure 7-6. Our parallel projection view frustum for 2D rendering with OpenGL ES

Our view frustum is pretty thin, but that’s OK because we’ll only be working in 2D. The
visible part of our coordinate system goes from (0,0,1) to (480,320,-1). Any points we
specify within this box will be visible on the screen as well. The points will be projected
onto the front side of this box, which is our beloved near clipping plane. The projection
will then get stretched out onto the viewport, whatever dimensions it has. Say we have a
Nexus One with a resolution of 800x480 pixels in landscape mode. When we specify our
view frustum as just mentioned, we can work in a 480x320 coordinate system, and
OpenGL will stretch it to the 800x480 framebuffer (if we specified that the viewport
covers the complete framebuffer). Best of all, there’s nothing keeping us from using
crazier view frustums. We could also use one with the corners (-1,-1,100) and (2,2,-
100). Everything we specify that falls inside this box will be visible and get stretched
automatically. Pretty nifty.

Note that we also set the near and far clipping planes. Since we are going to neglect the
z-coordinate completely in this chapter, you might be tempted to use zero for both near
and far. However, that’s a bad idea for various reasons. To play it safe, we grant the
view frustum a little buffer in the z-axis. All our geometries’ points will be defined in the
x-y plane with z set to zero, though—2D all the way.

CHAPTER 7: OpenGL ES: A Gentle Introduction

NOTE: You might have noticed that the y-axis is pointing upward now, and the origin is in the
lower-left corner of our screen. While the Canvas, the Ul framework, and many other 2D-
rendering APIs use the y-down, origin-top-left convention, it is actually more convenient to use
this “new” coordinate system for game programming. For example, if Super Mario is jumping,
wouldn’t you expect his y-coordinate to increase instead of decrease while he’s on his way up?
Want to work in the other coordinate system? Fine, just swap the bottom and top parameters of
glorthof (). Also, while the illustration of the view frustum is mostly correct from a geometric
point of view, the near and far clipping planes are actually interpreted a little differently by
glorthof(). Since that is a little involved, we’ll just pretend the preceding illustrations are
correct, though.

A Helpful Snippet

Here’s a small snippet that will be used in all of our examples in this chapter. It clears
the screen with black, sets the viewport to span the whole framebuffer, and sets up the
projection matrix (and thereby the view frustum) so we can work in a comfortable
coordinate system with the origin in the lower-left corner of the screen and the y-axis
pointing upward:

gl.glClearColor(0,0,0,1);

gl.glClear(GL10.GL_COLOR_BUFFER_BIT);

gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
gl.glMatrixMode(GL10.GL_PROJECTION);

gl.glloadIdentity();
gl.glorthof(o, 320, 0, 480, 1, -1);

Wait, what does glLoadIdentity() do in there? Well, most of the methods OpenGL ES
offers us to manipulate the active matrix don’t actually set the matrix. Instead they
construct a temporary matrix from whatever parameters they take and multiply it with
the current matrix. The glOorthof() method is no exception. For example, if we called
glorthof() each frame, we’d multiply the projection matrix to death with itself. So
instead of doing that, we make sure we have a clean identity matrix in place before we
multiply the projection matrix. Remember, multiplying a matrix by the identity matrix will
output the matrix itself again. And that’s what glLoadIdentity() is for. Think of it as first
loading the value 1 and then multiplying it with whatever we have (in our case, the
projection matrix produced by gl0rthof()).

Note that our coordinate system now goes from (0,0,1) to (320,480,-1)—that’s for
portrait mode rendering.

Specifying Triangles

Next up we have to figure out how we can tell OpenGL ES about the triangles we want it
to render. First let’s define what a triangle is made of:

CHAPTER 7: OpenGL ES: A Gentle Introduction

A triangle is made of three points.
Each point is called a vertex.

A vertex has a position in 3D space.

A position in 3D space is given as three floats, specifying the x-, y-,
and z-coordinates.

B A vertex can have additional attributes, such as a color or texture
coordinates (which we’ll talk about later). These can be represented as
floats as well.

OpenGL ES expects to send our triangle definitions in the form of arrays. However,
given that OpenGL ES is actually a C API, we can’t just use standard Java arrays.
Instead we have to use Java NIO buffers, which are just memory blocks of consecutive
bytes.

A Small NIO Buffer Digression

To be totally exact, we need to use direct NIO buffers. This means that the memory is
not allocated in the virtual machine’s heap memory, but in native heap memory. To
construct such a direct NIO buffer, we can use the following code snippet:

ByteBuffer buffer = ByteBuffer.allocateDirect(NUMBER_OF BYTES);
buffer.order(ByteOrder.nativeOrder());

This will allocate a ByteBuffer that can hold NUMBER_OF BYTES bytes in total, and make
sure that the byte order is equal to the byte order used by the underlying CPU. A NIO
buffer has three attributes:

B (Capacity: The number of elements the buffer can hold in total

B Position: The current position to which the next element would be
written to or read from

B Limit: The index of the last element that has been defined plus one

The capacity of a buffer is actually its size. In the case of a ByteBuffer, it is given in
bytes. The position and limit attributes can be thought of as defining a segment within
the buffer starting at position and ending at 1imit (exclusive).

Since we want to specify our vertices as floats, it would be nice not to have to cope with
bytes. Luckily we can convert the ByteBuffer instance to a FloatBuffer instance which
allows us just that: working with floats.

FloatBuffer floatBuffer = buffer.asFloatBuffer();

Capacity, position, and limit are given in floats in the case of a FloatBuffer. Our usage
pattern of these buffers will be pretty limited—it goes like this:

float[] vertices = { ... definitions of vertex positions etc ...;
floatBuffer.clear();

floatBuffer.put(vertices);

floatBuffer.flip();

CHAPTER 7: OpenGL ES: A Gentle Introduction

We first define our data in a standard Java float array. Before we put that float array into
the buffer, we tell the buffer to clear itself via the clear() method. This doesn’t actually
erase any data, but sets the position to zero and the limit to the capacity. Next we use
the FloatBuffer.put(float[] array) method to copy the content of the complete array
to the buffer, beginning at the buffer’s current position. After the copying, the position of
the buffer will be increased by the length of the array. Next, the call to the put() method
then appends the additional data to the data of the last array we copied to the buffer.
The final call to FloatBuffer.flip() just swaps the position and limit.

For this example, let’s assume that our vertices array is five floats in size and that our
FloatBuffer has enough capacity to store those five floats. After the call to
FloatBuffer.put(), the position of the buffer will be 5 (indices 0 to 4 are taken up by the
five floats from our array). The limit will still be equal to whatever the capacity of the
buffer is. After the call to FloatBuffer.flip(), the position will be set to 0 and the limit
will be set to 5. Any party interested in reading the data from the buffer will then know
that it should read the floats from index 0 to 4 (remember that the limit is exclusive). And
that’s exactly what OpenGL ES needs to know as well. Note, however, that it will happily
ignore the limit. Usually we have to tell it the number of elements to read in addition to
passing the buffer to it. There’s no error checking done, so watch out.

Sometimes it is useful to set the position of the buffer manually after we have filled it.
This can be done via a call to the following method:

FloatBuffer.position(int position)

This will come in handy later on, when we temporarily set the position of a filled buffer to
something other than zero for OpenGL ES to start reading at a specific position.

Sending Vertices to OpenGL ES

So how do we define the positions of the three vertices of our first triangle? Easy—
assuming our coordinate system is (0,0,1) to (320,480,—-1), as we defined it in the
preceding code snippet, we can do the following:

ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * 2 * 4);
byteBuffer.order(ByteOrder.nativeOrder());
FloatBuffer vertices = byteBuffer.asFloatBuffer();
vertices.put(new float[] { o.of, o.0f,

319.0f, o0.0f,

160.0f, 479.0f });
vertices.flip();

The first three lines should be familiar already. The only interesting part is how many
bytes we allocate. We have three vertices, each composed of a position given as x- and
y-coordinates. Each coordinate is a float, and thus takes up 4 bytes. That’s three
vertices times two coordinates times four bytes, for a total of 24 bytes for our triangle.

NOTE: We can specify vertices with x- and y-coordinates only, and OpenGL ES will automatically
set the z-coordinate to zero for us.

CHAPTER 7: OpenGL ES: A Gentle Introduction

Next we put a float array holding our vertex positions into the buffer. Our triangle starts
at the bottom-left corner (0,0), goes to the right edge of the view frustum/screen (319,0),
and then goes to the middle of the top edge of the view frustum/screen. Being the good
NIO buffer users we are, we also call the f1ip() method on our buffer. Thus, the position
will be 0 and the limit will be 6 (remember, FloatBuffer limits and positions are given in
floats, not bytes).

Once we have our NIO buffer ready, we can tell OpenGL ES to draw it with its current
state (e.g., viewport and projection matrix). This can be done with the following snippet:
gl.glEnableClientState(GL10.GL_VERTEX ARRAY);

gl.glVertexPointer(2, GL10.GL FLOAT, 0, vertices);
gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);

The call to glEnableClientState() is a bit of a relic. It tells OpenGL ES that the vertices
we are going to draw have a position. This is a bit silly for two reasons:

B The constant is called GL10.GL_VERTEX_ARRAY, which is a bit confusing.
It would make more sense if it were called GL10.GL_POSITION_ARRAY.

B There’s no way to draw anything that has no position, so the call to
this method is a little bit superfluous. We do it anyway, though, to
make OpenGL ES happy.

In the call to glvertexPointer() we tell OpenGL ES where it can find the vertex
positions, and give it some additional information. The first parameter tells OpenGL ES
that each vertex position is composed of two coordinates, x and y. If we would have
specified x, y, and z, we would have passed 3 to the method. The second parameter
tells OpenGL ES the data type we used to store each coordinate. In this case it’s
GL10.GL_FLOAT, indicating that we used floats encoded as 4 bytes each. The third
parameter, stride, tells OpenGL how far apart each of our vertex positions are from
each other in bytes. In the preceding case, stride is zero, as the positions are tightly
packed (vertex 1 (x,y), vertex 2(x,y), etc.). The final parameter is our FloatBuffer, for
which there are two things to remember:

B The FloatBuffer represents a memory block in the native heap, and
thus has a starting address.

B The position of the FloatBuffer is an offset from that starting address.

OpenGL ES will take the buffer’s starting address and add the buffer’s positions to arrive
at the float in the buffer that it will start reading the vertices from when we tell it to draw
the contents of the buffer. The vertex pointer (which again should be called the position
pointer) is a state of OpenGL ES. As long as we don’t change it (and the context isn’t
lost), OpenGL ES will remember and use it for all subsequent calls that need vertex
positions.

Finally there’s the call to glDrawArrays(). It will draw our triangle. The first parameter
specifies what type of primitive we are going to draw. In this case we say that we want
to render a list of triangles, which is specified via GL10.GL_TRIANGLES. The next
parameter is an offset relative to the first vertex the vertex pointer points to. The offset is
measured in vertices, not bytes or floats. If we’d have specified more than one triangle,

CHAPTER 7: OpenGL ES: A Gentle Introduction

we could use this offset to render only a subset of our triangle list. The final argument
tells OpenGL ES how many vertices it should use for rendering. In our case that’s three
vertices. Note that we always have to specify a multiple of 3 if we draw
GL10.GL_TRIANGLES. Each triangle is composed of three vertices, so that makes sense.
For other primitive types the rules are a little different.

Once we issue the glVertexPointer() command, OpenGL ES will transfer the vertex
positions to the GPU and store them there for all subsequent rendering commands.
Each time we tell OpenGL ES to render vertices, it takes their positions from the data we
last specified via glVertexPointer().

Each of our vertices might have more attributes than just its position. One other attribute
might be a vertex’s color. We usually refer to those attributes as vertex attributes.

You might wonder how OpenGL ES knows what color our triangle should have, as we
have only specified positions. It turns out that OpenGL ES has sensible defaults for any
vertex attribute that we don’t specify. Most of these defaults can be set directly. For
example, if we want to set a default color for all vertices that we draw, we can use the
following method:

GL10.glColor4f(float r, float g, float b, float a)

This method will set the default color to be used for all vertices for which we didn’t
specify a color. The color is given as RGBA values in the range 0.0 to 1.0, as was the
case for the clear color earlier. The default color OpenGL ES starts with is (1,1,1,1)—that
is, fully opaque white.

And that is all the code we need to render a triangle with a custom parallel projection with
OpenGL ES. That’s a mere 16 lines of code for clearing the screen, setting the viewport
and projection matrix, creating an NIO buffer that we store our vertex positions in, and
drawing the triangle. Now compare that to the six pages it took me to explain this to you. |
could have of course left out the details and used coarser language. The problem is that
OpenGL ES is a pretty complex beast at times, and to avoid getting an empty screen, it’s
best to learn what it is all about rather than just copying and pasting code.

Putting It Together

To round this section out, let’s put all this together via a nice GLGame and Screen
implementation. Listing 7-5 shows the complete example.

Listing 7-5. FirstTriangleTest.java

package com.badlogic.androidgames.glbasics;
import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import java.nio.FloatBuffer;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Screen;

CHAPTER 7: OpenGL ES: A Gentle Introduction

import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class FirstTriangleTest extends GLGame {
@0verride
public Screen getStartScreen() {
return new FirstTriangleScreen(this);
}

The FirstTriangleTest class derives from GLGame, and thus has to implement the
Game.getStartScreen() method. In that method we create a new FirstTriangleScreen,
which will then be frequently called to update and present itself by the GLGame. Note that
when this method is called, we are already in the main loop—or rather the
GLSurfaceView rendering thread —so we can use OpenGL ES methods in the constructor
of the FirstTriangleScreen class. Let’s have a closer look at that Screen
implementation:

class FirstTriangleScreen extends Screen {
GLGraphics glGraphics;
FloatBuffer vertices;

public FirstTriangleScreen(Game game) {
super(game);
glGraphics = ((GLGame)game).getGLGraphics();

ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * 2 * 4);
byteBuffer.order(ByteOrder.nativeOrder());
vertices = byteBuffer.asFloatBuffer();
vertices.put(new float[] { 0.0f, o0.0f,

319.0f, o0.0f,

160.0F, 479.0f});
vertices.flip();

The FirstTriangleScreen class holds two members: a GLGraphics instance and our
trusty FloatBuffer, which stores the 2D positions of the three vertices of our triangle. In
the constructor we fetch the GLGraphics instance from the GLGame and create and fill the
FloatBuffer according to our previous code snippet. Since the Screen constructor gets
a Game instance, we have to cast it to a GLGame instance so we can use the
GLGame.getGLGraphics() method.

@verride
public void present(float deltaTime) {
GL10 gl = glGraphics.getGL();
gl.glViewport(o, 0, glGraphics.getWidth(), glGraphics.getHeight());
gl.glClear(GL10.GL_COLOR BUFFER BIT);
gl.glMatrixMode (GL10.GL_PROJECTION);
gl.glloadIdentity();
gl.glorthof(o, 320, 0, 480, 1, -1);

gl.glColoraf(1, 0, 0, 1);
gl.glEnableClientState(GL10.GL_VERTEX ARRAY);
gl.glVertexPointer(2, GL10.GL FLOAT, 0, vertices);
gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);

CHAPTER 7: OpenGL ES: A Gentle Introduction

The present() method then reflects what we just discussed: we set the viewport, clear
the screen, set the projection matrix so that we can work in our custom coordinate
system, set the default vertex color (red in this case), specify that our vertices will have
positions, tell OpenGL ES where it can find those vertex positions, and finally render our
awesome little red triangle.

@0verride

public void update(float deltaTime) {
game.getInput().getTouchEvents();
game.getInput().getKeyEvents();

@0verride
public void pause() {

}

@0verride
public void resume() {

}

@0verride
public void dispose() {

}
}
}

The rest of the class is just boilerplate code. In the update() method we make sure that
our event buffers don’t get filled up. The rest of the code does nothing.

NOTE: From here on we’ll only focus on the Screen classes themselves, as the enclosing
GLGame derivatives, such as FirstTriangleTest, will always be the same. We'll also reduce
the code size a little by leaving out any empty or boilerplate methods of the Screen class. The
following examples will all just differ in terms of members, constructors, and present methods.

Figure 7-7 shows the output of the preceding example.

CHAPTER 7: OpenGL ES: A Gentle Introduction

Figure 7-7. Our first sexy triangle

So here’s what we did wrong in this example in terms of OpenGL ES best practices:

B We set the same states to the same values over and over again
without any need. State changes in OpenGL ES are expensive —some
a little bit more, some a little bit less. We should always try to reduce
the number of state changes we make in a single frame.

B The viewport and projection matrix will never change once we set
them. We could move that code to the resume() method, which is only
called once each time the OpenGL ES surface gets (re)-created, thus
also handling OpenGL ES context loss.

B We could also move setting the color used for clearing and setting the
default vertex color to the resume() method. These two colors won’t
change either.

B We could move the glEnableClientState() and glVertexPointer()
methods to the resume() method.

B The only things that we need to call each frame are glClear() and
glDrawArrays(). Both use the current OpenGL ES states, which will
stay the same as long as we don’t change them and as long as we
don’t lose the context due to the Activity being paused and resumed.

If we had put these optimizations into practice, we would have only two OpenGL ES
calls in our main loop. For the sake of clarity, we’ll refrain from using these kind of

CHAPTER 7: OpenGL ES: A Gentle Introduction

minimal state change optimizations for now. When we start writing our first OpenGL ES
game, though, we’ll have to follow those practices as best as we can to guarantee good
performance.

Let's add some more attributes to our triangle’s vertices, starting with color.

NOTE: Very, very alert readers might have noticed that the triangle in Figure 77 is actually
missing a pixel in the bottom-right corner. This may look like a typical off-by-one error, but it's
actually due to the way OpenGL ES rasterizes (draws the pixels of) the triangle. There’s a specific
triangle rasterization rule that is responsible for that artifact. Worry not—we are mostly
concerned with rendering 2D rectangles (composed of two triangles), where this effect will
vanish.

Specifying Per Vertex Color

In the last example we set a global default color for all vertices we draw via glColor4f().
Sometimes we want to have more granular control (e.g., we want to set a color per
vertex). OpenGL ES offers us this functionality, and it’s really easy to use. All we have to
do is add RGBA float components to each vertex and tell OpenGL ES where it can find
the color for each vertex, similar to how we told it where it can find the position for each
vertex. Let’s start by adding the colors to each vertex:

int VERTEX_SIZE = (2 + 4) * 4;
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX SIZE);
byteBuffer.order(ByteOrder.nativeOrder());
FloatBuffer vertices = byteBuffer.asFloatBuffer();
vertices.put(new float[] { o0.0f, o0.0f, 1, 0, 0, 1
319.0f, o0.0f, 0, 1, 0, 1
160.0f, 479.0f, 0, 0, 1, 1

)

i);

vertices.flip(); ’
We first have to allocate a ByteBuffer for our three vertices. How big should that
ByteBuffer be? We have two coordinates and four (RGBA) color components per vertex,
so that’s six floats in total. Each float value takes up 4 bytes, so a single vertex uses 24
bytes. We store this information in VERTEX_SIZE. When we call
ByteBuffer.allocateDirect(), we just multiply VERTEX SIZE by the number of vertices
we want to store in the ByteBuffer. The rest is pretty self-explanatory. We get a
FloatBuffer view to our ByteBuffer and put() the vertices into the ByteBuffer. Each
row of the float array holds the x- and y-coordinates, and the R, G, B, and A
components of a vertex, in that order.

If we want to render this, we have to tell OpenGL ES that our vertices not only have a
position, but also a color attribute. We start off, as before, by calling
glEnableClientState():

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

CHAPTER 7: OpenGL ES: A Gentle Introduction

Now that OpenGL ES knows that it can expect position and color information for each
vertex, we have to tell it where it can find that information:

vertices.position(0);

gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX SIZE, vertices);

vertices.position(2);

gl.glColorPointer(4, GL10.GL_FLOAT, VERTEX SIZE, vertices);

We start of by setting the position of our FloatBuffer, which holds our vertices to 0. The
position thus points to the x-coordinate of our first vertex in the buffer. Next we call
glvertexPointer(). The only difference from the previous example is that we now also
specify the vertex size (remember, it’s given in bytes). OpenGL ES will then start reading
in vertex positions from the position in the buffer we told it to start from. For the second
vertex position it will add VERTEX_SIZE bytes to the first position’s address, and so on.

Next we set the position of the buffer to the R component of the first vertex and call
glColorPointer(), which tells OpenGL ES where it can find the colors of our vertices.
The first argument is the number of components per color. This is always four, as
OpenGL ES demands an R, G, B, and A component per vertex from us. The second
parameter specifies the type of each component. As with the vertex coordinates, we use
GL10.GL_FLOAT again to indicate that each color component is a float in the range
between 0 and 1. The third parameter is the stride between vertex colors. It’s of course
the same as the stride between vertex positions. The final parameter is our vertices
buffer again.

Since we called vertices.position(2) before the glColorPointer() call, OpenGL ES
knows that the first vertex color can be found starting from the third float in the buffer. If
we wouldn’t have set the position of the buffer to 2, OpenGL ES would have started
reading in the colors from position 0. That would have been bad, as that’s where the x-
coordinate of our first vertex is. Figure 7-8 shows where OpenGL ES will read our vertex
attributes from, and how it jumps from one vertex to the next for each attribute.

glVertexPointer()

glColorPointer()

o 1

stride = VERTEX_SIZE

Figure 7-8. Our vertices FloatBuffer, start addresses for OpenGL ES to read position/color from, and stride to be
used to jump to the next position/color.

CHAPTER 7: OpenGL ES: A Gentle Introduction

To draw our triangle, we again call glDrawElements(), which tells OpenGL ES to draw a
triangle using the first three vertices of our FloatBuffer:

gl.glDrawElements(GL10.GL_TRIANGLES, 0, 3);

Since we enabled the GL10.GL_VERTEX_ ARRAY and GL10.GL_COLOR_ARRAY, OpenGL ES
knows that it should use the attributes specified by glVertexPointer() and
glColorPointer(). It will ignore the default color, as we provide our own per-vertex
colors.

NOTE: The way we just specified our vertices’ positions and colors is called interleaving. This
means that we pack the attributes of a vertex in one continuous memory block. There’s another
way we could have achieved this: noninterleaved vertex arrays. We’d have used two
FloatBuffers, one for the positions and one for the colors. However, interleaving performs a
lot better due to memory locality, so we won’t discuss noninterleaved vertex arrays here.

Putting it all together into a new GLGame and Screen implementation should be a breeze
by now. Listing 7-6 shows an excerpt from the file ColoredTriangleTest. java. | left out
the boilerplate code.

Listing 7-6. Excerpt from ColoredTriangleTest java; Interleaving Position and Color Attributes

class ColoredTriangleScreen extends Screen {
final int VERTEX SIZE = (2 + 4) * 4;
GLGraphics glGraphics;
FloatBuffer vertices;

public ColoredTriangleScreen(Game game) {
super(game);
glGraphics = ((GLGame) game).getGLGraphics();

ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX SIZE);
byteBuffer.order(ByteOrder.nativeOrder());
vertices = byteBuffer.asFloatBuffer();

vertices.put(new float[] { o0.0f, o.0f, 1, 0, 0, 1,
319.0f, o0.0f, 0, 1, 0, 1,
160.0f, 479.0f, 0, 0, 1, 1});

vertices.flip();

}

@0verride

public void present(float deltaTime) {
GL10 gl = glGraphics.getGL();
gl.glViewport(o, 0, glGraphics.getWidth(), glGraphics.getHeight());
gl.glClear(GL10.GL_COLOR BUFFER BIT);
gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glloadIdentity();
gl.glorthof(o, 320, 0, 480, 1, -1);

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

vertices.position(0);

CHAPTER 7: OpenGL ES: A Gentle Introduction

gl.glVertexPointer(2, GL10.GL FLOAT, VERTEX SIZE, vertices);
vertices.position(2);
gl.glColorPointer(4, GL10.GL_FLOAT, VERTEX SIZE, vertices);

gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);
}

Cool, that still looks pretty straightforward. All we changed compared to the previous
example is adding the four color components to each vertex in our FloatBuffer and
enabling the GL10.GL_COLOR_ARRAY. The best thing about it is that any additional vertex
attributes we add in the subsequent examples will work the same way. We just tell
OpenGL ES to not use the default value for that specific attribute but instead look up the
attributes in our FloatBuffer, starting at a specific position and moving from vertex to
vertex by VERTEX_ SIZE bytes.

Now, we could also turn off the GL10.GL_COLOR_ARRAY so that OpenGL ES uses the
default vertex color again, which we can specify via glColor4f() as we did previously.
For this we can call

gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
OpenGL ES will just turn off the feature to read the colors from our FloatBuffer. If we

already set a color pointer via glColorPointer(), OpenGL ES will remember the pointer,
though. We just told it to not use it.

To round this example out, let’s have a look at the output of the preceding program.
Figure 7-9 shows a screenshot.

Figure 7-9. Per-vertex colored triangle

CHAPTER 7: OpenGL ES: A Gentle Introduction

Woah, this is pretty neat. We didn’t make any assumptions about how OpenGL ES will
use the three colors we specified (red for the bottom-left vertex, green for the bottom-
right vertex, and blue for the top vertex). It turns out that it will interpolate the colors
between the vertices for us. With this we can easily create nice gradients. However,
colors alone will not make us happy for very long. We want to draw images with
OpenGL ES. And that’s where so-called texture mapping comes into play.

Texture Mapping: Wallpapering Made Easy

When we wrote Mr. Nom we loaded some bitmaps and directly drew them to the
framebuffer —no rotation involved, just a little bit of scaling, which is pretty easy to
achieve. In OpenGL ES we are mostly concerned with triangles, which can have any
orientation or scale we want them to have. So how can we render bitmaps with OpenGL
ES?

Easy, just load up the bitmap to OpenGL ES (and for that matter to the GPU, which has
its own dedicated RAM), add a new attribute to each of our triangle’s vertices, and tell
OpenGL ES to render our triangle and apply the bitmap (also known as texture in
OpenGL ES speak) to the triangle. Let's first look at what these new vertex attributes
actually specify.

Texture Coordinates

To map a bitmap to a triangle we need to add so-called texture coordinates to each
vertex of the triangle. What is a texture coordinate? It specifies a point within the texture
(our uploaded bitmap) to be mapped to one of the triangle’s vertices. Texture
coordinates are usually 2D.

While we call our positional coordinates x, y, and z, texture coordinates are usually
called u and v or s and t, depending on the circle of graphics programmers you are a
part of. OpenGL ES calls them s and t, so that’s what we’ll stick to. If you read
resources on the Web that use the u/v nomenclature, don’t get confused: it’s the same
as s and t. So what does the coordinate system look like? Figure 7-10 shows Bob in the
texture coordinate system after we uploaded him to OpenGL ES.

CHAPTER 7: OpenGL ES: A Gentle Introduction

(0,0) (1,0)

(0,1)

v (1,1)
t

Figure 7-10. Bob, uploaded to OpenGL ES, shown in the texture coordinate system

There are a couple of interesting things going on here. First of all, s equals the x-
coordinate in a standard coordinate system, and t is equal to the y-coordinate. The s-
axis points to the right, and the t-axis points downward. The origin of the coordinate
system coincides with the top-left corner of Bob’s image. The bottom-right corner of the
image maps to (1,1).

So, what happened to pixel coordinates? It turns out that OpenGL ES doesn't like them
a lot. Instead, any image we upload, no matter its width and height in pixels, will be
embedded into this coordinate system. The top-left corner of the image will always be at
(0,0), the bottom-right corner will always be at (1,1)—even if, say, the width is twice as
large as the height. We call these normalized coordinates, and they actually makes our
lives easier at times. So how can we map Bob to our triangle? Easy, we just give each
vertex of the triangle a texture coordinate pair in Bob’s coordinate system. Figure 7-11
shows a few configurations.

(0,0) (1,0

(0,0) (1,0 (0,0) (1,0)

))
> s > s > s

(0,1) (0,1) (0,1)

\ (1,1) \ 4 (1,1) \ (1,1)
t t t

Figure 7-11. Three different triangles mapped to Bob. The names v1, v2, and v3 each specify a vertex of the
triangle.

We can map our triangle’s vertices to the texture coordinate system however we want.
Note that the orientation of the triangle in the positional coordinate system does not
have to be the same as in the texture coordinate system. The coordinate systems are

CHAPTER 7: OpenGL ES: A Gentle Introduction

completely decoupled. So let’s see how we can add those texture coordinates to our
vertices:

Int VERTEX_SIZE = (2 + 2) * 4;
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX SIZE);
byteBuffer.order(ByteOrder.nativeOrder());
vertices = byteBuffer.asFloatBuffer();
vertices.put(new float[] { o.of, o0.of, o.0f, 1.0f,

319.0f, o0.0f, 1.0f, 1.0f,

160.0f, 479.0f, 0.5f, 0.0f});
vertices.flip();

That was easy. All we have to do is to make sure that we have enough room in our
buffer, and then append the texture coordinates to each vertex. The preceding code
corresponds to the rightmost mapping in Figure 7-10. Note that our vertex positions are
still given in the usual coordinate system we defined via our projection. If we wanted to,
we could also add the color attributes to each vertex, as in the previous example.
OpenGL ES would then mix the interpolated vertex colors with the colors from the pixels
of the texture that the triangle maps to on the fly. Of course, we’d need to adjust the size
of our buffer, as well as the VERTEX_SIZE constant, accordingly (e.g., (2 + 4 + 2) x 4). To
tell OpenGL ES that our vertices have texture coordinates, we again use
glEnableClientState() together with the glTexCoordPointer()method, which behaves
exactly the same as glVertexPointer() and glColorPointer() (can you see a pattern
here?).

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_TEXTURE_COORD ARRAY);

vertices.position(0);

gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX SIZE, vertices);

vertices.position(2);

gl.glTexCoordPointer(2, GL10.GL_FLOAT, VERTEX SIZE, vertices);

Nice, that looks very familiar. So, the remaining question is how we can upload the
texture to OpenGL ES and tell it to map it to our triangle. Naturally that’s a little bit more
involved. But fear not, it’s still pretty easy.

Uploading Bitmaps
First we have to load our bitmap. We already know how to do that on Android:

Bitmap bitmap = BitmapFactory.decodeStream(game.getFileIO().readAsset("bobrgh888.png"));

Here we load Bob in an RGB888 configuration. The next thing we need to do is tell
OpenGL ES that we want to create a new texture. OpenGL ES has the notion of objects
for a couple of things, such as textures. To create a texture object, we can call the
following method:

GL10.glGenTextures(int numTextures, int[] ids, int offset)

The first parameter specifies how many texture objects we want to create. Usually we
only want to create one. The next parameter is an int array to which OpenGL ES will

CHAPTER 7: OpenGL ES: A Gentle Introduction

write the IDs of the generated texture objects. The final parameter just tells OpenGL ES
where in the array it should start writing the IDs to.

You already learned that OpenGL ES is a C API. Naturally it can’t return a Java object to
us for a new texture. Instead it gives us an ID, or handle, to that texture. Each time we
want OpenGL ES to do something with that specific texture, we specify its ID. So here’s
a more complete code snippet showing how to generate a single new texture object and
getits ID:

int textureIds[] = new int[1];
gl.glGenTextures(1, texturelds, 0);
int textureld = texturelds[o];

The texture object is still empty, which means it doesn’t have any image data yet. Let’s
upload our bitmap. For this we have to first bind the texture. To bind something in
OpenGL ES means that we want OpenGL ES to use that specific object for all
subsequent calls until we change the binding again. Here we want to bind a texture
object for which the method glBindTexture() is available. Once we have bound a
texture, we can manipulate its attributes, such as its image data. Here’s how we can
upload Bob to our new texture object:

gl.glBindTexture(GL10.GL_TEXTURE_ 2D, textureld);
GLUtils.texImage2D(GL10.GL_TEXTURE 2D, 0, bitmap, 0);

First we bind the texture object with glBindTexture(). The first parameter specifies the
type of texture we want to bind. Our image of Bob is 2D, so we use GL10.GL_TEXTURE_2D.
There are other texture types, but we don’t have a need for them in this book. We’ll
always specify GL10.GL_TEXTURE_2D for the methods that need to know the texture type
we want to work with. The second parameter of that method is our texture ID. Once the
method returns, all subsequent methods that work with a 2D texture will work with our
texture object.

The next method call invokes a method of the GLUtils class, a class provided by the
Android framework. Usually the task of uploading a texture image is pretty involved; this
little helper class eases the pain for us a lot. All we need to do is specify the texture type
(GL10.GL_TEXTURE_2D) the mip mapping level (we’ll look at that in Chapter 11; it defaults
to zero), the bitmap we want to upload, and another argument, which has to be set to
zero in all cases. After this call our texture object has image data attached to it.

NOTE: The texture object and its image data are actually held in video RAM, not in our usual
RAM. The texture object (and the image data) will get lost when the OpenGL ES context is
destroyed (e.g., when our activity is paused and resumed). This means that we have to re-create
the texture object and reupload our image data every time the OpenGL ES context is (re)-created.
If we don’t do this, all we’ll see is a white triangle.

CHAPTER 7: OpenGL ES: A Gentle Introduction

Texture Filtering

There’s one last thing we need to define before we can use the texture object. It has to
do with the fact that our triangle might take up more or fewer pixels on the screen than
there are pixels in the mapped region of the texture. For example, the image of Bob in
Figure 7-10 has a size of 128x128 pixels. Our triangle maps to half that image, so uses
(128x128) / 2 pixels from the texture (which are also called texels). When we draw the
triangle to the screen with the coordinates we defined in the preceding snippet, it will
take up (320x480) / 2 pixels. That’s a lot more pixels we use on the screen than we fetch
from the texture map. It can of course also be the other way around: we use fewer pixels
on the screen than from the mapped region of the texture. The first case is called
magnification, and the second minification. For each case we need to tell OpenGL ES
how it should upscale or downscale the texture. The up- and downscaling are also
referd to as minification and magnification filters in OpenGL ES lingo. These filters are
attributes of our texture object, much like the image data itself. To set them we have to
first make sure that the texture object is bound via a call to glBindTexture(). If that’s the
case, we can set them like this:

gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN FILTER, GL10.GL_NEAREST);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG FILTER, GL10.GL_NEAREST);

Both times we use the method GL10.glTexParameterf(), which sets an attribute of the
texture. In the first call we specify the minification filter; in the second we call the
maghnification filter. The first parameter to that method is the texture type, which defaults
to GL10.GL_TEXTURE_2D for us. The second argument tells the method which attributes
we want to set—in our case, the GL10.GL_TEXTURE_MIN_FILTER and the
GL10.GL_TEXTURE_MAG_FILTER. The last parameter specifies the type of filter that should
be used. We have two options here: GL10.GL_NEAREST and GL10.GL_LINEAR.

The first filter type will always choose the nearest texel in the texture map to be mapped
to a pixel. The second filter type will sample the four nearest texels for a pixel of the
triangle and average them to arrive at the final color. We use the first type of filter if we
want to have a pixelated look and the second if we want a smoothed look. Figure 7-12
shows the difference between the two types of filters.

CHAPTER 7: OpenGL ES: A Gentle Introduction

GL_NEAREST GL_LINEAR

Figure 7-12. GL10.GL_NEAREST vs. GL10.GL_LINEAR. The first filter type makes for a pixelated look; the second
one smoothes things out a little.

Our texture object is now fully defined: we created an ID, set the image data, and
specified the filters to be used in case our rendering is not pixel perfect. It is a common
practice to unbind the texture once we are done defining it. We should also recycle the
Bitmap we loaded, as we no longer need it. Why waste memory? That can be achieved
with the following snippet:

gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
bitmap.recycle();

0 is a special ID that tells OpenGL ES that it should unbind the currently bound object. If
we want to use the texture for drawing our triangles, we need to bind it again, of course.

Disposing of Textures

It is also useful to know how to delete a texture object from video RAM if we no longer
need it (like we use Bitmap.recycle() to release the memory of a bitmap). This can be
achieved with the following snippet:

gl.glBindTexture(GL10.GL_TEXTURE_ 2D, 0);

int texturelds = { textureid };
gl.glDeleteTextures(1, texturelds, 0);

Note that we first have to make sure that the texture object is not currently bound before
we can delete it. The rest is similar to how we used glGenTextures() to create a texture
object.

CHAPTER 7: OpenGL ES: A Gentle Introduction

A Helpful Snippet

For reference, here’s the complete snippet to create a texture object, load image data,
and set the filters on Android:

Bitmap bitmap = BitmapFactory.decodeStream(game.getFileIO().readAsset("bobrgh888.png"));
int textureIds[] = new int[1];

gl.glGenTextures(1, texturelds, 0);

int textureld = texturelds[o];

gl.glBindTexture(GL10.GL_TEXTURE_ 2D, textureld);

GLUtils.texImage2D(GL10.GL_ TEXTURE 2D 0, bitmap, 0);

gl.glTexParameterf(GL10. GL TEXTURE 2D, GL10 GL _TEXTURE MIN FILTER, GL10.GL NEAREST);
gl.glTexParameterf(GL10. GL TEXTURE 2D, GL1o0. GL TEXTURE MAG FILTER, GL10.GL_NEAREST);
gl.glBindTexture(GL10.GL_TEXTURE_2D, 0),

bitmap.recycle();

Not so bad after all. The most important part of all this is to actually recycle the Bitmap
once we are done. Otherwise we’d waste memory. Our image data is safely stored in
video RAM in the texture object (until the context is lost and we need to reload it again).

Enabling Texturing

There’s one more thing before we can draw our triangle with the texture. We need to
bind the texture, and we need to tell OpenGL ES that it should actually apply the texture
to all triangles we render. Whether texture mapping is performed or not is another state
of OpenGL ES, which we can enable and disable with the following methods:

GL10.glEnable(GL10.GL_TEXTURE_2D);
GL10.glDisable(GL10.GL_TEXTURE_2D);

These look vaguely familiar. When we enabled/disabled vertex attributes in the previous
sections, we used glEnableClientState()/glDisableClientState(). As | said earlier,
those are relics from the infancy of OpenGL itself. There's a reason why those are not
merged with glEnable()/glDisable(), but we won’t go into that here. Just remember to
use glEnableClientState()/glDisableClientState() to enable and disable vertex
attributes, and use glEnable()/glDisable() for any other states of OpenGL, such as
texturing.

Putting It Together

With that out of our way, we can now write a small example that puts all of this together.
Listing 7-7 shows an excerpt of the TexturedTriangleTest. java source file, listing only
the relevant parts of the TexturedTriangleScreen class contained in it.

Listing 7-7. Excerpt from TexturedTriangleTest.java; Texturing a Triangle

class TexturedTriangleScreen extends Screen {
final int VERTEX SIZE = (2 + 2) * 4;
GLGraphics glGraphics;
FloatBuffer vertices;
int textureld,

CHAPTER 7: OpenGL ES: A Gentle Introduction

public TexturedTriangleScreen(Game game) {
super(game);
glGraphics = ((GLGame) game).getGLGraphics();

ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX SIZE);
byteBuffer.order (ByteOrder.nativeOrder());
vertices = byteBuffer.asFloatBuffer();
vertices.put(new float[] { o.of, o.of, o.0f, 1.0f,

319.0f, o0.0f, 1.0f, 1.0f,

160.0f, 479.0f, 0.5f, 0.0f});
vertices.flip();
textureld = loadTexture("bobrgb888.png");

}

public int loadTexture(String fileName) {
try {

Bitmap bitmap =
BitmapFactory.decodeStream(game.getFileIO().readAsset(fileName));

GL10 gl = glGraphics.getGL();

int textureIds[] = new int[1];

gl.glGenTextures(1, texturelds, 0);

int textureld = texturelds[0];

gl.glBindTexture(GL10.GL_TEXTURE_ 2D, textureld);

GLUtils.texImage2D(GL10.GL_TEXTURE 2D, 0, bitmap, 0);

gl.glTexParameterf(GL10.GL TEXTURE 2D, GL10.GL_TEXTURE _MIN FILTER,
GL10.GL_NEAREST);

gl.glTexParameterf(GL10.GL TEXTURE 2D, GL10.GL_TEXTURE _MAG FILTER,
GL10.GL_NEAREST);

gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);

bitmap.recycle();

return textureld,

} catch(IOException e) {
Log.d("TexturedTriangleTest", "couldn't load asset 'bobrgb888.png'!");
throw new RuntimeException("couldn't load asset '" + fileName + "'");

}
}

@verride
public void present(float deltaTime) {
GL10 gl = glGraphics.getGL();
gl.glViewport(o, 0, glGraphics.getWidth(), glGraphics.getHeight());
gl.glClear(GL10.GL_COLOR BUFFER BIT);
gl.glMatrixMode (GL10.GL_PROJECTION);
gl.glloadIdentity();
gl.glorthof(o, 320, 0, 480, 1, -1);

gl.glEnable(GL10.GL_TEXTURE_2D);
gl.glBindTexture(GL10.GL_TEXTURE_2D, textureld);

gl.glEnableClientState(GL10.GL_VERTEX ARRAY);
gl.glEnableClientState(GL10.GL TEXTURE _COORD_ARRAY);

vertices.position(0);

gl.glVertexPointer(2, GL10.GL FLOAT, VERTEX SIZE, vertices);
vertices.position(2);

gl.glTexCoordPointer(2, GL10.GL FLOAT, VERTEX_SIZE, vertices);

CHAPTER 7: OpenGL ES: A Gentle Introduction

gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);

| took the freedom to put the texture loading into a method called loadTexture(), which
simply takes the filename of a bitmap to be loaded. The method returns the texture
object ID generated by OpenGL ES, which we’ll use in the present() method to bind the
texture.

The definition of our triangle shouldn’t be a big surprise; we just added texture
coordinates to each vertex.

The present() method does what it always does: it clears the screen and sets the
projection matrix. Next we enable texture mapping via a call to glEnable() and bind our
texture object. The rest is just what we did before: enabling the vertex attributes we
want to use, telling OpenGL ES where it can find them and what strides to use, and
finally drawing the triangle with a call to glDrawArrays (). Figure 7-13 shows the output
of the preceding code.

A

Figure 7-13. Texture mapping Bob onto our triangle

There’s one last thing | haven’t mentioned yet, and it’s of great importance:
All bitmaps we load must have a width and height that is a power of two.

Stick to it or else things will explode.

CHAPTER 7: OpenGL ES: A Gentle Introduction

So what does this actually mean? The image of Bob that we used in our example has a
size of 128x128 pixels. The value 128 is 2 to the power of 7 (2x2x2x2x2x2x2). Other
valid image sizes would be 2x8, 32x16, 128x256, and so on. There’s also a limit to how
big our images can be. Sadly, it varies depending on the hardware our application is
running on. The OpenGL ES 1.x standard doesn’t specify a minimally supported texture
size to my knowledge. However, from my experience it seems that 512x512-pixel
textures work on all current Android devices (and most likely will work on all future
devices as well). I'd even go so far to say that 1024x1024 is OK as well.

Another issue that we have pretty much ignored so far is the color depth of our textures.
Luckily the method GLUtils.texImage2D(), which we used to upload our image data to
the GPU, handles this for us pretty well. OpenGL ES can cope with color depths like
RGBAB8888, RGB565, and so on. We should always strive to use the lowest possible
color depth to decrease bandwidth. For this we can employ the BitmapFactory.Options
class, as in previous chapters, to load a RGB888 Bitmap to a RGB565 Bitmap in
memory, for example. Once we have loaded our Bitmap instance with the color depth we
want it to have, GLUtils.texImage2D() takes over and makes sure that OpenGL ES gets
the image data in the correct format. Of course, you should always check whether the
reduction in color depth has a negative impact on the visual fidelity of your game.

A Texture Class

To reduce the code needed for subsequent examples, | wrote a little helper class called
Texture. It will load a bitmap from an asset and create a texture object from it. It also has a
few convenience methods to bind the texture and dispose of it. Listing 7-8 shows the code.

Listing 7-8. Texture.java, a Little OpenGL ES Texture Class

package com.badlogic.androidgames.framework.gl;

import java.io.IOException;
import java.io.InputStream;

import javax.microedition.khronos.opengles.GL10;

import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.opengl.GLUtils;

import com.badlogic.androidgames.framework.FileIO;
import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class Texture {
GLGraphics glGraphics;
FileIO fileIO;
String fileName;
int textureld,
int minFilter;
int magFilter;

CHAPTER 7: OpenGL ES: A Gentle Introduction

public Texture(GLGame glGame, String fileName) {

this.glGraphics = glGame.getGLGraphics();
this.fileIO = glGame.getFileIO();
this.fileName = fileName;

load();

private void load() {

}

GL10 gl = glGraphics.getGL();

int[] texturelds = new int[1];
gl.glGenTextures(1, texturelds, 0);
textureld = texturelds[0];

InputStream in = null;
try {
in = fileIO.readAsset(fileName);
Bitmap bitmap = BitmapFactory.decodeStream(in);
gl.glBindTexture(GL10.GL_TEXTURE 2D, textureld);
GLUtils.texImage2D(GL10.GL_TEXTURE 2D, 0, bitmap, 0);
setFilters(GL10.GL NEAREST, GL10.GL_NEAREST);
gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
} catch(IOException e) {
throw new RuntimeException("Couldn't load texture
} finally {
if(in != null)
try { in.close(); } catch (IOException e) { }

'" + fileName +"'", e);

public void reload() {

load();

bind();

setFilters(minFilter, magFilter);
glGraphics.getGL().glBindTexture(GL10.GL TEXTURE 2D, 0);

public void setFilters(int minFilter, int magFilter) {

}

this.minFilter = minFilter;

this.magFilter = magFilter;

GL10 gl = glGraphics.getGL();

gl.glTexParameterf(GL10.GL TEXTURE 2D, GL10.GL_TEXTURE MIN FILTER, minFilter);
gl.glTexParameterf(GL10.GL TEXTURE 2D, GL10.GL_TEXTURE MAG FILTER, magFilter);

public void bind() {

GL10 gl = glGraphics.getGL();
gl.glBindTexture(GL10.GL_TEXTURE 2D, textureld);

public void dispose() {

GL10 gl = glGraphics.getGL();
gl.glBindTexture(GL10.GL_TEXTURE_2D, textureld);
int[] texturelds = { textureld };
gl.glDeleteTextures(1, texturelds, 0);

CHAPTER 7: OpenGL ES: A Gentle Introduction

The only interesting thing about this class is the reload() method, which we can use
when the OpenGL ES context is lost. Also note that the setFilters() method will only
work if the Texture is actually bound. Otherwise it will set the filters of the currently
bound texture.

We could also write a little helper method for our vertices buffer. But before we can do
this we have to discuss one more thing: indexed vertices.

Indexed Vertices: Because Reuse Is Good for You

Up until this point, we have always defined lists of triangles, where each triangle has its
own set of vertices. We have actually only ever drawn a single triangle, but adding more
would not have been a big deal.

There are cases, however, where two or more triangles can share some vertices. Let’s
think about how we’d render a rectangle with our current knowledge. We’d simply define
two triangles that would have two vertices with the same positions, colors, and texture
coordinates. We can do better. Figure 7-14 shows the old way and the new way of
rendering a rectangle.

v3 V2 v4 v3
v6
vi
v4 5] v v2

Figure 7-14. Rendering a rectangle as two triangles with six vertices (left), and rendering it with four vertices
(right)
Instead of duplicating vertex v1 and v2 with vertex v4 and v6, we only define these
vertices once. We still render two triangles in this case, but we tell OpenGL ES explicitly
which vertices to use for each triangle (e.g., use v1, v2, and v3 for the first triangle and
v3, v4, and v1 for the second one). Which vertices to use for each triangle is defined via
indices into our vertices array. The first vertex in our array has index 0, the second vertex
has index 1, and so on. For the preceding rectangle, we’d have a list of indices like this:
short[] indices = { o0, 1, 2,

2,3,0 };

Incidentally, OpenGL ES wants us to specify the indices as shorts (which is not entirely
correct; we could also use bytes). However, as with the vertex data, we can’t just pass a
short array to OpenGL ES. It wants a direct ShortBuffer. We already know how to
handle that:

ByteBuffer byteBuffer = ByteBuffer.allocate(indices.length * 2);

CHAPTER 7: OpenGL ES: A Gentle Introduction

byteBuffer.order(ByteOrder.nativeOrder());
ShortBuffer shortBuffer = byteBuffer.asShortBuffer();
shortBuffer.put(indices);

shortBuffer.flip();

A short needs 2 bytes of memory, so we allocate indices.length x 2 bytes for our
ShortBuffer. We set the order to native again and get a ShortBuffer view so we can
handle the underlying ByteBuffer more easily. All that’s left is putting our indices into the
ShortBuffer and flipping it so the limit and position are set correctly.

If we wanted to draw Bob as a rectangle with two indexed triangles, we could define our
vertices like this:

ByteBuffer byteBuffer = ByteBuffer.allocateDirect(4 * VERTEX SIZE);
byteBuffer.order(ByteOrder.nativeOrder());
vertices = byteBuffer.asFloatBuffer();
vertices.put(new float[] { 100.0f, 100.0f, 0.0f, 1.0f,

228.0f, 100.0f, 1.0f, 1.0f,

228.0f, 229.0f, 1.0f, 0.0f,

100.0f, 228.0f, 0.0f, 0.0f });
vertices.flip();

The order of the vertices is exactly the same as in the right part of Figure 7-13. We tell
OpenGL ES that we have positions and texture coordinates for our vertices and where it
can find these vertex attributes via the usual calls to glEnableClientState() and
glvertexPointer()/glTexCoordPointer(). The only thing that is different is the method
we call to actually draw the two triangles:

gl.glDrawElements(GL10.GL TRIANGLES, 6, GL10.GL_UNSIGNED SHORT, indices);

It is very similar to glDrawArrays (), actually. The first parameter specifies the type of
primitive we want to render—in this case a list of triangles. The next parameter specifies
how many vertices we want to use, which equals six in our case. The third parameter
specifies what type the indices have —we specify unsigned short. Note that Java has no
unsigned types, though. However, given the one-complement encoding of signed
numbers, it’s OK to use a ShortBuffer that actually holds signed shorts. The last
parameter is our ShortBuffer holding the six indices.

So, what will OpenGL ES do? It knows that we want to render triangles. It knows that we
want to render two triangles, as we specified six vertices to be rendered. But instead of
fetching six vertices sequentially from the vertices array, it goes sequentially through the
index buffer and uses the vertices indexed by it.

Putting It Together

When we put it all together, we arrive at the code in Listing 7-9.
Listing 7-9. Excerpt from IndexedTest.java; Drawing Two Indexed Triangles

class IndexedScreen extends Screen {
final int VERTEX SIZE = (2 + 2) * 4;
GLGraphics glGraphics;
FloatBuffer vertices;
ShortBuffer indices;

CHAPTER 7: OpenGL ES: A Gentle Introduction

Texture texture;

public IndexedScreen(Game game) {
super(game) ;
glGraphics = ((GLGame) game).getGLGraphics();

ByteBuffer byteBuffer = ByteBuffer.allocateDirect(4 * VERTEX SIZE);
byteBuffer.order (ByteOrder.nativeOrder());
vertices = byteBuffer.asFloatBuffer();
vertices.put(new float[] { 100.0f, 100.0f, 0.0f, 1.0f,

228.0f, 100.0f, 1.0f, 1.0f,

228.0f, 228.0f, 1.0f, 0.0f,

100.0f, 228.0f, 0.0f, 0.0f });
vertices.flip();

byteBuffer = ByteBuffer.allocateDirect(6 * 2);
byteBuffer.order (ByteOrder.nativeOrder());
indices = byteBuffer.asShortBuffer();
indices.put(new short[] { o, 1, 2,

2, 3,01});
indices.flip();
texture = new Texture((GLGame)game, "bobrgh888.png");
}
@0verride

public void present(float deltaTime) {
GL10 gl = glGraphics.getGL();
gl.glViewport(o, 0, glGraphics.getWidth(), glGraphics.getHeight());
gl.glClear(GL10.GL_COLOR_BUFFER BIT);
gl.glMatrixMode (GL10.GL_PROJECTION);
gl.glloadIdentity();
gl.glorthof(o, 320, 0, 480, 1, -1);

gl.glEnable(GL10.GL_TEXTURE_2D);
texture.bind();

gl.glEnableClientState(GL10.GL TEXTURE COORD_ARRAY);
gl.glEnableClientState(GL10.GL_VERTEX ARRAY);

vertices.position(0);

gl.glVertexPointer(2, GL10.GL FLOAT, VERTEX SIZE, vertices);
vertices.position(2);

gl.glTexCoordPointer(2, GL10.GL FLOAT, VERTEX_SIZE, vertices);

gl.glDrawElements(GL10.GL TRIANGLES, 6, GL10.GL_UNSIGNED SHORT, indices);
}

Note the use of our awesome Texture class, which brings down the code size
considerably. Figure 7-15 shows the output, and Bob in all his glory.

CHAPTER 7: OpenGL ES: A Gentle Introduction

Figure 7-15. Bob, indexed

Now, this is pretty close already to how we worked with Canvas. We have a lot more
flexibility as well, since we are not limited to axis-aligned rectangles anymore.

This example has covered all we need to know about vertices for now. We saw that
every vertex must have at least a position, and can have additional attributes, such as a
color given as four RGBA float values and texture coordinates. We also saw that we can
reuse vertices via indexing in case we want to avoid duplication. This gives us a little
performance boost, since OpenGL ES does not have to multiply more vertices by the
projection and model-view matrices than absolutely necessary (which is again not
entirely correct, but let’s stick to this interpretation).

A Vertices Class

Let’s make our code easier to write by creating a Vertices class that can hold a
maximum number of vertices and, optionally, indices to be used for rendering. It should
also take care of enabling all the states needed for rendering, as well as cleaning up the
states after rendering has finished, so that other code can rely on a clean set of OpenGL
ES states. Listing 7-10 shows our easy-to-use Vertices class.

Listing 7-10. Vertices.java; Encapsulating (Indexed) Vertices
package com.badlogic.androidgames.framework.gl;
import java.nio.ByteBuffer;

import java.nio.ByteOrder;
import java.nio.FloatBuffer;

CHAPTER 7: OpenGL ES: A Gentle Introduction

import java.nio.ShortBuffer;
import javax.microedition.khronos.opengles.GL10;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class Vertices {
final GLGraphics glGraphics;
final boolean hasColor;
final boolean hasTexCoords;
final int vertexSize;
final FloatBuffer vertices;
final ShortBuffer indices;

The Vertices class has a reference to the GLGraphics instance, so we can get ahold of
the GL10 instance when we need it. We also store whether the vertices have colors and
texture coordinates. This gives us great flexibility, as we can choose the minimal set of
attributes we need for rendering. We also store a FloatBuffer that holds our vertices
and a ShortBuffer that holds the optional indices.

public Vertices(GLGraphics glGraphics, int maxVertices, int maxIndices, boolean
hasColor, boolean hasTexCoords) {
this.glGraphics = glGraphics;
this.hasColor = hasColor;
this.hasTexCoords = hasTexCoords;
this.vertexSize = (2 + (hasColor?4:0) + (hasTexCoords?2:0)) * 4;

ByteBuffer buffer = ByteBuffer.allocateDirect(maxVertices * vertexSize);
buffer.order(ByteOrder.nativeOrder());
vertices = buffer.asFloatBuffer();

if(maxIndices > 0) {
buffer = ByteBuffer.allocateDirect(maxIndices * Short.SIZE / 8);
buffer.order(ByteOrder.nativeOrder());
indices = buffer.asShortBuffer();
} else {
indices = null;
}

}

In the constructor, we specify how many vertices and indices our Vertices instance can
hold maximally, as well as whether the vertices have colors or texture coordinates.
Inside the constructor, we then set the members accordingly, and instantiate the
buffers. Note that the ShortBuffer will be set to null if maxIndices is zero. Our rendering
will be performed nonindexed in that case.

public void setVertices(float[] vertices, int offset, int length) {
this.vertices.clear();
this.vertices.put(vertices, offset, length);
this.vertices.flip();

}

public void setIndices(short[] indices, int offset, int length) {
this.indices.clear();
this.indices.put(indices, offset, length);

CHAPTER 7: OpenGL ES: A Gentle Introduction

this.indices.flip();
}

Next up are the setVertices() and setIndices() methods. The latter will throw a
NullPointerException in case the Vertices instance does not store indices. All we do is
clear the buffers and copy the contents of the arrays.

public void draw(int primitiveType, int offset, int numVertices) {
GL10 gl = glGraphics.getGL();

gl.glEnableClientState(GL10.GL_VERTEX ARRAY);
vertices.position(0);
gl.glVertexPointer(2, GL10.GL_FLOAT, vertexSize, vertices);

if(hasColor) {
gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
vertices.position(2);
gl.glColorPointer(4, GL10.GL_FLOAT, vertexSize, vertices);

if(hasTexCoords) {
gl.glEnableClientState(GL10.GL TEXTURE COORD_ARRAY);
vertices.position(hasColor?6:2);
gl.glTexCoordPointer(2, GL10.GL FLOAT, vertexSize, vertices);

if(indices!=null) {
indices.position(offset);
gl.glDrawElements(primitiveType, numVertices, GL10.GL UNSIGNED SHORT,

indices);
} else {
gl.glDrawArrays(primitiveType, offset, numVertices);
}
if(hasTexCoords)
gl.glDisableClientState(GL10.GL_TEXTURE COORD ARRAY);
if(hasColor)
gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
}
}

The final method of the Vertices class is draw(). It takes the type of the primitive (e.g.,
GL10.GL_TRIANGLES), the offset into the vertices buffer (or the indices buffer if we use
indices), and the number of vertices to use for rendering. Depending on whether the
vertices have colors and texture coordinates, we enable the relevant OpenGL ES states
and tell OpenGL ES where to find the data. We do the same for the vertex positions, of
course, which are always needed. Depending on whether indices are used or not, we
either call glDrawElements() or glDrawArrays() with the parameters passed to the
method. Note that the offset parameter can also be used in case of indexed rendering:
we simply set the position of the indices buffer accordingly so that OpenGL ES starts
reading the indices from that offset instead of the first index of the indices buffer. The
last thing we do in the draw() method is clean up the OpenGL ES state a little. We call
glDisableClientState() with either GL10.GL_COLOR_ARRAY or

CHAPTER 7: OpenGL ES: A Gentle Introduction

GL10.GL_TEXTURE_COORD_ARRAY in case our vertices have these attributes. We need to do
this, as another instance of Vertices might not use those attributes. If we rendered that
other Vertices instance, OpenGL ES would still look for colors and/or texture
coordinates.

We could replace all the tedious code in the constructor of our preceding example with
the following snippet:

Vertices vertices = new Vertices(glGraphics, 4, 6, false, true);
vertices.setVertices(new float[] { 100.0f, 100.0f, 0.0f, 1.0f,

228.0f, 100.0f, 1.0f, 1.0f,

228.0f, 228.0f, 1.0f, 0.0f,

100.0f, 228.0f, o0.0f, o0.0f }, 0, 16);
vertices.setIndices(new short[] { 0, 1, 2, 2, 3, 0 }, 0, 6);

Likewise, we could replace all the calls for setting up our vertex attribute arrays and
rendering with a single call to the following:

vertices.draw(GL10.GL_TRIANGLES, 0, 6);

Together with our Texture class we have a pretty nice basis for all our 2D OpenGL ES
rendering now. One of the things we are still missing to be able to completely reproduce
all our Canvas rendering abilities is, though, blending. Let’s have a look at that.

Alpha Blending: | Can See Through You

Alpha blending in OpenGL ES is pretty easy to enable. We only need two method calls:

gl.glEnable(GL10.GL_BLEND);
gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS SRC_ALPHA);

The first method call should be familiar: it just tells OpenGL ES that it should apply alpha
blending to all triangles we render from this point on. The second method is a little bit
more involved. It specifies how the source and destination color should be combined. If
you remember what we discussed in Chapter 3, the way a source color and a
destination color are combined is governed by a simple blending equation. The method
glBlendFunc() just tells OpenGL ES which kind of equation to use. The preceding
parameters specify that we want the source color to be mixed with the destination color
exactly as specified in the blending equation in Chapter 3. This is equal to how the
Canvas blended Bitmaps for us.

Blending in OpenGL ES is pretty powerful and complex, and there’s a lot more to it. For
our purposes, we can ignore all those details, though, and just use the preceding
blending function whenever we want to blend our triangles with the framebuffer—the
same way we blended Bitmaps with the Canvas.

The second question is where the source and destination colors come from. The latter is
easy to explain: it’s the color of the pixel in the framebuffer we are going to overwrite
with the triangle we draw. The source color is actually a combination of two colors:

The vertex color: This is the color we either specify via glColor4f() for all vertices or
on a per-vertex basis by adding a color attribute to each vertex.

CHAPTER 7: OpenGL ES: A Gentle Introduction

The texel color: As mentioned before, a texel is a pixel from a texture. When our
triangle is rendered with a texture mapped to it, OpenGL ES will mix the texel colors
with the vertex colors for each pixel of a triangle.

So if our triangle is not texture mapped, the source color for blending is equal to the
vertex color. If the triangle is texture mapped, the source color for each of the triangle’s
pixels is a mixture of the vertex color and the texel color. We could specify how the
vertex and texel colors are combined by using the glTexEnv() method. The default is to
modulate the vertex color by the texel color, which basically means that the two colors
are multiplied with each other component-wise (vertex r x texel r, and so on). For all our
use cases in this book, this is exactly what we want, so we won’t go into glTexEnv().
There are also some very specialized cases where you might want to change how the
vertex and texel colors are combined. As with glBlendFunc(), we’ll ignore the details
and just use the default.

When we load a texture image that doesn’t have an alpha channel, OpenGL ES will
automatically assume an alpha value of 1 for each pixel. If we load an image in
RGBAB8888 format, OpenGL ES will happily use the supplied alpha values for blending.

For vertex colors we always have to specify an alpha component, either by using
glColor4f(), where the last argument is the alpha value, or by specifying the four
components per vertex, where again the last component is the alpha value.

Let’s put this into practice with a little example. We want to draw Bob twice: once by
using the image bobrgb888.png, which does not have an alpha channel per pixel, and a
second time by using the image bobargh8888.png, which has alpha information. Note
that the PNG image actually stores the pixels in ARGB8888 format instead of
RGBA8888. Luckily the GLUtils.texImage2D() method we use to upload the image data
for a texture will do the conversion for us automatically. Listing 7-11 shows the code of
our little experiment, using the Texture and Vertices classes.

Listing 7-11. Excerpt from BlendingTest.java; Blending in Action

class BlendingScreen extends Screen {
GLGraphics glGraphics;
Vertices vertices;
Texture textureRgb;
Texture textureRgba;

public BlendingScreen(Game game) {
super(game);
glGraphics = ((GLGame)game).getGLGraphics();

textureRgb = new Texture((GLGame)game, "bobrgh888.png");
textureRgba = new Texture((GLGame)game, "bobargb8888.png");

vertices = new Vertices(glGraphics, 8, 12, true, true);
float[] rects = new float[] {
100, 100, 1, 1, 1,
228, 100, 1,
228, 228, 1,
100, 228, 1

)))

1, 1,
1, 1,
1, 1

)

-
-

))

0
, 1
1
0

O O R Pk
-

-

0.5
0.5f
0.5f
0.5

)))

CHAPTER 7: OpenGL ES: A Gentle Introduction

100, 300, 1, 1, 1, 1, 0, 1,
228, 300, 1, 1, 1, 1, 1, 1,
228, 428, 1, 1, 1, 1, 1, 0,
100, 428, 1, 1, 1, 1, 0, 0

};
vertices.setVertices(rects, 0, rects.length);
vertices.setIndices(new short[] {0, 1, 2, 2, 3, O,

} 4, 5,6, 6,7, 4 }) 0, 12);

Our little BlendingScreen implementation holds a single Vertices instance where we’ll
store the two rectangles, as well as two Texture instances—one holding the RGBA8888
image of Bob and the other one storing the RGB888 version of Bob. In the constructor
we load both textures from the files bobrgb888.png and bobargh8888.png, and rely on the
Texture class and GLUtils.texImag2D() to convert the ARGB8888 PNG to RGBA8888,
as needed by OpenGL ES. Next up, we define our vertices and indices. The first
rectangle, consisting of four vertices, maps to the RGB888 texture of Bob. The second
rectangle maps to the RGBA8888 version of Bob and is rendered 200 units above the
RGB888 Bob rectangle. Note that the vertices of the first rectangle all have the color
(1,1,1,0.5f) while the vertices of the second rectangle have the color (1,1,1,1).

@verride
public void present(float deltaTime) {
GL10 gl = glGraphics.getGL();
gl.glviewport(o, 0, glGraphics.getWidth(), glGraphics.getHeight());
gl.glClearColor(1,0,0,1);
gl.glClear(GL10.GL_COLOR BUFFER BIT);
gl.glMatrixMode (GL10.GL_PROJECTION);
gl.glloadIdentity();
gl.glorthof(o, 320, 0, 480, 1, -1);

gl.glEnable(GL10.GL_BLEND);
gl.glBlendFunc(GL10.GL_SRC ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

gl.glEnable(GL10.GL_TEXTURE_2D);
textureRgb.bind();
vertices.draw(GL10.GL TRIANGLES, 0, 6);

textureRgba.bind();
vertices.draw(GL10.GL TRIANGLES, 6, 6);

}

In our present() method we clear the screen with red and set the projection matrix, as
we are used to doing. Next we enable alpha blending and set the correct blend
equation. Finally we enable texture mapping and render the two rectangles. The first
rectangle is rendered with the RGB888 texture bound, and the second rectangle is
rendered with the RGBA8888 texture bound. We store both rectangles in the same
Vertices instance and thus use offsets with the vertices.draw() methods. Figure 7-16
shows the output of this little gem.

CHAPTER 7: OpenGL ES: A Gentle Introduction

Figure 7-16. Bob, vertex color blended (bottom) and texture blended (top)

In the case of RGB888 Bob, the blending is performed via the alpha values in the per-
vertex colors. Since we set those to 0.5f, Bob is 50 percent translucent.

In the case of RGBA8888 Bob, the per-vertex colors all have an alpha value of 1.
However, since the background pixels of that texture have alpha values of 0, and since
the vertex colors and the texel colors are modulated, the background of this version of
Bob disappears. If we’'d have set the per-vertex colors’ alpha values to 0.5f as well, then
Bob himself would also have been 50 percent as translucent as his clone in the bottom
of the screen. Figure 7-17 shows what that would have looked like.

Figure 7-17. An alternative version of RGBA8888 Bob using per-vertex alpha of 0.5f (top of the screen)

CHAPTER 7: OpenGL ES: A Gentle Introduction

And that’s basically all we need to know about blending with OpenGL ES in 2D.

However, there is one more very important thing I'd like to point out: Blending is
expensive! Seriously, don’t overuse it. Current mobile GPUs are not all that good at
blending massive amounts of pixels. You should only use blending if absolutely
necessary.

More Primitives: Points, Lines, Strips, and Fans

When | told you that OpenGL ES was a big, nasty triangle-rendering machine, | was not
being 100 percent honest. In fact, OpenGL ES can also render points and lines. Best of
all: these are also defined via vertices, and thus all of the above also applies to them
(texturing, per-vertex colors, etc.). All we need to do to render these primitives is use
something other than GL10.GL_TRIANGLES when we call
glDrawArrays()/glDrawElements(). We can also perform indexed rendering with these
primitives, although that’s a bit redundant (in the case of points at least). Figure 7-18
shows a list of all the primitive types OpenGL ES offers us.

GL_PPINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP
v

o . / v2 ve v vi_ve N
* 3
vl v2 1 v3
v
-“\v 4 v1 v3 V3
v5 v6 v2
vh
v4
vl vi v3 vb
vH
v2
v2 v4 v2 vd vi

GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

Figure 7-18. All the primitives OpenGL ES can render

Let’s go through all of these primitives really quickly:
Point: With a point, each vertex is its own primitive.

Line: A line is made up of two vertices. As with triangles, we can just have 2 x n
vertices to define n lines.

Line strip: All the vertices are interpreted as belonging to one long line.

Line loop: This is similar to a line strip, with the difference that OpenGL ES will
automatically draw an additional line from the last vertex to the first vertex.

Triangle: This we already know. Each triangle is made up of three vertices.

CHAPTER 7: OpenGL ES: A Gentle Introduction

Triangle strip: Instead of specifying three vertices, we just specify number of
triangles + 1 vertices. OpenGL ES will then construct the first triangle from vertices
(v1,v2,v3), the next triangle from vertices (v2,v3,v4), and so on.

Triangle fan: This has one base vertex (v1) that is shared by all triangles. The first
triangle will be (v1,v2,v3), the next triangle (v1,v3,v4), and so on.

Triangle strips and fans are a little bit less flexible than pure triangle lists. But they can
give a little performance boost, as fewer vertices have to be multiplied by the projection
and model-view matrices. We’'ll stick to triangle lists in all our code, though, as they are
easier to use and can be made to achieve similar performance by using indices.

Points and lines are a little bit strange in OpenGL ES. When we use a pixel-perfect
orthographic projection (e.g., our screen resolution is 320x480 pixels and our
glorthof() call uses those exact values), we still don’t get pixel-perfect rendering in all
cases. The positions of the point and line vertices have to be offset by 0.375f due to
something called the diamond exit rule. Keep that in mind if you want to render pixel-
perfect points and lines. We already saw that something similar applies to triangles.
However, given that we usually draw rectangles in 2D, we don’t run into that problem.

Given that all you have to do to render primitives other than
GL10.GL_TRIANGLES is to use one of the other constants in Figure 7-17, I'll
spare you an example program. We’ll stick to triangle lists for the most part,
especially when doing 2D graphics programming.

Let’s now dive into one more thing OpenGL ES offers us: the almighty model-
view matrix.

2D Transformations: Fun with the Model-View
Matrix

All we have done so far is define static geometries in the form of triangle lists. There was
nothing moving, rotating, or scaling. Also, even when the vertex data itself stayed the
same (e.g., the width and height of a rectangle composed of two triangles along with
texture coordinates and color), we still had to duplicate the vertices if we wanted to draw
the same rectangle at different places. Look back at Listing 7-11 and ignore the color
attributes of the vertices for now. The two rectangles only differ in their y-coordinates by
200 units. If we had a way to move those vertices without actually changing their values
we could get away with defining the rectangle of Bob only once, and simply drawing him
at different locations. And that’s exactly what we can use the model-view matrix for.

World and Model Space

To understand how this works we have to literally think outside of our little orthographic
view frustum box. Our view frustum is in a special coordinate system called the world
space. This is the space where all our vertices are going to end up eventually.

CHAPTER 7: OpenGL ES: A Gentle Introduction

Up until now we have specified all vertex positions in absolute coordinates relative to the
origin of this world space (compare with Figure 7-5). What we really want is to make the
definition of the positions of our vertices independent from this world space coordinate
system. We can achieve this by giving each of our models (e.g., Bob’s rectangle, a
spaceship, etc.) its own coordinate system.

This is what we usually call model space, the coordinate system within which we define
the positions of our model’s vertices. Figure 7-19 illustrates this concept in 2D, and the
same rules apply to 3D as well (just add a z-axis).

(-50,50) (20,50)
(-50,-50) (50,-50) ‘M
Model Space

Eye/World Space

Figure 7-19. Defining our model in model space, reusing it, and rendering it at different locations in the world
space

In Figure 7-19 we have a single model, defined via a Vertices instance—for example,
like this:
Vertices vertices = new Vertices(glGraphics, 4, 12, false, false);
vertices.setVertices(new float[] { -50, -50,

50) '50)

50) 50)

-50, 50 }) 0, 8))
vertices.setIndices(new short[] {o, 1, 2, 2, 3, 0}, 0, 6);

For our discussion we just leave out any vertex colors or texture coordinates. Now,
when we render this model without any further modifications, it will be placed around
the origin in the world space in our final image. If we want to render it at a different
position—say, its center being at (200,300) in world space —we could redefine the vertex
positions like this:

CHAPTER 7: OpenGL ES: A Gentle Introduction

vertices.setVertices(new float[] { -50 + 200, -50 + 300,
50 + 200, -50 + 300,
50 + 200, 50 + 300,
-50 + 200, 50 + 300 }, 0, 8);

On the next call to vertices.draw(), the model would be rendered with its center at
(200,300). But this is a tad bit tedious isn’t it?

Matrices Again

Remember when we briefly talked about matrices earlier? We discussed how matrices
can encode transformations such as translations (moving stuff around), rotations, and
scaling. The projection matrix we use to project our vertices onto the projection plane
encodes a special type of transformation: a projection.

Matrices are the key to solving our previous problem more elegantly. Instead of manually
moving our vertex positions around by redefining them, we simply set a matrix that
encodes a translation. Since the projection matrix of OpenGL ES is already occupied by
our orthographics projection matrix we specified via glOrthof(), we use a different
OpenGL ES matrix: the model-view matrix. Here’s how we could render our model with
its origin moved to a specific location in eye/world space:

gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glloadIdentity();
gl.glTranslatef(200, 300, 0);
vertices.draw(GL10.GL_TRIANGLES, 0, 6);

We have to first tell OpenGL ES which matrix we want to manipulate. In our case that’s
the model-view matrix, which is specified by the constant GL10.GL_MODELVIEW. Next we
make sure that the model-view matrix is set to an identity matrix. Basically we just
overwrite anything that was in there already —we sort of clear the matrix. The next call is
where the magic happens.

The method glTranslatef() takes three arguments: the translation on the x-, y-, and z-
axes. Since we want the origin of our model to be placed at (200,300) in eye/world
space, we specify a translation by 200 units on the x-axis and a translation by 300 units
on the y-axis. As we are working in 2D, we simply ignore the z-axis and set the
translation component to zero. We didn’t specify a z-coordinate for our vertices, so
these will default to zero. Adding zero to zero equals zero, so our vertices will stay in the
x-y plane.

From this point on, the model-view matrix of OpenGL ES encodes a translation by
(200,300,0), which will be applied to all vertices that pass through the OpenGL ES
pipeline. If you refer back to Figure 7-4, you’ll see that OpenGL ES will multiply each
vertex with the model-view matrix first and then apply the projection matrix. Up until this
point, the model-view matrix was set to an identity matrix (the default of OpenGL ES). It
therefore did not have an effect on our vertices. Our little glTranslatef() call changes
this, and will move all vertices first before they are projected.

CHAPTER 7: OpenGL ES: A Gentle Introduction

Of course, this is done on the fly; the values in our Vertices instance do not change at
all. We would have noticed any permanent change to your Vertices instance as by that
logic the projection matrix would have changed it already.

An First Example Using Translation

What can we use this for? Say we want to render 100 Bobs at different positions in our
world. Additionally we want them to move around on the screen and change direction
each time they hit an edge of the screen (or rather a plane of our parallel projection view
frustum, which coincides with the extents of our screen). We could do this by having one
large Vertices instance that holds the vertices of the 100 rectangles—one for each
Bob—and recalculate the vertex positions each frame. The easier method is to have one
small Vertices instance that only holds a single rectangle (the model of Bob) and reuse
it by translating it with the model-view matrix on the fly. Let’s define our Bob model:

Vertices bobModel = new Vertices(glGraphics, 4, 12, false, true);
bobModel.setVertices(new float[] { -16, -16, 0, 1,

16, -16, 1, 1,

16, 16, 1, 0,

'16) 16) 0, 0, }) 0, 8))
bobModel.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

So, each Bob is 32x32 units in size. We also texture map him (we’ll use bobrgh888.png
to see the extents of each Bob).

Bob Becomes a Class

Let’s define a simple Bob class. It will be responsible for holding a Bob’s position and
advancing his position in his current direction based on the delta time, just like we
advanced Mr. Nom (with the difference that we don’t move in a grid anymore). The
update() method will also make sure that Bob doesn’t escape our view volume bounds.
Listing 7-12 shows the Bob class.

Listing 7-12. Bob.java

package com.badlogic.androidgames.glbasics;
import java.util.Random;

class Bob {
static final Random rand = new Random();
public float x, y;
float dirX, dirV,

public Bob() {
x = rand.nextFloat() * 320;

y = rand.nextFloat() * 480;
dirX = 50;
dirY = 50;

}
public void update(float deltaTime) {

CHAPTER 7: OpenGL ES: A Gentle Introduction

X = X + dirX * deltaTime;
y =y + dirY * deltaTime;
if (x < 0) {
dirX = -dirX;
X = 0;
}
if (x > 320) {
dirX = -dirX;
X = 320,
}
if (y <0) {
dirY = -diry;
y =0;
}
if (y > 480) {
dirY = -diry;
y = 480;

}

Every Bob will place himself at a random location in the world when we construct him. All
the Bobs will initially move in the same direction: 50 units to the right and 50 units
upward per second (as we multiply by the deltaTime). In the update() method we simply
advance Bob in his current direction in a time-based manner, and then check if he left
the view frustum bounds. If that’s the case we invert his direction and make sure he’s
still in the view frustum.

Now let’s assume we are instantiating 100 Bobs, like this:

Bob[] bobs = new Bob[100];

for(int i = 0; 1 < 100; i++) {
bobs[i] = new Bob();

}

To render each of these Bobs, we’d do something like this (assuming we’ve already
cleared the screen, set the projection matrix, and bound the texture):

gl.glMatrixMode(GL10.GL_MODELVIEW);

for(int 1 = 0; 1 < 100; i++) {
bob.update(deltaTime);
gl.glloadIdentity();
gl.glTranslatef(bobs[i].x, bobs[i].y, 0);
bobModel.render(GL10.GL_TRIANGLES, 0, 6);

That is pretty sweet, isn’t it? For each Bob, we call his update() method, which will
advance his position and make sure he stays within the bounds of our little world. Next
we load an identity matrix into the model-view matrix of OpenGL ES so we have a clean
slate. We then use the current Bob’s x- and y-coordinates in a call to glTransltef().
When we then render the Bob model in the next call, all the vertices will be offset by the
current Bob’s position—exactly what we wanted.

CHAPTER 7: OpenGL ES: A Gentle Introduction

Putting It Together

Let’s make this a full-blown example. Listing 7-13 shows the code.
Listing 7-13. BobTest java; 100 Moving Bobs!

package com.badlogic.androidgames.glbasics;
import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;

import com.badlogic.androidgames.framework.Screen;

import com.badlogic.androidgames.framework.gl.FPSCounter;
import com.badlogic.androidgames.framework.gl.Texture;
import com.badlogic.androidgames.framework.gl.Vertices;
import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class BobTest extends GLGame {

@0verride
public Screen getStartScreen() {
return new BobScreen(this);

class BobScreen extends Screen {
static final int NUM _BOBS = 100;
GLGraphics glGraphics;
Texture bobTexture;
Vertices bobModel;
Bob[] bobs;

Our BobScreen class holds a Texture (loaded from bobrbg888.png), a Vertices instance
holding the model of Bob (a simple textured rectangle), and an array of Bob instances.
We also define a little constant named NUM_BOBS so we can modify the number of Bobs
we want to have on the screen.

public BobScreen(Game game) {
super(game) ;
glGraphics = ((GLGame)game).getGLGraphics();

bobTexture = new Texture((GLGame)game, "bobrgh888.png");

bobModel = new Vertices(glGraphics, 4, 12, false, true);
bobModel.setVertices(new float[] { -16, -16, 0, 1,

16, -16, 1, 1,

16, 16, 1, 0,

-16, 16, 0, 0, }, 0, 16);
bobModel.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

bobs = new Bob[100];
for(int i = 0; 1 < 100; i++) {
bobs[i] = new Bob();

CHAPTER 7: OpenGL ES: A Gentle Introduction

The constructor just loads the texture, creates the model, and instantiates NUM_BOBS Bob
instances.

@0verride
public void update(float deltaTime) {
game.getInput().getTouchEvents();
game.getInput().getKeyEvents();

for(int i = 0; i < NUM BOBS; i++) {
bobs[1i].update(deltaTime);

}

The update() method is where we let our Bobs update themselves. We also make sure
our input event buffers are emptied.

@0verride

public void present(float deltaTime) {
GL10 gl = glGraphics.getGL();
gl.glClearColor(1,0,0,1);
gl.glClear(GL10.GL_COLOR BUFFER BIT);
gl.glMatrixMode (GL10.GL_PROJECTION);
gl.glloadIdentity();
gl.glorthof(o, 320, 0, 480, 1, -1);

gl.glEnable(GL10.GL_TEXTURE_2D);
bobTexture.bind();

gl.glMatrixMode(GL10.GL_MODELVIEW);

for(int i = 0; i < NUM BOBS; i++) {
gl.glloadIdentity();
gl.glTranslatef(bobs[i].x, bobs[i].y, 0);
gl.glRotatef(45, 0, 0, 1);
gl.glScalef(2, 0.5f, 0);
bobModel.draw(GL10.GL TRIANGLES, 0, 6);

}

In the render () method we clear the screen, set the projection matrix, enable texturing,
and bind the texture of Bob. The last couple of lines are responsible for actually
rendering each Bob instance. Since OpenGL ES remembers its states, we have to set the
active matrix only once (in this case we are going to modify the model-view matrix in the
rest of the code). We then loop through all the Bobs, set the model-view matrix to a
translation matrix based on the position of the current Bob, and render the model, which
will be translated by the model view-matrix automatically.

@0verride
public void pause() {
}

@0verride
public void resume() {

@0verride

CHAPTER 7: OpenGL ES: A Gentle Introduction

public void dispose() {

}
}
}

That’s it. Best of all, we employed the MVC pattern we used in Mr. Nom again. It really
lends itself well to game programming. The logical side of Bob is completely decoupled
from his appearance, which is nice, as we can easily replace his appearance with
something more complex. Figure 7-20 shows the output of our little program after
running for a few seconds.

Figure 7-20. That’s a lot of Bobs.

That’s not the end of all our fun with transformations yet. If you remember what | said a
couple of pages ago, you’ll know what’s coming: rotations and scaling.

More Transformations

Besides the glTranslatef() method, OpenGL ES also offers us two methods for
transformations: glRotatef() and glScalef().

CHAPTER 7: OpenGL ES: A Gentle Introduction

Rotation

Here’s the signature of glRotatef():
GL10.glRotatef(float angle, float axisX, float axisY, float axisZ);

The first parameter is the angle in degrees we want to rotate our vertices by. But what
do the rest of the parameters mean?

When we rotate something, we rotate it around an axis. What is an axis? Well, we already
know three axes: the x-axis, the y-axis, and the z-axis. We can express these three axes
as so-called vectors. The positive x-axis would be described as (1,0,0), the positive y-axis
would be (0,1,0) and the positive z-axis would be (0,0,1). As you can see, a vector actually
encodes a direction, in our case in 3D space. Bob’s direction is also a vector, but in 2D
space. Vectors can also encode positions, like Bob’s position in 2D space.

To define the axis around which we want to rotate the model of Bob, we need to go
back to 3D space, actually. Figure 7-21 shows the model of Bob (with a texture applied
for orientation) as defined in the previous code in 3D space.

Figure 7-21. Bob in 3D

Since we haven’t defined z-coordinates for Bob’s vertices, he is embedded in the x-y
plane of our 3D space (which is actually the model space, remember?). If we want to
rotate Bob, we can do it around any axis we can think of: the x-, y-, or z-axis, or even a
totally crazy axis like (0.75,0.75,0.75). However, for our 2D graphics programming
needs, it makes sense to rotate Bob in the x-y plane. Hence, we’ll use the positive z-axis
as our rotation axis, which can be defined as (0,0,1). The rotation will be
counterclockwise around the z-axis. A call to glRotatef(), like this, would cause the
vertices of Bob’s model to be rotated as shown in Figure 7-22:

gl.glRotatef(45, 0, 0, 1);

CHAPTER 7: OpenGL ES: A Gentle Introduction

Figure 7-22. Bob, rotated around the z-axis by 45 degrees

Scaling
We can also scale Bob’s model with glScalef(), like this:
glScalef(2, 0.5f, 1);

which, given Bob’s original model pose, would result in the new orientation depicted in
Figure 7-23.

Figure 7-23. Bob, scaled by a factor of 2 on the x-axis and a factor of 0.5 on the y-axis. Ouch.

Combining Transformations

Now, we also discussed that we can combine the effect of multiple matrices by
multiplying them together to form a new matrix. All the methods—glTranslatef(),
glScalef(), glRotatef(), and glOrthof() —actually do just that. They multiply the
current active matrix by the temporary matrix they create internally based on the
parameters we pass to them. So let’s combine the rotation and scaling of