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xii

With today’s technology, companies are able to
collect tremendous amounts of data with relative
ease. Indeed, many companies now have more data
than they can handle. However, the data are usually
meaningless until they are analyzed for trends,
patterns, relationships, and other useful information.
This book illustrates in a practical way a variety of
methods, from simple to complex, to help you ana-
lyze data sets and uncover important information. In
many business contexts, data analysis is only the
first step in the solution of a problem. Acting on the
solution and the information it provides to make
good decisions is a critical next step. Therefore,
there is a heavy emphasis throughout this book on
analytical methods that are useful in decision mak-
ing. Again, the methods vary considerably, but the
objective is always the same—to equip you with
decision-making tools that you can apply in your
business careers.

We recognize that the majority of students in
this type of course are not majoring in a quantitative
area. They are typically business majors in finance,
marketing, operations management, or some other
business discipline who will need to analyze data and
make quantitative-based decisions in their jobs. We
offer a hands-on, example-based approach and
introduce fundamental concepts as they are needed.
Our vehicle is spreadsheet software—specifically,
Microsoft Excel. This is a package that most students
already know and will undoubtedly use in their
careers. Our MBA students at Indiana University are
so turned on by the required course that is based on
this book that almost all of them (mostly finance and
marketing majors) take at least one of our follow-up
elective courses in spreadsheet modeling. We are
convinced that students see value in quantitative
analysis when the course is taught in a practical and
example-based approach.

Rationale for writing this book

Data Analysis and Decision Making is different from
the many fine textbooks written for statistics and man-
agement science. Our rationale for writing this book is
based on three fundamental objectives.

1. Integrated coverage and applications.
The book provides a unified approach to
business-related problems by integrating
methods and applications that have been
traditionally taught in separate courses,
specifically statistics and management
science.

2. Practical in approach. The book emphasizes
realistic business examples and the processes
managers actually use to analyze business
problems. The emphasis is not on abstract
theory or computational methods.

3. Spreadsheet-based. The book provides
students with the skills to analyze business
problems with tools they have access to and
will use in their careers. To this end, we have
adopted Excel and commercial spreadsheet
add-ins.

Integrated coverage and applications

In the past, many business schools, including ours at
Indiana University, have offered a required statistics
course, a required decision-making course, and a
required management science course—or some subset
of these. One current trend, however, is to have only
one required course that covers the basics of statistics,
some regression analysis, some decision making
under uncertainty, some linear programming, some
simulation, and possibly others. Essentially, we fac-
ulty in the quantitative area get one opportunity to
teach all business students, so we attempt to cover a
variety of useful quantitative methods. We are not nec-
essarily arguing that this trend is ideal, but rather that
it is a reflection of the reality at our university and,
we suspect, at many others. After several years of
teaching this course, we have found it to be a great
opportunity to attract students to the subject and more
advanced study.

The book is also integrative in another important
aspect. It not only integrates a number of analytical
methods, but it also applies them to a wide variety
of business problems—that is, it analyzes realistic
examples from many business disciplines. We include
examples, problems, and cases that deal with portfolio

Preface

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



optimization, workforce scheduling, market share
analysis, capital budgeting, new product analysis, and
many others.

Practical in approach

We want this book to be very example-based and prac-
tical. We strongly believe that students learn best by
working through examples, and they appreciate the
material most when the examples are realistic and inter-
esting. Therefore, our approach in the book differs in
two important ways from many competitors. First, there
is just enough conceptual development to give students
an understanding and appreciation for the issues raised
in the examples. We often introduce important con-
cepts, such as multicollinearity in regression, in the
context of examples, rather than discussing them in the
abstract. Our experience is that students gain greater
intuition and understanding of the concepts and appli-
cations through this approach.

Second, we place virtually no emphasis on hand
calculations. We believe it is more important for
students to understand why they are conducting an
analysis and what it means than to emphasize the
tedious calculations associated with many analytical
techniques. Therefore, we illustrate how powerful
software can be used to create graphical and numeri-
cal outputs in a matter of seconds, freeing the 
rest of the time for in-depth interpretation of the 
output, sensitivity analysis, and alternative modeling
approaches. In our own courses, we move directly
into a discussion of examples, where we focus
almost exclusively on interpretation and modeling
issues and let the software perform the number
crunching.

Spreadsheet-based teaching

We are strongly committed to teaching spreadsheet-
based, example-driven courses, regardless of whether
the basic area is data analysis or management science.
We have found tremendous enthusiasm for this
approach, both from students and from faculty around
the world who have used our books. Students learn
and remember more, and they appreciate the material
more. In addition, instructors typically enjoy teaching
more, and they usually receive immediate reinforce-
ment through better teaching evaluations. We were
among the first to move to spreadsheet-based teaching
almost two decades ago, and we have never regretted
the move.

What we hope to accomplish 
in this book

Condensing the ideas in the above paragraphs, we
hope to: 

■ Reverse negative student attitudes about
statistics and quantitative methods by making
these topics real, accessible, and interesting;

■ Give students lots of hands-on experience with
real problems and challenge them to develop
their intuition, logic, and problem-solving skills;

■ Expose students to real problems in many
business disciplines and show them how these
problems can be analyzed with quantitative
methods;

■ Develop spreadsheet skills, including
experience with powerful spreadsheet add-ins,
that add immediate value in students’ other
courses and their future careers.

New in the fourth edition

There are two major changes in this edition.

■ We have completely rewritten and reorganized
Chapters 2 and 3. Chapter 2 now focuses on
the description of one variable at a time, and
Chapter 3 focuses on relationships between
variables. We believe this reorganization is
more logical. In addition, both of these
chapters have more coverage of categorical
variables, and they have new examples with
more interesting data sets.

■ We have made major changes in the problems,
particularly in Chapters 2 and 3. Many of
the problems in previous editions were either
uninteresting or outdated, so in most cases
we deleted or updated such problems, and we
added a number of brand-new problems. We
also created a file, essentially a database of prob-
lems, that is available to instructors. This file,
Problem Database.xlsx, indicates the context 
of each of the problems, and it also shows the
correspondence between problems in this edition
and problems in the previous edition.

Besides these two major changes, there are a number
of smaller changes, including the following:

■ Due to the length of the book, we decided to
delete the old Chapter 4 (Getting the Right
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Data) from the printed book and make 
it available online as Chapter 17. This 
chapter, now called “Importing Data into
Excel,” has been completely rewritten, 
and its section on Excel tables is now in
Chapter 2. (The old Chapters 5–17 were
renumbered 4–16.) 

■ The book is still based on Excel 2007, but
where it applies, notes about changes in Excel
2010 have been added. Specifically, there is a
small section on the new slicers for pivot
tables, and there are several mentions of the
new statistical functions (although the old
functions still work).

■ Each chapter now has 10–20 “Conceptual
Questions” in the end-of-chapter section.
There were a few “Conceptual Exercises” in
some chapters in previous editions, but the new
versions are more numerous, consistent, and
relevant.

■ The first two linear programming (LP)
examples in Chapter 13 (the old Chapter 14)
have been replaced by two product mix
models, where the second is an extension of
the first. Our thinking was that the previous
diet-themed model was overly complex as a
first LP example.

■ Several of the chapter-opening vignettes have
been replaced by newer and more interesting
ones.

■ There are now many short “fundamental
insights” throughout the chapters. We hope
these allow the students to step back from the
details and see the really important ideas.

Software

This book is based entirely on Microsoft Excel, the
spreadsheet package that has become the standard
analytical tool in business. Excel is an extremely
powerful package, and one of our goals is to convert
casual users into power users who can take full 
advantage of its features. If we accomplish no more 
than this, we will be providing a valuable skill for the
business world. However, Excel has some limitations.
Therefore, this book includes several Excel add-ins
that greatly enhance Excel’s capabilities. As a group,
these add-ins comprise what is arguably the most
impressive assortment of spreadsheet-based software
accompanying any book on the market.

DecisionTools® add-in. The textbook Web site for
Data Analysis and Decision Making provides a link to the
powerful DecisionTools® Suite by Palisade Corporation.
This suite includes seven separate add-ins, the first three
of which we use extensively: 

■ @RISK, an add-in for simulation
■ StatTools, an add-in for statistical data

analysis
■ PrecisionTree, a graphical-based add-in for

creating and analyzing decision trees
■ TopRank, an add-in for performing what-if

analyses
■ RISKOptimizer, an add-in for performing

optimization on simulation models
■ NeuralTools®, an add-in for finding complex,

nonlinear relationships
■ EvolverTM, an add-in for performing optimiza-

tion on complex “nonsmooth” models

Online access to the DecisionTools® Suite, avail-
able with new copies of the book, is an academic ver-
sion, slightly scaled down from the professional version
that sells for hundreds of dollars and is used by many
leading companies. It functions for two years when
properly installed, and it puts only modest limitations on
the size of data sets or models that can be analyzed.
(Visit www.kelley.iu.edu/albrightbooks for specific
details on these limitations.) We use @RISK and
PrecisionTree extensively in the chapters on simulation
and decision making under uncertainty, and we use
StatTools throughout all of the data analysis chapters.

SolverTable add-in. We also include SolverTable,
a supplement to Excel’s built-in Solver for optimiza-
tion. If you have ever had difficulty understanding
Solver’s sensitivity reports, you will appreciate
SolverTable. It works like Excel’s data tables, except
that for each input (or pair of inputs), the add-in runs
Solver and reports the optimal output values.
SolverTable is used extensively in the optimization
chapters. The version of SolverTable included in this
book has been revised for Excel 2007. (Although
SolverTable is available on this textbook’s Web site, it
is also available for free from the first author’s Web site,
www.kelley.iu.edu/albrightbooks.)

Possible sequences of topics

Although we use the book for our own required one-
semester course, there is admittedly more material
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than can be covered adequately in one semester. We
have tried to make the book as modular as possible,
allowing an instructor to cover, say, simulation
before optimization or vice versa, or to omit either
of these topics. The one exception is statistics. Due
to the natural progression of statistical topics, the
basic topics in the early chapters should be covered
before the more advanced topics (regression and
time series analysis) in the later chapters. With this
in mind, there are several possible ways to cover the
topics. 

■ For a one-semester required course, with no
statistics prerequisite (or where MBA students
have forgotten whatever statistics they learned
years ago): If data analysis is the primary focus
of the course, then Chapters 2–5, 7–11, and
possibly the online Chapter 17 (all statistics
and probability topics) should be covered.
Depending on the time remaining, any of the
topics in Chapters 6 (decision making under
uncertainty), 12 (time series analysis), 13–14
(optimization), or 15–16 (simulation) can be
covered in practically any order.

■ For a one-semester required course, with a
statistics prerequisite: Assuming that students
know the basic elements of statistics (up
through hypothesis testing, say), the material
in Chapters 2–5 and 7–9 can be reviewed
quickly, primarily to illustrate how Excel and
add-ins can be used to do the number
crunching. Then the instructor can choose
among any of the topics in Chapters 6, 10–11,
12, 13–14, or 15–16 (in practically any order)
to fill the remainder of the course.

■ For a two-semester required sequence: Given
the luxury of spreading the topics over two
semesters, the entire book can be covered.
The statistics topics in Chapters 2–5 and 7–9
should be covered in order before other
statistical topics (regression and time series
analysis), but the remaining chapters can be
covered in practically any order.

Custom publishing

If you want to use only a subset of the text, or add
chapters from the authors’ other texts or your own
materials, you can do so through Cengage Learning
Custom Publishing. Contact your local Cengage
Learning representative for more details.

Student ancillaries

Textbook Web Site 

Every new student edition of this book comes with an
Instant Access Code (bound inside the book). The code
provides access to the Data Analysis and Decision
Making, 4e textbook Web site that links to all of the
following files and tools: 

■ DecisionTools® Suite software by Palisade
Corporation (described earlier) 

■ Excel files for the examples in the chapters
(usually two versions of each—a template, or
data-only version, and a finished version)

■ Data files required for the problems and cases
■ Excel Tutorial.xlsx, which contains a useful

tutorial for getting up to speed in Excel 2007

Students who do not have a new book can purchase
access to the textbook Web site at www.
CengageBrain.com.

Student Solutions

Student Solutions to many of the odd-numbered prob-
lems (indicated in the text with a colored box on the
problem number) are available in Excel format.
Students can purchase access to Student Solutions
files on www.CengageBrain.com. (ISBN-10: 1-111-
52905-1; ISBN-13: 978-1-111-52905-5).

Instructor ancillaries

Adopting instructors can obtain the Instructors’ Reso-
urce CD (IRCD) from your regional Cengage Learning
Sales Representative. The IRCD includes:

■ Problem Database.xlsx file (contains informa-
tion about all problems in the book and the
correspondence between them and those in the
previous edition) 

■ Example files for all examples in the book,
including annotated versions with addi-
tional explanations and a few extra examples
that extend the examples in the  book

■ Solution files (in Excel format) for all of the
problems and cases in the book and solution
shells (templates) for selected problems in the
modeling chapters

■ PowerPoint® presentation files for all of the
examples in the book
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■ Test Bank in Word format and now also in
ExamView® Testing Software (new to this
edition).

The book’s password-protected instructor Web site,
www.cengage.com/decisionsciences/albright, includes
the above items (Test Bank in Word format only), as
well as software updates, errata, additional problems
and solutions, and additional resources for both stu-
dents and faculty. The first author also maintains his
own Web site at www.kelley.iu.edu/albrightbooks.

Acknowledgments

The authors would like to thank several people who
helped make this book a reality. First, the authors are
indebted to Peter Kolesar, Mark Broadie, Lawrence
Lapin, and William Whisler for contributing some of
the excellent case studies that appear throughout the
book.

There are more people who helped to produce
this book than we can list here. However, there are a
few special people whom we were happy (and lucky)
to have on our team. First, we would like to thank our
editor Charles McCormick. Charles stepped into this
project after two editions had already been published,
but the transition has been smooth and rewarding.
We appreciate his tireless efforts to make the book a
continued success.

We are also grateful to many of the professionals
who worked behind the scenes to make this book a
success: Adam Marsh, Marketing Manager; Laura
Ansara, Senior Developmental Editor; Nora Heink,
Editorial Assistant; Tim Bailey, Senior Content Project
Manager; Stacy Shirley, Senior Art Director; and
Gunjan Chandola, Senior Project Manager at MPS
Limited.

We also extend our sincere appreciation to the
reviewers who provided feedback on the authors’ pro-
posed changes that resulted in this fourth edition:

Henry F. Ander, Arizona State University

James D. Behel, Harding University

Dan Brooks, Arizona State University

Robert H. Burgess, Georgia Institute of Technology

George Cunningham III, Northwestern State University

Rex Cutshall, Indiana University

Robert M. Escudero, Pepperdine University

Theodore S. Glickman, George Washington University

John Gray, The Ohio State University 

Joe Hahn, Pepperdine University

Max Peter Hoefer, Pace University

Tim James, Arizona State University

Teresa Jostes, Capital University

Jeffrey Keisler, University of Massachusetts – Boston

David Kelton, University of Cincinnati

Shreevardhan Lele, University of Maryland

Ray Nelson, Brigham Young University

William Pearce, Geneva College

Thomas R. Sexton, Stony Brook University

Malcolm T. Whitehead, Northwestern State University

Laura A. Wilson-Gentry, University of Baltimore

Jay Zagorsky, Boston University

S. Christian Albright

Wayne L. Winston

Christopher J. Zappe

May 2010

xvi Preface

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengage.com/decisionsciences/albright
http://www.kelley.iu.edu/albrightbooks


1

Introduction to Data Analysis and
Decision Making

C H A P T E R

HOTTEST NEW JOBS: STATISTICS AND
MATHEMATICS

Much of this book, as the title implies, is about data analysis.The term

data analysis has long been synonymous with the term statistics, but 

in today’s world, with massive amounts of data available in business and 

many other fields such as health and science, data analysis goes beyond the

more narrowly focused area of traditional statistics. But regardless of what

we call it, data analysis is currently a hot topic and promises to get even

hotter in the future.The data analysis skills you learn here, and possibly in

follow-up quantitative courses, might just land you a very interesting and

lucrative job.

This is exactly the message in a recent New York Times article,“For

Today’s Graduate, Just One Word: Statistics,” by Steve Lohr. (A similar article,

“Math Will Rock Your World,” by Stephen Baker, was the cover story for
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BusinessWeek. Both articles are available online by searching for their titles.) The statistics

article begins by chronicling a Harvard anthropology and archaeology graduate, Carrie

Grimes, who began her career by mapping the locations of Mayan artifacts in places like

Honduras. As she states,“People think of field archaeology as Indiana Jones, but much of

what you really do is data analysis.” Since then, Grimes has leveraged her data analysis

skills to get a job with Google, where she and many other people with a quantitative

background are analyzing huge amounts of data to improve the company’s search engine.

As the chief economist at Google, Hal Varian, states,“I keep saying that the sexy job in

the next 10 years will be statisticians.And I’m not kidding.” The salaries for statisticians

with doctoral degrees currently start at $125,000, and they will probably continue to

increase. (The math article indicates that mathematicians are also in great demand.) 

Why is this trend occurring? The reason is the explosion of digital data—data

from sensor signals, surveillance tapes,Web clicks, bar scans, public records, financial

transactions, and more. In years past, statisticians typically analyzed relatively small 

data sets, such as opinion polls with about 1000 responses.Today’s massive data 

sets require new statistical methods, new computer software, and most importantly 

for you, more young people trained in these methods and the corresponding

software. Several particular areas mentioned in the articles include (1) improving

Internet search and online advertising, (2) unraveling gene sequencing information 

for cancer research, (3) analyzing sensor and location data for optimal handling of

food shipments, and (4) the recent Netflix contest for improving the company’s

recommendation system.

The statistics article mentions three specific organizations in need of data analysts—

and lots of them.The first is government, where there is an increasing need to sift through

mounds of data as a first step toward dealing with long-term economic needs and key policy

priorities.The second is IBM, which created a Business Analytics and Optimization Services

group in April 2009.This group will use the more than 200 mathematicians, statisticians,

and data analysts already employed by the company, but IBM intends to retrain or hire 

4000 more analysts to meet its needs.The third is Google, which needs more data analysts

to improve its search engine.You may think that today’s search engines are unbelievably

efficient, but Google knows they can be improved.As Ms. Grimes states,“Even an improve-

ment of a percent or two can be huge, when you do things over the millions and billions 

of times we do things at Google.”

Of course, these three organizations are not the only organizations that need to

hire more skilled people to perform data analysis and other analytical procedures. It is a

need faced by all large organizations.Various recent technologies, the most prominent by

far being the Web, have given organizations the ability to gather massive amounts of data

easily. Now they need people to make sense of it all and use it to their competitive

advantage. ■

2 Chapter 1 Introduction to Data Analysis and Decision Making

1.1 INTRODUCTION

We are living in the age of technology. This has two important implications for everyone
entering the business world. First, technology has made it possible to collect huge amounts
of data. Retailers collect point-of-sale data on products and customers every time a trans-
action occurs; credit agencies have all sorts of data on people who have or would like
to obtain credit; investment companies have a limitless supply of data on the historical
patterns of stocks, bonds, and other securities; and government agencies have data on
economic trends, the environment, social welfare, consumer product safety, and virtually
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everything else imaginable. It has become relatively easy to collect the data. As a result,
data are plentiful. However, as many organizations are now beginning to discover, it is
quite a challenge to analyze and make sense of all the data they have collected.

A second important implication of technology is that it has given many more people
the power and responsibility to analyze data and make decisions on the basis of quantita-
tive analysis. People entering the business world can no longer pass all of the quantitative
analysis to the “quant jocks,” the technical specialists who have traditionally done the
number crunching. The vast majority of employees now have a desktop or laptop computer
at their disposal, access to relevant data, and training in easy-to-use software, particularly
spreadsheet and database software. For these employees, statistics and other quantitative
methods are no longer forgotten topics they once learned in college. Quantitative analysis
is now an integral part of their daily jobs.

A large amount of data already exists, and it will only increase in the future. Many
companies already complain of swimming in a sea of data. However, enlightened compa-
nies are seeing this expansion as a source of competitive advantage. By using quantitative
methods to uncover the information in the data and then acting on this information—again
guided by quantitative analysis—they are able to gain advantages that their less enlight-
ened competitors are not able to gain. Several pertinent examples of this follow.

■ Direct marketers analyze enormous customer databases to see which customers are
likely to respond to various products and types of promotions. Marketers can then
target different classes of customers in different ways to maximize profits—and give
their customers what they want.

■ Hotels and airlines also analyze enormous customer databases to see what their
customers want and are willing to pay for. By doing this, they have been able to
devise very clever pricing strategies, where different customers pay different prices
for the same accommodations. For example, a business traveler typically makes a
plane reservation closer to the time of travel than a vacationer. The airlines know this.
Therefore, they reserve seats for these business travelers and charge them a higher
price for the same seats. The airlines profit from clever pricing strategies, and the
customers are happy.

■ Financial planning services have a virtually unlimited supply of data about security
prices, and they have customers with widely differing preferences for various
types of investments. Trying to find a match of investments to customers is a very
challenging problem. However, customers can easily take their business elsewhere
if good decisions are not made on their behalf. Therefore, financial planners are
under extreme competitive pressure to analyze masses of data so that they can make
informed decisions for their customers.1

■ We all know about the pressures U.S. manufacturing companies have faced from
foreign competition in the past couple of decades. The automobile companies,
for example, have had to change the way they produce and market automobiles
to stay in business. They have had to improve quality and cut costs by orders of
magnitude. Although the struggle continues, much of the success they have had
can be attributed to data analysis and wise decision making. Starting on the shop
floor and moving up through the organization, these companies now measure
almost everything, analyze these measurements, and then act on the results of their
analysis.

1.1 Introduction 3

1For a great overview of how quantitative techniques have been used in the financial world, read the book The
Quants, by Scott Patterson (Random House, 2010). It describes how quantitative models made millions for a lot
of bright young analysts, but it also describes the dangers of relying totally on quantitative models, at least in the
complex and global world of finance.
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We talk about companies analyzing data and making decisions. However, companies don’t
really do this; people do it. And who will these people be in the future? They will be you! We
know from experience that students in all areas of business, at both the undergraduate and
graduate level, will soon be required to describe large complex data sets, run regression
analyses, make quantitative forecasts, create optimization models, and run simulations. You
are the person who will soon be analyzing data and making important decisions to help your
company gain a competitive advantage. And if you are not willing or able to do so, there will
be plenty of other technically trained people who will be more than happy to replace you.

Our goal in this book is to teach you how to use a variety of quantitative methods to
analyze data and make decisions. We will do so in a very hands-on way. We will discuss
a number of quantitative methods and illustrate their use in a large variety of realistic
business situations. As you will see, this book includes many examples from finance,
marketing, operations, accounting, and other areas of business. To analyze these examples,
we will take advantage of the Microsoft Excel spreadsheet software, together with a number
of powerful Excel add-ins. In each example we will provide step-by-step details of the
method and its implementation in Excel.

This is not a “theory” book. It is also not a book where you can lean comfortably back
in your chair, prop your legs up on a table, and read about how other people use quantita-
tive methods. It is a “get your hands dirty” book, where you will learn best by actively
following the examples throughout the book at your own PC. In short, you will learn by
doing. By the time you have finished, you will have acquired some very useful skills for
today’s business world.

1.2 AN OVERVIEW OF THE BOOK

This book is packed with quantitative methods and examples, probably more than can
be covered in any single course. Therefore, we purposely intend to keep this introductory
chapter brief so that you can get on with the analysis. Nevertheless, it is useful to
introduce the methods you will be learning and the tools you will be using. In this section
we provide an overview of the methods covered in this book and the software that is used
to implement them. Then in the next section we present a brief discussion of models and
the modeling process. Our primary purpose at this point is to stimulate your interest in
what is to follow.

1.2.1 The Methods

This book is rather unique in that it combines topics from two separate fields: statistics
and management science. In a nutshell, statistics is the study of data analysis, whereas
management science is the study of model building, optimization, and decision making. In
the academic arena these two fields have traditionally been separated, sometimes widely.
Indeed, they are often housed in separate academic departments. However, from a user’s
standpoint it makes little sense to separate them. Both are useful in accomplishing what the
title of this book promises: data analysis and decision making.

Therefore, we do not distinguish between the statistics and the management science
parts of this book. Instead, we view the entire book as a collection of useful quantitative
methods that can be used to analyze data and help make business decisions. In addition, our
choice of software helps to integrate the various topics. By using a single package, Excel,
together with a number of add-ins, you will see that the methods of statistics and manage-
ment science are similar in many important respects. Most importantly, their combination
gives you the power and flexibility to solve a wide range of business problems.

4 Chapter 1 Introduction to Data Analysis and Decision Making
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Three important themes run through this book. Two of them are in the title: data analysis
and decision making. The third is dealing with uncertainty.2 Each of these themes has
subthemes. Data analysis includes data description, data inference, and the search for rela-
tionships in data. Decision making includes optimization techniques for problems with no
uncertainty, decision analysis for problems with uncertainty, and structured sensitivity
analysis. Dealing with uncertainty includes measuring uncertainty and modeling uncertainty
explicitly. There are obvious overlaps between these themes and subthemes. When you make
inferences from data and search for relationships in data, you must deal with uncertainty.
When you use decision trees to help make decisions, you must deal with uncertainty. When
you use simulation models to help make decisions, you must deal with uncertainty, and then
you often make inferences from the simulated data.

Figure 1.1 shows where you will find these themes and subthemes in the remaining
chapters of this book. In the next few paragraphs we discuss the book’s contents in more
detail.
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2The fact that the uncertainty theme did not find its way into the title of this book does not detract from its impor-
tance. We just wanted to keep the title reasonably short!

Themes Subthemes Chapters Where Emphasized

2, 3, 10, 12

7−9, 11

3, 10−12

6, 13−16

4−12, 15−16

4−6, 10−12, 15−16

13, 14

6

Figure 1.1

Themes and

Subthemes

We begin in Chapters 2 and 3 by illustrating a number of ways to summarize the infor-
mation in data sets. These include graphical and tabular summaries, as well as numerical
summary measures such as means, medians, and standard deviations. The material in these
two chapters is elementary from a mathematical point of view, but it is extremely important.
As we stated at the beginning of this chapter, organizations are now able to collect huge
amounts of raw data, but what does it all mean? Although there are very sophisticated
methods for analyzing data sets, some of which we cover in later chapters, the “simple”
methods in Chapters 2 and 3 are crucial for obtaining an initial understanding of the data.
Fortunately, Excel and available add-ins now make what was once a very tedious task quite
easy. For example, Excel’s pivot table tool for “slicing and dicing” data is an analyst’s
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dream come true. You will be amazed at the complex analysis pivot tables enable you to
perform—with almost no effort.3

Uncertainty is a key aspect of most business problems. To deal with uncertainty,
you need a basic understanding of probability. We provide this understanding in Chapters 4
and 5. Chapter 4 covers basic rules of probability and then discusses the extremely impor-
tant concept of probability distributions. Chapter 5 follows up this discussion by focusing
on two of the most important probability distributions, the normal and binomial distribu-
tions. It also briefly discusses the Poisson and exponential distributions, which have many
applications in probability models.

We have found that one of the best ways to make probabilistic concepts “come alive”
and easier to understand is by using computer simulation. Therefore, simulation is a
common theme that runs through this book, beginning in Chapter 4. Although the final two
chapters of the book are devoted entirely to simulation, we do not hesitate to use simula-
tion early and often to illustrate statistical concepts.

In Chapter 6 we apply our knowledge of probability to decision making under
uncertainty. These types of problems—faced by all companies on a continual basis—are
characterized by the need to make a decision now, even though important information (such
as demand for a product or returns from investments) will not be known until later. The
material in Chapter 6 provides a rational basis for making such decisions. The methods we
illustrate do not guarantee perfect outcomes—the future could unluckily turn out differently
than expected—but they do enable you to proceed rationally and make the best of the given
circumstances. Additionally, the software used to implement these methods allows you,
with very little extra work, to see how sensitive the optimal decisions are to inputs. This is
crucial, because the inputs to many business problems are, at best, educated guesses.
Finally, we examine the role of risk aversion in these types of decision problems.

In Chapters 7, 8, and 9 we discuss sampling and statistical inference. Here the basic
problem is to estimate one or more characteristics of a population. If it is too expensive or
time consuming to learn about the entire population—and it usually is—we instead select a
random sample from the population and then use the information in the sample to infer the
characteristics of the population. You see this continually on news shows that describe the
results of various polls. You also see it in many business contexts. For example, auditors
typically sample only a fraction of a company’s records. Then they infer the characteristics
of the entire population of records from the results of the sample to conclude whether
the company has been following acceptable accounting standards.

In Chapters 10 and 11 we discuss the extremely important topic of regression analysis,
which is used to study relationships between variables. The power of regression analysis is its
generality. Every part of a business has variables that are related to one another, and regression
can often be used to estimate possible relationships between these variables. In managerial
accounting, regression is used to estimate how overhead costs depend on direct labor hours
and production volume. In marketing, regression is used to estimate how sales volume
depends on advertising and other marketing variables. In finance, regression is used to esti-
mate how the return of a stock depends on the “market” return. In real estate studies, regres-
sion is used to estimate how the selling price of a house depends on the assessed valuation of
the house and characteristics such as the number of bedrooms and square footage. Regression
analysis finds perhaps as many uses in the business world as any method in this book.

From regression, we move to time series analysis and forecasting in Chapter 12. This
topic is particularly important for providing inputs into business decision problems.
For example, manufacturing companies must forecast demand for their products to make
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3Users of the previous edition will notice that the old Chapter 4 (getting data into Excel) is no longer in the book. We
did this to keep the book from getting even longer. However, an updated version of this chapter is available at this 
textbook’s Web site. Go to www.cengage.com/decisionsciences/albright for access instructions.
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sensible decisions about quantities to order from their suppliers. Similarly, fast-food restau-
rants must forecast customer arrivals, sometimes down to the level of 15-minute intervals, so
that they can staff their restaurants appropriately. There are many approaches to forecasting,
ranging from simple to complex. Some involve regression-based methods, in which one or
more time series variables are used to forecast the variable of interest, whereas other methods
are based on extrapolation. In an extrapolation method the historical patterns of a time series
variable, such as product demand or customer arrivals, are studied carefully and are then
extrapolated into the future to obtain forecasts. A number of extrapolation methods are avail-
able. In Chapter 12 we study both regression and extrapolation methods for forecasting.

Chapters 13 and 14 are devoted to spreadsheet optimization, with emphasis on linear
programming. We assume a company must make several decisions, and there are constraints
that limit the possible decisions. The job of the decision maker is to choose the decisions such
that all of the constraints are satisfied and an objective, such as total profit or total cost, is
optimized. The solution process consists of two steps. The first step is to build a spreadsheet
model that relates the decision variables to other relevant quantities by means of logical for-
mulas. In this first step there is no attempt to find the optimal solution; its only purpose is to
relate all relevant quantities in a logical way. The second step is then to find the optimal solu-
tion. Fortunately, Excel contains a Solver add-in that performs this step. All you need to do is
specify the objective, the decision variables, and the constraints; Solver then uses powerful
algorithms to find the optimal solution. As with regression, the power of this approach is its
generality. An enormous variety of problems can be solved by spreadsheet optimization.

Finally, Chapters 15 and 16 illustrate a number of computer simulation models. This is
not your first exposure to simulation—it is used in a number of previous chapters to illustrate
statistical concepts—but here it is studied in its own right. As we discussed previously, most
business problems have some degree of uncertainty. The demand for a product is unknown,
future interest rates are unknown, the delivery lead time from a supplier is unknown, and
so on. Simulation allows you to build this uncertainty explicitly into spreadsheet models.
Essentially, some cells in the model contain random values with given probability distribu-
tions. Every time the spreadsheet recalculates, these random values change, which causes
“bottom-line” output cells to change as well. The trick then is to force the spreadsheet to recal-
culate many times and keep track of interesting outputs. In this way you can see which output
values are most likely, and you can see best-case and worst-case results.

Spreadsheet simulations can be performed entirely with Excel’s built-in tools.
However, this is quite tedious. Therefore, we use a spreadsheet add-in to streamline the
process. In particular, you will learn how the @RISK add-in can be used to run replications
of a simulation, keep track of outputs, create useful charts, and perform sensitivity analyses.
With the inherent power of spreadsheets and the ease of using such add-ins as @RISK,
spreadsheet simulation is becoming one of the most popular quantitative tools in the
business world.

1.2.2 The Software

The quantitative methods in this book can be used to analyze a wide variety of business
problems. However, they are not of much practical use unless you have the software to do
the number crunching. Very few business problems are small enough to be solved with
pencil and paper. They require powerful software.

The software included in new copies of this book, together with Microsoft Excel,
provides you with a powerful combination. This software is being used—and will continue
to be used—by leading companies all over the world to analyze large, complex problems.
We firmly believe that the experience you obtain with this software, through working
the examples and problems in this book, will give you a key competitive advantage in the
marketplace.

1.2 An Overview of the Book 7
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It all begins with Excel. All of the quantitative methods that we discuss are implemented
in Excel. Specifically, in this edition, we use Excel 2007.4 We cannot forecast the state of
computer software in the long-term future, but Excel is currently the most heavily used
spreadsheet package on the market, and there is every reason to believe that this state will
persist for many years. Most companies use Excel, most employees and most students have
been trained in Excel, and Excel is a very powerful, flexible, and easy-to-use package.

Built-in Excel Features

Virtually everyone in the business world knows the basic features of Excel, but relatively few
know some of its more powerful features. In short, relatively few people are the “power
users” we expect you to become by working through this book. To get you started, the file
Excel Tutorial.xlsx explains some of the “intermediate” features of Excel—features that we
expect you to be able to use (access this file on the textbook’s Web site that accompanies new
copies of this book). These include the SUMPRODUCT, VLOOKUP, IF, NPV, and COUN-
TIF functions. They also include range names, data tables, the Paste Special option, the Goal
Seek tool, and many others. Finally, although we assume you can perform routine spread-
sheet tasks such as copying and pasting, the tutorial includes many tips to help you perform
these tasks more efficiently.

In the body of the book we describe several of Excel’s advanced features in more
detail. For example, we introduce pivot tables in Chapter 3. This Excel tool enables you to
summarize data sets in an almost endless variety of ways. (Excel has many useful tools, but
we personally believe that pivot tables are the most ingenious and powerful of all. We
won’t be surprised if you agree.) As another example, we introduce Excel’s RAND and
RANDBETWEEN functions for generating random numbers in Chapter 4. These
functions are used in all spreadsheet simulations (at least those that do not take advantage
of an add-in). In short, when an Excel tool is useful for a particular type of analysis, we
provide step-by-step instructions on how to use it.

Solver Add-in

In Chapters 13 and 14 we make heavy use of Excel’s Solver add-in. This add-in, developed
by Frontline Systems (not Microsoft), uses powerful algorithms—all behind the scenes—
to perform spreadsheet optimization. Before this type of spreadsheet optimization add-in
was available, specialized (nonspreadsheet) software was required to solve optimization
problems. Now you can do it all within a familiar spreadsheet environment.

SolverTable Add-in

An important theme throughout this book is sensitivity analysis: How do outputs change
when inputs change? Typically these changes are made in spreadsheets with a data table, a
built-in Excel tool. However, data tables don’t work in optimization models, where we
would like to see how the optimal solution changes when certain inputs change. Therefore,
we include an Excel add-in called SolverTable, which works almost exactly like Excel’s
data tables. (This add-in was developed by Albright.) In Chapters 13 and 14 we illustrate
the use of SolverTable.

Decision Tools Suite

In addition to SolverTable and built-in Excel add-ins, we also have included on 
the textbook’s Web site an educational version of Palisade Corporation’s powerful
Decision Tools suite. All of the programs in this suite are Excel add-ins, so the learning
curve isn’t very steep. There are seven separate add-ins in this suite: @RISK, 
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4At the time we wrote this edition, Excel 2010 was in beta form and was about to be released. Fortunately, the
changes, at least for our purposes, are not extensive, so users familiar with Excel 2007 will have no difficulty in
moving to Excel 2010. Where relevant, we have pointed out changes in the new version.
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StatTools, PrecisionTree, TopRank, RISKOptimizer, NeuralTools, and Evolver.5 We will
use only the first three in this book, but all are useful for certain tasks and are described
briefly below.

@RISK

The simulation add-in @RISK enables you to run as many replications of a spreadsheet
simulation as you like. As the simulation runs, @RISK automatically keeps track of the
outputs you select, and it then displays the results in a number of tabular and graphical
forms. @RISK also enables you to perform a sensitivity analysis, so that you can see
which inputs have the most effect on the outputs. Finally, @RISK provides a number of
spreadsheet functions that enable you to generate random numbers from a variety of prob-
ability distributions.

StatTools

Much of this book discusses basic statistical analysis. Here we needed to make an important
decision as we developed the book. A number of excellent statistical software packages
are on the market, including Minitab, SPSS, SAS, JMP, Stata, and others. Although there
are user-friendly Windows versions of these packages, they are not spreadsheet-based. We
have found through our own experience that students resist the use of nonspreadsheet
packages, regardless of their inherent quality, so we wanted to use Excel as our “statistics
package.” Unfortunately, Excel’s built-in statistical tools are rather limited, and the Analysis
ToolPak (developed by a third party) that ships with Excel has significant limitations.

Fortunately, the Palisade suite includes a statistical add-in called StatTools. StatTools
is powerful, easy to use, and capable of generating output quickly in an easily interpretable
form. We do not believe you should have to spend hours each time you want to produce
some statistical output. This might be a good learning experience the first time, but it acts
as a strong incentive not to perform the analysis at all. We believe you should be able to
generate output quickly and easily. This gives you the time to interpret the output, and it
also allows you to try different methods of analysis.

A good illustration involves the construction of histograms, scatterplots, and time
series graphs, discussed in Chapters 2 and 3. All of these extremely useful graphs can be
created in a straightforward way with Excel’s built-in tools. But by the time you perform
all the necessary steps and “dress up” the charts exactly as you want them, you will not be
very anxious to repeat the whole process again. StatTools does it all quickly and easily.
(You still might want to “dress up” the resulting charts, but that’s up to you.) Therefore, if
we advise you in a later chapter, say, to look at several scatterplots as a prelude to a regres-
sion analysis, you can do so in a matter of seconds.

PrecisionTree

The PrecisionTree add-in is used in Chapter 6 to analyze decision problems with uncer-
tainty. The primary method for performing this type of analysis is to draw a decision tree.
Decision trees are inherently graphical, and they have always been difficult to implement in
spreadsheets, which are based on rows and columns. However, PrecisionTree does this in a
very clever and intuitive way. Equally important, once the basic decision tree has been built,
it is easy to use PrecisionTree to perform a sensitivity analysis on the model’s inputs.

TopRank

TopRank is a “what-if” add-in used for sensitivity analysis. It starts with any spreadsheet
model, where a set of inputs, along with a number of spreadsheet formulas, leads to one or
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5The Palisade suite has traditionally included two stand-alone programs, BestFit and RISKview. The functional-
ity of both of these is now included in @RISK, so they are not included in the suite.
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more outputs. TopRank then performs a sensitivity analysis to see which inputs have the
largest effect on a given output. For example, it might indicate which input affects after-tax
profit the most: the tax rate, the risk-free rate for investing, the inflation rate, or the price
charged by a competitor. Unlike @RISK, TopRank is used when uncertainty is not
explicitly built into a spreadsheet model. However, it considers uncertainty implicitly by
performing sensitivity analysis on the important model inputs.

RISKOptimizer

RISKOptimizer combines optimization with simulation. There are often times when you
want to use simulation to model some business problem, but you also want to optimize a
summary measure, such as a mean, of an output distribution. This optimization can be
performed in a trial-and-error fashion, where you try a few values of the decision vari-
able(s) and see which provides the best solution. However, RISKOptimizer provides a
more automatic (and time-intensive) optimization procedure.

NeuralTools

In Chapters 10 and 11, we show how regression can be used to find a linear equation that
quantifies the relationship between a dependent variable and one or more explanatory
variables. Although linear regression is a powerful tool, it is not capable of quantifying all
possible relationships. The NeuralTools add-in mimics the working of the human brain to
find “neural networks” that quantify complex nonlinear relationships.

Evolver

In Chapters 13 and 14, we show how the built-in Solver add-in can optimize linear models
and even some nonlinear models. But there are some “non-smooth” nonlinear models that
Solver cannot handle. Fortunately, there are other optimization algorithms for such models,
including “genetic” algorithms. The Evolver add-in implements these genetic algorithms.

Software Guide

Figure 1.2 provides a guide to the use of these add-ins throughout the book. We don’t show
Excel explicitly in this figure for the simple reason that Excel is used extensively in all
chapters.
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Developer Add-In Chapter(s) Where Used

@RISK 5, 15–16

2, 3, 7–12

6

StatTools

13, 14

13, 14

Figure 1.2

Software Guide

With Excel and the add-ins included in this book, you have a wealth of software at
your disposal. The examples and step-by-step instructions throughout this book will help
you become a power user of this software. Admittedly, this takes plenty of practice and a
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willingness to experiment, but it is certainly within your grasp. When you are finished, we
will not be surprised if you rate “improved software skills” as the most valuable thing you
have learned from this book.

1.3 MODELING AND MODELS

We have already used the term model several times in this chapter. Models and the model-
ing process are key elements throughout this book, so we explain them in more detail in
this section.6

A model is an abstraction of a real problem. A model tries to capture the essence and
key features of the problem without getting bogged down in relatively unimportant details.
There are different types of models, and depending on an analyst’s preferences and skills,
each can be a valuable aid in solving a real problem. We briefly describe three types of
models here: graphical models, algebraic models, and spreadsheet models.

1.3.1 Graphical Models

Graphical models are probably the most intuitive and least quantitative type of model.
They attempt to portray graphically how different elements of a problem are related—what
affects what. A very simple graphical model appears in Figure 1.3. It is called an influence
diagram. (It can be constructed with the PrecisionTree add-in discussed in Chapter 6, but
we will not use influence diagrams in this book.)

1.3 Modeling and Models 11

6Management scientists tend to use the terms model and modeling more than statisticians. However, many tradi-
tional statistics topics such as regression analysis and forecasting are clearly applications of modeling.

Figure 1.3

Influence Diagram

This particular influence diagram is for a company that is trying to decide how many
souvenirs to order for the upcoming Olympics. The essence of the problem is that the com-
pany will order a certain supply, customers will request a certain demand, and the combi-
nation of supply and demand will yield a certain payoff for the company. The diagram
indicates fairly intuitively what affects what. As it stands, the diagram does not provide
enough quantitative details to “solve” the company’s problem, but this is usually not the
purpose of a graphical model. Instead, its purpose is usually to show the important
elements of a problem and how they are related. For complex problems, this can be very
helpful and enlightening information for management.
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1.3.2 Algebraic Models

Algebraic models are at the opposite end of the spectrum. By means of algebraic equations
and inequalities, they specify a set of relationships in a very precise way. Their preciseness
and lack of ambiguity are very appealing to people with a mathematical background. In
addition, algebraic models can usually be stated concisely and with great generality.

A typical example is the “product mix” problem in Chapter 13. A company can make
several products, each of which contributes a certain amount to profit and consumes
certain amounts of several scarce resources. The problem is to select the product mix that
maximizes profit subject to the limited availability of the resources. All product mix prob-
lems can be stated algebraically as follows:

(1.1)

(1.2)

(1.3)

Here xj is the amount of product j produced, uj is an upper limit on the amount of product j
that can be produced, pj is the unit profit margin for product j, aij is the amount of resource i
consumed by each unit of product j, bi is the amount of resource i available, n is the number
of products, and m is the number of scarce resources. This algebraic model states very
concisely that we should maximize total profit [expression (1.1)], subject to consuming no
more of each resource than is available [inequality (1.2)], and all production quantities
should be between 0 and the upper limits [inequality (1.3)].

Algebraic models appeal to mathematically trained analysts. They are concise, they
spell out exactly which data are required (the values of the ujs, the pjs, the aijs, and the bis
would need to be estimated from company data), they scale well (a problem with 500
products and 100 resource constraints is just as easy to state as one with only five products
and three resource constraints), and many software packages accept algebraic models in
essentially the same form as shown here, so that no “translation” is required. Indeed, alge-
braic models were the preferred type of model for years—and still are by many analysts.
Their main drawback is that they require an ability to work with abstract mathematical
symbols. Some people have this ability, but many perfectly intelligent people do not.

1.3.3 Spreadsheet Models

An alternative to algebraic modeling is spreadsheet modeling. Instead of relating various
quantities with algebraic equations and inequalities, you relate them in a spreadsheet with
cell formulas. In our experience, this process is much more intuitive to most people. One of
the primary reasons for this is the instant feedback available from spreadsheets. If you enter
a formula incorrectly, it is often immediately obvious (from error messages or unrealistic
numbers) that you have made an error, which you can then go back and fix. Algebraic
models provide no such immediate feedback.

A specific comparison might help at this point. We already saw a general algebraic
model of the product mix problem. Figure 1.4, taken from Chapter 13, illustrates a spread-
sheet model for a specific example of this problem. The spreadsheet model should be fairly
self-explanatory. All quantities in shaded cells (other than in rows 16 and 25) are inputs to

0 … xj … uj, 1 … j … n

subject to a
n

j=1
aijxj … bj, 1 … i … m

maxa
n

j=1
pjxj
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the model, the quantities in row 16 are the decision variables (they correspond to the
xjs in the algebraic model), and all other quantities are created through appropriate Excel
formulas. To indicate constraints, inequality signs have been entered as labels in appro-
priate cells.

Although a well-designed and well-documented spreadsheet model such as the one
in Figure 1.4 is undoubtedly more intuitive for most people than its algebraic counter-
part, the art of developing good spreadsheet models is not easy. Obviously, they must
be correct. The formulas relating the various quantities must have the correct syntax,
the correct cell references, and the correct logic. In complex models this can be quite a
challenge.

However, we do not believe that correctness is enough. If spreadsheet models are to
be used in the business world, they must also be well designed and well documented.
Otherwise, no one other than you (and maybe not even you after a few weeks have
passed) will be able to understand what your models do or how they work. The strength
of spreadsheets is their flexibility—you are limited only by your imagination. However,
this flexibility can be a liability in spreadsheet modeling unless you design your models
carefully.

Note the clear design in Figure 1.4. Most of the inputs are grouped at the top of the
spreadsheet. All of the financial calculations are done at the bottom. When there are con-
straints, the two sides of the constraints are placed next to each other (as in the range
B21:D22). Colored backgrounds (which appear on the screen but not in this book) are used
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

GFEDCBA
Assembling and tes�ng egnaRsretupmoc names used:

Hours_available =Model!$D$21:$D$22
Cost per labor hour assembling $11 Hours_used =Model!$B$21:$B$22
Cost per labor hour tes�ng $15 Maximum_sales =Model!$B$18:$C$18

Number_to_produce =Model!$B$16:$C$16
Inputs for assembling and tes�ng a 52$D$!ledoM=tiforp_latoTretupmoc

Basic XP
Labor hours for 65ylbmessa
Labor hours for 21gnitset
Cost of component parts $150 $225
Selling 054$003$ecirp
Unit 921$08$nigram

Assembling, tes�ng plan (# of computers)
Basic XP

Number to 0021065ecudorp
<= <=

Maximum 0021006selas

Constraints (hours per month) Hours used Hours available
Labor availability for assembling 10000 <= 10000
Labor availability for tes�ng 2960 <= 3000

Net profit ($ this month) Basic XP Total
$44,800 $154,800 $199,600

Figure 1.4 Optimal Solution for Product Mix Model
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for added clarity, and descriptive labels are used liberally. Excel itself imposes none of
these “rules,” but you should impose them on yourself.

We have made a conscious effort to establish good habits for you to follow throughout
this book. We have designed and redesigned our spreadsheet models so that they are as
clear as possible. This does not mean that you have to copy everything we do—everyone
tends to develop their own spreadsheet style—but our models should give you something
to emulate. Just remember that in the business world, you typically start with a blank
spreadsheet. It is then up to you to develop a model that is not only correct but is also intel-
ligible to you and others. This takes a lot of practicing and a lot of editing, but it is a skill
well worth developing.

1.3.4 A Seven-Step Modeling Process

Most of the modeling you will do in this book is only part of an overall modeling process
typically done in the business world. We portray it as a seven-step process, as discussed
here. But not all problems require all seven steps. For example, the analysis of survey data
might entail primarily steps 2 (data analysis) and 5 (decision making) of the process, with-
out the formal model building discussed in steps 3 and 4.

The Modeling Process

1. Define the problem. Typically, a company does not develop a model unless it believes
it has a problem. Therefore, the modeling process really begins by identifying an
underlying problem. Perhaps the company is losing money, perhaps its market share is
declining, or perhaps its customers are waiting too long for service. Any number of
problems might be evident. However, as several people have warned [see Miser (1993)
and Volkema (1995), for example], this step is not always as straightforward as it might
appear. The company must be sure that it has identified the correct problem before it
spends time, effort, and money trying to solve it.

For example, Miser cites the experience of an analyst who was hired by the mili-
tary to investigate overly long turnaround times between fighter planes landing and
taking off again to rejoin the battle. The military was convinced that the problem was
caused by inefficient ground crews; if they were faster, turnaround times would
decrease. The analyst nearly accepted this statement of the problem and was about to
do classical time-and-motion studies on the ground crew to pinpoint the sources of
their inefficiency. However, by snooping around, he found that the problem obviously
lay elsewhere. The trucks that refueled the planes were frequently late, which in turn
was due to the inefficient way they were refilled from storage tanks at another location.
Once this latter problem was solved—and its solution was embarrassingly simple—the
turnaround times decreased to an acceptable level without any changes on the part of
the ground crews. If the analyst had accepted the military’s statement of the problem,
the real problem might never have been located or solved.

2. Collect and summarize data. This crucial step in the process is often the most
tedious. All organizations keep track of various data on their operations, but these data
are often not in the form an analyst requires. They are also typically scattered in dif-
ferent places throughout the organization, in all kinds of different formats. Therefore,
one of the first jobs of an analyst is to gather exactly the right data and summarize 
the data appropriately—as we discuss in detail in Chapters 2 and 3—for use in the
model. Collecting the data typically requires asking questions of key people (such as
the accountants) throughout the organization, studying existing organizational data-
bases, and performing time-consuming observational studies of the organization’s

14 Chapter 1 Introduction to Data Analysis and Decision Making
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processes. In short, it entails a lot of legwork. Fortunately, many companies have
understood the need for good clean data and have spent large amounts of time and
money to build data warehouses for quantitative analysis.

3. Develop a model. This is the step we emphasize, especially in the latter chapters
of the book. The form of the model varies from one situation to another. It could be
a graphical model, an algebraic model, or a spreadsheet model. The key is that the
model should capture the important elements of the business problem in such a
way that it is understandable by all parties involved. This latter requirement is why
we favor spreadsheet models, especially when they are well designed and well
documented.

4. Verify the model. Here the analyst tries to determine whether the model developed
in the previous step is an accurate representation of reality. A first step in determin-
ing how well the model fits reality is to check whether the model is valid for the
current situation. This verification can take several forms. For example, the analyst
could use the model with the company’s current values of the input parameters. If the
model’s outputs are then in line with the outputs currently observed by the company,
the analyst has at least shown that the model can duplicate the current situation.

A second way to verify a model is to enter a number of input parameters (even
if they are not the company’s current inputs) and see whether the outputs from the
model are reasonable. One common approach is to use extreme values of the inputs
to see whether the outputs behave as they should. If they do, this is another piece of
evidence that the model is reasonable.

If certain inputs are entered in the model and the model’s outputs are not as
expected, there could be two causes. First, the model could simply be a poor represen-
tation of reality. In this case it is up to the analyst to refine the model so that it is more
realistic. The second possible cause is that the model is fine but our intuition is not
very good. In this case the fault lies with us, not the model.

An interesting example of faulty intuition occurs with random sequences of 0s
and 1s, such as might occur with successive flips of a fair coin. Most people expect
that heads and tails will alternate and that there will be very few sequences of, say,
four or more heads (or tails) in a row. However, a perfectly accurate simulation
model of these flips will show, contrary to what most people expect, that fairly long
runs of heads or tails are not at all uncommon. In fact, one or two long runs should
be expected if there are enough flips.

The fact that outcomes sometimes defy intuition is an important reason why
models are important. These models prove that your ability to predict outcomes in
complex environments is often not very good.

5. Select one or more suitable decisions. Many, but not all, models are decision models.
For any specific decisions, the model indicates the amount of profit obtained, the
amount of cost incurred, the level of risk, and so on. If the model is working cor-
rectly, as discussed in step 4, then it can be used to see which decisions produce the
best outputs.

6. Present the results to the organization. In a classroom setting you are typically
finished when you have developed a model that correctly solves a particular problem.
In the business world a correct model, even a useful one, is not always enough. An
analyst typically has to “sell” the model to management. Unfortunately, the people
in management are sometimes not as well trained in quantitative methods as the
analyst, so they are not always inclined to trust complex models.

There are two ways to mitigate this problem. First, it is helpful to include relevant
people throughout the company in the modeling process—from beginning to end—so

1.3 Modeling and Models 15
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that everyone has an understanding of the model and feels an ownership of it. Second,
it helps to use a spreadsheet model whenever possible, especially if it is designed and
documented properly. Almost everyone in today’s business world is comfortable with
spreadsheets, so spreadsheet models are more likely to be accepted.

7. Implement the model and update it over time. Again, there is a big difference
between a classroom situation and a business situation. When you turn in a class-
room assignment, you are typically finished with that assignment and can await the
next one. In contrast, an analyst who develops a model for a company usually cannot
pack up his bags and leave. If the model is accepted by management, the company
will then need to implement it company-wide. This can be very time consuming and
politically difficult, especially if the model’s prescriptions represent a significant
change from the past. At the very least, employees must be trained how to use the
model on a day-to-day basis.

In addition, the model will probably have to be updated over time, either because
of changing conditions or because the company sees more potential uses for the
model as it gains experience using it. This presents one of the greatest challenges for
a model developer, namely, the ability to develop a model that can be modified as the
need arises. 

1.4 CONCLUSION

In this chapter we have tried to convince you that the skills in this book are important for
you to know as you enter the business world. The methods we discuss are no longer the
sole province of the “quant jocks.” By having a PC on your desk that is loaded with
powerful software, you incur a responsibility to use this software to analyze business prob-
lems. We have described the types of problems you will learn to analyze in this book, along
with the software you will use to analyze them. We also discussed the modeling process, a
theme that runs throughout this book. Now it is time for you to get started!

16 Chapter 1 Introduction to Data Analysis and Decision Making
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C A S E

Cruise ship traveling has become big business.

Many cruise lines are now competing for

customers of all age groups and socioeconomic

levels.They offer all types of cruises, from relatively

inexpensive 3- to 4-day cruises in the Caribbean, to

12- to 15-day cruises in the Mediterranean, to

several-month around-the-world cruises. Cruises

have several features that attract customers, many 

of whom book six months or more in advance:

(1) they offer a relaxing, everything-done-for-you way

to travel; (2) they serve food that is plentiful, usually

excellent, and included in the price of the cruise;

(3) they stop at a number of interesting ports and

offer travelers a way to see the world; and (4) they

provide a wide variety of entertainment, particularly

in the evening.

This last feature, the entertainment, presents

a difficult problem for a ship’s staff.A typical cruise

might have well over 1000 passengers, including

elderly singles and couples, middle-aged people with

or without children, and young people, often honey-

mooners.These various types of passengers have

varied tastes in terms of their after-dinner prefer-

ences in entertainment. Some want traditional dance

music, some want comedians, some want rock music,

some want movies, some want to go back to their

cabins and read, and so on. Obviously, cruise enter-

tainment directors want to provide the variety of

entertainment their customers desire—within a 

reasonable budget—because satisfied customers

tend to be repeat customers.The question is how 

to provide the right mix of entertainment.

On a cruise one of the authors and his wife took

a few years ago, the entertainment was of high quality

and there was plenty of variety.A seven-piece show

band played dance music nightly in the largest lounge,

two other small musical combos played nightly at two

smaller lounges, a pianist played nightly at a piano bar in

an intimate lounge, a group of professional singers and

dancers played Broadway-type shows about twice

weekly, and various professional singers and comedians

played occasional single-night performances.7 Although

this entertainment was free to all of the passengers,

much of it had embarrassingly low attendance.The

nightly show band and musical combos, who were

contracted to play nightly until midnight, often had

less than a half dozen people in the audience—

sometimes literally none.The professional singers,

dancers, and comedians attracted larger audiences,

but there were still plenty of empty seats. In spite of

this, the cruise staff posted a weekly schedule, and

they stuck to it regardless of attendance. In a short-

term financial sense, it didn’t make much difference.

The performers got paid the same whether anyone

was in the audience or not, the passengers had already

paid (indirectly) for the entertainment as part of the

cost of the cruise, and the only possible opportunity

cost to the cruise line (in the short run) was the loss

of liquor sales from the lack of passengers in the

entertainment lounges.The morale of the entertainers

was not great—entertainers love packed houses—but

they usually argued, philosophically, that their hours

were relatively short and they were still getting paid to

see the world.

If you were in charge of entertainment on this

ship, how would you describe the problem with

entertainment: Is it a problem with deadbeat

passengers, low-quality entertainment, or a mismatch

between the entertainment offered and the enter-

tainment desired? How might you try to solve the

problem? What constraints might you have to work

within? Would you keep a strict schedule such as the

one followed by this cruise director, or would you

play it more by ear? Would you gather data to help

solve the problem? What data would you gather?

How much would financial considerations dictate

your decisions? Would they be long-term or short-

term considerations? ■

7There was also a moderately large onboard casino, but it tended to
attract the same people every night, and it was always closed when
the ship was in port.
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21

Describing the Distribution of a
Single Variable

C H A P T E R

RECENT PRESIDENTIAL ELECTIONS

Presidential elections in United States are scrutinized more than ever. It hardly

seems that one is over before we start hearing plans and polls for the next.

There is thorough coverage of the races leading up to the elections, but it is 

also interesting to analyze the results after the elections have been held.This 

is not difficult, given the many informative Web sites that appear immediately

with election results. For example, a Web search for “2008 presidential election

results” finds many sites with in-depth results, interactive maps, and more. In

addition, the resulting data can often be imported into Excel rather easily 

for further analysis.

The file Presidential Elections 2000–2008.xlsx contains such down-

loaded data for the 2000 (Bush versus Gore), 2004 (Bush versus Kerry), and

2008 (Obama versus McCain) elections.The results of the 2000 election are

particularly interesting. As you probably remember, this was one of the closest
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elections of all time, with Bush defeating Gore by a very narrow margin in the electoral

vote, 271 to 266, following a disputed recount in Florida. In fact, Gore actually beat 

Bush in the total count of U.S. votes, 50,999,897 to 50,456,002. However, because 

of the all-or-nothing nature of electoral votes in each state, Bush’s narrow margin of

victory in many closely contested states won him a lot of electoral votes. In contrast,

Gore outdistanced Bush by a wide margin in several large states, winning him the same

electoral votes he would have won even if these races had been much closer.

A closer analysis of the state-by-state results shows how this actually happened.

In the Excel file, we created two new columns: Bush Votes minus Gore Votes and

Pct for Bush minus Pct for Gore, with a value for each state (including the District

of Columbia).We then created column charts of these two variables, as shown in 

Figures 2.1 and 2.2.
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Figure 2.1 Chart of Vote Differences
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Figure 2.2 Chart of Percent Differences

Each of these charts tells the same story, but in slightly different ways. From Figure 2.1,

we see how Gore won big (large vote difference) in several large states, most notably

California, Massachusetts, and New York. Bush’s only comparable margin of victory was in

his home state of Texas. However, Bush won a lot of close races in states with relatively
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few electoral votes—but enough to add up to an overall win. As Figure 2.2 indicates, many

of these “close” races, such as Alaska and Idaho for Bush and District of Columbia for

Gore, were not that close after all, at least not from a percentage standpoint.This is one

case of many where multiple charts can be created to “tell a story.” Perhaps an argument

can be made that Figure 2.1 tells the story best, but Figure 2.2 is also interesting.

The bottom line is that the election could easily have gone the other way. With

one more swing state, particularly Florida,Al Gore would have been president. On the

other hand, Gore won some very close races as well, particularly in Iowa, Minnesota,

New Mexico, and Oregon. If these had gone the other way, the popular vote would still

have been very close, but Bush’s victory in the electoral vote would have been more

impressive. ■
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2.1 INTRODUCTION

The goal of this chapter and the next is very simple: to make sense out of data by
constructing appropriate summary measures, tables, and graphs. Our purpose here is to
take a set of data that at first glance might have little meaning and to present the data in a
form that makes sense to people. There are numerous ways to do this, limited only by your
imagination, but there are several tools used most often: (1) a variety of graphs, including
bar charts, pie charts, histograms, scatterplots, and time series graphs; (2) numerical
summary measures such as counts, percentages, averages, and measures of variability; and
(3) tables of summary measures such as totals, averages, and counts, grouped by cate-
gories. These terms might not all be familiar to you at this point, but you have undoubtedly
seen examples of them in newspapers, magazine articles, and books.

The material in these two chapters is simple, complex, and important. It is simple
because there are no difficult mathematical concepts. With the possible exception of
variance, standard deviation, and correlation, all of the numerical measures, graphs, and
tables are natural and easy to understand. It used to be a tedious chore to produce them, but
with the advances in statistical software, including add-ins for spreadsheet packages such as
Excel, they can now be produced quickly and easily.

If it is so easy, why do you also claim that the material in this chapter is complex? The
data sets available to companies in today’s computerized world tend to be extremely large
and filled with “unstructured” data. As you will see, even in data sets that are quite small in
comparison to those that real companies face, it is a challenge to summarize the data so
that the important information stands out clearly. It is easy to produce summary measures,
graphs, and tables, but our goal is to produce the most appropriate ones.

The typical employees of today—not just the managers and technical specialists—
have a wealth of easy-to-use tools at their disposal, and it is frequently up to them to sum-
marize data in a way that is both meaningful and useful to their constituents: people within
their company, their company’s suppliers, and their company’s customers. It takes some
training and practice to do this effectively.

Because today’s companies are inundated with data, and because virtually every
employee in the company must summarize data to some extent, the material in this chapter
and the next one is arguably the most important material in the book. There is sometimes a
tendency to race through the “descriptive statistics” chapters to get to the more “interest-
ing” material in later chapters as quickly as possible. We want to resist this tendency.
The material covered in these two chapters deserves close examination, and this takes
some time.

Data analysis in the real world is never done in a vacuum. It is done to solve a problem.
Typically, there are four steps that are followed, whether the context is business, medical

It is customary to refer
to the raw numbers
as data and the output
of a statistical analysis
as information.You
start with the data,
and you hope to end
with information that
an organization can
use for competitive
advantage.
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science, or any other field. The first step is to recognize a problem that needs to be solved.
Perhaps a retail company is experiencing decreased sales in a particular region or for a par-
ticular product. Why is this happening? The second step is to gather data to help understand
and then solve the problem. This might be done through a survey of customers, by assem-
bling data from already-existing company systems, by finding relevant data on the Web, or
other means. Once the data is gathered, the third step is to analyze the data using the tools
you will learn in the book. The fourth step is to act on this analysis by changing policies,
undertaking initiatives, publishing reports, and so on. Of course, the analysis can sometimes
repeat steps. For example, once a given set of data is analyzed, it might be apparent that
even more data needs to be collected. 

As we discuss the tools for analyzing data, we will often jump into the third step
directly, providing you with a data set to analyze. Although this data set may not be
directly connected to the goal of solving some company’s problem, you should still
strive to ask interesting questions of the data. (We have tried to include interesting data
sets, often containing real data, that make this possible.) If the data set contains salaries,
you might ask what drives these salaries. Does it depend on the industry a person is in?
Does it depend on gender? Does it depend on educational background? Is the salary
structure, whatever it is, changing over time? If the data set contains cost-of-living
indexes, there are also a lot of interesting questions you can ask. How are the indexes
changing over time? Does this behavior vary in different geographical regions? Does
this behavior vary across different items such as housing, food, and automobiles? These
early chapters provide you with many tools to answer such questions, but it is up to
you to ask good questions—and then take advantage of the most appropriate tools to
answer them.

The material in these chapters is organized as follows. In this chapter, we present a
number of ways for analyzing one variable at a time. In the next chapter, we look at ways
of discovering relationships between variables. In addition, there is a bonus Chapter 17 on
importing data from external sources into Excel, a natural companion to Chapters 2 and 3.
This bonus chapter is available on this textbook’s Web site.

2.2 BASIC CONCEPTS

We begin with a short discussion of several important concepts: populations and samples,
data sets, variables and observations, and types of data.

2.2.1 Populations and Samples

First, we distinguish between a population and a sample. A population includes all of the
entities of interest, whether they be people, households, machines, or whatever. The follow-
ing are three typical populations:

■ All potential voters in a presidential election
■ All subscribers to cable television
■ All invoices submitted for Medicare reimbursement by nursing homes

In these situations and many others, it is virtually impossible to obtain information about
all members of the population. For example, it is far too costly to ask all potential voters
which presidential candidates they prefer. Therefore, we often try to gain insights into
the characteristics of a population by examining a sample, or subset, of the population. In
later chapters, we will examine populations and samples in some depth, but for now it is
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Use your imagination
to ask interesting
questions about the
many data sets
available to you.We
will supply you with 
the tools to answer
these questions.
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enough to know that we typically want samples to be representative of the population
so that observed characteristics of the sample can be generalized to the population as
a whole.
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A population includes all of the entities of interest in a study. A sample is a subset of
the population, often randomly chosen and preferably representative of the population as
a whole.

A data set is usually a rectangular array of data, with variables in columns and obser-
vations in rows. A variable (or field or attribute) is a characteristic of members of
a population, such as height, gender, or salary. An observation (or case or record) 
is a list of all variable values for a single member of a population.

A famous example where a sample was not representative is the case of the Literary
Digest fiasco of 1936. In the 1936 presidential election, subscribers to the Literary Digest,
a highbrow literary magazine, were asked to mail in a ballot with their preference for
president. Overwhelmingly, these ballots favored the Republican candidate, Alf Landon,
over the Democratic candidate, Franklin D. Roosevelt. Despite this, FDR was a landslide
winner. The discrepancy arose because the readers of the Literary Digest were not at all
representative of most voters in 1936. Most voters in 1936 could barely make ends meet,
let alone subscribe to a literary magazine. Thus, the typical lower-to-middle-income voter
had almost no chance of being chosen in this sample.

Today, Gallup, Harris, and other pollsters make a conscious effort to ensure that their
samples—which usually include about 1000 to 1500 people—are representative of the
population. (It is truly remarkable, for example, that a sample of 1500 voters can almost
surely predict a candidate’s actual percentage of votes correctly to within 3%. We explain
why this is possible in Chapters 7 and 8.) The important point is that a representative
sample of reasonable size can provide a lot of important information about the population
of interest. 

We use the terms population and sample a few times in this chapter, which is why we
have defined them here. However, the distinction is not really important until later chapters.
Our intent in this chapter is to focus entirely on the data in a given data set, not to generalize
beyond it. Therefore, the given data set could be a population or a sample from a population.
For now, the distinction is largely irrelevant.

2.2.2 Data Sets, Variables, and Observations

We now discuss the types of data sets we will examine. Although the focus of this book is
Excel, virtually all statistical software packages use the same concept of a data set: A data
set is generally a rectangular array of data where the columns contain variables, such as
height, gender, and income, and each row contains an observation. Each observation
includes the attributes of a particular member of the population, whether it be a person, a
company, a city, a machine, or other entity. This terminology is common, but other terms
are often used. A variable (column) is often called a field or an attribute, and an observa-
tion (row) is often called a case or a record. Also, data sets are occasionally rearranged,
so that the variables are in rows and the observations are in columns. However, the most
common arrangement by far is to have variables in columns, with variable names in the top
row, and observations in the remaining rows.
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Objective To illustrate variables and observations in a typical data set.

Solution

This data set provides observations on 30 people who responded to the questionnaire.
Each observation lists the person’s age, gender, state of residence, number of children,
annual salary, and opinion of the president’s environmental policies. These six pieces of
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E X A M P L E 2.1 DATA FROM AN ENVIRONMENTAL SURVEY

The data set shown in Figure 2.3 represents 30 responses from a questionnaire concerning
the president’s environmental policies. (See the file Questionnaire Data.xlsx.) Identify

the variables and observations.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A B C D E F G
Person Age Gender State Children Salary Opinion

1 35 Male Minnesota 1 $65,400 5
2 61 Female Texas 2 $62,000 1
3 35 Male Ohio 0 $63,200 3
4 37 Male Florida 2 $52,000 5
5 32 Female California 3 $81,400 1
6 33 Female New York 3 $46,300 5
7 65 Female Minnesota 2 $49,600 1
8 45 Male New York 1 $45,900 5
9 40 Male Texas 3 $47,700 4

10 32 Female Texas 1 $59,900 4
11 57 Male New York 1 $48,100 4
12 38 Female Virginia 0 $58,100 3
13 37 Female Illinois 2 $56,000 1
14 42 Female Virginia 2 $53,400 1
15 38 Female New York 2 $39,000 2
16 48 Male Michigan 1 $61,500 2
17 40 Male Ohio 0 $37,700 1
18 57 Female Michigan 2 $36,700 4
19 44 Male Florida 2 $45,200 3
20 40 Male Michigan 0 $59,000 4
21 21 Female Minnesota 2 $54,300 2
22 49 Male New York 1 $62,100 4
23 34 Male New York 0 $78,000 3
24 49 Male Arizona 0 $43,200 5
25 40 Male Arizona 1 $44,500 3
26 38 Male Ohio 1 $43,300 1
27 27 Male Illinois 3 $45,400 2
28 63 Male Michigan 2 $53,900 1
29 52 Male California 1 $44,100 3
30 48 Female New York 2 $31,000 4

Figure 2.3

Environmental

Survey Data
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information represent the variables. It is customary to include a row (row 1 in this case) that
lists variable names. These variable names should be concise but meaningful. Note that an
index of the observation is often included in column A. If you start sorting on other vari-
ables, you can always sort on the index to get back to the original sort order.

As you will see shortly when we begin to use a very powerful statistical add-in for
Excel called StatTools, the concept of a data set is crucial. Before you can perform any
statistical analysis on a data set with StatTools, you must designate a rectangular range as
a StatTools data set. This is easy, yet it must be done. As you will also see, StatTools allows
several layouts for data sets, including one where the variables are in rows and the
observations are in columns. However, the default layout, the one you will see over 99% of
the time, is the one shown in Figure 2.3, where variables are in columns, observations are
in rows, and the top row contains variable names. ■
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2.2.3 Types of Data

There are several ways to categorize data, as we explain in the context of Example 2.1.
A basic distinction is between numerical and categorical data. The distinction here is
whether you intend to do any arithmetic on the data. It makes sense to do arithmetic on
numerical data, but not on categorical data. (Actually, there is a third data type, a date vari-
able. As you may know, Excel stores dates as numbers, but for obvious reasons, dates are
treated differently from typical numbers.)

A variable is numerical if meaningful arithmetic can be performed on it. Otherwise, the
variable is categorical.

A categorical variable is ordinal if there is a natural ordering of its possible values. If
there is no natural ordering, it is nominal.

In the questionnaire data, Age, Children, and Salary are clearly numerical. For exam-
ple, it makes perfect sense to sum or average any of these. In contrast, Gender and State are
clearly categorical because they are expressed as text, not numbers.

The Opinion variable is less obvious. It is expressed numerically, on a 1-to-5 scale.
However, these numbers are really only codes for the categories “strongly disagree,” “dis-
agree,” “neutral,” “agree,” and “strongly agree.” We never intend to perform arithmetic on
these numbers; in fact, it is not really appropriate to do so. Therefore, it is most
appropriate to treat the Opinion variable as categorical. Note, too, that there is a definite
ordering of its categories, whereas there is no natural ordering of the categories for the
Gender or State variables. When there is a natural ordering of categories, we classify
the variable as ordinal. If there is no natural ordering, as with the Gender and State vari-
ables, we classify the variables as nominal. However, both ordinal and nominal variables
are categorical.

Excel Tip How do you remember, for example, that “1” stands for “strongly disagree” in
the Opinion variable? You can enter a comment—a reminder to yourself and others—in
any cell. To do so, right-click on a cell and select the Insert Comment item. A small red tag
appears in any cell with a comment. Moving the cursor over that cell causes the comment
to appear. You will see numerous comments in the files that accompany this book.

Three variables that
appear to be numeri-
cal but are usually
treated as categorical
are phone numbers,
zip codes, and Social
Security numbers. Do
you see why? Can you
think of others?
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Categorical variables can be coded numerically or left uncoded. In Figure 2.3, Gender
has not been coded, whereas Opinion has been coded. This is largely a matter of taste—so
long as you realize that coding a truly categorical variable does not make it numerical
and open to arithmetic operations. An alternative way of displaying the data appears in
Figure 2.4. Now Opinion has been replaced by text, and Gender has been coded as 1 for
males and 0 for females. This 0–1 coding for a categorical variable is very common. Such
a variable is called a dummy variable, and it often simplifies the analysis. You will see
dummy variables often throughout the book. 
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A dummy variable is a 0–1 coded variable for a specific category. It is coded as 1 for
all observations in that category and 0 for all observations not in that category.

In addition, we have categorized the Age variable as “young” (34 years or younger),
“middle-aged” (from 35 to 59 years), and “elderly” (60 years or older). This method of
taking a numerical variable and making it categorical is called binning (putting the data
into discrete bins), and it is also very common. (It is also called discretizing.) The pur-
pose of the study dictates whether age should be treated numerically or should be
binned; there is no absolute right or wrong way.

1
2
3
4
5
6
7
8
9

A B C D E F G H I J K L
Person Age Gender State Children Salary Opinion

1 Middle-aged 1 Minnesota 1 $65,400 Strongly agree
2 Elderly 0 Texas 2 $62,000 Strongly disagree
3 Middle-aged 1 Ohio 0 $63,200 Neutral
4 Middle-aged 1 Florida 2 $52,000 Strongly agree
5 Young 0 California 3 $81,400 Strongly disagree
6 Young 0 New York 3 $46,300 Strongly agree
7 Elderly 0 Minnesota 2 $49,600 Strongly disagree
8 Middle-aged 1 New York 1 $45,900 Strongly agree

Note the formulas I used in columns B, C,
and G to get this recoded data. The formulas
in columns A and F are based on the lookup

9
10
11
12
13
14
15
16
17
18
19

1 1 ,
9 Middle-aged 1 Texa s 3 $47,700 Agree

10 Young 0 Texa s 1 $59,900 Agree
11 Middle-aged 1 New York 1 $48,100 Agree
12 Middle-aged 0 Virginia 0 $58,100 Neutral
13 Middle-aged 0 Illinois 2 $56,000 Strongly disagree Age lookup table (range name AgeLookup)
14 Middle-aged 0 Virginia 2 $53,400 Strongly disagree 0 Young
15 Middle-aged 0 New York 2 $39,000 elddiM53eergasiD -aged
16 Middle-aged 1 Michigan 1 $61,500 ylredlE06eergasiD
17 Middle-aged 1 Ohio 0 $37,700 Strongly disagree
18 Middle-aged 0 Michigan 2 $3 Opinion lookup table (range name OpinionLookup)19

20
21
22
23
24
25
26
27
28
29

18 - 0 2 $36,700 Agree Opinion lookup table (range name OpinionLookup)
19 Middle-aged 1 Florida 2 $45,200 ylgnortS1lartueN disagree
20 Middle-aged 1 Michigan 0 $59,000 eergasiD2eergA
21 Young 0 Minnesota 2 $54,300 lartueN3eergasiD
22 Middle-aged 1 New York 1 $62,100 eergA4eergA
23 Young 1 New York 0 $78,000 ylgnortS5lartueN agree
24 Middle-aged 1 Arizona 0 $43,200 Strongly agree
25 Middle-aged 1 Arizona 1 $44,500 Neutral
26 Middle-aged 1 Ohio 1 $43,300 Strongly disagree
27 Young 1 Illinois 3 $45,400 Disagree
28 Eld l 1 Mi hi 2 $53 900 St l di29

30
31

28 Elderly 1 Michigan 2 Strongly disagree
29 Middle-aged 1 California 1 $44,100 Neutral
30 Middle-aged 0 New York 2 $31,000 Agree

Figure 2.4 Environmental Data Using a Different Coding

A binned (or discretized) variable corresponds to a numerical variable that has been
categorized into discrete categories. These categories are typically called bins.
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Excel Tip As Figure 2.4 indicates, we used lookup tables, along with the very important
VLOOKUP function, to transform the data set from Figure 2.3 to Figure 2.4. Take a look
at these functions in the questionnaire file. There is arguably no more important Excel
function than VLOOKUP, so you should definitely learn how to use it.

Numerical variables can be classified as discrete or continuous. The basic distinction
is whether the data arise from counts or continuous measurements. The variable Children
is clearly a count (that is, discrete), whereas the variable Salary is best treated as continu-
ous. This distinction between discrete and continuous variables is sometimes important
because it dictates the type of analysis that is most natural.
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A numerical variable is discrete if it results from a count, such as the number of children.
A continuous variable is the result of an essentially continuous measurement, such as
weight or height.

Cross-sectional data are data on a cross section of a population at a distinct point in
time. Time series data are data collected over time.

Finally, data sets can be categorized as cross-sectional or time series. The opinion data
set in Example 2.1 is cross-sectional. A pollster evidently sampled a cross section of people
at one particular point in time. In contrast, time series data occur when we track one or more
variables through time. A typical example of a time series variable is the series of daily
closing values of the Dow Jones Index. Very different types of analyses are appropriate for
cross-sectional and time series data, as becomes apparent in this and later chapters.

A time series data set generally has the same layout—variables in columns and observations
in rows—but now each variable is a time series. Also, one of the columns usually indicates 
the time period. A typical example appears in Figure 2.5. (See the file Toy Revenues.xlsx.) 

1
2
3
4
5
6

A B C D E F
Quarter Revenue
Q1-2007 1026
Q2-2007 1056
Q3-2007 1182
Q4-2007 2861
Q1 2008 1172

All monetary values are in 
thousands of dollars.

7
8
9

10
11
12

-
Q2-2008 1249
Q3-2008 1346
Q4-2008 3402
Q1-2009 1286
Q2-2009 1317
Q3-2009 1449

13
14
15
16
17

Q
Q4-2009 3893
Q1-2010 1462
Q2-2010 1452
Q3-2010 1631
Q4-2010 4200

Figure 2.5

Typical Time Series

Data Set
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It has quarterly observations on revenues from toy sales over a four-year period in column B,
with the time periods listed chronologically in column A. Of course, there could be other related
time series variables to the right of column B.

2.3 DESCRIPTIVE MEASURES FOR CATEGORICAL VARIABLES

In this section we indicate methods for describing a categorical variable. Because it is
not appropriate to perform arithmetic on the actual values of the variable, there are only
a few possibilities for describing the variable, and these are all based on counting. First,
you can count the number of categories. Many categorical variables such as Gender
have only two categories. Others such as Region can have more than two categories. As
you count the categories, you can also give the categories names, such as Male and
Female. Keep in mind that categorical variables, such as Opinion in Example 2.1, can
be coded numerically. In these cases, it is still a good idea to supply text descriptions of
these categories, such as “strongly agree,” and it is often useful to substitute these
meaningful descriptions for the numerical codes, as in Figure 2.4. This is especially
useful for statistical reports.

Once you know the number of categories and their names, the only thing left to do is
count the number of observations in each category.1 The resulting counts can be reported
as “raw counts” or they can be transformed into percentages. For example, if there are
1000 observations, you can report that there are 560 males and 440 females, or you can
report that 56% of the observations are males and 44% are females. In fact, it is often
useful to report the counts in both of these ways. Finally, once you have the counts, you
can display them graphically, usually in a column chart or a pie chart. The following exam-
ple illustrates how to do this in Excel.
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The only meaningful
way to summarize
categorical is with
counts of observations
in its categories.

E X A M P L E 2.2 SUPERMARKET SALES

The file Supermarket Transactions.xlsx contains over 14,000 transactions made by
supermarket customers over a period of approximately two years. (The data are not

real, but real supermarket chains have huge data sets just like this one.) A small sample of
the data appears in Figure 2.6. Column B contains the date of the purchase, column C is a
unique identifier for each customer, columns D–H contain information about the customer,
columns I–K contain the location of the store, columns L–N contain information about the

1
2
3
4
5
6
7
8
9

10
11

A B C D E F G H I J K L M N O P
Purchase 
Date

Customer 
ID Gender

Marital 
Status

Home 
Owner Children Annual Income City

State or 
Province Country

Product 
Family

Product 
Department

Product 
Category

Units 
Sold Revenue

1 12/18/2007 7223 F S Y 2 $30K - $50K Los Angeles CA USA Food Snack Foods Snack Foods 5 $27.38
2 12/20/2007 7841 M M Y 5 $70K - $90K Los Angeles CA USA Food Produce Vegetables 5 $14.90
3 12/21/2007 8374 F M N 2 $50K - $70K Bremerton WA USA Food Snack Foods Snack Foods 3 $5.52
4 12/21/2007 9619 M M Y 3 $30K - $50K Portland OR USA Food Snacks Candy 4 $4.44
5 12/22/2007 1900 F S Y 3 $130K - $150K Beverly Hills CA USA Drink Beverages Carbonated Bev 4 $14.00
6 12/22/2007 6696 F M Y 3 $10K - $30K Beverly Hills CA USA Food Deli Side Dishes 3 $4.37
7 12/23/2007 9673 M S Y 2 $30K - $50K Salem OR USA Food Frozen Foods Breakfast Foods 4 $13.78
8 12/25/2007 354 F M Y 2 $150K + Yakima WA USA Food Canned Foods Canned Soup 6 $7.34
9 12/25/2007 1293 M M Y 3 $10K - $30K Bellingham WA USA Non-ConsumaHousehold Cleaning Supplie 1 $2.41

10 12/25/2007 7938 M S N 1 $50K - $70K San Diego CA USA Non-ConsumaHealth and Hyg Pain Relievers 2 $8.96

Figure 2.6 Supermarket Data Set

1Researchers have devised some very sophisticated tools for dealing with categorical variables. However, we plan
to keep it simple by focusing solely on counts of categories.
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product purchased, and the last two columns indicate the number of items purchased and
the amount paid. Which of the variables are categorical, and how can these categorical
variables be summarized?

Objective To summarize categorical variables in a large data set. 

Solution

Most of the variables in this data set are categorical. Only Children, Units Sold, and Revenue
are numerical. Purchase Date is a date variable, and Customer ID is used only to identify
customers. All of the others are categorical. This includes Annual Income, which has been
binned into categories. Three of these categorical variables—Gender, Marital Status, and
Homeowner—have only two categories. The others have more than two categories. 

The first question is how you can discover all of the categories for a variable such as
Product Department. Without good tools, this is not a trivial problem. One option is to sort on
this variable and then manually go through the list, looking for the different categories.
Fortunately, there are much easier ways, using Excel’s built-in table and pivot table tools. We
will postpone these for later and deal for now only with the “easy” categorical variables.

Figure 2.7 shows summaries of Gender, Marital Status, Homeowner, and Annual Income,
along with several corresponding charts for Gender. Each of the counts in column S can
be obtained with Excel’s COUNTIF function. For example, the formula in cell S3 is 
=COUNTIF($D$2:$D$14060,R3). This function takes two arguments, the data range and a
criterion, so it is perfect for counting observations in a category. Then, to get the percentages in
column T, each count is divided by the total number of observations. (As a check, it is a good
idea to sum these percentages. They should sum to 100% for each variable, as they do here.) 
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

R S T U V W X Y Z AA AB AC AD AE
Categorical summaries
Gender Count Percent
M 6889 49.0%
F 7170 51.0%

100.0%

Marital Status Count Percent
S 7193 51.2%
M 6866 48.8%

100.0%

Homeowner Count Percent
Y 8444 60.1%
N 5615 39.9%

100.0%

Annual Income Count Percent
$10K - $30K 3090 22.0%
$30K - $50K 4601 32.7%
$50K - $70K 2370 16.9%
$70K - $90K 1709 12.2%
$90K - $110K 613 4.4%
$110K - $130K 643 4.6%
$130K - $150K 760 5.4%
$150K + 273 1.9%

100.0%

6600

6800

7000

7200

M F

Gender Count

0

2000

4000

6000

8000

M F

Gender Count (different scale)

48.0%

49.0%

50.0%

51.0%

52.0%

M F

Gender Percent

0.0%

20.0%

40.0%

60.0%

M F

Gender Percent (different scale)

Gender Count

M

F

Gender Percent

M

F

Figure 2.7 Summaries of Categorical Variables
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As the charts indicate, you get essentially the same chart regardless of whether you
graph the counts or the percentages. However, be careful with misleading scales. If you
highlight the range R2:S4 and then insert a column chart, you get the top left chart by
default. Its vertical scale starts well above 6000, which makes it appear that there are many
more females than males. By resetting the vertical scale to start at 0, as in the two middle
charts, you see more accurately that there are almost as many males as females. Finally,
which is preferable, a column chart or a pie chart? We tend to prefer column charts, but this
is entirely a matter of taste. (We also tend to prefer column charts to horizontal bar charts,
but this is again a matter of taste.) Our only recommendation in general is to keep charts
simple so that the information they contain emerges as clearly as possible.

Excel Tip If you are new to Excel charts, particularly in Excel 2007, you should try
creating the charts in Figure 2.7 on your own. One way is to put your cursor in a blank cell,
select a desired chart type from the Insert ribbon, and then designate the data to be included
in the chart. However, it is usually more efficient to select the data to be charted and then
insert the chart. For example, try highlighting the range R2:S4 and then inserting a column
chart. Except for a little cleanup (deleting the legend, changing the chart title, and possibly
changing the vertical scale), you get almost exactly what you want with little work.

If this example of summarizing categorical variables appears to be overly tedious, be
patient. As we indicated earlier, Excel has some powerful tools, especially pivot tables,
that make this summarization much easier. We will discuss pivot tables in depth in the next
chapter. For now, just remember that the only meaningful way to summarize a categorical
variable is to count observations in each of its categories.

Before leaving this section, we mention one other efficient way to find the counts and
percentages for a categorical variable. This method uses dummy (0–1) variables. To see
how it works, focus on any category of some categorical variable, such as M for Gender.
Recode the variable so that each M is replaced by a 1 and all other values are replaced by 0.
(This can be done in Excel in a new column, using a simple IF formula. See column E of
Figure 2.8.) Now you can find the count of males by summing the 0s and 1s, and you can
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Figure 2.8

Summarizing a

Category with a

Dummy Variable

When you have a
choice between a
“simple” chart and a
more “fancy” chart,
keep it simple. Simple
charts tend to reveal
the information in the
data more clearly.
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find the percentage of males by averaging the 0s and 1s. That is, the formulas in cells
E14061 and E14062 use the SUM and AVERAGE functions on the data in column E. You
should convince yourself why this works (for example, what arithmetic are you really doing
when you average 0s and 1s?), and you should remember this method. It is one reason why
dummy variables are used so frequently in spreadsheet data analysis. ■
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P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a color box are available for purchase at www.cengagebrain.com.

Level A

1. The file P02_01.xlsx indicates the gender and nationality
of the MBA incoming class in two successive years at the
Kelley School of Business at Indiana University. 
a. For each year, create tables of counts of gender and

of nationality. Then create column charts of these
counts. Do they indicate any noticeable change in
the composition of the two classes?

b. Repeat part a for nationality, but recode this variable
so that all nationalities that have counts of 1 or 2 are
classified as Other.

2. The file P02_02.xlsx contains information on over 200
movies that came out during 2006 and 2007.
a. Create two column charts of counts, one of the

different genres and one of the different distributors.
b. Recode the Genre column so that all genres with

count 10 or less are lumped into a category called
Other. Then create a column chart of counts for this
recoded variable. Repeat similarly for the
Distributor variable.

3. The file P02_03.xlsx contains data from a survey of 399
people regarding a government environmental policy.
a. Which of the variables in this data set are categorical?

Which of these are nominal; which are ordinal?
b. For each categorical variable, create a column chart

of counts.
c. Recode the data into a new data set, making four

transformations: (1) change Gender to list “Male”

or “Female”; (2) change Children to list “No
children” or “At least one child”; (3) change Salary
to be categorical with categories “Less than $40K,”
“Between $40K and $70K,” “Between $70K and
$100K,” and “Greater than $100K” (where you 
can treat the breakpoints however you like); and 
(4) change Opinion to be a numerical code from 1
to 5 for Strongly Disagree to Strongly Agree. Then
create a column chart of counts for the new Salary
variable. 

4. The file P02_04.xlsx contains salary data on all Major
League Baseball players for each year from 2002 to
2009. (The 2009 sheet is used for examples later in
this chapter.) For each year, create a table of counts of
the various positions, expressed as percentages of all
players for the year. Then create a column chart of
these percentages for each year. Do they remain fairly
constant from year to year? 

Level B

5. The file DJIA Monthly Close.xlsx contains monthly
values of the Dow Jones Industrial Average from 
1950 through 2009. It also contains the percentage
changes from month to month. (This file will be used
for an example later in this chapter.) Create a new
column for recoding the percentage changes into six
categories: Large negative (��3%), Medium negative
(��1%, ��3%), Small negative (�0%, ��1%),
Small positive (�1%, �0%), Medium positive 
(�3%, �1%), and Large positive (�3%). Then create
a column chart of the counts of this categorical
variable. Comment on its shape.

2.4 DESCRIPTIVE MEASURES FOR NUMERICAL VARIABLES

There are many ways to summarize numerical variables, both with numerical summary
measures and with charts, and we will discuss the most common ways in this section. But
before we get into details, it is important to understand the basic goal of this section. We
begin with a numerical variable such as Salary, where there is one observation for each
person. Our basic goal is to learn how these salaries are distributed across the different peo-
ple. To do this, we can ask a number of questions, including the following. (1) What are the
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most “typical” salaries? (2) How spread out are the salaries? (3) What are the “extreme”
salaries on either end? (4) Is a chart of the salaries symmetric about some middle value, or
is it skewed in some direction? (5) Does the chart of salaries have any other peculiar features
besides possible skewness? In the next chapter, we will explore methods for checking
whether a variable such as Salary is related to other variables, but for now we simply want
to explore the distribution of values in the Salary column.

As always in this book, our main tool is Excel. Excel has a number of built-in tools for
summarizing numerical variables, and we will discuss these. However, even better tools
are available in Excel add-ins, and in this section we will introduce a very powerful add-in
from Palisade Corporation called StatTools. There are two important advantages of
StatTools over other statistical software. First, it works inside Excel, which is an obvious
advantage for the many users who prefer to work in Excel. Second, it is extremely easy to
learn, with virtually no learning curve. However, keep in mind that StatTools is not part of
Microsoft Office. You get the academic version of StatTools free with this book, but if you
eventually want to use StatTools in your job, you will have to persuade your company to
purchase it. (Many of our graduates have done exactly that.)

2.4.1 Numerical Summary Measures

Throughout this section, we will focus on a Salary variable. Specifically, we examine the
2009 salaries for Major League Baseball players, as described in the following example.

CHANGES IN EXCEL 2010

Microsoft modified many of the statistical functions and added a few new ones in Excel 2010.

Although Microsoft advertises the superiority of the new functions, all of the old functions can

still be used.When a modified or new function is relevant, we will indicate this in the text.
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E X A M P L E 2.3 BASEBALL SALARIES

The file Baseball Salaries 2009.xlsx contains data on 818 Major League Baseball (MLB)
players as of May 2009. There are four variables, as shown in Figure 2.9: the player’s

name, team, the position, and salary. How can these 818 salaries be summarized?

1
2
3
4
5
6
7
8
9

10
11
12
13
14

DCBA
yralaSnoitisoPmaeTreyalP

Aardsma, Dave Mariners Pitcher $419,000
Abreu, Bobby Los Angeles Angels r $5,000,000
Adams, Mike San Diego Padres Pitcher $414,800
Adenhart, Nick Los Angeles Angels Pitcher $400,000
Affeldt, Jeremy San Francisco Giants Pitcher $3,500,000
Albaladejo, Jon New York

Oakland

Yankees Pitcher $403,075
Albers, Orioles Pitcher $410,000
Amezaga, Alfredo Florida Marlins Shortstop $1,300,000
Anderson, s Pitcher $400,000
Anderson, Brian Nikoli Chicago White Sox r $440,000
Anderson, Garret Atlanta Braves r $2,500,000
Anderson, Josh Detroit Tigers r $400,000
Anderson, Marlon New York Mets Second Baseman $1,150,000

Figure 2.9

Baseball Salaries

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Objective To learn how salaries are distributed across all 2009 MLB players.

Solution

The various numerical summary measures can be categorized into several groups: measures
of central tendency; minimum, maximum, percentiles, and quartiles; measures of variability;
and measures of shape. We will explain each of these in this extended example. ■
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Measures of Central Tendency

There are three common measures of central tendency, all of which try to answer the basic
question of which value is most “typical.” These are the mean, the median, and the mode. 

The mean is the average of all values of a variable. If the data set represents a sample
from some larger population, we call this measure the sample mean and denote it by 
(pronounced “X-bar”). If the data set represents the entire population, we call it the
population mean and denote it by � (the Greek letter mu). This distinction is not impor-
tant in this chapter, but it will become relevant in later chapters when we discuss statistical
inference. In either case, the formula for the mean is given by Equation (2.1).

X

Formula for the Mean

(2.1)Mean =

a
n

i=1
Xi

n

Here, n is the number of observations and Xi is the value of observation i. Equation (2.1) says
to add all the observations and divide by n, the number of observations. The (Greek capital

sigma) symbol means to sum from i � 1 to i � n, that is, to sum over all observations.
For Excel data sets, you can calculate the mean with the AVERAGE function. This is

shown for the baseball data (along with a lot of other summary measures we will discuss
shortly) in Figure 2.10. Specifically, the average salary for all players is a whopping
$3,260,059. Is this a typical salary? Keep reading.

©

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

FEDCBA
Measures of central tendency Measures of variability

000,006,23$egnaR950,062,3$naeM
elitrauqretnI000,151,1$naideM range $5,088,800

Mode $400,000 70 Variance 19,045,050,733,784
Standard n $4,364,064

Min, max, Mean absolute n $3,205,753
Min $400,000
Max $33,000,000 Measures of shape

6990.2ssenwekS10.0000,004$10P
6621.5sisotruK50.0000,004$50P

P10 $401,000 0.10
P20 $411,200 0.20 Percentages of values less than given values

egatnecrePeulaV05.0000,151,1$05P less than
%07.64000,000,1$08.0000,005,5$08P
%76.35000,005,1$09.0000,000,01$09P
%65.85000,000,2$59.0000,000,31$59P
%54.36000,005,2$99.0005,707,81$99P
%58.76000,000,3$1055,914$1Q

Q2 $1,151,000 2
Q3 $4,237,500 3

Figure 2.10

Summary Measures

of Baseball 

Salaries Using 

Excel Functions
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The median is the middle observation when the data are arranged from smallest to
largest. If the number of observations is odd, the median is literally the middle observation.
For example, if there are nine observations, the median is the fifth smallest (or fifth
largest). If the number of observations is even, the median is usually defined as the average
of the two middle observations (although there are some slight variations of this defini-
tion). For example, if there are 10 observations, the median is usually defined to be the
average of the fifth and sixth smallest values. 

In any case, the median can be calculated in Excel with the MEDIAN function.
Figure 2.10 shows that the median salary is $1,151,000. In words, half of the players
make less than this, and half make more. Why is the median in this example so much
smaller than the mean, and which is more appropriate? These are important questions,
and they are relevant for many real-world data sets. As you might expect, the vast
majority of baseball players have relatively modest salaries that are dwarfed by the
astronomical salaries of a few stars. Because it is an average, the mean is strongly influ-
enced by these really large values, so it is quite high. In contrast, the median is
completely unaffected by the magnitude of the really large salaries, so it is much smaller.
(For example, the median would not change by a single cent if Alex Rodriguez made
$33 trillion instead of his measly $33 million, but the mean would increase to more than
$34 million.) 

In many situations like this, where the data are skewed to the right (a few extremely
large salaries not balanced by any extremely small salaries), most people would argue that
the median is a more representative measure of central tendency than the mean. However,
both are often quoted. And for variables that are not skewed in one direction or the other,
the mean and median are often quite close to one another.

The mode is the value that appears most often, and it can be calculated in Excel with
the MODE function. In most cases where a variable is essentially continuous, the mode is
not very interesting because it is often the result of a few lucky ties. However, the mode for
the salary data in Figure 2.10 is not a result of luck. Its value, $400,000, is evidently the
minimum possible salary set by the league. As shown in cell C4 (with a COUNTIF
formula), this value occurred 70 times. In other words, close to 10% of the players earn the
minimum possible salary. This is a good example of learning something you probably
didn’t know simply by exploring the data.

CHANGES IN EXCEL 2010

There are two new versions of the MODE function in Excel 2010: MODE.MULT and MODE.SNGL.

The latter is the same as the current MODE function.The MULT version returns multiple modes if

there are multiple modes.

Minimum, Maximum, Percentiles, and Quartiles

As you look at the values of some variable, it is natural to ask how many values are lower
than a particular value. For example, you might ask how many salaries are less than $1
million. In this subsection, you will come back to this question, but we first answer a
slightly different question: Given a certain percentage such as 25%, what is the salary
value such that this percentage of salaries is below it? This leads to percentiles and
quartiles. Specifically, for any percentage p, the pth percentile is the value such that a
percentage p of all values are less than it. Similarly, the first, second, and third quartiles
are the percentiles corresponding to p � 25%, p � 50%, and p � 75%. These three values
divide the data into four groups, each with (approximately) a quarter of all observations.

36 Chapter 2 Describing the Distribution of a Single Variable

For highly skewed data,
the median is typically
a better measure of
central tendency.The
median is unaffected
by the extreme values,
whereas the mean 
is very sensitive to
extreme values.
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(Note that the second quartile is equal to the median by definition.) To complete this
group of descriptive measures, we add the minimum and maximum values, with the
obvious meanings.

You are probably aware of percentiles from standardized tests. For example, if you
learn that your score in the verbal SAT test was at the 93rd percentile, this means that you
scored better than 93% of those taking the test.

The minimum and maximum can be calculated with Excel’s MIN and MAX func-
tions. For the percentiles and quartiles, you can use Excel’s PERCENTILE and QUAR-
TILE functions. The PERCENTILE function takes two arguments: the data range and a
value of p between 0 and 1. (It has to be between 0 and 1. For example, if you want the
95th percentile, you must enter the second argument as 0.95, not as 95.) The QUARTILE
function also takes two arguments: the data range and 1, 2, or 3, depending on which quar-
tile you want. Figure 2.10 shows the minimum, maximum, the three quartiles, and several
commonly requested percentiles for the baseball data. Note that at least 25% of the players
make within $20,000 of the league minimum, and more than a quarter of all players make
more than $4 million. In fact, more than 1% of the players make well over $18 million,
with Alex Rodriguez topping the list at $33 million. And they say it’s just a game!

Excel Tip Note the values in column C of Figure 2.10 for percentiles and quartiles. These
allow you to enter one formula for the percentiles and one for quartiles that can then be
copied down. Specifically, the formulas in cells B9 and B18 are 

�PERCENTILE(Data!$D$2:$D$819,C9)

and

�QUARTILE(Data!$D$2:$D$819,C18).

(Here, Data! is a reference to the worksheet that contains the data.) Always look for ways
to make your Excel formulas copyable. It saves time and it limits errors. And if you don’t
want the values in column C to be visible, just color them white.

CHANGES IN EXCEL 2010

Excel’s PERCENTILE and QUARTILE functions can give strange results when there are only a few

observations. For this reason, Microsoft added new functions in Excel 2010: PERCENTILE.EXC,

PERCENTILE.INC, QUARTILE.EXC, and QUARTILE.INC, where EXC and INC stand for exclusive

and inclusive.The INC functions work just like the old PERCENTILE and QUARTILE functions.

The EXC versions are recommended especially for a small number of observations.

Before continuing, let’s revisit the first question asked in this subsection. If you are
given a certain salary figure such as $1 million, how can you find the percentage of all
salaries less than this? This is essentially the opposite of a percentile question. In a
percentile question, you are given a percentage and you want to find a value. Now you are
given a value and you want to find a percentage. You can find this percentage in Excel by
dividing a COUNTIF by the total number of observations. A few such values are shown in
the bottom right of Figure 2.10. The typical formula in cell F14, which is then copied
down, is 

�COUNTIF(Data!$D$2:$D$819,"<"&E14)/COUNT(Data!$D$2:$D$819). 

The following Excel tip explains this formula in more detail.
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Excel Tip The condition in this COUNTIF formula is a bit tricky. You literally want it
to be “�1000000”, but you want the formula to refer to the values in column E to enable
copying. Therefore, you can concatenate (or string together) the literal part, “�”, and the
variable part, the reference to cell E14. The ampersand symbol (&) in the middle is
the symbol used to concatenate in Excel. This use of concatenation to join literal and
variable parts is especially useful in functions like COUNTIF that require a condition, so
don’t be afraid to use it.

Measures of Variability

If you learn that the mean (or median) salary in some company is $100,000, this tells you
something about the “typical” salary, but it tells you nothing about how spread out the
salaries are, that is, their variability. The percentiles and quartiles discussed in the previous
section certainly tell you something about variability. In fact, by knowing a lot of
percentiles, you know almost exactly how the data are spread out. (Just look at the list of
percentiles in Figure 2.10 and add a few more if you want to fill in the gaps.) In this sub-
section, we list a few measures that summarize variability even more. These include
the range, the interquartile range, the variance and standard deviation, and the mean
absolute deviation. None of these says as much about variability as a complete list of
percentiles, but they are very useful.

The range is a fairly crude measure of variability. It is defined as the maximum value
minus the minimum value. For the baseball salaries, this range is $32.6 million. It certainly
tells us how spread out the salaries are, but it is too sensitive to the extremes. For example, if
Alex Rodriguez’s salary increased to $43 million, the range would increase by $10 million—
just because of one player. A less sensitive measure is the interquartile range (abbreviated
IQR). It is defined as the third quartile minus the first quartile, so it is really the range of the
middle 50% of the data. For the baseball data, the IQR is $3,817,950. If you excluded the
25% of players with the lowest salaries and the 25% with the highest salaries, this IQR would
be the range of the remaining salaries.

The range or a modified range such as the IQR probably seems like a natural
measure of variability, but there is another measure that is quoted much more frequently:
the standard deviation. Actually, there are two totally related measures, variance and
standard deviation, and we will begin with a definition of variance. The variance is
essentially the average of the squared deviations from the mean, where if Xi is a typical
observation, its squared deviation from the mean is . As in our discussion of
the mean, there is a sample variance, denoted by s2, and a population variance,
denoted by �2 (where � is the Greek letter sigma). They are defined by the following
formulas:

1Xi - X22
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Formula for Sample Variance

(2.2)s2
=

a
n

i=1
1Xi - mean22

n - 1

Formula for Population Variance

(2.3)s2
=

a
n

i=1
1Xi - mean22

n
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Technical note It is traditional to use the capital letter N for the population size and n
for the sample size, but we won’t worry about this distinction in this chapter. Furthermore,
there is a technical reason why the sample variance uses n–1 in the denominator, not n, and
this will be explained in a later chapter. However, the difference is negligible when n is
large. Excel implements both of these formulas. You can use the VAR function to obtain the
sample variance (denominator n–1), and you can use the VARP function to obtain the
population variance (denominator n).

To understand why the variance is indeed a measure of variability, look at either for-
mula. If all of the observations are close to the mean, then their squared deviations from
the mean will be relatively small, and the variance will be relatively small. On the other
hand, if at least a few of the observations are far from the mean, then their squared devia-
tions from the mean will be large, and this will cause the variance to be large. Note that
because deviations from the mean are squared, an observation a certain amount below the
mean contributes the same amount to variance as an observation that same amount above
the mean.

There is a fundamental problem with variance as a measure of variability: It is hard to
interpret the variance numerically because it is in squared units. For example, if the
observations are measured in dollars, then variance is in squared dollars. To obtain a more
natural measure, we take the square root of variance. The result is called standard deviation.
Again, there are two versions of standard deviation. The sample standard deviation,
denoted by s, is the square root of the quantity in Equation (2.2). The population standard
deviation, denoted by �, is the square root of the quantity in Equation (2.3).

To calculate either standard deviation in Excel, you can first find the variance with the
VAR or VARP function and then take its square root, or you can find it directly with the
STDEV (sample) or STDEVP (population) function.

CHANGES IN EXCEL 2010

The functions for variance and standard deviation have been renamed in Excel 2010 to VAR.S,

VAR.P, STDEV.S, and STDEV.P. However, they work exactly like the old versions.

The data in Figure 2.11 should help clarify these concepts. It is in the file
Variability.xlsx. (It will help if you open this file and look at its formulas as you read
this.) The variable Diameter1 on the left has relatively low variability; its 10 values hover
closely around its mean of approximately 100 (found in cell A16 with the AVERAGE
function). To show how variance is calculated, we explicitly calculated the 10 squared
deviations from the mean in column B. Then either variance, sample or population, can be
calculated (in cells A19 and A22) as the sum of squared deviations divided by 9 or 10.
Alternatively, they can be calculated more directly (in cells B19 and B22) with Excel’s
VAR and VARP functions. Then either standard deviation, sample or population, can be
calculated as the square root of the corresponding variance or with Excel’s STDEV or
STDEVP functions.

The calculations are exactly the same for Diameter2 on the right. It also has mean
approximately equal to 100, but its observations vary much more around 100 than the obser-
vations for Diameter1. As expected, this increased variability is obvious in a comparison of
the variances and standard deviations.

This example also indicates why variability, along with measures of it, is important.
Imagine that you are about to buy 10 parts from one of two suppliers, and you want each
part’s diameter to be close to 100 centimeters. Furthermore, suppose that Diameter1 in
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the example represents 10 randomly selected parts from supplier 1, whereas Diameter2
represents 10 randomly selected parts from Supplier 2. You can see that both suppliers are
very close to the target of 100 on average, but the increased variability for Supplier 2
makes this supplier much less attractive. There is a famous saying in operations manage-
ment: Variability is the enemy. This example illustrates exactly what this saying means.

Empirical Rules for Interpreting Standard Deviation

Now you know how to calculate the standard deviation, but there is a more important ques-
tion: How do you interpret its value? Fortunately, the standard deviation often has a very
natural interpretation, which is why it is quoted so frequently. This interpretation can be
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F
Low variability hgiHreilppus  variability supplier

Diameter1 Sq dev from qS2retemaiDnaem  dev from mean
694438.912.301140016.616.201
693931.1466.39125013.0152.301
616374.23478.021106286.3143.69
695457.30162.011163502.4172.69
696970.79213.711163029.3177.301
633441.30132.011129207.654.79
651752.27845.07167803.322.89
639575.566335.93148304.767.201
613756.890122.331144313.265.101
698073.319.101146035.361.89

naeMnaeM
470.001930.001

Sample elpmaSecnairav  variance
3563.6373563.6378901.98901.9

 noitalupoPecnairav  variance
7827.2667827.2668891.88891.8

Sample standard elpmaSnoitaived  standard 
1631.721631.722810.32810.3

 standard noitalupoPnoitaived  standard 
5347.525347.524368.24368.2

Figure 2.11 Calculating Variance and Standard Deviation

Variability is usually 
the enemy. Being close
to a target value on
average  is not good
enough if there 
is a lot of variability
around this target.
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stated as three empirical rules. Namely, if the values of this variable are approximately
normally distributed (symmetric and bell-shaped), then the following rules hold:

(1) Approximately 68% of the observations are within one standard deviation of the
mean, that is, within the interval .

(2) Approximately 95% of the observations are within two standard deviations of the
mean, that is, within the interval .

(3) Approximately 99.7% of the observations—almost all of them—are within three
standard deviations of the mean, that is, within the interval .

Fortunately, many variables in real-world data are indeed approximately normally dis-
tributed, so these empirical rules correctly apply. (We will study the normal distribution in
much more depth in Chapter 5.)

X ; 3s

X ; 2s

X ; s
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These empirical rules
give a concrete mean-
ing to standard devia-
tion for symmetric ,
bell-shaped distri-
butions. However, they
tend to be much less
accurate for skewed
distributions.

FUNDAMENTAL INSIGHT

Usefulness of Standard Deviation

Variability is clearly an important property of any

numerical variable, and there are several measures

for quantifying the amount of variability. However,

standard deviation is by far the most popular such

measure. It is measured in the same units as the vari-

able, it has a long tradition, and, at least for many data

sets, it obeys the empirical rules discussed here.

These empirical rules give a very concrete meaning

to a standard deviation.

1
2
3
4
5

H I J K L M N O
Do empirical rules apply?

Lower endpoint Upper endpoint # below lower # above upper % below lower % above upper % between
Rule 1 ($1,104,004) $7,624,123 0 120 0% 14.67% 85.33%
Rule 2 ($5,468,068) $11,988,186 0 61 0% 7.46% 92.54%
Rule 3 ($9,832,131) $16,352,249.96 0 16 0% 1.96% 98.04%

Figure 2.12 Empirical Rules for Baseball Salaries

As an example, if the parts supplied by the suppliers in Figure 2.11 have diameters that
are approximately normally distributed, then the intervals in the empirical rules for supplier
1 are about 100 � 3, 100 � 6, and 100 � 9. Therefore, about 68% of this supplier’s parts
should have diameters from 97 to 103, 95% should have diameters from 94 to 106, and
almost none should have diameters below 91 or above 109. Obviously, the situation for sup-
plier 2 is much worse. With a standard deviation slightly larger than 25, the second empiri-
cal rule implies that about 1 out of every 20 of this supplier’s parts will be below 50 or
above 150. It is clear that supplier 2 has to do something to reduce its variability. In fact, this
is exactly what almost all suppliers are continuously trying to do: reduce variability.

Returning to the baseball data, Figure 2.10 indicates that the standard deviation of
salaries is slightly above $4.36 million. (The variance is shown, but because it is in squared
dollars, it is a huge value without a meaningful interpretation.) Can the empirical rules be
applied to these baseball salaries? The answer is that you can always try, but if the salaries
are not at least approximately normally distributed, the rules won’t be very accurate. And
because of obvious skewness in the salary data (due to the stars with astronomical salaries),
the assumption of a normal distribution is not a good one. 

Nevertheless, the rules are checked in Figure 2.12. For each of the three rules, the lower
and upper endpoints of the corresponding interval are found in columns I and J. Right away
there are problems. Because the standard deviation is larger than the mean, all three lower
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endpoints are negative, which automatically means that can be no salaries below them. But
continuing, the COUNTIF was used (again with concatenation) to find the number of salaries
above the upper endpoints in column L, and the corresponding percentages appear in column
N. Finally, subtracting columns M and N from 100% gives the percentages between the end-
points in column O. These three percentages, according to the empirical rules, should be about
68%, 95%, and 99.7%. Rules 2 and 3 are not way off, but rule 1 isn’t even close.

The point of these calculations is that even though the empirical rules give substantive
meaning to the standard deviation for many variables, they should be applied with caution,
especially when the data are clearly skewed.

Before leaving variance and standard deviation, you might ask why the deviations from
the mean are squared in the definition of variance. Why not simply take the absolute deviation
from the mean? For example, if the mean is 100 and two observations have values 95 and 105,
then each has a squared deviation of 25, but each has an absolute deviation of only 5. Wouldn’t
this latter value be a more natural measure of variability? Intuitively, it would, but there is a
long history in the field of statistics of using squared deviations. They have many nice theoret-
ical properties that are not shared by absolute deviations. Still, some analysts quote the mean
absolute deviation (abbreviated as MAD) as another measure of variability, particularly in
time series analysis. It is defined as the average of the absolute deviations. 
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Formula for Mean Absolute Deviation

(2.4)MAD =

a
n

i=1
ƒXi - X ƒ

n

Kurtosis is all about
extreme events—the
kind that occurred in
late 2008 and sent
Wall Street into a
panic .

There is another empirical rule for MAD: For many (but not all) variables, the standard
deviation is approximately 25% larger than MAD, that is, . Fortunately,
Excel has a little-known function, AVEDEV, that performs the calculation in Equation
(2.4). Using it for the baseball salaries in Figure 2.10, you can see that MAD is slightly
above $3.2 million. If this is multiplied by 1.25, the result is slightly over $4 million, 
which is indeed fairly close to the standard deviation.

Measures of Shape

There are two final measures of a distribution you will hear occasionally: skewness and kur-
tosis. Each of these has not only an intuitive meaning, but also a specific numeric measure.
We have already mentioned skewness in terms of the baseball salaries. It occurs because of a
lack of symmetry. A few stars have really large salaries, and no players have really small
salaries. Alternatively, the largest salaries are much farther to the right of the mean than the
smallest salaries are to the left of the mean. This lack of symmetry will be apparent from a
histogram of the salaries in the next section. We say that these salaries are skewed to the
right (or positively skewed) because the skewness is due to the really large salaries. If the
skewness were due to really small values (as might occur if we were examining temperature
lows in Antarctica), then we would call it skewness to the left (or negatively skewed).

In either case, there is a measure of skewness that can be calculated with Excel’s
SKEW function. For the baseball data, it is approximately 2.1, as shown in Figure 2.10.
You don’t need to know exactly what this value means. Simply remember that (1) it is pos-
itive when there is skewness to the right, (2) it is negative when there is skewness to the
left, (3) it is approximately zero when there is no skewness (the symmetric case), and
(4) its magnitude increases as the degree of skewness increases.

The other measure, kurtosis, has to do with the “fatness” of the tails of the distribution
relative to the tails of a normal distribution. Remember from the third empirical rule that a
normal distribution has almost all of its observations within three standard deviations of the
mean. In contrast, a distribution with high kurtosis has many more extreme observations.

s L 1.25MAD
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Is this important in reality? It certainly is. For example, many researchers believe the Wall
Street meltdown in late 2008 was at least partly due to financial analysts relying on the
normal distribution, whereas in reality the actual distribution had much fatter tails. More
specifically, financial analysts followed complex mathematical models that indicated really
extreme events would virtually never occur. Unfortunately, a number of extreme events did
occur, and they sent the economy into a deep recession.2

Although kurtosis can be calculated in Excel with the KURT function (it is about 5.1
for the baseball salaries), we won’t have any use for this measure in the book.
Nevertheless, when you hear the word kurtosis, think fat tails and extreme events. And if
you plan to work on Wall Street, you should definitely learn more about kurtosis.

Numerical Summary Measures in the Status Bar

You might have noticed that summary measures sometimes appear automatically in the
status bar at the bottom of your Excel window. The rule is that if you select multiple cells
(in a single column or even in multiple columns), selected summary measures appear for
the selected cells. (Nothing appears if only a single cell is selected.) These can be very
handy for quick lookups. Also, you can control the summary measures that appear by
right-clicking on the status bar and selecting your favorites.

2.4.2 Numerical Summary Measures with StatTools

In the previous subsection, we used Excel’s built-in functions (AVERAGE, STDEV, and
others) to calculate a number of summary measures. A much quicker way is to use
Palisade’s StatTools add-in. As we promised earlier, StatTools requires almost no learning
curve. After you go through this section, you will know everything you need to know to
continue using StatTools like a professional.
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2The popular book The Black Swan, by Nassim Nicholas Taleb (Random House, 2007), is all about extreme
events and the trouble they can cause.

E X A M P L E 2.3 BASEBALL SALARIES (CONTINUED)

Use the StatTools add-in to generate the same summary measures that were calculated
in the previous subsection.

Objective To learn the fundamentals of StatTools and use this add-in to generate summary
measures of baseball salaries.

Solution

Because this is your first exposure to StatTools, we must first explain how to get started.
StatTools is part of the Palisade DecisionTools Suite, and you have the free academic 
version of this suite as a result of purchasing the book. The explanations and screenshots
in the book are based on version 5.5 of the suite. (It is possible that by the time you are
reading this, you might have a later version.) In any case, you must install the suite before
you can use StatTools.

Once the suite is installed, you can load StatTools by double-clicking on the StatTools
item in the list of programs on the Windows Start menu. (It is in the Palisade group.)
If Excel is already running, this will load StatTools on top of Excel. If Excel isn’t running,
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this will launch Excel and load StatTools as well. You will know that StatTools is loaded
when you see the StatTools tab and ribbon, as shown in Figure 2.13. 

The buttons in the Analyses group on this ribbon are for performing the various statis-
tical analyses, many of which will be explained in the book. But before you can use these,
you need to know a few basic features of StatTools. ■
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Figure 2.13 StatTools Ribbon

Basic StatTools Features

1. There is an Application Settings item on the Utilities dropdown list. When you click
it, you get the dialog box in Figure 2.14. (All of the other add-ins in the Palisade suite
have a similar Application Settings item.) This is where you can change overall settings
of StatTools. You can experiment with these settings, but the only one you will proba-
bly ever need to change is the Reports Placement setting—where your results are
placed. The dropdown list in Figure 2.14 shows the four possibilities. We tend to prefer

Figure 2.14

Application Settings

Dialog Box
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the Active Workbook option (this places the results on a new worksheet) or the Query
for Starting Cell option (this lets you choose the cell where your results will start).

2. If you want to unload StatTools without closing Excel, you can choose the Unload
StatTools Add-In item from the Utilities dropdown list.

3. Although you probably won’t need it, there is plenty of online help, including exam-
ple spreadsheets, on the Help dropdown list.

4. This is the important one. Before you can perform any statistical analysis, you must
define a StatTools data set. You do this using the Data Set Manager button. Try it now.
With the Baseball Salaries 2009.xlsx file open, make sure your cursor is anywhere
within the data set, and click on the Data Set Manager button. You will first be asked
whether you want to add the range $A$1:$D$819 as a new StatTools data set. Click on
Yes. Then you will see the dialog box in Figure 2.15. StatTools makes several guesses
about your data set. They are generally correct, but you can always override them. First,
it gives your data set a generic name, such as Data Set #1. You can accept this or supply a
more meaningful name. The latter is especially useful if your file contains more than one
data set. Second, you can override the data range. (Note that this range should include the
variable names in row 1.) Third, the default layout is that variables are in columns, with
variable names in the top row. You should override these settings only in rare cases where
your data set has the roles of rows and columns reversed. (The Multiple button is for 
very unusual cases. We will not discuss it here.) Finally, if you want to apply some color
to your data set, you can check the Apply Cell Formatting option. (We generally don’t.) 
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Figure 2.15

Data Set Manager

Dialog Box
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For now, simply click on OK. You now have a StatTools data set, and you can begin the
analysis. Fortunately, this step has to be done only once. If you save the file and reopen it
at a later date, StatTools still remembers this data set. So when we said that StatTools has a
short learning curve, this is it—simply remember to designate a StatTools data set before
you begin any analysis.

Now that the preliminaries are over, you can quickly get the summary measures for
the Salary variable. To do so, select the One-Variable Summary item from the Summary
Statistics dropdown list. You will see the dialog box in Figure 2.16. (If you see two
columns of variables in the top pane, click on the Format button and select Stacked.) This
is a typical StatTools dialog box. In the top section, you can select a StatTools data set and
one or more variables. In the bottom section, you can select the measures you want. For
this example, we have chosen all of the measures. (In addition, you can add other
percentiles if you like.) Before you click on OK, click on the “double-check” button to the
left of the OK button. This brings up the Application Settings dialog box already shown in
Figure 2.14. This is your last chance to designate where you want to place the results.
(We chose Active Workbook, which means that the results are placed in a new worksheet
automatically named One Var Summary.)
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You must create a
StatTools data set with
the Data Set Manager
before you can perform
any analysis with
StatTools. But this
generally takes only a
few mouse clicks.

Figure 2.16

One Variable

Summary Dialog

Box

StatTools Tip In general, you might want to choose only your favorite summary
measures, such as mean, median, standard deviation, minimum, and maximum. This
requires you to uncheck all of the others. To avoid all of this unchecking in future analyses,
you can click on the Save button in the middle of the bottom left group. This saves your
choices as the defaults from then on.
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The results appear in Figure 2.17. If you compare these to the measures from Excel
functions in Figure 2.10, you will see some slight discrepancies in the percentiles and
quartiles. (The kurtosis is also quite different.) When Palisade developed StatTools, it did
not fully trust Excel’s statistical functions, so it developed its own based on best practices
from the statistical literature. In fact, if you click on any of the results, you will see
functions such as StatMean, StatStdDev, StatPercentile, and so on. Don’t be overly con-
cerned that the percentiles and quartiles don’t exactly match. Both sets provide the same
basic picture of how the salaries are distributed.
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8
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10
11
12
13
14
15
16
17
18
19
20
21
22
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24
25
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27
28
29
30
31
32
33

A B
Salary

One Variable Summary Data Set #1

Mean $3260059.28
Variance 19045050733784.30
Std. Dev. $4364063.56
Skewness 2.0996
Kurtosis 8.1266
Median $1150000.00
Mean Abs.Dev. $3205752.60
Minimum $400000.00
Maximum $33000000.00
Range $32600000.00
Count 818
Sum $2666728494.00
1st $419400.00
3rd $4250000.00

$3830600.00
1.00% $400000.00
2.50% $400000.00
5.00% $400000.00
10.00% $401000.00
20.00% $411000.00
80.00% $5500000.00
90.00% $10000000.00
95.00% $13000000.00
97.50% $15000000.00
99.00% $18750000.00

Figure 2.17

Summary Measures

for Salaries

Technical Note Why is there a discrepancy at all in the percentiles and quartiles?
Suppose, for example, that you want the 75th percentile (3rd quartile) and there are 818
observations. By definition, the 75th percentile is the value such that 75% of the values are
below it and 25% are above it. Now, 75% of 818 is 613.50. This suggests that you should
sort the 818 observations in increasing order and locate the 613th and 614th smallest. For
the baseball data, these salaries are $4,200,000 and $4,250,000. Excel reports the 75th

percentile as $4,237,500, whereas StatTools reports it as $4,250,000. In words, Excel
interpolates and StatTools doesn’t, but either is reasonable. As for kurtosis, Excel provides
an index that is 0 for a normal distribution, whereas StatTools returns a value 3 for a
normal distribution. So the two indexes differ by 3. (For what it’s worth, Wikipedia indi-
cates that either definition of kurtosis is acceptable.)
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There are three other things to note about the StatTools output. First, it formats the
results according to its own rules. If you would like fewer or more decimals or any other
formatting changes, you can certainly reformat in the usual way. Second, the fact that there
are formulas in these result cells indicates that they are “live.” If you go back to the data
and change any of the salaries, the summary measures will update automatically. This is
true for most, but not quite all, StatTools outputs. (Regression analysis, discussed in
Chapters 10 and 11, is the most important situation where the StatTools results are not
live.) Finally, if you open a file with StatTools outputs but StatTools is not loaded, you may
see #VALUE! errors in the cells. These can be fixed by closing the file, loading StatTools,
and opening the file again.

2.4.3 Charts for Numerical Variables

There are many graphical ways to indicate the distribution of a numerical variable, but the
two we prefer and will discuss in this subsection are histograms and box plots (also called
box-whisker plots). Each of these is useful primarily for cross-sectional variables. If they
are used for time series variables, the time dimension gets buried. Therefore, we will 
discuss time series graphs for time series variables separately in the next section.

Histograms

A histogram is the most common type of chart for
showing the distribution of a numerical variable. It
is based on binning the variable—that is, dividing
it up into discrete categories. The histogram is then
a column chart of the counts in the various cate-
gories (with no gaps between the bars). In general,
a histogram is great for showing the shape of a dis-
tribution. We are particularly interested in whether
the distribution is symmetric or is skewed in one
direction. The concept is a simple one, as illus-
trated in the following example with the baseball
salary data.
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If you open a file with
errors in StatTools
outputs, close the file,
load StatTools, and
reopen the file.

The term distribution
refers to the way the
data are distributed in
the various categories.
It is common to refer
to a skewed distri-
bution, say, rather than
a skewed histogram.
However, either term
can be used.

A histogram can be
created with Excel
tools only, but the
process is quite
tedious. It is much
easier to use StatTools.

Histograms Versus Summary Measures

It is important to remember that each of the sum-

mary measures we have discussed for a numerical

variable—the mean, the median, the standard devia-

tion, and others—describes only one aspect of a

numerical variable. In contrast, a histogram provides

the complete picture. It indicates the “center” of the

distribution, the variability, the skewness, and other

aspects, all in one convenient chart.

FUNDAMENTAL INSIGHT

E X A M P L E 2.3 BASEBALL SALARIES (CONTINUED)

We have already mentioned that the baseball salaries are skewed to the right. How
does this show up in a histogram of salaries?

Objective To see the shape of the salary distribution through a histogram.

Solution

It is possible to create a histogram with Excel tools only—no add-ins—but it is a tedious
process. First, the bins must be defined. If you do it yourself, you will probably choose
“nice” bins, such as $400,000 to $800,000, $800,000 to $1,200,000, and so on. But
there is also the question of how many bins there should be and what their endpoints
should be, and these are not always easy choices. In any case, once the bins have been
selected, the number of observations in each bin must be counted. This can be done in
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Excel with the COUNTIF function. (You can also use the COUNTIFS and FREQUENCY
functions, but we won’t discuss them here.) The resulting table of counts is usually called
a frequency table. Finally, a column chart of the counts must be created. If you are inter-
ested, we have indicated the steps in the Histogram sheet of the finished version of the
baseball file.

It is much easier to create a histogram with StatTools, as we now illustrate. As with all
StatTools analyses, the first step is to designate a StatTools data set, which has already
been done for the salary data. To create a histogram, select the Histogram item from the
Summary Graphs dropdown list to obtain the dialog box in Figure 2.18. At this point, all
you really need to do is select the Salary variable and click on OK. This gives you the
default bins, indicated by “auto” values. Essentially, StatTools checks your data and
chooses “good” settings for the bins. The resulting histogram, along with the bin data it is
based on, appears in Figure 2.19. StatTools has used 11 bins, with the endpoints indicated
in columns B and C. The histogram is then a column chart (with no gaps between the bars)
of the counts in column E. (These counts are also called frequencies.)
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Figure 2.18

StatTools Histogram

Dialog Box

You could argue that the bins chosen by StatTools aren’t very “nice.” For example,
the upper limit of the first bin is $3,363,636.36. If you want to fine-tune these, you
can enter your own bins instead of the “auto” values in Figure 2.18. We will illustrate
this in the next example, but it is largely beside the point for the main question about
baseball salaries. The StatTools default histogram shows very clearly that the salaries are
skewed to the right, and fine-tuning bins won’t change this primary finding. The vast
majority of the players are in the lowest two categories, and the salaries of the stars
account for the long tail to the right. This big picture finding is all you typically want
from a histogram.

When is it useful to fine-tune the StatTools histogram bins? One good example is
when the values of the variable are integers, as illustrated next.

In many situations, you
can accept the
StatTools defaults for
histogram bins.They
generally show the big
picture quite well,
which is the main goal.
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29
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31
32
33
34
35
36

A B C D E F G

Histogram Bin Min Bin Max Freq. Rel. Freq.Midpoint Prb. Density

Bin #1 $400000.00 $3363636.36 $1881818.18 574 0.7017 0.000000237
Bin #2 $3363636.36 $6327272.73 $4845454.55 102 0.1247 0.000000042
Bin #3 $6327272.73 $9290909.09 $7809090.91 49 0.0599 0.000000020
Bin #4 $9290909.09 $12254545.45 $10772727.27 43 0.0526 0.000000018
Bin #5 $12254545.45 $15218181.82 $13736363.64 32 0.0391 0.000000013
Bin #6 $15218181.82 $18181818.18 $16700000.00 8 0.0098 0.000000003
Bin #7 $18181818.18 $21145454.55 $19663636.36 7 0.0086 0.000000003
Bin #8 $21145454.55 $24109090.91 $22627272.73 2 0.0024 0.000000001
Bin #9 $24109090.91 $27072727.27 $25590909.09 0 0.0000 0.000000000
Bin #10 $27072727.27 $30036363.64 $28554545.45 0 0.0000 0.000000000
Bin #11 $30036363.64 $33000000.00 $31518181.82 1 0.0012 0.000000000

Salary / Data Set #1

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

Histogram of Salary / Data Set #1

37
38
39

$1
88

18
18

.1
8

$4
84

54
54

.5
5

$7
80

90
90

.9
1

$1
07

72
72

7.
27

$1
37

36
36

3.
64

$1
67

00
00

0.
00

$1
96

63
63

6.
36

$2
26

27
27

2.
73

$2
55

90
90

9.
09

$2
85

54
54

5.
45

$3
15

18
18

1.
82

Figure 2.19 Histogram of Salaries

E X A M P L E 2.4 LOST OR LATE BAGGAGE AT AIRPORTS

The file Late or Lost Baggage.xlsx contains information on 456 flights into an airport.
(This is not real data.) For each flight, it lists the number of bags that were either

late or lost. A sample is shown in Figure 2.20. What is the most natural histogram for this
data set?

Objective To fine-tune a histogram for a variable with integer counts.

Solution

From a scan of the data (sort from lowest to highest), it is apparent that all flights had from
0 to 8 late or lost bags. Therefore, the most natural histogram is one that shows the count
of each possible value. If you try using the default settings in StatTools, this is not what
you will get. However, if you fill in the Histogram dialog box as shown in Figure 2.21, you

■
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will get exactly what you want. The resulting histogram appears in Figure 2.22. Do you see
the trick? When you request 9 bins and set the min and max to �0.5 and 8.5, StatTools
divides the range from �0.5 to 8.5 into 9 equal-length bins: �0.5 to 0.5, 0.5 to 1.5, and on
up to 7.5 to 8.5. Of course, each bin contains only one possible value, the integer in the
middle. So you get the count of 0s, the count of 1s, and so on. As an extra benefit,
StatTools always labels the horizontal axis with the midpoints of the bins, which are
exactly the integers you want. (For an even nicer look, we formatted these horizontal axis
values with no decimals.)
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1 0

2 3
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6 2
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9 1
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11 3

12 4
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14 4

15 3

Figure 2.20

Data on Late or Lost

Baggage

Figure 2.21

Histogram Dialog

Box with Desired

Bins

For a quick analysis,
feel free to accept
StatTools’s automatic
histogram options.
However, don’t be
afraid to experiment
with these options in
defining your own bins.
The goal is to make
the histogram as
meaningful and easy 
to read as possible.
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The point of this example is that you do have control over the histogram bins if you are
not satisfied with the StatTools defaults. Just keep one technical detail in mind. If a bin
extends, say, from 2.7 to 3.4, then its count is the number of observations greater than 2.7
and less than or equal to 3.4. In other words, observations equal to the right endpoint are
counted, but observations equal to the left endpoint are not. (They would be counted in the
previous bin.) So in this example, if we had designated the minimum and maximum as
�1 and 8 in Figure 2.21, we would have gotten the same histogram. ■
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3.500 4.500 4.000 77 0.1689 0.17

5.500 6.500 6.000 23 0.0504 0.05
6.500 7.500 7.000 13 0.0285 0.03
7.500 8.500 8.000 0.00Bin #9
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Figure 2.22 Histogram of Counts

Box Plots

A box plot (also called a box-whisker plot) is an alternative type of chart for showing the
distribution of a variable. For the distribution of a single variable, a box plot is not nearly
as popular as a histogram, but as you will see in the next chapter, side-by-side box plots are
very popular for comparing distributions, such as salaries for men versus salaries for
women. As with histograms, box plots are “big picture” charts. They show you at a glance
some of the key features of a distribution. We explain how they do this in the following
continuation of the baseball salary example.
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E X A M P L E 2.3 BASEBALL SALARIES (CONTINUED)

Ahistogram of the salaries clearly indicated the skewness to the right. Does a box plot
of salaries indicate the same behavior?

Objective To illustrate the features of a box plot, particularly how it indicates skewness.

Solution

This time you must rely on StatTools. There is no easy way to create a box plot with Excel
tools only. Fortunately, it is easy with StatTools. Select the Box-Whisker Plot item from
the Summary Graphs dropdown list and fill in the resulting dialog box as in Figure 2.23—
there are no other choices to make. The box plot appears in Figure 2.24. (StatTools also
lists some mysterious values below the box plot. You can ignore these, but don’t delete
them. They are the basis for the box plot itself.)

Excel has no built-in
box plot chart type. In
this case, you must rely
on StatTools.

Figure 2.23

StatTools Box-

Whisker Plot 

Dialog Box

Box Plot of Salary / Data Set #1

0 5000000 10000000 15000000 20000000 25000000 30000000 35000000

Figure 2.24

Box Plot of Salaries
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To help you understand the elements of a box plot, StatTools provides the generic box
plot shown in Figure 2.25. (It is not drawn to scale.) You can get this by checking the Include
Key Describing Plot Elements option in Figure 2.23, although you will probably want to do
this only once or twice. As this generic diagram indicates, the box itself extends, left to right,
from the 1st quartile to the 3rd quartile. This means that it contains the middle half of the
data. The line inside the box is positioned at the median, and the x inside the box is posi-
tioned at the mean. The lines (whiskers) coming out either side of the box extend to 1.5 IQRs
(interquartile ranges) from the quartiles. These generally include most of the data outside the
box. More distant values, called outliers, are denoted separately with small squares. They are
hollow for “mild” outliers, and solid for “extreme” outliers, as indicated in the explanation.

54 Chapter 2 Describing the Distribution of a Single Variable

Figure 2.25

Elements of a

Generic Box Plot

The box plot of salaries in Figure 2.24 should now make more sense. It is typical of an
extremely right-skewed distribution. The mean is much larger than the median as we
explained earlier; there is virtually no whisker out of the left side of the box (because the
first quartile is barely above the minimum value—remember all the players earning
$400,000?), and there are many outliers to the right (the stars). In fact, many of these out-
liers overlap one another. You can decide whether you prefer the histogram of salaries to
this box plot or vice versa, but both are clearly telling the same story.

Box plots have been around for several decades, and they are probably more popular
now than ever. The implementation of box plots in StatTools is just one version of what
you might see. Some packages draw box plots vertically, not horizontally. Also, some vary
the height of the box to indicate some other feature of the distribution. (The height of the
box is irrelevant in StatTools’s box plots.) Nevertheless, they all follow the same basic
rules and provide the same basic information. ■

FUNDAMENTAL INSIGHT

Box Plots Versus Histograms

Box plots and histograms are complementary ways of

displaying the distribution of a numerical variable.

Although histograms are much more popular and are

arguably more intuitive, box plots are still informa-

tive. Besides, side-by-side box plots are very useful for

comparing two or more populations.
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P R O B L E M S

Level A

6. The file P02_06.xlsx lists the average time (in minutes)
it takes citizens of 379 metropolitan areas to travel to
work and back home each day.
a. Create a histogram of the daily commute times.
b. Find the most representative average daily

commute time across this distribution.
c. Find a useful measure of the variability of these

average commute times around the mean.
d. The empirical rule for standard deviations indicates

that approximately 95% of these average travel
times will fall between which two values? For this
particular data set, is this empirical rule at least
approximately correct?

7. The file P02_07.xlsx includes data on 204 employees
at the (fictional) company Beta Technologies. 
a. Indicate the data type for each of the six variables

included in this data set.
b. Create a histogram of the Age variable. How would

you characterize the age distribution for these
employees?

c. What proportion of these full-time Beta employees
are female?

d. Find appropriate summary measures for each of the
numerical variables in this data set.

e. For the Salary variable, explain why the empiri-
cal rules for standard deviations do or do not
apply.

8. The file P02_08.xlsx contains data on 500 shipments
of one of the computer components that a company
manufactures. Specifically, the proportion of items that
are defective is listed for each shipment. 
a. Create a histogram that will help a production

manager understand the variation of the proportion
of defective components in the company’s
shipments.

b. Is the mean or median the most appropriate measure
of central location for this data set? Explain your
reasoning.

c. Discuss whether the empirical rules for standard
deviations apply. Can you tell, or at least make an
educated guess, by looking at the shape of the
histogram? Why?

9. The file P02_09.xlsx lists the times required to service
200 consecutive customers at a (fictional) fast-foods
restaurant.
a. Create a histogram of the customer service times.

How would you characterize the distribution of
service times?

b. Calculate the mean, median, and first and third
quartiles of this distribution.

c. Which measure of central tendency, the mean or
the median, is more appropriate in describing this
distribution? Explain your reasoning.

d. Find and interpret the variance and standard devia-
tion of these service times.

e. Are the empirical rules for standard deviations
applicable for these service times? If not, explain
why. Can you tell whether they apply, or at least
make an educated guess, by looking at the shape of
the histogram? Why?

10. The file P02_10.xlsx contains midterm and final exam
scores for 96 students in a corporate finance course.
a. Create a histogram for each of the two sets of exam

scores.
b. What are the mean and median scores on each of

these exams?
c. Explain why the mean and median values are dif-

ferent for these data.
d. Based on your previous answers, how would you

characterize this group’s performance on the
midterm and on the final exam?

e. Create a new column of differences (final exam
score minus midterm score). A positive value
means the student improved, and a negative value
means the student did the opposite. What are the
mean and median of the differences? What does a
histogram of the differences indicate?

11. The file P02_11.xlsx contains data on 148 houses that
were recently sold in a (fictional) suburban community.
The data set includes the selling price of each house,
along with its appraised value, square footage, number of
bedrooms, and number of bathrooms.
a. Which of these variables are continuous? Which

are discrete?
b. Create histograms for the appraised values and selling

prices of the houses. How are these two distributions
similar? How are they different?

c. Find the maximum and minimum sizes (measured
in square footage) of all sample houses.

d. Find the house(s) at the 80th percentile of all sam-
ple houses with respect to appraised value. Find
the house(s) at the 80th percentile of all sample
houses with respect to selling price. 

e. What are the typical number of bedrooms and the
typical number of bathrooms in this set of houses?
How do you interpret the word “typical?”

12. The file P02_12.xlsx includes data on the 50 top
graduate programs in the United States, according to
a recent U.S. News & World Report survey.
a. Indicate the type of data for each of the 10 vari-

ables considered in the formulation of the overall
ranking.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



56 Chapter 2 Describing the Distribution of a Single Variable

b. Create a histogram for each of the numerical vari-
ables in this data set. Indicate whether each of
these distributions is approximately symmetric or
skewed. Which, if any, of these distributions are
skewed to the right? Which, if any, are skewed to
the left?

c. Identify the schools with the largest and smallest
annual out-of-state tuition and fee levels.

d. Find the annual out-of-state tuition and fee levels
at each of the 25th, 50th, and 75th percentiles for
these schools. For Excel 2010 users only, find these
percentiles using both the PERCENTILE.INC and
PERCENTILE.EXE functions. Can you explain
how and why they are different (if they are indeed
different)?

f. Create a box plot to characterize this distribution of
these MBA salaries. Is this distribution essentially
symmetric or skewed? If there are any outliers on
either end, which schools do they correspond to? Are
these same schools outliers in box plots of any of the
other numerical variables (from columns E to L)?

13. The file P02_13.xlsx contains the thickness (in cen-
timeters) of 252 mica pieces. A piece meets specifi-
cations if its thickness is between 7 and 15
centimeters. 
a. What fraction of mica pieces meets specifications?
b. Are the empirical rules for standard deviations at

least approximately valid for these data? Can you
tell, or at least make an educated guess, by looking
at a histogram of the data?

c. If the histogram of the data is approximately bell-
shaped and you want about 95% of the observations
to meet specifications, is it sufficient for the average
and standard deviation to be, at least approximately,
11 and 2 centimeters, respectively?

14. Recall that the file Supermarket Transactions.xlsx
contains over 14,000 transactions made by supermarket
customers over a period of approximately two years.
Using these data, create a box plot to characterize the
distribution of revenues earned from the given
transactions. Is this distribution essentially symmetric or
skewed? What if you restrict the box plot to transactions
in the food product family? 
(Hint: StatTools will not let you define a second data set
that is a subset of an existing data set. But you can copy
data for the second question to a second worksheet.)

15. Recall that the file Baseball Salaries 2009.xlsx contains
data on 818 MLB players as of May 2009. Using these
data, create a box plot to characterize the distribution of
salaries of all pitchers. Do the same for non-pitchers.
Summarize your findings. (See the hint in the previous
problem.)

16. The file P02_16.xlsx contains traffic data from 256
weekdays on four variables. Each variable lists the
number of vehicle arrivals to a tollbooth during a
specific five-minute period of the day. 
a. Create a histogram of each variable. How would

you characterize and compare these distributions?
b. Find a table of summary measures for these vari-

ables that includes (at least) the means, medians,
standard deviations, first and third quartiles, and
5th and 95th percentiles. Use these to compare the
arrival process at the different times of day.

Level B

17. The file P02_17.xlsx contains salaries of 200 recent
graduates from a (fictional) MBA program.
a. What salary level is most indicative of those earned

by students graduating from this MBA program
this year? 

b. Do the empirical rules for standard deviations
apply to these data? Can you tell, or at least make
an educated guess, by looking at the shape of the
histogram? Why?

c. If the empirical rules apply here, between which two
numbers can you be about 68% sure that the salary
of any one of these 200 students will fall?

d. If the MBA program wants to make a statement
such as “Some of our recent graduates started 
out making X dollars or more, and almost all of
them started out making at least Y dollars” for
their promotional materials, what values of X and
Y would you suggest they use? Defend your
choice.

e. As an admissions officer of this MBA program,
how would you proceed to use these findings to
market the program to prospective students?

18. The file P02_18.xlsx contains daily values of the
Standard & Poor’s 500 Index from 1970 to 2009. It
also contains percentage changes in the index from
each day to the next.
a. Create a histogram of the percentage changes and

describe its shape.
b. Check the percentage of these percentage

changes that are more than k standard deviations
from the mean for k � 1, 2, 3, 4, and 5. Are
these approximately what the empirical rules
indicate or are there “fat” tails? Do you think
this has any real implications for the financial
markets? (Note that we have discussed the
empirical rules only for k � 1, 2, and 3. 
For k � 4 and 5, they indicate that only 
0.006% and 0.0001% of the observations 
should be this distant from the mean.)

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.5 TIME SERIES DATA

If we are analyzing time series variables, summary measures such as means and standard
deviations and charts such as histograms and box plots often don’t make much sense. Our
main interest in time series variables is how they change over time, and this information is
lost in traditional summary measures and in histograms or box plots. Imagine, for example,
that you are interested in daily closing prices of a stock that has historically been between
20 and 60. If you create a histogram with a bin such as 45 to 50, you will get a count of all
daily closing prices in this interval—but you won’t have a clue of when they occurred. The
histogram is missing a key feature: time. Similarly, if you report the mean of a time series
such as the monthly Dow Jones average over the past 40 years, you will get a measure that
isn’t very relevant for the current and future values of the Dow.

Therefore, we turn to a different but very intuitive type of chart called a time series
graph. This is simply a graph of the values of one or more time series, using time on the
horizontal axis, and it is always the place to start a time series analysis. We illustrate some
possibilities in the following example.

2.5 Time Series Data 57

E X A M P L E 2.5 CRIME IN THE U.S.

The file Crime in US.xlsx contains annual data on violent and property crimes for the
years 1960 to 2007. Part of the data is listed in Figure 2.26. This shows the number of

crimes. The rates per 100,000 population are not shown, but they also appear in the file.
Are there any apparent trends in this data? If so, are the trends the same for the different
types of crimes?
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1960 179,323,175 288,460 9,110 17,190 107,840 154,320 3,095,700 912,100 1,855,400 328,200
1961 182,992,000 289,390 8,740 17,220 106,670 156,760 3,198,600 949,600 1,913,000 336,000
1962 185,771,000 301,510 8,530 17,550 110,860 164,570 3,450,700 994,300 2,089,600 366,800
1963 188,483,000 316,970 8,640 17,650 116,470 174,210 3,792,500 1,086,400 2,297,800 408,300
1964 191,141,000 364,220 9,360 21,420 130,390 203,050 4,200,400 1,213,200 2,514,400 472,800
1965 193,526,000 387,390 9,960 23,410 138,690 215,330 4,352,000 1,282,500 2,572,600 496,900
1966 195,576,000 430,180 11,040 25,820 157,990 235,330 4,793,300 1,410,100 2,822,000 561,200
1967 197,457,000 499,930 12,240 27,620 202,910 257,160 5,403,500 1,632,100 3,111,600 659,800
1968 199,399,000 595,010 13,800 31,670 262,840 286,700 6,125,200 1,858,900 3,482,700 783,600

Figure 2.26 Crime Data

Excel Tip Note the format of the variable names in row 1. If you have long variable
names, one possibility is to align them vertically and check the Wrap Text option. (These
are both available through the Format Cells command, which can be accessed by right-
clicking any cell.) With these changes, the row 1 labels are neither too tall nor too wide.

Objective To see how time series graphs help to detect trends in crime data.
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Solution

It is actually quite easy to create a time series graph with Excel tools only—no add-ins.
We illustrate the process in the Time Series worksheet of the finished version of
the crime file. But as usual, StatTools is a bit quicker and easier. We will illustrate a few
of the many time series graphs you could create from this data set. As usual, start by
designating a StatTools data set. Then select the Time Series Graph item from the
Time Series and Forecasting dropdown list. (Note that this item is not in the Summary
Graphs group.) The resulting dialog box appears in Figure 2.27. At the top, you can
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Figure 2.27

StatTools Time

Series Graph Dialog

Box

choose between a graph with a label and one without a label. The label is for time, so
if you have a time variable (in this case, Year), choose the “with label” option. This leads
to two columns of variables, one for the label (Lbl) and one for values (Val). Check Year
in the Lbl column and select one or more variables in the Val column. For this first
graph, we selected the Violent crime total and Property crime total variables to get
started.

When you select multiple Val variables, the first option at the bottom lets you plot all
variables in a single chart or create a separate chart for each. We chose the former.
Furthermore, when you select exactly two Val variables, you can use two different Y-axis
scales for the two variables. This is useful when they are of very different magnitudes, as is
the case for violent and property crimes, so we checked this option. (This option isn’t avail-
able if you select more than two Val variables. In this case, all are forced to share the same
Y-axis scale.) The resulting time series graph appears in Figure 2.28. The graph shows that
both types of crimes increased sharply until the early 1990s and have been gradually
decreasing since then.

However, the time series population in Figure 2.29 indicates that the U.S. population has
increased steadily since 1960, so it is possible that the trend in crime rates is different 

The whole purpose 
of time series graphs 
is to detect historical
patterns in the data.
In this crime example,
we are looking for
broad trends.
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than the trends in Figure 2.28. This is indeed true, as seen in Figure 2.30. It shows the good
news that the crime rate has been falling fairly rapidly since its peak in early 1990s.3

2.5 Time Series Data 59

3Why did this occur? One compelling reason was suggested by Levitt and Dubner in their popular book Freakonomics.
Read their somewhat controversial analysis to see if you agree.

Figure 2.28 Total Violent and Property Crimes

Figure 2.29 Population Totals
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StatTools Tip StatTools remembers your previous choices for any particular type of
analysis such as time series graphs. Therefore, if you run another analysis of the same
type, make sure to uncheck variables you don’t want in the current analysis.

Because it is so easy, we also created two more time series graphs that appear in
Figures 2.31 and 2.32. The first shows the crime rates for the various types of violent
crimes, whereas the second does the same for property crimes. The patterns (up, then down)
are similar for each type of crime, but they are certainly not identical. For example, the
larceny-theft and motor vehicle theft rates both peaked in the early 1990s, but the burglary
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Figure 2.30 Violent and Property Crime Rates

Figure 2.31 Rates of Violent Crime Types

Think about interesting
questions you might
ask about crime in the
U.S.These will lead
naturally to particular
time series graphs 
that help answer these
questions.
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rate was well in decline by this time. Finally, Figure 2.31 indicates one problem with having
multiple time series variables on a single chart—any variable with small values can become
swamped by variables with much larger values. It might be a good idea to create two sepa-
rate charts for these four variables, with murder and rape on one and robbery and aggravated
assault on the other. Then you could see the murder and rape patterns more clearly. ■
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Figure 2.32 Rates of Property Crime Types

As we mentioned earlier, traditional summary measures such as means, medians, and
standard deviations are often not very meaningful for time series data, at least not for the
original data. However, it is often useful to find differences or percentage changes in the
data from period to period and then report traditional measures of these. The following
example illustrates these ideas.

E X A M P L E 2.6 THE DJIA INDEX

The Dow Jones Industrial Average (DJIA or simply “the Dow”) is an index of 30 large
publicly traded U.S. stocks and is one of the most quoted stock indexes. The file 

DJIA Monthly Close.xlsx contains monthly values of the Dow from 1950 through 2009.
What is a useful way to summarize the data in this file?

Objective To find useful ways to summarize the monthly Dow data.

CHANGES IN EXCEL 2010

One new feature in Excel 2010 is the sparkline. This is a mini-chart embedded in a cell. Although it

applies to any kind of data, it is especially useful for time series data.Try the following.Open a file, such

as the problem file P03_30.xlsx, that has multiple time series, one per column.Highlight the cell below

the last time series value of the first time series, and click on the Line item in the Sparklines group on

the Insert ribbon. In the resulting dialog box, highlight the data in the first time series.You will get a mini-

time series graph in the cell.Now copy this cell across for the other time series, and increase the row

height to expand the graphs.Change any of the time series values to see how the sparklines change

automatically. We suspect that these instant-graph sparklines will become very popular.
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Solution

A time series graph and a few summary measures of the Dow appear in Figure 2.33. The
graph clearly shows a gradual increase through the early 1990s (except for Black Monday
in 1987), then a sharp increase through the rest of the 1990s, and finally huge swings in the
past decade. The mean (3222), the median (952), and any of the other traditional summary
measures are of historical interest at best.

In situations like this, it is useful to look at percentage changes in the Dow. These have
been calculated in the file and have been used to create the summary measures and time
series graph in Figure 2.34. The graph shows that these percentage changes have fluctuated
around zero, sometimes with wild swings (like Black Monday). Actually, the mean and
median of the percentage changes are slightly positive, about 0.64% and 0.85%, respectively.
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Time Series of Closing Value / Data Set #1Closing Value
Data Set #1 One Variable Summary 

Mean 3222.12
Std.Dev. 3840.15
Median 952.39

755.23
3913.42

Figure 2.33 Summary Measures and Graph of the Dow

Percentage Change
Data Set #1One Variable Summary

Mean 0.00638
Std.Dev. 0.04175
Median 0.00851
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Figure 2.34 Summary Measures and Graph of Percentage Changes of the Dow
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4One of the problems asks you to check whether all three of the empirical rules apply to similar stock price data.
The extreme tails are where there are some surprises.

P R O B L E M S

Level A

19. The file P02_19.xlsx lists annual percentage changes
in the Consumer Price Index (CPI) from 1914 through
2008. Find and interpret the first and third quartiles
and the interquartile range for these annual percentage
changes. Discuss whether these are even meaningful
summary measures for this time series data set.
Suppose that the data set listed the actual CPI values,
not percentage changes, for each year. Would the
quartiles and interquartile range be meaningful in this
case? Why or why not?

20. The Consumer Confidence Index (CCI) attempts to
measure people’s feelings about general business
conditions, employment opportunities, and their own
income prospects. Monthly average values of the CCI
are listed in the file P02_20.xlsx.
a. Create a time series graph of the CCI values.
b. Have U.S. consumers become more or less

confident through time? 
c. How would you explain recent variations in the

overall trend of the CCI?

21. The file P02_21.xlsx contains monthly interest rates
on 30-year fixed-rate mortgages in the United States
from 1977 to 2009. The file also contains rates on 
15-year fixed-rate mortgages from late 1991 to 2009.
What conclusion(s) can you draw from a time series
graph of these mortgage rates? Specifically, what has
been happening to mortgage rates in general, and how
does the behavior of the 30-year rates compare to the
behavior of the 15-year rates?

22. The file P02_22.xlsx contains annual trade balances
(exports minus imports) from 1980 to 2008.
a. Create a times series graph for each of the three

time series in this file.
b. Characterize recent trends in the U.S. balance of

trade figures using your time series graphs.

23. What has happened to the total number and average
size of farms in the United States since the middle 
of the 20th century? Answer this question by 
creating a time series graph of the data from the U.S.

Department of Agriculture in the file P02_23.xlsx. Is
the observed result consistent with your knowledge 
of the structural changes within the U.S. farming
economy?

24. Is educational attainment in the United States on the
rise? Explore this question by creating time series
graphs for each of the variables in the file P02_24.xlsx.
Comment on any observed trends in the annual
educational attainment of the general U.S. population
over the given period.

25. The monthly averages of the federal funds rate and the
bank prime loan rate are listed in the file P02_25.xlsx.
a. Describe the time series behavior of these two

variables. Can you discern any cyclical or other
patterns in the times series graphs of these key
interest rates?

b. Discuss whether it would make much sense,
especially to a person at the present time, to quote
traditional summary measures such as means or
percentiles of these series.

Level B

26. In which months of the calendar year do U.S. gasoline
service stations typically have their lowest retail sales
levels? In which months of the calendar year do the
service stations typically have their highest retail sales
levels? Create time series graphs for the monthly data in
the file P02_26.xlsx to respond to these two questions.
There are really two series, one of actual values and one
of seasonally adjusted values. The latter adjusts for any
possible seasonality, such as higher values in June and
lower values in January, so that any trends are more
apparent.

27. The file P02_27.xlsx contains monthly data for total
U.S. retail sales of building materials. There are really
two series, one of actual values and one of seasonally
adjusted values. The latter adjusts for any possible
seasonality, such as higher values in June and lower
values in January, so that any trends are more
apparent.

In addition, the quartiles show that 25% of the changes have been less than �1.65% and 25%
have been greater than 3.29%. Finally, the empirical rules indicate, for example, that about
95% of the percentage changes over this period have been no more than two standard devia-
tions (8.35%) from the mean. (You can check that the actual percentage within two standard
deviations of the mean is 95.41%, so this empirical rule applies very well.)4

■
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a. Is there an observable trend in these data? That is,
do the values of the series tend to increase or
decrease over time?

b. Is there a seasonal pattern in these data? If so, what
is the seasonal pattern?

28. The file P02_28.xlsx contains total monthly U.S. retail
sales data for a number of years. There are really two
series, one of actual sales and one of seasonally adjusted
sales. The latter adjusts for any possible seasonality,
such as higher sales in December and lower sales in
February, so that any trends are more apparent.

a. Create a graph of both time series and comment
on any observable trends, including a possible
seasonal pattern, in the data. Does seasonal
adjustment make a difference? How?

b. Based on your time series graph of actual sales,
make a qualitative projection about the total retail
sales levels for the next 12 months. Specifically, in
which months of the subsequent year do you
expect retail sales levels to be highest? In which
months of the subsequent year do you expect retail
sales levels to be lowest?

2.6 OUTLIERS AND MISSING VALUES

Most textbooks on data analysis, including this one, tend to use example data sets that are
“cleaned up.” Unfortunately, the data sets you are likely to encounter in your jobs are often
not so clean. Two particular problems you will encounter are outliers and missing data, the
topics of this section. There are no easy answers for dealing with these problems, but you
should at least be aware of the issues.

2.6.1 Outliers

An outlier is literally a value or an entire observation that lies well outside of the norm.
For the baseball data, Alex Rodriguez’s salary of $33 million is definitely an outlier. This
is indeed his correct salary—the number wasn’t entered incorrectly—but it is way beyond
what most players make. Actually, statisticians disagree on an exact definition of an
outlier. Going by the third empirical rule, you might define an outlier as any value
more than three standard deviations from the mean, but this is only a rule of thumb. Let’s
just agree to define outliers as extreme values, and then for any particular data set, you can
decide how extreme a value needs to be to be labeled an outlier.

Sometimes an outlier is easy to detect and deal with. For example, this is often the
case with data entry errors. Suppose a data set includes a Height variable, a person’s height
measured in inches, and you see a value of 720. This is certainly an outlier—and it is
certainly an error. Once you spot it, you can go back and check this observation to see what
the person’s height should be. Maybe an extra 0 was accidentally appended and the true
value is 72. In any case, this type of outlier can usually be fixed easily.

Sometimes a careful check of the variable values, one variable at a time, will not reveal
any outliers, but there still might be unusual combinations of values. For example, it would
be strange to find a person with Age equal to 10 and Height equal to  72. Neither of these
values is unusual by itself, but the combination is certainly unusual. Again, this would prob-
ably be a result of a data entry error, but it would be harder to spot. (The scatterplots dis-
cussed in the next chapter are useful for spotting unusual combinations.)

It isn’t always easy to detect outliers, but an even more important issue is what to do
about them. Of course, if they are due to data entry errors, they can be fixed, but what if
they are legitimate values like Alex Rodriguez’s salary? One or a few wild outliers like this
one can dominate a statistical analysis. For example, they can make a mean or standard
deviation much different than if the outliers were not present. 

For this reason, some people argue, rather naïvely, that outliers should be eliminated
before running statistical analyses. However, it is not appropriate to eliminate outliers
simply because the resulting analysis comes out “nicer” without them. There has to be a
legitimate reason for eliminating outliers, and such a reason sometimes exists. For example,
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suppose you want to analyze salaries of “typical” managers at your company. Then it is
probably appropriate to eliminate the CEO and possibly other high-ranking executives from
the analysis, arguing that they aren’t really part of the population of interest and would just
throw off the results. Or if you are interested in the selling prices of “typical” homes in some
community, it is probably appropriate to eliminate the few homes that sell for over $2 mil-
lion, again arguing that these are not the types of homes you are interested in.

Probably the best advice we can give for dealing with outliers is to run the analyses
two ways: with the outliers and without them. This way, you can report the results both
ways—and you are being honest.

2.6.2 Missing Values

There is no missing data in the baseball salary data set. All 818 observations have a value
for each of the four variables. For real data sets, however, this is probably the exception
rather than the rule. Most real data sets unfortunately have gaps in the data. This could be
because a person didn’t want to provide all the requested personal information (what
business is it of yours how old I am or whether I drink alcohol?), it could be because data
doesn’t exist (stock prices in the 1990s for companies that went public after 2000), or it
could be because some values are simply unknown. Whatever the reason, you will
undoubtedly encounter data sets with varying degrees of missing values.

As with outliers, there are two issues: how to detect missing values and what to do
about them. The first issue isn’t as trivial as you might imagine. For an Excel data set, you
might expect missing data to be obvious from blank cells. This is certainly one possibility,
but there are others. Perhaps surprisingly, missing data are coded in a variety of strange
ways. One common method is to code missing values with an unusual number such
as –9999 or 9999. Another method is to code missing values with a symbol such as – or *.
If you know the code (and it is often supplied in a footnote), then it is usually a good idea,
at least in Excel, to perform a global search and replace, replacing all of the missing value
codes with blanks.

The more important issue is what to do about missing values. One option is to simply
ignore them. Then you will have to be aware of how the software deals with missing values.
For example, if you use Excel’s AVERAGE function on a column of data with some missing
values, it will react the way you would hope and expect—it adds all the existing values and
divides by the number of existing values. StatTools reacts in the same way for all of the
measures discussed in this chapter (after alerting you that there are indeed missing values).
We will say more about how StatTools deals with missing data for other analyses in later
chapters. If you are using other statistical software such as SPSS or SAS, you should read its
online help to learn how its various statistical analyses deal with missing data.

Because this is such an important topic in real-world data analysis, researchers have
studied many ways of filling in the gaps so that the missing data problem goes away (or is
at least disguised). One possibility is to fill in all of the missing values in a column with the
average of the existing values in that column. Indeed, this is an option in some software
packages, but we don’t believe it is usually a very good option. (Is there any reason to
believe that missing values would be average values if they were known? Probably not.)
Another possibility is to examine the existing values in the row of any missing value. It is
possible that they provide some information on what the missing value should be. For
example, if a person is male, is 55 years old, has an MBA degree from Harvard, and has
been a manager at an oil company for 25 years, this should probably help to predict his
missing salary. (It probably isn’t below $100,000.) We will not discuss this issue any
further here because it is quite complex, and there are no easy answers. But be aware that
you will undoubtedly have to deal with missing data at some point in your jobs, either by
ignoring the missing values or by filling in the gaps in some way.

2.6 Outliers and Missing Values 65

One good way of
dealing with outliers is
to report results with
the outliers and
without them.
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2.7 EXCEL TABLES FOR FILTERING, SORTING, AND SUMMARIZING5

In this section, we introduce a great tool that was introduced in Excel 2007: tables. Tables
were somewhat available in previous versions of Excel, but they were never called tables
before, and some of the really useful features of Excel 2007 tables are new. 

It is useful to begin with some terminology and history. Earlier in this chapter, we dis-
cussed data arranged in a rectangular range of rows and columns, where each row is an
observation and each column is a variable, with variable names at the top of each column.

5This section indicates how powerful the Excel 2007 table filtering tools are. However, if you are interested in
more advanced filters or database (“D”) functions, see Chapter 2’s “Advanced Filter and Database Functions” on
this textbook’s Web site.

P R O B L E M S

Level A

29. The file P02_29.xlsx contains monthly percentages
of on-time arrivals at several of the largest U.S.
airports and all of the major airlines from 1988 
to 2008. The “By Airline” sheet contains a lot 
of missing data, presumably because some the
airlines were not in existence in 1988 and some 
went out of business before 2008. The “By 
Airport” sheet contains missing data only for Atlantic
City International Airport (and we’re not sure why).
a. Use StatTools to calculate summary measures

(means, medians, standard deviations, and any other
measures you would like to report) for each airline
and each airport. How does it deal with missing data?

b. Use StatTools to create histograms for a few of the
airports and a few of the airlines, including Atlantic
City International. How does it deal with missing
data?

c. Use StatTools to create time series graphs for a few
of the airports and a few of the airlines, including
Atlantic City International. How does it deal with
missing data?

d. Which airports and which airlines have done a
good job? Which would you like to avoid?

30. The Wall Street Journal CEO Compensation Study
analyzed CEO pay for many U.S. companies with fiscal
year 2008 revenue of at least $5 billion that filed their
proxy statements between October 2008 and March
2009. The data are in the file P02_30.xlsx. (Note: This
data set is a somewhat different CEO compensation data
set from the one used as an example in the next chapter.)
a. Create a new variable that is the sum of salary and

bonus, and create a box plot of this new variable.
b. As the box plot key indicates, mild outliers are

observations between 1.5 IQR (interquartile range)
and 3.0 IQR from the edge of the box, whereas
extreme outliers are greater than 3 IQR from the
edge of the box. Use these definitions to identify

the names of all CEOs who are mild outliers and
all those who are extreme outliers.

Level B

31. There is no consistent way of defining an outlier that
everyone agrees upon. For example, some people refer to
an outlier that is any observation more than three standard
deviations from the mean. Other people use the box plot
definition, where an outlier (moderate or extreme) is any
observation more than 1.5 IQR from the edges of the box,
and some people care only about the extreme box plot-
type outliers, those that are 3.0 IQR from the edges of the
box. The file P02_18.xlsx contains daily percentage
changes in the S&P 500 index over a four-year period.
Identify outliers—days when the percentage change 
was unusually large in either a negative or positive
direction—according to each of these three definitions.
Which definition produces the most outliers?

32. Sometimes it is possible that missing data are predictive
in the sense that rows with missing data are somehow
different from rows without missing data. Check this
with the file P02_32.xlsx, which contains blood pressures
for 1000 (fictional) people, along with variables that can
be related to blood pressure. These other variables have a
number of missing values, presumably because the
people didn’t want to report certain information. 
a. For each of these other variables, find the mean and

standard deviation of blood pressure for all people
without missing values and for all people with
missing values. Can you conclude that the presence
or absence of data for any of these other variables
has anything to do with blood pressure?

b. Some analysts suggest filling in missing data for a
variable with the mean of the nonmissing values for
that variable. Do this for the missing data in the blood
pressure data. In general, do you think this is a valid
way of filling in missing data? Why or why not?
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Informally, we refer to such a range as a data set. In fact, this is the technical term used by
StatTools. In previous versions of Excel, data sets were called lists, and Excel provided
several tools for dealing with lists. In Excel 2007, recognizing the importance of data sets,
Microsoft made them much more prominent and provided even better tools for analyzing
them. Specifically, you now have the ability to designate a rectangular data set as a table
and then employ a number of new and powerful tools for analyzing tables. These tools
include filtering, sorting, and summarizing.

We illustrate Excel tables in the following example. Before proceeding, however, we
mention one important caveat. Some of the tools discussed in this section will not work on
an Excel file in the old .xls format. Therefore, we purposely illustrate them on files saved
in the new .xlsx format (new to Excel 2007).
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E X A M P L E 2.7 HYTEX’S CUSTOMER DATA

The file Catalog Marketing.xlsx contains data on 1000 customers of HyTex, a (fic-
tional) direct marketing company, for the current year. A sample of the data appears in

Figure 2.35. The variables are defined as follows.

1
2
3
4
5
6
7
8
9

10
11

A B C D E F G H I J K L M N O
Person Age Gender OwnHome Married Close Salary Children History Catalogs Region State City FirstPurchase AmountSpent

1 1 0 0 0 1 $16,400 1 1 12 South Florida Orlando 10/23/2003 $218
2 2 0 1 1 0 $108,100 3 3 18 Midwest Illinois Chicago 5/25/2001 $2,632
3 2 1 1 1 1 $97,300 1 NA 12 South Florida Orlando 8/18/2007 $3,048
4 3 1 1 1 1 $26,800 0 1 12 East Ohio Cleveland 12/26/2004 $435
5 1 1 0 0 1 $11,200 0 NA 6 Midwest Illinois Chicago 8/4/2007 $106
6 2 0 0 0 1 $42,800 0 2 12 West Arizona Phoenix 3/4/2005 $759
7 2 0 0 0 1 $34,700 0 NA 18 Midwest Kansas Kansas City 6/11/2007 $1,615
8 3 0 1 1 0 $80,000 0 3 6 West California San Francisco 8/17/2001 $1,985
9 2 1 1 0 1 $60,300 0 NA 24 Midwest Illinois Chicago 5/29/2007 $2,091

10 3 1 1 1 0 $62,300 0 3 24 South Florida Orlando 6/9/2003 $2,644

Figure 2.35 HyTex Customer Data

■ Age: coded as 1 for 30 or younger, 2 for 31 to 55, 3 for 56 or older
■ Gender: coded as 1 for males, 0 for females
■ OwnHome: coded as 1 if the customer owns a home, 0 otherwise
■ Married: coded as 1 if the customer is currently married, 0 otherwise
■ Close: coded as 1 if the customer lives reasonably close to a shopping area that sells

similar merchandise, 0 otherwise
■ Salary: combined annual salary of the customer and spouse (if any)
■ Children: number of children living with the customer
■ History: coded as “NA” if the customer had no dealings with HyTex before this year, 

1 if the customer was a low-spending customer last year, 2 if medium-spending, 
3 if high-spending

■ Catalogs: number of catalogs sent to the customer this year
■ FirstPurchase: date of the customer’s first purchase with HyTex
■ AmountSpent: total amount of purchases made by the customer this year

In addition, the variables Region, State, and City indicate where the customer resides.
HyTex wants to find some useful and quick information about its customers by using an
Excel table. How can it proceed?

Objective To illustrate Excel tables for analyzing the HyTex data.
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Solution

The range A1:O1001 is in the form of a data set—it is a rectangular range bounded by
blank rows and columns, where each row is an observation, each column is a variable, and
variable names appear in the top row. Therefore, it is a candidate for an Excel table.
However, it doesn’t benefit from the new table tools until you actually designate it as a
table. To do so, select any cell in the data set, click on the Table button in the left part of the
Insert ribbon (see Figure 2.36), and accept the default options. (An alternative way to
designate an Excel table is to select any of the options on the Format as Table dropdown
list on the Home ribbon.) Two things happen. First, the data set is designated as a table, it
is formatted nicely, and a dropdown arrow appears next to each variable name, as shown in
Figure 2.37. Second a new Table Tools Design ribbon becomes available (see Figure 2.38).
This ribbon is available any time the active cell is inside a table. Note that the table is
named Table1 by default (if this is the first table). However, you can change this to a more
descriptive name if you like.

68 Chapter 2 Describing the Distribution of a Single Variable

Figure 2.36 Insert Ribbon with Table Button

Figure 2.37 Table with Dropdown Arrows Next to Variable Names

Figure 2.38 Table Tools Design Ribbon
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One handy feature of Excel tables is that the variable names remain visible even when
you scroll down the screen. Try it to see how it works. When you scroll down far enough
that the variable names would disappear, the column headers, A, B, C, and so on, change to
the variable names. Therefore, you no longer need to freeze panes or split the screen to see
the variable names. However, this works only when the active cell is within the table. If
you click outside the table, the column headers revert back to A, B, C, and so on.

The dropdown arrows next to the variable names allow you to filter in many different
ways. For example, click on the OwnHome dropdown list, uncheck the Select All option,
and check the 1 option. This filters out all customers except those who own their own
home. Filtering is discussed in much more detail later on, but at this point, just be aware
that filtering does not delete any observations; it only hides them. There are three indica-
tions that the table has been filtered: (1) the row numbers are colored blue and some are
missing; (2) a message appears at the bottom of the screen indicating that only 516 out of
1000 records are visible; and (3) there is a filter icon next to the OwnHome dropdown
arrow. It is easy to remove this filter by opening the OwnHome dropdown list and select-
ing Clear Filter (but don’t do so yet).

As illustrated in Figure 2.38, there are various options you can apply to tables, includ-
ing the following:

■ A number of table styles are available for making the table attractive. You can experi-
ment with these, including the various table styles and table style options. Note the
dropdown list in the Table Styles group. It gives you many more styles than the seven
originally visible. In particular, at the top left of options, there is a “no color” style
you might prefer.

■ In the Tools group, you can click on Convert to Range. This undesignates the range
as a table (and the dropdown arrows disappear).

■ In the Properties group, you can change the name of the table. You can also click on
the Resize Table button to expand or contract the table range.

■ A particularly useful option is the Total Row in the Table Style Options group. If
you check this, a new row is appended to the bottom of the table (see Figure 2.39).
It creates a sum formula in the rightmost column.6 This sum includes only the non-
hidden rows. To prove this to youself, clear the OwnHome filter and check the sum.
It increases to $1,216,768. This total row is quite flexible. First, you can summarize
the last column by a number of summary measures, such as Average, Max, Min,
Count, and others. To do so, select cell O1002 and click on the dropdown list that
appears. Second, you can summarize any other column in the table in the same way.
For example, if you select cell G1002, a dropdown list appears for Salary, and you
can then summarize Salary with the same summarizing options.

2.7 Excel Tables for Filtering, Sorting, and Summarizing 69

Figure 2.39 Total Row

6The actual formula is =SUBTOTAL(109,[AmountSpent]), where 109 is a code for summing. However, you
never need to type any such formula; you can choose the summary function you want from the dropdown list.

The Total row in an
Excel table sum-
marizes only the 
visible data.The data
that has been filtered
out is ignored.
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Excel tables have a lot of built-in intelligence. Although there is not enough space here to
give a full account, try the following to see what we mean:

■ In cell R2 (or any cell in row 2 outside the table), enter a formula by typing an
equals sign, pointing to cell O2, typing a divide sign (/), and pointing to cell G2. 
You do not get the usual formula =O2/G2. Instead you get =Table1[[#This
Row],[AmountSpent]]/Table1[[#This Row],[Salary]]. This is certainly not the
Excel syntax you are used to, and it is pretty ugly, but it makes perfect sense.

■ Similarly, you can expand the table with a new variable, such as the ratio of
AmountSpent to Salary. Start by typing the variable name Ratio in cell P1. Then
in cell P2, enter a formula exactly as you did in the previous bullet. You will notice
two things. First, as soon as you enter the Ratio label, column P becomes part of
the table. Second, as soon as you enter the new formula in one cell, it is copied to all
of column P. This is what we mean by table intelligence.

■ We saved the best for last. Excel tables expand automatically as new rows are added
to the bottom or new columns are added to the right. (You saw this latter behavior in
the previous bullet.) To appreciate the benefit of this, suppose you have a monthly
time series data set. You designate it as a table and then build a line chart from it to
show the time series behavior. Later on, if you add new data to the bottom of the
table, the chart will automatically update to include the new data. This is a great fea-
ture. In fact, when we discuss pivot tables in the next chapter, we will recommend
always basing them on tables, not ranges. Then they too will update automatically
when new data is added to the table. ■
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2.7.1 Filtering

We now discuss ways of filtering data sets—that is, finding records that match particular
criteria. Before getting into details, there are two aspects of filtering you should be aware
of. First, this section is concerned with the types of filters called AutoFilter in previous
versions of Excel (2003 and earlier). The term AutoFilter implied that these were very
simple filters, easily learned in a few minutes. If you wanted to do any complex filtering,
you had to move beyond AutoFilter to Excel’s Advanced Filter tool. Excel 2007 still has
Advanced Filter. However, the term AutoFilter has been changed to Filter to indicate that
these “easy” filters are now more powerful than the old AutoFilter. Fortunately, they are
just as easy as AutoFilter.

Second, one way to filter is to create an Excel table, as indicated in the previous
subsection. This automatically provides the dropdown arrows next to the field names that
allow you to filter. Indeed, this is the way we will filter in this section: on an existing table.
However, a designated table is not required for filtering. You can filter on any rectangular
data set with variable names. There are actually three ways to do so. For each method, the
active cell should be a cell inside the data set.

(1) Use the Filter button from the Sort & Filter dropdown list on the Home ribbon.

(2) Use the Filter button from the Sort & Filter group on the Data ribbon.

(3) Right-click on any cell in the table and choose the Filter option. You get several
options, the most popular of which is Filter by Selected Cell’s Value. For example, if
the selected cell has value 1 and is in the Children column, then only customers with
a single child will remain visible. (This behavior should be familiar to Access users.)

The point is that Microsoft realizes how important filtering is to Excel users.
Therefore, they have made filtering a very prominent and powerful tool in Excel 2007.

Filtering is certainly
possible without using
Excel tables, but there
are definitely advan-
tages to filtering with
Excel tables.
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As far as we can tell, the two main advantages of filtering on a table, as opposed to the
three options just listed, are the nice formatting (banded rows, for example) provided by
tables, and, more importantly, the totals row. If this totals row is showing, it summarizes
only the visible records; the hidden rows are ignored.

We now continue Example 2.7 to illustrate a number of filtering possibilities. Unlike
some “how to” Excel books, we won’t lead you through a lot of descriptions and screen-
shots. Once you know the possibilities that are available, you should find them extremely
easy to use.
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E X A M P L E EXAMPLE 2.7 HYTEX’S CUSTOMER DATA (CONTINUED)

The HyTex company wants to analyze its customer data by applying one or more filters
to the data. It has already designated the data set as an Excel table. What types of

filters might be useful?

Objective To investigate the types of filters that might be applied to the HyTex data.

Solution

There is almost no limit to the filters you can apply, but here are a few possibilities.

■ Filter on one or more values in a field. Click on the Catalogs dropdown arrow. 
You will see five checkboxes, all checked: Select All, 6, 12, 18, and 24. To select 
one or more values, uncheck Select All and then check any values you want to filter
on, such as 6 and 24. In this case, only customers who received 6 or 24 catalogs 
will remain visible. (In Excel 2003 and earlier, it wasn’t possible to select more than
one value this way. Now it’s easy.)

■ Filter on more than one field. With the Catalogs filter still in place, create a filter
on some other field, such as customers with one child. When there are filters on
multiple fields, only records that meet all of the criteria are visible, in this case
customers with one child who received 6 or 24 catalogs.

■ Filter on a continuous numerical field. The Salary and AmountSpent fields are
basically continuous fields, so it would not make much sense to filter on one or a few
particular values. However, it does make sense to filter on ranges of values, such as
all salaries greater than $75,000. This is easy. Click on the dropdown arrow next to
Salary and select Number Filters. You will see a number of obvious possibilities,
including Greater Than.

■ Top 10 and Above/Below Average filters. Continuing the previous bullet, the
Number Filters include Top 10, Above Average, and Below Average options. These
are particularly useful if you like to see the highs and the lows. The Above Average
and Below Average filters do exactly what their names imply. The Top 10 filter is
actually more flexible than its name implies. It can be used to select the top n items
(where you can choose n), the bottom n items, the top n percent of items, or the
bottom n percent of items. Note that if a Top 10 filter is used on a text field, the
ordering is alphabetical. If it is used on a date field, the ordering is chronological.

■ Filter on a text field. If you click on the dropdown arrow for a text field such as
Region, you can choose one or more of its values, such as East and South, to filter
on. You can also select the Text Filters item, which provides a number of choices,
including Begins With, Ends With, Contains, and others. For example, if there were

The number of ways
you can filter with
Excel’s newest tools is
virtually unlimited.
Don’t be afraid to
experiment.You can
always clear filters to
get back to where you
started.
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an Address field, you could use the Begins With option to find all addresses that
begin with P.O. Box.

■ Filter on a date field. Excel 2007 has great built-in intelligence for filtering on
dates. If you click on the FirstPurchase arrow, you will see an item for each year in
the data set with plus signs next to them. By clicking on the plus signs, you can drill
down to months and then days for as much control as you need. Figure 2.40 shows
one possibility, where we have filtered out all dates except the last part of July 2007.
In addition, if you click on the Date Filters item, you get a number of possibilities,
such as Yesterday, Next Week, Last Month, and many others. There aren’t many
possibilities regarding dates that Microsoft hasn’t included.
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Figure 2.40

Filtering on a Date

Variable

■ Filter on color or icon. Excel 2007 has many ways to color cells or put icons in cells.
Often the purpose is to denote the sizes of the numbers in the cells, such as red for small
numbers and green for large numbers. We won’t cover the possibilities in this book, but
you can experiment with Conditional Formatting on the Home ribbon. The point is that
cells are often colored in certain ways or contain certain icons. Therefore, Excel 2007
allows you to filter on background color, font color, or icon. For example, if certain
salaries are colored yellow, you can isolate them by filtering on yellow. We are not sure
how often this feature will be used, but it is available and easy to use.
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■ Use a custom filter. If nothing else works, you can try a custom filter, available at
the bottom of the Number Filters, Text Filters, and Date Filters lists. Figures 2.41
and 2.42 illustrate two possibilities. The first of these filters out all salaries between
$25,000 and $75,000. Without a custom filter, this wouldn’t be possible. The second
uses the * wildcard to find regions ending in est (West and Midwest). Admittedly,
this is an awkward way to perform this filter, but it indicates how flexible custom
filters can be.
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Figure 2.41

Custom Filter for

Salary

Figure 2.42

Custom Filter for

Region

We remind you once again that if you filter on an Excel table and you have summary mea-
sures in a total row at the bottom of the table, these summary measures are based only on
the filtered data; they ignore the hidden rows.

One final comment about filters is that when you click on the dropdown arrow for any
variable, you always get three items at the top for sorting, not filtering (see Figure 2.40, for
example). These allow you to perform the obvious sorts, from high to low or vice versa,
and they even allow you to sort on color. As with filtering, you do not need to designate an
Excel table to perform sorting (the popular A-Z and Z-A buttons work just fine without
tables), but sorting is made even easier with tables.

Now that you know the possibilities, here is one particular filter you can try.
Suppose HyTex wants information about all middle-aged married customers with at
least two children who have above average salaries, own their own home, and live in
Indiana or Kentucky. We imagine that you can run this filter in a few seconds. The result,
sorted in decreasing order of AmountSpent and shown in Figure 2.43, indicates that the
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average salary for these 10 customers is $84,750, and their total amount spent at HyTex
is $1,4709. (We summarized Salary by average and AmountSpent by sum in the totals
row.) ■
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Figure 2.43 Results from a Typical Filter

P R O B L E M S

Level A

33. The file P02_03.xlsx contains data from a survey of
399 people regarding an environmental policy. Use
filters for each of the following.
a. Identify all respondents who are female, middle-

aged, and have two children. What is the average
salary of these respondents?

b. Identify all respondents who are elderly and
strongly disagree with the environmental policy.
What is the average salary of these respondents?

c. Identify all respondents who strongly agree with
the environmental policy. What proportion of these
individuals are young?

d. Identify all respondents who are either (1) middle-
aged men with at least one child and an annual
salary of at least $50,000, or (2) middle-aged
women with two or fewer children and an annual
salary of at least $30,000. What are the mean and
median salaries of the respondents who meet these
conditions? What proportion of the respondents
who satisfy these conditions agree or strongly
agree with the environmental policy?

34. The file P02_07.xlsx includes data on 204 employees
at the (fictional) company Beta Technologies. Use
filters for each of the following.
a. Identify all employees who are male and have

exactly 4 years of post-secondary education. What
is the average salary of these employees?

b. Find the average salary of all female employees
who have exactly 4 years of post-secondary educa-
tion. How does this mean salary compare to the
one obtained in part a?

c. Identify all employees who have more than 4 years
of post-secondary education. What proportion of
these employees are male?

d. Identify all full-time employees who are either
(1) females between the ages of 30 and 50 (inclu-
sive) with at least 5 years of prior work experience,
at least 10 years of prior work experience at Beta,
and at least 4 years of postsecondary education; or
(2) males between the ages of 40 and 60 (inclusive)
with at least 6 years of prior work experience, at
least 12 years of prior work experience at Beta, and
at least 4 years of postsecondary education. 

e. For those employees who meet the conditions spec-
ified in part d, compare the mean salary of the
females with that of the males. Also, compare the
median salary of the female employees with that
of the male employees.

f. What proportion of the full-time employees identi-
fied in part d earns less than $50,000 per year?

35. The file P02_35.xlsx contains (fictional) data from a
survey of 500 randomly selected households. Use
Excel filters to answer the following questions.
a. What are the average monthly home mortgage

payment, average monthly utility bill, and average
total debt (excluding the home mortgage) of all
homeowners residing in the southeast sector of 
the city?

b. What are the average monthly home mortgage pay-
ment, average monthly utility bill, and average
total debt (excluding the home mortgage) of all
homeowners residing in the northwest sector of the
city? How do these results compare to those found
in part a?
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2.8 CONCLUSION

The summary measures, charts, and tables we have discussed in this chapter are extremely
useful for describing variables in data sets. We call the methods in this chapter (and the next
chapter) exploratory methods because they allow you to explore the characteristics of the
data and at least tentatively answer interesting questions. Most of these tools have been avail-
able for many years, but with the powerful software now accessible to virtually everyone,
the tools can be applied quickly and easily to gain insights. We can promise that you will be
using many if not all of these tools in your jobs. Indeed, the knowledge you gain from these
early chapters is arguably the most valuable knowledge you will gain from the book.

To help you remember which analyses are appropriate for different questions and dif-
ferent data types, and which tools are useful for performing the various analyses, we have
created the taxonomy in the file Data Analysis Taxonomy.xlsx. (It doesn’t fit nicely on
the printed page.) Feel free to refer back to the diagram in this file as you learn the tools in
this chapter and the next chapter.
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c. What is the average annual income of the first
household wage earners who rent their home
(house or apartment)? How does this compare to
the average annual income of the first household
wage earners who own their home?

d. What proportion of the surveyed households con-
tains a single person who owns his or her home?

36. Recall that the file Supermarket Transactions.xlsx
contains over 14,000 transactions made by super-
market customers over a period of approximately two
years. Use Excel filters to answer the following
questions.
a. What proportion of these transactions are made by

customers who are married?
b. What proportion of these transactions are made by

customers who do not own a home?
c. What proportion of these transactions are made by

customers who have at least one child?

d. What proportion of these supermarket customers
are single and own a home?

Level B

37. The file P02_35.xlsx contains (fictional) data from a
survey of 500 randomly selected households. Use
Excel filters to answer the following questions.
a. Identify households that own their home and have

a monthly home mortgage payment in the top quar-
tile of the monthly payments for all households.

b. Identify households with monthly expenditures on
utilities that are within two standard deviations of
the mean monthly expenditure on utilities for all
households.

c. Identify households with total indebtedness
(excluding home mortgage) less than 10% of the
household’s primary annual income level.

Summary of Key Terms

Term Explanation Excel Pages Equation
Population Includes all objects of interest in a study— 24

people, households, machines, etc.

Sample Representative subset of population, 24
usually chosen randomly

Variable (or field) Attribute or measurement of members
of a population, such as height, gender,
or salary

Observation (or List of all variable values for a single 25
record or case) member of a population

Data set (Usually) a rectangular array of data, with 25
variables in columns, observations in rows,
and variable names in the top row

(continued)
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Summary of Key Terms (Continued)

Term Explanation Excel Pages Equation
Data type Several categorizations are possible: 25

numerical versus categorical, discrete 
versus continuous, cross-sectional 
versus time series; categorical can be nominal 
or ordinal

Dummy variable A variable coded 1 or 0: 1 for observations 28
in a category, 0 for observations not in the 
category

Binned (or discretized) Numerical variable that has been categorized 28
variable into discrete categories called bins

Counts of categories Numbers of observations in various COUNTIF function 30
categories 

StatTools Palisade add-in for data analysis in Excel StatTools 34
ribbon

Mean Average of observations AVERAGE or 35 2.1
StatTools

Median Middle observation after sorting MEDIAN or 35
StatTools

Mode Most frequent observation MODE 35

Percentiles Values that have specified percentages PERCENTILE 36
of observations below them or StatTools

Quartiles Values that have 25%, 50%, or 75% of QUARTILE or 36
observations below them StatTools

Minimum Smallest observation MIN or StatTools 37

Maximum Largest observation MAX or StatTools 37

Concatenate String together two or more pieces & character 38
of text (or CONCATENATE)

Range Difference between largest and smallest MAX, MIN, or 38
observations StatTools

Interquartile range Difference between first and third QUARTILE functions  38
(IQR) quartiles or StatTools

Variance Measure of variability; essentially the VAR (or VARP) 38 2.2, 2.3
average of squared deviations from or StatTools
the mean 

Standard Measure of variability in same units STDEV (or STDEVP) 39
deviation as observations; square root of variance or StatTools

Empirical rules Rules that specify approximate percentage 41
observations within one, two, or three standard
deviations of mean for bell-shaped 
distributions

Mean absolute Another measure of variability; average AVEDEV or 42 2.4
Deviation (MAD) of absolute deviations from the mean StatTools

Skewness When one tail of a distribution is SKEW or 42
longer than the other StatTools

Kurtosis Measure of “fatness” of tails of a KURT or 42
distribution StatTools

Histogram Chart of bin counts for a numerical StatTools 48
variable; shows shape of the distribution

(continued)

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.8 Conclusion 77

Term Explanation Excel Pages Equation
Frequency table Contains counts of observations COUNTIF or 49

in specified categories FREQUENCY

Box plots Alternative chart that shows the StatTools 49
distribution of a numerical variable

Time series Graph showing behavior through time StatTools 48
graph of one or more time series variables 

Outlier Observation that lies outside of the general 64
range of observations in a data set

Missing values Values that are not reported in a data set 65

Excel tables Rectangular ranges specified as tables; Table from Insert 67
especially useful for sorting and filtering ribbon

P R O B L E M S

Conceptual Questions

C.1. An airline analyst wishes to estimate the proportion
of all American adults who are afraid to fly in light
of the thwarted terrorist attack on a U.S. commercial
airliner on December 25, 2009. To estimate this
percentage, the analyst decides to survey 1500
Americans from across the nation. Identify the
relevant sample and population in this situation.

C.2. The number of children living in each of a large
number of randomly selected households is an example
of which data type? Be specific.

C.3. Does it make sense to construct a histogram for the
state of residence of randomly selected individuals
in a sample? Explain why or why not.

C.4. Characterize the likely shape of a histogram of the
distribution of scores on a midterm exam in a
graduate statistics course.

C.5. A researcher is interested in determining whether there
is a relationship between the number of room air-
conditioning units sold each week and the time of year.
What type of descriptive chart would be most useful in
performing this analysis? Explain your choice.

C.6. Suppose that the histogram of a given income
distribution is positively skewed. What does this fact
imply about the relationship between the mean and
median of this distribution?

C.7. “The midpoint of the line segment joining the first
quartile and third quartile of any distribution is the
median.” Is this statement true or false? Explain your
answer.

C.8. Explain why the standard deviation would likely not
be a reliable measure of variability for a distribution
of data that includes at least one extreme outlier.

C.9. Explain how a box plot can be used to determine
whether the associated distribution of values is
essentially symmetric.

C.10. Suppose that you collect a random sample of 250
salaries for the salespersons employed by a large PC
manufacturer. Furthermore, assume that you find 
that two of these salaries are considerably higher
than the others in the sample. In cleansing this data
set, should you delete the unusual observations?
Explain why or why not.

Level A

38. The file P02_35.xlsx contains (fictional) data from a
survey of 500 randomly selected households.
a. Indicate the type of data for each of the variables

included in the survey.
b. For each of the categorical variables in the survey,

indicate whether the variable is nominal or ordinal.
Explain your reasoning in each case.

c. Create a histogram for each of the numerical
variables in this data set. Indicate whether each of
these distributions is approximately symmetric or
skewed. Which, if any, of these distributions are
skewed to the right? Which, if any, are skewed to
the left?

d. Find the maximum and minimum debt levels for
the households in this sample.

e. Find the indebtedness levels at each of the 25th,
50th, and 75th percentiles.

f. Find and interpret the interquartile range for the
indebtedness levels of these selected households.

39. The file P02_39.xlsx contains SAT test scores (two
verbal components, a mathematical component, and
the sum of these three) for each state and Washington 
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DC in 2009. It also lists the percentage of high school
graduates taking the test in each of the states.
a. Create a histogram for each of the numerical

variables. Are these distributions essentially
symmetric or are they skewed?

b. Compare the distributions of the average verbal
scores and average mathematical scores. In what
ways are these distributions similar? In what ways
are they different?

c. Find the mean, median, and mode of the set of
percentages taking the test.

d. For each of the numerical variables, which is the
most appropriate measure of central tendency?
Explain the reasoning behind your choice.

e. How does the mean of the Combined variable
relate to the means of the Critical Reading, Math,
and Writing variables? Is the same true for
medians?

40. The Wall Street Journal CEO Compensation Study
analyzed CEO pay from many U.S. companies with
fiscal year 2008 revenue of at least $5 billion that filed
their proxy statements between October 2008 and
March 2009. The data are in the file P02_30.xlsx.
(Note: This data set is a somewhat different CEO
compensation data set from the one used as an
example in the next chapter.)
a. Create histograms to gain a clearer understanding

of the distributions of annual base salaries and
bonuses earned by the surveyed CEOs in fiscal
2008. How would you characterize these
histograms?

b. Find the annual salary below which 75% of all
given CEO salaries fall.

c. Find the annual bonus above which 55% of all
given CEO bonuses fall.

d. Determine the range of the middle 50% of all
given total direct compensation figures. For the
50% of the executives that do not fall into this
middle 50% range, is there more variability in
total direct compensation to the right than to the
left? Explain. 

41. The file P02_41.xlsx contains monthly returns on
Barnes and Noble stock for several years. As the
formulas in the file indicate, each return is the
percentage change in the adjusted closing price from
one month to the next. Do monthly stock returns
appear to be skewed or symmetric? On average, do
they tend to be positive, negative, or zero?

42. The file P02_42.xlsx contains monthly returns on
Mattel stock for several years. As the formulas in the
file indicate, each return is the percentage change in
the adjusted closing price from one month to the next.
Create a histogram of these returns and summarize
what you learn from it. On average, do the returns tend
to be positive, negative, or zero?

43. The file P02_43.xlsx contains U.S. Bureau of 
Labor Statistics data on the year-to-year percentage
changes in the wages and salaries of workers in
private industries, including both white-collar and
blue-collar occupations. 
a. Create box plots to summarize these distributions

of annual percentage changes. Comparing the box
plots for white-collar and blue-collar workers,
discuss the similarities or differences you see. 

b. Given that these are time series variables, what
information is omitted from the box plots? Are
box plots even relevant?

44. The file P02_44.xlsx contains annual data on the
percentage of Americans under the age of 18 living
below the poverty level.
a. In which years of the sample has the poverty rate

for American children exceeded the rate that
defines the third quartile of these data?

b. In which years of the sample has the poverty rate
for American children fallen below the rate that
defines the first quartile of these data?

c. What is the typical poverty rate for American
children during this period?

d. Create and interpret a time series graph for these
data. How successful have Americans been
recently in their efforts to win “the war against
poverty” for the nation’s children?

e. Given that this data set is a time series, discuss
whether the measures requested in parts a-c are
very meaningful at the current time.

Level B

45. The file P02_45.xlsx contains the salaries of 135
business school professors at a (fictional) large state
university.
a. If you increased every professor’s salary by $1000,

what would happen to the mean and median
salary?

b. If you increased every professor’s salary by $1000,
what would happen to the sample standard
deviation of the salaries?

c. If you increased every professor’s salary by 5%,
what would happen to the sample standard
deviation of the salaries?

46. The file P02_46.xlsx lists the fraction of U.S. men and
women of various heights and weights. Use these data
to estimate the mean and standard deviation of the
height of American men and women. (Hint: Assume
all heights in a group are concentrated at the group’s
midpoint.) Do the same for weights.

47. Recall that the HyTex Company is a direct marketer 
of technical products and that the file Catalog
Marketing.xlsx contains recent data on 1000 HyTex
customers.
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a. Identify all customers in the data set who are 55
years of age or younger, female, single, and who
have had at least some dealings with HyTex before
this year. Find the average number of catalogs sent
to these customers and the average amount spent
by these customers this year.

b. Do any of the customers who satisfy the conditions
stated in part a have salaries that fall in the bottom
10% of all 1000 combined salaries in the data set?
If so, how many?

c. Identify all customers in the sample who are more
than 30 years of age or younger, male, homeowners,
married, and who have had little if any dealings with
HyTex before this year. Find the average combined
household salary and the average amount spent by
these customers this year. 

d. Do any of the customers who satisfy the conditions
stated in part c have salaries that fall in the top
10% of all 1000 combined salaries in the data set?
If so, how many?

48. Recall that the file Baseball Salaries 2009.xlsx
contains data on 818 MLB players as of May 2009.
Using this data set, answer the following questions:
a. Find the mean and median of the salaries of all

shortstops. Are any of these measures influenced
significantly by one or more unusual observations?

b. Find the standard deviation, first and third quartiles,
and 5th and 95th percentiles for the salaries of all
shortstops. Are any of these measures influenced
significantly by one or more unusual observations?

c. Create a histogram of the salaries of all shortstops.
Are any of these measures influenced significantly by
one or more unusual observations?

49. In 1969 and again in 1970, a lottery was held to
determine who would be drafted and sent to Vietnam
in the following year. For each date of the year, a ball
was put into an urn. For example, in the first lottery,
January 1 was number 305 and February 14 was
number 4. Thus a person born on February 14 would
be drafted before a person born on January 1. The file
P02_49.xlsx contains the “draft number” for each date
for the two lotteries. Do you notice anything unusual
about the results of either lottery? What do you think
might have caused this result? (Hint: Create a box plot
for each month’s numbers.)

50. The file P02_50.xlsx contains the average price of
gasoline in each of the 50 states. (Note: You will need
to manipulate the data to some extent before performing
the analyses requested below.)
a. Compare the distributions of gasoline price data

(one for each year) across states. Specifically, do
you find the mean and standard deviation of these
distributions to be changing over time? If so, how
do you explain the trends?

b. In which regions of the country have gasoline
prices changed the most?

c. In which regions of the country have gasoline
prices remained relatively stable?

51. The file P02_51.xlsx contains data on U.S. home-
ownership rates.
a. Employ numerical summary measures to char-

acterize the changes in homeownership rates across
the country during this period.

b. Do the trends appear to be uniform across the U.S.
or are they unique to certain regions of the
country? Explain.

52. Recall that the HyTex Company is a direct marketer 
of technical products and that the file Catalog
Marketing.xlsx contains recent data on 1000 HyTex
customers.
a. Identify all customers who are either (1) home-

owners between the ages of 31 and 55 who live
reasonably close to a shopping area that sells
similar merchandise, and have a combined salary
between $40,000 and $90,000 (inclusive) and a
history of being a medium or high spender at
HyTex; or (2) homeowners greater than the age 
of 55 who live reasonably close to a shopping 
area that sells similar merchandise and have a
combined salary between $40,000 and $90,000
(inclusive) and a history of being a medium or
high spender at HyTex.

b. Characterize the subset of customers who 
satisfy the conditions specified in part a. In
particular, what proportion of these customers
are women? What proportion of these customers
are married? On average, how many children 
do these customers have? Finally, how many
catalogs do these customers typically receive,
and how much do they typically spend each 
year at HyTex?

c. In what ways are the customers who satisfy
condition 1 in part a different from those who
satisfy condition 2 in part a? Be specific.

53. Recall that the file Supermarket Transactions.xlsx
contains data on over 14,000 transactions. There are
two numerical variables, Units Sold and Revenue.
The first of these is discrete and the second is
continuous. For each of the following, do whatever it
takes to create a bar chart of counts for Units Sold
and a histogram of Revenue for the given
subpopulation of purchases.
a. All purchases made during January and February

of 2008.
b. All purchase made by married female homeowners.
c. All purchases made in the state of California.
d. All purchases made in the Produce product

department.

54. The file P02_54.xlsx contains daily values of an EPA
air quality index in Washington DC and Los Angeles
from January 1980 through April 2009. For some 
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80 Chapter 2 Describing the Distribution of a Single Variable

unknown reason, the source provides slightly different
dates for the two cities.
a. Starting in column G, create three new columns:

Date, Wash DC Index, and LA Index. Fill the 
new date column with all dates from 1/1/1980 to
4/30/2009. Then use lookup functions to fill in the
two new index columns, entering the observed
index if available or a blank otherwise. (Hint: Use 
a combination of the VLOOKUP function with
False as the last argument and the IFERROR
function. Look up the latter in online help if you
have never seen it before.)

b. Create a separate time series graph of each new
index column. Because there are so many dates, it is
difficult to see how the graph deals with missing
data, but see if you can determine this (maybe by
expanding the size of the graph or trying a smaller
example). In spite of the few missing points,
explain the patterns in the graphs and how
Washington DC compares to Los Angeles. (Note:
StatTools will not let you create a time series graph
with missing data in the middle of the series, but
you can create a line chart manually in Excel,
without StatTools.)

55. The file P02_55.xlsx contains monthly sales (in
millions of dollars) of beer, wine, and liquor. The data
have not been seasonally adjusted, so there might be
seasonal patterns that can be discovered. For any
month in any year, define that month’s seasonal index
as the ratio of its sales value to the average sales value
over all months of that year.
a. Calculate these seasonal indexes, one for each

month in the series. Do you see a consistent pattern
from year to year? If so, what is it?

b. To “deseasonalize” the data and get the seasonally
adjusted series often reported, divide each monthly

sales value by the corresponding seasonal index
from part a. Then create a time series graph of both
series, the actual sales and the seasonally adjusted
sales. Explain how they are different and why the
seasonally adjusted series might be of interest. 

56. The file P02_56.xlsx contains monthly values of
indexes that measure the amount of energy necessary
to heat or cool buildings due to outside temperatures.
(See the explanation in the Source sheet of the file.)
These are reported for each state in the U.S. and also
for several regions, as listed in the Locations sheet,
from 1931 to 2000. Create summary measures and/
or charts to see whether there is any indication of
temperature changes (global warming?) through 
time, and report your findings.

57. The file P02_57.xlsx contains data on mortgage loans
in 2008 for each state in the U.S. The file is different
from similar ones in this chapter in that each state has
its own sheet with the same data laid out in the same
format. Each state sheet breaks down all mortgage
applications by loan purpose, applicant race, loan type,
outcome, and denial reason (for those that were
denied). The question is how a single data set for all
states can be created for analysis. The Typical Data
Set sheet indicates a simple way of doing this, using
the powerful but little-known INDIRECT function.
This sheet is basically a template for bringing in any
pieces of data from the state sheet you would like to
examine.
a. Create histograms and summary measures for the

example data given in the Typical Data Set sheet
and write a short report on your findings.

b. Create a copy of the Typical Data Set sheet and
repeat part a on this copy for at least one other
set of variables (of your choice) from the state
sheets. 
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C A S E

Amean, as defined in this chapter, is a pretty simple

concept—it is the average of a set of numbers.

But even this simple concept can cause confusion if

you aren’t careful.The data in Table 2.1 are typical of

data presented by marketing researchers for a type of

product, in this case beer.

Each value is an average of the number of six-

packs of beer purchased per customer during a month.

For the individual brands, the value is the average only

for the customers who purchased at least one six-pack

of that brand. For example, the value for Miller is the

average number of six-packs purchased of all of these

brands for customers who purchased at least one six-

pack of Miller. In contrast, the “Any” average is the

average number of six-packs purchased of these brands

for all customers in the population.

Is there a paradox in these averages? On first

glance, it might appear unusual, or even impossible,

that the “Any” average is less than each brand

average. Make up your own (small) data set, where

you list a number of customers, along with the

number of six-packs of each brand of beer each

customer purchased, and calculate the averages for

your data that correspond to those in Table 2.1. Do

you get the same result (that the “Any” average is

lower than all of the others)? Are you guaranteed to

get this result? Does it depend on the amount of

brand loyalty in your population, where brand loyalty

is greater when customers tend to stick to the same

brand, rather than buying multiple brands? Write up

your results in a concise report. ■

2.1 CORRECT INTERPRETATION OF MEANS

Case 2.1 Correct Interpretation of Means 81

1

2

Q R S T U V W X Y Z AA AB AC AD
Criteria range (starts in row 3)

Table 2.1 Average Beer Purchases
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C A S E

The monthly closing values of the Dow Jones

Industrial Average (DJIA) for the period begin-

ning in January 1950 are given in the file DJIA

Monthly Close.xlsx. According to Wikipedia (http://

en.wikipedia.org/wiki/Dow_Jones_Industrial_Average),

the Dow Jones Industrial Average, also referred to as

the Industrial Average, the Dow Jones, the Dow 30, or

simply the Dow, is one of several stock market indices

created by Wall Street Journal editor and Dow Jones &

Company co-founder Charles Dow.The average is

named after Dow and one of his business associates,

statistician Edward Jones. It is an index that shows 

how 30 large, publicly owned companies based in the

U.S. have traded during a standard trading session in

the stock market. It is the second oldest

U.S. market index after the Dow Jones Transportation

Average, which Dow also created. Currently, Dow

Jones & Company, which regularly publishes the index,

is a subsidiary of News Corporation.

The Industrial portion of the name is largely

historical, as many of the modern 30 components have

little or nothing to do with traditional heavy industry.

The average is price-weighted, and to compensate for

the effects of stock splits and other adjustments, it is

currently a scaled average.The value of the Dow is not

the actual average of the prices of its component

stocks, but rather the sum of the component prices

divided by a divisor, which changes whenever one of the

component stocks has a stock split or stock dividend,

so as to generate a consistent value for the index.

Along with the NASDAQ Composite, the S&P

500 Index, and the Russell 2000 Index, the Dow is

among the most closely watched benchmark indices

tracking targeted stock market activity. Although Dow

compiled the index to gauge the performance of the

industrial sector within the American economy, the

index’s performance continues to be influenced not

only by corporate and economic reports, but also by

domestic and foreign political events such as war and

terrorism, as well as by natural disasters that could

potentially lead to economic harm. Components of

the Dow trade on both the NASDAQ OMX and the

NYSE Euronext, two of the largest stock exchanges.

Derivatives of the Dow trade on the Chicago Board

Options Exchange and through the CME Group, the

world’s largest futures exchange company.

Using the summary measures and graphical 

tools from this chapter, analyze this important time

series over the given period. Summarize in detail the

behavior of the monthly closing values of the Dow

and the associated monthly percentage changes in

the closing values of the Dow. ■

2.2 THE DOW JONES INDUSTRIAL AVERAGE

82 Chapter 2 Describing the Distribution of a Single Variable
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C A S E

The file Home Price Index.xlsx contains an

index of home prices and a seasonally adjusted

(SA) version of this index for several large U.S. cities.

It also contains a condo price index for several large

cities and a national index. (The data are explained in

the Source sheet.) Use the tools in this chapter to

make sense out of these data, and write a report of

your findings. Some important questions you can

answer are the following: Are there trends over

time? Are there differences across cities? Are there

differences across months? Do condo prices mirror

home prices? Why are seasonally adjusted indexes

published? ■

2.3 HOME AND CONDO PRICES

Case 2.3 Home and Condo Prices 83
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85

Finding Relationships among
Variables

C H A P T E R

PREDICTORS OF SUCCESSFUL MOVIES

The movie industry is a high-profile industry with a highly variable revenue

stream. In 1998, U.S. moviegoers spent close to $7 billion at the box

office alone.Ten years later, the figure was slightly higher, despite the number

of people watching DVDs at home.With this much money at stake, it is not

surprising that movie studios are interested in knowing what variables are

useful for predicting a movie’s financial success.The article by Simonoff and

Sparrow (2000) examines this issue for 311 movies released in 1998 and late

1997. (They obtained their data from a public Web site, www.imdb.com.)

Although it is preferable to examine movie profits, the costs of making

movies are virtually impossible to obtain.Therefore, the authors focused

instead on revenues—specifically, the total U.S. domestic gross revenue for

each film.

Simonoff and Sparrow obtained prerelease information on a number

of variables that were thought to be possible predictors of gross

revenue. (Prerelease means that this information is known about a film
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before the film is actually released.) These variables include: (1) the genre of the film,

categorized as action, children’s, comedy, documentary, drama, horror, science fiction,

or thriller; (2) the Motion Picture Association of America (MPAA) rating of the film,

categorized as G (general audiences), PG (parental guidance suggested), PG-13

(possibly unsuitable for children under 13), R (children not admitted unless

accompanied by an adult), NC-17 (no one under 17 admitted), or U (unrated);

(3) the country of origin of the movie, categorized as United States, English-speaking

but non–United States, or non–English-speaking; (4) number of actors and actresses

in the movie who were listed in Entertainment Weekly’s lists of the 25 Best Actors

and 25 Best Actresses, as of 1998; (5) number of actors and actresses in the movie

who were among the top 20 actors and top 20 actresses in average box office gross

per movie in their careers; (6) whether the movie was a sequel; (7) whether the

movie was released before a holiday weekend; (8) whether the movie was released

during the Christmas season; and (9) whether the movie was released during the

summer season.

To get a sense of whether these variables are related to gross revenue, we could

calculate a lot of summary measures and create numerous tables. However, we agree with

Simonoff and Sparrow that the information is best presented in a series of side-by-side

box plots. (See Figure 3.1.) These box plots are slightly different from the versions intro-

duced in the previous chapter, but they accomplish exactly the same thing. (There are two

differences: First, their box plots are vertical; ours are horizontal. Second, their box plots

capture an extra piece of information—the widths of their boxes are proportional to

the square roots of the sample sizes, so that wide boxes correspond to categories with

more movies. In contrast, the heights of our boxes carry no information about sample

size.) Basically, each box and the lines and points extending above and below it indicate

the distribution of gross revenues for any category. Remember that the box itself, from

bottom to top, captures the middle 50% of the revenues in the category, the line in the

middle of the box represents the median revenue, and the lines and dots indicate possible

skewness and outliers.

These particular box plots indicate some interesting and possibly surprising

information about the movie business. First, almost all of the box plots indicate a high

degree of variability and positive skewness, where there are a few movies that gross

extremely large amounts compared to the “typical” movies in the category. Second,

genre certainly makes a difference.There are more comedies and dramas (wider

boxes), but they typically gross considerably less than action, children’s, and science

fiction films.Third, the same is true of R-rated movies compared to movies rated 

G, PG, or PG-13—there are more of them, but they typically gross much less. Fourth,

U.S. movies do considerably better than foreign movies. Fifth, it helps to have stars,

although there are quite a few “sleepers” that succeed without having big-name stars.

Sixth, sequels do better, presumably reflecting the success of the earlier films. Finally, the

release date makes a big difference. Movies released before holidays, during the

Christmas season, or during the summer season tend to have larger gross revenues.

Indeed, as Simonoff and Sparrow discuss, movie studios compete fiercely for the best

release dates.

Are these prerelease variables sufficient to predict gross revenues accurately? 

As you might expect from the amount of variability in most of the box plots in 

Figure 3.1, the answer is “no.” Many intangible factors evidently determine the

ultimate success of a movie, so that some, such as There’s Something About Mary, do

much better than expected, and others, such as Godzilla, do worse than expected.We

will revisit this movie data set in the chapter opener to Chapter 11. There, you will

see how Simonoff and Sparrow use multiple regression to predict gross revenue—with

limited success.

86 Chapter 3 Finding Relationships among Variables
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3.1 Introduction 87

3.1 INTRODUCTION

In the previous chapter, we introduced a number of summary measures, graphs, and tables
to describe the distribution of a single variable. For a variable such as baseball salary, our
entire focus was on how salaries were distributed over some range. This is an important
first step in any exploratory data analysis—to look closely at variables one at a time—but

Figure 3.1 Box Plots of Domestic Gross Revenues for 1998 Movies
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it is almost never the last step. We are almost always interested in relationships between
variables. For example, it is natural to ask what drives baseball salaries. Does it depend on
qualitative factors, such as the player’s team or position? Does it depend on quantitative
factors, such as the number of hits the player gets or the number of strikeouts? To answer
these questions, we have to examine relationships between various variables and salary.

In this chapter, we will again discuss several numerical summary measures, graphs,
and tables, but they will now involve at least two variables at a time. The most useful
numerical summary measure is correlation, a measure that applies primarily to numerical
variables. The most useful graph is a scatterplot, which again applies primarily to numeri-
cal variables. For relationships involving categorical variables, we will introduce other
tools. For example, to break down a numerical variable by a categorical variable, as in the
chapter opener with movie gross revenues, it is often useful to create side-by-side box plots
as in Figure 3.1. Finally, we will introduce Excel’s arguably most powerful tool, pivot
tables. Pivot tables allow you to break down one variable by others so that all sorts of rela-
tionships can be uncovered in a matter of minutes.

As you read this chapter, remember that the diagram in the file Data Analysis
Taxonomy.xlsx is available. This diagram gives you the big picture of which analyses are
appropriate for which data types and which tools are best for performing the various 
analyses.

3.2 RELATIONSHIPS AMONG CATEGORICAL VARIABLES

Consider a data set with at least two categorical variables, Smoking and Drinking. Each
person is categorized into one of three smoking categories: nonsmoker (NS), occasional
smoker (OS), and heavy smoker (HS). Similarly, each person is categorized into one of
three drinking categories: nondrinker (ND), occasional drinker (OD), and heavy drinker
(HD). We want to examine whether smoking and drinking habits are related. For example,
do nondrinkers tend to be nonsmokers? Do heavy smokers tend to be heavy drinkers?

As we discussed in the previous chapter, the most meaningful way to describe a cate-
gorical variable is with counts, possibly expressed as percentages, and corresponding
charts of the counts. The same is true of examining relationships between two categorical
variables. We can find the counts of the categories of either variable separately, and more
importantly, we can find counts of the joint categories of the two variables, such as the
count of all nondrinkers who are also nonsmokers. Again, corresponding percentages and
charts help tell the story.

It is customary to display all such counts in a table called a crosstabs (for cross-
tabulations). This is also sometimes called a contingency table. We illustrate these tables
in the following example.

88 Chapter 3 Finding Relationships among Variables

A key issue in this
chapter is that
different tools should
be used to examine
relationships, depend-
ing on whether the
variables involved are
numerical or
categorical.

Use a crosstabs, a
table of counts of joint
categories, to discover
relationships between
two categorical
variables.

E X A M P L E 3.1 RELATIONSHIP BETWEEN SMOKING AND DRINKING

The file Smoking Drinking.xlsx lists the smoking and drinking habits of 8761 adults.
(This is not real data.) The categories have been coded so that “N,” “O,” and “H” stand

for “Non,” “Occasional,” and “Heavy,” and “S” and “D” stand for “Smoker” and
“Drinker.” Is there any indication that smoking and drinking habits are related? If so, how
are they related?

Objective To use a crosstabs to explore the relationship between smoking and drinking.
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Solution

The first question is the data format. If you are lucky, you will be given a table of counts.
However, it is also possible that you will have to create these counts. In the file for this
example, the data are in long columns, a small part of which is shown in Figure 3.2.
(Presumably, there could be other variables describing these people, but we are interested
only in the Smoking and Drinking variables.)

3.2 Relationships among Categorical Variables 89

1
2
3
4
5
6
7
8
9

10
11

A B C
Person Smoking Drinking

1 NS OD
2 NS HD
3 OS HD
4 HS ND
5 NS OD
6 NS ND
7 NS OD
8 NS ND
9 OS HD

10 HS HD

Figure 3.2

Smoking and

Drinking Data

To create the crosstabs, start by entering the category headings in Figure 3.3. The
goal is to fill in the box with counts of joint categories, along with totals as row and col-
umn sums. If you are thinking about using the COUNTIF function to obtain the joint
counts, you are close. Unfortunately, the COUNTIF function lets you specify only a
single criterion, but there are now two criteria, one for smoking and one for drinking.
Fortunately, Excel has a new function (new to Excel 2007) designed exactly for this:
COUNTIFS. It allows you to specify any number of range-criterion pairs. In fact, you
can fill in the entire table with a single formula entered in cell F4 and copied to the
range F4:H6:

=COUNTIFS($B$2:$B$8762,F$3,$C$2:$C$8762,$E4)

The first two arguments are for the condition on smoking; the last two are for the
condition on drinking. You can then sum across rows and down columns to get the totals.

1
2
3
4
5
6
7

E F G H I
Crosstabs from COUNTIFS formulas

NS OS HS Total
ND
OD
HD
Total

Figure 3.3

Headings for

Crosstabs

The resulting counts appear in the top table in Figure 3.4. For example, among the
8761 people, 4912 are nonsmokers, 2365 are heavy drinkers, and 733 are nonsmokers
and heavy drinkers. Because the totals are far from equal (there are many more non-
smokers than heavy smokers, for example), any relationship between smoking and
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drinking is difficult to detect in these raw counts. Therefore, it is useful to express the
counts as percentages of row in the middle table and as percentages of column in the
bottom table. 

The latter two tables indicate, in complementary ways, that there is definitely a
relationship between smoking and drinking. If there were no relationship, the rows in the
middle table would be practically identical, as would the columns in the bottom table.
(Convince yourself why this is true.) But they are far from identical. For example, the mid-
dle table indicates that only 6% of the nondrinkers are heavy smokers, whereas 31% of the
heavy drinkers are heavy smokers. Similarly, the bottom table indicates that 43.1% of
the nonsmokers are nondrinkers, whereas only 11.3% of the heavy smokers are non-
drinkers. In short, these tables indicate that smoking and drinking habits tend to go with
one another. These tendencies are reinforced by the column charts of the two percentage
tables in Figure 3.5.

90 Chapter 3 Finding Relationships among Variables

1
2
3
4
5

E F G H I
Crosstabs from COUNTIFS formulas

NS OS HS Total
ND 2118 435 163 2716
OD 2061 1067 552 3680

6
7
8
9

10
11
12

HD 733 899 733 2365
Total 4912 2401 1448 8761

Shown as percentages of row
NS OS HS Total

ND 78.0% 16.0% 6.0% 100.0%
OD 56.0% 29.0% 15.0% 100.0%

13
14
15
16
17
18
19

HD 31.0% 38.0% 31.0% 100.0%

Shown as percentages of column
NS OS HS

ND 43.1% 18.1% 11.3%
OD 42.0% 44.4% 38.1%
HD 14 9% 37 4% 50 6%19

20
HD 14.9% 37.4% 50.6%
Total 100.0% 100.0% 100.0%

Figure 3.4

Crosstabs of

Smoking and

Drinking

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

ND OD HD

Percentages of column

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

NS OS HS

Percentages of row

NS OS HSND OD HD

Figure 3.5 Column Charts of Smoking and Drinking Percentages

Relationships between
the two variables 
are usually more
evident when the
counts are expressed
as percentages of row
or percentages of
column.

■
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Excel Tip It takes almost no work to create these charts. To get the one on the left,
highlight the range E10:H13 and insert a column chart from the Insert ribbon. Do the same
with the range E16:H19 to get the chart on the right, except that it will have smoking on the
horizontal axis and drinking in the legend. To reverse their roles, simply click on Switch
Row/Column from the Chart Tools Design ribbon.

Although this example illustrates that it doesn’t take too much work to create
crosstabs and corresponding charts, you will see a much quicker and easier way when
pivot tables are discussed later in this chapter.

3.2 Relationships among Categorical Variables 91

FUNDAMENTAL INSIGHT

Counts Versus Percentages

There is no single correct way to display the data in a

contingency table. Ultimately, the data are always

counts, but they can be shown as raw counts, percent-

ages of row totals, percentages of column totals, or

even percentages of the overall total. However, when

you are looking for relationships between two cate-

gorical variables, showing the counts as percentages of

row totals or percentages of column totals usually

makes any relationships stand out more clearly.

Corresponding charts are also very useful.

P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com. 

Level A

1. The file P02_01.xlsx indicates the gender and
nationality of the MBA incoming class in two suc-
cessive years at the Kelley School of Business at
Indiana University. 
a. For each year separately, recode Nationality so that

all nationalities with a count of 1 or 2 are listed as
Other.

b. For each year, create a crosstabs of Gender versus
the recoded Nationality and an associated column
chart. Does there seem to be any relationship
between Gender and the recoded Nationality? Is
the pattern about the same in the two years?

2. The file P02_03.xlsx contains data from a survey of
399 people regarding a government environmental
policy.
a. Create a crosstabs and an associated column 

chart for Gender versus Opinion. Express the
counts as percentages so that for either gender, the
percentages add to 100%. Discuss your findings.
Specifically, do the two genders tend to differ in
their opinions about the environmental policy?

b. Repeat part a with Age versus Opinion.

c. Recode Salary to be categorical with categories
“Less than $40K”, “Between $40K and $70K”,
“Between $70K and $100K”, and “Greater than
$100K” (where you can treat the breakpoints
however you like). Then repeat part a with this new
Salary variable versus Opinion. 

3. The file P02_02.xlsx contains data about 211 movies
released in 2006 and 2007.
a. Recode Distributor so that all distributors except for

Paramount Pictures, Buena Vista, Fox Searchlight,
Universal, Warner Bros., 20th Century Fox, and
Sony Pictures are listed as Other. (Those in 
Other released fewer than 16 movies.) Similarly,
recode Genre so that all genres except for Action,
Adventure, Thriller/Suspense, Drama, and Comedy
are listed as Other. (Again, those in Other are
genres with fewer than 16 movies.)

b. Create a crosstabs and an associated column chart
for these two recoded variables. Express the counts
as percentages so that for any distributor, the
percentages add to 100%. Discuss your findings. 

4. Recall from Chapter 2 that the file Supermarket
Transactions.xlsx contains over 14,000 transactions
made by supermarket customers over a period of
approximately two years. To understand which
customers purchase which products, create a crosstabs
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3.3 RELATIONSHIPS AMONG CATEGORICAL VARIABLES AND 
A NUMERICAL VARIABLE

This section describes a very common situation where you are interested in a numerical variable
such as salary and you would like to “break it down” by category of some categorical variable
such as gender. This is precisely what pivot tables were built for, as we will discuss later in the
chapter, but for now we will discuss the numerical and graphical tools offered by StatTools
to explore this problem. This general problem, typically referred to as the comparison
problem, is one of the most important problems in data analysis. It occurs whenever you want
to compare a numerical measure across two or more subpopulations. Here are some examples:

■ The subpopulations are males and females, and the numerical measure is salary.
■ The subpopulations are different regions of the country, and the numerical measure is

the cost of living.
■ The subpopulations are different days of the week, and the numerical measure is the

number of customers going to a particular fast-food chain.
■ The subpopulations are different machines in a manufacturing plant, and the

numerical measure is the number of defective parts produced per day.
■ The subpopulations are patients who have taken a new drug and those who have taken

a placebo, and the numerical measure is the recovery rate from a particular disease.
■ The subpopulations are undergraduates with various majors (business, English,

history, and so on), and the numerical measure is the starting salary after graduating.

The list could go on and on. Our discussion of the comparison problem begins in this
chapter, where we use exploratory methods to investigate whether there appear to be dif-
ferences across the subpopulations on the numerical variable of interest. In later chapters,
we will use inferential methods—confidence intervals and hypothesis tests—to see
whether the differences we see in samples from the subpopulations can be generalized to
the subpopulations as a whole.
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and an associated column chart for each 
of the following. For each, express the counts as
percentages so that for any value of the first variable
listed, the percentages add to 100%. Do any patterns
stand out? 
a. Gender versus Product Department
b. Marital Status versus Product Department
c. Annual Income versus Product Department

Level B

5. Recall from Chapter 2 that the HyTex Company is 
a direct marketer of technical products and that 
the file Catalog Marketing.xlsx contains recent 
data on 1000 HyTex customers. To understand these
customers, first recode Salary and AmountSpent as
indicated in part a, and then create each of the
requested crosstabs and an associated column chart 
in parts b to e. Express each count as a percentage, 
so that for any value of the first variable listed, the
percentages add to 100%. Do any patterns stand 
out?

a. Find the first, second, and third quartiles of Salary,
and then recode Salary as 1 to 4, depending on
which quarter of the data each value falls into. 
For example, the first salary, $16,400, is recoded 
as 1 because $16,400 is less than the first quartile,
$29,975. Recode AmountSpent similarly, based 
on its quartiles. (Hint: The recoding can be done
most easily with lookup tables.)

b. Age versus the recoded AmountSpent
c. OwnHome versus the recoded AmountSpent
d. History versus the recoded AmountSpent
e. The recoded Salary versus the recoded

AmountSpent

6. In the smoking/drinking example in this section, we
used the function COUNTIFS function (new to Excel
2007) to find the counts of the joint categories. Without
using this function (or pivot tables), devise another way
to get the counts. The raw data are in the file Smoking
Drinking.xlsx. (Hint: One possibility is to concatenate
the values in columns B and C into a new column D.
But feel free to find the counts in any way you like.)

The comparison
problem, where a
numerical variable 
is compared across 
two or more sub-
populations, is one of
the most important
problems faced by 
data analysts in all
fields of study.
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FUNDAMENTAL INSIGHT

Breaking Down By Category

There is arguably no more powerful data analysis

technique than breaking down a numerical variable by

category. The methods in this chapter, especially side-

by-side box plots and pivot tables, get you started

with this general comparison problem. They allow

you to see quickly, with charts and/or summary mea-

sures, how two or more categories compare. More

sophisticated techniques for comparing across cate-

gories will be covered in later chapters.

3.3.1 Stacked and Unstacked Formats

We begin by discussing two possible data formats you will see, stacked and unstacked.
This concept is crucial for understanding how StatTools deals with comparison problems.
Consider salary data on males and females. (There could be other variables in the data set,
but we will ignore them for now.) Then the data are stacked if there are two “long” vari-
ables, Gender and Salary, as indicated in Figure 3.6. The idea is that the male salaries are
stacked in with the female salaries. This is the format you will see in the vast majority of
situations. However, you will occasionally see data in unstacked format, as shown in
Figure 3.7. (Note that both tables list exactly the same data. See the file Stacked
Unstacked Data.xlsx.) Now there are two “short” variables, Female Salary and Male
Salary. In addition, it is very possible that the two variables have different lengths. This is
the case here because there are more females than males.

The stacked format 
is by far the most
common.There are 
one or more long
numerical variables
and another long
variable that specifies
which category each
observation is in.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

A B
Gender Salary
Male 81600
Female 61600
Female 64300
Female 71900
Male 76300
Female 68200
Male 60900
Female 78600
Female 81700
Male 60200
Female 69200
Male 59000
Male 68600
Male 51900
Female 64100
Male 67600
Female 81100
Female 77000
Female 58800
Female 87800
Male 78900

Figure 3.6

Stacked Data
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StatTools is capable of dealing with either stacked or unstacked format. (Not all statis-
tical software can make this claim. Some packages require stacked format.) Nevertheless,
there are a few times when you might want to convert from stacked to unstacked format or
vice versa. StatTools has utilities for doing this. These utilities are found on the Data
Utilities (not the Utilities) dropdown list on the StatTools ribbon. They are very simple to
use, and we suggest that you try them on the data in Figures 3.6 and 3.7. (If you need help,
open the finished version of the Stacked Unstacked Data.xlsx file, which includes
instructions for using these data utilities.)

We now return to the baseball data to see which, if any, of the categorical variables
makes a difference in player salaries.
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1
2
3
4
5
6
7
8
9

10
11
12
13

A B
Female Salary Male Salary

61600 81600
64300 76300
71900 60900
68200 60200
78600 59000
81700 68600
69200 51900
64100 67600
81100 78900
77000
58800
87800

Figure 3.7

Unstacked Data

E X A M P L E 3.2 BASEBALL SALARIES

The file Baseball Salaries 2009 Extra.xlsx contains the same 2009 baseball data
examined in the previous chapter. In addition, several extra categorical variables are

included:

■ Pitcher (Yes for all pitchers, No for the others)
■ League (American or National)
■ Division (National West, American East, and so on)
■ Yankees (Yes if team is New York Yankees, No otherwise)
■ Playoff Team 2008 (Yes for the eight teams that made it to the playoffs, No for the

others)
■ World Series Team 2008 (Yes for Philadelphia Phillies and Tampa Bay Rays, No for

others)

Do pitchers (or any other positions) earn more than others? Does one league pay more than
the other, or do any divisions pay more than others? How does the notoriously high
Yankees payroll compare to the others? Do the successful teams from 2008 tend to have
larger 2009 payrolls?

Objective To learn methods in StatTools for breaking down baseball salaries by various
categorical variables.
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The results appear in Figure 3.9. This table lists each of the requested summary
measures for each of the nine positions in the data set. If you want to see salaries broken
down by team or any other categorical variable, you can easily run this analysis again and
choose a different Cat variable.1
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Solution

We first look at some numerical summary measures for salary. These are the same
summary measures from the previous chapter, but now we want to break them down by
position. Fortunately, StatTools makes this easy. (Imagine how you would have to do it
without an add-in. It would not be fun!) To get started, designate the range as a StatTools
data set in the usual way and then select One-Variable Summary from the Summary
Statistics dropdown list. The key now is to click on the Format button (see Figure 3.8) and
choose Stacked (if it isn’t already selected). When you choose Stacked, you get two lists of
variables to choose from. In the Cat (categorical) list, choose the variable that you want to
categorize by, in this case Position. In the Val (value) list, choose the variable that you want
to summarize, in this case Salary. Then select any of the summary measures you would
like to see, such as those checked in Figure 3.8.

StatTools often lets 
you choose the 
stacked format.This
allows you to choose 
a Cat (categorical)
variable and a Val
(value) variable for 
the analysis.

Figure 3.8

One-Variable

Summary Dialog

Box with Stacked

Format

1For baseball fans, don’t be fooled by the low mean for the Infielder position. There are only seven players in this
category, evidently the “utility” infielders who can play several positions—and don’t command high salaries.
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There are a lot of numbers to digest in Figure 3.9, so it is difficult to get a clear
picture of differences across positions. It is much more enlightening to see a graphical
summary of this information. There are several types of graphs you can use. Our favorite
way is to create side-by-side box plots (the same type of chart illustrated in the
chapter opener), as we will discuss shortly. Another possibility is to create side-by-side 
histograms, with one histogram for each category. This is easy with StatTools, using
the Stacked format option exactly as we did for summary measures. However, you
should not accept the default bins because they will differ across categories and pre-
vent a fair comparison. So make sure you enter your own bins. (See the finished ver-
sion of the baseball file for an illustration of side-by-side histograms done with default
bins and with specified bins.) A third possibility is to use pivot tables and correspond-
ing pivot charts, as will be discussed later in this chapter.

For now, we illustrate side-by-side box plots. These are very easy to obtain. Select
Box-Whisker Plot from the Summary Graphs dropdown list and fill in the resulting dialog
box as shown in Figure 3.10. Again, the key is to select the Stacked format so that you can
choose a Cat variable and a Val variable.

The results appear in Figure 3.11. There is a separate box plot for each category of the
Position variable, and each has exactly the same interpretation that we discussed in the
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7
8
9

10

11

12

13

14

15

16

A B C D E F G H I J

One Variable Summary

Salary (Catcher) Salary (Designated Hi�er) Salary (First Baseman) Salary (Infielder) Salary (Ou�ielder) Salary (Pitcher) Salary (Second Baseman) Salary (Shortstop) Salary (Third Baseman)

Data Set #1 Data Set #1 Data Set #1 Data Set #1 Data Set #1 Data Set #1 Data Set #1 Data Set #1 Data Set #1

Mean $2,179,760 $6,633,875 $5,706,002 $667,143 $3,834,524 $2,887,334 $2,463,334 $3,113,541 $4,954,790
Std. Dev. $2,660,154 $5,425,908 $5,824,204 $590,670 $5,042,623 $3,927,561 $2,478,960 $4,058,174 $6,333,443

Median $950,000 $4,000,000 $3,125,000 $420,000 $1,500,000 $825,000 $1,400,000 $1,300,000 $2,400,000

Minimum $400,000 $400,000 $400,000 $400,000 $400,000 $400,000 $400,000 $400,000 $400,000

Maximum $13,100,000 $13,000,000 $20,625,000 $2,000,000 $23,854,494 $18,876,139 $11,285,714 $21,600,000 $33,000,000

Count 63 8 39 7 150 407 47 53 44

1st Quar�le $415,000 $421,000 $750,000 $400,000 $417,500 $414,800 $416,700 $425,000 $432,400

3rd Quar�le $2,800,000 $11,500,000 $11,600,000 $550,000 $5,000,000 $3,750,000 $3,500,000 $4,650,000 $7,050,000

Figure 3.9 Summary Measures of Salary for Various Positions

Figure 3.10

Box Plot Dialog Box

with Stacked Format

Side-by-side box 
plots are our favorite
way of comparing the
distribution of a
numerical variable
across categories of
some categorical
variable.
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previous chapter. Now the differences between positions emerge fairly clearly. A few of
the conclusions that can be made are the following.

■ The salaries for all positions are skewed to the right (mean greater than median, long
lines and outliers to the right).

■ As a whole, first basemen tend to be the highest paid players, followed by third base-
men. The designated hitters also make a lot, but there are only eight such players in
the data set.

■ As a whole, pitchers and outfielders don’t make as much as first basemen and third
basemen, but there are a lot of high-earning outliers at these two positions.

■ Except for a few notable exceptions, catchers and second basemen don’t get much
respect.

Because these side-by-side box plots are so easy to obtain, you can generate a lot of
them to provide insights into the salary data. Several interesting examples appear in
Figures 3.12–3.14. From these box plots, we can conclude the following:

■ Pitchers make somewhat less than other players, although there are many outliers in
each group.

■ The Yankees payroll is indeed much larger than the payrolls for the rest of the teams.
In fact, it is so large that Alex Rodriguez’s $33 million is considered only a mild
outlier relative to the rest of the team.
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Box Plot of Comparison of Salary/Data Set #1

Posi�on = Shortstop

Posi�on = Pitcher

Posi�on = Ou�ielder

Posi�on = Infielder

Posi�on = Catcher

Posi�on = Third
Baseman

Posi�on = Second
Baseman

Posi�on = First
Baseman

Posi�on = Designated
Hi�er

0 5000000 10000000 15000000 20000000 25000000 30000000 35000000

Figure 3.11

Box Plots of Salary

by Position
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Pitcher = No

Pitcher = Yes

Box Plot of Comparison of Salary/Data Set #1

0 5000000 10000000 15000000 20000000 25000000 30000000 35000000

Figure 3.13

Box Plots of Salary

by Yankees

Figure 3.12

Box Plots of Salary

by Pitcher

0 5000000 10000000 15000000 20000000 25000000 30000000 35000000

Box Plot of Comparison of Salary/Data Set #1

Yankees = No

Yankees = Yes

There is one StatTools limitation you should be aware of. The academic version
allows only 12 categories for box plots. Therefore, you can’t choose Team as the Cat
variable because there are 30 teams. However, it is possible to isolate one or more teams
in a column and then base the box plots on this column, as we did for the Yankees. As
another example, if you were interested in comparing the Yankees, the Red Sox, and
all the others, you could create another column with three values: Yankees, Red Sox,
and Other.

■ Aside from the many outliers, the playoff teams from 2008 tend to have larger
payrolls than the non-playoff teams. The one question we cannot answer, however,
at least not without additional data, is whether these larger payrolls are a cause or an
effect of being successful.

You can often create 
a categorical variable
on the fly with an IF
formula and then use 
it for side-by-side box
plots.We did this with
the Yankees.
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Figure 3.14

Box Plots of Salary

by Playoff Team

2008

Playoff Team 2008 =
No

Playoff Team 2008 =
Yes

0 5000000 10000000 15000000 20000000 25000000 30000000 35000000

Box Plot of Comparison of Salary/Data Set #1

P R O B L E M S

Level A

7. Recall that the file Baseball Salaries 2009 Extra.xlsx
contains data on 818 Major League Baseball (MLB)
players during the 2009 season. Use StatTools to find
the mean, median, standard deviation, and first and
third quartiles of Salary, broken down by each of the
following categories. Comment on your findings.
a. Team
b. Division
c. Whether they played for the Yankees
d. Whether they were in the playoffs

8. The file P02_07.xlsx includes data on 204 employees
at the (fictional) company Beta Technologies. Use
StatTools to find the mean, median, and standard
deviation of Annual Salary, broken down by each of
the following categories. Comment on your findings.
a. Gender
b. A recoded version of Education, with new values 

1 for Education less than 4, 2 for Education equal
to 4, and 3 for Education greater than 4

c. A recoded version of Age, with people aged less
than 34 listed as Young, those aged at least 34 and
less than 50 listed as Middle-aged, and those aged
at least 50 listed as Older

9. The file Golf Stats.xlsx contains data on the 200 top
golfers each year from 2003 to 2009. (This data set is
used in an example in the next section.) Create a
recoded Age variable, with values “Twenties,”

“Thirties,” and “Forties,” based on their ages in the
2009 sheet. Then use StatTools to calculate the mean,
median, and standard deviation of the following 2009
variables, broken down by the recoded Age. Comment
on whether it appears that golfers peak in their thirties.
a. Earnings
b. Yard/Drive and Driving Accuracy
c. Greens in Regulation
d. Putting Average (Golfers want this to be small.)

10. Recall from Chapter 2 that the HyTex Company is a
direct marketer of technical products and that the file
Catalog Marketing.xlsx contains recent data on 1000
HyTex customers. Use StatTools to find the mean,
median, and standard deviation of AmountSpent,
broken down by the following variables. Then create
side-by-side box plots of AmountSpent, broken down
by the same variables. Comment on how the box plots
complement the summary measures.
a. Age
b. Gender
c. Close
d. Region
e. Year of first purchase. (Hint: For this one, use the

YEAR function to create a Year column.)
f. The combination of Married and OwnHome. (For

this one, create a code variable, with values from 
1 to 4, for the four combinations of Married and
OwnHome. Alternatively, create a text variable
with values such as “Not married, Owns home.”)

■
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11. The file P02_35.xlsx contains data from a survey of
500 randomly selected households.
a. Create a new column Has Second Income with

values “Yes” and “No” depending on whether the
household has a reported second income.

b. Use StatTools to find the mean, median, and
standard deviation of First Income, broken down
by the variable you created in part a. Is there any
indication that first income tends to be any larger
or smaller, or has more or less variation, depending
on whether there is a second income?

c. Repeat part b for each of the Monthly Payment and
Debt variables.

12. The file P02_02.xlsx contains data about 211 movies
released in 2006 and 2007.
a. Recode Genre so that all genres except for Action,

Adventure, Thriller/Suspense, Drama, and Comedy
are listed as Other. (Those in Other are genres with
fewer than 16 movies.)

b. Use StatTools to find the mean, median, and standard
deviation of Total US Gross, broken down by the
recoded Genre variable. Also, create side-by-side 
box plots of Total US Gross, again broken down by
the recoded Genre variable. Comment on what the
results say about the popularity of different genres.

13. The Wall Street Journal CEO Compensation Study
analyzed chief executive officer (CEO) pay from
many U. S. companies with fiscal year 2008 revenue
of at least $5 billion that filed their proxy statements
between October 2008 and March 2009. The data are
in the file P02_30.xlsx. (Note: This data set contains
somewhat different CEO compensation data from the
data set used as an example later in this chapter.) 
a. Create a new variable Total 2008, the sum of

Salary 2008 and Bonus 2008. (Actually, this is not
“total” compensation because it omits the very
lucrative compensation from stock options.) Also,
recode Company Type so that the Technology and
Telecommunications are collapsed into a
Tech/Telecomm category.

b. Use StatTools to find the mean, median, and
standard deviation of Total 2008, broken down by
the recoded Company Type. Also, create side-by-
side box plots of Total 2008, again broken down by
the recoded Company Type. What do the results
tell you about differences in level or variability
across company types?

14. The file P02_55.xlsx contains monthly sales (in
millions of dollars) of beer, wine, and liquor. The data
have not been seasonally adjusted, so there might be
seasonal patterns that can be discovered.
a. Create a new Month Name variable with values

Jan, Feb, and so on. (Use Excel’s MONTH
function and then a lookup table.)

b. Use StatTools to create side-by-side box plots of
Total Sales, broken down by Month Name. Is there
any evidence of differences across months for
either the level of sales or the variability of sales?

15. The file P03_15.xlsx contains monthly data on the
various components of the Consumer Price Index
(CPI). The source claims that these data have been
seasonally adjusted. The following parts ask you to
check this claim. 
a. Create a new Month Name variable with values

Jan, Feb, and so on. (Use Excel’s MONTH
function and then a lookup table.)

b. Create side-by-side box plots of each component of
the CPI (including the All Items variable), broken
down by the Month Name variable from part a.
What results would you expect for “seasonally
adjusted” data? Are your results in line with 
this?

16. The file P02_11.xlsx contains data on 148 houses 
that were recently sold in a (fictional) suburban com-
munity. The data set includes the selling price of 
each house, along with its appraised value, square
footage, number of bedrooms, and number of
bathrooms. 
a. Create two new variables, Ratio1 and Ratio2.

Ratio1 is the ratio of Appraised Value to Selling
Price, and Ratio2 is the ratio of Selling Price to
Square Feet. Identify any obvious outliers in these
two Ratio variables.

b. Use StatTools to find the mean, median, and
standard deviation of each Ratio variable, broken
down by Bedrooms. Also, create side-by-side box
plots of each Ratio variable, again broken down by
Bedrooms. Comment on the results.

c. Repeat part b with Bedrooms replaced by
Bathrooms.

d. If you repeat parts b and c with any obvious
outlier(s) from part a removed, do the conclusions
change in any substantial way?

Level B

17. The file P02_32.xlsx contains blood pressures for
1000 people, along with variables that can be related
to blood pressure. These other variables have a
number of missing values, probably because some
people didn’t want to report certain information. 
For each of the Alcohol, Exercise, and Smoke
variables, use StatTools to find the mean, median,
and standard deviation of Blood Pressure, broken
down by whether the data for that variable is missing.
For example, there should be one set of statistics for
people who reported their alcohol consumption and
another for those who didn’t report it. Based on your
results, does it appear that there is any difference in
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blood pressure between those who reported and those
who didn’t?

18. The file P03_18.xlsx contains the times in the Chicago
marathon for the top runners each year (the top 10,000
in 2006, the top 20,000 in 2007 and 2008). 
a. Merge the data in these three sheets into a single

sheet named 2006-2008, and in the new sheet,
create a variable Year that lists the year.

b. The Time variable, shown as something like
2:16:12, is really stored as a time, the fraction of
day starting from midnight. So 2:16:12, for
example, which means 2 hours, 16 minutes, and 12
seconds, is stored as 0.0946, meaning that 2:16:12
AM is really 9.46% of the way from midnight to
the next midnight. This isn’t very useful. Do
whatever it takes to recode the times into a new
Minutes variable with two decimals, so that
2:16:12 becomes 136.20 minutes. (Hint: Look up
Time functions in Excel’s online help.)

c. Create a new variable Nationality to recode
Country as “KEN, ETH,” “USA,” or “Other,”
depending on whether the runner is from
Kenya/Ethiopia (the usual winners), the USA, 
or some other country.

d. Use StatTools to find the mean, median, standard
deviation, and first and third quartiles of Minutes,
broken down by Nationality. Also, create side-by-
side box plots of Minutes, again broken down by
Nationality. Comment on the results.

e. Repeat part d, replacing Nationality by Gender.

19. The file P02_18.xlsx contains daily values of the S&P
Index from 1970 to 2009. It also contains percentage
changes in the index from each day to the next.
a. Create a new variable President that lists the 

U.S. presidents Nixon through Obama on each

date. You can look up the presidents and dates
online.

b. Use StatTools to find the mean, median, standard
deviation, and first and third quartiles of % Change,
broken down by President. Also, create side-by-
side box plots of % Change, again broken down 
by President. Comment on the results.

20. The file P02_56.xlsx contains monthly values of
indexes that measure the amount of energy necessary
to heat or cool buildings due to outside temperatures.
(See the explanation in the Source sheet of the file.)
These are reported for each state in the U.S. and also
for several regions, as listed in the Locations sheet,
from 1931 to 2000. 
a. For each of the Heating Degree Days and Cooling

Degree Days sheets, create a new Season variable
with values “Winter,” “Spring,” “Summer,” and
“Fall.” Winter consists of December, January, and
February, Spring consists of March, April, and May,
Summer consists of June, July, and August, and Fall
consists of September, October, and November.

b. Use StatTools to find the mean, median, and
standard deviation of Heating Degree Days
(HDD), broken down by Season, for the 48
contiguous states location (code 5999). (Ignore
the first and last rows for the given location, the
ones that contain -9999, the code for missing
values.) Also, create side-by-side box plots of
HDD, broken down by season. Comment on the
results. Do they go in the direction you would
expect? Do the same for Cooling Degree Days
(which has no missing data).

c. Repeat part b for California (code 0499).
d. Repeat part b for the New England group of states

(code 5801).

3.4 RELATIONSHIPS AMONG NUMERICAL VARIABLES

In this section, we discuss methods for finding relationships among numerical variables.
For example, we might want to examine the relationship between heights and weights of
people, or between salary and years of experience of employees. To study such relation-
ships, we introduce two new summary measures, correlation and covariance, and a new
type of chart called a scatterplot. 

Note that these measures can be applied to any variables that are displayed numeri-
cally. However, they are appropriate only for truly numerical variables, not for categorical
variables that have been coded numerically. In particular, many people create dummy
(0–1) variables for categorical variables such as Gender and then include these dummies in
a table of correlations. This is certainly possible, and we do not claim that it is wrong.
However, if you want to investigate relationships involving categorical variables, it is
better to employ the tools in the previous two sections.

In general, don’t use
correlations that
involve coded
categorical variables
such as 0-1 dummies.
The methods from 
the previous two
sections are more
appropriate.
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3.4.1 Scatterplots

We first discuss scatterplots, a graphical method for detecting relationships between two
numerical variables.2 Then we will discuss the numerical summary measures, correlation
and covariance, in the next subsection. (We do it in this order because correlation and
covariance will make more sense once you understand scatterplots.) A scatterplot is a
scatter of points, where each point denotes the values of an observation for two selected
variables. The two variables are often labeled generically as X and Y, so a scatterplot is
sometimes called an X-Y chart. The whole purpose of a scatterplot is to make a relation-
ship (or the lack of it) apparent. Do the points tend to rise upward from left to right? Do
they tend to fall downward from left to right? Does the pattern tend to be linear, nonlinear,
or no particular shape? Do any points fall outside the general pattern? The answers to these
questions provide information about the possible relationship between the two variables.
We illustrate the process in the following example.
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2Some people spell these plots as scatterplots, others scatter plots. We (and StatTools) prefer the one-word spelling.
3You might recall that Tiger Woods missed the rest of 2008 because of knee surgery, after winning the U.S. Open
in June. This explains his missing values.

E X A M P L E 3.3 GOLF STATS ON THE PGA TOUR

For the past decade or so, the Professional Golf Association (PGA) has kept statistics on all
PGA Tour players, and these stats are published on the Web. We imported yearly data from

2003–2009 into the file Golf Stats.xlsx. (The full 2009 data set wasn’t available when we wrote
this example, but it is now available in the file.) The file includes an observation for each of the
top 200 earners for each year, including age, earnings, events played, rounds played, 36-hole
cuts made (only the top scorers on Thursday and Friday get to play on the weekend; the others
don’t make the cut), top 10s, and wins. It also includes stats about efficiency in the various parts
of the game (driving, putting, greens in regulation, and sand saves), as well as good holes
(eagles and birdies) and bad holes (bogies). A sample of the data for 2008 appears in Figure
3.15, with the data sorted in decreasing order of earnings and a few variables not shown.3 What
relationships can be uncovered in these data for any particular year?

1
2
3
4
5
6
7
8
9

10
11

A B C D E F G H I J K
Player Age Events Rounds Cuts Made Top 10s Wins Earnings Yards/Drive Driving Accuracy Greens in Regula�on
Vijay Singh 45 23 82 18 8 3 $6,601,095 298.7 59.5 65.1
Tiger Woods 32 6 23 6 6 4 $5,775,000
Phil Mickelson 37 21 79 20 8 2 $5,188,875 296.5 55.3 65
Sergio Garcia 28 19 70 18 6 1 $4,858,224 294.6 59.4 67.1
Kenny Perry 47 26 97 24 7 3 $4,663,794 295.7 62 67.5
Anthony Kim 22 22 81 19 8 2 $4,656,266 301 58.3 65.8
Camilo Villegas 26 22 78 19 7 2 $4,422,641 293.6 58.2 64.6
Padraig Harrington 36 15 51 12 6 2 $4,313,551 297.6 59.4 59.5
Stewart Cink
Jus�n Leonard

35 23 85 19 7 1 $3,979,301 297.2 55.3 64.6
35 25 96 24 8 1 $3,943,542 282.5 67.7 65.9

Figure 3.15 Golf Stats

Objective To use scatterplots to search for relationships in the golf data.

Solution

This example is typical in that you are given many numerical variables, and it is up to you
to search for possible relationships. A good first step is to ask some interesting questions
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and then try to answer them with scatterplots. For example, do younger players play more
events? Are earnings related to age? Which is related most strongly to earnings: driving,
putting, or greens in regulation? Do the answers to these questions remain the same from
year to year? This example is all about exploring the data, and we will answer only a few
of the questions that could be asked. Fortunately, scatterplots are easy to create, especially
with StatTools, so you can do a lot of exploring very quickly.

It is possible to create a scatterplot with Excel tools only—that is, without StatTools.
To do so, highlight any two variables of interest and select a scatter chart of the top left
type from the Insert ribbon. At this point, you will probably want to modify the chart by
deleting the legend, inserting some titles, and possibly changing some formatting. Also,
you might want to swap the roles of the X and Y variables. The point is that you can do it,
but the process is a bit tedious, especially if you want to create a lot of scatterplots.

Excel Tip How do you highlight two long variables such as Age and Earnings? Here are
the steps that make it easy. (1) Highlight the Age label in cell B1. (2) With your finger on
the Shift key, press the End key and then the down arrow key. This highlights the Age
column. (3) With your finger on the Ctrl key, highlight the Earnings label in cell H1.
(4) With your finger on the Shift key, press the End key and then the down arrow key. Now
both columns are highlighted.

It is much easier to use StatTools. Begin by designating a StatTools data set called
Stats 2008 (to distinguish it from data sets you might want to create for the other years).
Then select Scatterplot from the Summary Graphs dropdown list. This resulting dialog box
appears in Figure 3.16. You must select at least one X variable and at least one Y variable.
However, you are allowed to select multiple X variables and/or multiple Y variables. Then
a scatterplot will be created for each X-Y pair selected. For example, if you want to see how
a number of variables are related to Earnings, you can select Earnings as the Y variable and
the others as X variables, as shown in the figure. Note that StatTools shows the associated
correlation below each scatterplot if you check the Display Correlation Coefficient option.
We will discuss correlations shortly.

Several scatterplots appear in Figures 3.17 through 3.20. (In a few of these, we
modified the scale on the horizontal axis so that the scatter fills the chart.) The scatterplots
in Figure 3.17 indicate the possibly surprising results that age is practically unrelated to the
number of events played and earnings. Each scatter is basically a shapeless swarm of
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Scatterplots are great
for initial exploration 
of the data. If a
scatterplot suggests 
a relationship between
two variables, other
methods can then be
used to examine this
relationship in more
depth.

StatTools allows you 
to create many
scatterplots in one 
run. Just select multiple
X variables and/or
multiple Y variables.

Figure 3.16

StatTools Scatterplot

Dialog Box
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points, and a shapeless swarm always indicates “no relationship.” The scatterplots in
Figure 3.18 confirm what we would expect. Specifically, players who play in more events
tend to earn more, although there are a number of exceptions to this pattern. Also, players
who make more 36-hole cuts tend to earn more. Note the outlier in both of these scatter-
plots: Tiger Woods. In spite of playing in only six events (and making the cut in all of
them), he earned nearly $6 million!

Excel Tip Unfortunately, there is no automatic way to enter a label such as “Tiger
Woods” next to a point in a scatterplot. We wish there were, but there isn’t, at least not
without writing a macro. We had to insert the text boxes manually in Figure 3.18. If you
click twice on a point (don’t double-click, but slowly click twice), you can select this point.
Then if you right-click, you have the option of adding a data label. However, this data label
is always the value of the Y variable. In this case, it would be Tiger’s earnings, not
his name.
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Figure 3.17 Scatterplots of Age Versus Events and Earnings

Figure 3.18 Scatterplots of Earnings Versus Events and Cuts Made

Golfers will be particularly interested in the scatterplots in Figures 3.19 and 3.20.
First, the scatterplots in Figure 3.19 indicate almost no relationships between earnings and
the two components of driving, length (yards per drive) and accuracy (percentage of fair-
ways hit). At least in 2008, neither driving length nor driving accuracy seems to have much
effect on earnings. In contrast, there is a reasonably strong upward relationship between

Remember that all
StatTools charts are
really Excel charts, so
you can modify them
as you like with the
usual Excel chart 
tools.
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greens hit in regulation and earnings. We would expect players who hit a lot of greens in
regulation to earn more, and this appears to be the case. Finally, there is a definite
downward relationship between putting average and earnings. Does this mean that better
putters earn less? Absolutely not! The putting stat is the average number of putts per hole,
so that a lower value is better. Therefore, we expect the downward relationship indicated in
the chart. In fact, the driving and putting scatterplots tend to confirm the old saying in golf:
Drive for show, putt for dough.

We could obviously ask many more questions about the relationships in this golf data
set and then attempt to answer them with scatterplots. For example, are the relationships
(or lack of them) in the above scatterplots consistent through the years? Or should
Earnings per Round be used instead of Earnings as the Y variable? You now have a power-
ful tool, scatterplots, for examining relationships, and the tool is easy to implement. We
urge you to use it—a lot. ■
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Figure 3.19 Scatterplots of Earnings Versus Driving Length and Driving Accuracy

Figure 3.20 Scatterplots of Earnings Versus Putting and Greens in Regulation

Trend Lines in Scatterplots

In Chapters 10 and 11 we will discuss regression, a method for quantifying relationships
between variables. We can provide a gentle introduction to regression at this point by
discussing the very useful Trendline tool in Excel. Once you have a scatterplot, Excel
enables you to superimpose one of several trend lines on the scatterplot. Essentially, a
trend line is a line or curve that “fits” the scatter as well as possible. This could indeed be

Excel allows you to
superimpose a trend
line, linear or curved,
on a scatterplot. It 
is an easy way to
quantify the relation-
ship apparent in the
scatterplot.
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a straight line, or it could be one of several types of curves. (By the way, you can also
superimpose a trend line on a time series graph, exactly as described here for scatterplots.)

To illustrate the Trendline option, we created the scatterplot of driving length versus
driving accuracy in Figure 3.21. If you are a golfer, you are probably not surprised to see
that the longest hitters tend to be less accurate. This scatterplot is definitely downward
sloping, and it appears to follow a straight line reasonably well. 
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Figure 3.21

Scatterplots of

Driving Length

Versus Driving

Accuracy

Therefore, it is reasonable to fit a linear trend line to this scatterplot. To do this, right-
click on any point on the chart, select Add Trendline, and fill out the resulting dialog box
as shown in Figure 3.22. Note that we have checked the Display Equation on Chart option.
The result (after moving the equation to a blank part of the chart) appears in Figure 3.23.
The equation you see is a regression equation. It states that driving length (y) is 350.89
minus 0.9829 times driving accuracy (x). This line is certainly not a perfect fit—there are
many points well above the line and others below the line. Still, it quantifies the downward
trend.

The tools in this subsection, scatterplots and trend lines superimposed on scatterplots,
are among the most valuable tools you will learn in the book. When you are interested in
a possible relationship between two numerical variables, these are the tools you should
use first.

3.4.2 Correlation and Covariance

We discussed many numerical summary measures in Chapter 2, all of which involve a
single variable. The two measures discussed in this section, correlation and covariance,
involve two variables. Specifically, each measures the strength and direction of a linear
relationship between two numerical variables. Intuitively, the relationship is “strong” if the
points in a scatterplot cluster tightly around some straight line. If this straight line rises
from left to right, the relationship is positive and the measures will be positive numbers. If
it falls from left to right, the relationship is negative and the measures will be negative
numbers.

To measure the covariance or correlation between two numerical variables X and Y—
indeed, to form a scatterplot of X versus Y—X and Y must be “paired” variables. That is,
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Figure 3.22

More Trendline

Options Dialog Box

Figure 3.23

Scatterplot 

with Trend Line 

and Equation

Superimposed
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they must have the same number of observations, and the X and Y values for any observa-
tion should be naturally paired. For example, each observation could be the height and
weight for a particular person, the time in a store and the amount purchased for a particu-
lar customer, and so on.

With this in mind, let and be the paired values for observation i, and let n be the
number of observations. Then the covariance between X and Y, denoted by Covar(X, Y), is
given by the following formula.4

YiXi
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4Actually, Excel’s COVAR function uses n in the denominator, whereas StatTools uses n�1. Fortunately, this is
not an issue with correlation. Excel’s CORREL function and StatTools produce exactly the same correlations.
5Don’t write off covariance too quickly, however. If you plan to take a finance course in investments, you will see
plenty of covariances.

Formula for Covariance

(3.1)Covar (X, Y) =

a
n

i=1
1Xi - X21Yi - Y2

n - 1

You will probably never have to use Equation (3.1) directly—Excel has a built-in
COVAR function that does it for you, and StatTools also calculates covariance
automatically—but the formula does indicate what covariance is all about. It is essentially
an average of products of deviations from means. If X and Y vary in the same direction,
then when X is above its mean, Y will tend to be above its mean, and when X is below its
mean, Y will tend to be below its mean. In either case, the product of deviations will be
positive—a positive times a positive or a negative times a negative—so the covariance
will be positive. The opposite is true when X and Y vary in opposite directions. Then
the covariance will be negative.

CHANGES IN EXCEL 2010

Excel’s old COVAR function actually uses denominator n, so it gives the population covariance, not

the sample covariance (denominator n�1) in Equation (3.1). In Excel 2010, both versions are

available, named COVARIANCE.P (population) and COVARIANCE.S (sample).

Covariance has a serious limitation as a descriptive measure because it is very sensi-
tive to the units in which X and Y are measured. For example, the covariance can be
inflated by a factor of 1000 simply by measuring X in dollars rather than thousands of 
dollars. This limits the usefulness of covariance as a descriptive measure, and we will use
it very little in the book.5

In contrast, the correlation, denoted by Correl(X, Y), remedies this problem. It is a
unitless quantity that is unaffected by the measurement scale. For example, the correlation
is the same regardless of whether the variables are measured in dollars, thousands of
dollars, or millions of dollars. The correlation is defined by Equation (3.2), where Stdev(X)
and Stdev(Y) denote the standard deviations of X and Y. Again, you will probably never
have to use this formula for calculations—Excel does it for you with the built-in
CORREL function, and StatTools also calculates correlations automatically—but it does
show how correlation and covariance are related to one another. 

Covariance is too
sensitive to the
measurement scales 
of X and Y to make it
interpretable, so we
rely much more on
correlation, which is
unaffected by
measurement scales.
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The correlation is not only unaffected by the units of measurement of the two
variables, but it is always between �1 and �1. The closer it is to either of these two
extremes, the closer the points in a scatterplot are to a straight line, either in the negative or
positive direction. On the other hand, if the correlation is close to 0, then the scatterplot is
typically a “cloud” of points with no apparent relationship. However, while it is not com-
mon, it is also possible that the points are close to a curve and have a correlation close to 0.
This is because correlation is relevant only for measuring linear relationships.

When there are several numerical variables in a data set, it is useful to create a table of
covariances and/or correlations. Each value in the table then corresponds to a particular
pair of variables. StatTools allows you to do this easily, as illustrated in the following
continuation of the golf example. However, we first make three important points about the
roles of scatterplots, correlations, and covariances.

■ A correlation is a single-number summary of a scatterplot. It never conveys as
much information as the full scatterplot; it only summarizes the information in the
scatterplot. However, it is often more convenient to report a table of correlations for
many variables than to report an unwieldy number of scatterplots.

■ We are usually on the lookout for large correlations, those near �1 or �1. But how
large is “large”? There is no generally agreed-upon cutoff, but by looking at a number 
of scatterplots and their corresponding correlations, you will start to get a sense of what
a correlation such as �0.5 or �0.7 really means in terms of the strength of the linear
relationship between the variables. (In addition, we will attach a concrete meaning to 
the square of a correlation when we discuss regression in Chapters 10 and 11.)

■ Do not even try to interpret covariances numerically except possibly to check
whether they are positive or negative. For interpretive purposes, concentrate on
correlations.
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Formula for Correlation

(3.2)Correl (X, Y) =

Covar1X, Y2

Stdev1X2 * Stdev1Y2

Correlation is useful
only for measuring the
strength of a linear
relationship. Strongly
related variables could
have correlation close
to 0 if the relationship
is nonlinear.

A correlation is only 
a single-number
summary of a scatter-
plot, so it always
contains less infor-
mation than the full
scatterplot

FUNDAMENTAL INSIGHT

Scatterplots Versus Correlations

It is important to remember that a correlation is a

single-number measure of the linear relationship

between two numerical variables. Although a correla-

tion is a very useful measure, it is hard to imagine exactly

what a correlation of 0.3 or 0.8, say, actually means. In

contrast, a scatterplot of two numerical variables indi-

cates the relationship between the two variables very

clearly. In short, a scatterplot conveys much more infor-

mation than the corresponding correlation.

E X A M P L E 3.3 GOLF STATS (CONTINUED)

In the previous subsection, we saw how relationships between several of the golf
variables can be detected with scatterplots. What further insights do we get by looking at

correlations between these variables?

Objective To use correlations to understand relationships in the golf data.
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Solution

With the many numerical variables in the golf data set, it is indeed unwieldy to create
scatterplots for all pairs of variables, but it is easy to create a table of correlations with
StatTools.6 (If you want only one correlation, you might instead use Excel’s CORREL
function.) As an example, we will create a table of correlations for the golf data in 2008. To
do so, select Correlation and Covariance from the Summary Statistics dropdown list, and fill
in the resulting dialog box as shown in Figure 3.24. There are several options. First, you can
check as many numerical variables as you like. We checked a few but not all. Second, you
can ask for a table of correlations and/or a table of covariances. We asked for correlations
only. Finally, correlations (and covariances) are symmetric in that the correlation between
any two variables X and Y is the same as the correlation between Y and X. Therefore, you
can choose any of the three table structure options and receive exactly the same information.
We tend to favor the Entries Below the Diagonal Only option.
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6Some statistical software packages provide a “matrix of scatterplots” option. This is essentially like a table of
correlations between all pairs of variables except that each correlation is replaced by a scatterplot. StatTools does
not provide this option, at least not yet.

Figure 3.24

StatTools

Correlation and

Covariance Dialog

Box

The resulting table of correlations appears in Figure 3.25. You can ignore the 1.000
values along the diagonal because a variable is always perfectly correlated with itself.
Besides these, we are looking for relatively large values, either positive or negative. When
the table is fairly large, conditional formatting is useful. Although it doesn’t show up on
the printed page, we formatted all correlations between 0.6 and 0.999 as red and all
correlations between �1.0 and �0.6 as green. (See the finished version of the golf file for
instructions on how to create the conditional formatting.) There are three large positive val-
ues involving events, rounds, and cuts made. None of these should come as a surprise.
There is only one large negative correlation, the one between driving length and driving
accuracy, and we already saw the corresponding scatterplot in Figure 3.21. So if you want
to know what a correlation of approximately �0.6 actually means, look at the scatterplot in
this figure. It indicates a definite downward trend, but there is quite a lot of variability
around the best-fitting straight line.

You typically scan a
table of correlations 
for the large corre-
lations, either positive
or negative. Conditional
formatting is useful,
especially if the table 
is a large one.
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Again, a correlation is only a summary of a scatterplot. Therefore, you can learn more
about any interesting-looking correlations by creating the corresponding scatterplot. For
example, the scatterplot corresponding to the 0.891 correlation between Cuts Made and
Rounds appears in Figure 3.26. (We also superimposed a trend line.) This chart shows the
strong linear relationship between cuts made and rounds played, but it also shows
that there is still considerable variability around the best-fitting straight line, even with a
correlation as large as 0.891.
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7
8
9

10
11
12
13
14
15
16
17
18

A B C D E F G H I J K

Correla�on Table

Age Events Rounds Cuts Made Earnings Yards/Drive Driving Accuracy Greens in Regula�on Pu�ng Average Sand Save Pct

Stats 2008 Stats 2008 Stats 2008 Stats 2008 Stats 2008 Stats 2008 Stats 2008 Stats 2008 Stats 2008 Stats 2008

Age 1.000
Events -
Rounds -
Cuts Made -
Earnings -0.102
Yards/Drive -
Driving Accuracy 0.274 -0.186 -0.612 1.000
Greens in Regula�on -
Pu�ng Average 0.097 -0.098 -0.199 -0.262 -

0.189 1.000
0.185 0.941 1.000
0.173 0.701 0.891 1.000

-0.065 0.143 0.417 1.000
0.365 0.012 0.001 0.012 0.128 1.000

0.079 0.103 0.088
0.037 0.261 0.418 0.527 0.356 0.271 0.092 1.000

0.271 0.177 0.118 0.134 1.000
Sand Save Pct 0.049 -0.175 -0.080 0.037 0.211 -0.271 -0.001 -0.123 -0.383 1.000

Figure 3.25 Correlations for Golf Data

Figure 3.26

Scatterplot of Cuts

Made Versus Rounds

■

P R O B L E M S

Level A

21. The file P02_07.xlsx includes data on 204 employees
at the (fictional) company Beta Technologies.
a. Create a table of correlations between the variables

Age, Prior Experience, Beta Experience,
Education, and Annual Salary. Which of the first
four of these variables is most highly correlated
(in a positive direction) with Annual Salary?

b. Create scatterplots of Annual Salary (Y axis) versus
each of Age, Prior Experience, Beta Experience,
and Education.

c. For the variable from part a most highly correlated
with Annual Salary, create a (linear) trend line in
its scatterplot with the corresponding equation
shown in the chart. What does this equation imply
about the relationship between the two variables?
Be specific.
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22. The file P03_22.xlsx lists financial data on movies
released since 1980 with budgets at least $20 million.
a. Reduce the size of this data set by deleting all

movies with a budget of more than $100 million.
Also, delete all movies where US Gross and/or
Worldwide Gross is listed as Unknown.

b. For the remaining movies, create a table of corre-
lations between the variables Budget, US Gross, and
Worldwide Gross. Comment on the results. Are
there any surprises?

c. For the movies remaining after part a, create a
scatterplot of Worldwide Gross (Y axis) versus US
Gross and another scatterplot of US Gross (Y axis)
versus Budget. Briefly explain any patterns you see
in these scatterplots. Do they seem to be consistent
with the corresponding correlations? 

23. The file P02_10.xlsx contains midterm and final exam
scores for 96 students in a corporate finance course. 
a. Do the students’ scores for the two exams tend to

go together, so that those who do poorly on the
midterm tend to do poorly on the final, and those
who do well on the midterm tend to do well on the
final? Create a scatterplot, along with a correlation,
to answer this question.

b. Superimpose a (linear) trend line on the scatterplot,
along with the equation of the line. Based on this
equation, what would you expect a student with a
75 on the midterm to score on the final exam?

24. Recall that the file Golf Stats.xlsx contains data on
the 200 top golfers each year from 2003 to 2009.
The question to be explored in this problem is what
drives earnings, and whether this is consistent from
year to year.
a. For each year, create a new variable Earnings/Event.

This is potentially a better measure of earnings
because some players enter more events than others.

b. Create a separate table of correlations for each year
that includes Earnings/Event, Yards/Drive, Driving
Accuracy, Greens in Regulation, Putting Average,
Sand Save Pct, and Birdies/Round. (StatTools will
warn you about missing data, but don’t worry
about it.) Explain whether these correlations help
answer the questions posed above.

c. There is a saying in golf: “Drive for show, putt for
dough.” Create a separate set of scatterplots for
each year of Earnings/Event (Y axis) versus each
of Yards/Drive, Driving Accuracy, and Putting
Average. Discuss whether these scatterplots tend
to support the saying.

25. The file P02_02.xlsx contains data about 211 movies
released in 2006 and 2007. The question to be explored
in this problem is whether the total gross for a movie can
be predicted from how it does in its first week or two.
a. Create a table of correlations between the five

variables 7-day Gross, 14-day Gross, Total US

Gross, International Gross, and US DVD Sales.
(StatTools will warn you about missing data, but
don’t worry about it.) Does it appear that the last
three variables are related to either of the first two?

b. Explore the basic question further by creating a
scatterplot of each of Total US Gross, International
Gross, and US DVD Sales (Y axis) versus each of
7-day Gross and 14-day Gross (X axis)—six
scatterplots in all. Do these support the claim that
you can tell how well a movie will do by seeing
how it does in its first week or two?

26. The file P02_39.xlsx lists the average high school
student scores on the SAT exam by state. There are
three components of the SAT: critical reading, math,
and writing. These components are listed, along with
their sum. The percentage of all potential students who
took the SAT is also listed by state. Create correlations
and scatterplots to explore the following relationships
and comment on the results.
a. The relationship between the combined score and

the percentage taking the exam.
b. The relationship between the critical reading and

writing components.
c. The relationship between a combined verbal

component (the average of critical reading and
writing) and the math component.

d. The relationship between each of critical reading,
math, and writing with the combined score. Are
these bound to be highly correlated because the
sum of the three components equals the combined
score?

27. The file P02_16.xlsx contains traffic data from 256
weekdays on four variables. Each variable lists the
number of arrivals during a specific 5-minute period
of the day.
a. What would it mean, in the context of traffic, for

the data in the four columns to be positively
correlated? Based on your observations of traffic,
would you expect positive correlations?

b. Create a table of correlations and check whether
these data behave as you would expect.

28. The file P02_11.xlsx contains data on 148 houses that
were recently sold in a (fictional) suburban community.
The data set includes the selling price of each house,
along with its appraised value, square footage, number
of bedrooms, and number of bathrooms. 
a. Create a table of correlations between all of the

variables. Comment on the magnitudes of the
correlations. Specifically, which of the last three
variables, Square Feet, Bedrooms, and Bathrooms,
are highly correlated with Selling Price?

b. Create four scatterplots to show how the other four
variables are related to Selling Price. In each, Selling
Price should be on the Y axis. Are these in line with
the correlations in part a?
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c. You might think of the difference, Selling Price
minus Appraised Value, as the “error” in the
appraised value, in the sense that this difference is
how much more or less the house sold for than the
appraiser expected. Find the correlation between this
difference and Selling Price, and find the correlation
between the absolute value of this difference and
Selling Price. If either of these correlations is
reasonably large, what is it telling us?

Level B

29. The file P03_29.xlsx contains monthly prices of 
four precious metals: gold, silver, platinum, and palla-
dium. The question to be explored here is whether
changes in these commodities move together through
time.
a. Create time series graphs of the four series. Do the

series appear to move together?
b. Create four new difference variables, one for each

metal. Each should list this month’s price minus the
previous month’s price. Then create time series
graphs of the differences. Note that there will be
missing data for Jan-97 because the Dec-96 prices
are not listed. Also, because the source for this data
set listed prices for platinum and palladium through
Nov-08 only, there will be missing data at the end
of these series.

c. Create a table of correlations between the differences
created in part b. Based on this table, comment on
whether the changes in the prices of these metals
tend to move together over time.

d. For all correlations in part c above 0.6, create the
corresponding scatterplots of the differences (for
example, gold differences versus silver
differences). Do these, along with the time series
graphs from parts a and b, provide a clearer picture
of how these series move together over time?
Discuss in some detail.

e. Check with your own formulas using Excel’s
CORREL function that StatTools uses data through
Dec-09 for the correlation between gold and silver,
but it uses data through Nov-08 for correlations
between gold and platinum. That is, check that
StatTools uses all of the available data for either
correlation.

30. The file P03_30.xlsx contains monthly data on exchange
rates of various currencies versus the U.S. dollar. It is 
of interest to financial analysts and economists to see
whether exchange rates move together through time.
You could find the correlations between the exchange
rates themselves, but it is often more useful with time
series data to check for correlations between differences
from month to month. 
a. Create a column of differences for each currency.

For example, the difference corresponding to 

Jan-06 will be blank for each currency because the
Dec-05 value isn’t listed, but the difference for
euros in Feb-06 will be 0.8375 � 0.8247.

b. Create a table of correlations between all of the
original variables. Then on the same sheet, create a
second table of correlations between the difference
variables. On this same sheet, enter two cutoff
values, one positive such as 0.6 and one negative
such as �0.5, and use conditional formatting to
color all correlations (in both tables) above the
positive cutoff green and all correlations below
the negative cutoff red. Do it so that the 1s on the
diagonal are not colored.

c. Based on the second table and your coloring, can
you conclude that these currencies tend to move
together in the same direction? If not, what can
you conclude?

d. Can you explain how the correlation between 
two currencies like the Chinese yuan and British
pound can be fairly highly negatively correlated,
whereas the correlation between their differences 
is essentially zero? Would you conclude that these
two currencies “move together?” (Hint: There is no
easy answer, but scatterplots and time series graphs
for these two currencies and their differences are
revealing.)

31. The file P02_35.xlsx contains data from a survey of
500 randomly selected (fictional) households.
a. Create a table of correlations between the last five

variables (First Income to Debt). On the sheet with
these correlations, enter a “cutoff” correlation such
as 0.5 in a blank cell. Then use conditional
formatting to color green all correlations in the
table at least as large as this cutoff, but don’t color
the 1s on the diagonal. The coloring should change
automatically as you change the cutoff. This is
always a good idea for highlighting the “large”
correlations in any correlations table.

b. When you create the table of correlations, you are
warned about the missing values for Second Income.
Do some investigation to see how StatTools deals
with missing values and correlations. There are two
basic possibilities (and both of these are options in
some software packages). First, it could delete all
rows that have missing values for any variables 
and then calculate all of the correlations based on 
the remaining data. Second, when it creates the
correlation for any pair of variables, it could (tem-
porarily) delete only the rows that have missing data
for these two variables and then calculate the
correlation on what remains for these two variables.
Why would you prefer the second option? How does
StatTools do it?

32. We have indicated that if you have two categorical vari-
ables and you want to check whether they are related,
the best method is to create a crosstabs, possibly with the
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3.5 PIVOT TABLES

We now look at one of Excel’s most powerful—and easy-to-use—tools, the pivot table.
This tool provides an incredible amount of useful information about a data set. Pivot tables
allow you to “slice and dice” data in a variety of ways. That is, they break the data down by
categories so that you can see, for example, average sales by gender, by region of country,
by time of day, or any combination of these. Sometimes pivot tables are used to display
counts, such as the number of customers broken down by gender and region of country.
These tables of counts, which are often called crosstabs or contingency tables, have been
used by statisticians for years. However, Excel provides more variety and flexibility with
its pivot tables than most statistical software packages have traditionally provided with
their crosstabs options. In particular, crosstabs typically list only counts, whereas pivot
tables can list counts, sums, averages, and other summary measures.7

It is easiest to understand pivot tables by means of examples, so we illustrate several
possibilities in the following example.
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counts expressed as percentages. But suppose both
categorical variables have only two categories and 
these variables are coded as dummy 0–1 variables. 
Then there is nothing to prevent you from finding the
correlation between them with the same Equation (3.2)
from this section. However, if we let C(i,j) be the count
of observations where the first variable has value i and
the second variable has value j, there are only four joint
counts that can have any bearing on the relationship
between the two variables: C(0,0), C(0,1), C(1,0), and
C(1,1). Let C1(1) be the count of 1s for the first variable
and let C2(1) be the count of 1s for the second variable.
Then it is clear that C1(1) � C(1,0) � C(1,1) and C2(1)
� C(0,1) � C(1,1), so C1(1) and C2(1) are determined

by the joint counts. It can be shown algebraically that the
correlation between the two 0–1 variables is

To illustrate this, the file P03_32.xlsx contains two 0–1
variables. (The values were generated fairly randomly.)
Create a crosstabs to find the required counts, and use
the above formula to calculate the correlation. Then use
StatTools (or Excel’s CORREL function) to find the cor-
relation in the usual way. Do your two results match?
(Nevertheless, we do not necessarily recommend finding
correlations between 0–1 variables. A crosstabs is more
meaningful and easier to interpret.)

nC(1, 1) - C1(1)C2(1)

1C1(1)(n - C1(1)) 1C2(1)(n - C2(1))

7To be fair, many other statistical software packages, such as SPSS and SAS, now emulate Excel pivot tables.

E X A M P L E 3.4 EXAMINING CUSTOMER ORDERS AT ELECMART

The file Elecmart Sales.xlsx (see Figure 3.27) contains data on 400 customer orders
during a period of several months for Elecmart (a fictional company). This is a typical

data set where pivot tables can be used to gain useful information. There are several cate-
gorical variables and several numerical variables. The categorical variables include the day
of week, time of day, region of country, type of credit card used, gender of customer, and
buy category of the customer (high, medium, or low) based on previous behavior. Even the
date variable can be treated as a categorical variable. The numerical variables include the
number of items ordered, the total cost of the order, and the price of the highest-priced item
purchased. The manager of Elecmart wants to summarize the data so that she can under-
stand the buying patterns of her customers. How can she use pivot tables to gain useful
information?

Objective To use pivot tables to break down the customer order data by a number of
categorical variables.
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Solution

Before we dive into the details, we first preview the results you can obtain. Pivot tables are
useful for breaking down numerical variables by categories, or for counting observations
in categories and possibly expressing the counts as percentages. So, for example, you
might want to see how the average total cost for females differs from the similar average
for males. Or you might simply want to see the percentage of the 400 sales made by
females. Pivot tables allow you to find such averages and percentages easily. 

Actually, you could find such averages or percentages without using pivot tables. For
example, you could sort on gender and then find the average of the Female rows and the
average of the Male rows. However, this takes time, and more complex breakdowns are
even more difficult and time-consuming. They are all easy and quick with pivot tables.
Besides that, the resulting tables can be accompanied with corresponding charts that
require virtually no extra effort to create. Pivot tables are a manager’s dream. Fortunately,
with Excel they are also a manager’s reality.8

We begin by building a pivot table to find the sum of TotalCost broken down by time
of day and region of country. Although we show this in a number of screen shots, just to
help beginners get the knack of it, the process takes only a few seconds after you gain some
experience with pivot tables. 

To start, click on the PivotTable button at the far left on the Insert ribbon (see
Figure 3.28). This produces the dialog box in Figure 3.29. The top section allows you to
specify the table or range that contains the data. (You can also specify an external data
source, but we will not cover this option here.) The bottom section allows you to select the
location where you want the results to be placed. If you start with the cursor inside the data
set, Excel’s guess for the table or range is usually correct, although you can override it if nec-
essary. Make sure the range selected for this example is A1:J401. This selected range should
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

A B C D E F G H I J
Date Day Time Region CardType Gender BuyCategory ItemsOrdered TotalCost HighItem

6-Mar Mon Morning West ElecMart Female High 4 $136.97 $79.97
6-Mar Mon Morning West Other Female Medium 1 $25.55 $25.55
6-Mar Mon A�ernoon West ElecMart Female Medium 5 $113.95 $90.47
6-Mar Mon A�ernoon NorthEast Other Female Low 1 $6.82 $6.82
6-Mar Mon A�ernoon West ElecMart Male Medium 4 $147.32 $83.21
6-Mar Mon A�ernoon NorthEast Other Female Medium 5 $142.15 $50.90
7-Mar Tues Evening West Other Male Low 1 $18.65 $18.65
7-Mar Tues Evening South Other Male High 4 $178.34 $161.93
7-Mar Tues Evening West Other Male Low 2 $25.83 $15.91
8-Mar Wed Morning MidWest Other Female Low 1 $18.13 $18.13
8-Mar Wed Morning NorthEast ElecMart Female Medium 2 $54.52 $54.38
8-Mar Wed A�ernoon South Other Male Medium 2 $61.93 $56.32
9-Mar Thurs Morning NorthEast ElecMart Male High 3 $147.68 $96.64
9-Mar Thurs A�ernoon NorthEast Other Male Low 1 $27.24 $27.24

10-Mar Fri Morning West Other Female Low 3 $46.18 $44.27
10-Mar Fri A�ernoon West Other Male Low 5 $107.44 $91.64

Figure 3.27 Elecmart Data

Pivot tables are 
perfect for breaking
down data by
categories.We call 
this “slicing and 
dicing” the data.

8One Excel 2007 book by Bill Jelen (known as “Mr. Excel”) claims that although pivot tables have been around
for years and represent Excel’s arguably most powerful tool, they are used by only about 10% of business people.
Fortunately, you will be in that 10%.
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always include the variable names at the top of each column. Then click on OK. Note that
with these settings, the pivot table will be placed in a new worksheet with a generic name
such as Sheet1. We recommend that you rename it to something like PivotTable1.

This produces a blank pivot table, as shown in Figure 3.30. Also, assuming the cursor
is within this blank pivot table, the PivotTable Tools “super tab” is selected. This super tab
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Figure 3.28 PivotTable Button on the Insert Ribbon

Figure 3.29

Create PivotTable

Dialog Box

Figure 3.30

Blank Pivot Table
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has two ribbons, Options and Design. The Options ribbon appears in Figure 3.31, and
the Design ribbon appears in Figure 3.32. Each of these has a variety of buttons for
manipulating pivot tables, some of which we will explore shortly. Finally, the PivotTable
Field List window in Figure 3.33 is visible. By default, it is docked at the right of the
screen, but you can move it if you like.
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Figure 3.31 PivotTable Options Ribbon

Figure 3.32 PivotTable Design Ribbon

Figure 3.33

PivotTable Field List

Window
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Note that the two pivot table ribbons and the pivot table field list window are visible
only when the active cell is inside a pivot table. If you click outside the pivot table, say, in
cell D1, all three of these will disappear. Don’t worry. You can get them back by clicking
anywhere inside the pivot table.

If you have used pivot tables in a previous version of Excel, the blank pivot table in
Figure 3.30 will look different. Here are two things to be aware of. First, if you open a file in
the old .xls format (Excel 2003 or earlier) and go through the same steps as above, you will
get an “old style” pivot table, as shown in Figure 3.34. Second, if you prefer the old style,
especially for dragging and dropping, Excel 2007 lets you revert back to it. To do so, right-
click on the pivot table, select PivotTable Options, click on the Display tab, and check the
Classic PivotTable layout option (see Figure 3.35). You can use the new layout or the old one,
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Figure 3.34

Old-Style Blank

Pivot Table

Figure 3.35

Switching to Classic

PivotTable Layout

The pivot table “look”
changed considerably
in Excel 2007, but 
the functionality is
virtually the same.
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whichever you prefer. We were perfectly happy with the old layout, but Microsoft evidently
got enough complaints from users that they tried to make it more user friendly. 

The Field List window indicates that a pivot table has four areas. These are for Report
Filter, Row Labels, Column Labels, and Values. They correspond to the four areas in
Figure 3.34 where you can put fields.9 Note that the terminology is slightly different in
Excel 2007. Here is the correspondence (old to new):

■ Page Fields correspond to Report Filters.
■ Row Fields correspond to Row Labels.
■ Column Fields correspond to Column Labels.
■ Data Fields correspond to Values.

Essentially, a Row field has categories that go down the left side of a pivot table, a
Column field has categories that go across the top of a pivot table, a Report Filter field lets
you filter the whole pivot table by its categories, and a Values field contains the data you
want to summarize. Typically (but not always), you will place categorical variables in the
Report Filter, Row, and/or Column areas, and you will place numerical variables in
the Values area. 

In the present example, select Time and Region for the Row fields and TotalCost for
the Values field. To do this, check the Time, Region, and TotalCost boxes in the upper
half of the Field List window. With no extra work whatsoever, you get the pivot table in
Figure 3.36. It shows the sum of TotalCost, broken down by time of day and region of
country. For example, the total cost of orders in the morning in the South was $3,835.86,
and the total cost of orders in the morning (over all regions) was $18,427.31.

3.5 Pivot Tables 119

Figure 3.36

Sum of TotalCost by

Time and Region

(Compact Layout)

9In discussing pivot tables, Microsoft uses the term field rather than variable, so we will do so as well.

Excel applies two rules to variables checked at the top of the Field List window:

1. When you check a text variable or a date variable in the field list, it is added to the
Row Labels area.

2. When you check a numerical variable in the field list, it is added to the Values area
and summarized with the Sum function.
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Starting with Excel
2007, there are three
different layouts for
pivot tables, but the
differences are 
relatively minor.
Ultimately, it is a
matter of taste.

Figure 3.37

Sum of TotalCost by

Time and Region

(Tabular Layout)

This is exactly what happens when you check Time, Region, and TotalCost. However,
this is just the beginning. With very little work, you can do a lot more. Some of the possi-
bilities are explained in the remainder of this example.

First, however, we discuss the new look of pivot tables in Excel 2007. Notice that the
pivot table in Figure 3.36 has both row fields, Time and Region, in column A. This wasn’t
possible in old-style pivot tables, where the two row fields would have been in separate
columns. Microsoft decided to offer this new layout because of its clean, streamlined look.
In fact, you can now choose from three layouts: Compact, Outline, or Tabular. These are
available from the Report Layout dropdown list on the Design ribbon. When you create a
pivot table (in an .xlsx file), you get the compact layout by default. If you would rather
have the tabular or outline layout, it is easy to switch to them. In particular, the tabular lay-
out, shown in Figure 3.37, is closer to what was used in previous versions of Excel.
(Outline layout, not shown here, is very similar to tabular layout except for the placement
of its subtotals.)

One significant advantage to using tabular (or outline) layout instead of compact lay-
out is that you can see which fields are in the row and column areas. Take another look at
the pivot table in Figure 3.36. It is pretty obvious that categories such as afternoon and
morning have to do with time of day and that categories such as Midwest and South have
to do with region of country. However, there are no labels that explicitly name the row
fields. In contrast, the tabular layout in Figure 3.37 names them explicitly. Still, you can
choose the layout you prefer.

Hiding Categories (Filtering)

The pivot table in Figure 3.36 shows all times of day for all regions, but this is not
necessary. You can filter out any of the times or regions you don’t want to see. To
understand how this works, make sure the Options ribbon is visible. In the Active Field
group, you will notice that one of the fields is designated as the active field. The active
field corresponds to the location of your cursor. If your cursor is on a Time category, such
as Evening, then Time is the active field. If your cursor is on a Region category such as
NorthEast, then Region is the active field. If your cursor is on any of the numbers, then
Sum of TotalCost is the active field.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Once you understand the active field concept, then the way Excel implements filtering
makes sense. If Time is the active field and you click on the Row Labels dropdown arrow,
you see the dialog box in Figure 3.38. To see data only for Afternoon and Morning, for
example, uncheck the Select All item and then check the Afternoon and Morning items.
Similarly, if Region is the active field and you click on the Row Labels dropdown arrow, you
can check which regions you want to filter on. (If you are in tabular layout, it is more straight-
forward, because each row field then has its own dropdown list.) For example, the pivot table
in Figure 3.39 is obtained by filtering out the Evening and NorthEast categories. Note how
the filter symbols replace the arrows in row 3 to indicate that some categories have been fil-
tered out. Also, note that the updated subtotals for Morning and Afternoon and the updated
grand total for all categories do not include the hidden categories.10
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Figure 3.38

Filtering on Time

Figure 3.39

Pivot Table with

Hidden Categories

10You have probably noticed that the dialog box in Figure 3.38 is exactly like the one for Excel tables discussed
in the previous chapter. This is no accident. You already learned how to filter tables, so there is nothing new to
learn for filtering pivot tables.
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Sorting on Values or Categories

It is easy to sort in a pivot table, either by the numbers in the Values area of the table or by
the labels in a Row or Column field. To sort by the numbers in the Values area, right-click
on any number and choose the Sort item. If a simple A-Z or Z-A sort isn’t enough, you can
use the More Sort Options item. For example, this allows you to sort on the column of
numbers that contains the selected cell or on the row of numbers that contains this cell.

To sort on the labels of a Row or Column field, you can again right-click on any of the
categories such as Morning and select Sort. Alternatively, you can click on the dropdown
arrow for the field, such as Time in Figure 3.39, and you will get the dialog box in
Figure 3.38 that allows both sorting and filtering. However, be aware that sorting on labels
is always in alphabetical or reverse alphabetical order. This is not always what you want.
For example, suppose you want the natural sort order Morning, Afternoon, Evening. This
isn’t the A-Z or Z-A order, but it is still possible to sort manually. The trick is to select the
cell of some label such as Morning and place the cursor on the border of the cell so that it
becomes a four-sided arrow. Then you can drag the label up or down, or to the left or right.
It takes a little practice, but it isn’t difficult. ■
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Changing Locations of Fields (Pivoting)

Starting with the pivot table in Figure 3.39, you can choose where to place either Time or
Region; it does not have to be in the Row area. To place the Region variable in the
Column area, for example, drag the Region button from the Row Labels area of the Field
List window to the Column Labels area. The pivot table changes automatically, as shown
in Figure 3.40. (We removed the filters on Time and Region.) 

Figure 3.40

Placing Region in

the Column Labels

Area

Alternatively, you can categorize by a third field such as Day and locate it in a differ-
ent area. As before, if you check Day in the Field List window, it goes to the Row area
by default, but you can then drag it to another area. The pivot table in Figure 3.41 shows
the result of placing Day in the Report Filter area. By clicking on the dropdown arrow in
row 1, you can then show the pivot table for all days or any particular day. In fact, there
is now a Show Multiple Items option you can check. (This option wasn’t available before
Excel 2007.) We checked this option and then selected Friday and Saturday to obtain the
pivot table in Figure 3.41. It reports data only for Fridays and Saturdays.

This ability to categorize by multiple fields and rearrange the fields as you like is a big
reason why pivot tables are so powerful and useful—and easy to use.

Changing Field Settings

Depending on which field is the active field, you can change various settings in the Field
Settings dialog box. You can get to this dialog box in at least two ways. First, there is a
Field Setting button on the Options ribbon. Second, you can right-click on any of the pivot

Changing the locations
of fields in pivot tables
has always been easy,
but the new user
interface introduced in
Excel 2007 makes it
even easier.We favor
dragging the fields to
the various areas, but
you can experiment
with the various
options.
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table cells and select the Field Settings item. The field settings are particularly useful for
fields in the Values area, as we now explain.

For now, right-click on any number in the pivot table in Figure 3.41 and select Value
Field Settings to obtain the dialog box in Figure 3.42. This allows you to choose which
way you want to summarize the TotalCost variable—by Sum, Average, Count, or several
others. You can also click on the Number Format button to choose from the usual number
formatting options, and you can click on the Show Values As tab to display the data in
various ways (more on this later). If you choose Average and format as currency with two
decimals, the resulting pivot table appears as in Figure 3.43. Now each number is the
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Figure 3.41 Placing Day in the Report Filter Area and Filtering on Day

Figure 3.42

Value Field Settings

Dialog Box

Figure 3.43

Pivot Table 

with Average of

TotalCost

The key to summa-
rizing the data the way
you want it summa-
rized is the Value Field
Settings dialog box. Get
used to it because you
will use it often.
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average of TotalCost for all orders in its category combination. For example, the average of
TotalCost for all Friday and Saturday morning orders in the South is $107.69, and the
average of all Friday and Saturday orders in the South is $109.10.

Pivot Charts

It is easy to accompany pivot tables with pivot charts. These charts are not just typical
Excel charts; they adapt automatically to the underlying pivot table. If you make a change to
the pivot table, such as pivoting the Row and Column fields, the pivot chart makes the same
change automatically. To create a pivot chart, click anywhere inside the pivot table, select
the PivotChart button on the Options ribbon (see Figure 3.31), and select a chart type. That’s
all there is to it. The resulting pivot chart (using the default column chart option) for the
pivot table in Figure 3.43 appears in Figure 3.44. If you decide to pivot the Row and
Column fields, the pivot chart changes automatically, as shown in Figure 3.45. Note that the
categories on the horizontal axis are always based on the row field, and the categories in the
legend are always based on the Column field.
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Figure 3.44

Pivot Chart Based

on Pivot Table

Figure 3.45

Pivot Chart after

Pivoting Row and

Column Fields

Pivot charts are a
great extension of
pivot tables.They not
only “tell the story”
graphically, but they
update automatically
when you rearrange
the pivot table.

Note that when you activate a pivot chart, the PivotTable Tools “super tab” changes to
PivotChart Tools. This super tab includes four ribbons for manipulating pivot charts:
Design, Layout, Format, and Analyze (see Figure 3.46). There is not enough space here to
discuss the many options on these ribbons, but they are intuitive and easy to use. As usual,
don’t be afraid to experiment.
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Multiple Variables in the Data Area

More than a single variable can be placed in the Values area. In addition, a given variable
in the Values area can be summarized by more than one summarizing function. This can
make for a rather busy pivot table, so we indicate our favorite way of doing it. Starting with
the pivot table in Figure 3.43, drag the TotalCost item in the top of the Field List window
(the item that is already checked) to the Values area. The bottom half of the Field List
window should now appear as in Figure 3.47, and the pivot table should now appear as in
Figure 3.48. Note in particular the Values button in the Column Labels area. This button
controls the placement of the data in the pivot table. You have a number of options for this
button: (1) leave it where it is, (2) drag it above the Time button, (3) drag it to the
Row Labels area, below the Region button, or (4) drag it to the Row Labels area, above the
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Figure 3.46 PivotChart Tools Ribbons

Figure 3.47

Field List Window

with Two Values

Fields

Figure 3.48 Pivot Table with Two Values Fields
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Region button. You can experiment with these options, but we tend to prefer option
(2), which leads to the pivot table in Figure 3.49.

In a similar manner, you can experiment with the buttons in the Values area. However,
the effect here is less striking. If you drag the Sum of TotalCost button above the Average
of TotalCost button in the field list, the effect is simply to switch the ordering of these sum-
maries in the pivot table, as shown in Figure 3.50.
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Figure 3.49 Rearranged Pivot Table with Two Values Fields

Figure 3.50 Another Rearrangement of the Pivot Table with Two Values Fields

Summarizing by Count

The variable in the Values area, whatever it is, can be summarized by the Count function.
This is useful when you want to know, for example, how many of the orders were placed
by females in the South. When summarizing by Count, the key is to understand that the
actual variable placed in the Values area is irrelevant, so long as you summarize it by the
Count function. To illustrate, start with the pivot table in Figure 3.50, where TotalCost is
summarized with the Sum function. Now right-click on any number in the pivot table,
select Value Field Settings, and select the Count function (see Figure 3.51). The default
Custom Name you will see in this dialog box, Count of TotalCost, is misleading, because
TotalCost has nothing to do with the counts obtained. Therefore, we like to change this
Custom Name label to Count, as shown in the figure. The resulting pivot table, with
values formatted as numbers with zero decimals, appears in Figure 3.52. For example,
27 of the 400 orders were placed in the morning in the South, and 115 of the 400 orders
were placed in the NorthEast. (Do you now see why the counts have nothing to do with
TotalCost?) This type of pivot table, with counts for various categories, is the same
crosstabs that we discussed in Section 3.2. However, it has now been created much more
easily with a pivot table.
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When data are summarized by counts, there are a number of ways they can be
displayed. The pivot table in Figure 3.52 shows “raw counts.” Depending on the type of
information you want, it might be more useful to display the counts as percentages. Three
particular options are typically chosen: as percentages of total, as percentages of row, and
as percentages of column. When shown as percentages of total, the percentages in the table
sum to 100%; when shown as percentages of row, the percentages in each row sum
to 100%; when shown as percentages of column, the percentages in each column sum to
100%. Each of these options can be useful, depending on the question you are trying
to answer. For example, if you want to know whether the daily pattern of orders varies
from region to region, showing the counts as percentages of column is useful so that
you can compare columns. But if you want to see whether the regional ordering pattern
varies by time of day, showing the counts as percentages of row is useful so that you can
compare rows.
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Figure 3.51

Field Settings Dialog

Box with Count

Selected

Figure 3.52

Pivot Table with

Counts.

To display the counts as percentages of some type, display the Value Field Settings
dialog box (remember how?), select the Show Values As tab, and select the appropriate
option (see Figure 3.53). The resulting pivot table and corresponding pivot chart appear
in Figure 3.54. As you can see, the pattern of regional orders varies somewhat by time
of day.

Counts can be
displayed in a number
of ways.You should
choose the way that
best answers the
question you are
asking.
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Sometimes it is useful to see the raw counts and the percentages. This can be done
easily by dragging any variable to the Data area, summarizing it by Count, and displaying
it as “Normal.” Figure 3.55 shows one possibility, where we have changed the custom
names of the two Count variables to make them more meaningful. Alternatively, the counts
and percentages could be shown in two separate pivot tables.
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Figure 3.53

Value Field Settings

Dialog Box with

“Show Values As”

Options 

Figure 3.54 Pivot Table and Pivot Chart with Counts As Percentages of Rows

Figure 3.55 Pivot Table with Percentages of Rows and Raw Counts
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Grouping

Finally, categories in a Row or Column variable can be grouped. This is especially useful
when a Row or Column variable has many distinct values. Because a pivot table creates a
row or column for each distinct value, the results can be unwieldy. We present two
possibilities. First, suppose you want to break Sum of TotalCost down by Date. Starting
with a blank pivot table, check both Date and TotalCost in the pivot table field list window.
This creates a separate row for each distinct date in the data set—112 separate dates. This is
too much detail, so it is useful to group on the Date variable. To do so, right-click on any
date in column A and select the Group item. (Group options are also available on the
Options ribbon.) Accept the default selections in the Grouping dialog box (see Figure 3.56)
to obtain the pivot table in Figure 3.57.
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Figure 3.56

Grouping Dialog

Box

Figure 3.57

Pivot Table after

Grouping by Month

Pivot Table Tip Suppose you have multiple years of data and you would like a monthly
grouping such as January 2007 through December 2009. If you simply select Months as in
Figure 3.56, all of the Januaries, for example, will be lumped together. The trick is to select
both Months and Years in the dialog box. 

As a second possibility for grouping, suppose you want to see how the average of
TotalCost varies by the amount of the highest priced item in the order. Place TotalCost in the
Data area, summarized by Average, and place HighItem in the Row area. Because HighItem
has nearly 400 distinct values, the resulting pivot table is virtually worthless. Again, however,
the trick is to group on the Row variable. This time there are no natural groupings as there are
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for a date variable, so it is up to you to create the groupings. Excel provides a suggestion, as
shown in Figure 3.58, but you can override it. For example, changing the bottom entry to 
50 leads to the pivot table in Figure 3.59. Some experimentation is typically required to
obtain the grouping that presents the results in the most appropriate way.
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Figure 3.58

Grouping Dialog

Box for a Non-Date

Variable

Figure 3.59

Pivot Table after

Grouping by 50 on

HighItem

By now, we have illustrated the pivot table features that are most commonly used. Be
aware, however, that there are many more features available. These include (but are not
limited to) the following:

■ Showing/hiding subtotals and grand totals (check the Layout options on the Design
ribbon)

■ Dealing with blank rows, that is, categories with no data (right-click on any number,
choose PivotTable Options, and check the options on the Layout & Format tab)

■ Displaying the data behind a given number in a pivot table (double-click on the
number to get a new worksheet)

■ Formatting a pivot table with various styles (check the style options on the Design
ribbon)

■ Sorting pivot tables in various ways (check the Sort options on the Options ribbon)
■ Moving or renaming pivot tables (check the PivotTable and Action options on the

Options ribbon)
■ Refreshing pivot tables as the underlying data changes (check the Refresh dropdown

list on the Options ribbon)
■ Creating pivot table formulas for calculated fields or calculated items (check the

Formulas dropdown list on the Options ribbon)
■ Basing pivot tables on external databases (not covered here,)
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Not only are these (and other) features available, but Excel usually provides more than
one way to implement them. The suggestions above are just some of the ways they can be
implemented. The key to learning pivot table features is to experiment. There are entire
books written on pivot tables, but we don’t recommend them. You can learn a lot more, and
a lot more quickly, by experimenting with data such as the Elecmart data. Don’t be afraid
to mess up. Pivot tables are very forgiving, and you can always start over.

We complete this section by providing one last quick example to illustrate how pivot
tables can answer business questions very quickly.
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E X A M P L E 3.5 FROZEN LASAGNA DINNERS

The file Lasagna Triers.xlsx contains data on over 800 potential customers being
tracked by a (fictional) company that has been marketing a frozen lasagna dinner. The

file contains a number of demographics on these customers, as indicated in Figure 3.60:
their age, weight, income, pay type, car value, credit card debt, gender, whether they live
alone, dwelling type, monthly number of trips to the mall, and neighborhood. It also
indicates whether they have tried the company’s frozen lasagna. The company wants to
understand why some potential customers are triers and others are not. Does gender make
a difference? Does income make a difference? In general, what distinguishes triers from
nontriers? How can the company use pivot tables to explore these questions?

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

A B C D E F G H I J K L M
Person Age Weight Income PayType CarValue CCDebt Gender LiveAlone DwellType MallTrips Nbhd HaveTried

1 48 175 65500 Hourly 2190 3510 Male No Home 7 East No
2 33 202 29100 Hourly 2110 740 Female No Condo 4 East Yes
3 51 188 32200 Salaried 5140 910 Male No Condo 1 East No
4 56 244 19000 Hourly 700 1620 Female No Home 3 West No
5 28 218 81400 Salaried 26620 600 Male No Apt 3 West Yes
6 51 173 73000 Salaried 24520 950 Female No Condo 2 East No
7 44 182 66400 Salaried 10130 3500 Female Yes Condo 6 West Yes
8 29 189 46200 Salaried 10250 2860 Male No Condo 5 West Yes
9 28 200 61100 Salaried 17210 3180 Male No Condo 10 West Yes

10 29 209 9800 Salaried 2090 1270 Female Yes Apt 7 East Yes
11 29 171 46600 Salaried 16350 5520 Male Yes Home 11 West Yes
12 30 243 24500 Salaried 5410 300 Male No Home 3 West Yes
13 62 246 110900 Salaried 8410 730 Male Yes Condo 7 West Yes
14 29 228 37200 Salaried 6420 700 Male Yes Apt 3 East Yes
15 40 230 21800 Hourly 3230 1650 Male No Home 4 East Yes
16 61 185 28900 Hourly 1300 1030 Male Yes Apt 2 South No

Figure 3.60 Lasagna Trier Data

Objective To use pivot tables to explore which demographic variables help to distinguish
lasagna triers from nontriers.

Solution

The key is to set up a pivot table that shows counts of triers and nontriers for different
categories of any of the potential explanatory variables. For example, one such pivot table
shows the percentages of triers and nontriers for males and females separately. If the
percentages are different for males than for females, the company will know that gender
has an effect. On the other hand, if the percentages for males and females are about the
same, the company will know that gender does not make much of a difference.

Pivot tables, with
counts in the Values
area, are a great way
to discover which
variables have the
largest effect on a
Yes/No variable.
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You should set up the typical pivot table as shown in Figure 3.61. The Row variable is any
demographic variable you want to investigate, in this case, Gender. The Column variable is
HaveTried (Yes or No). The Values variable can be any variable, so long as it is expressed as a
count. Finally, it is useful to show these counts as percentage of row. This way you can easily
look down column C to see whether the percentage in one category (Female) who have tried
the product is any different from the percentage in another category (Male) who have tried the
product. Specifically, males are somewhat more likely to try the product than females: 60.92%
versus 54.27%. This is also apparent from the associated pivot chart.

Once this generic pivot table and associated pivot chart are set up, you can easily
explore other demographic variables by swapping them for Gender. For example, Figure 3.62
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Figure 3.61

Pivot Table and

Pivot Chart for

Examining the Effect

of Gender

Figure 3.62

Pivot Table and

Pivot Chart for

Examining the Effect

of LiveAlone
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indicates that people who live alone are (not surprisingly) much more likely to try this frozen
microwave product than people who don’t live alone.

As another example, Figure 3.63 indicates that people with larger incomes are slightly
more likely to try the product. There are two things to note about this income pivot table.
First, because there are so many individual income values, grouping is useful. You can
experiment with the grouping to get the most meaningful results. Second, you should be a
bit skeptical about the last group, which has 100% triers. It is possible that there are only
one or two people in this group. (It turns out that there are four.) For this reason, it is a good
idea to show two pivot tables of the counts, one showing percentage of row and one
showing the raw counts. This second pivot table is shown at the bottom of Figure 3.63.
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Figure 3.63

Pivot Table and

Pivot Chart for

Examining the Effect

of Income

The problem posed in this example is a common one in real business situations. One
variable indicates whether people are in one group or another (triers or nontriers), and
there are a lot of other variables that could potentially explain why some people are in one
group and others are in the other group. There are a number of rather sophisticated tech-
niques for attacking this classification problem, most of which are beyond the level of this
book. However, you can go a long way toward understanding which variables are impor-
tant by the simple pivot table method illustrated here.

CHANGES IN EXCEL 2010

Microsoft has made the already user-friendly pivot tables even friendlier in Excel 2010 with the

addition of slicers.These are essentially lists of the distinct values of any variable, which you can

then filter on. You add a slicer from the PivotTable Tools/Options ribbon. For example, in the
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Elecmart sales data, you can choose Region as a slicer. You then see a list on the screen with a

button for each possible value: Midwest, Northeast, South, and West.You can then click any

combination of these buttons to filter on the chosen regions. Note that a slicer variable does not

have to be part of the pivot table. For example, if you are showing sum of TotalCost, and Region is

not part of the pivot table, a Region slicer will still filter sum of TotalCost for the regions selected.

On the other hand, if Region is already in the row area, say, you can filter on it through the slicer. In

this case, clicking on regions from the slicer is equivalent to filtering on the same regions in the

row area. Basically, the slicers have been added as a convenience to users.They make filtering

easier and more transparent.

As an example, Figure 3.64 shows a pivot table accompanied by two slicers.The row field is

Time, which has been filtered in the usual way (through the dropdown list in the row area) to

show only Afternoon and Evening.The two slicers appear next to the pivot table.The Region slicer

has been filtered on Midwest and South, and the Gender slicer has been filtered on Male. So, for

example, the sum of TotalCost for all sales in the evening by males in the Midwest and South is

$3824.03.
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Figure 3.64

Pivot Table with

Slicers

P R O B L E M S

Level A

33. Solve problem 1 with pivot tables and create corre-
sponding pivot charts. Express the counts as per-
centage of row. What do these percentages indicate
about this particular data set? Then repeat, expressing
the counts as percentages of column.

34. Solve problem 2 with pivot tables and create
corresponding pivot charts. Express the counts as
percentage of row. What do these percentages indicate
about this particular data set? Then repeat, expressing
the counts as percentages of column.

35. Solve problem 3 with pivot tables and create corre-
sponding pivot charts. Express the counts as percentage
of row. What do these percentages indicate about this
particular data set? Then repeat, expressing the counts as
percentages of column.

36. Solve problem 4 with pivot tables and create corre-
sponding pivot charts. Express the counts as percentage

of row. What do these percentages indicate about this
particular data set? Then repeat, expressing the counts
as percentages of column.

37. Solve problem 7 with pivot tables and create corre-
sponding pivot charts. However, find only means 
and standard deviations, not medians or quartiles.
(This is one drawback of pivot tables. Medians, quar-
tiles, and percentiles are not in the list of summary
measures.)

38. Solve problem 8 with pivot tables and create cor-
responding pivot charts. However, find only means
and standard deviations, not medians. (This is one
drawback of pivot tables. Medians are not among their
summary measures.)

39. Solve problem 9 with pivot tables and create cor-
responding pivot charts. However, find only means
and standard deviations, not medians. (This is one
drawback of pivot tables. Medians are not among their
summary measures.)

■
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40. The file P03_40.xlsx contains monthly data on the
number of border crossings from Mexico into four
southwestern states.
a. Restructure this data set on a new sheet so that there

are three long columns: Month, State, and Crossings.
Essentially, you should stack the original columns B
through E on top of one another to get the Crossings
column, and you should also indicate which state
each row corresponds to in the State column. The
Month column should have four replicas of the
original Month column.

b. Create a pivot table and corresponding pivot table
chart based on the restructured data. It should break
down the average of Crossings by Year and State.
Comment on any patterns you see in the chart.

41. The Wall Street Journal CEO Compensation Study
analyzed CEO pay from many U.S. companies with
fiscal year 2008 revenue of at least $5 billion that
filed their proxy statements between October 2008
and March 2009. The data are in the file P02_30.xlsx.
(Note: This data set is a somewhat different CEO
compensation data set from the one used as an
example in the next section.)
a. Create a pivot table and a corresponding pivot

chart that simultaneously shows average of Salary
2008 and average of Bonus 2008, broken down by
Company Type. Comment on any striking results
in the chart.

b. In the Data sheet, create a new column, Total 2008,
which is the sum of Salary 2008 and Bonus 2008.
Then create two pivot tables and corresponding
pivot charts on a single sheet. The first should
show the counts of CEOs broken down by
Company Type, and the second should
simultaneously show the average of Total 2008, the
minimum of Total 2008, and the maximum of Total
2008, all broken down by Company Type.
Comment on any striking results in these charts.

42. One pivot table element we didn’t explain is a
calculated item. This is usually a new category for
some categorical variable that is created from existing
categories. It is easiest to learn from an example. Open
the file Elecmart Sales.xlsx from this section, create a
pivot table, and put Day in the row area. Proceed as
follows to create two new categories, Weekday and
Weekend.
a. Select any day and select Calculated Item from the

Formulas dropdown list on the PivotTable Tools
Options ribbon. This will open a dialog box. Enter
Weekend in the Name box and enter the formula
�Sat�Sun in the formula box. (You can double-
click on the items in the Items list to help build this
formula.) When you click on OK, you will see
Weekend in the pivot table.

b. Do it yourself. Create another calculated item,
Weekday, for Mon through Fri.

c. Filter out all of the individual days from the row
area, so that only Weekday and Weekend remain,
and then find the sum of TotalCost for these two
new categories. How can you check whether these
sums are what you think they should be? (Notes
about calculated items: First, if you have Weekend,
Weekday, and some individual days showing in the
row area, the sum of TotalCost will double-count
these individual days, so be careful about this.
Second, be aware that if you create a calculated
item from some variable such as Day, you are no
longer allowed to drag that variable to the Report
Filter area. We are not sure why.)

43. Building on the previous problem, another pivot table
element we didn’t explain is a calculated field. This is
usually a new numerical variable built from numerical
variables that can be summarized in the Values area.
It acts somewhat like a new column in the spreadsheet
data, but there is an important difference. Again, it
is easiest to learn from an example. Open the file
Elecmart Sales.xlsx and follow the instructions
below.
a. Create a new column in the data, CostPerItem,

which is TotalCost divided by ItemsOrdered.
Then create a pivot table and find the average of
CostPerItem, broken down by Region. You should
find averages such as $50.41 for the MidWest.
Explain exactly how this value was calculated.
Would such an average be of much interest to a
manager at Elecmart? Why or why not?

b. Select any average in the pivot table and then select
Calculated Field from the Formulas dropdown list
on the PivotTable Tools Options ribbon. This will
open a dialog box. Enter CF_CostPerItem in the
name box (we added CF, for calculated field,
because we are not allowed to use the CostPerItem
name that already exists), enter the formula
�TotalCost/ItemsOrdered, and click on OK. You
should now see a new column in the pivot table,
Sum of CF_CostPerItem, with different values than
in the Average of CostPerItem column. For
example, the new value for the MidWest should be
$46.47. Do some investigation to understand how
this “sum” was calculated. From a manager’s point
of view, does it make any sense? (Note on
calculated fields: When you summarize a
calculated field, it doesn’t matter whether you
express it as sum, average, max, or any other
summary measure. It is calculated in exactly the
same way in each case.)

44. The file P02_18.xlsx contains daily values of the S&P
Index from 1970 to 2009. It also contains percentage
changes in the index from each day to the next. Create
a pivot table with average of % Change in the Values
area and Date in the Row area. You will see every
single date, with no real averaging taking place. This
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problem lets you explore how you can group naturally
on a date variable. For each part below, explain the
result briefly.
a. Group by Month.
b. Group by Year.
c. Group by Month and Year (select both in the

Group dialog box). Can you make it show the year
averages from part b?

d. Group by Quarter.
e. Group by Month and Quarter. Can you make it

show the averages from part c?
f. Group by Quarter and Year. 
g. Group by Month, Quarter, and Year.

45. (For Excel 2010 users only) Using the Elecmart
Sales.xlsx file from this section, experiment with
slicers as follows.
a. Create a pivot table that shows the average of

TotalCost, broken down by Region in the row area
and Time in the column area. Then insert two
slicers, one for Region and one for Time. Select the
West and NorthEast buttons on the Region slicer and
the Morning and Afternoon buttons on the Time
slicer. Explain what happens in the pivot table.

b. Create a pivot table that shows the average of
TotalCost, broken down by Region in the row area
and Time in the column area. Insert a Day slicer
and select the Sat and Sun buttons. Explain what
averages are now showing in the pivot table. Verify
this by deleting the slicer and instead making Day
a report filter, with Sat and Sun selected.

46. (For Excel 2010 users only) We used the Lasagna
Triers.xlsx file in this section to show how pivot tables
can help explain which variables are related to the
buying behavior of customers. Illustrate how the same
information could be obtained with slicers. Specifically,
set up the pivot table as in the example, but use a slicer
instead of a row variable. Then set it up exactly as in 
the example, with a row variable, but include a slicer for
some other variable. Comment on the type of results
you obtain with these two versions. Do slicers appear to
provide any advantage in this type of problem?

Level B

47. Solve problem 5 with pivot tables and create corr-
esponding pivot charts. If you first find the quartiles of
Salary and AmountSpent (by any method), is it possible
to create the desired crosstabs by grouping, without
recoding these variables?

48. Solve problem 17 with pivot tables. However, find
only means and standard deviations, not medians.
(This is one drawback of pivot tables. Medians are not
among their summary measures.)

49. The file P03_22.xlsx lists financial data on movies
released since 1980 with budgets at least $20 million.

a. Create three new variables, Ratio1, Ratio2, and
Decade. Ratio1 should be US Gross divided by
Budget, Ratio2 should be Worldwide Gross divided
by Budget, and Decade should list 1980s, 1990s,
or 2000s, depending on the year of the release date.
If either US Gross or Worldwide Gross is listed as
“Unknown,” the corresponding ratio should be
blank. (Hint: For Decade, use the YEAR function
to fill in a new Year column. Then use a lookup
table to populate the Decade column.)

b. Use a pivot table to find counts of movies by
various distributors. Then go back to the data and
create one more column, Distributor New, which
lists the distributor for distributors with at least
30 movies and lists Other for the rest. (Hint: Use
a lookup table to populate Distributor New, but
also use an IF to fill in Other where the distributor
is missing.)

c. Create a pivot table and corresponding pivot
chart that shows average and standard deviation
of Ratio1, broken down by Distributor New, with
a report filter for Decade. Comment on any striking
results.

d. Repeat part c for Ratio2.

50. The file P03_50.xlsx lists NBA salaries for five
seasons. (Each NBA season straddles two calendar
years.)
a. Merge all of the data into a single new sheet called

All Data. In this new sheet, add a new column
Season that lists the season, such as 2006–2007. 

b. Note that many of the players list a position such as
C-F or F-C. Presumably, the first means the player
is primarily a center but sometimes plays forward,
whereas the second means the opposite. Recode
these so that only the primary position remains 
(C in the first case, F in the second). To complicate
matters further, the source lists positions differently
in 2007–2008 than in other years. It lists PG and
SG (point guard and shooting guard) instead of just
G, and it lists SF and PF (small forward and power
forward) instead of just F. Recode the positions for
this season to be consistent with the other seasons
(so that there are only three positions: G, F, and C).

c. Note that many players have (p) or (t) in their
Contract Thru value. The Source sheet explains
this. Create two new columns in the All Data sheet,
Years Remaining and Option. The Years
Remaining column should list the years remaining
in the contract. For example, if the season is
2004–2005 and the contract is through 2006–2007,
years remaining should be 2. The Option column
should list Player if there is a (p), Team if there is a
(t), and blank if neither. 

d. Use a pivot table to find the average Salary by
Season. Change it to show average Salary by Team.
Change it to show average Salary by Season and
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Team. Change it to show average Salary by
Primary Position. Change it to show average Salary
by Team and Primary Position, with filters for
Season, Contract Years, Years Remaining, and
Option. Comment on any striking findings.

51. The files P02_29.xlsx contain monthly percentages
of on-time arrivals at several of the largest U.S.
airports.

a. Explain why the current format of either data set
limits the kind of information you can obtain with a
pivot table. For example, does it allow you find the
average on-time arrival percentage by year for any
selected subset of airports, such as the average for
O’Hare, Los Angeles International, and La Guardia?

b. Restructure the data appropriately and then use a
pivot table to answer the specific question in part a.

3.6 AN EXTENDED EXAMPLE

Now that you are equipped with a collection of tools for describing data, it is time to apply
these tools to some serious data analysis. In this section we examine a very interesting data
set that contains real data on CEO compensation in 2008. With a data set as rich as this one,
there are always many summary measures that could be calculated, many tables that could
be formed, and many charts that could be created. We illustrate some of the outputs that
might be of interest, but you should realize that there are many other analyses you could
perform. Given all the attention CEO compensation has received in the recent economic
recession, you probably have your own questions you would like to answer. Therefore, we
encourage you to take the analysis a few steps beyond what we present here.

E X A M P L E 3.6 CEO COMPENSATION

The file CEO Compensation 2008 Forbes.xlsx contains data on the 500 mostly highly
compensated CEOs in 2008, according to a Forbes Web site. The data was gathered 

by going to Web sites such as www.forbes.com/lists/2009/12/best-boss-09_John-B-
Hess_7YAE.html (one per CEO) and copying the data to Excel. A small subset of this data
appears in Figures 3.65 and 3.66 (where the rows are sorted in decreasing order of total
compensation, in millions of dollars, in column J). The data set includes some personal data
about each CEO, the CEO’s total compensation for 2008 and its components (columns K-
N), the CEO’s total 5-year compensation, and the value of company shares owned by the
CEO. For those CEOs with tenure at least six years, it also shows some six-year values,
including a performance versus pay ranking (1 is best) in column U. Finally, the last two
columns indicate the CEO’s total return versus tenure and how this compares to the market.
(More details about the variables in this file can be found in the cell comments 
in row 1 and at the Web links in column A.) The file also includes median compensation 

1
2
3
4
5
6
7
8
9

10
11

A

CEO
Lawrence J Ellison
Ray R Irani
John B Hess
Michael D Wa�ord
Mark G Papa
William R Berkley
Ma�hew K Rose
Paul J Evanson
Hugh Grant
Robert W Lane

B C D E F G H I J K L

FounderIndustryTickerCompanyGender
Years as

company CEO
Years with

company Age
Total 2008

compensa�on
2008 

Salary
2008 

Bonus
erawtfoSLCROOracleM  & Services Yes 32 32 64 556.98 1.00 10.78

M Occidental Petroleum OXY Oil & Gas Opera�ons No 18 26 74 222.64 1.30 3.63
liOSEHHessM  & Gas Opera�ons No 14 32 55 154.58 1.50 3.50

M Ultra Petroleum UPL Oil & Gas Opera�ons No 10 10 55 116.93 0.60 1.75
M EOG Resources EOG Oil & Gas Opera�ons No 11 28 62 90.47 0.94 1.00
M WR 8.501.0087.48634242YesInsurance

Transporta�on
BRWBerkley

M Burlington Santa 1.681.1868.6250168NoINBeF
M Allegheny 1.231.1267.2667176NoEYAEnergy

3.331.2964.6051286NoChemicals
U�li�es

NOMMonsantoM
M Deere & Co DE Capital 3.591.4461.3059279NoGoods

Figure 3.65 CEO Compensation (Columns A–L)
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values for the various industries, a few of which are shown in Figure 3.67, so that you can
compare any CEO to these median values in his/her industry. 

Objective To use the tools in this chapter to explore the CEO compensation data.

Solution

We first present a short discussion on CEO compensation.
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1
2
3
4
5
6
7
8
9

10
11

M N O P Q R S T U V W

2008 
Other

2008 Stock 
gains

5-year 
compensa�on 

total
Shares owned 

($ millions)
6-year average 
compensa�on

6-year annual 
total return

6-year return 
rela�ve to 

industry

6-year return 
rela�ve to 

market
Performance 

vs pay rank
Total return 

during tenure
Rela�ve to 

market
1.45 543.75 944.45 21987.4 164.26 9% 101 107 103 27% 118

33.32 184.39 743.55 394.3 128.82 28% 106 125 106 14% 106
36.66 112.92 234.83 2016.8 39.68 27% 106 125 115 10% 104

1.10 113.48 174.17 104.1 29.47 45% 120 142 28 48% 153
18.86 69.67 170.69 51.7 28.92 23% 102 120 92 23% 123

5.42 72.56 178.29 627.4 30.79 13% 118 111 67 14% 104
20.70 45.06 140.73 39.8 23.68 19% 114 117 40 13% 117
22.28 42.63 143.54 33.1 18% 119

9.32 50.67 135.30 28.0 44% 144
15.24 41.04 142.40 11.8 24.13 13% 100 111 109 9% 113

Figure 3.66 CEO Compensation (Columns M–W)

Construc�on

1
2
3
4
5
6
7
8
9

10

DACABAAAZY

Lookup table for industry medians in
2008

Total compensa�onIndustry Salary Bonus Other Stock Gains
Aerospace & Defense 99.247.464.202.192.41

00.073.000.009.092.2Banking
Business Services & Supplies 00.090.154.049.074.2
Capital Goods 88.060.363.121.100.9

00.039.055.100.168.4Chemicals
00.043.896.261.112.21Conglomerates
54.119.102.199.066.7

Consumer Durables 00.087.100.032.183.3

Figure 3.67 Industry Medians

A Primer on CEO Compensation

If a normal person gets a salary of $80,000 in a given year, that’s about the end of the
story. However, CEO compensation is considerably more complex. Each CEO receives
a base salary (column K) and an incentive bonus (column L), the latter decided by
negotiation. A CEO can also receive “other compensation” (column M), including
vested restricted stock grants, LTIP (long-term incentive plan) payouts, and perks.
However, the big difference between CEOs and the rest of us is the granting of stock
options. A stock option allows a CEO to purchase company stock at a fixed stated price
during a certain period of time, often 10 years. If the price of the company stock
increases during that period, the CEO can then exercise the stock options by buying
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Obviously, accounting for CEO compensation is a complex issue, and much academic
research has been devoted to it. However, now that you understand the basic issues, we will
begin analyzing the data in the file.

With a data set this large and including so many variables, it is difficult to know where
to start. Probably the best strategy is to ask some interesting questions and then find the
best tools to answer them. Here are some possibilities.

Question Set 1: There are clearly very few female CEOs. How many are there? Do they
tend to be in certain industries? Does their tenure tend to be shorter than that of their male
counterparts? Do they tend to be younger than their male counterparts?

Answer Set 1: The pivot table in Figure 3.68 answers the first two questions. It shows
the counts of males and females across industries. (See the finished version of the CEO file

3.6 An Extended Example 139

the stock at the low fixed price and selling it at the high current price, thereby making
a windfall. This explains the huge stock gains in column N for several of the CEOs at
the top of the list. They evidently exercised at least some of their options in 2008.

In a sense, these huge stock gains for some CEOs overstate their compensation 
for 2008. They had been holding these valuable stock options for years, but their gains
showed up only in 2008 when they exercised the options. This is essentially an accounting
issue. When and how should stock options show up in compensation figures? The data 
in our file indicate one possibility. In particular, the total compensation in column J is
relevant for tax purposes in 2008—this is the amount subject to 2008 taxes. However, it is
not the value that appears on company financial statements. For example, if you visit other
Forbes Web sites, such as http://people.forbes.com/profile/mark-g-papa/30517 for Mark
Papa, number 5 on our list, you will see a much different total compensation, about $23.44
million rather than the $90.47 million we report. The difference can be explained by the
way stock options are accounted for on corporate financial statements.

Figure 3.68

CEOs by Gender

and Industry
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for detailed instructions on getting all of the results in this example.) There are only
14 female CEOs, and five of them are in the Food Drink & Tobacco industry. Note that if
you double-click on the 5 count in this pivot table, you can “drill down” to the underlying
data to see which five companies these female CEOs represent. (They are Archer Daniels,
Sara Lee, Kraft Foods, Reynolds American, and Pepsico.)

One way to investigate age and tenure across gender is to use StatTools, with one-
variable summary statistics broken down by gender. (Remember to use the Stacked format
option.) Selected results appear in Figure 3.69. Although there are only 14 female CEOs,
their tenure tends to be much lower than for men (and less spread out), whereas the differ-
ences in age are fairly minimal, with females being slightly younger than males on average.

140 Chapter 3 Finding Relationships among Variables

Years as company CEO (F) Years as company CEO (M)
One Variable Summary Data Set #1 Data Set #1

Mean 3.643 7.013
Std. Dev. 2.783 7.208
Median 3.000 5.000

Age (F) Age (M)
One Variable Summary Data Set #1 Data Set #1

Mean 54.643 56.062
Std. Dev. 4.162 6.393
Median 55.000 56.000

Figure 3.69

CEO Tenure and 

Age by Gender

Question Set 2: How much do these CEOs make, and how is this allocated across the
four different components of compensation?

Answer Set 2: Several tools, including numerical summary measures, histograms,
box plots, and pivot tables, can be used to answer these questions. We illustrate only the
first two of these. Figure 3.70 shows StatTools numerical summary measures  of total

2008 Salary 2008 Bonus 2008 Other 2008 Stock gains
One Variable Summary Full Data Set

Total 2008 compensa�on
Full Data Set Full Data Set Full Data Set Full Data Set

Mean 11.43 1.0595 1.757 3.096 5.52
Std. Dev. 29.88 0.5310 2.285 4.726 27.87
Median 5.39 1.0000 1.300 1.440 0.00
Minimum 0.00 0.0000 0.000 0.000 0.00
Maximum

1st Quar�le

3st Quar�le

556.98 8.1000 18.500 36.660 543.75
2.88 0.8400 0.400 0.350 0.00
10.99 1.2000 2.250 3.730 2.80

1.00% 0.13 0.0000 0.000 0.000 0.00
2.50% 0.77 0.3200 0.000 0.000 0.00
5.00% 1.09 0.4500 0.000 0.010 0.00
10.00% 1.46 0.6000 0.000 0.050 0.00
20.00% 2.37 0.7800 0.000 0.200 0.00
80.00% 12.87 1.2800 2.530 4.790 4.22
90.00% 24.29 1.5000 3.700 7.650 14.18
95.00% 36.01 1.7500 5.000 11.690 25.04
97.50% 51.29 2.0000 8.280 18.800 39.52
99.00% 90.47 2.4300 13.950 25.240 72.56

Figure 3.70 Summary Measures of CEO Compensation
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compensation and its four components. (Note that these are not broken down by any cate-
gories, so the Unstacked format option in StatTools should be used.) Evidently, base salary
varies through a fairly limited range, with the middle 90% of CEOs between $0.45 million
and $1.75 million (see the 5th and 95th percentiles). The bonuses are spread out a bit more,
but not much; the median bonus is $1.3 million, and 95% are no more than $5 million.
Probably the most striking feature is the extreme skewness in the “other” and stock gains
components. For example, at least a quarter of the CEOs had no stock gains, but at least
10% made more than $14 million in stock gains.

If you create histograms of these five variables, you will see that some of them
have almost no shape, being totally dominated by outliers. For example, the histogram
of total compensation in Figure 3.71 has only one bar of appreciable size. (This bar
contains 489 of the 500 CEOs.) Even the histogram of base salary in Figure 3.72
is affected by outliers, although it is not nearly as skewed as the histogram of total
compensation.
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If you want to see more clearly how “most” of the CEO compensations are distributed,
you can create a new StatTools data set with the outliers removed. (Here it is useful to copy
the data to a new sheet and then work with the copy.) As an example, we sorted in increas-
ing order of total compensation and then deleted the bottom 50, the ones with the largest
compensations. A histogram of the remaining 450 appears in Figure 3.73. There is still
skewness, but not nearly as pronounced as before. 
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Question Set 3: How do CEO compensations vary by industry? Is the variability about
the same in each industry?

Answer Set 3: The first question can be answered partly by the table in Figure 3.67,
which we obtained directly from the Web site. However, it is easy to calculate additional
results with one or more pivot tables and associated pivot charts. One such pivot chart
appears in Figure 3.74. This summarizes total compensation in two ways, by average and
by standard deviation, sorted on the averages. The smallest average compensation is for
Consumer Durables and the largest is for Software & Services. But note that the two cate-
gories to the right have by far the largest standard deviations. Evidently, a few very highly
paid CEOs in these two industries not only pulled up the averages but also the amount of
variability. (The top five CEOs are in these two industries.) 

Remember also that you can filter in pivot tables. Figure 3.74 shows all industries,
but to see only a few, you can easily filter out the ones you want to hide. For example,
Figure 3.75 shows a clearer picture of industries in the financial sector. It took almost no
work to create this chart. After filtering out all but the three industries, the pivot chart in
Figure 3.74 updated automatically.
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Question Set 4: An obvious question deals with the relationship, if any, between the size
of the CEO’s compensation and the performance of the company. We would hope there is
a positive relationship, but is there one?

Answer Set 4: First, you need to be aware that any conclusions drawn from this data set
are tentative at best. This is the area that has been researched most by academics: Are
CEOs worth the huge compensations they are receiving? There are no easy answers, and
we have to be very careful to use the most appropriate data, but we can take a look at the
evidence here. It is probably best to look at long-term results rather than just a single year,
so we focus on the data in columns Q–W in Figure 3.66, which is reported only for CEOs
who have a six-year tenure and six-year compensation history. There are 179 such CEOs,
so we created another StatTools data set called Six-year Data Set for these 179 CEOs.
Column Q contains the six-year average compensation for the CEO. Columns R–T show
the annualized stock returns (including dividends) for the company; columns S and T show
this as an index relative to the industry and the market (S&P 500), respectively, where a
score of 100 is par. Columns V and W are similar to columns R and T, except that they are
for the CEO’s entire tenure. Finally, column U lists Forbes’s ranking of these 179 CEOs
based on a performance versus pay score, with 1 being best, 179 being worst.11

Probably the best way to explore these data is with correlations and scatterplots. The
correlations among the seven variables appear in Figure 3.76. As always, we are on the
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Rela�ve to market

1.000
6-year annual total return

6-year return rela�ve to industry

6-year return rela�ve to industry

6-year return rela�ve to market

6-year return rela�ve to market

6-year average compensa�on

6-year average compensa�on
Correla�on Table

0.188 1.000
0.111 0.629 1.000
0.188 1.000 0.630 1.000

Performance vs pay rank 0.114 -0.668 -0.667 -0.668 1.000
Total return during tenure
Rela�ve to market

0.272 0.638 0.423 0.637 -0.589 1.000
0.084 0.113 0.075 0.113 -0.093 0.197 1.000

Figure 3.76 Correlations among Pay and Performance Variables 
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11We are not told exactly how these rankings were made, but you can find more information at www.forbes
.com/2009/04/22/compensation-chief-executive-salary-leadership-best-boss-09-ceo-intro.html.
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lookout for large correlations, but it is also interesting to look at small correlations for the
lack of relationships. In this case, the six-year average compensation (which includes stock
gains) has very small correlations with all other variables. There is a hint of a positive
relationship in the 0.188 and 0.272 correlations between six-year average compensation
and total return and total return during tenure, but these are certainly not large. This is
apparent in the two corresponding scatterplots in Figure 3.77, where there is again a hint of 
a positive relationship between pay and performance, but certainly not a strong one. (We
changed the scale of the vertical axis to a maximum of 50 so that the shapes of the scatters
are clearer. This hides a few outliers.)

The correlations in Figures 3.76 and 3.77 are probably the best evidence we have, at
least from this data set, that CEO compensation and company performance are at best
weakly related. However, some other correlations are also interesting. Specifically, note
the perfect correlation of 1.0 between six-year total return and six-year return relative to
market. Although it is not clear from the Forbes footnotes, these two variables evidently
express exactly the same information in different ways. But then why is the correlation
between the last two variables not also 1.0? Its small value, 0.197, raises the question of
whether we misinterpreted the last variable. The lesson here is that correlations in real data
sets can sometimes lead to surprises—and further questions.

We have certainly not answered all of the questions that could be asked about the CEO
data set, and we have not exploited all of the tools that could be used to answer such
questions. With a data set as rich as this one, all you can hope to do is use the various data
analysis tools in your arsenal to uncover as much interesting information as possible.

3.7 CONCLUSION

Finding relationships among variables is arguably the most important task in data
analysis. This chapter has equipped you with some very powerful tools for detecting
relationships. As we have discussed, the tools vary depending on whether the variables
are categorical or numerical. (Again, refer to the diagram in the Data Analysis
Taxonomy.xlsx file.) Tables and charts of counts are useful for relationships among
categorical variables. Summary measures broken down by categories and side-by-side
box plots (or side-by-side histograms) are useful for finding relationships between a
categorical and a numerical variable. Scatterplots and correlations are useful for finding
relationships among numerical variables. Finally, pivot tables are useful for all types of
variables. 
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Figure 3.77 Scatterplots of Pay Versus Performance Variables
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Summary of Key Terms

Term Explanation Excel Pages Equation
Crosstabs (or Table of counts of joint categories COUNTIFS function 88
contingency table) of two categorical variables or pivot table

Comparison Comparing a numerical variable across 92
problem two or more subpopulations

Stacked or Stacked means long columns, 93
unstacked one for categories and another for values, 
data formats unstacked means a separate values column 

for each category

Scatterplot Chart for detecting a relationship Scatter from Insert 93
(or X-Y chart) between two numerical variables; ribbon or StatTools

one point for each observation

Trend line Line or curve fit to scatterplot Right-click on chart 105
(or time series graph) point, select Add

Trendline

Covariance Measure of linear relationship COVAR function or 108 3.1
between two numerical variables, StatTools
but affected by units of measurement

Correlation Measure of linear relationship CORREL function or 108 3.2
between two numerical variables, StatTools
always from �1 to �1

Pivot table Table for breaking down data by PivotTable from 114
category; can show counts, averages, Insert ribbon
or other summary measures

Pivot chart Chart corresponding to a pivot PivotChart from 124
table PivotTable Tools

Options ribbon

Slicers Graphical elements for filtering New to Excel 2010 133
in pivot tables

P R O B L E M S

Conceptual Questions

C.1. When you are trying to discover whether there is a
relationship between two categorical variables, why
is it useful to transform the counts in a crosstabs to
percentages of row or column? Once you do this,
how can you tell if the variables are related?

C.2. Suppose you have a crosstabs of two “Yes/No”
categorical variables, with the counts shown as
percentages of row. What will these percentages 
look like if there is absolutely no relationship
between the variables? Besides this case, list all
possible types of relationships that could occur.
(There aren’t many.)

C.3. If you suspect that a company’s advertising expen-
ditures in a given month affect its sales in future
months, what correlations would you look at to con-
firm your suspicions? How would you find them?

C.4. Suppose you have customer data on whether they
have bought your product in a given time period,
along with various demographics on the customers.
Explain how you could use pivot tables to see which
demographics are the primary drivers of their
“yes/no” buying behavior.

C.5. Suppose you have data on student achievement in
high school for each of many school districts. In
spreadsheet format, the school district is in column
A, and various student achievement measures are in
columns B, C, and so on. If you find fairly low
correlations (magnitudes from 0 to 0.4, say) between
the variables in these achievement columns, what
exactly does this mean?

C.6. A supermarket transactions data set is likely to have
“hierarchical” columns of data. For example, for the
product sold, there might be columns like Product
Family, Product Department, Product Category, 
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and maybe even more. (See the file Supermarket
Transactions.xlsx as an example.) Another hierarchy
is for store location, where there might be columns for
Country, State or Province, City, and possibly more.
One more hierarchy is time, with the hierarchy Year,
Quarter, Month, and so on. How could a supermarket
manager use pivot tables to “drill down” through a
hierarchy to examine revenues? For example, you
might start at the Drink level, then drill down to
Alcoholic Beverages, and then to Beer and Wine?
Illustrate with the file mentioned.

C.7. Suppose you have a large data set for some sport.
Each row might correspond to a particular team 
(as in the file P03_57.xlsx on football outcomes, for
example) or it might even correspond to a given play.
Each row contains one or more measures of success 
as well as many pieces of data that could be drivers 
of success. How might you find the most important
drivers of success if the success measure is categorical
(such as Win or Lose)? How might you find the most
important drivers of success if the success measure is
numerical and basically continuous (such as Points
Scored in basketball)?

C.8. If two variables are highly correlated, does this
imply that changes in one cause changes in the
other? If not, give at least one example from the real
world that illustrates what else could cause a high
correlation.

C.9. Suppose there are two commodities A and B with
strongly negatively correlated daily returns, such as
a stock and gold. Is it possible to find another com-
modity with daily returns that are strongly negatively
correlated with both A and B?

C.10. In checking whether several times series, such as
monthly exchange rates of various currencies, move
together, why do most analysts look at correlations
between their differences rather than correlations
between the original series?

Level A

52. Unfortunately, StatTools doesn’t have a stacked option
for its correlation procedure, which would allow you to
get a separate table of correlations for each category of 
a categorical variable. The only alternative is to sort on
the categorical variable, insert some blank rows between
values of different categories, copy the headings to each
section, create separate StatTools data sets for each, and
then ask for correlations from each. Do this with the
movie data in the file P02_02.xlsx. Specifically, separate
the data into three data sets based on Genre: one for
Comedy, one for Drama, and one for all the rest. For 
this problem, you can ignore the third group. For each 
of Comedy and Drama, create a table of correlations
between 7-day Gross, 14-day Gross, Total US Gross,

International Gross, and US DVD Sales. Comment on
whether the correlation structure is much different
for these two popular genres.

53. The file P03_53.xlsx lists campaign contributions, by
number of contributors and contribution amount, by
state (including Washington DC) for the four leading
contenders in the 2008 presidential race. Create a
scatterplot and corresponding correlation between 
Dollar Amount (Y axis) and Contributors for each of the
four contenders. For each scatterplot, superimpose a
linear trend line and show the corresponding equation.
Interpret each equation and compare them across candi-
dates. Finally, identify the state for any points that aren’t
on or very close to the corresponding trend line.

54. The file P03_54.xlsx lists data for 539 movies
released in 2009. Obviously, some movies are simply
more popular than others, but success in 2009,
measured by 2009 gross or 2009 tickets sold, could
also be influenced by the release date. To check this,
create a new variable, Days Out, which is the number
of days the movie was out during 2009. For example,
a movie released on 12/15 would have Days Out
equal to 17 (which includes the release day). Create
two scatterplots and corresponding correlations, one
of 2009 Gross (Y axis) versus Days Out and one of
2009 Tickets Sold (Y axis) versus Days Out. Describe
the behavior you see. Do you think a movie’s success
can be predicted very well just by knowing how many
days it has been out?

55. The file P03_55.xlsx lists the average salary for each
MLB team from 2004 to 2009, along with the number
of team wins in each of these years.
a. Create a table of correlations between the Wins

columns. What do these correlations indicate? Are
they higher or lower than you expected?

b. Create a table of correlations between the Salary
columns. What do these correlations indicate? Are
they higher or lower than you expected?

c. For each year, create a scatterplot and the associated
correlations between Wins for that year (Y axis) and
Salary for that year. Does it appear that teams are
buying their way to success?

d. The coloring in the Wins columns indicates the
playoff teams. Create a new Yes/No column for
each year, indicating whether the team made it to
the playoffs that year. Then create a pivot table for
each year showing average of Salary for that year,
broken down by the Yes/No column for that year.
Do these pivot tables indicate that teams are buying
their way into the playoffs? 

56. The file P03_56.xlsx lists the average salary for each
NBA team from 2004 to 2009, along with the number
of team wins each of these years. Answer the same
questions as in the previous problem for this
basketball data.
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57. The file P03_57.xlsx lists the average salary for each
NFL team from 2004 to 2009, along with the number
of team wins each of these years. Answer the same
questions as in the problem 55 for this football data.

58. The file P03_58.xlsx lists salaries of MLB players in the
years 2007 to 2009. Each row corresponds to a particular
player. As indicated by blank salaries, some players
played in one of these years, some played in two of these
years, and the rest played in all three years.
a. Create a new Yes/No variable, All 3 Years, that

indicates which players played all three years.
b. Create two pivot tables and corresponding pivot

charts. The first should show the count of players
by position who played all three years. The second
should show the average salary each year, by
position, for all players who played all three years.
(For each of these, put the All 3 Years variable in
the Report Filter area.) Explain briefly what these
two pivot tables indicate.

c. Define a StatTools data set on only the players who
played all three years. Using this data set, create a
table of correlations of the three salary variables.
What do these correlations indicate about player
salaries? 

59. The file P03_59.xlsx lists the results of about 20,000
runners in the 2008 New York Marathon.
a. For all runners who finished in 3.5 hours or less,

create a pivot table and corresponding pivot chart of
average of Time by Gender. (To get a fairer com-
parison in the chart, change it so that the vertical axis
starts at zero.) For the same runners, and on the same
sheet, create another pivot table and pivot chart of
counts by Gender. Comment on the results.

b. For all runners who finished in 3.5 hours or less,
create a pivot table and corresponding pivot chart
of average of Time by Age. Group by Age so that
the teens are in one category, those in their twenties
are in another category, and so on. For the same
runners, and on the same sheet, create another
pivot table and pivot chart of counts of these age
groups. Comment on the results.

c. For all runners who finished in 3.5 hours or less,
create a single pivot table of average of Time and
of counts, broken down by Country. Then filter so
that only the 10 countries with the 10 lowest
average times appear. Finally, sort on average times
so that the fastest countries rise to the top. Guess
who the top two are! (Hint: Try the Value Filters
for the Country variable.) Comment on the results.

60. The file P02_12.xlsx includes data on the 50 top
graduate programs in the U.S., according to a recent
U.S. News & World Report survey.
a. Create a table of correlations between all of the

numerical variables. Discuss which variables are
highly correlated with which others.

b. The Overall score is the score schools agonize about.
Create a scatterplot and corresponding correlation
of each of the other variables versus Overall, with
Overall always on the Y axis. What do you learn
from these scatterplots?

61. Recall from an example in the previous chapter that
the file Supermarket Transactions.xlsx contains over
14,000 transactions made by supermarket customers
over a period of approximately two years. Set up a
single pivot table and corresponding pivot chart, with
some instructions to a user (like the supermarket
manager) in a text box, on how the user can get
answers to any typical question about the data. For
example, one possibility (of many) could be total
revenue by product department and month, for any
combination of gender, marital status, and homeowner.
(The point is to get you to explain pivot table basics to
a nontechnical user.)

62. The file P03_15.xlsx contains monthly data on the
various components of the Consumer Price Index.
a. Create differences for each of the variables. You

can do this quickly with StatTools, using the
Difference item in the Data Utilities dropdown list,
or you can create the differences with Excel
formulas.

b. Create a times series graph for each CPI component,
including the All Items component. Then create a
time series graph for each difference variable.
Comment on any patterns or trends you see.

c. Create a table of correlations between the
differences. Comment on any large correlations 
(or the lack of them).

d. Create a scatterplot for each difference variable
versus the difference for All Items (Y axis).
Comment on any patterns or outliers you see.

Level B

63. The file P03_63.xlsx contains financial data on 85
U.S. companies in the Computer and Electronic
Product Manufacturing sector (NAICS code 334) 
with 2009 earnings before taxes of at least $10,000.
Each of these companies listed R&D (research and
development) expenses on its income statement.
Create a table of correlations between all of the
variables and use conditional formatting to color
green all correlations involving R&D that are 
strongly positive or negative. (Use cutoff values of
your choice to define “strongly.”) Then create
scatterplots of R&D (Y axis) versus each of the other
most highly correlated variables. Comment on any
patterns you see in these scatterplots, including any
obvious outliers, and explain why (or if) it makes
sense that these variables are highly correlated with
R&D. If there are highly correlated variables with
R&D, can you tell which way the causality goes?
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64. The file P03_64.xlsx lists monthly data since 1950
on the well-known Dow Jones Industrial Average
(DJIA), as well as the less well-known Dow Jones
Transportation Average (DJTA) and Dow Jones
Utilities Average (DJUA). Each of these is an index
based on 20 to 30 leading companies (which change
over time).
a. Create monthly differences in three new columns.

The Jan-50 values will be blank because there are
no Dec-49 values. Then, for example, the Feb-50
difference is the Feb-50 value minus the Jan-50
value. (You can easily calculate these with Excel
formulas, but you might want to try the StatTools
Difference procedure from its Data Utilities
dropdown list.)

b. Create a table of correlations of the three difference
columns. Does it appear that the three Dow indexes
tend to move together through time?

c. It is possible (and has been claimed) that one of
the indexes is a “leading indicator” of another. For
example, a change in the DJUA in September
might predict a similar change in the DJIA in the
following December. To check for such behavior,
create “lags” of the difference variables. To do 
so, select Lag from the StatTools Data Utilities
dropdown list, select one of the difference
variables, and enter the number of lags you want.
For this problem, try four lags. Then press OK and
accept the StatTools warnings. Do this for each of
the three difference variables. You should end up
with 12 lag variables. Explain in words what these
lag variables contain. For example, what is the
Dec-50 lag3 of the DJIA difference?

d. Create a table of correlations of the three differ-
ences and the 12 lags. Use conditional formatting
to color green all correlations greater than 0.5 (or
any other cutoff you choose). Does it appear that
any index is indeed a leading indicator of any
other? Explain. 

65. The file P03_65.xlsx lists a lot of data for each NBA
team for the seasons 2004–2005 to 2008–2009. The
variables are divided into groups: (1) Overall success,
(2) Offensive, and (3) Defensive. The basic question
all basketball fans (and coaches) ponder is what causes
success or failure. 
a. Explore this question by creating a correlation

matrix with the variable Wins (the measure of
success) and all of the variables in groups (2) and
(3). Based on these correlations, which five
variables appear to be the best predictors of
success? (Keep in mind that negative correlations
can also be important.)

b. Explore this question in a different way, using the
Playoff Team column as a measure of success.
Here, it makes sense to proceed as in the Lasagna
Triers example in Section 3.5, using the variables

in groups (2) and (3) as the predictors. However,
these predictors are all basically continuous, so
grouping would be required for all of them in the
pivot table, and grouping is always somewhat
arbitrary. Instead, create a copy of the Data sheet.
Then for each variable in groups (2) to (13), create
a formula that returns 1, 2, 3, or 4, depending on
which quarter of that variable the value falls in 
(1 if it is less than or equal to the first quartile, and
so on). (This sounds like a lot of work, but a single
copyable formula will work for the entire range.)
Now use these discrete variables as predictors and
proceed as in the Lasagna Triers example. List the
five variables that appear to be the best (or at least
good) predictors of making the playoffs.

66. The file P03_66.xlsx lists a lot of data for each NFL
team for the years 2004 to 2009. The variables are
divided into groups: (1) Overall success, (2) Team
Offense, (3) Passing Offense, (4) Rushing Offense,
(5) Turnovers Against, (6) Punt Returns, (7) Kick
Returns, (8) Field Goals, (9) Punts, (10) Team Defense,
(11) Passing Defense, (12) Rushing Defense, and (13)
Turnovers Caused. The basic question all football fans
(and coaches) ponder is what causes success or failure.
Answer the same questions as in the previous problem
for this football data, but use all of the variables in
groups (2) to (13) as possible predictors.

67. The file P02_57.xlsx contains data on mortgage loans
in 2008 for each state in the U.S. The file is different
from others in this chapter in that each state has its own
sheet with the same data in the same format. Each state
sheet breaks down all mortgage applications by loan
purpose, applicant race, loan type, outcome, and denial
reason (for those that were denied). The question is
how a single data set for all states can be created for
analysis. The Typical Data Set sheet indicates a simple
way of doing this, using the powerful but little-known
INDIRECT function. This sheet is basically a template
for bringing in any pieces of data from the state sheets
you would like to examine.
a. Do whatever it takes to populate the Typical Data

Set sheet with information in the range B7:D11 and
B14:D14 (18 variables in all) of each state sheet.
Add appropriate labels in row 3, such as Asian
Dollar Amount Applied For.

b. Create a table of correlations between these
variables. Color yellow all correlations between a
given applicant race, such as those between Asian
Mortgage Application, Asian Dollar Amount
Applied For, and Asian Average Income. Comment
on the magnitudes of these. Are there any surprises?

c. Create scatterplots of White Dollar Amount
Applied For (X axis) versus the similar variable for
each of the other five applicant races. Comment on
any patterns in these scatterplots, and identify any
obvious outliers.
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C A S E

Bank98 operates a main location and three branch

locations in a medium-size city. All four locations

perform similar services, and customers typically 

do business at the location nearest them.The bank

has recently had more congestion—long waiting

lines—than it (or its customers) would like. As part

of a study to learn the causes of these long lines 

and to suggest possible solutions, all locations 

have kept track of customer arrivals during one-hour

intervals for the past 10 weeks. All branches are

open Monday through Friday from 9 A.M. until 5 P.M.

and on Saturday from 9 A.M. until noon. For each

location, the file Bank98 Arrivals.xlsx contains the

number of customer arrivals during each hour of a

10-week period. The manager of Bank98 has hired

you to make some sense of these data. Specifically,

your task is to present charts and/or tables that

indicate how customer traffic into the bank locations

varies by day of week and hour of day. There is also

interest in whether any daily or hourly patterns 

you observe are stable across weeks. Although you

don’t have full information about the way the bank

currently runs its operations—you know only its

customer arrival pattern and the fact that it is

currently experiencing long lines—you are encour-

aged to append any suggestions for improving

operations, based on your analysis of the data. ■

3.1 CUSTOMER ARRIVALS AT BANK98
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C A S E

The best-selling book The Millionaire Next Door 

by Thomas J. Stanley and William D. Danko

(Longstreet Press, 1996) presents some very

interesting data on the characteristics of millionaires.

We tend to believe that people with expensive

houses, expensive cars, expensive clothes, country

club memberships, and other outward indications 

of wealth are the millionaires.The authors define

wealth, however, in terms of savings and investments,

not consumer items. In this sense, they argue that

people with a lot of expensive things and even large

incomes often have surprisingly little wealth.These

people tend to spend much of what they make on

consumer items, often trying to keep up with, or

impress, their peers.

In contrast, the real millionaires, in terms of savings

and investments, frequently come from “unglamorous”

professions (particularly teaching), own unpretentious

homes and cars, dress in inexpensive clothes, and

otherwise lead rather ordinary lives.

Consider the (fictional) data in the file Social

Climbers.xlsx. For several hundred couples, it lists

their education level, their annual combined salary,

the market value of their home and cars, the amount

of savings they have accumulated (in savings accounts,

stocks, retirement accounts, and so on), and a self-

reported “social climber index” on a scale of 1 to 10

(with 1 being very unconcerned about social status

and material items and 10 being very concerned

about these). Prepare a report based on these data,

supported by relevant charts and/or tables, that could

be used in a book such as The Millionaire Next Door.

Your conclusions can either support or contradict

those of Stanley and Danko. ■

3.2 SAVING, SPENDING, AND SOCIAL CLIMBING
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C A S E

The term “churn” is very important to managers in

the cellular phone business. Churning occurs when

a customer stops using one company’s service and

switches to another company’s service. Obviously,

managers try to keep churning to a minimum, not only

by offering the best possible service, but by trying to

identify conditions that lead to churning and taking

steps to stop churning before it occurs. For example,

if a company learns that customers tend to churn at

the end of their two-year contract, they could offer

customers an incentive to stay a month or two before

the end of their two-year contract. The file Churn.xlsx

contains data on over 2000 customers of a particular

cellular phone company. Each row contains the activity

of a particular customer for a given time period, and

the last column indicates whether the customer

churned during this time period. Use the tools in this

chapter (and possibly the previous chapter) to learn 

(1) how these variables are distributed, (2) how the

variables in columns B–R are related to each other, and

(3) how the variables in columns B–R are related to

the Churn variable in column S. Write a short report

of your findings, including any recommendations you

would make to the company to reduce churn. ■

3.3 CHURN IN THE CELLULAR PHONE MARKET■
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Probability and Probability
Distributions

C H A P T E R

GAME AT MCDONALD’S

Several years ago, McDonald’s ran a campaign in which it gave game cards

to its customers.These game cards made it possible for customers to

win hamburgers, french fries, soft drinks, and other fast-food items, as well

as cash prizes. Each card had 10 covered spots that could be uncovered 

by rubbing them with a coin. Beneath three of these spots were “zaps.”

Beneath the other seven spots were names of prizes, two of which were

identical. (Some cards had variations of this pattern, but we’ll use this type

of card for purposes of illustration.) For example, one card might have 

two pictures of a hamburger, one picture of a Coke, one of french fries,

one of a milk shake, one of $5, one of $1000, and three zaps. For this card

the customer could win a hamburger.To win on any card, the customer had

to uncover the two matching spots (which showed the potential prize for

that card) before uncovering a zap; any card with a zap uncovered was

automatically void.Assuming that the two matches and the three zaps 

were arranged randomly on the cards, what is the probability of a

customer winning?
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We will label the two matching spots M1 and M2, and the three zaps Z1, Z2, and Z3.

Then the probability of winning is the probability of uncovering M1 and M2 before

uncovering Z1, Z2, or Z3. In this case the relevant set of outcomes is the set of all

orderings of M1, M2, Z1, Z2, and Z3, shown in the order they are uncovered.As far as the

outcome of the game is concerned, the other five spots on the card are irrelevant.Thus,

an outcome such as M2, M1, Z3, Z1, Z2 is a winner, whereas M2, Z2, Z1, M1, Z3 is a loser.

Actually, the first of these would be declared a winner as soon as M1 was uncovered, and

the second would be declared a loser as soon as Z2 was uncovered. However, we show

the whole sequence of Ms and Zs so that we can count outcomes correctly.We then

find the probability of winning using the argument of equally likely outcomes. Specifically,

we divide the number of outcomes that are winners by the total number of outcomes. It

can be shown that the number of outcomes that are winners is 12, whereas the total

number of outcomes is 120.Therefore, the probability of a winner is 12/120 �� 0.1.

This calculation, which showed that on the average, 1 out of 10 cards could be

winners, was obviously important for McDonald’s. Actually, this provides only an upper

bound on the fraction of cards where a prize was awarded. The fact is that many

customers threw their cards away without playing the game, and even some of the

winners neglected to claim their prizes. So, for example, McDonald’s knew that if they

made 50,000 cards where a milk shake was the winning prize, somewhat less than 

5000 milk shakes would be given away. Knowing approximately what their expected

“losses” would be from winning cards, McDonald’s was able to design the game (how

many cards of each type to print) so that the expected extra revenue (from customers

attracted to the game) would cover the expected losses. ■
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4.1 INTRODUCTION

The world is full of uncertainty, and this is certainly true in business. A key aspect of
solving real business problems is dealing appropriately with uncertainty. This involves
recognizing explicitly that uncertainty exists and using quantitative methods to model
uncertainty. If you want to develop realistic models of business problems, you should not
simply act as if uncertainty doesn’t exist. For example, if you don’t know next month’s
demand, you shouldn’t build a model that assumes next month’s demand is a sure 1500
units. This is only wishful thinking. You should instead incorporate the uncertainty about
demand explicitly into your model. To do this, you need to know how to deal quantita-
tively with uncertainty. This involves probability and probability distributions. We will
introduce these topics in this chapter and then use them in a number of later chapters.

There are many sources of uncertainty. Demands for products are uncertain, times
between arrivals to a supermarket are uncertain, stock price returns are uncertain, changes in
interest rates are uncertain, and so on. In many situations, the uncertain quantity—demand,
time between arrivals, stock price return, change in interest rate—is a numerical quantity.
In the language of probability, such a numerical quantity is called a random variable. More
formally, a random variable associates a numerical value with each possible random outcome.

Associated with each random variable is a probability distribution that lists all of the
possible values of the random variable and their corresponding probabilities. A probabil-
ity distribution provides very useful information. It not only indicates the possible values
of the random variable, but it also indicates how likely they are. For example, it is useful
to know that the possible demands for a product are, say, 100, 200, 300, and 400, but it is
even more useful to know that the probabilities of these four values are, say, 0.1, 0.2, 0.4,
and 0.3. Now we know, for example, that there is a 70% chance that demand will be at
least 300.
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It is often useful to summarize the information from a probability distribution with sev-
eral well-chosen numerical summary measures. These include the mean, variance, and stan-
dard deviation, and, for distributions of more than one random variable, the covariance and
correlation. As their names imply, these summary measures are much like the corresponding
summary measures in Chapters 2 and 3. However, they are not identical. The summary mea-
sures in this chapter are based on probability distributions, not an observed data set. We will
use numerical examples to explain the difference between the two—and how they are related.

The purpose of this chapter is to explain the basic concepts and tools necessary to
work with probability distributions and their summary measures. We begin by briefly dis-
cussing the basic rules of probability, which we need in this chapter and in several later
chapters. We also introduce computer simulation, an extremely useful tool for illustrating
important concepts in probability and statistics.

Modeling uncertainty, as we will be doing in the next few chapters and later in
Chapters 15 and 16, is sometimes difficult, depending on the complexity of the model, and
it is easy to get so caught up in the details that you lose sight of the big picture. For this
reason, the flow chart in Figure 4.1 is useful. (A colored version of this chart is available in
the file Modeling Uncertainty - Flow Chart.xlsx.) Take a close look at the middle row of
this chart. It indicates that we begin with inputs, some of which are uncertain quantities,
use Excel formulas to incorporate the logic of the model, end with probability distributions
of important outputs that we can summarize in various ways, and finally use this informa-
tion to make decisions. (The abbreviation EMV stands for expected monetary value. It
will be discussed extensively in Chapter 6.) The other boxes in the chart deal with
implementation issues, particularly with software you can use to perform the analysis.
Read this chart carefully, and return to it as you proceed through the next few chapters and
Chapters 15 and 16.

4.1 Introduction 157

Assess probability distributions of
uncertain inputs:

For simulation models, this can be
done “manually” with data tables and
built-in functions like AVERAGE,
STDEV, etc. But an add-in like @RISK
takes care of  these bookkeeping
details automatically.

Use decision trees (made easier with
an add-in like Precision Tree) if  the
number of  possible decisions and the
number of  possible outcomes are not
too large.

Decide which inputs are important
for the model.

This is an overview of
spreadsheet modeling
with uncertainty. The
main process is in red.
The blue boxes deal with
implementation issues.

For simulation models, random values
for uncertain inputs are necessary.

1. If  a lot of  historical data is available,
    use software like @RISK to find the
    distribution that best fits the data.

2. Choose a probability distribution
    (normal? triangular?) that seems
    reasonable. Software like @RISK is
    helpful for exploring distributions.

3. Gather relevant information, ask
    experts, and do the best you can.

1. Which are known with certainty?
2. Which are uncertain?

Two fundamental approaches:

1. Build an exact probability model that
    incorporates the rules of  probability.
    (Pros: It is exact and amenable to
    sensitivity analysis. Cons: It is often
    difficult mathematically, maybe not
    even possible.)

2. Build a simulation model. (Pros: It is
    typically much easier, especially with
    an add-in like @RISK, and extremely
    versatile. Cons: It is only approximate
    and runs can be time consuming for
    complex models).

1. They can sometimes be generated
    with built-in Excel functions. This often
    involves tricks and can be obscure.

2. Add-ins like @RISK provide functions
    (like RISKNORMAL, RISKTRIANG)
    that make it much easier.

Examine important outputs.

The result of  these formulas should
be probability distribution(s) of
important output(s). Summarize
these probability distributions with
(1) histograms (risk profiles),
(2) means and standard deviations,
(3) percentiles, (4) possibly others.

Model the problem.

Use Excel formulas to relate inputs
to important outputs, i.e., enter the
business logic.

Make decisions based on this
information.

Criterion is usually EMV, but it could
be something else, e.g., minimize
the probability of  losing money.

Figure 4.1 Flow Chart for Modeling Uncertainty
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Before proceeding, we discuss two terms you often hear in the business world: uncer-
tainty and risk. They are sometimes used interchangeably, but they are not really the same.
You typically have no control over uncertainty; it is something that simply exists. A good
example is the uncertainty in exchange rates. You cannot be sure what the exchange rate
between the U.S. dollar and the euro will be a year from now. All you can try to do is mea-
sure this uncertainty with a probability distribution. 

In contrast, risk depends on your position. Even though you don’t know what the
exchange rate will be, it makes no difference to you—there is no risk—if you have no
European investments, you aren’t planning a trip to Europe, and you don’t have to buy or
sell anything in Europe. You might be interested in the exchange rate, but you have no risk.
You have risk only when you stand to gain or lose money depending on the eventual
exchange rate. Of course, the form of your risk depends on your position. If you are hold-
ing euros in a money market account, you are hoping that euros gain value relative to
the dollar. But if you are planning a European vacation, you are hoping that euros lose
value relative to the dollar.

Uncertainty and risk are inherent in many of the examples in this book. By learning
about probability, you will learn how to measure uncertainty, and you will also learn how to
measure the risks involved in various decisions. One important topic you will not learn much
about is risk mitigation by various types of hedging. For example, if you know you have to
purchase a large quantity of some product from Europe a year from now, you face the risk
that the value of the euro could increase dramatically, thus costing you a lot of money.
Fortunately, there are ways to hedge this risk, so that if the euro does increase relative to the
dollar, your hedge minimizes your losses. Hedging risk is an extremely important topic, and
it is practiced daily in the real world, but it is beyond the scope of this book.

4.2 PROBABILITY ESSENTIALS

We begin with a brief discussion of probability. The concept of probability is one that we
all encounter in everyday life. When a weather forecaster states that the chance of rain is
70%, she is making a probability statement. When we hear that the odds of the Los
Angeles Lakers winning the NBA Championship are 2 to 1, this is also a probability
statement. The concept of probability is quite intuitive. However, the rules of probability
are not always as intuitive or easy to master. We examine the most important of these rules
in this section.
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A probability is a number between 0 and 1 that measures the likelihood that some event
will occur. An event with probability 0 cannot occur, whereas an event with probability 
1 is certain to occur. An event with probability greater than 0 and less than 1 involves
uncertainty, and the closer its probability is to 1, the more likely it is to occur.

As the examples in the preceding paragraph illustrate, probabilities are sometimes
expressed as percentages or odds. However, these can easily be converted to probabilities
on a 0-to-1 scale. If the chance of rain is 70%, then the probability of rain is 0.7. Similarly,
if the odds of the Lakers winning are 2 to 1, then the probability of the Lakers winning is
2/3 (or 0.6667).

There are only a few probability rules you need to know, and we will discuss them in the
next few subsections. Surprisingly, these are the only rules you need to know. Probability is
not an easy topic, and a more thorough discussion of it would lead to considerable mathe-
matical complexity, well beyond the level of this book. However, it is all based on the few
relatively simple rules discussed next.
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4.2.1 Rule of Complements

The simplest probability rule involves the complement of an event. If A is any event, then
the complement of A, denoted by (or in some books by Ac), is the event that A does not
occur. For example, if A is the event that the Dow Jones Industrial Average will finish the
year at or above the 11,000 mark, then the complement of A is that the Dow will finish the
year below 11,000.

If the probability of A is P(A), then the probability of its complement, P( ), is given
by Equation (4.1). Equivalently, the probability of an event and the probability of its
complement sum to 1. For example, if we believe that the probability of the Dow finishing
at or above 11,000 is 0.25, then the probability that it will finish the year below 11,000 is

.1 - 0.25 = 0.75

A

A
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Rule of Complements
(4.1)P(A) = 1 - P(A)

Addition Rule for Mutually Exclusive Events
P(at least one of through ) (4.2)= P(A1) + P(A2) +

Á
+ P(An)AnA1

4.2.2 Addition Rule

We say that events are mutually exclusive if at most one of them can occur. That is, if one of
them occurs, then none of the others can occur. For example, consider the following three
events involving a company’s annual revenue for the coming year: (1) revenue is less than
$1 million, (2) revenue is at least $1 million but less than $2 million, and (3) revenue is at
least $2 million. Clearly, only one of these events can occur. Therefore, they are mutually
exclusive. They are also exhaustive events, which means that they exhaust all possibilities—
one of these three events must occur. Let A1 through An be any n events. Then the addition
rule of probability involves the probability that at least one of these events will occur. In gen-
eral, this probability is quite complex, but it simplifies considerably when the events are
mutually exclusive. In this case the probability that at least one of the events will occur is the
sum of their individual probabilities, as shown in Equation (4.2). Of course, when the events
are mutually exclusive, “at least one” is equivalent to “exactly one.” In addition, if the events
A1 through An are exhaustive, then the probability is 1. In this case we are certain that one of
the events will occur.

In a typical application, the events A1 through An are chosen to partition the set of all
possible outcomes into a number of mutually exclusive events. For example, in terms of a
company’s annual revenue, define A1 as “revenue is less than $1 million,” A2 as “revenue is
at least $1 million but less than $2 million,” and A3 as “revenue is at least $2 million.” Then
these three events are mutually exclusive and exhaustive. Therefore, their probabilities
must sum to 1. Suppose these probabilities are P(A1) � 0.5, P(A2) � 0.3, and 
P(A3) � 0.2. (Note that these probabilities do sum to 1.) Then the additive rule enables us
to calculate other probabilities. For example, the event that revenue is at least $1 million is
the event that either A2 or A3 occurs. From the addition rule, its probability is

P(revenue is at least $1 million) � P(A2) � P(A3) � 0.5

Similarly,

P(revenue is less than $2 million) � P(A1) � P(A2) � 0.8
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and

P(revenue is less than $1 million or at least $2 million) � P(A1) � P(A3) � 0.7

Again, the addition rule works only for mutually exclusive events. If the events over-
lap, then the situation is more complex. For example, suppose you are dealt a bridge hand
(13 cards from a 52-card deck). Let H, D, C, and S, respectively, be the events that you get
at least 5 hearts, at least 5 diamonds, at least 5 clubs, and at least 5 spades. What is the
probability that at least one of these four events occurs? It is not the sum of their individual
probabilities because they are not mutually exclusive. For example, you could get 5 hearts
and 5 spades. Probabilities such as this one are actually quite difficult to calculate, and we
will not pursue them here. Just be aware that the addition rule does not apply unless the
events are mutually exclusive.

4.2.3 Conditional Probability and the Multiplication Rule

Probabilities are always assessed relative to the information currently available. As new infor-
mation becomes available, probabilities often change. For example, if you read that Kobe
Bryant pulled a hamstring muscle, your assessment of the probability that the Lakers will win
the NBA Championship would obviously change. A formal way to revise probabilities on the
basis of new information is to use conditional probabilities.

Let A and B be any events with probabilities P(A) and P(B). Typically, the probability
P(A) is assessed without knowledge of whether B occurs. However, if you are told that B
has occurred, then the probability of A might change. The new probability of A is called the
conditional probability of A given B. It is denoted by P( ). Note that there is still
uncertainty involving the event to the left of the vertical bar in this notation; you do not
know whether it will occur. However, there is no uncertainty involving the event to the
right of the vertical bar; you know that it has occurred.

A ƒ B
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Conditional Probability

(4.3)P(A ƒ B) =

P(A and B)

P(B)

Multiplication Rule
(4.4)P(A and B) = P(A ƒ B) P(B) 

The conditional probability formula enables you to calculate P( ) as shown in
Equation (4.3). The numerator in this formula is the probability that both A and B occur.
This probability must be known to find P( ). However, in some applications P( )
and P(B) are known. Then you can multiply both sides of the conditional probability
formula by P(B) to obtain the multiplication rule for P(A and B) in Equation (4.4).

A ƒ BA ƒ B

A ƒ B

The conditional probability formula and the multiplication rule are both valid; in fact,
they are equivalent. The one you use depends on which probabilities you know and which
you want to calculate, as illustrated in the following example.
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E X A M P L E 4.1 ASSESSING UNCERTAINTY AT THE BENDER COMPANY

The Bender Company supplies contractors with materials for the construction of
houses. The company currently has a contract with one of its customers to fill an order

by the end of July. However, there is some uncertainty about whether this deadline can be
met, due to uncertainty about whether Bender will receive the materials it needs from one
of its suppliers by the middle of July. Right now it is July 1. How can the uncertainty in this
situation be assessed?

Objective To apply several of the essential probability rules in determining the probabil-
ity that Bender will meet its end-of-July deadline, given the information the company has
at the beginning of July.

Solution

Let A be the event that Bender meets its end-of-July deadline, and let B be the event that Bender
receives the materials from its supplier by the middle of July. The probabilities Bender is best
able to assess on July 1 are probably P(B) and P( ). At the beginning of July, Bender might
estimate that the chances of getting the materials on time from its supplier are 2 out of 3, that is,

. Also, thinking ahead, Bender estimates that if it receives the required materials on
time, the chances of meeting the end-of-July deadline are 3 out of 4. This is a conditional prob-
ability statement, namely, that . Then the multiplication rule implies that

That is, there is a fifty-fifty chance that Bender will get its materials on time and meet
its end-of-July deadline.

This uncertain situation is depicted graphically in the form of a probability tree in
Figure 4.2. Note that Bender initially faces (at the leftmost branch of the tree diagram) the
uncertainty of whether event B or its complement will occur. Regardless of whether event B
takes place, Bender must next confront the uncertainty regarding event A. This uncertainty
is reflected in the set of two parallel pairs of branches that model whether event A or its
complement will occur next. Hence, there are four mutually exclusive outcomes regarding
the two uncertain events, as shown on the right-hand side of Figure 4.2. Initially, we are

P(A and B) = P(A ƒ B)P(B) = (3/4)(2/3) = 0.5

P(A ƒ B) = 3/4

P(B) = 2/3

A ƒ B

Figure 4.2

Probability Tree for

Example 4.1

P(A and B) = (3/4)(2/3)

P(A and B) = (1/4)(2/3)

P(A and B) = (1/5)(1/3)

P(A and B) = (4/5)(1/3)
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interested in the first possible outcome, the joint occurrence of events A and B, found at the
top of the probability tree diagram. Another way to compute the probability of both events
B and A occurring is to multiply the probabilities associated with the branches along the
path from the root of the tree (on the left-hand side) to the desired terminal point or outcome
of the tree (on the right-hand side). In this case, we multiply the probability of B, corre-
sponding to the first branch along the path of interest, by the conditional probability of
A given B, associated with the second branch along the path of interest.

There are several other probabilities of interest in this example. First, let be the
complement of B; it is the event that the materials from the supplier do not arrive on time. We
know that from the rule of complements. However, we do not
yet know the conditional probability , the probability that Bender will meet its end-
of-July deadline, given that it does not receive the materials from the supplier on time. In
particular, is not equal to . (Can you see why?) Suppose Bender esti-
mates that the chances of meeting the end-of-July deadline are 1 out of 5 if the materials do
not arrive on time, that is, . Then a second use of the multiplication rule gives

In words, there is only 1 chance out of 15 that the materials will not arrive on time and
Bender will meet its end-of-July deadline.

Again, you can use the probability tree for Bender in Figure 4.2 to compute the proba-
bility of the joint occurrence of events A and . This outcome is the third (from the top of the
diagram) terminal point of the tree. To find the desired probability, multiply the probabilities
corresponding to the two branches included in this path from the left-hand side of the tree to
the right-hand side. This confirms that the probability of interest is the product of the two rel-
evant probabilities, namely 1/5 and 1/3. Simply stated, probability trees can be quite useful in
modeling and assessing such uncertain outcomes in real-life situations.

The bottom line for Bender is whether it will meet its end-of-July deadline. After mid-
July, this probability is either because by this time, Bender
will know whether the materials arrived on time. But on July 1, the relevant probability is
P(A)—there is still uncertainty about whether B or will occur. Fortunately, you can calcu-
late P(A) from the probabilities you already know. The logic is that A consists of the two
mutually exclusive events (A and B) and (A and ). That is, if A is to occur, it must occur with
B or with . Therefore, using the addition rule for mutually exclusive events, we obtain

The chances are 17 out of 30 that Bender will meet its end-of-July deadline, given the
information it has at the beginning of July. ■

P(A) = P(A and B) + P(A and B) = 1/2 + 1/15 = 17/30 = 0.5667

B
B

B

P(A ƒ B) = 3/4 or P(A ƒ B) = 1/5

B

P(A and B) = P(A ƒ B)P(B) = (1/5)(1/3) = 0.0667

P(A ƒ B) = 1/5

1 - P(A ƒ B)P(A ƒ B)

P(A ƒ B)
P(B) = 1 - P(B) = 1/3

B
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4.2.4 Probabilistic Independence

A concept that is closely tied to conditional probability is probabilistic independence. You
just saw how the probability of an event A can depend on whether another event B has
occurred. Typically, the probabilities P(A), P( ), and are all different, as in
Example 4.1. However, there are situations where all of these probabilities are equal. In
this case we say that the events A and B are independent. This does not mean they are
mutually exclusive. Rather, probabilistic independence means that knowledge of one
event is of no value when assessing the probability of the other.

The main advantage to knowing that two events are independent is that in that case the
multiplication rule simplifies to Equation (4.5). This follows by substituting P(A) for
P( ) in the multiplication rule, which is allowed because of independence. In words, the
probability that both events occur is the product of their individual probabilities.

A ƒ B

P(A ƒ B)A ƒ B
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How can you tell whether events are probabilistically independent? Unfortunately,
this issue usually cannot be settled with mathematical arguments; typically, you need
empirical data to decide whether independence is reasonable. As a simple example, let A
be the event that a family’s first child is male, and let B be the event that its second child is
male. Are A and B independent? You could argue that they aren’t independent if you
believe, say, that a boy is more likely to be followed by another boy than by a girl. You
could argue that they are independent if you believe the chances of the second child being
a boy are the same, regardless of the gender of the first child. (Note that neither argument
has anything to do with boys and girls being equally likely.)

In any case, the only way to settle the argument is to observe many families with at
least two children. If you observe, say, that 55% of all families with first child male also
have the second child male, and only 45% of all families with first child female have the
second child male, then you can make a good case that A and B are not independent.

It is probably fair to say that most events in the real world are not truly independent.
However, because of the simplified multiplication rule for independent events, many
mathematical models assume that events are independent; the math is much easier with this
assumption. The question is then whether the results from such a model are believable. All we
can say in general is that it depends on how unrealistic the independence assumption really is.

4.2.5 Equally Likely Events

Much of what you know about probability is probably based on situations where outcomes
are equally likely. These include flipping coins, throwing dice, drawing balls from urns,
and other random mechanisms that are often discussed in introductory probability books.
For example, suppose an urn contains 20 red marbles and 10 blue marbles. You plan to
randomly select five marbles from the urn, and you are interested, say, in the probability of
selecting at least three red marbles. To find this probability, you argue that because of ran-
domness, every possible set of five marbles is equally likely to be chosen. Then you count
the number of sets of five marbles that contain at least three red marbles, you count the
total number of sets of five marbles that could be selected, and you set the desired proba-
bility equal to the ratio of these two counts.

Let us put this method of calculating probabilities into proper perspective. It is true
that many probabilities, particularly in games of chance, can be calculated by using an
equally likely argument. It is also true that probabilities calculated in this way satisfy all of
the rules of probability, including the rules we have already discussed. However, many
probabilities, especially those in business situations, cannot be calculated by equally likely
arguments, simply because the possible outcomes are not equally likely. For example, just
because you are able to identify five possible scenarios for a company’s future, there is
probably no reason whatsoever to conclude that each scenario has probability 1/5.

The bottom line is that we will have almost no need in this book to discuss complex
counting rules for equally likely outcomes. If you dreaded learning about probability in
terms of balls and urns, rest assured that you will not have to do so here.

4.2.6 Subjective Versus Objective Probabilities

We now ask a very basic question: Where do the probabilities in a probability distribu-
tion come from? A complete answer to this question could lead to a chapter by itself,
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Multiplication Rule for Independent Events
(4.5)P(A and B) = P(A) P(B) 
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so we only briefly discuss the issues involved. There are essentially two distinct ways
to assess probabilities, objectively and subjectively. Objective probabilities are those
that can be estimated from long-run proportions, whereas subjective probabilities can-
not be estimated from long-run proportions. Some examples will make this distinction
clearer.

Consider throwing two dice and observing the sum of the two sides that face up. What
is the probability that the sum of these two sides is 7? You might argue as follows. Because
there are ways the two dice can fall, and because exactly 6 of these result in
a sum of 7, the probability of a 7 is . This is the equally likely argument we
discussed previously. It reduces probability to counting. 

What if the dice are weighted in some way? Then the equally likely argument is no
longer valid. You can, however, toss the dice many times and record the proportion of
tosses that result in a sum of 7. This proportion is called a relative frequency.

6/36 = 1/6
6 * 6 = 36
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The relative frequency of an event is the proportion of times the event occurs out 
of the number of times the random experiment is run. A relative frequency can be
recorded as a proportion or a percentage.

A famous result called the law of large numbers states that this relative frequency, in
the long run, will get closer and closer to the “true” probability of a 7. This is exactly what
we mean by an objective probability. It is a probability that can be estimated as the long-
run proportion of times an event occurs in a sequence of many identical experiments.

If you are flipping coins, throwing dice, or spinning roulette wheels, objective proba-
bilities are certainly relevant. You don’t need a person’s opinion of the probability that a
roulette wheel, say, will end up pointing to a red number; you can simply spin it many times
and keep track of the proportion of times it points to a red number. However, there are many
situations, particularly in business, that cannot be repeated many times—or even more than
once—under identical conditions. In these situations objective probabilities make no sense
(and equally likely arguments usually make no sense either), so you must resort to subjec-
tive probabilities. A subjective probability is one person’s assessment of the likelihood that
a certain event will occur. We assume that the person making the assessment uses all of the
information available to make the most rational assessment possible.

This definition of subjective probability implies that one person’s assessment of a prob-
ability can differ from another person’s assessment of the same probability. For example,
consider the probability that the Indianapolis Colts will win the next Super Bowl. If you ask
a casual football observer to assess this probability, you will get one answer, but if you ask
a person with a lot of inside information about injuries, team cohesiveness, and so on, you
might get a very different answer. Because these probabilities are subjective, people with
different information typically assess probabilities in different ways.

Subjective probabilities are usually relevant for unique, one-time situations. However,
most situations are not completely unique; you often have some history to guide you. That
is, historical relative frequencies can be factored into subjective probabilities. For example,
suppose a company is about to market a new product. This product might be quite different
in some ways from any products the company has marketed before, but it might also share
some features with the company’s previous products. If the company wants to assess
the probability that the new product will be a success, it will certainly analyze the unique
features of this product and the current state of the market to obtain a subjective assessment.
However, the company will also look at its past successes and failures with reasonably
similar products. If the proportion of successes with past products was 40%, say, then this
value might be a starting point in the assessment of this product’s probability of success.
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All of the “given” probabilities in this chapter and later chapters can be placed some-
where on the objective-to-subjective continuum, usually closer to the subjective end. An
important implication of this placement is that these probabilities are not cast in stone; they
are only educated guesses. Therefore, it is always a good idea to run a sensitivity analysis
(especially on a spreadsheet, where this is easy to do) to see how any “bottom-line”
answers depend on the given probabilities. Sensitivity analysis is especially important in
Chapter 6, when we study decision making under uncertainty.
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P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. In a particular suburb, 30% of the households have
installed electronic security systems.
a. If a household is chosen at random from this

suburb, what is the probability that this household
has not installed an electronic security system?

b. If two households are chosen at random from this
suburb, what is the probability that neither has
installed an electronic security system?

2. Several major automobile producers are competing
to have the largest market share for sport utility
vehicles (SUVs) in the coming quarter. A profes-
sional automobile market analyst assesses that the
odds of General Motors not being the market 
leader are 6 to 1. The odds against Toyota and 
Ford having the largest market share in the coming
quarter are similarly assessed to be 12 to 5 and 
8 to 3, respectively.
a. Find the probability that General Motors will have

the largest market share for SUVs in the coming
quarter.

b. Find the probability that Toyota will have the
largest market share for SUVs in the coming
quarter.

c. Find the probability that Ford will have the largest
market share for SUVs in the coming quarter.

d. Find the probability that some other automobile
manufacturer will have the largest market share for
SUVs in the coming quarter.

3. The publisher of a popular financial periodical has
decided to undertake a campaign in an effort to attract
new subscribers. Market research analysts in this
company believe that there is a 1 in 4 chance that the
increase in the number of new subscriptions resulting
from this campaign will be less than 3000, and there
is a 1 in 3 chance that the increase in the number of
new subscriptions resulting from this campaign will
be between 3000 and 5000. What is the probability
that the increase in the number of new subscriptions

resulting from this campaign will be less than 3000 or
more than 5000?

4. Suppose that 18% of the employees of a given cor-
poration engage in physical exercise activities during
the lunch hour. Moreover, assume that 57% of all
employees are male, and 12% of all employees are
males who engage in physical exercise activities during
the lunch hour.
a. If you choose an employee at random from this

corporation, what is the probability that this person
is a female who engages in physical exercise
activities during the lunch hour?

b. If you choose an employee at random from this
corporation, what is the probability that this person
is a female who does not engage in physical
exercise activities during the lunch hour?

5. In a study designed to gauge married women’s partici-
pation in the workplace today, the data provided in the
file P04_05.xlsx were obtained from a sample of 750
randomly selected married women. Consider a woman
selected at random from this sample in answering the
following questions.
a. What is the probability that this randomly selected

woman has a job outside the home?
b. What is the probability that this randomly selected

woman has at least one child?
c. What is the probability that this randomly selected

woman has a full-time job and no more than one
child?

d. What is the probability that this randomly selected
woman has a part-time job or at least one child, but
not both?

6. Suppose that you draw a single card from a standard
deck of 52 playing cards.
a. What is the probability that a diamond or club is

drawn?
b. What is the probability that the drawn card is not a 4?
c. Given that a black card has been drawn, what is the

probability that it is a spade?
d. Let E1 be the event that a black card is drawn. Let

E2 be the event that a spade is drawn. Are E1 and
E2 independent events? Why or why not?
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4.3 DISTRIBUTION OF A SINGLE RANDOM VARIABLE

We now discuss the topic of most interest in this chapter, probability distributions. In this
section we examine the probability distribution of a single random variable. In later sec-
tions we discuss probability distributions of two or more related random variables.
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e. Let E3 be the event that a heart is drawn. Let E4 be
the event that a 3 is drawn. Are E3 and E4 indepen-
dent events? Why or why not?

Level B

7. In a large accounting firm, the proportion of accountants
with MBA degrees and at least five years of professional
experience is 75% as large as the proportion of accountants
with no MBA degree and less than five years of profes-
sional experience. Furthermore, 35% of the accountants in
this firm have MBA degrees, and 45% have fewer than five
years of professional experience. If one of the firm’s
accountants is selected at random, what is the probability
that this accountant has an MBA degree or at least five
years of professional experience, but not both?

8. A local beer producer sells two types of beer, a regular
brand and a light brand with 30% fewer calories. The
company’s marketing department wants to verify that its
traditional approach of appealing to local white-collar 
workers with light beer commercials and appealing to
local blue-collar workers with regular beer commercials
is indeed a good strategy. A randomly selected group
of 400 local workers are questioned about their beer-
drinking preferences, and the data in the file
P04_08.xlsx are obtained.
a. If a blue-collar worker is chosen at random from

this group, what is the probability that he/she
prefers light beer (to regular beer or no beer at all)?

b. If a white-collar worker is chosen at random from
this group, what is the probability that he/she
prefers light beer (to regular beer or no beer at all)?

c. If you restrict your attention to workers who like to
drink beer, what is the probability that a randomly
selected blue-collar worker prefers to drink light
beer?

d. If you restrict your attention to workers who like to
drink beer, what is the probability that a randomly
selected white-collar worker prefers to drink light
beer?

e. Does the company’s marketing strategy appear to
be appropriate? Explain why or why not.

9. Suppose that two dice are tossed. For each die, it is
equally likely that 1, 2, 3, 4, 5, or 6 dots will turn up.
Let S be the sum of the two dice.
a. What is the probability that S will be 5 or 7?
b. What is the probability that S will be some number

other than 4 or 8?
c. Let E1 be the event that the first die shows a 3. 

Let E2 be the event that S is 6. Are E1 and E2
independent events?

d. Again, let E1 be the event that the first die shows
a 3. Let E3 be the event that S is 7. Are E1 and E3
independent events?

e. Given that S is 7, what is the probability that the
first die showed 4 dots?

f. Given that the first die shows a 3, what is the
probability that S is an even number?

FUNDAMENTAL INSIGHT

Concept of Probability Distribution

A probability distribution is a way of describing the

uncertainty of some numerical outcome. It is not

based, at least not directly, on a data set of the type

discussed in the previous two chapters. Instead, it is

essentially a list of all possible outcomes and their

corresponding probabilities.

1Actually, a more rigorous discussion allows a discrete random variable to have an infinite number of possible
values, such as all positive integers. The only time this occurs in this book is when we discuss the Poisson distri-
bution in Chapter 5.

There are really two types of random variables: discrete and continuous. A discrete
random variable has only a finite number of possible values, whereas a continuous random
variable has a continuum of possible values.1 Usually a discrete distribution results from a
count, whereas a continuous distribution results from a measurement. For example, the
number of children in a family is clearly discrete, whereas the amount of rain this year in
San Francisco is clearly continuous.
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This distinction between counts and measurements is not always clear-cut. For exam-
ple, what about the demand for refrigerators at a particular store next month? The number of
refrigerators demanded is clearly an integer (a count), but it probably has many possible val-
ues, such as all integers from 0 to 100. In some cases like this, we often approximate in one
of two ways. First, we might use a discrete distribution with only a few possible values, such
as all multiples of 20 from 0 to 100. Second, we might approximate the possible demand as
a continuum from 0 to 100. The reason for such approximations is to simplify the mathe-
matics, and they are frequently used.

Mathematically, there is an important difference between discrete and continuous
probability distributions. Specifically, a proper treatment of continuous distributions,
analogous to the treatment we will provide in this chapter, requires calculus—which
we do not presume for this book. Therefore, we discuss only discrete distributions in
this chapter. In later chapters we often use continuous distributions, particularly the bell-
shaped normal distribution, but we simply state their properties without trying to derive
them mathematically.

The essential properties of a discrete random variable and its associated probability
distribution are quite simple. We discuss them in general and then analyze a numerical
example. Let X be a random variable. (Usually, capital letters toward the end of the alpha-
bet, such as X, Y, and Z, are used to denote random variables.)

To specify the probability distribution of X, we need to specify its possible values and
their probabilities. We assume that there are k possible values, denoted v1, v2, . . . , vk. The
probability of a typical value vi is denoted in one of two ways, either P(X = vi) or p(vi).
The first reminds you that this is a probability involving the random variable X, whereas the
second is a simpler shorthand notation. Probability distributions must satisfy two criteria: (1)
the probabilities must be nonnegative, and (2) they must sum to 1. In symbols, we must have

This is basically all there is to it: a list of possible values and a list of associated proba-
bilities that sum to 1. It is also sometimes useful to calculate cumulative probabilities. A
cumulative probability is the probability that the random variable is less than or equal to
some particular value. For example, assume that 10, 20, 30, and 40 are the possible values of
a random variable X, with corresponding probabilities 0.15, 0.25, 0.35, and 0.25. Then a
typical cumulative probability is P( ). From the addition rule it can be calculated as

The point is that the cumulative probabilities are completely determined by the individual
probabilities.

It is often convenient to summarize a probability distribution with two or three well-
chosen numbers. The first of these is the mean, often denoted �. It is also called the expected
value of X and denoted E(X) (for expected X). The mean is a weighted sum of the possible
values, weighted by their probabilities, as shown in Equation (4.6). In much the same way
that an average of a set of numbers indicates “central location,” the mean indicates the center
of the probability distribution. You will see this more clearly when we analyze a numerical
example.

P(X … 30) = P(X = 10) + P(X = 20) + P(X = 30) = 0.75

X … 30

a
k

i=1
p(vi) = 1,  p(vi) Ú 0

4.3 Distribution of a Single Random Variable 167

Mean of a Probability Distribution, 

(4.6)m = E(X) = a
k

i=1
vip(vi)

m

A discrete probability
distribution is a set 
of possible values 
and a corresponding
set of nonnegative
probabilities that sum
to 1.
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To measure the variability in a distribution, we calculate its variance or standard devi-
ation. The variance, denoted by or Var(X), is a weighted sum of the squared deviations
of the possible values from the mean, where the weights are again the probabilities. This is
shown in Equation (4.7). As in Chapter 2, the variance is expressed in the square of the
units of X, such as dollars squared. Therefore, a more natural measure of variability is the
standard deviation, denoted by or Stdev(X). It is the square root of the variance, as
indicated by Equation (4.8).

s

s2
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Variance of a Probability Distribution, 

(4.7)s2
= Var(X) = a (

k

i=1
vi - E(X))2

 p(vi)

s2

Standard Deviation of a Probability Distribution,
(4.8)s2

= Stdev(X) = 1Var(X)

s

Variance (computing formula)

(4.9)s2
= a

k

i=1
vi

2p(vi) - m2

Equation (4.7) is useful for understanding variance as a weighted average of squared
deviations from the mean. However, the following is an equivalent formula for variance
and is somewhat easier to implement in Excel. (It can be derived with straightforward
algebra.) In words, you find the weighted average of the squared values, weighted by their
probabilities, and then subtract the square of the mean.

We now consider a typical example.

E X A M P L E 4.2 MARKET RETURN SCENARIOS FOR THE NATIONAL ECONOMY

An investor is concerned with the market return for the coming year, where the market
return is defined as the percentage gain (or loss, if negative) over the year. The

investor believes there are five possible scenarios for the national economy in the coming
year: rapid expansion, moderate expansion, no growth, moderate contraction, and serious
contraction. Furthermore, she has used all of the information available to her to estimate
that the market returns for these scenarios are, respectively, 23%, 18%, 15%, 9%, and 3%.
That is, the possible returns vary from a high of 23% to a low of 3%. Also, she has assessed
that the probabilities of these outcomes are 0.12, 0.40, 0.25, 0.15, and 0.08. Use this infor-
mation to describe the probability distribution of the market return.

Objective To compute the mean, variance, and standard deviation of the probability dis-
tribution of the market return for the coming year.

Solution

To make the connection between the general notation and this particular example, let X
denote the market return for the coming year. Then each possible economic scenario leads to

In reality, there is a
continuum of possible
returns. Her assump-
tion of only five
possible returns is
clearly an approxi-
mation to reality, but
such an assumption 
is often useful.
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a possible value of X. For example, the first possible value is v1 � 23%, and its probability is
p(v1) � 0.12. These values and probabilities appear in columns B and C of Figure 4.3.2 (See
the file Market Return.xlsx.) Note that the five probabilities sum to 1, as they should. This
probability distribution implies, for example, that the probability of a market return at least as
large as 18% is 0.12 � 0.40 � 0.52 because it could occur as a result of rapid or moderate
expansion of the economy. Similarly, the probability that the market return is 9% or less is
0.15 � 0.08 � 0.23 because this could occur as a result of moderate or serious contraction of
the economy.
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1
2
3
4
5
6
7
8
9

10
11
12
13

A B C D E F G H
Mean, variance, and standard deviation of the market return Range names Used

Market_return =Market!$C$4:$C$8
Economic outcome Probability Market return Sq dev from mean Mean =Market!$B$11
Rapid Expansion 0.12 23% 0.005929 Probability =Market!$B$4:$B$8
Moderate Expansion 0.40 18% 0.000729 Sq_dev_from_mean =Market!$D$4:$D$8
No 31$B$!tekraM=vedtS900000.0%5152.0htworG
Moderate n 0.15 9% 0.003969 Variance =Market!$B$12
Serious Contrac�on 0.08 3% 0.015129

Summary measures of return
%3.51naeM

Variance 0.002811 0.002811 Quick alterna�ve formula
%3.5%3.5vedtS

Figure 4.3 Probability Distribution of Market Returns

The summary measures of this probability distribution appear in the range B11:B13.
They can be calculated with the following steps. (Note that the formulas make use of the
range names listed in the figure.)

PROCEDURE FOR CALCULATING SUMMARY MEASURES

1 Mean return. Calculate the mean return in cell B11 with the formula

=SUMPRODUCT(Market_return,Probability)

Excel Tip Excel’s SUMPRODUCT function is a gem, and you should use it whenever possible.
It takes (at least) two arguments, which must be ranges of exactly the same size and shape.
It sums the products of the values in these ranges. For example, �SUMPRODUCT
(A1:A3,B1:B3) is equivalent to the formula �A1*B1�A2*B2�A3*B3. If the ranges contain
only a few cells, there isn’t much advantage to using SUMPRODUCT, but when the ranges
are large, such as A1:A100 and B1:B100, SUMPRODUCT is the only viable choice.

This formula illustrates the general rule in Equation (4.6): The mean is the sum of products
of possible values and probabilities.

2 Squared deviations. To get ready to compute the variance from equation (4.7), cal-
culate the squared deviations from the mean by entering the formula

��(C4-Mean)^2

in cell D4 and copying it down through cell D8.

2From here on, we often shade the given inputs in the spreadsheet figures blue so that you can immediately tell
which cells contain inputs. This shading comes through clearly in the Excel files. On the printed page, the shad-
ing is a light blue. 
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3 Variance. Calculate the variance of the market return in cell B12 with the formula

=SUMPRODUCT(Sq_dev_from_mean,Probability)

This illustrates the general formula for variance in Equation (4.7): The variance is always a
sum of products of squared deviations from the mean and probabilities. Alternatively, you can
skip the calculation of the squared deviations from the mean and use Equation (4.9) directly.
This is done in cell C12 with the formula

=SUMPRODUCT(Market_return,Market_return,Probability)-Mean^2

By entering the Market_return range twice in this SUMPRODUCT formula, you get the
squares. From now on, we will use this simplified formula for variance and dispense with
squared deviations from the mean. But regardless of how it is calculated, you should remem-
ber the essence of variance: it is a weighted average of squared deviations from the mean.

4 Standard deviation. Calculate the standard deviation of the market return in cell B13
with the formula

=SQRT(Variance)

You can see that the mean return is 15.3% and the standard deviation is 5.3%. What do
these measures really mean? First, the mean, or expected, return does not imply that the
most likely return is 15.3%, nor is this the value that the investor “expects” to occur. In
fact, the value 15.3% is not even a possible market return (at least not according to the
model). You can understand these measures better in terms of long-run averages.
Specifically, if you could imagine the coming year being repeated many times, each time
using the probability distribution in columns B and C to generate a market return, then the
average of these market returns would be close to 15.3%, and their standard deviation—
calculated as in Chapter 2—would be close to 5.3%.

Before leaving this section, we want to emphasize a key point, a point that is easy to
forget with all the details. The whole point of discussing probability and probability distri-
butions, especially in the context of business problems, is that uncertainty is often a key
factor, and you cannot simply ignore it. For instance, you saw in Example 4.2 that the
mean return is 15.3%. However, it would be far from realistic to treat the actual return as a
sure 15.3%, with no uncertainty. If you did this, you would be ignoring the uncertainty
completely, and it is often the uncertainty that makes business problems interesting—and
difficult. Therefore, to model such problems in a realistic way, you are forced to deal with
probability and probability distributions. ■
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As always, range
names are not
required, but they
make the Excel
formulas easier to
read.You can use 
them or omit them,
as you wish.

4.3.1 Conditional Mean and Variance

There are many situations where the mean and variance of a random variable depend on
some external event. In this case, you can condition on the outcome of the external event to
find the overall mean and variance (or standard deviation) of the random variable.

It is best to motivate this with an example. Consider the random variable X, represent-
ing the percentage change in the price of stock A from now to a year from now. This
change is driven partly by circumstances specific to company A, but it is also driven partly
by the economy as a whole. In this case, the outcome of the economy is the external event.
Let’s assume that the economy in the coming year will be awful, stable, or great with
probabilities 0.20, 0.50, and 0.30, respectively. In addition, we make the following
assumptions. (1) Given that the economy is awful, the mean and standard deviation of X
are �20% and 30%; (2) given that the economy is stable, the mean and standard deviation
of X are 5% and 20%; and (3) given that the economy is great, the mean and standard
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deviation of X are 25% and 15%. Each of these latter statements is a statement about X,
conditional upon the economy. What can you say about the unconditional mean and stan-
dard deviation of X? That is, what are the mean and standard deviation of X before you
learn the state of the economy? The answers come from Equations (4.10) and (4.11). In the
context of the example, pi is the probability of economy state i, and Ei (X) and Vari (X) are
the mean and variance of X, given that economy state i occurs.
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Conditional Mean Formula

(4.10)E(X) = a
k

i=1
Ei(X)pi

Conditional Variance Formula

(4.11)Var(X) = a
k

i=1
CVari(X) + [Ei(X)]2 Dpi - [E(X)]2

In the example, the mean percentage change in the price of stock A, from Equation (4.10), is

To calculate the standard deviation of X, first use Equation (4.11) to calculate the variance
and then take its square root. The variance is

Taking the square root gives

Of course, these calculations can be done easily in Excel. See the file Stock Price and
Economy.xlsx for the details.

The point of this example is that it is often easier to assess the uncertainty of some
random variable X by conditioning on every possible outcome of some external event like
the economy. However, before that outcome is known, the relevant mean and standard
deviation of X are those calculated from Equations (4.10) and (4.11). In this particular
example, before you know the state of the economy, the relevant mean and standard devia-
tion of the change in the price of stock A are 6% and 26.3%, respectively.

Stdev(X) = 10.06915 = 26.30%

+  0.2[(15%)2
+ (25%)2] D - (6%)2

= 0.06915

Var(X) = C0.2[(30%)2
+ (-20%)2] + 0.5[(20%)2

+ (5%)2]

E(X) = 0.2(-20%) + 0.5(5%) + 0.3(25%) = 6%

P R O B L E M S

Level A

10. A fair coin (i.e., heads and tails are equally likely) is
tossed three times. Let X be the number of heads
observed in three tosses of this fair coin.
a. Find the probability distribution of X.
b. Find the probability that two or fewer heads are

observed in three tosses.
c. Find the probability that at least one head is

observed in three tosses.

d. Find the expected value of X.
e. Find the standard deviation of X.

11. Consider a random variable with the following 
probability distribution: P(X � 0) � 0.1, 
P(X � 1) � 0.2, P(X � 2) � 0.3, P(X � 3) � 0.3, 
and P(X � 4) � 0.1.
a. Find .
b. Find .
c. Find .P(X 7 0)

P(1 6 X … 3)
P(X … 2)
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d. Find .
e. Find the expected value of X.
f. Find the standard deviation of X.

12. A study has shown that the probability distribution 
of X, the number of customers in line (including the
one being served, if any) at a checkout counter in 
a department store, is given by P(X � 0) � 0.25, 
P(X � 1) � 0.25, P(X � 2) � 0.20, P(X � 3) � 0.20,
and � 0.10. Consider a newly arriving
customer to the checkout line.
a. What is the probability that this customer will not

have to wait behind anyone?
b. What is the probability that this customer will have

to wait behind at least one customer?
c. On average, behind how many other customers will

the newly arriving customer have to wait?

13. A construction company has to complete a project
no later than three months from now or there will 
be significant cost overruns. The manager of the
construction company believes that there are four
possible values for the random variable X, the
number of months from now it will take to complete
this project: 2, 2.5, 3, and 3.5. The manager cur-
rently thinks that the probabilities of these four
possibilities are in the ratio 1 to 2 to 4 to 2. That is,
X � 2.5 is twice as likely as X � 2, X � 3 is twice
as likely as X � 2.5, and X � 3.5 is half as likely as
X � 3.
a. Find the probability distribution of X.
b. What is the probability that this project will be

completed in less than three months from now?
c. What is the probability that this project will not be

completed on time?
d. What is the expected completion time (in months)

of this project from now?
e. How much variability (in months) exists around the

expected value you found in part d?

14. Three areas of southern California are prime 
candidates for forest fires each dry season. You
believe (based on historical evidence) that each of
these areas, independently of the others, has a 30%
chance of having a major forest fire in the next dry
season.
a. Find the probability distribution of X, the number

of the three regions that have major forest fires in
the next dry season.

b. What is the probability that none of the areas will
have a major forest fire?

c. What is the probability that all of them will have a
major forest fire?

d. What is expected number of regions with major
forest fires?

e. Each major forest fire is expected to cause 
$20 million in damage and other expenses. What is

the expected amount of damage and other expenses
in these three regions in the next dry season?

Level B

15. The National Football League playoffs are just about 
to begin. Because of their great record in the regular
season, the Colts get a bye in the first week of the
playoffs. In the second week, they will play the winner
of the game between the Ravens and the Patriots. 
A football expert estimates that the Ravens will beat 
the Patriots with probability 0.45. This same expert
estimates that if the Colts play the Ravens, the mean
and standard deviation of the point spread (Colts
points minus Ravens points) will be 6.5 and 10.5,
whereas if the Colts play the Patriots, the mean and
standard deviation of the point spread (Colts points
minus Patriots points) will be 3.5 and 12.5. Find 
the mean and standard deviation of the point spread
(Colts points minus their opponent’s points) in the
Colts game.

16. Because of tough economic times, the Indiana legis-
lature is debating a bill that could have significant
negative implications for public school funding. There
are three possibilities for this bill: (1) it could be passed
in essentially its current version; (2) it could be passed
but with amendments that make it less harsh on public
school funding; or (3) it could be defeated. The proba-
bilities of these three events are estimated to be 0.4, 0.25,
and 0.35, respectively. The estimated effect on per-
centage changes in salaries next year at Indiana
University are estimated as follows. If the bill is passed
in its current version, the mean and standard deviation of
salary percentage change will be 0% and 1%. If the bill
is passed with amendments, the mean and standard
deviation will be 1.5% and 3.5%. Finally, if the bill is
defeated, the mean and standard deviation will be 3.5%
and 6%. Find the mean and standard deviation of the
percentage change in salaries next year at Indiana
University.

17. The “house edge” in any game of chance is defined as

For example, if a player wins $10 with probability
0.48 and loses $10 with probability 0.52 on any bet,
the house edge is

Give an interpretation to the house edge that relates
to how much money the house is likely to win on
average. Which do you think has a larger house edge:
roulette or sports gambling? Why?

- [10(0.48) - 10(0.52)]

10
= 0.04

E(player’s loss on a bet)

Size of player’s loss on a bet

P( Ú 4)

P(X 7 3 ƒ X 7 2)
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4.4 AN INTRODUCTION TO SIMULATION

In the previous section, we asked you to imagine many repetitions of an event, with each
repetition resulting in a different random outcome. Fortunately, you can do more than
imagine; you can make it happen with computer simulation. Simulation is an extremely
useful tool that can be used to incorporate uncertainty explicitly into spreadsheet models.
A simulation model is the same as a regular spreadsheet model except that some cells
include random quantities. Each time the spreadsheet recalculates, new values of the ran-
dom quantities occur, and these typically lead to different bottom-line results. By forcing
the spreadsheet to recalculate many times, a business manager is able to discover the
results that are most likely to occur, those that are least likely to occur, and best-case and
worst-case results. We will use simulation several places in this book to help explain diffi-
cult concepts in probability and statistics. We begin in this section by using simulation to
explain the connection between summary measures of probability distributions and the
corresponding summary measures from Chapter 2.

We continue to use the market return distribution in Figure 4.3. Because this is your first
discussion of computer simulation in Excel, we proceed in some detail. Our goal is to
simulate many returns (we arbitrarily choose 400) from this distribution and analyze the
resulting returns. We want each simulated return to have probability 0.12 of being 23%,
probability 0.40 of being 18%, and so on. Then, using the methods for summarizing data
from Chapter 2, we calculate the average and standard deviation of the 400 simulated returns.

The method for simulating many market returns is straightforward once you know
how to simulate a single market return. The key to this is Excel’s RAND function, which
generates a random number between 0 and 1. The RAND function has no arguments, so
every time you call it, you must enter =RAND().3 (Although there is nothing inside the
parentheses next to RAND, the parentheses cannot be omitted.) That is, to generate a ran-
dom number between 0 and 1 in any cell, enter the formula

��RAND()

in that cell. The RAND function can also be used as part of another function. For example,
you can simulate the result of a single flip of a fair coin by entering the formula

��IF(RAND()<��0.5,"Heads","Tails")

Random numbers generated with Excel’s RAND function are said to be uniformly dis-
tributed between 0 and 1 because all decimal values between 0 and 1 are equally likely.
These uniformly distributed random numbers can then be used to generate numbers from
any discrete distribution such as the market return distribution in Figure 4.3. To see how this
is done, note first that there are five possible values in this distribution. Therefore, we divide
the interval from 0 to 1 into five parts with lengths equal to the probabilities in the probabil-
ity distribution. Then we see which of these parts the random number from RAND falls into
and generate the associated market return. If the random number is between 0 and 0.12 (of
length 0.12), we generate 23% as the market return; if the random number is between 0.12
and 0.52 (of length 0.40), we generate 18% as the market return; and so on. See Figure 4.4.

This procedure is accomplished most easily in Excel through the use of a lookup table.
A lookup table is useful when you want to compare a particular value to a set of values and,
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3Before Excel 2007, RAND was the only built-in function for generating random numbers. The RANDBE-
TWEEN appeared in Excel 2007. (Actually, RANDBETWEEN was available in the Analysis Toolpak add-in, but
most people weren't aware of it.) It generates uniformly distributed random integers within a given range. For
example, �RANDBETWEEN(1,6) generates a random integer from 1 to 6, with all values equally likely. This
could be used to simulate the roll of a single die, for example. 
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depending on where the particular value falls, assign a given “answer” or value from an asso-
ciated list of values. In this case we want to compare a generated random number to values
(between 0 and 1) falling in each of the five intervals shown in Figure 4.4, and then report the
corresponding market return. This process is made relatively simple in Excel by applying 
the VLOOKUP function, as explained in the following steps.4 (Refer to Figure 4.5 and the
Market Return.xlsx file.)
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Figure 4.4

Associating RAND

Values with Market

Returns

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

410
411
412

A B C D E F G H I
Simulating market returns Range names used

LTable =Simula�on!$D$13:$E$17
Summary statistics from simulation below Simulated_market_return =Simula�on!$B$13:$B$412
Average %2.51nruter
Stdev of %2.5snruter

Exact values from previous sheet (for comparison)
Average %3.51nruter
Stdev of %3.5snruter

elbatpukooLnoitalumiS
Random # Simulated market return Cum Prob Return

%320%3876739.0
%8121.0%3121529.0
%5125.0%81678744.0
%977.0%9942519.0
%329.0%81488521.0

%3036669.0
%51366416.0
%32771780.0
%51568675.0
%51734465.0

Figure 4.5 Simulation of Market Returns

4This could also be accomplished with nested IF functions, but the resulting formula would be much more complex.

PROCEDURE FOR GENERATING RANDOM MARKET RETURNS IN EXCEL

1 Lookup table. Copy the possible returns to the range E13:E17. Then enter the
cumulative probabilities next to them in the range D13:D17. To do this, enter the value 0 in
cell D13. Then enter the formula

��D13+Market!B4

in cell D14 and copy it down through cell D17. (Note that the Market!B4 in this formula
refers to cell B4 in the Market sheet, that is, cell B4 in Figure 4.3.) Each value in column D
is the current probability plus the previous value. The table in this range, D13:E17,
becomes the lookup range. For convenience, we have named this range LTable.
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2 Random numbers. Enter random numbers in the range A13:A412. An easy way to
do this is to highlight the range, then type the formula

�RAND()

and finally press Ctrl-Enter. Note that these random numbers are “live.” That is, each time
you do any calculation in Excel or press the recalculation key (the F9 key), these random
numbers change.

Excel Tip A quick way to enter a formula (or value) into a range of cells is to highlight
the range, type in the formula (or value), and press Ctrl-Enter (both keys at once). This is
equivalent to entering the formula in the first cell of the range in the usual way and then
copying it to the rest of the range.

3 Market returns. Generate the random market returns by referring the random num-
bers in column A to the lookup table. Specifically, enter the formula

�VLOOKUP(A13,LTable,2)

in cell B13 and copy it down through cell B412. This formula compares the random num-
ber in cell A13 to the cumulative probabilities in the first column of the lookup table and
sees where it “fits,” as illustrated in Figure 4.4. Then it returns the corresponding market
return in the second column of the lookup table. (It uses the second column because the
third argument of the VLOOKUP function is 2.)

Excel Tip In general, the VLOOKUP function takes three arguments: (1) the value to be
compared, (2) a table of lookup values, with the values to be compared against always in
the leftmost column, and (3) the column number of the lookup table that contains the
“answer.” (It also takes a fourth optional argument, not needed here. You can look it up in
online help.)

4 Summary statistics. Summarize the 400 market returns by entering the formulas

�AVERAGE(Simulated_market_return)

and

�STDEV(Simulated_market_return)

in cells B4 and B5. For comparison, copy the average and standard deviation from the
Market sheet in Figure 4.3 to cells B8 and B9.

Now let’s step back and see what has been accomplished. The following points are
relevant.

■ Simulations like this are very common, and we will continue to use them to illustrate
concepts in probability and statistics.

■ The numbers you obtain will be different from the ones in Figure 4.5 because of
the nature of simulation. The results depend on the particular random numbers that
happen to be generated.

■ The way we entered cumulative probabilities and then used a lookup table is generally
the best way to generate random numbers from a discrete probability distribution.
However, there is an easier way if a simulation add-in is available. We will discuss
this in Chapter 15.

■ Each generated market return in the Simulated_market_return range is one of the five
possible market returns. If you count the number of times each return appears and then
divide by 400, the number of simulated values, you will see that the resulting fractions
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are approximately equal to the original probabilities. For example, the fraction of times
the highest return 23% appears is about 0.12. This is the essence of what it means to
simulate from a given probability distribution.

■ The average and standard deviation in cells B4 and B5, calculated from the formulas
in Chapter 2, are very close to the mean and standard deviation of the probability
distribution in cells B8 and B9. Note, however, that these measures are calculated in
entirely different ways. For example, the average in cell B4 is a simple average of
400 numbers, whereas the mean in cell B8 is a weighted sum of the possible market
returns, weighted by their probabilities.

This last point allows you to interpret the summary measures of a probability distribution.
Specifically, the mean and standard deviation of a probability distribution are approxi-
mately what you would obtain if you calculated the average and standard deviation, using
the formulas from Chapter 2, of many simulated values from this distribution. In other
words, the mean is the long-run average of the simulated values. Similarly, the standard
deviation measures their variability.

You might ask whether this long-run average
interpretation of the mean is relevant if the situation is
going to occur only once. For example, the market
return in the example is for “the coming year,” and the
coming year will occur only once. So what is the use
of a long-run average? In this type of situation, the
long-run average interpretation is probably not 
very relevant, but fortunately, there is another use of
the expected value that we exploit in Chapter 6.
Specifically, when a decision maker must choose
among several actions that have uncertain outcomes,
the preferred decision is often the one with the largest
expected (monetary) value. This makes the expected
value of a probability distribution extremely impor-
tant in decision-making contexts.
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Role of Simulation

Spreadsheet simulation is one of the most important

tools in an analyst’s arsenal. For this reason, it will be

discussed in much more depth in later chapters, partic-

ularly the last two chapters. Simulation doesn’t show

you what will occur; instead, it shows you many of the

possible scenarios that might occur. By seeing a variety

of scenarios, including those that are “normal” and

those that are “extreme,” you understand the situation

much better and can make more informed decisions.

FUNDAMENTAL INSIGHT

P R O B L E M S

Level A

18. A quality inspector picks a sample of 15 items at ran-
dom from a manufacturing process known to produce
10% defective items. Let X be the number of defective
items found in the random sample of 15 items. Assume
that the condition of each item is independent of that of
each of the other items in the sample. The probability
distribution of X is provided in the file P04_18.xlsx.
a. Use simulation to generate 500 values of this

random variable X.
b. Calculate the mean and standard deviation of the

simulated values. How do they compare to the
mean and standard deviation of the given
probability distribution?

19. A personnel manager of a large manufacturing plant 
is investigating the number of reported on-the-job

accidents at the facility over the past several years. Let
X be the number of such accidents reported during a
one-month period. Based on past records, the manager
has established the probability distribution for X as
shown in the file P04_19.xlsx.
a. Use simulation to generate 1000 values of this

random variable X.
b. Is the simulated distribution indicative of the given

probability distribution? Explain why or why not.

20. Let X be the number of heads when a fair coin is
flipped four times.
a. Find the distribution of X and then use simulation

to generate 1000 values of X.
b. Is the simulated distribution indicative of the given

probability distribution? Explain why or why not.
c. Calculate the mean and standard deviation of the

simulated values. How do they compare to the
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mean and standard deviation of the given proba-
bility distribution?

21. The probability distribution of X, the number of cus-
tomers in line (including the one being served, if any) at
a checkout counter in a department store, is given by
P(X � 0) � 0.25, P(X � 1) � 0.25, P(X � 2) � 0.20,
P(X � 3) = 0.20, and P(X � 4) � 0.10.
a. Use simulation to generate 500 values of this

random variable X.
b. Is the simulated distribution indicative of the given

probability distribution? Explain why or why not.
c. Calculate the mean and standard deviation of the

simulated values. How do they compare to the mean
and standard deviation of the given probability
distribution?

d. Repeat parts a through c with 5000 simulated values
rather than 500. Explain any differences you observe. 

Level B

22. Betting on a football point spread works as follows.
Suppose Michigan is favored by 17.5 points over
Indiana. If you bet a “unit” on Indiana and Indiana
loses by 17 or less, you win $10. If Indiana loses by 
18 or more points, you lose $11. Find the mean and
standard deviation of your winnings on a single bet.
Assume that there is a 0.5 probability that you will
win your bet and a 0.5 probability that you will 
lose your bet. Also simulate 1600 “bets” to 
estimate the average loss per bet. (Note: Do not be too
disappointed if you are off by up to 50 cents. It takes
many, say 10,000, simulated bets to get a really good
estimate of the mean loss per bet. This is because there
is a lot of variability on each bet.)
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4.5 DISTRIBUTION OF TWO RANDOM VARIABLES: SCENARIO
APPROACH5

We now turn to the distribution of two related random variables. In this section we discuss
the situation where the two random variables are related in the sense that they both depend
on which of several possible scenarios occurs. In the next section we discuss a second way
of relating two random variables probabilistically. These two methods differ slightly in the
way they assign probabilities to different outcomes. However, for both methods there are
two summary measures, covariance and correlation, that measure the relationship between
the two random variables. As with the mean, variance, and standard deviation, covariance
and correlation are similar to the corresponding measures from Chapter 3, but they are
conceptually different. In Chapter 3, correlation and covariance were calculated from data;
here they are calculated from a probability distribution.

We denote the covariance and correlation between two random variables X and Y
by Correl(X, Y) and Correl(X, Y). These are defined by equations (4.12) and (4.13). Here,
p(xi, yi) in Equation (4.12) is the probability that X and Y equal the values xi and yi, respec-
tively; it is called a joint probability.

5The rest of this chapter is optional. Although it is very useful for applied probability models, it is not used in the
rest of the book.

Covariance between X and Y

(4.12)Covar(X, Y) = a
k

i=1
(xi - E(X))(yi - E(Y))p(xi, yi)

Correlation between X and Y

(4.13)Correl(X, Y) =

Covar (X, Y)

Stdev(X) * Stdev(Y)
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As with variance, the following is an equivalent formula for covariance that is easier to
implement in Excel because it avoids the need for deviations from the means. This formula
says to find a weighted sum of all the products of xs and ys, weighted by their joint proba-
bilities, and then subtract the product of the means.
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Covariance between X and Y (computing formula)

(4.14)Covar(X, Y) = a
k

i=1
xiyip(xi, yi) - E(X)E(Y)

Although covariance and correlation based on a joint probability distribution are calculated
differently than for known data, their interpretation is essentially the same as that dis-
cussed in Chapter 3. Each indicates the strength of a linear relationship between X and Y.
That is, if X and Y tend to vary in the same direction, then both measures are positive. If
they vary in opposite directions, both measures are negative. As before, the magnitude of
the covariance is more difficult to interpret because it depends on the units of measurement
of X and Y. However, the correlation is always between �1 and �1.

The following example illustrates the scenario approach, as well as covariance and
correlation. Simulation is used to explain the relationship between the covariance and cor-
relation as defined here and the corresponding measures from Chapter 3.

E X A M P L E 4.3 ANALYZING A PORTFOLIO OF INVESTMENTS IN GM STOCK AND GOLD

An investor plans to invest in General Motors (GM) stock and in gold. He assumes that
the returns on these investments over the next year depend on the general state of the

economy during the year. To keep things simple, he identifies four possible states of the
economy: depression, recession, normal, and boom. Also, given the most up-to-date infor-
mation he can obtain, he assesses the probabilities of these four states to be 0.05, 0.30,
0.50, and 0.15. For each state of the economy, he estimates the resulting return on GM
stock and the return on gold. These appear in the shaded section of Figure 4.6. (See the file
GM vs Gold.xlsx.) For example, if there is a depression, he estimates that GM stock will

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A B C D E
Calculating covariance and correlation between two random variables

Economic outcome Probability GM Return Gold Return
Depression 0.05 -20% 5%
Recession 0.30 10% 20%

%0305.0lamroN -12%
%9%0551.0mooB

GM Gold
%6.1%5.42snaeM

Variances 0.0275 0.0203
%2.41%6.61svedtS

Covariance -0.0097
Correla�on -0.410

Figure 4.6

Distribution of GM

and Gold Returns
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decrease by 20% and the price of gold will increase by 5%. The investor wants to analyze
the joint distribution of returns on these two investments. He also wants to analyze the dis-
tribution of a portfolio of investments in GM stock and gold.

Objective To obtain the relevant joint distribution and use it to calculate the covariance
and correlation between returns on the two given investments, and also to analyze a port-
folio containing these two investments.

Solution

To obtain the joint distribution, use the distribution of GM return, defined by columns B
and C of the shaded region in Figure 4.6, and the distribution of gold return, defined by
columns B and D. The scenario approach applies because a given state of the economy
determines both GM and gold returns, so that only four pairs of returns are possible. For
example, �20% is a possible GM return and 9% is a possible gold return, but they cannot
occur simultaneously. The only possible pairs of returns, according to our assumptions, are
�20% and 5%; 10% and 20%; 30% and �12%; and 50% and 9%. These possible pairs
have the probabilities shown in column B.

To calculate means, variances, and standard deviations, GM and gold returns can be
treated separately. For example, the formula for the mean GM return in cell B10 is

��SUMPRODUCT(C4:C7,$B$4:$B$7)

The only new calculations in Figure 4.6 involve the covariance and correlation between
GM and gold returns. To obtain these, use the following steps.

PROCEDURE FOR CALCULATING THE COVARIANCE AND CORRELATION

1 Covariance. Calculate the covariance between GM and gold returns in cell B14 with
the formula

��SUMPRODUCT(C4:C7,D4:D7,B4:B7)-B10*C10

Note the use of the SUMPRODUCT function in this formula. It usually takes two range
arguments, but it can take more than two, all of which must have exactly the same dimen-
sion. This function multiplies corresponding elements from each of the three ranges and
sums these products—exactly as prescribed by the summation in Equation (4.14). Then
subtract the product of the means.

2 Correlation. Calculate the correlation between GM and gold returns in cell B15 with
the formula

��B14/(B12*C12)

as prescribed by Equation (4.13).
The negative covariance indicates that GM and gold returns tend to vary in opposite

directions, although it is difficult to judge the strength of the relationship between them by
the magnitude of the covariance. The correlation of �0.410, on the other hand, is also
negative and indicates a moderately negative relationship. You can’t rely too much on this
correlation, however, because the relationship between GM and gold returns is not linear.
From the values in the range C4:D7, it is apparent that GM does better and better as the
economy improves, whereas gold does better, then worse, then better.

A simulation of GM and gold returns sheds some light on the covariance and correla-
tion measures. This simulation is shown in Figure 4.7. There are two keys to this simula-
tion. First, we simulate the states of the economy, not—at least not directly—the GM and
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As in the previous
example, this assump-
tion of discreteness is
clearly an approxi-
mation of reality.

We could again use
range names, but 
there would be too
many of them. Besides,
it is usually easier to
copy formulas when
range names are not
used.

This simulation is not
necessary for the cal-
culation of the covari-
ance and correlation,
but it provides some
insight into their
meanings.
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gold returns. For example, any random number between 0.05 and 0.35 implies a recession.
The returns for GM and gold from a recession are then known to be 10% and 20%. You can
implement this by entering a RAND function in cell A21 and then entering the formulas

��VLOOKUP(A21,LTable,2)

and

��VLOOKUP(A21,LTable,3)

in cells B21 and C21. Then copy these formulas down through row 420. This way, the
same random number—hence the same scenario—is used to generate both returns in a
given row, and the effect is that only four pairs of returns are possible.

Second, once you have the simulated returns in the range B21:C420, you can calculate
the covariance and correlation of these numbers in cells B8 and B9 with the formulas6

��COVAR(B21:B420,C21:C420)

and

��CORREL(B21:B420,C21:C420)
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

418
419
420

A B C D E F G
Simulating GM and Gold returns

Summary measures from simulation below
GM Gold

Means 23.6% 2.5%
Stdevs 16.4% 14.5%

Covariance -0.0106
Correla�on -0.448

Exact results from previous sheet (for comparison)
GM Gold

Means 24.5% 1.6%
Stdevs 16.6% 14.2%

Covariance -0.0097
Correla�on -0.410

Simulation results Lookup table for genera�ng returns
Random # GM return Gold return CumProb GM return Gold return
0.0100693 -20% 5% 0 -20% 5%
0.9107821 50% 9% 0.05 10% 20%
0.4105589 30% -12% 0.35 30% -12%
0.0385696 -20% 5% 0.85 50% 9%
0.9010982 50% 9%
0.7536752 30% -12%
0.8730589 50% 9%
0.1297612 10% 20%
0.7331896 30% -12%

Figure 4.7

Simulation of GM

and Gold Returns

6These formulas implement the covariance and correlation definitions from Chapter 3, not Equations (4.12) and
(4.13) of this chapter, because these formulas are based on the simulated rows of data.
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Here, COVAR and CORREL are the built-in Excel functions discussed in Chapter 3 for
calculating the covariance and correlation between pairs of numbers. A comparison of
cells B8 and B9 with B16 and B17 shows that there is a reasonably good agreement
between the covariance and correlation of the probability distribution [from Equations
(4.12) and (4.13)] and the measures based on the simulated values. This agreement is not
perfect, but it typically improves as you simulate more pairs.

The final question in this example involves a portfolio consisting of GM stock and
gold. The analysis appears in Figure 4.8. We assume that the investor has $10,000 to
invest. He puts some fraction of this in GM stock (see cell B6) and the rest in gold. Of
course, these fractions determine the total dollar values invested in row 7. The key to the
analysis is the following. Because there are only four possible scenarios, there are only
four possible portfolio returns. For example, if there is a recession, the GM and gold
returns are 10% and 20%, so the portfolio return (per dollar) is a weighted average of these
returns, weighted by the fractions invested:

Portfolio return in recession � 0.6(10%) � 0.4(20%) � 14%
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1
2
3
4
5
6
7
8
9

A B C D E F G H I J K L
Analyzing a portfolio of GM and Gold

Total to invest $10,000

Investments GM Gold
Frac�on of total 0.60 0.40
Dollar value $6,000 $4,000

Di t ib ti f tf li9
10
11
12
13
14
15
16
17
18

Distribution of portfolio
Economic outcome Return Total dollars
Depression -10.0% ($1,000)
Recession 14.0% $1,400

023,1$%2.31lamroN
063,3$%6.33mooB

Summary measures of portfolio
Return Total dollars

Mean 15 340% $1 534 0018
19
20
21
22
23
24
25
26
27

Mean 15.340% $1,534.00
Variance 0.008495 849484

76.129$%712.9vedtS

Data table for mean and stdev of por�olio return as a func�on of GM investment
GM investment Mean Stdev

$1,534.00 $921.67

0.2 $618.00 $1,048.16
28
29
30
31
32
33
34
35

$ $ ,

0.0 $160.00 $1,424.22
0.1 $389.00 $1,223.28

0.3 $847.00 $913.81
0.4 $1,076.00 $840.04
0.5 $1,305.00 $842.90
0.6 $1,534.00 $921.67
0.7 $1,763.00 $1,059.57
0.8 $1,992.00 $1,236.97
0.9 $2,221.00 $1,439.34
1.0 $2,450.00 $1,657.56

$0.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$500.00

$1,000.00

$1,500.00

$2,000.00

$2,500.00

$3,000.00

Frac�on in GM

Mean Por�olio Return

$0.00
$200.00
$400.00
$600.00
$800.00

$1,000.00
$1,200.00
$1,400.00
$1,600.00
$1,800.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frac�on in GM

Stdev of Por�olio Return

Figure 4.8 Distribution of Portfolio Return

In this way, you can calculate the entire portfolio return distribution—either per dol-
lar or total dollars—and then calculate its summary measures in the usual way. The details,
which are similar to other spreadsheet calculations in this chapter, can be found in the GM
vs Gold.xlsx file. In particular, the possible returns are listed in the ranges B11:B14 and
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C11:C14 of Figure 4.8, and the associated probabilities are the same as those used previ-
ously in this example. These lead to the summary measures in the range B18:C20. In par-
ticular, the investor’s expected return is 15.34% and the standard deviation is 9.217%.
Based on a $10,000 investment, these translate to an expected total dollar return of $1534
and a standard deviation of $921.67.

Because an investor can choose the fractions to invest in GM and gold, it is important to
see how the expected portfolio return and the standard deviation of portfolio return change as
these fractions vary. To do this, make sure that the value in cell B6 is a constant and that for-
mulas are entered in cells C6, B7, and C7. In this way, these last three cells update automati-
cally when the value in cell B6 changes (and the total investment amount remains $10,000).
Then form a data table in the range A24:C35 that calculates the mean and standard deviation
of the total dollar portfolio return for each of several GM investment proportions in column A.
(To do this, enter the formulas ��C18 and ��C20 in cells B24 and C24, highlight the range
A24:C35, select Data Table from the What-If Analysis dropdown list on the Data ribbon, and
enter cell B6 as the column input cell. No row input cell is necessary.)

The graphs of the means and standard deviations from this data table appear in Figure 4.8.
They show that the expected portfolio return steadily increases as more and more is put into
GM (and less is put into gold). However, the standard deviation, often used as a measure of
risk, first decreases, then increases. This means there is a trade-off between expected return
and risk as measured by the standard deviation. The investor could obtain a higher expected
return by putting more of his money into GM, but past a fraction of approximately 0.4, the risk
also increases. ■
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Recall that an Excel
data table is used for
“what-if ” analysis. It
allows you to vary an
input over some range
and see how one or
more outputs change.
For more details,
refer to the Excel
Tutorial.xlsx file.

P R O B L E M S

Level A

23. The quarterly sales levels (in millions of dollars) of
two U.S. retail giants are dependent on the general
state of the national economy in the coming months.
The file P04_23.xlsx provides the probability distri-
bution for the projected sales volume of each of these
two retailers in the next quarter.
a. Find the mean and standard deviation of the quarterly

sales volume for each of these two retailers. Compare
these two sets of summary measures.

b. Find the covariance and correlation for the given
quarterly sales volumes. Interpret your results.

24. The possible annual percentage returns of the stocks of
Alpha, Inc. and Beta, Inc. are distributed as shown in
the file P04_24.xlsx.
a. What is the expected annual return of Alpha’s stock?

What is the expected annual return of Beta’s stock?
b. What is the standard deviation of the annual return

of Alpha’s stock? What is the standard deviation of
the annual return of Beta’s stock?

c. On the basis of your answers to the questions in
parts a and b, which of these two stocks would you
prefer to buy? Defend your choice.

d. Are the annual returns of these two stocks posi-
tively or negatively associated with each other?

Answer by calculating the correlation between
them. How might the answer to this question
influence your decision to purchase shares of one
or both of these companies?

25. The annual bonuses awarded to members of the
management team and assembly-line workers of an
automobile manufacturer depend largely on the cor-
poration’s sales performance during the preceding year.
The file P04_25.xlsx contains the probability dis-
tribution of possible bonuses (measured in hundreds of
dollars) awarded to white-collar and blue-collar
employees at the end of the company’s fiscal year.
a. How much do a manager and an assembly-line

worker expect to receive in their bonus check at
the end of a typical year?

b. For which group of employees within this
organization does there appear to be more
variability in the distribution of possible annual
bonuses?

c. How strongly associated are the bonuses awarded
to the white-collar and blue-collar employees of
this company at the end of the year? Answer by
calculating the correlation between them. What are
some possible implications of this result for the
relations between members of the management
team and the assembly-line workers in the future?
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26. Consumer demand for small, economical automobiles
depends somewhat on recent trends in the average price
of unleaded gasoline. For example, consider the
information given in the file P04_26.xlsx on the
distributions of average annual sales of the Honda Civic
and the Toyota Prius in relation to the trend of the
average price of unleaded fuel over the past two years.
a. Find the annual mean sales levels of the Honda

Civic and the Toyota Prius.
b. For which of these two models are sales levels

more sensitive to recent changes in the average
price of unleaded gasoline?

c. Given the available information, how strongly
associated are the annual sales volumes of these
two popular compact cars? Answer by calculating
the correlation between them. Provide a qualitative
explanation of the results.

27. Upon completing their respective homework
assignments, marketing majors and accounting majors

at a large state university enjoy hanging out at the
local tavern in the evenings. The file P04_27.xlsx
contains the distribution of number of hours spent by
these students at the tavern in a typical week, along
with typical cumulative grade-point averages (on a 
4-point scale) for marketing and accounting students
with similar social habits.
a. Compare the means and standard deviations of the

grade-point averages of the two groups of students.
Does one of the two groups consistently perform
better academically than the other? Explain.

b. Does academic performance, as measured by cumu-
lative GPA, seem to be associated with the amount 
of time students typically spend at the local tavern?
If so, characterize the observed relationship.

c. Find the covariance and correlation between the
typical grade-point averages earned by the two
subgroups of students. What do these measures of
association indicate in this case?
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4.6 DISTRIBUTION OF TWO RANDOM VARIABLES: JOINT
PROBABILITY APPROACH

The previous section illustrated one possibility, the scenario approach, for specifying the
joint distribution of two random variables. You first identify several possible scenarios,
next specify the value of each random variable that will occur under each scenario, and
then assess the probability of each scenario. For people who think in terms of scenarios—
and this includes many business managers—this is a very appealing approach.

In this section we illustrate an alternative method for specifying the probability
distribution of two random variables X and Y. You first identify the possible values of X
and the possible values of Y. Let x and y be any two such values. Then you directly assess
the joint probability of the pair (x, y) and denote it by P(X � x and Y � y) or more simply
by p(x, y). This is the probability of the joint event that X � x and Y � y both occur. As
always, the joint probabilities must be nonnegative and sum to 1.

A joint probability distribution, specified by all probabilities of the form p(x, y), provides a
tremendous amount of information. It indicates not only how X and Y are related, but also how
each of X and Y is distributed in its own right. In probability terms, the joint distribution of X
and Y determines the marginal distributions of both X and Y, where each marginal distribution
is the probability distribution of a single random variable. (They are called marginal because
they are usually displayed in the margins of a table.) The joint distribution also determines the
conditional distributions of X given Y, and of Y given X. The conditional distribution of X given
Y, for example, is the distribution of X, given that Y is known to equal a certain value.

These concepts are best explained by means of an example, as we do next.

E X A M P L E 4.4 UNDERSTANDING THE RELATIONSHIP BETWEEN DEMANDS FOR

SUBSTITUTE PRODUCTS

Acompany sells two products, product 1 and product 2, that tend to be substitutes for
one another. That is, if a customer buys product 1, she tends not to buy product 2, and

vice versa. The company assesses the joint probability distribution of demand for the two
products during the coming month. This joint distribution appears in the shaded region of
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Figure 4.9. (See the Demand sheet of the file Substitute Products.xlsx.) Column B and
row 4 of this table show the possible values of demand for the two products. Specifically,
the company assumes that demand for product 1 can be from 100 to 400 in increments of
100, and demand for product 2 can be from 50 to 250 in increments of 50. Furthermore,
each possible value of demand 1 can occur with each possible value of demand 2, with the
joint probability given in the table. For example, the joint probability that demand 1 is 200
and demand 2 is 100 is 0.08. Given this joint probability distribution, describe more fully
the probabilistic structure of demands for the two products.
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A B C D E F
Probability distribution of demands for substitute products

Demand for product 1
100 200 300 400

50 0.015 0.040 0.050 0.035
Demand 100 0.030 0.080 0.075 0.025
for 150 0.050 0.100 0.100 0.020
product 2 200 0.045 0.100 0.050 0.010

250 0.060 0.080 0.025 0.010

Figure 4.9

Joint Probability

Distribution of

Demands

Objective To use the given joint probability distribution of demands to find the condi-
tional distribution of demand for each product, given the demand for the other product, and
to calculate the covariance and correlation between demands for these substitutes.

Solution

Let D1 and D2 denote the demands for products 1 and 2. You first find the marginal
distributions of D1 and D2. These are the row and column sums of the joint probabilities
in Figure 4.10. An example of the reasoning is as follows. Consider the probability 
P(D1 � 200). If demand for product 1 is to be 200, it must be accompanied by some value
of D2; that is, exactly one of the joint events (D1 � 200 and D2 � 50) through (D1 � 200
and D2 � 250) must occur. Using the addition rule for probability, find the total probabil-
ity of these joint events by summing the corresponding joint probabilities. The result is
P(D1 � 200) � 0.40, the column sum corresponding to D1 � 200. Similarly, marginal
probabilities for D2 such as P(D2 � 150) � 0.27 are the row sums, calculated in column
G in Figure 4.10. Note that the marginal probabilities, either those in row 10 or those in
column G, sum to 1, as they should. These marginal probabilities indicate how the
demand for either product behaves in its own right, aside from any considerations of the
other product.

The marginal distributions indicate that “in-between” values of D1 or of D2 are most
likely, whereas extreme values in either direction are less likely. However, these marginal
distributions tell you nothing about the relationship between D1 and D2. After all, prod-
ucts 1 and 2 are supposedly substitute products. The joint probabilities spell out this rela-
tionship, but they are rather difficult to interpret. A better way is to calculate the
conditional distributions of D1 given D2, or of D2 given D1. You can do this in rows 12
through 29 of Figure 4.10.

Focus on the conditional distribution of D1 given D2, shown in rows 12 through
19. In each row of this table (rows 15–19), you fix the value of D2 at the value in 
column B and calculate the conditional probabilities of D1 given this fixed value of D2.
The conditional probability is the joint probability divided by the marginal probability
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of D2. For example, the conditional probability that D1 equals 200, given that D2
equals 150, is

P(D1 = 200 ƒ D2 = 150) =

P(D1 = 200 and D2 = 150)

P(D2 = 150)
=

0.10

0.27
= 0.37

4.6 Distribution of Two Random Variables: Joint Probability Approach 185

1
2
3
4
5
6
7
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A B C D E F G
Probability distribution of demands for substitute products

Demand for product 1
100 200 300 400

50 0.015 0.040 0.050 0.035 0.140
Demand 100 0.030 0.080 0.075 0.025 0.210
for 150 0.050 0.100 0.100 0.020 0.270
product 2 200 0.045 0.100 0.050 0.010 0.205

250 0.060 0.080 0.025 0.010 0.175
0.20 0.40 0.30 0.10

of demandCondi�onal distribu�on

Condi�onal distribu�on

for product 1, given demand for product 2
Demand for product 1

100 200 300 400
50 0.11 0.29 0.36 0.25 1.00

Demand 100 0.14 0.38 0.36 0.12 1.00
for 150 0.19 0.37 0.37 0.07 1.00
product 2 200 0.22 0.49 0.24 0.05 1.00

250 0.34 0.46 0.14 0.06 1.00

of demand for product 2, given demand for product 1
Demand for product 1

100 200 300 400
50 0.08 0.10 0.17 0.35

D d 100 0 15 0 20 0 25 0 2525
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Demand 100 0.15 0.20 0.25 0.25
for 150 0.25 0.25 0.33 0.20
product 2 200 0.23 0.25 0.17 0.10

250 0.30 0.20 0.08 0.10
1.00 1.00 1.00 1.00

Product 1 Product 2
Means 230.00 153.25
Variances 8100.00 4176.94
Stdevs 90.00 64.63

Products

Correla�on

of demands 1 and 2 (for covariance calcula�on)
100 200 300 400

50 5000 10000 15000 20000
100 10000 20000 30000 40000
150 15000 30000 45000 60000
200 20000 40000 60000 80000
250 25000 50000 75000 100000

Covariance -1647.50
-0.283

Figure 4.10

Marginal and

Conditional

Distributions and

Summary Measures
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These conditional probabilities can be calculated all at once by entering the formula

��C5/$G5

in cell C15 and copying it to the range C15:F19. (Make sure you see why only column G,
not row 5, is held absolute in this formula.) You can also check that each row of this table
is a probability distribution in its own right by summing across rows. The row sums shown
in column G are all equal to 1, as they should be.

Similarly, the conditional distribution of D2 given D1 is in rows 21 through 29. Here,
each column represents the conditional probability distribution of D2 given the fixed value
of D1 in row 23. These probabilities can be calculated by entering the formula

��C5/C$10

in cell C24 and copying it to the range C24:F28. Now the column sums shown in row
29 are 1, indicating that each column of the table represents a probability distribution.

Various summary measures can now be calculated. Some of these are shown in
Figure 4.10. The following steps present the details.

PROCEDURE FOR CALCULATING SUMMARY MEASURES

1 Expected values. The expected demands in cells B32 and C32 follow from the mar-
ginal distributions. To calculate these, enter the formulas

��SUMPRODUCT(C4:F4,C10:F10)

and

��SUMPRODUCT(B5:B9,G5:G9)

in these two cells. Note that each of these is based on Equation (4.6) for an expected value,
that is, a sum of products of possible values and their (marginal) probabilities.

2 Variances and standard deviations. These measures of variability are also calcu-
lated from the marginal distributions by appealing to Equation (4.9). For example, to find
the variance of D1, enter the formula

��SUMPRODUCT(C4:F4,C4:F4,C10:F10)-B32^2

in cell B33, and take its square root in cell B34.

3 Covariance and correlation. The formulas for covariance and correlation are the
same as before [see Equations (4.14) and (4.13)]. However, unlike Example 4.3, a com-
plete table of products of possible demands in the range C38:F42 is required.

Then calculate the covariance in cell B44 with the formula

��SUMPRODUCT(C38:F42,C5:F9)-B32*C32

Finally, calculate the correlation in cell B45 with the formula

��B44/(B34*C34)

Now let’s step back and examine the results. If you are interested in the behavior of a single
demand only, say, D1, then the relevant quantities are the marginal probabilities in row
10 and the mean and standard deviation of D1 in cells B32 and B34. However, you are often
more interested in the joint behavior of D1 and D2. The best way to see this behavior is in
the conditional probability tables. For example, compare the probability distributions in
rows 15 through 19. As the value of D2 increases, the probabilities for D1 tend to shift to the
left. That is, as demand for product 2 increases, demand for product 1 tends to decrease.
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This formula follows
from the general
conditional probability
formula in Section
4.2.3.
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This is only a tendency. When D2 equals its largest value, there is still some chance that D1
will be large, but this probability is fairly small.

This behavior can be seen more clearly from the graph in Figure 4.11. Each line in this
graph corresponds to one of the rows 15 through 19. The legend shows the different values
of D2. You can see that when D2 is large, D1 tends to be small, although again, this is only
a tendency, not a perfect relationship. When economists say that the two products are
substitutes for one another, this is the type of behavior they imply.
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By symmetry, the conditional distribution of D2 given D1 shows the same type of
behavior. This is illustrated in Figure 4.12, where each line represents one of the columns
C through F in the range C24:F28 and the legend shows the different values of D1.

The information in these graphs is confirmed—to some extent, at least—by the covari-
ance and correlation between D1 and D2. In particular, their negative values indicate that
demands for the two products tend to move in opposite directions. Also, the rather small
magnitude of the correlation, �0.283, indicates that the relationship between these demands
is far from perfect. When D1 is large, there is still a reasonably good chance that D2 will be
large, and when D1 is small, there is still a reasonably good chance that D2 will be small. ■

4.6.1 How to Assess Joint Probability Distributions

In the scenario approach from Section 4.5, only one probability for each scenario has to be
assessed. In the joint probability approach, a whole table of joint probabilities must be
assessed. This can be quite difficult, especially when there are many possible values for
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each of the random variables. In Example 4.4 the approach requires joint
probabilities that not only sum to 1 but imply the desired “substitute product” behavior.

One approach is to proceed backward from the way illustrated in the example. Instead
of specifying the joint probabilities and then deriving the marginal and conditional distrib-
utions, you can specify either set of marginal probabilities and either set of conditional
probabilities, and then use these to calculate the joint probabilities. The reasoning is based
on the multiplication rule for probability in the form given by Equation (4.15).

4 * 5 = 20
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Assessing the joint
probability distribution
of two (or more)
random variables is
never easy for a
manager, but the
suggestions here are
useful.

Joint Probability Formula
(4.15)P(X = x and Y = y) = P(X = x ƒ Y = y)P(Y = y)

Alternative Joint Probability Formula
(4.16)P(X = x and Y = y) = P(Y = y ƒ X = x)P(X = x)

In words, the joint probability on the left is the conditional probability that X � x given 
Y � y, multiplied by the marginal probability that Y � y. The roles of X and Y can be
reversed, yielding the alternative formula in Equation (4.16). In general, you would choose
the formula that makes the probabilities on the right-hand side easiest to assess.

The advantage of this procedure over assessing the joint probabilities directly is that it is
probably easier and more intuitive for a business manager. The manager has more control
over the relationship between the two random variables, as determined by the conditional
probabilities she assesses. Still, it is not easy, especially if these are subjective probabili-
ties. The manager will need to make many assessments of the likelihoods of events, based
on her knowledge of the business.

P R O B L E M S

Level A

28. Let X and Y represent the number of Dell and HP laptop
computers, respectively, sold per month from online
sites. The file P04_28.xlsx contains the probabilities of
various combinations of monthly sales volumes of these
competitors.
a. Find the marginal distributions of X and Y. Interpret

your findings.
b. Calculate the expected monthly laptop computer

sales volumes for Dell and HP at these sites.
c. Calculate the standard deviations of the monthly

laptop computer sales volumes for Dell and HP at
these sites.

d. Find and interpret the conditional distribution of X
given Y.

e. Find and interpret the conditional distribution of Y
given X.

f. Find and interpret the correlation between X and 
Y. Are these random variables independent
(or nearly so)?

29. The joint probability distribution of the weekly demand
for two brands of diet soda is provided in the file
P04_29.xlsx. In particular, let D1 and D2 represent the
weekly demand (in hundreds of two-liter bottles) for
brand 1 and brand 2, respectively, in a small town in
central Indiana.
a. Find the mean and standard deviation of this com-

munity’s weekly demand for each brand of diet soda.
b. What is the probability that the weekly demand for

each brand will be at least one standard deviation
above its mean?

c. What is the probability that at least one of the two
weekly demands will be at least one standard
deviation above its mean?

d. What is the correlation between the weekly
demands for these two brands of diet soda? What
does this measure of association tell you about the
relationship between these two products?

30. A local pharmacy has two checkout stations available 
to its customers: a regular checkout station and an
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express checkout station. Customers with six or fewer
items are assumed to join the express line. Let X and
Y be the numbers of customers in the regular checkout
line and the express checkout line, respectively, at 
the busiest time of a typical day. Note that these
numbers include the customer(s) being served, if any.
The joint distribution for X and Y is given in the file
P04_30.xlsx.
a. Find the marginal distributions of X and Y. What

does each of these distributions tell you?
b. Find the conditional distribution of X given Y.

What is the practical benefit of knowing this
conditional distribution?

c. What is the probability that no one is waiting or
being served in the regular checkout line?

d. What is the probability that no one is waiting or
being served in the express checkout line?

e. What is the probability that no more than two
customers are waiting in both lines combined?

f. On average, how many customers would you
expect to see in each of these two lines during the
busiest time of day at the pharmacy?

31. Suppose that the manufacturer of a particular product
assesses the joint distribution of price P per unit and
demand D for its product in the coming quarter as
provided in the file P04_31.xlsx.
a. Find the expected price and the expected demand

in the coming quarter.
b. What is the probability that the price of this

product will be above its mean in the coming
quarter?

c. What is the probability that the demand for this
product will be below its mean in the coming
quarter?

d. What is the probability that demand for this
product will exceed 2500 units during the coming
quarter, given that its price is less than $40?

e. What is the probability that demand for this
product will be fewer than 3500 units during the
coming quarter, given that its price is greater than
$30?

f. Find the correlation between price and demand. Is
the result consistent with your expectations?
Explain.

Level B

32. The recent weekly trends of two particular stock prices
can best be described by the joint probability distri-
bution shown in the file P04_32.xlsx.
a. What is the probability that the price of stock 1 will

not increase in the coming week?
b. What is the probability that the price of stock 2 will

change in the coming week?
c. What is the probability that the price of stock 1 will

not decrease, given that the price of stock 2
remains constant in the coming week?

d. What is the probability that the price of stock 2 will
change, given that the price of stock 1 changes in
the coming week?

e. Why is it impossible to find the correlation between
the typical weekly movements of these two stock
prices from the information given? Nevertheless,
does it appear that they are positively or negatively
related? Why? What are the implications of this
result for choosing an investment portfolio that may
or may not include these two particular stocks?

33. Two service elevators are used in parallel by employees
of a three-story hotel building. At any point in time
when both elevators are stationary, let X1 and X2 be the
floor numbers at which elevators 1 and 2, respectively,
are currently located. The joint probability distribution
of X1 and X2 is given in the file P04_33.xlsx.
a. What is the probability that these two elevators are

not stationed on the same floor?
b. What is the probability that elevator 2 is located on

the third floor?
c. What is the probability that elevator 1 is not

located on the first floor?
d. What is the probability that elevator 2 is located on

the first floor, given that elevator 1 is not stationed
on the first floor?

e. What is the probability that a hotel employee
approaching the first-floor elevators will find at
least one available for service?

f. Repeat part e for a hotel employee approaching
each of the second- and third-floor elevators.

g. How might this hotel’s operations manager respond
to your findings in the previous questions?
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4.7 INDEPENDENT RANDOM VARIABLES

A very important special case of joint distributions is when the random variables are
independent. Intuitively, this means that any information about the values of any of the
random variables is worthless in terms of predicting any of the others. In particular, if there
are only two random variables X and Y, then information about X is worthless in terms of
predicting Y, and vice versa. Usually, random variables in real applications are not inde-
pendent; they are usually related in some way, in which case we say they are dependent.
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However, we often make an assumption of independence in mathematical models to sim-
plify the analysis.

The most intuitive way to express independence of X and Y is to say that their condi-
tional distributions are equal to their marginals. For example, the conditional probability
that X equals any value x, given that Y equals some value y, equals the marginal probabil-
ity that X equals x—and this statement is true for all values of x and y. In words, knowledge
of the value of Y has no effect on probabilities involving X. Similarly, knowledge of the
value of X has no effect on probabilities involving Y.

An equivalent way of stating the independence property is that for all values x and y,
the events X � x and Y � y are probabilistically independent, in the sense of Section 4.2.4.
This leads to the important property that joint probabilities equal the product of the
marginals, as shown in Equation (4.17). This follows from Equation (4.15) and also because
conditionals equal marginals under independence. Equation (4.17) might not be as intuitive,
but it is very useful, as illustrated in the following example.
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Joint Probability Formula for Independent Random Variables
(4.17)P(X = x and Y = y) = P(X = x)P(Y = y)

E X A M P L E 4.5 ANALYZING THE SALES OF TWO POPULAR PERSONAL

DIGITAL ASSISTANTS

Alocal office supply and equipment store, Office Station, sells several different brands
of personal digital assistants (PDAs). One of the store’s managers has studied the

daily sales of its two most popular personal digital assistants, the Palm M505 and the Palm
Vx, over the past quarter. In particular, she has used historical data to assess the joint
probability distribution of the sales of these two products on a typical day. The assessed
distribution is shown in Figure 4.13 (see the file PDA Sales.xlsx). The manager would like
to use this distribution to determine whether there is support for the claim that the sales of
the Palm Vx are often made at the expense of Palm M505 sales, and vice versa.

1
2
3
4
5
6
7
8

A B C D E F
Assessed probability distribu�on of sales of two popular PDAs

Daily sales of Palm Vx
0 1 2 3

0 0.01 0.03 0.06 0.09
Daily sales of 1 0.02 0.06 0.12 0.09
Palm M505 2 0.03 0.12 0.06 0.09

3 0.04 0.09 0.06 0.03

Figure 4.13

Joint Probability

Distribution of Sales

Objective To use the assessed joint probability distribution to find the conditional distri-
bution of daily sales of each PDA, given the sales of the other PDA, and to determine
whether the daily sales of these two products are independent random variables.

Solution

As in the solution of Example 4.4, begin by applying the addition rule for probability to
find the marginals for each of the two personal digital assistants, as shown in Figure 4.14. 
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Before finding the conditional distribution of sales for each product, you can check
whether these two random variables are independent. Let M and V denote the daily 
sales for the Palm M505 and Palm Vx, respectively. Equation (4.17) states that P(M � m
and V � v) � P(M � m) P(V � v) for all values of m and v if M and V are independent.
However, the marginal probabilities indicate that P(M � 0) P(V � 0) � (0.19)(0.10) �
0.019, whereas P(M � 0 and V � 0) � 0.01 from the table. Therefore, there is at least one
case where the joint probability does not equal the product of the marginals. This inequal-
ity rules out the possibility that M and V are independent random variables. If you are not
yet convinced of this conclusion, compare the products of other marginal probabilities
with corresponding joint probabilities in Figure 4.14. You can verify that Equation (4.17)
fails to hold for virtually all of the different combinations of sales levels.

The conditional distributions of V given M and M given V are shown in the ranges
C14:F17 and C22:F25, calculated exactly as in Example 4.4. What can the Office Station
manager infer from these conditional probability distributions? Observe in the first table
that the likelihood of achieving the highest daily sales level of the Palm Vx decreases as
the daily sales level of the Palm M505 increases. This same table reveals that the probabil-
ity of experiencing the lowest daily sales level of the Palm Vx increases as the daily sales
level of the Palm M505 increases. Furthermore, by closely examining the second table,
you can see that the likelihood of achieving the highest daily sales level of the Palm M505
decreases as the daily sales level of the Palm Vx increases. This same table reveals that the
probability of experiencing the lowest daily sales level of the Palm M505 increases as the
daily sales level of the Palm Vx increases.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

A B C D E F G
Assessed probability distribu�on of sales of two popular PDAs

Daily sales of Palm Vx
0 1 2 3

Daily sales
Palm

Condi�onal distribu�on of sales of Palm Vx, given sales of Palm M505
Daily sales of Palm Vx

Daily sales
Palm

Condi�onal distribu�on of sales of Palm M505, given sales of Palm Vx
Daily sales of Palm Vx

Daily sales
Palm

0 0.01 0.03 0.06 0.09 0.19
of 1 0.02 0.06 0.12 0.09 0.29

M505 2 0.03 0.12 0.06 0.09 0.30
3 0.04 0.09 0.06 0.03 0.22

0.10 0.30 0.30 0.30

0 1 2 3
0 0.05 0.16 0.32 0.47 1

of 1 0.07 0.21 0.41 0.31 1
M505 2 0.10 0.40 0.20 0.30 1

3 0.18 0.41 0.27 0.14 1

0 1 2 3
0 0.10 0.10 0.20 0.30

of 1 0.20 0.20 0.40 0.30
M505 2 0.30 0.40 0.20 0.30

3 0.40 0.30 0.20 0.10
1 1 1 1

Figure 4.14

Marginal and

Conditional

Distributions of

Sales
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Therefore, there is considerable support for the claim that sales of the Palm Vx are
often made at the expense of Palm M505 sales, and vice versa. This result makes sense
from a business point of view, and it implies that the daily sales of these two products
are not independent of one another. In other words, by knowing the sales level of one of
these PDAs, the manager has a better understanding of the likelihood of achieving particu-
lar sales of the other product. ■
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P R O B L E M S

Level A

34. The file P04_34.xlsx shows the conditional distribution
of the daily number of accidents at a given intersection
during the winter months, X2, given the amount of
snowfall (in inches) for the day, X1. The marginal dis-
tribution of X1 is provided in the bottom row of the table.
a. Are X1 and X2 independent random variables?

Explain why or why not.
b. What is the probability of no accidents at this inter-

section on a winter day with no snowfall?
c. What is the probability of no accidents at this

intersection on a randomly selected winter day?
d. What is the probability of at least two accidents at

this intersection on a randomly selected winter day
on which the snowfall is at least three inches?

e. What is the probability of less than four inches of
snowfall on a randomly selected day?

35. A sporting goods store sells two competing brands of
exercise bicycles. Let X1 and X2 be the numbers of the
two brands sold on a typical day at this store. Based on
available historical data, the conditional probability
distribution of X1 given X2 is assessed as shown in the
file P04_35.xlsx. The marginal distribution of X2 is
given in the bottom row of the table.
a. Are X1 and X2 independent random variables?

Explain why or why not.
b. What is the probability of observing the sale of

exactly one brand 1 bicycle and exactly one brand
2 bicycle on the same day at this store?

c. What is the probability of observing the sale of at
least one brand 1 bicycle on a given day at this store?

d. What is the probability of observing the sale of no
more than two brand 2 bicycles on a given day at
this store?

e. Given that no brand 2 bicycles are sold on a given
day, what is the likelihood of observing the sale of
at least one brand 1 bicycle at this store?

36. The file P04_28.xlsx contains the probabilities of
various combinations of monthly sales volumes of Dell
(X) and HP (Y) laptop computers from online sites. 
Are the monthly sales of these two competitors
independent of each other? Explain your answer.

37. Let D1 and D2 represent the weekly demand (in
hundreds of two-liter bottles) for brand 1 diet soda and
brand 2 diet soda, respectively, in a small central
Indiana town. The joint probability distribution of the
weekly demand for these two brands of diet soda is
provided in the file P04_29.xlsx. Are D1 and D2
independent random variables? Explain why or why
not.

38. The file P04_31.xlsx contains the joint probability
distribution of price P per unit and demand D for a
particular product in the coming quarter.
a. Are P and D independent random variables?

Explain your answer.
b. If P and D are not independent random variables,

which joint probabilities result in the same marginal
probabilities for P and D as given in the file but
make P and D independent of each other?

Level B

39. You know that in one year you are going to buy a
house. (In fact, you have already selected the
neighborhood, but right now you are finishing your
graduate degree and you are engaged to be married
this summer, so you are delaying the purchase for a
year.) The annual interest rate for fixed-rate 30-year
mortgages is currently 6.00%, and the price of the type
of house you are considering is $120,000. However,
things may change. Using your knowledge of the
economy (and a crystal ball), you estimate that the
interest rate might increase or decrease by as much as
one percentage point. Also, the price of the house
might increase by as much as $10,000—it certainly
won’t decrease. You assess the probability distribution
of the interest rate change as shown in the file
P04_39.xlsx. The probability distribution of the
increase in the price of the house is also shown in this
file. Finally, you assume that the two random events
(change in interest rate, change in house price) are
probabilistically independent. This means that the
probability of any joint event, such as an interest
increase of 0.50% and a price increase of $5000, is the
product of the individual probabilities.
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a. Using Excel’s PMT function, find the expected
monthly house payment (using a 30-year fixed-rate
mortgage) if there is no down payment. Find the
variance and standard deviation of this monthly
payment.

b. Repeat part a, but assume that the down payment is
10% of the price of the house (so that you finance
only 90%).

c. Is the independence assumption realistic?
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4.8 WEIGHTED SUMS OF RANDOM VARIABLES

In this section we will analyze summary measures of weighted sums of random variables.
An extremely important application of this topic is in financial investments. The example
in this section illustrates such an application. However, there are many other applications
of weighted sums of random variables, both in business and elsewhere. It is a topic well
worth learning.

Before proceeding to the example, we lay out the main concepts and results. Let X1,
X2,..., Xn be any n random variables (which could be independent or dependent), and let a1,
a2,..., an be any n constants. We form a new random variable Y that is the weighted sum of
the Xs:

In general, it is too difficult to obtain the complete probability distribution of Y, so we will
be content to obtain its mean E(Y) and variance Var(Y). Of course, Stdev(Y) is then the
square root of Var(Y).

Y = a1X1 + a2X2 +
Á

+ anXn

It is common (but 
not required) to use
uppercase letters to
denote random vari-
ables and lowercase
letters to denote
constants.

FUNDAMENTAL INSIGHT

Distributions of Weighted Sums

In general, it is difficult to find the distribution of a

weighted sum of random variables.However, for some

analyses, such as the portfolio analysis in the following

example, it suffices to find means and standard

deviations, and these can generally be found quite

easily by using the formulas in this section.

Expected Value of a Weighted Sum of Random Variables
(4.18)E(Y) = a1E(X1) + a2E(X2) +

Á
+ anE(Xn)

Using summation notation, this can be written more compactly as

The variance is not as straightforward. Its value depends on whether the Xs are indepen-
dent or dependent. If they are independent, then Var(Y) is a weighted sum of the variances
of the Xs, using the squares of the as as weights, as shown in Equation (4.19).

E(Y) = a
n

i=1
aiE(Xi)

The mean is the easy part. You substitute the mean of each X into the formula for Y to
obtain E(Y). This result appears in Equation (4.18).
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Using summation notation, this becomes

If the Xs are not independent, the variance of Y is more complex and requires covariances. In
particular, for every pair Xi and Xj, there is an extra term in Equation (4.19): 2 aiajCovar(Xi, Xj).
The general result is best written in summation notation, as shown in Equation (4.20).

Var(Y) = a
n

i=1
a2

i 
Var(Xi)
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Variance of a Weighted Sum of Independent Random Variables
(4.19)Var(Y) = a1

2 Var(X1) + a2
2 Var(X2) +

Á
+ an

2 Var(Xn)

Variance of a Weighted Sum of Dependent Random Variables

(4.20)Var(Y) = a
n

i=1
ai

2 Var(Xi) + a
i<j

2aiaj 
Covar(Xi, Xj)

The first summation would be the variance if the Xs were independent. The second sum-
mation indicates that a covariance term must be added for all pairs of Xs that have nonzero
covariances. Actually, this equation is always valid, regardless of independence, because
the covariance terms are all zero if the Xs are independent. There are a number of special
cases of Equation (4.20), which we list next.

Special Cases of Expected Value and Variance

■ Sum of independent random variables. Here we assume the Xs are independent
and the weights are all 1, that is,

Then the mean of the sum is the sum of the means, and the variance of the sum is the
sum of the variances:

■ Difference between two independent random variables. Here we assume X1
and X2 are independent and the weights are a1 � 1 and a2 ��1, so that Y can be
written as

Then the mean of the difference is the difference between means, but the variance of
the difference is the sum of the variances (because ):

■ Sum of two dependent random variables. In this case we make no independence
assumption and set the weights equal to 1, so that . Then the mean Y = X1 + X2

Var(Y) = Var(X1) + Var(X2)

E(Y) = E(X1) - E(X2)

a2
2

= (-1)2
= 1

Y = X1 - X2

Var(Y) = Var(X1) + Var(X2) +
Á

+ Var(Xn)

E(Y) = E(X1) + E(X2) +
Á

+ E(Xn)

Y = X1 + X2 +
Á

+ Xn
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of the sum is again the sum of the means, but the variance of the sum includes a
covariance term:

■ Difference between two dependent random variables. This is the same as the
second case except that the Xs are no longer independent. Again, the mean of the
difference is the difference between means, but the variance of the difference now
includes a covariance term, and because of the negative weight , the sign 
of this covariance term is negative:

■ Linear Function of a Random Variable. Suppose that Y can be written as

for some constants a and b. In this special case the random variable Y is called a
linear function of the random variable X. Then the mean, variance, and standard
deviation of Y can be calculated from the similar quantities for X with the follow-
ing formulas:

In particular, if Y is a constant multiple of X (that is, if a � 0), then the mean 
and standard deviation of Y are the same multiple of the mean and standard 
deviation of X. (Note that the absolute value of b is used in the formula for 
Stdev(Y). This is because b could be negative, whereas a standard deviation cannot
be negative.)

We now put these concepts to use in an investment example.

Stdev(Y) = ƒ b ƒ  Stdev(X)

Var(Y) = b2 Var(X)

E(Y) = a + bE(X)

Y = a + bX

Var(Y) = Var(X1) + Var(X2) - 2Covar(X1, X2)

E(Y) = E(X1) - E(X2)

a2 = -1

Var(Y) = Var(X1) + Var(X2) + 2Covar(X1, X2)

E(Y) = E(X1) + E(X2)
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E X A M P L E 4.6 DESCRIBING INVESTMENT PORTFOLIO RETURNS

An investor has $100,000 to invest, and she would like to invest it in a portfolio of eight
stocks. She has gathered historical data on the returns of these stocks and has used the

historical data to estimate means, standard deviations, and correlations for the stock
returns. These summary measures appear in rows 12, 13, and 17 through 24 of Figure 4.15.
(See the file Portfolio Analysis.xlsx.)

For example, the mean and standard deviation of stock 1 are 10.1% and 12.4%. These
probably imply that the historical annual returns of stock 1 averaged 10.1% and the stan-
dard deviation of the annual returns was 12.4%, although they might not be based purely
on historical data. Also, the correlation between the annual returns on stocks 1 and 2, for
example, is 0.32 (see either cell C17 or B18, which necessarily contain the same value).
This value, 0.32, probably indicates a moderate positive correlation between the historical
annual returns of these stocks.

In fact, all of the cor-
relations are positive,
which probably indic-
ates that each stock
tends to vary in the 
same direction as some
underlying economic
indicator. Of course, the
diagonal entries in the
correlation matrix are 
all 1 because any stock
return is perfectly
correlated with itself.
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Although these summary measures have probably been obtained from historical
data, the investor believes they are relevant for predicting future returns. Now she would
like to analyze a portfolio of these stocks, using the investment amounts shown in row 9.
What is the mean annual return from this portfolio? What are its variance and standard
deviation?

Objective To determine the mean annual return of the portfolio, and to quantify the risk
associated with the total dollar return from the given weighted sum of annual stock
returns.

Solution

This is a typical weighted sum model. The random variables are the annual returns from
the stocks; the weights are the dollar amounts invested in the stocks; and the summary
measures of the random variables are given in rows 12, 13, and 17 through 24 of 
Figure 4.15. Be careful about units, however. Each Xi (expressed as a percentage) rep-
resents the return on a single dollar invested in stock i, whereas Y, the weighted sum of
the X’s, represents the total dollar return. So a typical value of an X might be 10.5%,
whereas a typical value of Y might be $10,500.

We can immediately apply Equation (4.18) to obtain the mean return from the portfo-
lio. This appears in cell B38 of Figure 4.16, using the formula

=SUMPRODUCT(Weights,Means)
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Figure 4.15 Input Data for Investment Example

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F G H I J K L M
Calcula�ng mean, variance, and stdev for a weighted sum of random variables Range names used

Covariances =Model!$B$28:$I$35
Means =Model!$B$12:$I$12
Stdevs =Model!$B$13:$I$13
Variance =Model!$B$39
Weights =Model!$B$9:$I$9

Given quan��es
Stock1 Stock2 Stock3 Stock4 Stock5 Stock6 Stock7 Stock8 Total

Weights $10,500 $16,300 $9,600 $9,300 $9,500 $15,400 $14,300 $15,100 $100,000

Stock1 Stock2 Stock3 Stock4 Stock5 Stock6 Stock7 Stock8
Means 10.1% 7.3% 11.8% 9.9% 11.8% 9.1% 9.6% 12.3%
Stdevs 12.4% 11.9% 13.4% 14.1% 15.8% 15.9% 11.3% 17.4%

Correla ons between stock returns
Stock1 Stock2 Stock3 Stock4 Stock5 Stock6 Stock7 Stock8

Stock1 1.000 0.320 0.370 0.610 0.800 0.610 0.550 0.560
Stock2 0.320 1.000 0.410 0.780 0.430 0.800 0.950 0.480
Stock3 0.370 0.410 1.000 0.330 0.860 0.380 0.340 0.700
Stock4 0.610 0.780 0.330 1.000 0.680 0.500 0.500 0.670
Stock5 0.800 0.430 0.860 0.680 1.000 0.580 0.420 0.540
Stock6 0.610 0.800 0.380 0.500 0.580 1.000 0.920 0.340
Stock7 0.550 0.950 0.340 0.500 0.420 0.920 1.000 0.650
Stock8 0.560 0.480 0.700 0.670 0.540 0.340 0.650 1.000

Assump ons:
1. Random variables are one-year returns from various stocks.
2. Weights are amounts invested in stocks.
3. Weighted sum is return from por�olio.
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Figure 4.16 Calculations for Investment Example

You cannot yet calculate the variance of the portfolio return. The reason is that the input
data include standard deviations and correlations, not the variances and covariances
required in Equation (4.18).7 But the variances and covariances are related to standard
deviations and correlations by

(4.21)

and

(4.22)

You can form a table of variances and covariances in the range B28:I35, using
Equations (4.21) and (4.22), in one step with a careful use of the HLOOKUP (horizontal
lookup) function. To do so, highlight the range B28:I35, type the formula

��HLOOKUP($A28,$B$11:$I$13,3,FALSE)*B17*HLOOKUP(B$27,$B$11:$I$13,3,FALSE)

and press Ctrl-Enter. (Be careful with relative and absolute addresses.) Note how the
HLOOKUP functions find the appropriate standard deviations from row 13 for use in the
covariance formula. Each diagonal element of the covariance range is a variance, and the
elements off the diagonal are covariances. 

Now you can use Equation (4.20) to calculate the portfolio variance in cell B39.
Although Equation (4.20) looks intimidating, it can be implemented fairly easily with
Excel’s matrix multiplication function, MMULT, and its TRANSPOSE function. To do
so, enter the following formula in cell B39 and then press Ctrl-Shift-Enter (all three keys
at once):

��MMULT(Weights,MMULT(Covariances,TRANSPOSE(Weights)))

Covar(Xi, Xj) = Stdev(Xi) * Stdev(Xj) * Correl(Xi, Xj)

Var(Xi) = (Stdev(Xi))
2

7This was intentional. It is often easier for an investor to assess standard deviations and correlations because they
are more intuitive measures.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

A B C D E F G H I
Covariances between stock returns (variances of stock returns are on the diagonal)

Stock1 Stock2 Stock3 Stock4 Stock5 Stock6 Stock7 Stock8
Stock1 0.0154 0.0047 0.0061 0.0107 0.0157 0.0120 0.0077 0.0121
Stock2 0.0047 0.0142 0.0065 0.0131 0.0081 0.0151 0.0128 0.0099
Stock3 0.0061 0.0065 0.0180 0.0062 0.0182 0.0081 0.0051 0.0163
Stock4 0.0107 0.0131 0.0062 0.0199 0.0151 0.0112 0.0080 0.0164
Stock5 0.0157 0.0081 0.0182 0.0151 0.0250 0.0146 0.0075 0.0148
Stock6 0.0120 0.0151 0.0081 0.0112 0.0146 0.0253 0.0165 0.0094
Stock7 0.0077 0.0128 0.0051 0.0080 0.0075 0.0165 0.0128 0.0128
Stock8 0.0121 0.0099 0.0163 0.0164 0.0148 0.0094 0.0128 0.0303

Summary measures of por�olio
Mean $10,056.40
Variance 124992021
Stdev $11,179.98
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(This formula, called an array formula, is somewhat advanced, but it is a very handy short-
cut for implementing Equation (4.20). Section 14.8.3 provides more information about
matrix multiplication and the MMULT function in general. If you are interested, you can
read that section now.) Finally, calculate the standard deviation of the portfolio return in
cell B40 as the square root of the variance.

The results in Figure 4.16 indicate that the investor has an expected return of slightly
more than $10,000 (or 10%) from this portfolio. However, the standard deviation of approx-
imately $11,200 is sizable. This standard deviation is a measure of the portfolio’s risk.
Investors always want a large mean return, but they also want low risk. Moreover, they
realize that the only way to obtain a higher mean return is usually to accept more risk. You
can experiment with the spreadsheet for this example to see how the mean and standard devi-
ation of portfolio return vary with the investment amounts. Just enter new weights in row 9
(keeping the sum equal to $100,000) and see how the values in B38 through B40 change. ■
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P R O B L E M S

Level A

40. A typical consumer buys a random number (X) of polo
shirts when he shops at a men’s clothing store. The dis-
tribution of X is given by the following probability dis-
tribution: P(X = 0) = 0.30, P(X � 1) � 0.30, P(X � 2)
� 0.20, P(X � 3) � 0.10, and P(X � 4) � 0.10.
a. Find the mean and standard deviation of X.
b. Assuming that each shirt costs $35, let Y be the

total amount of money (in dollars) spent by a
customer when he visits this clothing store. Find
the mean and standard deviation of Y.

c. Find the probability that a customer’s expenditure
will be more than one standard deviation above the
mean expenditure level.

41. Based on past experience, the number of customers
who arrive at a local gasoline station during the 
noon hour to purchase fuel is best described by the
probability distribution given in the file P04_41.xlsx.
a. Find the mean, variance, and standard deviation of

this random variable.
b. Find the probability that the number of arrivals

during the noon hour will be within one standard
deviation of the mean number of arrivals.

c. Suppose that the typical customer spends $28 on
fuel upon stopping at this gasoline station during
the noon hour. Find the mean and standard
deviation of the total gasoline revenue earned by
this gas station during the noon hour.

d. What is the probability that the total gasoline
revenue will be less than the mean value found in
part c?

e. What is the probability that the total gasoline
revenue will be more than two standard deviations
above the mean value found in part c?

42. Let X be the number of defective items found by a quality
inspector in a random batch of 15 items from a particular
manufacturing process. The probability distribution of X
is provided in the file P04_18.xlsx. This firm earns $500
profit from the sale of each acceptable item in a given
batch. In the event that an item is found to be defective, it
must be reworked at a cost of $100 before it can be sold,
thus reducing its per-unit profit to $400.
a. Find the mean and standard deviation of the profit

earned from the sale of all items in a given batch.
b. What is the probability that the profit earned from

the sale of all items in a given batch is within two
standard deviations of the mean profit level? Is this
result consistent with the empirical rules from
Chapter 2? Explain.

43. The probability distribution for the number of job
applications processed at a small employment agency
during a typical week is given in the file P04_43.xlsx.
a. Assuming that it takes the agency’s administrative

assistant two hours to process a submitted job
application, on average how many hours in a
typical week will the administrative assistant spend
processing incoming job applications?

b. Find an interval with the property that the
administrative assistant can be approximately 95%
sure that the total amount of time he spends each
week processing incoming job applications will be
in this interval.

44. Consider a financial services salesperson whose
annual salary consists of both a fixed portion of
$25,000 and a variable portion that is a commission
based on her sales performance. In particular, she
estimates that her monthly sales commission can be
represented by a random variable with mean $5000
and standard deviation $700.
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a. What annual salary can this salesperson expect to
earn?

b. Assuming that her sales commissions in different
months are independent random variables, what is
the standard deviation of her annual salary?

c. Between what two annual salary levels can this
salesperson be approximately 95% sure that her
true total earnings will fall?

45. A film-processing shop charges its customers 18 cents
per print, but customers may refuse to accept one or
more of the prints for various reasons. Assume that
this shop does not charge its customers for refused
prints. The number of prints refused per 24-print roll
is a random variable with mean 1.5 and standard
deviation 0.5.
a. Find the mean and standard deviation of the

amount that customers pay for the development of
a typical 24-print roll.

b. Assume that this shop processes 250 24-print rolls
of film per week. Assuming the numbers 
of refused prints on these rolls are independent
random variables, find the mean and standard
deviation of the weekly film processing revenue of
this shop.

c. Find an interval such that the manager of this film
shop can be approximately 95% sure that the
weekly processing revenue will be contained
within the interval.

46. Suppose the monthly demand for Thomson
televisions has a mean of 40,000 and a standard
deviation of 20,000. Find the mean and standard
deviation of the annual demand for Thomson TVs.
Assume that demands in different months are
probabilistically independent. (Is this assumption
realistic?)

47. Suppose there are five stocks available for investment
and each has an annual mean return of 10% and a
standard deviation of 4%. Assume the returns on the
stocks are independent random variables.
a. If you invest 20% of your money in each stock,

find the mean and standard deviation of the annual
dollar return on your investments.

b. If you invest $100 in a single stock, determine the
mean and standard deviation of the annual return
on your investment.

c. How do the answers to parts a and b relate to the
phrase, “Don’t put all your eggs in one basket”?

48. An investor puts $10,000 into each of four stocks,
labeled A, B, C, and D. The file P04_48.xlsx contains
the means and standard deviations of the annual
returns of these four stocks. Assuming that the returns
of these four stocks are independent, find the mean
and standard deviation of the total amount that this
investor earns in one year from these four
investments.

Level B

49. Consider again the investment problem described in
the previous problem. Now, assume that the returns of
the four stocks are no longer independent. Specifically,
the correlations between all pairs of stock returns are
given in the file P04_49.xlsx.
a. Find the mean and standard deviation of the total

amount that this investor earns in one year from
these four investments. Compare these results to
those you found in the previous problem. Explain
the differences in your answers.

b. Suppose that this investor now decides to place
$15,000 each in stocks B and D and $5000 each in
stocks A and C. How do the mean and standard
deviation of the total amount that this investor
earns in one year change from the allocation used
in part a? Provide an intuitive explanation for these
changes.

50. A supermarket chain operates five stores of varying 
sizes in Bloomington, Indiana. Profits (represented as a
percentage of sales volume) earned by these five stores
are 2.75%, 3%, 3.5%, 4.25%, and 5%, respectively. The
means and standard deviations of the daily sales
volumes at these five stores are given in the file
P04_50.xlsx. Assuming that the daily sales volumes are
independent, find the mean and standard deviation of the
total profit that this supermarket chain earns in one day
from the operation of its five stores in Bloomington.

51. A manufacturing company constructs a 1-cm assembly
by snapping together four parts that average 0.25 cm
in length. The company would like the standard
deviation of the length of the assembly to be 0.01 cm.
Its engineer, Peter Purdue, believes that the assembly
will meet the desired level of variability if each part
has standard deviation 0.01/4 � 0.0025 cm. Instead,
show Peter that you can do the job by making each
part have standard deviation � 0.005 cm.
This could save the company a lot of money because
not as much precision is needed for each part.

52. The weekly demand function for one of a given firm’s
products can be represented by q � 200 � 5 p, where
q is the number of units purchased (in hundreds) at
price p (in dollars). Assume that the price of the
product will be an integer value from $10 to $15, with
probabilities 0.10, 0.15, 0.25, 0.30, 0.15, and 0.05.
a. Find the mean and standard deviation of p.
b. Find the mean and standard deviation of q.
c. Assuming that it costs this firm $10 to manufacture

and sell each unit of the product, express the firm’s
weekly contribution to profit from the sale of this
product (measured in dollars), as a function of the
quantity purchased, q.

d. Find the mean and standard deviation of weekly
contribution to the firm’s profit from the sale of
this product. 
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53. A retailer purchases a batch of 1000 fluorescent
lightbulbs from a wholesaler at a cost of $2 per bulb.
The wholesaler agrees to replace each defective bulb
with one that is guaranteed to function properly for a
charge of $0.20 per bulb. The retailer sells the bulbs at
a price of $2.50 per bulb and gives his customers free
replacements if they bring defective bulbs back to the
store. Let X be the number of defective bulbs in a

typical batch, and assume that the mean and standard
deviation of X are 50 and 10, respectively.
a. Find the mean and standard deviation of the profit

(in dollars) the retailer makes from selling a batch
of lightbulbs.

b. Find an interval with the property that the retailer
can be approximately 95% sure that his profit will
be in this interval.

4.9 CONCLUSION

This chapter has introduced some very important concepts, including the basic rules of
probability, random variables, probability distributions, and summary measures of proba-
bility distributions. We have also shown how computer simulation can be used to help
explain some of these concepts. Many of the concepts presented in this chapter will be
used in later chapters, so it is important to learn them now. In particular, we rely heavily on
probability distributions in Chapter 6 when we discuss decision making under uncertainty.
There you will learn how the expected value of a probability distribution is the primary cri-
terion for making decisions. We will also continue to use computer simulation in later
chapters to help explain difficult statistical concepts.

Summary of Key Terms

Term Explanation Excel Pages Equation
Random variable Associates a numerical value with 156

each possible outcome in a situation 
involving uncertainty

Probability A number between 0 and 1 that measures 158 
the likelihood that some event will occur 

Rule of The probability of any event A Basic 159 4.1
complements and the probability of its complement formulas

sum to 1 

Mutually exclusive Events where only one of them can occur 200
events

Exhaustive events Events where at least one of them 159 
must occur

Addition rule for The probability that at least one of a Basic 159 4.2
mutually exclusive set of mutually exclusive events will formulas 
events occur is the sum of their probabilities 

Conditional Updates the probability of an event, Basic 160 4.3
probability formula given the knowledge that another event formulas 

has occurred 

Multiplication rule Formula for the probability that two Basic 160 4.4 
events both occur formulas 

Probability tree A graphical representation of how events 160
occur through time, useful for calculating 
probabilities

(continued)
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Term Explanation Excel Pages Equation
Probabilistic Events where knowledge that one of 201 4.5
independence them has occurred is of no value in 

assessing the probability that the other 
will occur

Relative  The proportion of times the event occurs 201
frequency out of the number of times a random 

experiment is performed

Cumulative “Less than or equal to” probabilities 167
probability associated with a random variable

Mean (or expected A measure of central tendency—the Basic  167 4.6
value) of a weighted sum of the possible values, formulas
probability weighted by their probabilities
distribution 

Variance of a A measure of variability: the weighted Basic 168 4.7, 4.9 
probability sum of the squared deviations of the formulas 
distribution possible values from the mean, 

weighted by the probabilities 

Standard deviation A measure of variability: the square Basic  168 4.8
of a probability root of the variance formulas
distribution 

Simulation An extremely useful tool that can be 173 
used to incorporate uncertainty 
explicitly into spreadsheet models 

Uniformly Random numbers such that all decimal ��RAND() 173 
distributed random values between 0 and 1 are equally 
numbers likely 

Uniformly distributed Random integers such that all ��RAND-
random integers integers between two given values BETWEEN(1,6), 173 

are equally likely for example 

Covariance between A measure of the relationship Basic 177 4.12, 4.14
two random variables between two jointly distributed formulas

random variables

Correlation between A measure of the relationship Basic 201 4.13
two random variables between two jointly distributed formulas

random variables, scaled to be
between �1 and �1

Multiplication rule Formula for a joint probability as the Basic 193 4.15, 4.16
for random variables product of a marginal probability and formulas

a conditional probability

Independent random Random variables where information 189
variables about one of them is no value in terms

of predicting the others

Multiplication rule The joint probability is the product Basic 195 4.17
for independent of the marginal probabilities. formulas
random variables

Expected value of a Useful for finding the expected value of Basic  193 4.18
weighted sum of Y, where formulas
random variables

Variance of a Useful for finding the variance of Y, Basic  194 4.19
weighted sum of where formulas
independent random and the Xs are independent 
variables

(continued)

anXn

Y = a1X1 + a2X2 +
Á

+

Y = a1X1 + a2X2 +
Á

+ anXn
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Summary of Key Terms (Continued)

Term Explanation Excel Pages Equation
Variance of a Useful for finding the variance of Y, Basic  194 4.20
weighted sum of where formulas
dependent random and the Xs are not independent
variables

Covariance in terms Used to calculate covariance when Basic 197 4.22 
of standard only information on correlations formulas
deviations and and standard deviations is given
correlation

anXn

Y = a1X1 + a2X2 +
Á

+

P R O B L E M S

Conceptual Questions

C.1. Suppose that you want to find the probability that event
A or event B will occur. If these two events are not
mutually exclusive, explain how you would proceed.

C.2. “If two events are mutually exclusive, they must not
be independent events.” Is this statement true or
false? Explain your choice.

C.3. Is the number of passengers who show up for a
particular commercial airline flight a discrete or a
continuous random variable? Is the time between
flight arrivals at a major airport a discrete or a
continuous random variable? Explain your answers.

C.4. Suppose that officials in the federal government are
trying to determine the likelihood of a major
smallpox epidemic in the United States within the
next 12 months. Is this an example of an objective
probability or a subjective probability? How might
the officials assess this probability?

C.5. What is another term for the covariance between a
random variable and itself? If this variable is
measured in dollars, what are the units of this
covariance?

C.6. Consider the statement, “When there are a finite number
of outcomes, then all probability is just a matter of
counting. Specifically, if n of the outcomes are favorable
to some event E, and there are N outcomes total, then
the probability of E is n/N.” Is this statement always
true? Is it always false?

C.7. If there is uncertainty about some monetary outcome
and you are concerned about return and risk, then all
you need to see are the mean and standard deviation.
The entire distribution provides no extra useful
information. Do you agree or disagree? Provide an
example to back up your argument.

C.8. Choose at least one uncertain quantity of interest to
you. For example, you might choose the highest price

of gas between now and the end of the year, the
highest point the Dow Jones Industrial Average will
reach between now and the end of the year, the
number of majors Tiger Woods will win in his career,
and so on. Using all of the information and insight
you have, assess the probability distribution of this
uncertain quantity. Is there one “right answer”?

C.9. Historically, the most popular measure of variability
has been the standard deviation, the square root of the
weighted sum of squared deviations from the mean,
weighted by their probabilities. Suppose analysts had
always used an alternative measure of variability, the
weighted sum of the absolute deviations from the
mean, again weighted by their probabilities. Do you
think this would have made a big difference in the
theory and practice of probability and statistics?

C.10. Suppose a person flips a coin, but before you can see
the result, the person puts her hand over the coin. At
this point, does it make sense to talk about the
probability that the result is heads? Is this any different
from the probability of heads before the coin was
flipped?

C.11. Consider an event that will either occur or not. 
For example, the event might be that California 
will experience a major earthquake in the next five
years. You let p be the probability that the event will
occur. Does it make any sense to have a probability
distribution of p? Why or why not? If so, what
might this distribution look like? How would you
interpret it?

C.12. Suppose a couple is planning to have two children.
Let B1 be the event that the first child is a boy, and
let B2 be the event that the second child is a boy. You
and your friend get into an argument about whether
B1 and B2 are independent events. You think they are
independent and your friend thinks they aren’t.
Which of you is correct? How could you settle the
argument?
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Level A

54. A business manager who needs to make many phone
calls has estimated that when she calls a client, the
probability that she will reach the client right away is
60%. If she does not reach the client on the first call,
the probability that she will reach the client with a
subsequent call in the next hour is 20%.
a. Find the probability that the manager reaches her

client in two or fewer calls.
b. Find the probability that the manager reaches her

client on the second call but not on the first call.
c. Find the probability that the manager is

unsuccessful on two consecutive calls.

55. Suppose that a marketing research firm sends question-
naires to two different companies. Based on historical
evidence, the marketing research firm believes that each
company, independently of the other, will return the
questionnaire with probability 0.40.
a. What is the probability that both questionnaires are

returned?
b. What is the probability that neither of the

questionnaires is returned?
c. Now, suppose that this marketing research firm sends

questionnaires to ten different companies. Assuming
that each company, independently of the others,
returns its completed questionnaire with probability
0.40, how do your answers to parts a and b change?

56. Based on past sales experience, an appliance store
stocks five window air conditioner units for the
coming week. No orders for additional air conditioners
will be made until next week. The weekly consumer
demand for this type of appliance has the probability
distribution given in the file P04_56.xlsx.
a. Let X be the number of window air conditioner units

left at the end of the week (if any), and let Y be the
number of special stockout orders required (if any),
assuming that a special stockout order is required
each time there is a demand and no unit is available in
stock. Find the probability distributions of X and Y.

b. Find the expected value of X and the expected
value of Y.

c. Assume that this appliance store makes a $60 profit
on each air conditioner sold from the weekly
available stock, but the store loses $20 for each unit
sold on a special stockout order basis. Let Z be the
profit that the store earns in the coming week from
the sale of window air conditioners. Find the
probability distribution of Z.

d. Find the expected value of Z.

57. Simulate 1000 weekly consumer demands for window
air conditioner units with the probability distribution
given in the file P04_56.xlsx. How does your
simulated distribution compare to the given probability
distribution? Explain any differences between these
two distributions.

58. The probability distribution of the weekly demand 
for copier paper (in hundreds of reams) used in the
duplicating center of a corporation is provided in the
file P04_58.xlsx.
a. Find the mean and standard deviation of this

distribution.
b. Find the probability that weekly copier paper demand

is at least one standard deviation above the mean.
c. Find the probability that weekly copier paper

demand is within one standard deviation of the mean.

59. Consider the probability distribution of the weekly
demand for copier paper (in hundreds of reams) used
in a corporation’s duplicating center, as shown in the
file P04_58.xlsx.
a. Use simulation to generate 500 values of this

random variable.
b. Find the mean and standard deviation of the

simulated values.
c. Use your simulated values to estimate the

probability that weekly copier paper demand is
within one standard deviation of the mean. Why is
this only an estimate, not an exact value?

60. The probability distribution of the weekly demand 
for copier paper (in hundreds of reams) used in the
duplicating center of a corporation is provided in the
file P04_58.xlsx. Assuming that it costs the duplicat-
ing center $5 to purchase a ream of paper, find the
mean and standard deviation of the weekly copier
paper cost for this corporation.

61. The instructor of an introductory organizational behavior
course believes that there might be a relationship
between the number of writing assignments (X) she
gives in the course and the final grades (Y) earned by
students in this class. She has taught this course with
varying numbers of writing assignments for many
semesters and has compiled relevant historical data in
the file P04_61.xlsx.
a. Convert the given frequency table to a table of

conditional probabilities of final grades (Y) earned
by students in this class, given the number of
writing assignments (X) in the course. Comment
on the table of conditional probabilities. Generally
speaking, what does this table tell you?

b. Given that this instructor requires only one writing
assignment in the course, what is the expected final
grade earned by the typical student?

c. How much variability exists around the conditional
mean grade you found in part b? Also, what propor-
tion of all relevant students earn final grades within
two standard deviations of this conditional mean?

d. Given that this instructor gives more than one
writing assignment in the course, what is the
expected final grade earned by the typical student?

e. How much variability exists around the conditional
mean grade you found in part d? What proportion
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of all relevant students earn final grades within 
two standard deviations of this conditional mean?

f. Find the covariance and correlation between X and
Y. What does each of these measures tell you? In
particular, is this instructor correct in believing that
there is a systematic relationship between the
number of writing assignments made and final
grades earned in her classes?

62. The file P04_62.xlsx contains the joint probability
distribution of recent weekly trends of two particular
stock prices, P1 and P2.
a. Are P1 and P2 independent random variables?

Explain why or why not.
b. If P1 and P2 are not independent random variables,

which joint probabilities result in the same
marginal probabilities for P1 and P2 as given in the
file but make P1 and P2 independent ?

63. Consider two service elevators used in parallel by
employees of a three-story hotel building. At any point
in time when both elevators are stationary, let X1 and X2
be the floor numbers at which elevators 1 and 2, respec-
tively, are currently located. The file P04_33.xlsx
contains the joint probability distribution of X1 and X2.
a. Are X1 and X2 independent random variables?

Explain your answer.
b. If X1 and X2 are not independent random variables,

which joint probabilities result in the same mar-
ginal probabilities for X1 and X2 as given in this
file but make X1 and X2 independent?

64. A roulette wheel contains the numbers 0, 00, and 1 
to 36. If you bet $1 on a single number coming up,
you earn $35 if the number comes up and lose $1
otherwise. Find the mean and standard deviation of
your winnings on a single bet. Then find the mean
and standard deviation of your net winnings if you
make 100 bets. You can assume (realistically) that 
the results of the 100 spins are independent. Finally,
provide an interval such that you are 95% sure your
net winnings from 100 bets will be inside this
interval.

65. Assume that there are four equally likely states of 
the economy: boom, low growth, recession, and
depression. Also, assume that the percentage annual
return you obtain when you invest a dollar in gold or
the stock market is shown in the file P04_65.xlsx.
a. Find the covariance and correlation between the

annual return on the market and the annual return
on gold. Interpret your answers.

b. Suppose you invest 40% of your available money
in the market and 60% of your money in gold.
Determine the mean and standard deviation of the
annual return on your portfolio.

c. Obtain your part b answer by determining the
actual return on your portfolio in each state of the
economy and then finding the mean and variance

directly, without using any formulas involving
covariances or correlations.

d. Suppose you invested 70% of your money in the
market and 30% in gold. Without doing any
calculations, determine whether the mean and
standard deviation of your portfolio would increase
or decrease from your answer in part b. Give an
intuitive explanation to support your answers.

66. Suppose there are three states of the economy: boom,
moderate growth, and recession. The annual return on
Honda and Toyota stock in each state of the economy
is shown in the file P04_66.xlsx.
a. Calculate the mean and standard deviation of the

annual return on each stock, assuming the
probability of each state is 1/3.

b. Calculate the mean and standard deviation of the
annual return on each stock, assuming the
probabilities of the three states are 1/4, 1/4, and 1/2.

c. Calculate the covariance and correlation between
the annual returns of the two companies’ stocks,
assuming the probability of each state is 1/3.

d. Calculate the covariance and correlation between
the annual returns of the two companies’stocks,
assuming the probabilities of the three states are
1/4, 1/4, and 1/2.

e. You have invested 25% of your money in Honda
and 75% in Toyota. Assuming that each state is
equally likely, find the mean and variance of your
portfolio’s return.

f. Now check your answer to part e by directly
calculating the return on your portfolio for each
state and use the formulas for mean and variance of
a random variable. For example, in the boom state,
your portfolio earns 0.25(0.25) � 0.75(0.32).

67. Each year the employees at Zipco receive a $0, $2000,
or $4500 salary increase. They also receive a merit
rating of 0, 1, 2, or 3, with 3 indicating outstanding
performance and 0 indicating poor performance. The
joint probability distribution of salary increase and
merit rating is listed in the file P04_67.xlsx. For
example, 20% of all employees receive a $2000
increase and have a merit rating of 1. Find the corre-
lation between salary increase and merit rating. Then
interpret this correlation.

68. The return on a portfolio during a period is defined by

where PVbeg is the portfolio value at the beginning of
a period and PVend is the portfolio value at the end of
the period. Suppose there are two stocks in which you
can invest, stock 1 and stock 2. During each year there
is a 50% chance that each dollar invested in stock 1 will
turn into $2 and a 50% chance that each dollar invested
in stock 1 will turn into $0.50. During each year there is

PVend - PVbeg

PVbeg
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also a 50% chance that each dollar invested in stock 2
will turn into $2 and a 50% chance that each dollar
invested in stock 2 will turn into $0.50.
a. If you invest all your money in stock 1, find the

expected value and standard deviation of your one-
year return.

b. Assume the returns on stocks 1 and 2 are indepen-
dent random variables. If you put half your money
into each stock, find the expected value and standard
deviation of your one-year return.

c. Can you give an intuitive explanation of why the
standard deviation in part b is smaller than the
standard deviation in part a?

d. Use simulation to check your answers to part b.
Use at least 1000 trials.

69. You are involved in a risky business venture where
three outcomes are possible: (1) you will lose not 
only your initial investment ($5000) but an additional
$3000; (2) you will just make back your initial
investment (for a net gain of $0); or (3) you will make
back your initial investment plus an extra $10,000. 

The probability of (1) is half as large as the probability
of (2), and the probability of (3) is one-third as large
as the probability of (2).
a. Find the individual probabilities of (1), (2), and (3).

(They should sum to 1.)
b. Find the expected value and standard deviation of

your net gain (or loss) from this venture.

70. Suppose X and Y are independent random variables.
The possible values of X are �1, 0, and 1; the possible
values of Y are 10, 20, and 30. You are given that 
P(X � �1 and Y � 10) � 0.05, P(X � 0 and Y � 30)
� 0.20, P(Y � 10) � 0.20, and P(X � 0) � 0.50.
Determine the joint probability distribution of X and Y.

Level B

71. Equation (4.7) for variance indicates exactly what
variance is: the weighted average of squared deviations
from the mean, weighted by the probabilities. However,
the computing formula for variance, Equation (4.9), is
more convenient for spreadsheet calculations. Show
algebraically that the two formulas are equivalent.

72. Equation (4.10) for covariance indicates exactly what
covariance is: the weighted average of products of
deviations from the means, weighted by the joint
probabilities. However, the computing formula for
covariance, Equation (4.12), is more convenient for
spreadsheet calculations. Show algebraically that the
two formulas are equivalent.

73. The basic game of craps works as follows. You throw
two dice. If the sum of the two faces showing up is 7
or 11, you win and the game is over. If the sum is 2, 3,
or 12, you lose and the game is over. If the sum is
anything else (4, 5, 6, 8, 9, or 10), that value becomes

your “point.” You then keep throwing the dice until the
sum matches your point or equals 7. If your point
occurs first, you win and the game is over. If 7 occurs
first, you lose and the game is over. What is the
probability that you win the game?

74. Imagine that you are trying to predict the price of
gasoline (regular unleaded) and the price of natural
gas for home heating during the next month. Assume
you believe that the price of either will stay the
same, go up by 5%, or go down by 5%. Assess the
joint probabilities of these possibilities, that is,
assess nine probabilities that sum to 1 and are
“realistic.” Do you believe it is easier to assess the
marginal probabilities of one and the conditional
probabilities of the other, or to assess the joint
probabilities directly? (Note: There is no “correct”
answer, but there are unreasonable answers—those
that do not reflect reality.)

75. Consider an individual selected at random from a
sample of 750 married women (see the data in the file
P04_05.xlsx) in answering each of the following
questions.
a. What is the probability that this woman does not

work outside the home, given that she has at least
one child?

b. What is the probability that this woman has no
children, given that she works part time?

c. What is the probability that this woman has at least
two children, given that she does not work full time?

76. Suppose that 8% of all managers in a given company
are African American, 13% are women, and 17% have
earned an MBA degree from a top-10 graduate business
school. Let A, B, and C be, respectively, the events that
a randomly selected individual from this population is
African American, is a woman, and has earned an MBA
from a top-10 graduate business school.
a. Do you believe that A, B, and C are independent

events? Explain why or why not.
b. Assuming that A, B, and C are independent events,

find the probability that a randomly selected
manager from this company is a white male and
has earned an MBA degree from a top-10 graduate
business school.

c. If A, B, and C are not independent events, can you
calculate the probability requested in part b from
the information given? What further information
would you need?

77. Consider again the supermarket chain described in
Problem 50. Now, assume that the daily sales of the
five stores are no longer independent of one another.
In particular, the file P04_77.xlsx contains the
correlations between all pairs of daily sales volumes.
a. Find the mean and standard deviation of the total

profit that this supermarket chain earns in one day
from the operation of its five stores in Bloomington.
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Compare these results to those you found in Problem
50. Explain the differences in your answers.

b. Find an interval such that the regional sales manager
of this supermarket chain can be approximately 95%
sure that the total daily profit earned by its stores in
Bloomington will be contained within the interval.

78. A manufacturing plant produces two distinct products,
A and B. The cost of producing one unit of A is $18
and that of B is $22. Assume that this plant incurs a
weekly setup cost of $24,000 regardless of the number
of units of A or B produced. The means and standard
deviations of the weekly production levels of A and B
are given in the P04_78.xlsx.
a. Assuming that the weekly production levels of A

and B are independent, find the mean and standard
deviation of this plant’s total weekly production
cost. Between which two total cost figures can you
be about 68% sure that this plant’s actual total
weekly production cost will fall?

b. How do your answers in part a change if you
discover that the correlation between the weekly
production levels of A and B is actually 0.29?
Explain the differences in the two sets of results.

79. The typical standard deviation of the annual return on a
stock is 20% and the typical mean return is about 12%.
The typical correlation between the annual returns of two
stocks is about 0.25. Mutual funds often put an equal
percentage of their money in a given number of stocks.
By choosing a large number of stocks, they hope to
diversify away the risk involved with choosing particular
stocks. How many stocks does an investor need to own to
diversify away the risk associated with individual stocks?
To answer this question, use the above information about
“typical” stocks to determine the mean and standard
deviation for the following portfolios:
■ Portfolio 1: Half your money in each of 2 stocks
■ Portfolio 2: 20% of your money in each of 5 stocks
■ Portfolio 3: 10% of your money in each of 10

stocks
■ Portfolio 4: 5% of your money in each of 20 stocks
■ Portfolio 5: 1% of your money in each of 100

stocks

What do your answers tell you about the number of
stocks a mutual fund needs to invest in to diversify
adequately? 

80. You are ordering milk for Mr. D’s supermarket, and
you are determined to please. Milk is delivered once 
a week (at midnight Sunday). The mean and standard
deviation of the number of gallons of milk demanded
each day are given in the file P04_80.xlsx. Find the
mean and standard deviation of the weekly demand for
milk. What assumption must you make to determine
the weekly standard deviation? Presently you are
ordering 1000 gallons per week. Is this a sensible
order quantity? Assume all milk spoils after one week.

81. Two gamblers play a version of roulette with a wheel
as shown in the file P04_81.xlsx. Each gambler
places four bets, but their strategies are different, as
explained below. For each gambler, use the rules of
probability to find the distribution of their net
winnings after four bets. Then find the mean and
standard deviation of their net winnings. The file gets
you started.
a. Player 1 always bets on red. On each bet, he either

wins or loses what he bets. His first bet is for $10.
From then on, he bets $10 following a win, and he
doubles his bet after a loss. (This is called a martin-
gale strategy and is used frequently at casinos.) For
example, if he spins red, red, not red, and not red, his
bets are for $10, $10, $10, and $20, and he has a net
loss of $10. Or if he spins not red, not red, not red,
and red, then his bets are for $10, $20, $40, and $80,
and he has a net gain of $10.

b. Player 2 always bets on black and green. On each
bet, he places $10 on black and $2 on green. If red
occurs, he loses all $12. If black occurs, he wins a
net $8 ($10 gain on black, $2 loss on green). If
green occurs, he wins a net $50 ($10 loss on black,
$60 gain on green). 

82. Suppose the New York Yankees and Philadelphia
Phillies (two Major League Baseball teams) are playing
a best-of-three series. The first team to win two games is
the winner of the series, and the series ends as soon as
one team has won two games. The first game is played
in New York, the second game is in Philadelphia, and if
necessary the third game is in New York. The
probability that the Yankees win a game in their home
park is 0.55. The probability that the Phillies win a game
in their home park is 0.53. You can assume that the
outcomes  of the games are independent.
a. Find the probability that the Yankees win the series.
b. Suppose you are a Yankees fan, so you place a bet

on each game played where you win $100 if the
Yankees win the game and you lose $105 if the
Yankees lose the game. Find the distribution of your
net winnings. Then find the mean and standard
deviation of this distribution. Is this betting strategy
favorable to you?

c. Repeat part a, but assume that the games are
played in Philadelphia, then New York, then
Philadelphia. How much does this “home field
advantage” help the Phillies?

d. Repeat part a, but now assume that the series is a
best-of-five series, where the first team that wins
three games wins the series. Assume that games
alternate between New York and Philadelphia, with
the first game in New York.

83. The application at the beginning of this chapter
describes the campaign McDonald’s used several
years ago, where customers could win various
prizes.
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a. Verify the figures that are given in the description.
That is, argue why there are 10 winning outcomes
and 120 total outcomes.

b. Suppose McDonald’s had designed the cards so
that each card had two zaps and three pictures of
the winning prize (and again five pictures of other
irrelevant prizes). The rules are the same as before:
To win, the customer must uncover all three
pictures of the winning prize before uncovering a
zap. Would there be more or fewer winners with
this design? Argue by calculating the probability
that a card is a winner.

c. Going back to the original game (as in part a), sup-
pose McDonald’s printed one million cards, each of
which was eventually given to a customer. Assume
that the (potential) winning prizes on these were:
500,000 Cokes worth $0.40 each, 250,000 french
fries worth $0.50 each, 150,000 milk shakes worth
$0.75 each, 75,000 hamburgers worth $1.50 each,
20,000 cards with $1 cash as the winning prize,
4000 cards with $10 cash as the winning prize, 800
cards with $100 cash as the winning prize, and 
200 cards with $1000 cash as the winning prize.
Find the expected amount (the dollar equivalent) that
McDonald’s gave away in winning prizes, assuming
everyone played the game and claimed the prize if
they won. Also find the standard deviation of this
amount.

84. A manufacturing company is trying to decide whether
to sign a contract with the government to deliver an
instrument to the government no later than eight weeks
from now. Due to various uncertainties, the company
isn’t sure when it will be able to deliver the instrument.
Also, when the instrument is delivered, there is a chance
that the government will judge it as being of inferior

quality. The company estimates that the probability
distribution of the time it takes to deliver the instrument
is as given in the file P04_84.xlsx. Independently of
this, it estimates that the probability of rejection due 
to inferior quality is 0.15. If the instrument is delivered
at least a week ahead of time and the government
judges the quality to be inferior, the company will have
time to fix the problem (with certainty) and still meet
the deadline. However, if the delivery is late, or if it is
exactly on time but of inferior quality, the government
won’t pay up. The company expects its cost of
manufacturing the instrument to be $45,000. This is
a sunk cost that will be incurred regardless of timing or
the quality of the instrument. The company also
estimates that the cost to fix an inferior instrument
depends on the number of weeks left to fix it: $7,500 
if there are three weeks left, $10,000 if there are two
weeks left, and $15,000 if there is one week left. The
government will pay $70,000 for an instrument of
sufficient quality delivered on time, but it will pay
nothing otherwise. Find the distribution of profit or 
loss to the company. Then find the mean and standard
deviation of this distribution. Do you think the company
should sign the contract?

85. Have you ever watched the odds at a horse race? You
might hear that the odds against a given horse winning
are 9 to 1, meaning that the horse has a probability
1/(1 � 9) � 1/10 of winning. However, these odds,
after being converted to probabilities, typically add to
something greater than one. Why is this? Suppose you
place a bet of $10 on this horse. It seems that it is a
fair bet if you lose your $10 if the horse loses, but you
win $90 if the horse wins. However, argue why this
isn’t really fair to you, that is, argue why your
expected winnings are negative.
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C A S E

The results we obtain with conditional probabilities

can be quite counterintuitive, even paradoxical.

This case is similar to one described in an article by

Blyth (1972), and is usually referred to as Simpson’s

paradox. [Two other examples of Simpson’s paradox

are described in articles by Westbrooke (1998) and

Appleton et al. (1996).] Essentially, Simpson’s paradox

says that even if one treatment has a better effect than

another on each of two separate subpopulations, it can

have a worse effect on the population as a whole.

Suppose that the population is the set of managers

in a large company. We categorize the managers as

those with an MBA degree (the Bs) and those without

an MBA degree (the s).These categories are the two

“treatment” groups.We also categorize the managers

as those who were hired directly out of school by this

company (the Cs) and those who worked with another

company first (the s).These two categories form the

two “subpopulations.” Finally, we use as a measure of

effectiveness those managers who have been

promoted within the past year (the As).

Assume the following conditional probabilities

are given:

P(A|B and C ) � 0.10, P(A| and C ) � 0.05 (4.23)

P(A|B and( ) � 0.35, P(A| and ) � 0.20 (4.24)

P(C|B) � 0.90, P(C| ) � 0.30 (4.25)

Each of these can be interpreted as a proportion. For

example, the probability P(A|B and C) implies that

10% of all managers who have an MBA degree and

were hired by the company directly out of school

were promoted last year. Similar explanations hold

for the other probabilities.

Joan Seymour, the head of personnel at this

company, is trying to understand these figures. From

the probabilities in Equation (4.23), she sees that

among the subpopulation of workers hired directly

out of school, those with an MBA degree are twice

as likely to be promoted as those without an MBA

degree. Similarly, from the probabilities in Equation

(4.24), she sees that among the subpopulation of

workers hired after working with another company,

those with an MBA degree are almost twice as likely

to be promoted as those without an MBA degree.

The information provided by the probabilities in

Equation (4.25) is somewhat different. From these,

she sees that employees with MBA degrees are

three times as likely as those without MBA degrees

to have been hired directly out of school.

Joan can hardly believe it when a whiz-kid analyst

uses these probabilities to show—correctly—that

P(A|B) � 0.125, P(A| ) � 0.155 (4.26)

In words, those employees without MBA degrees are

more likely to be promoted than those with MBA

degrees.This appears to go directly against the 

evidence in equations (4.23) and (4.24), both of

which imply that MBAs have an advantage in being

promoted. Can you derive the probabilities in

Equation (4.26)? Can you shed any light on this

“paradox”? ■

B

B
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B

4.1 SIMPSON’S PARADOX
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209

Normal, Binomial, Poisson, and
Exponential Distributions

C H A P T E R

CHALLENGING CLAIMS OF THE BELL CURVE

One of the most controversial books in recent years is The Bell Curve

(The Free Press, 1994).The authors are the late Richard Herrnstein,

a psychologist, and Charles Murray, an economist, both of whom had

extensive training in statistics.The book is a scholarly treatment of

differences in intelligence, measured by IQ, and their effect on

socioeconomic status (SES).The authors argue, by appealing to many

past studies and presenting many statistics and graphs, that there are

significant differences in IQ among different groups of people, and that

these differences are at least partially responsible for differences in SES.

Specifically, their basic claims are that (1) there is a quantity, intelligence,

that can be measured by an IQ test; (2) the distribution of IQ scores is

essentially a symmetric bell-shaped curve; (3) IQ scores are highly

correlated with various indicators of success; (4) IQ is determined
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predominantly by genetic factors and less so by environmental factors; and 

(5) African Americans score significantly lower—about 15 points lower—on IQ 

than whites.

Although the discussion of this latter point takes up a relatively small part of the

book, it has generated by far the most controversy. Many criticisms of the authors’

racial thesis have been based on emotional arguments. However, it can also be criticized

on entirely statistical grounds, as Barnett (1995) has done.1 Barnett never states that

the analysis by Herrnstein and Murray is wrong. He merely states that (1) the

assumptions behind some of the analysis are at best questionable, and (2) some of the

crucial details are not made as explicit as they should have been.As he states,“The

issue is not that The Bell Curve is demonstrably wrong, but that it falls so far short of

being demonstrably right.The book does not meet the burden of proof we might

reasonably expect of it.”

For example, Barnett takes issue with the claim that the genetic component of IQ is,

in the words of Herrnstein and Murray,“unlikely to be smaller than 40 percent or higher

than 80 percent.” Barnett asks what it would mean if genetics made up, say, 60% of IQ.

His only clue from the book is in an endnote, which implies this definition: If a large

population of genetically identical newborns grew up in randomly chosen environments,

and their IQs were measured once they reached adulthood, then the variance of these

IQs would be 60% less than the variance for the entire population.The key word is

variance. As Barnett notes, however, this statement implies that the corresponding drop

in standard deviation is only 37%.That is, even if all members of the population were

exactly the same genetically, differing environments would create a standard deviation of

IQs 63% as large as the standard deviation that exists today. If this is true, it is hard to

argue, as Herrnstein and Murray have done, that environment plays a minor role in

determining IQ.

Because the effects of different racial environments are so difficult to disentangle

from genetic effects, Herrnstein and Murray try at one point to bypass environmental

influences on IQ by matching blacks and whites from similar environments.They report

that blacks in the top decile of SES have an average IQ of 104, but that whites within

that decile have an IQ one standard deviation higher. Even assuming that they have their

facts straight, Barnett criticizes the vagueness of their claim.What standard deviation

are they referring to: the standard deviation of the entire population or the standard

deviation of only the people in the upper decile of SES? The latter is certainly much

smaller than the former. Should we assume that the “top-decile blacks” are in the top

decile of the black population or of the overall population? If the latter, then the

matched comparison between blacks and whites is flawed because the wealthiest 10%

of whites have far more wealth than the wealthiest 10% of blacks. Moreover, even if the

reference is to the pooled national population, the matching is imperfect. It is possible

that the blacks in this pool could average around the ninth percentile, whereas the

whites could average around the fourth percentile, with a significant difference in

income between the two groups.

The problem is that Herrnstein and Murray never state these details explicitly.

Therefore, we have no way of knowing—without collecting and analyzing all of the data

ourselves—whether their results are essentially correct.As Barnett concludes his article,

“I believe that The Bell Curve’s statements about race would have been better left unsaid

even if they were definitely true.And they are surely better left unsaid when, as we have

seen, their meaning and accuracy [are] in doubt.” ■
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1Arnold Barnett is a professor in operations research at MIT’s Sloan School of Management. He specializes in
data analysis of health and safety issues.
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5.1 INTRODUCTION

In the previous chapter we discussed probability distributions in general. In this chapter we
investigate several specific distributions that commonly occur in a variety of business appli-
cations. The first of these is a continuous distribution called the normal distribution. It is
characterized by a symmetric bell-shaped curve and is the cornerstone of statistical theory.
The second distribution is a discrete distribution called the binomial distribution. It is rele-
vant when we sample from a population with only two types of members or when we per-
form a series of independent, identical experiments with only two possible outcomes. The
other two distributions we will discuss briefly are the Poisson and exponential distributions.
These are often used when we are counting events of some type through time, such as
arrivals to a bank. In this case, the Poisson distribution, which is discrete, describes the
number of arrivals in any period of time, and the exponential distribution, which is continu-
ous, describes the times between arrivals.

The main goals in this chapter are to present the properties of these distributions, give
some examples of when they apply, and show how to perform calculations involving
them. Regarding this last objective, analysts have traditionally used special tables to find
probabilities or values for the distributions in this chapter. However, these tasks have been
simplified with the statistical functions available in Excel. Given the availability of these
Excel functions, the traditional tables are no longer necessary.

We cannot overemphasize the importance of these distributions. Almost all of the sta-
tistical results discussed in later chapters are based on either the normal distribution or the
binomial distribution. The Poisson and exponential distributions play a less important role
in this book, but they are nevertheless extremely important in many management science
applications. Therefore, it is important for you to become familiar with these distributions
before proceeding.

5.2 THE NORMAL DISTRIBUTION

The single most important distribution in statistics is the normal distribution. It is a continu-
ous distribution and is the basis of the familiar symmetric bell-shaped curve. Any particular
normal distribution is specified by its mean and standard deviation. By changing the mean,
the normal curve shifts to the right or left. By changing the standard deviation, the curve
becomes more or less spread out. Therefore, there are really many normal distributions, not
just a single one. We say that the normal distribution is a two-parameter family, where the
two parameters are the mean and standard deviation.

5.2.1 Continuous Distributions and Density Functions

We first take a moment to discuss continuous probability distributions in general. In the
previous chapter we discussed discrete distributions, characterized by a list of possible val-
ues and their probabilities. The same basic idea holds for continuous distributions such as
the normal distribution, but the mathematics is more complex. Now instead of a list of pos-
sible values, there is a continuum of possible values, such as all values between 0 and 100
or all values greater than 0. Instead of assigning probabilities to each individual value in
the continuum, the total probability of 1 is spread over this continuum. The key to this
spreading is called a density function, which acts like a histogram. The higher the value of
the density function, the more likely this region of the continuum is.
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As an example, consider the density function shown in Figure 5.1. (This is not a nor-
mal density function.) It indicates that all values in the continuum from 25 to 100 are pos-
sible, but that the values near 70 are most likely. (This density function might correspond
to scores on an exam.) More specifically, because the height of the density at 70 is approx-
imately twice the height of the curve at 84 or 53, a value near 70 is approximately twice as
likely as a value near 84 or a value near 53. In this sense, the height of the density function
indicates relative likelihoods.

212 Chapter 5 Normal, Binomial, Poisson, and Exponential Distributions

Figure 5.1

A Skewed Density

Function

Probabilities  are found from a density function as areas under the curve. For example,
the area of the designated region in Figure 5.2 represents the probability of a score between
65 and 75. Also, the area under the entire curve is 1 because the total probability of all
possible values is always 1. Unfortunately, this is about as much as we can say without
calculus. Integral calculus is required to find areas under curves. Fortunately, statistical
tables have been constructed to find such areas for a number of well-known density func-
tions, including the normal. Even better, Excel functions have been developed to find these

For continuous
distributions,
probabilities are areas
under the density
function.These
probabilities can often
be calculated with
Excel functions.

Figure 5.2

Probability as the

Area Under the

Density

Density Function

A density function, usually denoted by f(x), specifies the probability distribution of a
continuous random variable X. The higher f(x) is, the more likely x is. Also, the total
area between the graph of f(x) and the horizontal axis, which represents the total
probability, is equal to 1. Finally, f(x) is nonnegative for all possible values of X.
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areas—without the need for bulky tables. We take advantage of these Excel functions in
the rest of this chapter.

As in the previous chapter, the mean is a measure of central tendency of the distribution,
and the standard deviation (or variance) measures the variability of the distribution. Again,
however, calculus is generally required to calculate these quantities. We will simply list their
values (which were obtained through calculus) for the normal distribution and any other
continuous distributions where we need them. By the way, the mean for the (non-normal)
density in Figure 5.1 is slightly less than 70—it is always to the left of the peak for a 
left-skewed distribution and to the right of the peak for a right-skewed distribution—and the
standard deviation is approximately 15.

5.2.2 The Normal Density

The normal distribution is a continuous distribution with possible values ranging over the
entire number line—from “minus infinity” to “plus infinity.” However, only a relatively
small range has much chance of occurring. The normal density function is actually quite
complex, in spite of its “nice” bell-shaped appearance. For the sake of completeness, we
list the formula for the normal density function in Equation (5.1). Here, � and � are
the mean and standard deviation of the distribution.
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The curves in Figure 5.3 illustrate several normal density functions for different values of
� and �. The mean � can be any number: negative, positive, or zero. As you can see, the
effect of increasing or decreasing the mean � is to shift the curve to the right or the left. On
the other hand, the standard deviation � must be a positive number. It controls the spread
of the normal curve. When � is small, the curve is more peaked; when � is large, the curve
is more spread out. For shorthand, we use the notation N(�, �) to refer to the normal dis-
tribution with mean � and standard deviation �. For example, N(�2, 1) refers to the nor-
mal distribution with mean �2 and standard deviation 1.

Figure 5.3

Several Normal

Density Functions

Normal Density Function

(5.1)f(x) =

1

12ps
 e-(x-m )2/(2s2) for - q 6 x 6 + q
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5.2.3 Standardizing: Z-Values

There are infinitely many normal distributions, one for each pair � and �. We single out
one of these for special attention, the standard normal distribution. The standard normal
distribution has mean 0 and standard deviation 1, so we denote it by N(0,1). It is also
referred to as the Z distribution. Suppose the random variable X is normally distributed
with mean � and standard deviation �. We define the random variable Z by Equation (5.2).
This operation is called standardizing. That is, to standardize a variable, you subtract its
mean and then divide the difference by the standard deviation. When X is normally distrib-
uted, the standardized variable is N(0, 1).

E X A M P L E 5.1 STANDARDIZING RETURNS FROM MUTUAL FUNDS

The annual returns for 30 mutual funds appear in Figure 5.4. (See the file
Standardizing.xlsx.) Find and interpret the Z-values of these returns.

Objective To use Excel to standardize annual returns of various mutual funds.

One reason for standardizing is to measure variables with different means and/or standard
deviations on a single scale. For example, suppose several sections of a college course are
taught by different instructors. Because of differences in teaching methods and grading
procedures, the distributions of scores in these sections might differ, possibly by a wide
margin. However, if each instructor calculates his or her mean and standard deviation and
then calculates a Z-value for each student, the distributions of the Z-values should be
approximately the same in each section.

It is easy to interpret a Z-value. It is the number of standard deviations to the right or the
left of the mean. If Z is positive, the original value (in this case, the original score) is to the
right of the mean; if Z is negative, the original score is to the left of the mean. For example,
if the Z-value for some student is 2, then this student’s score is two standard deviations
above the mean. If the Z-value for another student is �0.5, then this student’s score is half a
standard deviation below the mean. We illustrate Z-values in the following example.

FUNDAMENTAL INSIGHT

Why the Normal Distribution?

The normal density in Equation (5.1) is certainly not

very intuitive, so why is the normal distribution the

basis for so much of statistical theory? One reason is

practical. Many histograms based on real data resemble

the bell-shaped normal curve to a remarkable extent.

Granted, not all histograms are symmetric and 

bell-shaped,but a surprising number are. Another reason

is theoretical. In spite of the complexity of Equation (5.1),

the normal distribution has many appealing properties

that have enabled researchers to build the rich statistical

theory that finds widespread use in business, the

sciences, and other fields.

Standardizing a Normal Random Variable

(5.2)Z =

X - m

s
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Solution

The 30 annual returns appear in column B of Figure 5.4. Their mean and standard devia-
tion are calculated in cells B4 and B5 with the AVERAGE and STDEV functions. The
corresponding Z-values are calculated in column C by entering the formula

�(B8-Mean)/Stdev

in cell C8 and copying it down column C.
There is an equivalent way to calculate these Z-values in Excel. This is done in col-

umn D by using Excel’s STANDARDIZE function directly. To use this function, enter
the formula

�STANDARDIZE(B8,Mean,Stdev)

in cell D8 and copy it down column D.
The Z-values in Figure 5.4 range from a low of �1.80 to a high of 2.19. Specifically,

the return for stock 1 is about 1.80 standard deviations below the mean, whereas the return
for fund 17 is about 2.19 standard deviations above the mean. As you will see shortly, these
values are typical: Z-values are usually in the range from �2 to �2 and values beyond �3
or �3 are very uncommon. (Recall the empirical rules for interpreting standard deviation
first discussed in Chapter 2.) Also, the Z-values automatically have mean 0 and standard
deviation 1, as you can see in cells C5 and C6 by using the AVERAGE and STDEV func-
tions on the Z-values in column C (or D). ■

5.2 The Normal Distribution 215

1
2
3
4
5
6

A B C D E F G H
Standardizing mutual fund returns

Summary sta�s�cs from returns below
000.00.0000.091Mean
000.11.0000.047Stdev

Calculated two different ways–the
second with the Standardize

7
8
9

10
11
12

Fund Annual return Z value Z value Range names used
1 0.007 -1.8047 -1.8047 Mean =Data!$B$4
2 0.080 -0.2363 -0.2363 Stdev =Data!$B$5
3 0.082 -0.1934 -0.1934

-1.4824 -1.4824
13
32
33
34
35
36

-0.7949 -0.7949
-0.0645 -0.0645
-0.3008 -0.3008

-0.2793 -0.2793

4 0.123 0.6875 0.6875
5 0.022
6 0.054

25 0.088
26 0.077
27 0.125 0.7305 0.7305
28 0.094 0.0645 0.0645
29 0.078

37 30 0.066 -0.5371 -0.5371

Figure 5.4 Mutual Fund Returns and Z-Values

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



216 Chapter 5 Normal, Binomial, Poisson, and Exponential Distributions

2If you intend to rely on Excel functions for normal calculations, you can skip this subsection.

5.2.4 Normal Tables and Z-Values2

A common use for Z-values and the standard normal distribution is in calculating proba-
bilities and percentiles by the traditional method. This method is based on a table of the
standard normal distribution found in many statistics textbooks. Such a table is given in
Figure 5.5. The body of the table contains probabilities. The left and top margins contain
possible values. Specifically, suppose you want to find the probability that a standard
normal random variable is less than 1.35. You locate 1.3 along the left and 0.05—the sec-
ond decimal in 1.35—along the top, and then read into the table to find the probability
0.9115. In words, the probability is about 0.91 that a standard normal random variable is
less than 1.35.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Figure 5.5 Normal Probabilities
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Alternatively, if you are given a probability, you can use the table to find the value with
this much probability to the left of it under the standard normal curve. This is called a per-
centile calculation. For example, if the probability is 0.75, you can find the 75th percentile
by locating the probability in the table closest to 0.75 and then reading to the left and up.
With interpolation, the required value is approximately 0.675. In words, the probability of
being to the left of 0.675 under the standard normal curve is approximately 0.75.

You can perform the same kind of calculations for any normal distribution if you first
standardize. As an example, suppose that X is normally distributed with mean 100 and
standard deviation 10. We will find the probability that X is less than 115 and the 85th per-
centile of this normal distribution. To find the probability that X is less than 115, first stan-
dardize the value 115. The corresponding Z-value is

Z �� (115 �� 100)/10 �� 1.5

Now look up 1.5 in the table (1.5 row, 0.00 column) to obtain the probability 0.9332. For
the percentile question, first find the 85th percentile of the standard normal distribution.
Interpolating, a value of approximately 1.037 is obtained. Then set this value equal to a
standardized value:

Z �� 1.037 �� (X �� 100)/10

Finally, solve for X to obtain 110.37. In words, the probability of being to the left of 110.37
in the N(100, 10) distribution is about 0.85.

There are some obvious drawbacks to using the standard normal table for probability
calculations. The first is that there are holes in the table—interpolation is often necessary.
A second drawback is that the standard normal table takes different forms in different text-
books. These differences are rather minor, but they can easily cause confusion. Finally, the
table requires you to perform calculations. For example, you often need to standardize.
More importantly, you often have to use the symmetry of the normal distribution to find
probabilities that are not in the table. As an example, to find the probability that Z is less
than �1.5, you must go through some mental gymnastics. First, by symmetry this is the
same as the probability that Z is greater than 1.5. Then, because only left-tail (“less than”)
probabilities are tabulated, you must find the probability that Z is less than 1.5 and subtract
this probability from 1. The chain of reasoning is

P(Z �� ��1.5) � P(Z � 1.5) �1 � P(Z �� 1.5) � 1 � 0.9332 � 0.0668

This is not too difficult, given a bit of practice, but it is easy to make a mistake. Excel func-
tions make the whole procedure much easier and less error-prone.

5.2.5 Normal Calculations in Excel

Two types of calculations are typically made with normal distributions: finding probabilities
and finding percentiles. Excel makes each of these fairly simple. The functions used for nor-
mal probability calculations are NORMDIST and NORMSDIST. The main difference
between these is that the one with the “S” (for standardized) applies only to N(0, 1) calcula-
tions, whereas NORMDIST applies to any normal distribution. On the other hand, percentile
calculations that take a probability and return a value are often called inverse calculations.
Therefore, the Excel functions for these are named NORMINV and NORMSINV. Again,
the “S” in the second of these indicates that it applies to the standard normal distribution.

The NORMDIST and NORMSDIST functions return left-tail probabilities, such as
the probability that a normally distributed variable is less than 35. The syntax for these
functions is

�NORMDIST(x,�,�,1)

5.2 The Normal Distribution 217

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



and

��NORMSDIST(x)

Here, x is a number you supply, and � and � are the mean and standard deviation of the
normal distribution. The last argument in the NORMDIST function, 1, is used to obtain the
cumulative normal probability, the type usually required. (This 1 is a nuisance to remem-
ber, but it is necessary.) Note that NORMSDIST takes only one argument (because � and
� are known to be 0 and 1), so it is easier to use—when it applies.

The NORMINV and NORMSINV functions return values for user-supplied probabil-
ities. For example, if you supply the probability 0.95, these functions return the 95th
percentile. Their syntax is

��NORMINV( p,��,��)

and

��NORMSINV( p)

where p is a probability you supply. These are analogous to the NORMDIST and NORMS-
DIST functions (except there is no fourth argument in the NORMINV function).

CHANGES IN EXCEL 2010

Many of the statistical functions have been revamped in Excel 2010, as we will point out throughout

the next few chapters. Microsoft evidently wanted a more consistent naming convention that would

make functions better match the ways they are used in statistical inference. All of the old functions,

including the normal functions discussed here, are still available for compatibility, but Microsoft is

hoping that users will switch to the new functions.The new normal functions are NORM.DIST,

NORM.S.DIST, NORM.INV, and NORM.S.INV. These work exactly like the old normal functions

except that NORM.S.DIST takes the same last “cumulative” argument, as was explained above for

NORMDIST. The new and old functions are both shown in the file for the next example.
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Probability and Percentile Calculations

There are two basic types of calculations involving

probability distributions, normal or otherwise. In a

probability calculation, you provide a possible value,

and you ask for the probability of being less than or

equal to this value. In a percentile calculation, you

provide a probability, and you ask for the value that

has this probability to the left of it. Excel’s statistical

functions, especially with the new names in Excel

2010, use DIST in functions that perform probability

calculations and INV (for inverse) in functions that

perform percentile calculations.

FUNDAMENTAL INSIGHT

E X A M P L E 5.2 BECOMING FAMILIAR WITH NORMAL CALCULATIONS IN EXCEL

Use Excel to calculate the following probabilities and percentiles for the standard normal
distribution: (a) P(Z ��2), (b) P(Z � 1), (c) P(�0.4 � Z �1.6, (d) the 5th percentile,

(e) the 75th percentile, and (f) the 99th percentile. Then for the N(75, 8) distribution, find the
following probabilities and percentiles: (a) P(X � 70), (b) P(X � 73), (c) P(75 � X � 85),
(d) the 5th percentile, (e) the 60th percentile, and (f) the 97th percentile.

3Actually, we already illustrated the NORMSDIST function; it was used to create the body of Figure 5.5. In other
words, you can use it to build your own normal probability table.

We illustrate these Excel functions in the following example.3
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Objective To calculate probabilities and percentiles for standard normal and general
normal distributions in Excel.

Solution

The solution appears in Figure 5.6. (See the file Normal Calculations.xlsx.) The N(0, 1)
calculations are in rows 7 through 14; the N(75, 8) calculations are in rows 23 through 30. For
your convenience, the formulas used in column B are spelled out in column D (as labels).
Note that the standard normal calculations use the normal functions with the “S” in the
middle; the rest use the normal functions without the “S”—and require more arguments.
(The Excel 2010 functions don't appear in this figure, but they are included in the file.)

Note the following for normal probability calculations:

■ For “less than” probabilities, use NORMDIST or NORMSDIST directly. (See rows
7 and 23.)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A B C D E F G H I

Range Probability Formula
Less than -2 0.0228 =NORMSDIST(-2)
Greater than 1 0.1587 =1-NORMSDIST(1)
Between -0.4and 1.6 0.6006 =NORMSDIST(1.6)-NORMSDIST(-0.4)

5th -1.645 =NORMSINV(0.05)
)57.0(VNISMRON=476.0ht57
)99.0(VNISMRON=623.2ht99

Range names used:
81$B$!lamroN=naeM57naeM
91$B$!lamroN=vedtS8vedtS

Range Probability Formula
Less than 70 0.2660 =NORMDIST(70,Mean,Stdev,1)
Greater than 73 0.5987 =1-NORMDIST(73,Mean,Stdev,1)
Between 75 and 85 0.3944 =NORMDIST(85,Mean,Stdev,1) -NORMDIST(75,Mean,Stdev,1)

Normal probability calculations

Examples with standard normal

Probability calculations

Percentiles

Examples with nonstandard normal

Probability calculations

Percentiles
)vedtS,naeM,50.0(VNIMRON=148.16ht5

)vedtS,naeM,6.0(VNIMRON=720.77ht06
)vedtS,naeM,79.0(VNIMRON=640.09ht79

Figure 5.6 Normal Calculations with Excel Functions
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■ For “greater than” probabilities, subtract the NORMDIST or NORMSDIST function
from 1. (See rows 8 and 24.)

■ For “between” probabilities, subtract the two NORMDIST or NORMSDIST func-
tions. For example, in row 9 the probability of being between �0.4 and 1.6 is the
probability of being less than 1.6 minus the probability of being less than �0.4.

The percentile calculations are even more straightforward. In most percentile problems
you want to find the value with a certain probability to the left of it. In this case you use the
NORMINV or NORMSINV function with the specified probability as the first argument.
See rows 12 through 14 and 28 through 30. ■

There are a couple of variations of percentile calculations. First, suppose you want the
value with probability 0.05 to the right of it. This is the same as the value with probability
0.95 to the left of it, so you use NORMINV or NORMSINV with probability argument
0.95. For example, the value with probability 0.4 to the right of it in the N(75, 8) distribu-
tion is 77.027. (See cell B29 in Figure 5.6.)

As a second variation, suppose you want to find an interval of the form �x to x, for some
positive number x, with (1) probability 0.025 to the left of �x, (2) probability 0.025 to the right
of x, and (3) probability 0.95 between �x and x. This is a very common problem in statistical
inference. In general, you want a probability (such as 0.95) to be in the middle of the interval
so that half of the remaining probability (0.025) is in each of the tails. (See Figure 5.7.) Then
the required x can be found with NORMINV or NORMSINV, using probability argument
0.975, because there must be a total probability of 0.975 to the left of x.

For example, if the relevant distribution is the standard normal, the required value of x
is 1.96, found with the function NORMSINV(0.975). Similarly, if you want probability
0.90 in the middle and probability 0.05 in each tail, the required x is 1.645, found with the
function NORMSINV(0.95). Remember these two numbers, 1.96 and 1.645. They occur
frequently in statistical applications.
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5.2.6 Empirical Rules Revisited

We introduced three empirical rules in Chapter 2 that apply to many data sets. Namely,
about 68% of the data fall within one standard deviation of the mean, about 95% fall within
two standard deviations of the mean, and almost all fall within three standard deviations of
the mean. For these rules to hold with real data, the distribution of the data must be at least
approximately symmetric and bell-shaped. Let’s look at these rules more closely.

Figure 5.7

Typical Normal

Probabilities
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Let X be normally distributed with mean � and standard deviation �. To perform a
probability calculation on X, we can first standardize X and then perform the calculation on
the standardized variable Z. Specifically, we will find the probability that X is within k
standard deviations of its mean for k � 1, k � 2, and k � 3. In general, this probability is
P(� �k� � X � � � k�). But by standardizing the values � � k� and � � k�, we obtain
the equivalent probability P(�k � Z � k), where Z has a N(0, 1) distribution. This latter
probability can be calculated in Excel with the formula

=NORMSDIST(k)—NORMSDIST(—k)

By substituting the values 1, 2, and 3 for k, we find the following probabilities:

P(��1 �� Z �� 1) �� 0.6827

P(��2 �� Z �� 2) �� 0.9545

P(��3 �� Z �� 3) �� 0.9973

As you can see, there is virtually no chance of being beyond three standard deviations from
the mean, the chances are about 19 out of 20 of being within two standard deviations of the
mean, and the chances are about 2 out of 3 of being within one standard deviation of the
mean. These probabilities are the basis for the empirical rules in Chapter 2. These rules more
closely approximate reality as the histograms of observed data become more bell-shaped.

5.3 APPLICATIONS OF THE NORMAL DISTRIBUTION

In this section we apply the normal distribution to a variety of business problems.

5.3 Applications of the Normal Distribution 221

The normal distribution
is the basis for the
empirical rules intro-
duced in Chapter 2.

E X A M P L E 5.3 PERSONNEL TESTING AT ZTEL

The personnel department of ZTel, a large communications company, is reconsidering
its hiring policy. Each applicant for a job must take a standard exam, and the hire or

no-hire decision depends at least in part on the result of the exam. The scores of all appli-
cants have been examined closely. They are approximately normally distributed with mean
525 and standard deviation 55.

The current hiring policy occurs in two phases. The first phase separates all applicants
into three categories: automatic accepts, automatic rejects, and maybes. The automatic
accepts are those whose test scores are 600 or above. The automatic rejects are those
whose test scores are 425 or below. All other applicants (the maybes) are passed on to a
second phase where their previous job experience, special talents, and other factors are
used as hiring criteria. The personnel manager at ZTel wants to calculate the percentage of
applicants who are automatic accepts or rejects, given the current standards. She also
wants to know how to change the standards to automatically reject 10% of all applicants
and automatically accept 15% of all applicants.

Objective To determine test scores that can be used to accept or reject job applicants 
at ZTel.

Solution

Let X be the test score of a typical applicant. Then historical data suggest that the distribution
of X is N(525, 55). A probability such as P(X 	 425) can be interpreted as the probability that
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a typical applicant is an automatic reject, or it can be interpreted as the percentage of all
applicants who are automatic rejects. Given this observation, the solution to ZTel’s problem
appears in Figure 5.8. (See the file Personnel Decisions.xlsx.) The probability that a typical
applicant is automatically accepted is 0.0863, found in cell B10 with the formula

��1��NORMDIST(B7,Mean,Stdev,1)
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A B C D E F
Personnel Decisions

Range names used:
Mean of test scores 525 Mean =Model!$B$3
Stdev of test scores 55 Stdev =Model!$B$4

Current Policy
Automa�c accept
Automa�c reject

point 600
point 425

Percent -NORMDIST(B7,Mean,Stdev,1)
Percent

accepted 8.63% =1
rejected 3.45% =NORMDIST(B8,Mean,Stdev,1)

New Policy
Percent
Percent

accepted 15%
rejected 10%

Automa�c accept point 582 =NORMINV(1-B14,Mean,Stdev)
Automa�c reject point 455 =NORMINV(B15,Mean,Stdev)

Similarly, the probability that a typical applicant is automatically rejected is 0.0345,
found in cell B11 with the formula

��NORMDIST(B8,Mean,Stdev,1)

Therefore, ZTel automatically accepts about 8.6% and rejects about 3.5% of all applicants
under the current policy.

To find new cutoff values that reject 10% and accept 15% of the applicants, we need the
10th and 85th percentiles of the N(525, 55) distribution. These are 455 and 582 (rounded to
the nearest integer), respectively, found in cells B17 and B18 with the formulas

��NORMINV(1-B14,Mean,Stdev)

and

��NORMINV(B15,Mean,Stdev)

To accomplish its objective, ZTel needs to raise the automatic rejection point from 425 to
455 and lower the automatic acceptance point from 600 to 582. ■

E X A M P L E 5.4 QUALITY CONTROL AT PAPERSTOCK COMPANY

The PaperStock Company runs a manufacturing facility that produces a paper product.
The fiber content of this product is supposed to be 20 pounds per 1000 square feet.

(This is typical for the type of paper used in grocery bags, for example.) Because of random
variations in the inputs to the process, however, the fiber content of a typical 
1000-square-foot roll varies according to a N(�, �) distribution. The mean fiber content (�)

Figure 5.8 

Calculations for

Personnel Example
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can be controlled—that is, it can be set to any desired level by adjusting an instrument on the
machine. The variability in fiber content, as measured by the standard deviation �, is 0.10
pound when the process is “good,” but it sometimes increases to 0.15 pound when the
machine goes “bad.” A given roll of this product must be rejected if its actual fiber content is
less than 19.8 pounds or greater than 20.3 pounds. Calculate the probability that a given roll
is rejected, for a setting of � � 20, when the machine is “good” and when it is “bad.”

Objective To determine the machine settings that result in paper of acceptable quality at
PaperStock Company.

Solution

Let X be the fiber content of a typical roll. The distribution of X will be either N(20, 0.10)
or N(20, 0.15), depending on the status of the machine. In either case, the probability that
the roll must be rejected can be calculated as shown in Figure 5.9. (See the file Paper
Machine Settings.xlsx.) The formula for rejection in the “good” case appears in cell B12:

��NORMDIST(B8,Mean,Stdev_good,1)��(1-NORMDIST(B9,Mean,Stdev_good,1))

5.3 Applications of the Normal Distribution 223

This is the sum of two probabilities: the probability of being to the left of the lower
limit and the probability of being to the right of the upper limit. These probabilities of
rejection are represented graphically in Figure 5.10. A similar formula for the “bad” case
appears in cell B13, using Stdev_bad in place of Stdev_good.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A B C D E F G H I J
Paper Machine Se�ngs Range names used:

Mean =Model!$B$3
4$B$!ledoM=doog_vedtS02naeM

Stdev in good case 0.1 Stdev_bad =Model!$B$5
Stdev in bad case 0.15

Reject region
Lower limit 19.8
Upper limit 20.3

Probability of reject
in good case 0.024 =NORMDIST(B8,Mean,Stdev_good,1)+(1-NORMDIST(B9,Mean,Stdev_good,1))
in bad case 0.114 =NORMDIST(B8,Mean,Stdev_bad,1)+(1-NORMDIST(B9,Mean,Stdev_bad,1))

Data table of rejec�on probability as a func�on of the mean and good standard devia�on
Standard devia�on

0.024 0.10 0.11 0.12 0.13 0.14 0.15
19.7 0.841 0.818 0.798 0.779 0.762 0.748
19.8 0.500 0.500 0.500 0.500 0.500 0.500
19.9 0.159 0.182 0.203 0.222 0.240 0.256

Mean 20.0 0.024 0.038 0.054 0.072 0.093 0.114
20.1 0.024 0.038 0.054 0.072 0.093 0.114
20.2 0.159 0.182 0.203 0.222 0.240 0.256
20.3 0.500 0.500 0.500 0.500 0.500 0.500
20.4 0.841 0.818 0.798 0.779 0.762 0.748

Figure 5.9 Calculations for Paper Quality Example
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You can see that the probability of a rejected roll in the “good” case is 0.024; in the
“bad” case it is 0.114. That is, when the standard deviation increases by 50% from 0.10 to
0.15, the percentage of rolls rejected more than quadruples, from 2.4% to 11.4%.

It is certainly possible that the true process mean and “good” standard deviation will
not always be equal to the values in cells B3 and B4. Therefore, it is useful to see how sen-
sitive the rejection probability is to these two parameters. You can do this with a two-way
data table, as shown in Figure 5.9. The tabulated values show that the probability of rejec-
tion varies greatly even for small changes in the key inputs. In particular, a combination of
a badly centered mean and a large standard deviation can make the probability of rejection
quite large. ■
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To form this data
table, enter the 
formula �B12 in cell
B17, highlight the 
range B17:H25, and
create a data table
with row input cell 
B4 and column input
cell B3.

E X A M P L E 5.5 ANALYZING AN INVESTOR’S AFTER-TAX PROFIT

Howard Davis invests $10,000 in a certain stock on January 1. By examining past move-
ments of this stock and consulting with his broker, Howard estimates that the annual

return from this stock, X, is normally distributed with mean 10% and standard deviation 4%.
Here X (when expressed as a decimal) is the profit Howard receives per dollar invested. It
means that on December 31, his $10,000 will have grown to 10,000(1 � X) dollars. Because
Howard is in the 33% tax bracket, he will then have to pay the Internal Revenue Service 33%
of his profit. Calculate the probability that Howard will have to pay the IRS at least $400.
Also, calculate the dollar amount such that Howard’s after-tax profit is 90% certain to be less
than this amount; that is, calculate the 90th percentile of his after-tax profit.

Objective To determine the after-tax profit Howard Davis can be 90% certain of earning.

Solution

Howard’s before-tax profit is 10,000X dollars, so the amount he pays the IRS is
0.33(10,000X), or 3300X dollars. We want the probability that this is at least $400.
Because 3300X � 400 is the same as X � 4/33, the probability of this outcome can be

Figure 5.10

Rejection Regions

for Paper Quality

Example
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found as in Figure 5.11. (See the file Tax on Stock Return.xlsx.) It is calculated with the
formula

��1-NORMDIST(400/(Amount_invested*Tax_rate),Mean,Stdev,1)

in cell B8. As you can see, Howard has about a 30% chance of paying at least $400 in taxes.
To answer the second question, note that the after-tax profit is 67% of the before-tax

profit, or 6700X dollars, and we want its 90th percentile. If this percentile is x, then we
know that P(6700X � x) � 0.90, which is the same as P(X � x/6700) � 0.90. In words, we
want the 90th percentile of the X distribution to be x/6700. From cell B10 of Figure 5.11,
the 90th percentile is 15.13%, so the required value of x is $1,013. Note that the mean
after-tax profit is $670 (67% of the mean before-tax profit of 0.10 multiplied by $10,000).
Of course, Howard might get lucky and make more than this, but he is 90% certain that his
after-tax profit will be no greater than $1013.

5.3 Applications of the Normal Distribution 225

It is sometimes tempting to model every continuous random variable with a normal
distribution. This can be dangerous for at least two reasons. First, not all random variables
have a symmetric distribution. Some are skewed to the left or the right, and for these the
normal distribution can be a poor approximation to reality. The second problem is that
many random variables in real applications must be nonnegative, and the normal distribu-
tion allows the possibility of negative values. The following example shows how assuming
normality can get you into trouble if you aren’t careful.

E X A M P L E 5.6 PREDICTING FUTURE DEMAND FOR MICROWAVE OVENS

AT HIGHLAND COMPANY

The Highland Company is a retailer that sells microwave ovens. The company wants to
model its demand for microwaves over the next 12 years. Using historical data as a

guide, it assumes that demand in year 1 is normally distributed with mean 5000 and
standard deviation 1500. It assumes that demand in each subsequent year is normally dis-
tributed with mean equal to the actual demand from the previous year and standard devia-
tion 1500. For example, if demand in year 1 turns out to be 4500, then the mean demand in
year 2 is 4500. This assumption is plausible because it leads to correlated demands. For
example, if demand is high one year, it will tend to be high the next year. Investigate the
ramifications of this model, and suggest models that might be more realistic.

■

1
2
3
4
5
6
7
8
9

10
11

IHGFEDCBA
Tax on Stock Return

Range names used:
Amount 3$B$!ledoM=detsevni_tnuomA000,01$detsevni

4$B$!ledoM=naeM%01naeM
5$B$!ledoM=vedtS%4vedtS

Tax 6$B$!ledoM=etar_xaT%33etar

Probability he pays at least $400 in taxes 0.298 =1-NORMDIST(400/(Amount_invested*Tax_rate),Mean,Stdev,1)

90th percen�le of stock return 15.13% =NORMINV(0.9,Mean,Stdev)
90th percen�le of a�er-tax return $1,013 =(1-Tax_rate)*Amount_invested*B10

Figure 5.11 Calculations for Taxable Returns Example
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Objective To construct and analyze a spreadsheet model for microwave oven demand over
the next 12 years using Excel’s NORMINV function, and to show how models using the nor-
mal distribution can lead to nonsensical outcomes unless they are modified appropriately.

Solution

The best way to analyze this model is with simulation, much as in Chapter 4. To do this,
you must be able to simulate normally distributed random numbers in Excel. You can do
this with the NORMINV function. Specifically, to generate a normally distributed number
with mean � and standard deviation �, use the formula

��NORMINV(RAND(),�,�)

Because this formula uses the RAND function, it generates a different random number
each time it is used—and each time the spreadsheet recalculates.4

The spreadsheet in Figure 5.12 shows a simulation of yearly demands over a 12-year
period. (See the file Oven Demand Simulation.xlsx.) To simulate the demands in row 15,
enter the formula

��NORMINV(RAND(),B6,B7)

in cell B15. Then enter the formula

�NORMINV(RAND(),B15,$B$11)
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To generate a random
number from a normal
distribution, use
NORMINV with three
arguments: RAND(),
the mean, and the
standard deviation.

4To see why this formula makes sense, note that the RAND function in the first argument generates a uniformly
distributed random value between 0 and 1. Therefore, the effect of the function is to generate a random percentile
from the normal distribution.

1
A B C D E F G H I J K L M

Normal model for mul�period demand
2
3
4
5
6
7
8
9

Assump�ons of a tenta�ve model

Demand in year 1 (normally distributed)
Mean 5000
Stdev 1500

Demand in other years (normally distributed)

11
10

12
13
14
15
16
17
18

Mean actual demand in previous year
Stdev 1500

Simulated demands
Year 1 2 3 4 5 6 7 8 9 10 11 12
Demand 5266 7657 7420 8094 9099 11674 7245 7191 8420 8638 9702 7275

Time series of demand

19
20
21
22
23
24
25
26 6000

8000

10000

12000

14000

27
28
29
30
31
32

0

2000

4000

1 2 3 4 5 6 7 8 9 10 11 12Year

Figure 5.12 One Set of Demands for Model 1 in the Microwave Example
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in cell C15 and copy it across row 15. (Note how the mean demand in any year is the sim-
ulated demand from the previous year.) As the accompanying time series graph of these
demands indicates, the model seems to be performing well.

However, the simulated demands in Figure 5.12 are only one set of possible demands.
Remember that each time the spreadsheet recalculates, all of the random numbers change.5

Figure 5.13 shows a different set of random numbers generated by the same formulas.
Clearly, the model is not working well in this case—some demands are negative, which
makes no sense. The problem is that if the actual demand is low in one year, there is a fairly
good chance that the next normally distributed demand will be negative. You can check (by
recalculating many times) that the demand sequence is usually all positive, but every now
and then a nonsense sequence as in Figure 5.13 appears. We need a new model!

One way to modify the model is to let the standard deviation and mean move together.
That is, if the mean is low, then the standard deviation will also be low. This minimizes the
chance that the next random demand will be negative. Besides, this type of model is prob-
ably more realistic. If demand in one year is low, there could be less variability in next
year’s demand. Figure 5.14 illustrates one way (but not the only way) to model this chang-
ing standard deviation.

5.3 Applications of the Normal Distribution 227

5The usual way to get Excel to recalculate is to press the F9 key. However, this makes all of the data tables in the
workbook recalculate, which can take significant time. Because there is a data table in another sheet of the Oven
Demand Simulation.xlsx file, we suggest a different way to recalculate. Simply position the cursor on any blank
cell and press the Delete key.
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A B C D E F G H I J K L M

Normal model for mul�period demand
2
3
4
5
6
7
8
9

Assump�ons of a tenta�ve model

Demand in year 1 (normally distributed)
Mean 5000
Stdev 1500

Demand in other years (normally distributed)
10
11
12
13
14
15
16
17
18

Mean actual demand in previous year
Stdev 1500

Simulated demands
Year 1 2 3 4 5 6 7 8 9 10 11 12
Demand 5528 3874 3268 2416 2348 4181 3697 3337 1064 100 -116 -988

Time series of demand
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Figure 5.13 Another Set of Demands for Model 1 in the Microwave Example
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We let the standard deviation of demand in any year (after year 1) be the original stan-
dard deviation, 1500, multiplied by the ratio of the expected demand for this year to the
expected demand in year 1. For example, if demand in some year is 500, the expected
demand next year is 500, and the standard deviation of next year’s demand is reduced to
1500(500/5000) � 150. The only change to the spreadsheet model is in row 15, where cell
C15 contains the formula

�NORMINV(RAND(),B15,$B$7*B15/$B$6)

and is copied across row 15. Now the chance of a negative demand is practically negligible
because this would require a value more than three standard deviations below the mean.

Unfortunately, the model in Figure 5.14 is still not foolproof. By recalculating many
times, negative demands still appear occasionally. To be even safer, it is possible to trun-
cate the demand distribution at some nonnegative value such as 250, as shown in Figure 5.15.
Now a random demand is generated as in the previous model, but if this randomly gener-
ated value is below 250, it is replaced by 250. This is done with the formulas

�MAX(NORMINV(RAND(),B8,B9),D5)

and

�MAX(NORMINV(RAND(),B17,$B$9*B17/$B$8),$D$5)

in cells B17 and C17 and copying this latter formula across row 17. Whether this is the
way the demand process works for Highland’s microwaves is an open question, but at
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Normal model for mul�period demand
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Assump�ons of a "safer" model

Demand in year 1 (normally distributed)
Mean 5000
Stdev 1500

Demand in other years (normally distributed)
10
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13
14
15
16
17
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Mean actual demand in previous year
Stdev1500 �mes ra�o of previous year's actual demand to year 1's mean demand

Simulated demands
Year 1 2 3 4 5 6 7 8 9 10 11 12
Demand 6521 6255 8239 6856 9638 7045 7122 4877 7212 10681 5211 4211
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Figure 5.14 Generated Demands for Model 2 in Microwave Example
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least it prevents demands from becoming negative—or even falling below 250.
Moreover, this type of truncation is a common way of modeling when you want to use a
normal distribution but for physical reasons cannot allow the random quantities to
become negative.

Before leaving this example, we challenge your intuition. In the final model in Figure 5.15,
the demand in any year (say, year 6) is, aside from the truncation, normally distributed with a
mean and standard deviation that depend on the previous year’s demand. Does this mean that if
you recalculate many times and keep track of the year 6 demand each time, the resulting
histogram of these year 6 demands will be normally distributed? Perhaps surprisingly, the
answer is a clear no. Evidence of this appears in Figures 5.16 and 5.17. In Figure 5.16 we use a
data table to obtain 400 replications of demand in year 6 (in column B). Then we use
StatTools’s histogram procedure to create a histogram of these simulated demands in Figure
5.17. It is clearly skewed to the right and nonnormal.

What causes this distribution to be nonnormal? It is not the truncation. Truncation has
a relatively minor effect because most of the demands don’t need to be truncated. The real
reason is that the distribution of year 6 demand is only normal conditional on the demand
in year 5. That is, if we fix the demand in year 5 at any level and then replicate year 6
demand many times, the resulting histogram is normally shaped. But the year 5 demand is
not fixed. It varies from replication to replication, and this variation causes the skewness in
Figure 5.17. Admittedly, the reason for this skewness is not intuitively obvious, but simu-
lation makes it easy to demonstrate.
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Minimum demand in any year 250

Demand in year 1 (truncated normal)
Mean 5000
Stdev 1500
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Demand in other years (truncated normal)
Mean actual demand in previous year
Stdev 1500 �mes ra�o of previous year's actual demand to year 1's mean demand

Simulated demands
Year 1 2 3 4 5 6 7 8 9 10 11 12
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Figure 5.15 Generated Demands for a Truncated Model in Microwave Example
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■

P R O B L E M S

Note: Student solutions for problems whose numbers appear within a
colored box are available for purchase at www.cengagebrain.com.

Level A

1. The grades on the midterm examination given in a
large managerial statistics class are normally
distributed with mean 75 and standard deviation 9.
The instructor of this class wants to assign an A grade
to the top 10% of the scores, a B grade to the next
10% of the scores, a C grade to the next 10% of the
scores, a D grade to the next 10% of the scores, and an
F grade to all scores below the 60th percentile of this
distribution. For each possible letter grade, find the
lowest acceptable score within the established range.

For example, the lowest acceptable score for an A is
the score at the 90th percentile of this normal
distribution.

2. Suppose it is known that the distribution of purchase
amounts by customers entering a popular retail store is
approximately normal with mean $25 and standard
deviation $8.
a. What is the probability that a randomly selected

customer spends less than $35 at this store?
b. What is the probability that a randomly selected

customer spends between $15 and $35 at this
store?

c. What is the probability that a randomly selected
customer spends more than $10 at this store?
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d. Find the dollar amount such that 75% of all
customers spend no more than this amount.

e. Find the dollar amount such that 80% of all
customers spend at least this amount.

f. Find two dollar amounts, equidistant from the
mean, such that 90% of all customer purchases are
between these values.

3. A machine used to regulate the amount of a certain
chemical dispensed in the production of a particular
type of cough syrup can be set so that it discharges an
average of � milliliters (ml) of the chemical in each
bottle of cough syrup. The amount of chemical placed
into each bottle of cough syrup is known to have a
normal distribution with a standard deviation of
0.250 ml. If this machine discharges more than 2 ml
of the chemical when preparing a given bottle of this
cough syrup, the bottle is considered to be
unacceptable by industry standards. Determine the
setting for � so that no more than 1% of the bottles of
cough syrup prepared by this machine will be rejected.

4. Assume that the weekly demand for Ford car sales
follows a normal distribution with mean 50,000 cars
and standard deviation 14,000 cars.
a. There is a 1% chance that Ford will sell more than

what number of cars during the next year?
b. What is the probability that Ford will sell between

2.4 and 2.7 million cars during the next year?

5. An investor has invested in nine different investments.
The dollar returns on the different investments are
probabilistically independent, and each return follows
a normal distribution with mean $50,000 and standard
deviation $10,000.
a. There is a 1% chance that the total return on the

nine investments is less than what value? (Use the
fact that the sum of independent normal random
variables is normally distributed, with mean equal
to the sum of the individual means and variance
equal to the sum of the individual variances.)

b. What is the probability that the investor’s total
return is between $400,000 and $520,000?

6. Scores on an exam appear to follow a normal
distribution with � � 60 and � � 20. The instructor
wishes to give a grade of D to students scoring
between the 10th and 30th percentiles on the exam.
For what range of scores should a D be given? What
percentage of the students will get a D?

7. Suppose that the weight of a typical American male
follows a normal distribution with � � 180 lb and 
� � 30 lb. Also, suppose 91.92% of all American
males weigh more than I weigh.
a. What fraction of American males weigh more than

225 pounds?
b. How much do I weigh?
c. If I weighed 20 pounds more than I do, what

percentile would I be in?

8. Assume that the length of a typical televised baseball
game, including all the commercial timeouts, is
normally distributed with mean 2.45 hours and
standard deviation 0.37 hour. Consider a televised
baseball game that begins at 2:00 in the afternoon. 
The next regularly scheduled broadcast is at 5:00.
a. What is the probability that the game will cut into

the next show, that is, go past 5:00?
b. If the game is over before 4:30, another half-hour

show can be inserted into the 4:30–5:00 slot. What
is the probability of this occurring?

9. The amount of a soft drink that goes into a typical 
12-ounce can varies from can to can. It is normally
distributed with an adjustable mean � and a fixed
standard deviation of 0.05 ounce. (The adjustment is
made to the filling machine.)
a. If regulations require that cans have at least

11.9 ounces, what is the smallest mean � that
can be used so that at least 99.5% of all cans
meet the regulation?

b. If the mean setting from part a is used, what is
the probability that a typical can has at least 12
ounces?

10. Suppose that the demands for a company’s product in
weeks 1, 2, and 3 are each normally distributed. The
means are 50, 45, and 65. The standard deviations are
10, 5, and 15. Assume that these three demands are
probabilistically independent. This means that if you
observe one of them, it doesn’t help you to predict the
others. Then it turns out that total demand for the three
weeks is also normally distributed. Its mean is the sum
of the individual means, and its variance is the sum of
the individual variances. (Its standard deviation,
however, is not the sum of the individual standard
deviations; square roots don’t work that way.)
a. Suppose that the company currently has 180 units

in stock, and it will not be receiving any more
shipments from its supplier for at least three weeks.
What is the probability that stock will run out
during this three-week period?

b. How many units should the company currently
have in stock so that it can be 98% certain of not
running out during this three-week period? Again,
assume that it won’t receive any more shipments
during this period.

Level B

11. Matthew’s Bakery prepares peanut butter cookies for
sale every morning. It costs the bakery $0.50 to bake
each peanut butter cookie, and each cookie is sold for
$1.25. At the end of the day, leftover cookies are
discounted and sold the following day at $0.40 per
cookie. The daily demand (in dozens) for peanut butter
cookies at this bakery is known to be normally
distributed with mean 200 and standard deviation 60.
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The manager of Matthew’s Bakery is trying to
determine how many dozen peanut butter cookies to
make each morning to maximize the product’s
contribution to bakery profits. Use simulation to find
a very good, if not optimal, production plan.

12. The manufacturer of a particular bicycle model has the
following costs associated with the management of
this product’s inventory. In particular, the company
currently maintains an inventory of 1000 units of this
bicycle model at the beginning of each year. If X units
are demanded each year and X is less than 1000, the
excess supply, 1000 � X units, must be stored until
next year at a cost of $50 per unit. If X is greater than
1000 units, the excess demand, X � 1000 units, must
be produced separately at an extra cost of $80 per unit.
Assume that the annual demand (X) for this bicycle
model is normally distributed with mean 1000 and
standard deviation 75.
a. Find the expected annual cost associated with

managing potential shortages or surpluses of this
product. (Hint: Use simulation to approximate the
answer. An exact solution using probability
arguments is beyond the level of this book.)

b. Find two annual total cost levels, equidistant from
the expected value found in part a, such that 95%
of all costs associated with managing potential
shortages or surpluses of this product are between
these values. (Continue to use simulation.)

c. Comment on this manufacturer’s annual production
policy for this bicycle model in light of your
findings in part b.

13. Suppose that a particular production process fills
detergent in boxes of a given size. Specifically, this
process fills the boxes with an amount of detergent
(in ounces) that is adequately described by a normal
distribution with mean 50 and standard deviation 0.5.
a. Simulate this production process for the filling of

500 boxes of detergent. Find the mean and
standard deviation of your simulated sample
weights. How do your sample statistics compare 
to the theoretical population parameters in this
case? How well do the empirical rules apply in
describing the variation in the weights in your
simulated detergent boxes?

b. A box of detergent is rejected by quality control
personnel if it is found to contain less than 49
ounces or more than 51 ounces of detergent. Given
these quality standards, what proportion of all
boxes are rejected? What step(s) could the
supervisor of this production process take to reduce
this proportion to 1%?

14. It is widely known that many drivers on interstate
highways in the United States do not observe the
posted speed limit. Assume that the actual rates of
speed driven by U.S. motorists are normally
distributed with mean � mph and standard deviation 

5 mph. Given this information, answer each of the
following independent questions. (Hint: Use Goal
Seek in parts a and b, and use the Solver add-in with
no objective in part c. Solver is usually used to
optimize, but it can also be used to solve equations
with multiple unknowns.)
a. If 40% of all U.S. drivers are observed traveling at

65 mph or more, what is the mean �?
b. If 25% of all U.S. drivers are observed traveling at

50 mph or less, what is the mean �?
c. Suppose now that the mean � and standard

deviation � of this distribution are both unknown.
Furthermore, it is observed that 40% of all U.S.
drivers travel at less than 55 mph and 10% of all
U.S. drivers travel at more than 70 mph. What must
� and � be?

15. The lifetime of a certain manufacturer’s washing
machine is normally distributed with mean 4 years.
Only 15% of all these washing machines last at least
5 years. What is the standard deviation of the lifetime
of a washing machine made by this manufacturer?

16. You have been told that the distribution of regular
unleaded gasoline prices over all gas stations in
Indiana is normally distributed with mean $2.95 and
standard deviation $0.075, and you have been asked to
find two dollar values such that 95% of all gas stations
charge somewhere between these two values. Why is
each of the following an acceptable answer: between
$2.776 and $3.081, or between $2.803 and $3.097?
Can you find any other acceptable answers? Which of
the many possible answers would you give if you are
asked to obtain the shortest interval?

17. A fast-food restaurant sells hamburgers and chicken
sandwiches. On a typical weekday the demand for
hamburgers is normally distributed with mean 313
and standard deviation 57; the demand for chicken
sandwiches is normally distributed with mean 93
and standard deviation 22.
a. How many hamburgers must the restaurant stock to

be 98% sure of not running out on a given day?
b. Answer part a for chicken sandwiches.
c. If the restaurant stocks 400 hamburgers and 150

chicken sandwiches for a given day, what is the
probability that it will run out of hamburgers or
chicken sandwiches (or both) that day? Assume
that the demand for hamburgers and the demand
for chicken sandwiches are probabilistically
independent.

d. Why is the independence assumption in part c
probably not realistic? Using a more realistic
assumption, do you think the probability requested
in part c would increase or decrease?

18. Referring to the box plots introduced in Chapter 2, the
sides of the “box” are at the first and third quartiles,
and the difference between these (the length of the
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For example, the binomial distribution with parameters 100 and 0.3 is the distribution
of the number of successes in 100 trials when the probability of success is 0.3 on each trial.
A simple example that you can keep in mind throughout this section is the number of heads
you would see if you flipped a coin n times. Assuming the coin is well balanced, the rele-
vant distribution is binomial with parameters n and p � 0.5. This coin-flipping example is
often used to illustrate the binomial distribution because of its simplicity, but you will see
that the binomial distribution also applies to many important business situations.

To understand how the binomial distribution works, consider the coin-flipping
example with n � 3. If X represents the number of heads in three flips of the coin, then the
possible values of X are 0, 1, 2, and 3. You can find the probabilities of these values by
considering the eight possible outcomes of the three flips: (T,T,T), (T,T,H), (T,H,T),

box) is called the interquartile range (IQR). A mild
outlier is an observation that is between 1.5 and 
3 IQRs from the box, and an extreme outlier is 
an observation that is more than 3 IQRs from 
the box.
a. If the data are normally distributed, what

percentage of values will be mild outliers? What
percentage will be extreme outliers? Why don’t the

answers depend on the mean and/or standard
deviation of the distribution?

b. Check your answers in part a with simulation.
Simulate a large number of normal random numbers
(you can choose any mean and standard deviation),
and count the number of mild and extreme outliers
with appropriate IF functions. Do these match, at
least approximately, your answers to part a?
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5.4 THE BINOMIAL DISTRIBUTION

The normal distribution is undoubtedly the most important probability distribution in sta-
tistics. Not far behind, however, is the binomial distribution. The binomial distribution is
a discrete distribution that can occur in two situations: (1) when sampling from a popula-
tion with only two types of members (males and females, for example), and (2) when
performing a sequence of identical experiments, each of which has only two possible

outcomes.
Imagine any experiment that can be repeated

many times under identical conditions. It is common
to refer to each repetition of the experiment as a
trial. We assume that the outcomes of successive tri-
als are probabilistically independent of one another
and that each trial has only two possible outcomes.
We label these two possibilities generically as suc-
cess and failure. In any particular application the
outcomes might be Democrat/Republican, defec-
tive/nondefective, went bankrupt/remained solvent,
and so on. We label the probability of a success on
each trial as p, and the probability of a failure as 
1 � p. We let n be the number of trials.

Why the Binomial Distribution?

Unlike the normal distribution, which can describe all

sorts of random phenomena, the binomial distribu-

tion is relevant for a very common and specific situa-

tion: the number of successes in a fixed number of

trials, where the trials are probabilistically indepen-

dent and the probability of success remains constant

across trials. Whenever this situation occurs, the

binomial distribution is the relevant distribution.

FUNDAMENTAL INSIGHT

Binomial Distribution

Consider a situation where there are n independent, identical trials, where the
probability of a success on each trial is p and the probability of a failure is 1 � p.
Define X to be the random number of successes in the n trials. Then X has a binomial
distribution with parameters n and p.
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(H,T,T), (T,H,H), (H,T,H), (H,H,T), and (H,H,H). Because of symmetry (the well-
balanced property of the coin), each of these eight possible outcomes must have the same
probability, so each must have probability 1/8. Next, note that one of the outcomes has 
X � 0, three outcomes have X � 1, three outcomes have X � 2, and one outcome has 
X � 3. Therefore, the probability distribution of X is

P(X � 0) � 1/8, P(X � 1) � 3/8, P(X � 2) � 3/8, P(X � 3) � 1/8

This is a special case of the binomial distribution, with n � 3 and p � 0.5. In general,
where n can be any positive integer and p can be any probability between 0 and 1, there is
a rather complex formula for calculating P(X � k) for any integer k from 0 to n. Instead of
presenting this formula, we will discuss how to calculate binomial probabilities in Excel.
You do this with the BINOMDIST function. The general form of this function is

��  BINOMDIST(k,n,p,cum)

The middle two arguments are the number of trials n and the probability of success p on
each trial. The first parameter k is an integer number of successes that you specify. The last
parameter, cum, is either 0 or 1. It is 1 if you want the probability of less than or equal to k
successes, and it is 0 if you want the probability of exactly k successes. We illustrate typi-
cal binomial calculations in the following example.

CHANGES IN EXCEL 2010

As with the new normal functions, there are new binomial functions in Excel 2010.The BINOMDIST

and CRITBINOM functions in the following example have been replaced by BINOM.DIST and

BINOM.INV, but the old functions still work fine. Both versions are indicated in the file for the

following example.
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E X A M P L E 5.7 BATTERY LIFE EXPERIMENT

Suppose that 100 identical batteries are inserted in identical flashlights. Each flashlight
takes a single battery. After eight hours of continuous use, a given battery is still oper-

ating with probability 0.6 or has failed with probability 0.4. Let X be the number of suc-
cesses in these 100 trials, where a success means that the battery is still functioning. Find
the probabilities of the following events: (a) exactly 58 successes, (b) no more than 65 suc-
cesses, (c) less than 70 successes, (d) at least 59 successes, (e) greater than 65 successes,
(f) between 55 and 65 successes (inclusive), (g) exactly 40 failures, (h) at least 35 failures,
and (i) less than 42 failures. Then find the 95th percentile of the distribution of X.

Objective To use Excel’s BINOMDIST and CRITBINOM functions for calculating
binomial probabilities and percentiles in the context of flashlight batteries.

Solution

Figure 5.18 shows the solution to all of these problems. (See the file Binomial
Calculations.xlsx.) The probabilities requested in parts (a) through (f) all involve the num-
ber of successes X. The key to these is the wording of phrases such as “no more than,”
“greater than,” and so on. In particular, you have to be careful to distinguish between prob-
abilities such as P(X � k) and P(X 
 k). The latter includes the possibility of having X � k
and the former does not.
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With this in mind, the probabilities requested in (a) through (f) become:

a. P(X � 58)

b. P(X 	 65)

c. P(X � 70) � P(X 	 69)

d. P(X � 59) � 1 � P(X � 59) � 1 � P(X 	 58)

e. P(X � 65) � 1 � P(X 	 65)

f. P(55 	 X 	 65) � P(X 	 65) � P(X � 55) � P(X 	 65) � P(X 	 54)

Note how we have manipulated each of these so that it includes only terms of the form 
P(X � k) or P(X 	 k) for suitable values of k. These are the types of probabilities that can
be handled directly by the BINOMDIST function. The answers appear in the range
B7:B12, and the corresponding formulas are shown (as labels) in column D. (The Excel
2010 functions do not appear in this figure, but they are included in the file.)

The probabilities requested in (g) through (i) involve failures rather than successes.
But because each trial results in either a success or a failure, the number of failures is also
binomially distributed, with parameters n and 1 � p � 0.4. So in rows 14 through 16 the
requested probabilities are calculated in exactly the same way, except that 1-PSuccess is
subtituted for PSuccess in the third argument of the BINOMDIST function.

Finally, to calculate the 95th percentile of the distribution of X, you can proceed by
trial and error. For each value k from 65 to 70, the probability P(X 	 k) is calculated in col-
umn B with the BINOMDIST function. Note that there is no value k such that P(X 	 k) �
0.95 exactly. Specifically, P(X 	 67) is slightly less than 0.95 and P(X 	 68) is slightly
greater than 0.95. Therefore, the meaning of the “95th percentile” is somewhat ambiguous.
If you want the largest value k such that P(X 	 k) 	 0.95, then this k is 67. If instead you
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

JIHGFEDCBA
Binomial Probability Calcula�ons

Range names used:
Number of 3$B$!sclaCmoniB=slairTN001slairt
Probability of success on each trial 0.6 PSuccess =BinomCalcs!$B$4

alumroFytilibaborPtnevE
Exactly 58 )0,sseccuSP,slairTN,85(TSIDMONIB=2470.0sesseccus
No more than 65 )1,sseccuSP,slairTN,56(TSIDMONIB=7968.0sesseccus
Less than 70 )1,sseccuSP,slairTN,96(TSIDMONIB=2579.0sesseccus
At least 59 1=5226.0sesseccus -BINOMDIST(58,NTrials,PSuccess,1)
Greater than 65 1=3031.0sesseccus -BINOMDIST(65,NTrials,PSuccess,1)
Between 55 and 65 successes (inclusive) 0.7386 =BINOMDIST(65,NTrials,PSuccess,1)-BINOMDIST(54,NTrials,PSuccess,1)

Exactly 40 1,slairTN,04(TSIDMONIB=2180.0seruliaf -PSuccess,0)
At least 35 1=7968.0seruliaf -BINOMDIST(34,NTrials,1-PSuccess,1)
Less than 42 1,slairTN,14(TSIDMONIB=5226.0seruliaf -PSuccess,1)

Finding the 95th percen�le (trial and error)
Trial values CumProb

65 0.8697 =BINOMDIST(A20,NTrials,PSuccess,1)
66 0.9087 (Copy down)
67 0.9385
68 0.9602
69 0.9752
70 0.9852

Formula in cell A27:
68 0.95 =CRITBINOM(NTrials,PSuccess,B27)

Figure 5.18 Typical Binomial Calculations
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want the smallest value k such that P(X 	 k) � 0.95, then this value is 68. The latter inter-
pretation is the one usually accepted for binomial percentiles.

In fact, Excel has another built-in function, CRITBINOM, for finding this value of k.
This function is illustrated in row 27 of Figure 5.18. Now you enter the requested proba-
bility, 0.95, in cell B27 and the formula

��CRITBINOM(NTrials,PSuccess,B27)

in cell A27. It returns 68, the smallest value k such that P(X 	 k) � 0.95 for this binomial
distribution. ■

5.4.1 Mean and Standard Deviation of the Binomial Distribution

It can be shown that the mean and standard deviation of a binomial distribution with para-
meters n and p are given by the following equations.

E(X) � np (5.3)

(5.4)

The formula for the mean is quite intuitive. For example, if you observe 100 trials, each
with probability of success 0.6, your best guess for the number of successes is clearly
100(0.6) � 60. The standard deviation is less obvious but still very useful. It indicates how
far the actual number of successes is likely to deviate from the mean. In this case the stan-
dard deviation is .

Fortunately, the empirical rules discussed in Chapter 2 also apply, at least approximately,
to the binomial distribution. That is, there is about a 95% chance that the actual number of suc-
cesses will be within two standard deviations of the mean, and there is almost no chance that
the number of successes will be more than three standard deviations from the mean. So for this
example, it is very likely that the number of successes will be in the range of approximately 50
to 70, and it is very unlikely that there will be fewer than 45 or more than 75 successes.

This reasoning is extremely useful. It provides a rough estimate of the number of suc-
cesses you are likely to observe. Suppose 1000 parts are sampled randomly from an assembly
line and, based on historical performance, the percentage of parts with some type of defect is
about 5%. Translated into a binomial model, each of the 1000 parts, independently of the
others, has some type of defect with probability 0.05. Would it be surprising to see, say,
75 parts with a defect? The mean is 1000(0.05) � 50 and the standard deviation is

. Therefore, the number of parts with defects is 95% certain to be11000(0.05)(0.95) = 6.89

1100(0.6)(0.4) = 4.90

Stdev(X) = 2np(1 - p)

236 Chapter 5 Normal, Binomial, Poisson, and Exponential Distributions

within 50 � 2(6.89), or approximately from 36 to 64. Because 75 is slightly beyond three
standard deviations from the mean, it is highly unlikely that there would be 75 (or more)
defective parts.

5.4.2 The Binomial Distribution in the Context of Sampling

We now discuss how the binomial distribution applies to sampling from a population with
two types of members. Let’s say these two types are men and women, although in applica-
tions they might be Democrats and Republicans, users of our product and nonusers, and so
on. We assume that the population has N members, of whom NM are men and NW are
women (where NM � NW � N). If you sample n of these randomly, you are typically inter-
ested in the composition of the sample. You might expect the number of men in the sample
to be binomially distributed with parameters n and p � NM/N, the fraction of men in the
population. However, this depends on how the sampling is performed.

If sampling is done without replacement, each member of the population can be sam-
pled only once. That is, once a person is sampled, his or her name is struck from the list and
cannot be sampled again. If sampling is done with replacement, then it is possible, 
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although maybe not likely, to select a given member of the population more than once. Most
real-world sampling is performed without replacement. There is no point in obtaining infor-
mation from the same person more than once. However, the binomial model applies only to
sampling with replacement. Because the composition of the remaining population keeps
changing as the sampling progresses, the binomial model provides only an approximation if
sampling is done without replacement. If there is no replacement, the value of p, the pro-
portion of men in this case, does not stay constant, a requirement of the binomial model.
The appropriate distribution for sampling without replacement is called the hypergeometric
distribution, a distribution we will not discuss here.6

If n is small relative to N, however, the binomial distribution is a very good approxi-
mation to the hypergeometric distribution and can be used even if sampling is performed
without replacement. A rule of thumb is that if n is no greater than 10% of N, that is, no
more than 10% of the population is sampled, then the binomial model can be used safely.
Of course, most national polls sample considerably less than 10% of the population. In
fact, they often sample only a few thousand people from the hundreds of millions in the
entire population. The bottom line is that in most real-world sampling contexts, the bino-
mial model is perfectly adequate.

5.4.3 The Normal Approximation to the Binomial

If you graph the binomial probabilities, you will see an interesting phenomenon—namely,
the graph begins to look symmetric and bell-shaped when n is fairly large and p is not too
close to 0 or 1. An example is illustrated in Figure 5.19 with the parameters n � 30 and 
p � 0.4. Generally, if np � 5 and n(1 – p) > 5, the binomial distribution can be approxi-
mated well by a normal distribution with mean np and standard deviation .

One practical consequence of the normal approximation to the binomial is that the
empirical rules can be applied. That is, when the binomial distribution is approximately
symmetric and bell-shaped, there is about a 68% chance that the number of successes will
be within one standard deviation of the mean. Similarly, there is about a 95% chance that
the number of successes will be within two standard deviations of the mean, and the 

1np11 - p2
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6Excel has a function HYPGEOMDIST for sampling without replacement that works much like the BINOMDIST
function. You can look it up under the Statistical category of Excel functions.

If n is large and p is
not too close to 0 or 1,
the binomial distri-
bution is bell-shaped
and can be approxi-
mated well by the
normal distribution.

Figure 5.19

Bell-shaped

Binomial

Distribution
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Technical Tip: Continuity Correction
Because the normal distribution is continuous and the binomial distribution is discrete, the
normal approximation to the binomial can be improved slightly with a continuity correc-
tion. If you want to approximate a binomial probability such as P(36	X	45), expand the
interval by 0.5 on each end in the normal approximation. That is, approximate with the
normal probability P(35.5	X	45.5). Similarly, approximate binomial P(X	45) with nor-
mal P(X	4.5), or binomial P(X�36) with normal P(X�35.5).

5.5 APPLICATIONS OF THE BINOMIAL DISTRIBUTION

The binomial distribution finds many applications in the business world and elsewhere.
We discuss a few typical applications in this section.

number of successes will almost surely be within three standard deviations of the mean.
Here, the mean is np and the standard deviation is .1np11 - p2
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FUNDAMENTAL INSIGHT

Relationship Between Normal and
Binomial Distributions

If you look at a graph of a binomial distribution when n

is fairly large and p is not too close to 0 or 1, you will

see that the distribution is bell-shaped.This is no acci-

dent. It can be proven mathematically that the normal

distribution provides a very good approximation to the

binomial under these conditions (n large, p not too

close to 0 or 1). One implication is that the empirical

rules from Chapter 2 apply very well to binomial dis-

tributions, using the mean and standard deviation in

Equations (5.3) and (5.4). For example, there is about a

95% chance that the number of successes will be

within two standard deviations of the mean.

E X A M P L E 5.8 IS THIS MUTUAL FUND REALLY A WINNER?

An investment broker at the Michaels & Dodson Company claims that he has found a
real winner. He has tracked a mutual fund that has beaten a standard market index in

37 of the past 52 weeks. Could this be due to chance, or has he really found a winner?

Objective To determine the probability of a mutual fund outperforming a standard market
index at least 37 out of 52 weeks.

Solution

The broker is no doubt tracking a lot of mutual funds, and he is probably reporting only the
best of these. Therefore, we will check whether the best of many mutual funds could do at
least this well purely by chance. To do this, we first specify what we mean by “purely by
chance.” This means that each week, a given fund has a fifty-fifty chance of beating the
market index, independently of performance in other weeks. In other words, the number of
weeks where a given fund outperforms the market index is binomially distributed with 
n � 52 and p � 0.5. With this in mind, cell B6 of Figure 5.20 shows the probability that a
given fund does at least as well—beats the market index at least 37 out of 52 weeks—
as the reported fund. (See the Beating the Market.xlsx file.) Because P(X � 37) �
1 � P(X 	 36), the relevant formula is

��1-BINOMDIST(B3-1,B4,0.5,1)
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Obviously, this probability, 0.00159, is quite small. A single fund isn’t likely to beat the
market this often purely by chance.

5.5 Applications of the Binomial Distribution 239

1
2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18

A B C D E F G
Bea�ng the market

Weeks bea�ng market index 37
Total number of weeks 52

Probability of doing at least
this well by chance 0.00159 =1-BINOMDIST(B3-1,B4,0.5,1)

Number of mutual funds 400
Probability of at least one
doing at least this well 0.471 =1-BINOMDIST(0,B8,B6,1)

Two-way data table of the probability in B9 as a func�on of values in B3 and B8
Number of weeks bea�ng the market index

0.471 36 37 38 39 40
Number of mutual funds 200 0.542 0.273 0.113 0.040 0.013

300 0.690 0.380 0.164 0.060 0.019
400 0.790 0.471 0.213 0.079 0.025
500 0.858 0.549 0.258 0.097 0.031
600 0.904 0.616 0.301 0.116 0.038

However, the probability that the best of many mutual funds does at least this well is
much larger. To calculate this probability, assume that 400 funds are being tracked, and let
Y be the number of these that beat the market at least 37 of 52 weeks. Then Y is also bino-
mially distributed, with parameters n � 400 and p � 0.00159, the probability calculated
previously. To see whether any of the 400 funds beats the market at least 37 of 52 weeks,
calculate P(Y � 1) � 1 – P(Y � 0) in cell B9 with the formula

�1-BINOMDIST(0,B8,B6,1)

(Can you see why the fourth argument could be 0 or 1?) The resulting probability is nearly
0.5—that is, there is nearly a fifty-fifty chance that at least one of 400 funds will do as well
as the reported fund. This certainly casts doubt on the broker’s claim that he has found a
real winner. Perhaps his star fund just got lucky and will perform no better than average in
succeeding weeks.

To see how the probability in cell B9 depends on the level of success of the reported
fund (the value in cell B3) and the number of mutual funds being tracked (in cell B8), you
can create a two-way data table in the range B13:G18. (The formula in cell B13 is ��B9,
the row input cell is B3, and the column input cell is B8.) As you saw, beating the market
37 times out of 52 is no big deal with 400 funds, but beating it 40 times out of 52, even
with 600 funds, is something worth reporting. The probability of this happening purely by
chance is only 0.038, or less than 1 out of 25. ■

The next example requires a normal calculation to find a probability p, which is then
used in a binomial calculation.

E X A M P L E 5.9 ANALYZING DAILY SALES AT A SUPERMARKET

Customers at a supermarket spend varying amounts. Historical data show that the
amount spent per customer is normally distributed with mean $85 and standard 

deviation $30. If 500 customers shop in a given day, calculate the mean and standard 

Figure 5.20

Binomial

Calculations for

Investment Example
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deviation of the number who spend at least $100. Then calculate the probability that at
least 30% of all customers spend at least $100.

Objective To use the normal and binomial distributions to calculate the typical number
of customers who spend at least $100 per day and the probability that at least 30% of all
500 daily customers spend at least $100.

Solution

Both questions involve the number of customers who spend at least $100. Because the
amounts spent are normally distributed, the probability that a typical customer spends at least
$100 is found with the NORMDIST function. This probability, 0.309, appears in cell B7 of
Figure 5.21. (See the file Supermarket Spending.xlsx.) It is calculated with the formula

��1-NORMDIST(100,B4,B5,1)

This probability is then used as the parameter p in a binomial model. The mean and stan-
dard deviation of the number who spend at least $100 are calculated in cells B13 and B14
as np and using , the number of shoppers, and p � 0.309. The
expected number who spend at least $100 is slightly greater than 154, and the standard
deviation of this number is slightly greater than 10.

n = 5001np(1 - p) ,
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To answer the second question, note that 30% of 500 customers is 150 customers.
Then the probability that at least 30% of the customers spend at least $100 is the probabil-
ity that a binomially distributed random variable, with n � 500 and p � 0.309, is at least
150. This binomial probability, which turns out to be about 2/3, is calculated in cell B16
with the formula

��1-BINOMDIST(0.3*B10-1,B10,B7,1)

Note that the first argument calculates to 149. This is because the probability of at
least 150 customers is one minus the probability of less than or equal to 149 customers. ■

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

FEDCBA
Supermarket spending

Amount spent per customer (normally distributed)
58$naeM
03$veDtS

Probability that a customer spends at least $100 0.309 =1-NORMDIST(100,B4,B5,1)

Number of 005sremotsuc

Mean and stdev of number who spend at least $100
7B*01B=72.451naeM

1(*7B*01B(TRQS=33.01veDtS -B7))

Probability at least 30% spend at least $100 0.676 =1-BINOMDIST(0.3*B10-1,B10,B7,1)

Figure 5.21 Calculations for Supermarket Example
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E X A M P L E 5.10 OVERBOOKING BY AIRLINES

This example presents a simplified version of calculations used by airlines when they
overbook flights. They realize that a certain percentage of ticketed passengers will

cancel at the last minute. Therefore, to avoid empty seats, they sell more tickets than there are
seats, hoping that just about the right number of passengers show up. We assume that the 
no-show rate is 10%. In binomial terms, we assume that each ticketed passenger, indepen-
dently of the others, shows up with probability 0.90 and cancels with probability 0.10.

For a flight with 200 seats, the airline wants to see how sensitive various probabilities
are to the number of tickets it issues. In particular, it wants to calculate (a) the probability
that more than 205 passengers show up, (b) the probability that more than 200 passengers
show up, (c) the probability that at least 195 seats are filled, and (d) the probability that at
least 190 seats are filled. The first two of these are “bad” events from the airline’s perspec-
tive; they mean that some customers will be bumped from the flight. The last two events
are “good” in the sense that the airline wants most of the seats to be occupied.

Objective To assess the benefits and drawbacks of airline overbooking.

Solution

To solve the airline’s problem, we use the BINOMDIST function and a data table. The
solution appears in Figure 5.22. (See the file Airline Overbooking.xlsx.) For any number
of tickets issued in cell B6, the required probabilities are calculated in row 10. For exam-
ple, the formulas in cells B10 and D10 are

��1-BINOMDIST(205,NTickets,1-PNoShow,1)

and

��1-BINOMDIST(194,NTickets,1-PNoShow,1)

Note that the condition “more than” requires a slightly different calculation from “at
least.” The probability of more than 205 is one minus the probability of less than or equal
to 205, whereas the probability of at least 195 is one minus the probability of less than or
equal to 194. Also, note that a passenger who shows up is called a success. Therefore, the
third argument of each BINOMDIST function is one minus the no-show probability.

To see how sensitive these probabilities are to the number of tickets issued, we create
a one-way data table at the bottom of the spreadsheet. It is one-way because there is only
one input, the number of tickets issued, even though four output probabilities are tabulated.
(To create the data table, list several possible numbers of tickets issued along the side in
column A and create links to the probabilities in row 10 in row 14. That is, enter the for-
mula �B10 in cell B14 and copy it across row 14. Then form a data table using the range
A14:E24, no row input cell, and column input cell B6.)

The results are as expected. As the airline issues more tickets, there is a larger chance
of having to bump passengers from the flight, but there is also a larger chance of filling
most seats. In reality, the airline has to make a trade-off between these two, taking its vari-
ous costs and revenues into account. ■

The following is another simplified example of a real problem that occurs every time
you watch election returns on TV. This problem is of particular interest in light of the
highly unusual events that took place during election night television coverage of the U.S.
presidential election in 2000, where the networks declared Al Gore an early winner in at
least one state that he eventually lost. The basic question is how soon the networks can
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declare one of the candidates the winner, based on early voting returns. Our example is
somewhat unrealistic because it ignores the possibility that early tabulations can be biased
one way or the other. For example, the earliest reporting precincts might be known to be
more heavily in favor of the Democrat than the population in general. Nevertheless, the
example indicates why the networks are able to make early conclusions based on such
seemingly small amounts of data.
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1
2
3
4
5
6
7
8

9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F
Airline egnaRgnikoobrevo names used:

NTickets =Overbooking!$B$6
Number of ohSoNP002staes w =Overbooking!$B$4
Probability of no-show 0.1

Number of �ckets issued 215

Required probabili�es
More than 205

show up
More than 200

show up
At least 195

seats filled
At least 190

seats filled

0.001 0.050 0.421 0.820

Data table showing sensi�vity of probabili�es to number of �ckets issued

Number of �ckets issued
More than 205

show up
More than 200

show up
At least 195

seats filled
At least 190

seats filled
0.001 0.050 0.421 0.820

4 0.384

4 0.370 0.839 0.978
4 0.607 0.939 0.995

206 0.000 0.000 0.012 0.171
209 0.000 0.001 0.06
212 0.000 0.009 0.201 0.628
215 0.001 0.050 0.421 0.820
218 0.013 0.166 0.659 0.931
221 0.06
224 0.19
227 0.406 0.802 0.981 0.999
230 0.639 0.920 0.995 1.000
233 0.822 0.974 0.999 1.000

Figure 5.22 Binomial Calculations for Overbooking Example

E X A M P L E 5.11 PROJECTING ELECTION WINNERS FROM EARLY RETURNS

We assume that there are N voters in the population, of whom NR will vote for the
Republican and ND will vote for the Democrat. The eventual winner will be the

Republican if NR � ND and will be the Democrat otherwise, but we won’t know which
until all of the votes are tabulated. (To simplify the example, we assume there are only two
candidates and that the election will not end in a tie.) Let’s suppose that a small percentage
of the votes have been counted and the Republican is currently ahead 540 to 460. On what
basis can the networks declare the Republican the winner, especially if there are millions
of voters in the population?
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Objective To use a binomial model to determine whether early returns reflect the even-
tual winner of an election between two candidates.

Solution

Let n � 1000 be the total number of votes that have been tabulated. If X is the number of
Republican votes so far, we are given that X � 540. Now we pose the following question.
If the Democrat were going to be the eventual winner, that is, ND � NR, and we randomly
sampled 1000 voters from the population, how likely is it that at least 540 of these voters
would be in favor of the Republican? If this is very unlikely, then the only reasonable
conclusion is that the Democrat will not be the eventual winner. This is the reasoning the
networks might use to declare the Republican the winner so early in the tabulation.

We use a binomial model to see how unlikely the event “at least 540 out of 1000” is,
assuming that the Democrat will be the eventual winner. We need a value for p, the proba-
bility that a typical vote is for the Republican. This probability should be the proportion of
voters in the entire population who favor the Republican. All we know is that this probabil-
ity is less than 0.5, because we have assumed that the Democrat will eventually win. In
Figure 5.23, we show how the probability of at least 540 out of 1000 varies with values of p
less than, but close to, 0.5. (See the file Election Returns.xlsx.)

We enter a trial value of 0.49 for p in cell B3 and then calculate the required probabil-
ity in cell B9 with the formula

��1-BINOMDIST(B6-1,B5,B3,1)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

FEDCBA
Elec�on returns

Popula�on propor�on for Republican 0.49

Votes tabulated so 0001raf
Votes for Republican so far 540

Binomial probability of at least this many votes for Republican
0.0009 =1-BINOMDIST(B6-1,B5,B3,1)

Data table showing sensi�vity of this probability to popula�on propor�on for Republican
Popula�on propor�on for Republican Probability

0.0009
0.490 0.0009
0.492 0.0013
0.494 0.0020
0.496 0.0030
0.498 0.0043
0.499 0.0052

Figure 5.23 Binomial Calculations for Voting Example
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Then we use this to create the data table at the bottom of the spreadsheet. This data table
tabulates the probability of the given lead (at least 540 out of 1000) for various values of p
less than 0.5. As shown in the last few rows, even if the eventual outcome were going to be
a virtual tie—with the Democrat slightly ahead—there would still be very little chance of
the Republican being at least 80 votes ahead so far. But because the Republican is cur-
rently ahead by 80 votes, the networks feel safe in declaring the Republican the winner.
Admittedly, the probability model they use is more complex than our simple binomial
model, but the idea is the same. ■

The final example in this section challenges the two assumptions of the binomial model.
So far, we have assumed that the outcomes of successive trials have the same probability p
of success and are probabilistically independent. There are many situations where either or
both of these assumptions are questionable. For example, consider successive items from a
production line, where each item either meets specifications (a success) or doesn’t (a fail-
ure). If the process deteriorates over time, at least until it receives maintenance, the proba-
bility p of success will slowly decrease. But even if p remains constant, defective items
could come in bunches (because of momentary inattentiveness on the part of a worker,
say), which would invalidate the independence assumption.

If you believe that the binomial assumptions are invalid, then you must specify an
alternative model that reflects reality more closely. This is not easy—all kinds of nonbino-
mial assumptions can be imagined. Furthermore, when you make such assumptions, there
are probably no simple formulas to use, such as the BINOMDIST formulas we have been
using. Simulation might be the only (simple) alternative, as illustrated in the following
example.
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7There are obviously a lot of extenuating circumstances surrounding any shot: the type of shot (layup versus jump
shot), the type of defense, the score, the time left in the game, and so on. For this example, we focus on a pure
jump shooter who is unaffected by the various circumstances in the game.

E X A M P L E 5.12 STREAK SHOOTING IN BASKETBALL

Do basketball players shoot in streaks? This question has been debated by thousands of
basketball fans, and it has been studied statistically by academic researchers. Most fans

believe the answer is yes, arguing that players clearly alternate between hot streaks where
they can’t miss and cold streaks where they can’t hit the broad side of a barn. This situation
does not fit a binomial model where, say, a “450 shooter” has a 0.450 probability of making
each shot and a 0.550 probability of missing, independently of other shots. If the binomial
model does not apply, what model is appropriate, and how could it be used to calculate a
typical probability such as the probability of making at least 13 shots out of 25 attempts?7

Objective To formulate a nonbinomial model of basketball shooting, and to use it to find
the probability of a “450 shooter” making at least 13 out of 25 shots.

Solution

This example is quite open-ended. There are numerous alternatives to the binomial model
that could capture the “streakiness” most fans believe in, and the one we suggest here is by
no means the only possibility. We challenge you to develop others.

The model we propose assumes that this shooter makes 45% of his shots in the long
run. The probability that he makes his first shot in a game is 0.45. In general, consider 
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his nth shot. If he has made his last k shots, we assume the probability of making shot n is 
0.45 � kd1. On the other hand, if he has missed his last k shots, we assume the probability
of making shot n is 0.45 – kd2. Here, d1 and d2 are small values (0.01 and 0.02, for exam-
ple) that indicate how much the shooter’s probability of success increases or decreases
depending on his current streak. The model implies that the shooter gets better the more
shots he makes and worse the more he misses.

5.5 Applications of the Binomial Distribution 245

To implement this model, we use simulation as shown in Figure 5.24 (with many hidden
rows). (See the file Basketball Simulation.xlsx.) Actually, we first do a baseline binomial
calculation in cell B9, using the parameters n � 25 and p � 0.450. The formula in cell B9 is

��1-BINOMDIST(12,B7,B3,1)

If the player makes each shot with probability 0.45, independently of the other shots, 
then the probability that he will make over half of his 25 shots is 0.306—about 
a 30% chance. (Remember that this is a binomial calculation for a situation where the
binomial distribution probably does not apply.) The simulation in the range A17:D41

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
37
38
39
40
41
42
43

265
266
267

A B C D E F G H I
Basketball shoo�ng simula�on

Long-run average 0.45
Increment d1 a�er a make 0.015
Increment d2 a�er a miss 0.015

Number of shots 25

Binomial probability of at
least 13 out of 25 0.306

Summary sta�s�cs from simula�on noitcarFwoleb of reps with at least 13 from table below
Number of 272.041sekam
At least 13 makes? 1

Simula�on of makes and misses using nonbinomial model Data table to replicate 25 shots many �mes
Shot Streak P(make) Make? Rep At least 13?

1054.0AN1
2 -
3 -
4 -

21 -
22 -

24 -
25 -

1 0.435 0 1 0
2 0.42 0 2 1
3 0.405 1 3 1

5 1 0.465 1 4 0
1 0.435 0 20 0
2 0.42 1 21 0

23 1 0.465 0 22 1
1 0.435 0 23 1
2 0.42 1 24 0

25 1
26 0

248 0
249 0
250 1

Compare these

Figure 5.24 Simulation of Basketball Shooting Model
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shows the results of 25 random shots according to the nonbinomial model we have
assumed. Column B indicates the length of the current streak, where a negative value
indicates a streak of misses and a positive value indicates a streak of makes. Column C
indicates the probability of a make on the current shot, and column D contains 1s for
makes and 0s for misses. Here are step-by-step instructions for developing this range.

1 First shot. Enter the formulas

��B3

and

��IF(RAND()<C17,1,0)

in cells C17 and D17 to determine the outcome of the first shot.

2 Second shot. Enter the formulas

��IF(D17��0,-1,1)

��IF(B18��0,$B$3��B18*$B$5,$B$3��B18*$B$4)

and

��IF(RAND()C18,1,0)

in cells B18, C18, and D18. The first of these indicates that by the second shot, the shooter
will have a streak of one make or one miss. The second formula is the important one. It
indicates how the probability of a make changes depending on the current streak. The third
formula simulates a make or a miss, using the probability in cell C18.

3 Length of streak on third shot. Enter the formula

��IF(AND(B18��0,D18��0),B18-1, IF(AND(B18��0,D18��1),1,

IF(AND(B18��0,D18��0),��1,B18��1)))

in cell B19 and copy it down column B. This nested IF formula checks for all four combi-
nations of the previous streak (negative or positive, indicated in cell B18) and the most
recent shot (make or miss, indicated in cell D18) to see whether the current streak contin-
ues by 1 or a new streak starts.

4 Results of remaining shots. The logic for the formulas in columns C and D is the
same for the remaining shots as for shot 2, so copy the formulas in cells C18 and D18
down their respective columns.

5 Summary of 25 shots. Enter the formulas

��SUM(D17:D41)

and

��IF(B12���13,1,0)

in cells B12 and B13 to summarize the results of the 25 simulated shots. In particular, the
value in cell B13 is 1 only if at least 13 of the shots are successes.

What about the probability of making at least 13 shots with this nonbinomial model?
So far, we have simulated one set of 25 shots and have reported whether at least 13 of the
shots are successes. We need to replicate this simulation many times and report the fraction
of the replications where at least 13 of the shots are successes. We do this with a data table
in columns F and G.

To create this table, enter the replication numbers 1 through 250 (you could use 
any number of replications) in column F. Then put a link to B13 in cell G17 by entering the
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formula �� B13 in this cell. Essentially, we are recalculating this value 250 times, each
with different random numbers. To do this, highlight the range F17:G267, and create a data
table with no row input cell and any blank cell (such as F17) as the column input cell. This
causes Excel to recalculate the basic simulation 250 times, each time with different ran-
dom numbers. (This trick of using a blank column input cell will be discussed in more
detail in Chapter 15.) Finally, enter the formula

��AVERAGE(G18:G267)

in cell F12 to calculate the fraction of the replications with at least 13 makes out of 25
shots.

After finishing all of this, note that the spreadsheet is “live” in the sense that if you
press the F9 recalculation key, all of the simulated quantities change with new random
numbers. In particular, the estimate in cell F12 of the probability of at least 13 makes out
of 25 shots changes. It is sometimes less than the binomial probability in cell B9 and some-
times greater. In general, the two probabilities are roughly the same. The bottom line?
Even if the world doesn’t behave exactly as the binomial model indicates, probabilities of
various events can often be approximated fairly well by binomial probabilities—which
saves you the trouble of developing and working with more complex models. ■
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P R O B L E M S

Level A

19. In a typical month, an insurance agent presents life
insurance plans to 40 potential customers. Historically,
one in four such customers chooses to buy life
insurance from this agent. Based on the relevant
binomial distribution, answer the following questions:
a. What is the probability that exactly five customers

will buy life insurance from this agent in the
coming month?

b. What is the probability that no more than 10
customers will buy life insurance from this agent in
the coming month?

c. What is the probability that at least 20 customers
will buy life insurance from this agent in the
coming month?

d. Determine the mean and standard deviation of the
number of customers who will buy life insurance
from this agent in the coming month.

e. What is the probability that the number of
customers who buy life insurance from this agent
in the coming month will lie within two standard
deviations of the mean?

f. What is the probability that the number of
customers who buy life insurance from this agent
in the coming month will lie within three standard
deviations of the mean?

20. Continuing the previous exercise, use the normal
approximation to the binomial to answer each of the
questions posed in parts a through f. How well does the
normal approximation perform in this case? Explain.

21. Many vehicles used in space travel are constructed
with redundant systems to protect flight crews and
their valuable equipment. In other words, backup
systems are included within many vehicle components
so that if one or more systems fail, backup systems
will assure the safe operation of the given component
and thus the entire vehicle. For example, consider one
particular component of the U.S. space shuttle that 
has n duplicated systems (i.e., one original system
and n � 1 backup systems). Each of these systems
functions, independently of the others, with proba-
bility 0.98. This shuttle component functions
successfully provided that at least one of the n
systems functions properly.
a. Find the probability that this shuttle component

functions successfully if n � 2.
b. Find the probability that this shuttle component

functions successfully if n � 4.
c. What is the minimum number n of duplicated

systems that must be incorporated into this shuttle
component to ensure at least a 0.9999 probability
of successful operation?

22. Suppose that a popular hotel for vacationers in
Orlando, Florida, has a total of 300 identical rooms.
As many major airline companies do, this hotel has
adopted an overbooking policy in an effort to
maximize the usage of its available lodging capacity.
Assume that each potential hotel customer holding a
room reservation, independently of other customers,
cancels the reservation or simply does not show up at
the hotel on a given night with probability 0.15.
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a. Find the largest number of room reservations that
this hotel can book and still be at least 95% sure
that everyone who shows up at the hotel will have a
room on a given night.

b. Given that the hotel books the number of
reservations found in part a, find the probability
that at least 90% of the available rooms will be
occupied on a given night.

c. Given that the hotel books the number of
reservations found in part a, find the probability
that at most 80% of the available rooms will be
occupied on a given night.

d. How does your answer to part a change as the
required assurance rate increases from 95% to 97%?
How does your answer to part a change as the
required assurance rate increases from 95% to 99%?

e. How does your answer to part a change as the
cancellation rate varies between 5% and 25% (in
increments of 5%)? Assume now that the required
assurance rate remains at 95%.

23. A production process manufactures items with weights
that are normally distributed with mean 15 pounds and
standard deviation 0.1 pound. An item is considered to
be defective if its weight is less than 14.8 pounds or
greater than 15.2 pounds. Suppose that these items are
currently produced in batches of 1000 units.
a. Find the probability that at most 5% of the items in

a given batch will be defective.
b. Find the probability that at least 90% of the items

in a given batch will be acceptable.
c. How many items would have to be produced in a

batch to guarantee that a batch consists of no more
than 1% defective items?

24. Past experience indicates that 30% of all individuals
entering a certain store decide to make a purchase.
Using (a) the binomial distribution and (b) the normal
approximation to the binomial, find that probability
that 10 or more of the 30 individuals entering the store
in a given hour will decide to make a purchase.
Compare the results obtained using the two different
approaches. Under what conditions will the normal
approximation to this binomial probability become
even more accurate?

25. Suppose that the number of ounces of soda put into a
soft-drink can is normally distributed with � � 12.05
ounces and � � 0.03 ounce.
a. Legally, a can must contain at least 12 ounces of

soda. What fraction of cans will contain at least 12
ounces of soda?

b. What fraction of cans will contain less than 11.9
ounces of soda?

c. What fraction of cans will contain between 12 and
12.08 ounces of soda?

d. One percent of all cans will weigh more than what
value?

e. Ten percent of all cans will weigh less than what
value?

f. The soft-drink company controls the mean weight
in a can by setting a timer. For what mean should
the timer be set so that only 1 in 1000 cans will be
underweight?

g. Every day the company produces 10,000 cans. The
government inspects 10 randomly chosen cans
each day. If at least two are underweight, the
company is fined $10,000. Given that � � 12.05
ounces and � � 0.03 ounce, what is the probability
that the company will be fined on a given day?

26. Suppose that 53% of all registered voters prefer
Barack Obama to John McCain. (You can substitute
the names of the current presidential candidates if you
like.)
a. In a random sample of 100 voters, what is the

probability that the sample will indicate that
Obama will win the election (that is, there will be
more votes in the sample for Obama)?

b. In a random sample of 100 voters, what is the
probability that the sample will indicate that
McCain will win the election?

c. In a random sample of 100 voters, what is the
probability that the sample will indicate a dead heat
(fifty-fifty)?

d. In a random sample of 100 voters, what is the
probability that between 40 and 60 (inclusive)
voters will prefer Obama?

27. Assume that, on average, 95% of all ticket holders
show up for a flight. If a plane seats 200 people, how
many tickets should be sold to make the chance of an
overbooked flight as close as possible to 5%?

28. Suppose that 55% of all people prefer Coke to Pepsi.
We randomly choose 500 people and ask them if they
prefer Coke to Pepsi. What is the probability that our
survey will (erroneously) indicate that Pepsi is
preferred by more people than Coke? Does this
probability increase or decrease as we take larger and
larger samples? Why?

29. A firm’s office contains 150 PCs. The probability that
a given PC will not work on a given day is 0.05.
a. On a given day what is the probability that exactly

one computer will not be working?
b. On a given day what is the probability that at least

two computers will not be working?
c. What assumptions do your answers in parts a and b

require? Do you think they are reasonable? Explain.

30. Suppose that 4% of all tax returns are audited. In a
group of n tax returns, consider the probability that at
most two returns are audited. How large must n be
before this probability is less than 0.01?

31. Suppose that the height of a typical American female
is normally distributed with � � 64 inches and � � 4
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inches. We observe the height of 500 American
females.
a. What is the probability that fewer than 35 of the

500 women will be less than 58 inches tall?
b. Let X be the number of the 500 women who are

less than 58 inches tall. Find the mean and standard
deviation of X.

32. Consider a large population of shoppers, each of
whom spends a certain amount during his or her
current shopping trip; the distribution of these
amounts is normally distributed with mean $55 and
standard deviation $15. We randomly choose 25 of
these shoppers. What is the probability that at least
15 of them spend between $45 and $75?

Level B

33. Many firms utilize sampling plans to control the
quality of manufactured items ready for shipment.
To illustrate the use of a sampling plan, suppose that a
particular company produces and ships electronic
computer chips in lots, each lot consisting of 1000
chips. This company’s sampling plan specifies that
quality control personnel should randomly sample 50
chips from each lot and accept the lot for shipping if
the number of defective chips is four or fewer. The lot
will be rejected if the number of defective chips is five
or more.
a. Find the probability of accepting a lot as a function

of the actual fraction of defective chips. In
particular, let the actual fraction of defective chips
in a given lot equal any of 0.02, 0.04, 0.06, 0.08,
0.10, 0.12, 0.14, 0.16, 0.18. Then compute the lot
acceptance probability for each of these lot
defective fractions.

b. Construct a graph showing the probability of lot
acceptance for each of the lot defective fractions,
and interpret your graph.

c. Repeat parts a and b under a revised sampling plan
that calls for accepting a given lot if the number of
defective chips found in the random sample of 50
chips is five or fewer. Summarize any notable
differences between the two graphs.

34. Suppose you play a game at a casino where your
probability of winning each game is 0.49. On each
game, you bet $10, which you either win or lose. Let
P(n) be the probability that you are ahead by at least
$50 after n games. Graph this probability versus n for
n equal to multiples of 50 up to 1000. Discuss the
behavior of this function and why it behaves as it does.

35. Comdell Computer receives computer chips from
Chipco. Each batch sent by Chipco is inspected as
follows: 35 chips are tested and the batch passes
inspection if at most one defective chip is found in the
set of 35 tested chips. Past history indicates an average
of 1% of all chips produced by Chipco are defective.

Comdell has received 10 batches this week. What is
the probability that at least nine of the batches will
pass inspection?

36. A standardized test consists entirely of multiple-choice
questions, each with five possible choices. You want to
ensure that a student who randomly guesses on each
question will obtain an expected score of zero. How
can you accomplish this?

37. In the current tax year, suppose that 5% of the millions
of individual tax returns are fraudulent. That is, they
contain errors that were purposely made to cheat the
government.
a. Although these errors are often well concealed,

let’s suppose that a thorough IRS audit will
uncover them. If a random 250 tax returns are
audited, what is the probability that the IRS will
uncover at least 15 fraudulent returns?

b. Answer the same question as in part a, but this
time assume there is only a 90% chance that a
given fraudulent return will be spotted as such if it
is audited.

38. Suppose you work for a survey research company. In a
typical survey, you mail questionnaires to 150
companies. Of course, some of these companies might
decide not to respond. Assume that the nonresponse
rate is 45%; that is, each company’s probability of not
responding, independently of the others, is 0.45. 
a. If your company requires at least 90 responses for

a valid survey, find the probability that it will get
this many. Use a data table to see how your answer
varies as a function of the nonresponse rate (for a
reasonable range of response rates surrounding
45%).

b. Suppose your company does this survey in two
“waves.” It mails the 150 questionnaires and waits
a certain period for the responses. As before,
assume that the nonresponse rate is 45%. However,
after this initial period, your company follows up
(by telephone, say) on the nonrespondents, asking
them to please respond. Suppose that the
nonresponse rate on this second wave is 70%; that
is, each original nonrespondent now responds with
probability 0.3, independently of the others. Your
company now wants to find the probability of
obtaining at least 110 responses total. It turns out
that this is a difficult probability to calculate
directly. So instead, approximate it with
simulation.

39. Suppose you are sampling from a large population, and
you ask the respondents whether they believe men should
be allowed to take paid paternity leave from their jobs
when they have a new child. Each person you sample is
equally likely to be male or female. The population
proportion of females who believe males should be
granted paid paternity leave is 56%, and the population
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proportion of males who favor it is 48%. If you sample
200 people and count the number who believe males
should be granted paternity leave, is this number
binomially distributed? Explain why or why not. Would
your answer change if you knew your sample was going
to consist of exactly 100 males and 100 females?

40. A woman claims that she is a fortune-teller.
Specifically, she claims that she can predict the
direction of the change (up or down) in the Dow Jones
Industrial Average for the next 10 days (such as U, U,

D, U, D, U, U, D, D, D). (You can assume that she
makes all 10 predictions right now, although that does
not affect your answer to the question.) Obviously, you
are skeptical, thinking that she is just guessing, so you
would be surprised if her predictions are accurate.
Which would surprise you more: (1) she predicts at
least 8 out of 10 correctly, or (2) she predicts at least 6
out of 10 correctly on each of four separate occasions?
Answer by assuming that (1) she is really guessing and
(2) each day the Dow is equally likely to go up or down.

5.6 THE POISSON AND EXPONENTIAL DISTRIBUTIONS

The final two distributions in this chapter are called the Poisson and exponential distribu-
tions. In most statistical applications, including those in the rest of this book, these distrib-
utions play a much less important role than the normal and binomial distributions. For this
reason, we will not analyze them in as much detail. However, in many applied manage-
ment science models, the Poisson and exponential distributions are key distributions. For
example, much of the study of probabilistic inventory models, queuing models, and relia-
bility models relies heavily on these two distributions.

5.6.1 The Poisson Distribution

The Poisson distribution is a discrete distribution. It usually applies to the number of
events occurring within a specified period of time or space. Its possible values are all of the
nonnegative integers: 0, 1, 2, and so on—there is no upper limit. Even though there is an
infinite number of possible values, this causes no real problems because the probabilities
of all sufficiently large values are essentially 0.

The Poisson distribution is characterized by a single parameter, usually labeled  (Greek
lambda), which must be positive. By adjusting the value of , we are able to produce differ-
ent Poisson distributions, all of which have the same basic shape as in Figure 5.25. That is,
they first increase and then decrease. It turns out that  is easy to interpret. It is both the mean
and the variance of the Poisson distribution. Therefore, the standard deviation is .

Typical Examples of the Poisson Distribution

1. A bank manager is studying the arrival pattern to the bank. The events are customer
arrivals, the number of arrivals in an hour is Poisson distributed, and  represents the
expected number of arrivals per hour.

2. An engineer is interested in the lifetime of a type of battery. A device that uses this
type of battery is operated continuously. When the first battery fails, it is replaced by
a second; when the second fails, it is replaced by a third, and so on. The events are
battery failures, the number of failures that occur in a month is Poisson distributed,
and  represents the expected number of failures per month.

3. A retailer is interested in the number of customers who order a particular product in a
week. Then the events are customer orders for the product, the number of customer
orders in a week is Poisson distributed, and  is the expected number of orders per week.

4. In a quality control setting, the Poisson distribution is often relevant for describing
the number of defects in some unit of space. For example, when paint is applied to
the body of a new car, any minor blemish is considered a defect. Then the number of
defects on the hood, say, might be Poisson distributed. In this case,  is the expected
number of defects per hood. 

1l
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These examples are representative of the many situations where the Poisson distribution has
been applied. The parameter  is often called a rate—arrivals per hour, failures per month, and
so on. If the unit of time is changed, the rate must be modified accordingly. For example, if the
number of arrivals to a bank in a single hour is Poisson distributed with rate  � 30, then the
number of arrivals in a half-hour period is Poisson distributed with rate  � 15.

We can use Excel to calculate Poisson probabilities much as we did with binomial
probabilities. The relevant function is the POISSON function. It takes the form

��POISSON(k,,cum)

The third argument cum works exactly as in the binomial case. If it is 0, the function returns
P(X � k); if it is 1, the function returns P(X 	 k). As examples, if  � 5, ��POISSON(7,5,0)
returns the probability of exactly 7, ��POISSON(7,5,1) returns the probability of less than or
equal to 7, and ��1-POISSON(3,5,1) returns the probability of greater than 3.

CHANGES IN EXCEL 2010

The POISSON function has been replaced in Excel 2010 by POISSON.DIST. Either version can be

used, and they work exactly the same way. Both versions are shown in the file for the following

example. (Curiously, there is still no POISSON.INV function.)

The following example shows how a manager or consultant could use the Poisson 
distribution.
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E X A M P L E 5.13 MANAGING TV INVENTORY AT KRIEGLAND

Kriegland is a department store that sells various brands of flat-screen TVs. One of the
manager’s biggest problems is to decide on an appropriate inventory policy for stocking

TVs. He wants to have enough in stock so that customers receive their requests right away,
but he does not want to tie up too much money in inventory that sits on the storeroom floor.

Most of the difficulty results from the unpredictability of customer demand. If this
demand were constant and known, the manager could decide on an appropriate inventory
policy fairly easily. But the demand varies widely from month to month in a random manner.
All the manager knows is that the historical average demand per month is approximately 17.
Therefore, he decides to call in a consultant. The consultant immediately suggests using a
probability model. Specifically, she attempts to find the probability distribution of demand in
a typical month. How might she proceed?

Objective To model the probability distribution of monthly demand for flat-screen TVs
with a particular Poisson distribution.

Solution

Let X be the demand in a typical month. The consultant knows that there are many possible
values of X. For example, if historical records show that monthly demands have always been
between 0 and 40, the consultant knows that almost all of the probability should be assigned
to the values 0 through 40. However, she does not relish the thought of finding 41 probabil-
ities, P(X � 0) through P(X � 40), that sum to 1 and reflect historical frequencies. Instead,
she discovers from the manager that the histogram of demands from previous months is
shaped much like the graph in Figure 5.25. That is, it rises to some peak and then falls.
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Knowing that a Poisson distribution has this same basic shape, the consultant decides
to model the monthly demand with a Poisson distribution. To choose a particular Poisson
distribution, all she has to do is choose a value of , the mean demand per month. Because
the historical average is approximately 17, she chooses  � 17. Now she can test the
Poisson model by calculating probabilities of various events and asking the manager
whether these probabilities are reasonable approximations to reality.

For example, the Poisson probability that monthly demand is less than or equal to 20,
P(X 	 20), is 0.805 [using the Excel function POISSON(20,17,1)], and the probability
that demand is between 10 and 15 inclusive, P(10 	 X 	 15), is 0.345 [using POIS-
SON(15,17,1)-POISSON(9,17,1)]. Figure 5.26 illustrates various probability calculations
and shows the graph of the individual Poisson probabilities. (See the file Poisson Demand
Distribution.xlsx.)

If the manager believes that these probabilities and other similar probabilities are rea-
sonable, then the statistical part of the consultant’s job is finished. Otherwise, she must try
a different Poisson distribution—a different value of —or perhaps a different type of
distribution altogether. ■

5.6.2 The Exponential Distribution

Suppose that a bank manager is studying the pattern of customer arrivals at her branch
location. As indicated previously in this section, the number of arrivals in an hour at a
facility such as a bank is often well described by a Poisson distribution with parameter ,
where  represents the expected number of arrivals per hour. An alternative way to view
the uncertainty in the arrival process is to consider the times between customer arrivals.
The most common probability distribution used to model these times, often called interar-
rival times, is the exponential distribution.

In general, the continuous random variable X has an exponential distribution 
with parameter  (with  � 0) if the density function of X has the form f(x) � e–x for 
x � 0. This density function has the shape shown in Figure 5.27. Because this density
function decreases continuously from left to right, its most likely value is x � 0.
Alternatively, if you collect many observations from an exponential distribution and draw
a histogram of the observed values, then you should expect it to resemble the smooth curve
shown in Figure 5.27, with the tallest bars to the left. The mean and standard deviation of
this distribution are easy to remember. They are both equal to the reciprocal of the para-
meter . For example, an exponential distribution with parameter  � 0.1 has mean and
standard deviation both equal to 10.

Figure 5.25

Typical Poisson

Distribution
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As with the normal distribution, you usually want probabilities to the left or right of
a given value. For any exponential distribution, the probability to the left of a given value 
x � 0 can be calculated with Excel’s EXPONDIST function. This function takes the form

�EXPONDIST(x, , 1)
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Mean monthly demand ( ) 17 Mean =Sheet1!$B$3

Representa�ve probability calcula�ons
Less than or equal to 20 0.805 =POISSON(20,Mean,1)
Between 10 and 15 (inclusive) 0.345 =POISSON(15,Mean,1)-POISSON(9,Mean,1)
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17 0.096
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24 0.023
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Figure 5.26 Poisson Calculations for TV Example
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For example, if x � 0.5 and  � 5 (so that the mean equals 1/5 � 0.2), the probability of
being less than 0.5 can be found with the formula

��EXPONDIST(0.5, 5, 1)

This returns the probability 0.918. Of course, the probability of being greater than 0.5 is
then 1 � 0.918 � 0.082.

CHANGES IN EXCEL 2010

The EXPONDIST function has been replaced in Excel 2010 by EXPON.DIST. Either version can be

used, and they work exactly the same way. (As with the Poisson distribution, there is no

EXPON.INV function.)

Returning to the bank manager’s analysis of customer arrival data, when the times
between arrivals are exponentially distributed, you sometimes hear that “arrivals occur
according to a Poisson process.” This is because there is a close relationship between the
exponential distribution, which measures times between events such as arrivals, and 
the Poisson distribution, which counts the number of events in a certain length of time. The
details of this relationship are beyond the level of this book, so we will not explore the
topic further. But if you hear, for example, that customers arrive at a facility according to a
Poisson process at the rate of six per hour, then the corresponding times between arrivals
are exponentially distributed with mean 1/6 hour.
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Figure 5.27

Exponential Density

Function

P R O B L E M S

Level A

41. The annual number of industrial accidents occurring in
a particular manufacturing plant is known to follow a
Poisson distribution with mean 12.
a. What is the probability of observing exactly 12

accidents during the coming year?

b. What is the probability of observing no more than
12 accidents during the coming year?

c. What is the probability of observing at least 15
accidents during the coming year?

d. What is the probability of observing between 10
and 15 accidents (inclusive) during the coming
year?
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e. Find the smallest integer k such that we can be at
least 99% sure that the annual number of accidents
occurring will be less than k.

42. Suppose that the number of customers arriving each
hour at the only checkout counter in a local pharmacy
is approximately Poisson distributed with an expected
arrival rate of 20 customers per hour.
a. Find the probability that exactly 10 customers

arrive in a given hour.
b. Find the probability that at least five customers

arrive in a given hour.
c. Find the probability that no more than 25

customers arrive in a given hour.
d. Find the probability that between 10 and 30

customers (inclusive) arrive in a given hour.
e. Find the largest integer k such that we can be at

least 95% sure that the number of customers
arriving in a given hour will be greater than k.

f. Recalling the relationship between the Poisson and
exponential distributions, find the probability that
the time between two successive customer arrivals
is more then four minutes. Find the probability that
it is less than two minutes.

43. Suppose the number of baskets scored by the Indiana
University basketball team in one minute follows a
Poisson distribution with  � 1.5. In a 10-minute span
of time, what is the probability that Indiana University
scores exactly 20 baskets; at most 20 baskets? (Use the
fact that if the rate per minute is , then the rate in t
minutes is t.)

44. Suppose that the times between arrivals at a bank
during the peak period of the day are exponentially

distributed with a mean of 45 seconds. If you just
observed an arrival, what is the probability that you
will need to wait for more than a minute before
observing the next arrival? What is the probability you
will need to wait at least two minutes?

Level B

45. Consider a Poisson random variable X with parameter
 � 2.
a. Find the probability that X is within one standard

deviation of its mean.
b. Find the probability that X is within two standard

deviations of its mean.
c. Find the probability that X is within three standard

deviations of its mean.
d. Do the empirical rules we learned previously seem

to be applicable in working with the Poisson
distribution where  � 2? Explain why or why not.

e. Repeat parts a through d for the case of a Poisson
random variable where  � 20.

46. Based on historical data, the probability that a major
league pitcher pitches a no-hitter in a game is about
1/1300.
a. Use the binomial distribution to determine the

probability that in 650 games 0, 1, 2, or 3 no-hitters
will be pitched. (Find the separate probabilities of
these four events.)

b. Repeat part a using the Poisson approximation to
the binomial. This approximation says that if n is
large and p is small, a binomial distribution with
parameters n and p is approximately the same as a
Poisson distribution with  � np.

5.7 FITTING A PROBABILITY DISTRIBUTION TO DATA WITH @RISK8

The normal, binomial, Poisson, and exponential distributions are four of the most
commonly used distributions in real applications. However, many other discrete and
continuous distributions are also used. These include the uniform, triangular, Erlang,
lognormal, gamma, Weibull, and others. How do you know which to choose for any
particular application? One way to answer this is to check which of several potential
distributions fits a given set of data most closely. Essentially, you compare a histogram
of the data with the theoretical probability distributions available and see which gives
the best fit.

The @RISK add-in, part of the Palisade DecisionTools suite, makes this fairly easy, as
we illustrate in the following example. (Many other features of @RISK are discussed in
depth in Chapters 15 and 16.)

8In a previous edition, we showed how to do this with Palisade’s stand-alone program BestFit. Because @RISK
incorporates all the functionality of BestFit, and because BestFit is not included in the current version of the
Palisade suite, you should now use @RISK.
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The supermarket manager would like to check whether these data are normally dis-
tributed or whether some other distribution fits them better. How can he tell?

Objective To use @RISK to determine which probability distribution fits the given data best.

Solution

To open @RISK, click on the Windows Start button, find the Palisade group, and click on
@RISK. If Excel is already open, this opens @RISK on top of it. If Excel isn’t open, this
launches Excel and @RISK. You will know that @RISK is open when you see the @RISK
tab and the associated ribbon in Figure 5.29. For now, choose the Distribution Fitting item.
From here, you can go in one of two ways. You can test the fit of a given distribution, or you
can find the best-fitting distribution from a number of candidates. Both are now illustrated.

Because the supermarket manager wants to know whether the data could come from a
normal distribution, check this possibility first. To do so, select Fit Manager from the
Distribution Fitting dropdown menu. The first step is to define a data set, as in Figure 5.30.

256 Chapter 5 Normal, Binomial, Poisson, and Exponential Distributions

1
2
3
4
5
6
7
8
9

10
11
12
13
111
112
113
114

A B C D E F G
Customer Time Summary measures for selected variables

emiT1311
2 101 Count 113.000
3 178 Mean 159.239
4 246 Median 155.000
5 207 Standard n 52.609
6 155 Minimum 40.000
7 95 Maximum 279.000
8 105
9 168

10 92
11 112
12 163

110 138
111 279
112 90
113 155

E X A M P L E 5.14 ASSESSING A DISTRIBUTION OF SUPERMARKET CHECKOUT TIMES

Asupermarket has collected checkout times on over 100 customers. (See the file
Checkout Times.xlsx.) As shown in Figure 5.28, the times vary from 40 seconds to

279 seconds, with the mean and median close to 160 seconds.

Figure 5.28

Supermarket

Checkout Times

Figure 5.29 @RISK Ribbon
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The second step is to click on the Distributions to Fit tab and select the Normal distribu-
tion, as shown in Figure 5.31. To see how well a normal distribution fits the data, click on
the Fit button. This produces the output shown in Figure 5.32, with a normal curve super-
imposed on the histogram of the data. A visual examination of this graph is often sufficient
to tell whether the fit is any “good.” (This fit appears to be “fair,” but not great.)
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Figure 5.30

Defining a Data Set

Figure 5.31

Selecting the

Distribution(s) to Fit
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@RISK provides several numerical measures of the goodness of fit, which you can find
by clicking on the dropdown arrow next to Fit Ranking at the top left in the figure. The details
are rather technical, but each test value measures goodness of fit in a slightly different way.
For each of these measures, the larger the test value is, the worse the fit is. They can then be
used to compare fits; the distribution with the lowest test values is the winner.

To see which of several possible distributions fit the data best, go back to the Fit
Distributions to Data dialog box and click on the Distributions to Fit tab. (See Figure 5.33.)
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Figure 5.32

Normal Fit to the

Data

Figure 5.33

Selecting
Distributions to Fit
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Some “reasonable” choices about the checkout data have been made on the left. The lowest
possible checkout time is 0 but there is no obvious upper limit. When you make such
choices, the set of possible distributions that are checked on the right changes. For example,
the selected list here contains only distributions with a lower limit of 0. (Note that the nor-
mal distribution does not satisfy this condition.) You can then uncheck any distributions you
do not want included in the search for the best fit. (For example, you might want to uncheck
distributions you have never heard of.)

Once you specify these candidate distributions and click on Fit, @RISK performs a
numerical algorithm to find the best-fitting distribution from each selected distribution
family (the best gamma of all gamma distributions, for example) and displays them in
ranked order, from best to worst. The best fit for these data is the beta general distribution,
as shown in Figure 5.34. (The beta general family includes skewed distributions, although
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Figure 5.34

Beta General Fit to
the Data

this one appears to be symmetric.) You can also click on any of the “runner-up” distribu-
tions to see how well they fit. For example, the triangular fit is shown in Figure 5.35.
Obviously, this fit is not nearly as good as the beta general fit.

It is not always easy to look at these graphs and judge which fit is best. This is the rea-
son for the goodness-of-fit measures. Comparing Figures 5.34 and 5.35, you can see that
the triangular fit is considerably worse than the beta general—its test values (some not
shown) are all much larger. By comparison, the test values for the normal fit in Figure 5.32
are quite comparable to those for the beta general. The only downside to the normal distri-
bution, in this example, is that checkout times cannot possibly be negative, which the nor-
mal distribution allows. But the probability of a negative value for this particular normal
distribution is so low that the manager might decide to use it anyway. ■

At this point, you might wonder why we bother fitting a distribution to a set of data in
the first place. The usual reason is given in the following scenario. Suppose a manager
needs to make a decision, but there is at least one source of uncertainty. If the manager
wants to develop a decision model or perhaps a simulation model to help solve his problem,
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Figure 5.35

Triangular Fit to the
Data

probability distributions of all uncertain outcomes are typically required. The manager
could always choose one of the well-known distributions, such as the normal, for all uncer-
tain outcomes, but these might not reflect reality well. Instead, the manager could gather
historical data, such as those in the preceding example, find the distribution that fits these
data best, and then use this distribution in the decision or simulation model. Of course, as
this example has illustrated, it helps to know a few distributions other than the normal—the
Weibull and the gamma, for example. Although we will not pursue these in this book, the
more distributions you have in your tool kit, the more effectively you can model uncertainty.

P R O B L E M S

Level A

47. A production manager is interested in determining the
proportion of defective items in a typical shipment of
one of the computer components that her company
manufactures. The proportion of defective components
is recorded for each of 250 randomly selected ship-
ments collected during a one-month period. The data
are in the file P05_47.xlsx. Use @RISK to determine
which probability distribution best fits these data.

48. The manager of a local fast-food restaurant is inter-
ested in improving the service provided to customers
who use the restaurant’s drive-up window. As a first
step in this process, the manager asks his assistant to
record the time (in minutes) it takes to serve 200 dif-
ferent customers at the final window in the facility’s
drive-up system. The given 200 customer service
times are all observed during the busiest hour of the
day for this fast-food operation. The data are in the file

P05_48.xlsx. Use @RISK to determine which proba-
bility distribution best fits these data.

49. The operations manager of a tollbooth located at a
major exit of a state turnpike is trying to estimate the
average number of vehicles that arrive at the tollbooth
during a one-minute period during the peak of rush-
hour traffic. To estimate this average throughput value,
he records the number of vehicles that arrive at the
tollbooth over a one-minute interval commencing at the
same time for each of 250 normal weekdays. The data
are in the file P05_49.xlsx. Use @RISK to determine
which probability distribution best fits these data.

50. A finance professor has just given a midterm
examination in her corporate finance course and is
interested in learning how her class of 250 students
performed on this exam. The data are in the file
P05_50.xlsx. Use @RISK to determine which
probability distribution best fits these data.
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5.8 CONCLUSION

We have covered a lot of ground in this chapter, and much of the material, especially that
on the normal distribution, will be used in later chapters. The normal distribution is the
cornerstone for much of statistical theory. As you will see in later chapters on statistical
inference and regression, an assumption of normality is behind most of the procedures we
use. Therefore, it is important for you to understand the properties of the normal distribu-
tion and how to work with it in Excel. The binomial, Poisson, and exponential distribu-
tions, although not used as frequently as the normal distribution in this book, are also
extremely important. The examples we have discussed indicate how these distributions can
be used in a variety of business situations.

Although we have attempted to stress concepts in this chapter, we have also described
the details necessary to work with these distributions in Excel. Fortunately, these details
are not too difficult to master once you understand Excel’s built-in functions, especially
NORMDIST, NORMINV, and BINOMDIST. Figures 5.6 and 5.18 provide typical exam-
ples of these functions. We suggest that you keep a copy of these figures handy.
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Summary of Key Terms

Term Explanation Excel9 Page Equation 
Density Specifies the probability distribution 211
function of a continuous random variable

Normal distribution A continuous distribution with possible 213 5.1
values ranging over the entire number 
line; its density function is a 
symmetric bell-shaped curve

Standardizing a Transforms any normal distribution STANDARDIZE 214 5.2
normal random with mean � and standard deviation
variable � to the standard normal distribution

with mean 0 and standard deviation 1

Normal calculations Useful for finding probabilities and NORMDIST, 217
in Excel percentiles for nonstandard and NORMSDIST,

standard normal distributions NORMINV,
NORMSINV

Empirical rules for About 68% of the data fall within 221
normal distribution one standard deviation of the mean,

about 95% of the data fall within 
two standard deviations of the mean, and
almost all fall within three standard
deviations of the mean.

Binomial The distribution of the number of BINOMDIST 233
distribution successes in n independent, identical CRITBINOM

trials, where each trial has probability
p of success

Mean and standard The mean and standard deviation of a 236 5.3, 5.4
deviation of a binomial distribution with parameters

binomial n and p are np and ,
distribution respectively.

Sampling without Sampling where no member of the 236
replacement population can be sampled more than once

(continued)

2np(1 - p)

9See the text for the new versions of some of these Excel functions in Excel 2010.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



262 Chapter 5 Normal, Binomial, Poisson, and Exponential Distributions

Summary of Key Terms (Continued)

Term Explanation Excel9 Page Equation
Sampling with Sampling where any member of the 236
replacement population can be sampled more than once

Normal If np � 5 and n(1 � p) � 5, the binomial 237
approximation to distribution can be approximated well by 
the binomial a normal distribution with mean np and 

distribution standard deviation .

Poisson distribution A discrete probability distribution POISSON 250
that often describes the number of
events occurring within a specified
period of time or space; mean and
variance both equal the parameter 

Exponential A continuous probability distribution EXPONDIST 252
distribution useful for measuring times between

events, such as customer arrivals to a
service facility; mean and standard
deviation both equal 1/

Relationship Exponential distribution measures 254
between Poisson times between events; Poisson
and exponential distribution counts the number of
distributions events in a certain period of time.

@RISK An Excel add-in for finding how Distribution 255
well a specified distribution fits a set Fitting item 
of data, or for finding the distribution on @RISK
that best fits a set of data ribbon

2np(1 - p)

P R O B L E M S

Conceptual Questions

C.1. For each of the following uncertain quantities, discuss
whether it is reasonable to assume that the probability
distribution of the quantity is normal. If the answer
isn’t obvious, discuss how you could discover whether
a normal distribution is reasonable.
a. The change in the Dow Jones Industrial Average

between now and a year from now
b. The length of time (in months) a battery that is in

continuous use lasts
c. The time between two successive arrivals to a bank
d. The time it takes a bank teller to service a random

customer
e. The length (in yards) of a typical drive on a par 5

by Phil Michelson
f. The amount of snowfall (in inches) in a typical

winter in Minneapolis
g. The average height (in inches) of all boys in a

randomly selected seventh-grade middle school
class

h. Your bonus from finishing a project, where your
bonus is $1000 per day under the deadline if the

project is completed before the deadline, your
bonus is $500 if the project is completed right on
the deadline, and your bonus is $0 if the project is
completed after the deadline

i. Your gain on a call option on a stock, where you
gain nothing if the price of the stock a month from
now is less than or equal to $50 and you gain
(P–50) dollars if the price P a month from now is
greater than $50

C.2. For each of the following uncertain quantities, discuss
whether it is reasonable to assume that the probability
distribution of the quantity is binomial. If you think it
is, what are the parameters n and p. If you think it
isn’t, explain your reasoning.
a. The number of wins the Boston Red Sox baseball

team has next year in its 81 home games
b. The number of free throws Kobe Bryant misses in

his next 250 attempts
c. The number of free throws it takes Kobe Bryant to

achieve 100 successes
d. The number out of 1000 randomly selected customers

in a supermarket who have a bill of at least $150
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e. The number of trading days in a typical year where
Microsoft’s stock price increases

f. The number of spades you get in a 13-card hand
from a well-shuffled 52-card deck

g. The number of adjacent 15-minute segments
during a typical Friday where at least 10 customers
enter a McDonald’s restaurant

h. The number of pages in a 500-page book with at
least one misprint on the page

C.3. The Poisson distribution is often appropriate in the
“binomial” situation of n independent and identical
trials, where each trial has probability p of success, but
n is very large and p is very small. In this case, the
Poisson distribution is relevant for the number of
successes, and its parameter (its mean) is np. Discuss
some situations where such a Poisson model might be
appropriate. How would you measure n and p, or
would you measure only their product np? Here is one
to get you started: the number of traffic accidents at a
particular intersection in a given year.

C.4. One disadvantage of a normal distribution is that
there is always some probability that a quantity is
negative, even when this makes no sense for the
uncertain quantity. For example, the time a light bulb
lasts cannot be negative. In any particular situation,
how would you decide whether you could ignore this
disadvantage for all practical purposes?

C.5. Explain why probabilities such as P(X � x) and 
P(X 	 x) are equal for a continuous random variable.

C.6. State the major similarities and differences between
the binomial distribution and the Poisson distribution.

C.7. You have a bowl with 100 pieces of paper inside, each
with a person’s name written on it. It turns out that 50
of the names correspond to males and the other 50 to
females. You reach inside and grab five pieces of
paper. If X is the random number of male names you
choose, is X binomially distributed? Why or why not?

C.8. A distribution we didn’t discuss is the Bernoulli
distribution. It is essentially a binomial distribution
with n � 1. In other words, it is the number of
successes (0 or 1) in a single trial when the
probability of success is p. What are the mean and
standard deviation of a Bernoulli distribution?
Discuss how a binomial random variable can be
expressed in terms of n independent Bernoulli
random variables, each with the same parameter p. 

C.9. For real applications, the normal distribution has two
potential drawbacks: (1) it can be negative, and (2) it
isn’t symmetric. Choose some continuous random
numeric outcomes of interest to you. Are either
potential drawbacks really drawbacks for your
random outcomes? If so, which is the more serious
drawback?

C.10. Many basketball players and fans believe strongly in
the “hot hand.” That is, they believe that players tend
to shoot in streaks, either makes or misses. If this is
the case, why does the binomial distribution not
apply, at least not exactly, to the number of makes in
a given number of shots? Which assumption of the
binomial model is violated, the independence of
successive shots or the constant probability of
success on each shot? Or can you tell?

C.11. Suppose the demands in successive weeks for your
product are normally distributed with mean 100 and
standard deviation 20, and suppose your lead time
for receiving a placed order is three weeks. A
quantity of interest to managers is the lead-time
demand, the total demanded over three weeks. Why
does the formula for the standard deviation of lead-
time demand include a square root of 3? What
assumptions are behind this?

Level A

51. Suppose the annual return on XYZ stock follows a
normal distribution with mean 0.12 and standard
deviation 0.30.
a. What is the probability that XYZ’s value will

decrease during a year?
b. What is the probability that the return on 

XYZ during a year will be at least 20%?
c. What is the probability that the return on 

XYZ during a year will be between –6% and 9%?
d. There is a 5% chance that the return on XYZ

during a year will be greater than what value?
e. There is a 1% chance that the return on XYZ

during a year will be less than what value?
f. There is a 95% chance that the return on 

XYZ during a year will be between which two
values (equidistant from the mean)?

52. Assume the annual mean return on ABC stock is
around 15% and the annual standard deviation is
around 25%. Assume the annual and daily returns on
ABC stock are normally distributed.
a. What is the probability that ABC will lose money

during a year?
b. There is a 5% chance that ABC will earn a return

of at least what value during a year?
c. There is a 10% chance that ABC will earn a return

of less than or equal to what value during a year?
d. What is the probability that ABC will earn at least

35% during a year?
e. Assume there are 252 trading days in a year. What

is the probability that ABC will lose money on a
given day? (Hint: Let Y be the annual return on
ABC and Xi be the return on ABC on day i. Then
(approximately) Y � X1 � X2 � … � X252. Use
the fact that the sum of independent normal
random variables is normally distributed, with
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mean equal to the sum of the individual means and
variance equal to the sum of the individual
variances.)

53. Suppose Comdell Computer receives its hard drives
from Diskco. On average, 4% of all hard disk drives
received by Comdell are defective.
a. Comdell has adopted the following policy. It

samples 50 hard drives in each shipment and
accepts the shipment if all hard drives in the
sample are nondefective. What fraction of
shipments will Comdell accept?

b. Suppose instead that the shipment is accepted if at
most one hard drive in the sample is defective.
What fraction of shipments will Comdell accept?

c. What is the probability that a sample of size 50 will
contain at least 10 defectives?

54. A family is considering a move from a midwestern
city to a city in California. The distribution of housing
costs where the family currently lives is normal, with
mean $105,000 and standard deviation $18,200. The
distribution of housing costs in the California city is
normal with mean $235,000 and standard deviation
$30,400. The family’s current house is valued at
$110,000.
a. What percentage of houses in the family’s current

city cost less than theirs?
b. If the family buys a $200,000 house in the new

city, what percentage of houses there will cost less
than theirs?

c. What price house will the family need to buy to be
in the same percentile (of housing costs) in the new
city as they are in the current city?

55. The number of traffic fatalities in a typical month in a
given state has a normal distribution with mean 125
and standard deviation 31.
a. If a person in the highway department claims that

there will be at least m fatalities in the next month
with probability 0.95, what value of m makes this
claim true?

b. If the claim is that there will be no more than n
fatalities in the next month with probability 0.98,
what value of n makes this claim true?

56. It can be shown that a sum of independent normally
distributed random variables is also normally
distributed. Do all functions of normal random
variables lead to normal random variables? Consider
the following. SuperDrugs is a chain of drugstores
with three similar-size stores in a given city. The sales
in a given week for any of these stores is normally
distributed with mean $15,000 and standard deviation
$3000. At the end of each week, the sales figure for
the store with the largest sales among the three stores
is recorded. Is this maximum value normally
distributed? To answer this question, simulate a
weekly sales figure at each of the three stores and

calculate the maximum. Then replicate this maximum
500 times and create a histogram of the 500 maximum
values. Does it appear to be normally shaped?
Whatever this distribution looks like, use your
simulated values to estimate its mean and standard
deviation of the maximum.

57. In the game of baseball, every time a player bats, he is
either successful (gets on base) or he fails (doesn’t get
on base). (This is all you need to know about baseball
for this problem!) His on-base percentage, usually
expressed as a decimal, is the percentage of times he is
successful. Let’s consider a player who is theoretically a
0.375 on-base batter. Specifically, assume that each
time he bats, he is successful with probability 0.375 and
unsuccessful with probability 0.625. Also, assume that
he bats 600 times in a season. What can you say about
his on-base percentage, (# of successes)/600, for the
season? (Hint: Each on-base percentage is equivalent to
a number of successes. For example, 0.380 is equivalent
to 228 successes because 0.380*600 � 228.)
a. What is the probability that his on-base percentage

will be less than 0.360?
b. What is the probability that his on-base percentage

will be greater than 0.370?
c. What is the probability that his on-base percentage

will be less than or equal to 0.400?

58. In the financial world, there are many types of
complex instruments called derivatives that derive
their value from the value of an underlying asset.
Consider the following simple derivative. A stock’s
current price is $80 per share. You purchase a
derivative whose value to you becomes known a
month from now. Specifically, let P be the price of the
stock in a month. If P is between $75 and $85, the
derivative is worth nothing to you. If P is less than
$75, the derivative results in a loss of 100*(75–P)
dollars to you. (The factor of 100 is because many
derivatives involve 100 shares.) If P is greater than
$85, the derivative results in a gain of 100*(P–85)
dollars to you. Assume that the distribution of the
change in the stock price from now to a month from
now is normally distributed with mean $1 and
standard deviation $8. Let P(big loss) be the
probability that you lose at least $1000 (that is, the
price falls below $65), and let P(big gain) be the
probability that you gain at least $1000 (that is, the
price rises above $95). Find these two probabilities.
How do they compare to one another?

Level B

59. When you sum 30 or more independent random
variables, the sum of the random variables will usually
be approximately normally distributed, even if each
individual random variable is not normally distributed.
Use this fact to estimate the probability that a casino
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will be behind after 90,000 roulette bets, given that it
wins $1 or loses $35 on each bet with probabilities
37/38 and 1/38.

60. The daily demand for six-packs of Coke at Mr. D’s
supermarket follows a normal distribution with mean
120 and standard deviation 30. Every Monday the
Coke delivery driver delivers Coke to Mr. D’s. If 
Mr. D’s wants to have only a 1% chance of running
out of Coke by the end of the week, how many should
Mr. D’s order for the week? Assume orders are placed
on Sunday at midnight. Also assume that demands on
different days are probabilistically independent. (Use
the fact that the sum of independent normal random
variables is normally distributed, with mean equal to
the sum of the individual means and variance equal to
the sum of the individual variances.)

61. Many companies use sampling to determine whether a
batch should be accepted. An (n, c) sampling plan
consists of inspecting n randomly chosen items from a
batch and accepting the batch if c or fewer sampled
items are defective. Suppose a company uses a (100,
5) sampling plan to determine whether a batch of
10,000 computer chips is acceptable.
a. The “producer’s risk” of a sampling plan is the

probability that an acceptable batch will be rejected
by the sampling plan. Suppose the customer
considers a batch with 3% defectives acceptable.
What is the producer’s risk for this sampling plan?

b. The “consumer’s risk” of a sampling plan is the
probability that an unacceptable batch will be
accepted by the sampling plan. Our customer says
that a batch with 9% defectives is unacceptable.
What is the consumer’s risk for this sampling plan?

62. Suppose that if a presidential election were held today,
53% of all voters would vote for Obama over McCain.
(You can substitute the names of the current presidential
candidates.) This problem shows that even if there are
100 million voters, a sample of several thousand is
enough to determine the outcome, even in a fairly close
election.
a. If 1500 voters are sampled randomly, what is the

probability that the sample will indicate (correctly)
that Obama is preferred to McCain?

b. If 6000 voters are sampled randomly, what is the
probability that the sample will indicate (correctly)
that Obama is preferred to McCain?

63. A soft-drink factory fills bottles of soda by setting a
timer on a filling machine. It has generally been
observed that the distribution of the number of ounces
the machine puts into a bottle is normal, with standard
deviation 0.05 ounce. The company wants 99.9% of
all its bottles to have at least 16 ounces of soda. To
what value should the mean amount put in each bottle
be set? (Of course, the company does not want to fill
any more than is necessary.)

64. The time it takes you to swim 100 yards in a race is
normally distributed with mean 62 seconds and
standard deviation 2 seconds. In your next five races,
what is the probability that you will swim under a
minute exactly twice?

65. A company assembles a large part by joining two
smaller parts together. Assume that the smaller parts
are normally distributed with a mean length of 1 inch
and a standard deviation of 0.01 inch.
a. What fraction of the larger parts are longer than

2.05 inches? (Use the fact that the sum of
independent normal random variables is normally
distributed, with mean equal to the sum of the
individual means and variance equal to the sum of
the individual variances.)

b. What fraction of the larger parts are between 1.96
inches and 2.02 inches long?

66. (Suggested by Sam Kaufmann, Indiana University
MBA, who runs Harrah’s Lake Tahoe Casino.) A high
roller has come to the casino to play 300 games of
craps. For each game of craps played there is a 0.493
probability that the high roller will win $1 and a 0.507
probability that the high roller will lose $1. After 300
games of craps, what is the probability that the casino
will be behind more than $10?

67. (Suggested by Sam Kaufmann, Indiana University
MBA, who runs Harrah’s Lake Tahoe Casino.) A high
roller comes to the casino intending to play 500 hands
of blackjack for $1 a hand. On each hand, the high
roller will win $1 with probability 0.48 and lose $1
with probability 0.52. After the 500 hands, what is the
probability that the casino has lost more than $40?

68. A soft-drink company produces 100,000 12-ounce
bottles of soda per year. By adjusting a dial, the
company can set the mean number of ounces placed in
a bottle. Regardless of the mean, the standard
deviation of the number of ounces in a bottle is 0.05
ounce. The soda costs 5 cents per ounce. Any bottle
weighing less than 12 ounces will incur a $10 fine for
being underweight. Determine a setting for the mean
number of ounces per bottle of soda that minimizes
the expected cost per year of producing soda. Your
answer should be accurate within 0.001 ounce. Does
the number of bottles produced per year influence
your answer?

69. The weekly demand for TVs at Lowland Appliance is
normally distributed with mean 400 and standard
deviation 100. Each time an order for TVs is placed, it
arrives exactly four weeks later. That is, TV orders
have a four-week lead time. Lowland doesn’t want to
run out of TVs during any more than 1% of all lead
times. How low should Lowland let its TV inventory
drop before it places an order for more TVs? (Hint:
How many standard deviations above the mean lead-
time demand must the reorder point be for there to be
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a 1% chance of a stockout during the lead time? Use
the fact that the sum of independent normal random
variables is normally distributed, with mean equal to
the sum of the individual means and variance equal to
the sum of the individual variances.)

70. An elevator rail is assumed to meet specifications if its
diameter is between 0.98 and 1.01 inches. Each year a
company produces 100,000 elevator rails. For a cost of
$10/�2 per year the company can rent a machine that
produces elevator rails whose diameters have a standard
deviation of �. (The idea is that the company must pay
more for a smaller variance.) Each such machine will
produce rails having a mean diameter of one inch. Any
rail that does not meet specifications must be reworked
at a cost of $12. Assume that the diameter of an elevator
rail follows a normal distribution.

a. What standard deviation (within 0.001 inch)
minimizes the annual cost of producing elevator
rails? You do not need to try standard deviations in
excess of 0.02 inch.

b. For your answer in part a, one elevator rail in 1000
will be at least how many inches in diameter?

71. A 50-question true–false examination is given. Each
correct answer is worth 10 points. Consider an
unprepared student who randomly guesses on each
question.
a. If no points are deducted for incorrect answers,

what is the probability that the student will score at
least 350 points?

b. If 5 points are deducted for each incorrect answer,
what is the probability that the student will score at
least 200 points?

c. If 10 points are deducted for each incorrect answer,
what is the probability that the student will receive
a negative score?

72. The percentage of examinees who took the GMAT
(Graduate Management Admission) exam from June
1992 to March 1995 and scored below each total score is
given in the file P05_72.xlsx. For example, 96% of all
examinees scored 690 or below. The mean GMAT score
for this time period was 497 and the standard deviation
was 105. Does it appear that GMAT scores can accu-
rately be approximated by a normal distribution?
(Source: 1995 GMAT Examinee Interpretation Guide)

73. What caused the crash of TWA Flight 800 in 1996?
Physics professors Hailey and Helfand of Columbia
University believe there is a reasonable possibility that
a meteor hit Flight 800. They reason as follows. On a
given day, 3000 meteors of a size large enough to
destroy an airplane hit the earth’s atmosphere.
Approximately 50,000 flights per day, averaging two
hours in length, have been flown from 1950 to 1996.
This means that at any given point in time, planes in
flight cover approximately two-billionths of the world’s
atmosphere. Determine the probability that at least one

plane in the last 47 years has been downed by a meteor.
(Hint: Use the Poisson approximation to the binomial.
This approximation says that if n is large and p is small,
a binomial distribution with parameters n and p is
approximately Poisson distributed with  � np.)

74. In the decade 1982 through 1991, 10 employees
working at the Amoco Company chemical research
center were stricken with brain tumors. The average
employment at the center was 2000 employees.
Nationwide, the average incidence of brain tumors in a
single year is 20 per 100,000 people. If the incidence
of brain tumors at the Amoco chemical research center
were the same as the nationwide incidence, what is the
probability that at least 10 brain tumors would have
been observed among Amoco workers during the
decade 1982 through 1991? What do you conclude
from your analysis? (Source: AP wire service report,
March 12, 1994)

75. Claims arrive at random times to an insurance
company. The daily amount of claims is normally
distributed with mean $1570 and standard deviation
$450. Total claims on different days each have this
distribution, and they are probabilistically independent
of one another.
a. Find the probability that the amount of total claims

over a period of 100 days is at least $150,000. (Use
the fact that the sum of independent normally dis-
tributed random variables is normally distributed,
with mean equal to the sum of the individual means
and variance equal to the sum of the individual
variances.)

b. If the company receives premiums totaling
$165,000, find the probability that the company
will net at least $10,000 for the 100-day period.

76. A popular model for stock prices is the following. If p0
is the current stock price, then the price k periods from
now, pk, (where a period could be a day, week, or any
other convenient unit of time, and k is any positive
integer) is given by

Here, exp is the exponential function (EXP in Excel),
� is the mean percentage growth rate per period of the
stock, � is the standard deviation of the growth rate
per period, and Z is a normally distributed random
variable with mean 0 and standard deviation 1. Both �
and � are typically estimated from actual stock price
data, and they are typically expressed in decimal form,
such as � � 0.01 for a 1% mean growth rate. 
a. Suppose a period is defined as a month, the current

price of the stock (as of the end of December 2010)
is $75, � � 0.006, and � � 0.028. Use simulation to
obtain 500 possible stock price changes from the
end of December 2010 to the end of December
2013. Each simulated change will be the price at the

pk = p0exp((m - 0.5s2)k + sZ1k)
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end of 2013 minus the price at the end of 2010.
(Note that you can simulate a given change in one
line and then copy it down.) Create a histogram of
these changes to see whether the stock price change
is at least approximately normally distributed. Also,
use the simulated data to estimate the mean price
change and the standard deviation of the change.

b. Use simulation to generate the ending stock prices
for each month in 2011. (Use k � 1 to get
January’s price from December’s, use k � 1 again
to get February’s price from January’s, and so on.)
Then use a data table to replicate the ending
December 2011 stock price 500 times. Create a
histogram of these 500 values. Do they appear to
resemble a normal distribution?

77. Your company is running an audit on the Sleaze
Company. Because Sleaze has a bad habit of
overcharging its customers, the focus of your audit is
on checking whether the billing amounts on its
invoices are correct. Assume that each invoice is for
too high an amount with probability 0.06 and for too
low an amount with probability 0.01 (so that the
probability of a correct billing is 0.93). Also, assume
that the outcome for any invoice is probabilistically
independent of the outcomes for other invoices.
a. If you randomly sample 200 of Sleaze’s invoices,

what is the probability that you will find at least 15
invoices that overcharge the customer? What is the
probability you won’t find any that undercharge the
customer?

b. Find an integer k such that the probability is at least
0.99 that you will find at least k invoices that
overcharge the customer. (Hint: Use trial and error
with the BINOMDIST function to find k.)

78. Continuing the previous problem, suppose that when
Sleaze overcharges a customer, the distribution of the
amount overcharged (expressed as a percentage of the
correct billing amount) is normally distributed with
mean 15% and standard deviation 4%.
a. What percentage of overbilled customers are

charged at least 10% more than they should pay?
b. What percentage of all customers are charged at

least 10% more than they should pay?
c. If your auditing company samples 200 randomly

chosen invoices, what is the probability that it will
find at least five where the customer was
overcharged by at least 10%?

79. Your manufacturing process makes parts such that each
part meets specifications with probability 0.98. You need
a batch of 250 parts that meet specifications. How many
parts must you produce to be at least 99% certain of
producing at least 250 parts that meet specifications?

80. Let X be normally distributed with a given mean and
standard deviation. Sometimes you want to find two

values a and b such that P(a � X � b) is equal to
some specific probability such as 0.90 or 0.95. There
are many answers to this problem, depending on how
much probability you put in each of the two tails. For
this question, assume the mean and standard deviation
are � � 100 and � � 10, and that you want to find a
and b such that P(a � X � b) � 0.90.
a. Find a and b so that there is probability 0.05 in

each tail.
b. Find a and b so that there is probability 0.025 in

the left tail and 0.075 in the right tail.
c. The usual answer to the general problem is the

answer from part a, that is, where you put equal
probability in the two tails. It turns out that this 
is the answer that minimizes the length of the
interval from a to b. That is, if you solve the
following problem: minimize (b � a), subject to
P(a � X � b) � 0.90, you will get the same
answer as in part a. Verify this by using Excel’s
Solver add-in.

81. As any credit-granting agency knows, there are 
always some customers who default on credit charges.
Typically, customers are grouped into relatively homo-
geneous categories, so that customers within any 
category have approximately the same chance of
defaulting on their credit charges. Here we will look 
at one particular group of customers. We assume each
of these customers has (1) probability 0.07 of default-
ing on his or her current credit charges, and (2) total
credit charges that are normally distributed with mean
$350 and standard deviation $100. We also assume
that if a customer defaults, 20% of his or her charges
can be recovered. The other 80% are written off as 
bad debt.
a. What is the probability that a typical customer in

this group will default and produce a write-off of
more than $250 in bad debt?

b. If there are 500 customers in this group, what are
the mean and standard deviation of the number 
of customers who will meet the description in 
part a?

c. Again assuming there are 500 customers in this
group, what is the probability that at least 25 of
them will meet the description in part a?

d. Suppose now that nothing is recovered from a
default—the whole amount is written off as bad
debt. Show how to simulate the total amount of bad
debt from 500 customers in just two cells, one with
a binomial calculation, the other with a normal
calculation.

82. The Excel functions discussed in this chapter are
useful for solving a lot of probability problems, but
there are other problems that, even though they are
similar to normal or binomial problems, cannot be
solved with these functions. In cases like this,
simulation can often be used. Here are a couple of
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such problems for you to simulate. For each example,
simulate 500 replications of the experiment.
a. You observe a sequence of parts from a

manufacturing line. These parts use a component
that is supplied by one of two suppliers. Each part
made with a component from supplier 1 works
properly with probability 0.95, and each part made
with a component from supplier 2 works properly
with probability 0.98. Assuming that 100 of these
parts are made, 60 from supplier 1 and 40 from
supplier 2, you want the probability that at least 97
of them work properly.

b. Here we look at a more generic example such as
coin flipping. There is a sequence of trials where
each trial is a success with probability p and a failure
with probability 1 � p. A run is a sequence of
consecutive successes or failures. For most of us,
intuition says that there should not be long runs. Test
this by finding the probability that there is at least
one run of length at least six in a sequence of 
15 trials. (The run could be of 0s or 1s.) You can use
any value of p you like—or try different values of p.

83. You have a device that uses a single battery, and you
operate this device continuously, never turning it off.
Whenever a battery fails, you replace it with a brand
new one immediately. Suppose the lifetime of a typical
battery has an exponential distribution with mean 
205 minutes. Suppose you operate the device
continuously for three days, making battery changes
when necessary. Find the probability that you will
observe at least 25 failures. (Hint: The number of
failures is Poisson distributed.)

84. In the previous problem, we ran the experiment for a
certain number of days and then asked about the
number of failures. In this problem, we take a different
point of view. Suppose you operate the device, starting
with a new battery, until you have observed 25 battery
failures. What is the probability that at least 15 of
these 25 batteries lived at least 3.5 hours? (Hint: Each
lifetime is exponentially distributed.)

85. In the game of soccer, players are sometimes awarded
a penalty kick. The player who kicks places the ball 
12 yards from the 24-foot-wide goal and attempts to
kick it past the goalie into the net. (The goalie is the
only defender.) The question is where the player
should aim. Make the following assumptions. (1) The
player’s kick is off target from where he aims, left or
right, by a normally distributed amount with mean 0
and some standard deviation. (2) The goalie typically
guesses left or right and dives in that direction at the
moment the player kicks. If the goalie guesses wrong,
he won’t block the kick, but if he guesses correctly, he
will be able to block a kick that would have gone into
the net as long as the kick is within a distance d from
the middle of the goal. The goalie is equally likely to
guess left or right. (3) The player never misses high,
but he can miss to the right of the goal (if he aims to
the right) or to the left (if he aims to the left). For
reasonable values of the standard deviation and d, find
the probability that the player makes a goal if he aims
at a point t feet inside the goal. (By symmetry, you can
assume he aims to the right, although the goalie
doesn’t know this.) What value of t seems to maximize
the probability of making a goal?
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C A S E

The EuroWatch Company assembles expensive

wristwatches and then sells them to retailers

throughout Europe.The watches are assembled at a

plant with two assembly lines.These lines are

intended to be identical, but line 1 uses somewhat

older equipment than line 2 and is typically less

reliable. Historical data have shown that each watch

coming off line 1, independently of the others, is free

of defects with probability 0.98.The similar

probability for line 2 is 0.99. Each line produces 500

watches per hour.The production manager has asked

you to answer the following questions.

1. She wants to know how many defect-free

watches each line is likely to produce in a given

hour. Specifically, find the smallest integer k (for

each line separately) such that you can be 99%

sure that the line will not produce more than k

defective watches in a given hour.

2. EuroWatch currently has an order for 500

watches from an important customer.The

company plans to fill this order by packing

slightly more than 500 watches, all from line 2,

and sending this package off to the customer.

Obviously, EuroWatch wants to send as few

watches as possible, but it wants to be 99% sure

that when the customer opens the package,

there are at least 500 defect-free watches. How

many watches should be packed?

3. EuroWatch has another order for 1000 watches.

Now it plans to fill this order by packing slightly

more than one hour’s production from each line.

This package will contain the same number of

watches from each line.As in the previous

question, EuroWatch wants to send as few

watches as possible, but it again wants to be 99%

sure that when the customer opens the package,

there are at least 1000 defect-free watches.The

question of how many watches to pack is

unfortunately quite difficult because the total

number of defect-free watches is not binomially

distributed. (Why not?) Therefore, the manager

asks you to solve the problem with simulation

(and some trial and error). (Hint: It turns out that

it is much faster to simulate small numbers than

large numbers, so simulate the number of watches

with defects, not the number without defects.)

4. Finally, EuroWatch has a third order for 100

watches.The customer has agreed to pay

$50,000 for the order—that is, $500 per watch.

If EuroWatch sends more than 100 watches to

the customer, its revenue doesn’t increase; it can

never exceed $50,000. Its unit cost of producing

a watch is $450, regardless of which line it is

assembled on.The order will be filled entirely

from a single line, and EuroWatch plans to send

slightly more than 100 watches to the customer.

If the customer opens the shipment and

finds that there are fewer than 100 defect-free

watches (which we assume the customer has

the ability to do), then he will pay only for the

defect-free watches—EuroWatch’s revenue will

decrease by $500 per watch short of the 100

required—and on top of this, EuroWatch will be

required to make up the difference at an

expedited cost of $1000 per watch.The

customer won’t pay a dime for these expedited

watches. (If expediting is required, EuroWatch

will make sure that the expedited watches are

defect-free. It doesn’t want to lose this customer

entirely.)

You have been asked to develop a

spreadsheet model to find EuroWatch’s

expected profit for any number of watches it

sends to the customer.You should develop it so

that it responds correctly, regardless of which

assembly line is used to fill the order and what

the shipment quantity is. (Hints: Use the

BINOMDIST function, with last argument 0, to

fill up a column of probabilities for each possible

number of defective watches. Next to each of

these, calculate EuroWatch’s profit.Then use a

SUMPRODUCT to obtain the expected profit.

Finally, you can assume that EuroWatch will

never send more than 110 watches. It turns out

that this large a shipment is not even close to

optimal.) ■

5.1 EUROWATCH COMPANY

Case 5.1 EuroWatch Company 269
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C A S E

Many states supplement their tax revenues with

state-sponsored lotteries. Most of them do so

with a game called lotto.Although there are various

versions of this game, they are all basically as follows.

People purchase tickets that contain r distinct

numbers from 1 to m, where r is generally 5 or 6 and

m is generally around 50. For example, in Virginia, the

state discussed in this case, r � 6 and m � 44. Each

ticket costs $1, about 39 cents of which is allocated

to the total jackpot.10 There is eventually a drawing

of r � 6 distinct numbers from the m � 44 possible

numbers.Any ticket that matches these 6 numbers

wins the jackpot.

There are two interesting aspects of this game.

First, the current jackpot includes not only the

revenue from this round of ticket purchases but also

any jackpots carried over from previous drawings

because of no winning tickets.Therefore, the jackpot

can build from one drawing to the next, and in

celebrated cases it has become huge. Second, if there

is more than one winning ticket—a distinct

possibility—the winners share the jackpot equally.

(This is called parimutuel betting.) So, for example, if

the current jackpot is $9 million and there are three

winning tickets, then each winner receives $3 million.

It can be shown that for Virginia’s choice of r and

m, there are approximately 7 million possible tickets

(7,059,052 to be exact).Therefore, any ticket has

about one chance out of 7 million of being a winner.

That is, the probability of winning with a single ticket

is p � 1/7,059,052—not very good odds. If n people

purchase tickets, then the number of winners is

binomially distributed with parameters n and p.

Because n is typically very large and p is small, the

number of winners has approximately a Poisson

distribution with rate  � np. (This makes ensuing

calculations somewhat easier.) For example, if 1

million tickets are purchased, then the number of

winning tickets is approximately Poisson distributed

with  � 1/7.

In 1992, an Australian syndicate purchased a

huge number of tickets in the Virginia lottery in an

attempt to assure itself of purchasing a winner. It

worked! Although the syndicate wasn’t able to

purchase all 7 million possible tickets (it was about

1.5 million shy of this), it did purchase a winning

ticket, and there were no other winners.Therefore,

the syndicate won a 20-year income stream worth

approximately $27 million, with a net present value

of approximately $14 million.This made the

syndicate a big profit over the cost of the tickets it

purchased.Two questions come to mind: (1) Is this

hogging of tickets unfair to the rest of the public? 

(2) Is it a wise strategy on the part of the syndicate

(or did it just get lucky)?

To answer the first question, consider how the

lottery changes for the general public with the

addition of the syndicate.To be specific, suppose the

syndicate can invest $7 million and obtain all of the

possible tickets, making itself a sure winner.Also,

suppose n people from the general public purchase

tickets, each of which has 1 chance out of 7 million

of being a winner. Finally, let R be the jackpot carried

over from any previous lotteries.Then the total

jackpot on this round will be [R � 0.39(7,000,000 �n)]

because 39 cents from every ticket goes toward the

jackpot.The number of winning tickets for the public

will be Poisson distributed with  � n/7,000,000.

However, any member of the public who wins will

necessarily have to share the jackpot with the

syndicate, which is a sure winner. Use this infor-

mation to calculate the expected amount the public

will win.Then do the same calculation when the

syndicate does not play. (In this case the jackpot will

be smaller, but the public won’t have to share any

winnings with the syndicate.) For values of n and R

that you can select, is the public better off with or

without the syndicate? Would you, as a general

member of the public, support a move to outlaw

syndicates from hogging the tickets?

The second question is whether the syndicate is

wise to buy so many tickets.Again assume that the

syndicate can spend $7 million and purchase each

possible ticket. (Would this be possible in reality?)

Also, assume that n members of the general public

purchase tickets, and that the carryover from the

previous jackpot is R.The syndicate is thus assured of

5.2 CASHING IN ON THE LOTTERY
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10Of the remaining 61 cents, the state takes about 50 cents. The
other 11 cents is used to pay off lesser prize winners whose tickets
match some, but not all, of the winning 6 numbers. To keep this case
relatively simple, however, we ignore these lesser prizes and con-
centrate only on the jackpot.
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having a winning ticket, but is it assured of covering

its costs? Calculate the expected net benefit (in

terms of net present value) to the syndicate, using

any reasonable values of n and R, to see whether the

syndicate can expect to come out ahead.

Actually, the analysis suggested in the previous

paragraph is not complete.There are at least two

complications to consider.The first is the effect of

taxes. Fortunately for the Australian syndicate, it did

not have to pay federal or state taxes on its winnings,

but a U.S. syndicate wouldn’t be so lucky. Second, the

jackpot from a $20 million jackpot, say, is actually paid

in 20 annual $1 million payments. The Lottery

Commission pays the winner $1 million immediately

and then purchases 19 “strips” (bonds with the inter-

est not included) maturing at 1-year intervals with

face value of $1 million each. Unfortunately, the lottery

prize does not offer the liquidity of the Treasury issues

that back up the payments.This lack of liquidity could

make the lottery less attractive to the syndicate. ■
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Decision Making under Uncertainty

C H A P T E R

DECIDING WHETHER TO DEVELOP NEW DRUGS
AT BAYER

The formal decision-making process discussed in this chapter is often used to

make difficult decisions in the face of much uncertainty, large monetary

values, and long-term consequences. Stonebraker (2002) chronicles one such

decision-making process he performed for Bayer Pharmaceuticals in 1999.

The development of a new drug is a time-consuming and expensive process that

is filled with risks along the way. A pharmaceutical company must first get the

proposed drug through preclinical trials,where the drug is tested on animals.

Assuming this stage is successful (and only about half are), the company can then

file an application with the Food and Drug Administration (FDA) to conduct

clinical trials on humans.These clinical trials have three phases. Phase 1 is designed

to test the safety of the drug on a small sample of healthy patients. Phase 2 is

designed to identify the optimal dose of the new drug on patients with the

disease. Phase 3 is a statistically designed study to prove the efficacy and safety of

the new drug on a larger sample of patients with the disease. Failure at any one of

these phases means that further testing stops and the drug is never brought to
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market.Of course, this means that all costs up to the failure point are lost. If the drug makes it

through the clinical tests (and only about 25% of all drugs do so), the company can then apply

to the FDA for permission to manufacture and market its drug in the United States. Assuming

that FDA approves, the company is then free to launch the drug in the marketplace.

The study involved the evaluation of a new drug for busting blood clots called BAY 

57-9602, and it commenced at a time just prior to the first decision point:whether to conduct

preclinical tests.This was the company’s first formal use of decision making for evaluating a

new drug, so to convince the company of the worth of such a study, Stonebraker did exactly

what a successful management science study should do.He formulated the problem and its

objectives; he identified risks, costs, and benefits; he involved key people in the organization to

help provide the data needed for the decision analysis; and, because much of the resulting data

consisted of educated guesses at best, he performed a thorough sensitivity analysis on the

inputs. Although we are not told in the article how everything turned out, the analysis did

persuade Bayer management to proceed in January 2000 with preclinical testing of the drug.

The article provides a fascinating look at how such a study should proceed. Because

there is so much uncertainty, the key is determining probabilities and probability distribu-

tions for the various inputs. First, there are uncertainties in the various phases of testing.

Each of these can be modeled with a probability of success. For example, the chance 

of making it through preclinical testing was assessed to be about 65% for BAY 57-9602,

although management preferred to use the more conservative benchmark of 50% (based 

on historical data on other drugs) for the decision analysis. Many of the other uncertain

quantities, such as the eventual market share, are continuous random variables. Because the

decision tree approach discussed in this chapter requires discrete random variables, usually

with only a few possible values, Stonebraker used a popular three-point approximation for

all continuous quantities. He asked experts to assess the 10th percentile, the 50th per-

centile, and the 90th percentile, and he assigned probabilities 0.3, 0.4, and 0.3 to these three

values. [The validity of such an approximation is discussed in Keefer and Bodily (1983).]

After getting all such estimates of uncertain quantities from the company experts,

the author examined the expected net present value (NPV) of all costs and benefits from

developing the new drug.To see which of the various uncertain quantities affected the

expected NPV most, he varied each such quantity, one at a time, from its 10th percentile

to its 90th percentile, leaving the other inputs at their base 50th percentile values.This

identified several quantities that the expected NPV was most sensitive to, including the

peak product share, the price per treatment in the United States, and the annual growth

rate.The expected NPV was not nearly as sensitive to other uncertain inputs, including

the product launch date and the production process yield.Therefore, in the final decision

analysis, Stonebraker treated the sensitive inputs as uncertain and the less sensitive inputs

as certain at their base values. He also calculated the risk profile from developing the drug.

This indicates the probability distribution of NPV, taking all sources of uncertainty into

account. Although this risk profile was not exactly optimistic (90% chance of losing money

using the conservative probabilities of success, 67% chance of losing money with the more

optimistic product-specific probabilities of success), this risk profile compared favorably

with Bayer’s other potential projects.This evaluation, plus the rigor and defensibility of the

study, led Bayer management to give the go-ahead on preclinical testing. ■

274 Chapter 6 Decision Making under Uncertainty

6.1 INTRODUCTION

This chapter provides a formal framework for analyzing decision problems that involve
uncertainty. Our discussion includes the following:

■ criteria for choosing among alternative decisions
■ how probabilities are used in the decision-making process
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■ how early decisions affect decisions made at a later stage
■ how a decision maker can quantify the value of information
■ how attitudes toward risk can affect the analysis

Throughout, we employ a powerful graphical tool—a decision tree—to guide the analysis.
A decision tree enables a decision maker to view all important aspects of the problem at
once: the decision alternatives, the uncertain outcomes and their probabilities, the economic
consequences, and the chronological order of events. We show how to implement decision
trees in Excel by taking advantage of a very powerful and flexible add-in from Palisade
called PrecisionTree.

Many examples of decision making under uncertainty exist in the business world,
including the following:

■ Companies routinely place bids for contracts to complete a certain project within a fixed
time frame. Often these are sealed bids, where each company presents a bid for complet-
ing the project in a sealed envelope. Then the envelopes are opened, and the low bidder
is awarded the bid amount to complete the project. Any particular company in the bid-
ding competition must deal with the uncertainty of the other companies’ bids, as well as
possible uncertainty regarding their cost to complete the project if they win the bid. The
trade-off is between bidding low to win the bid and bidding high to make a larger profit.

■ Whenever a company contemplates introducing a new product into the market, there
are a number of uncertainties that affect the decision, probably the most important
being the customers’ reaction to this product. If the product generates high customer
demand, the company will make a large profit. But if demand is low—and, after all,
the vast majority of new products do poorly—the company could fail to recoup its
development costs. Because the level of customer demand is critical, the company
might try to gauge this level by test marketing the product in one region of the
country. If this test market is a success, the company can then be more optimistic that
a full-scale national marketing of the product will also be successful. But if the test
market is a failure, the company can cut its losses by abandoning the product.

■ Whenever manufacturing companies make capacity expansion decisions, they face
uncertain consequences. First, they must decide whether to build new plants. If they
don’t expand and demand for their products is higher than expected, they will lose
revenue because of insufficient capacity. If they do expand and demand for their
products is lower than expected, they will be stuck with expensive underutilized
capacity. Of course, in today’s global economy, companies also need to decide
where to build new plants. This decision involves a whole new set of uncertainties,
including exchange rates, labor availability, social stability, competition from local
businesses, and others.

■ Banks must continually make decisions on whether to grant loans to businesses or
individuals. As we all know, many banks made many very poor decisions, especially
on mortgage loans, during the years leading up to the financial crisis in 2008. They
fooled themselves into thinking that housing prices would only increase, never
decrease. When the bottom fell out of the housing market, banks were stuck with
loans that could never be repaid. 

■ Utility companies must make many decisions that have significant environmental and
economic consequences. For these companies it is not necessarily enough to conform to
federal or state environmental regulations. Recent court decisions have found companies
liable—for huge settlements—when accidents occurred, even though the companies
followed all existing regulations. Therefore, when utility companies decide, say, whether
to replace equipment or mitigate the effects of environmental pollution, they must take
into account the possible environmental consequences (such as injuries to people) as

6.1 Introduction 275
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well as economic consequences (such as lawsuits). An aspect of these situations that
makes decision analysis particularly difficult is that the potential “disasters” are often
extremely unlikely; hence, their probabilities are difficult to assess accurately.

■ Sports teams continually make decisions under uncertainty. Sometimes these
decisions involve long-run consequences, such as whether to trade for a promising
but as yet untested pitcher in baseball. Other times these decisions involve short-run
consequences, such as whether to go for a fourth down or kick a field goal late in a
close football game. You might be surprised at the level of quantitative sophistication
in professional sports these days. Management and coaches typically do not make
important decisions by gut feel. They employ many of the tools in this chapter and
in other chapters of this book. 

6.2 ELEMENTS OF DECISION ANALYSIS

Although decision making under uncertainty occurs in a wide variety of contexts, all prob-
lems have three common elements: (1) the set of decisions (or strategies) available to the
decision maker, (2) the set of possible outcomes and the probabilities of these outcomes,
and (3) a value model that prescribes monetary values for the various decision–outcome
combinations. Once these elements are known, the decision maker can find an optimal deci-
sion, depending on the optimality criterion chosen.

Before moving on to realistic business problems, we discuss the basic elements of any
decision analysis for a very simple problem. We assume that a decision maker must choose
among three decisions, labeled D1, D2, and D3. Each of these decisions has three possible
outcomes, labeled O1, O2, and O3.

6.2.1 Payoff Tables

At the time the decision must be made, the decision maker does not know which outcome
will occur. However, once the decision is made, the outcome will eventually be revealed,
and a corresponding payoff will be received. This payoff might actually be a cost, in which
case it is indicated as a negative value. The listing of payoffs for all decision–outcome
pairs is called the payoff table.1 For our simple decision problem, this payoff table appears
in Table 6.1. For example, if the decision maker chooses decision D2 and outcome O3 then
occurs, a payoff of $30 is received.
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1In situations where all monetary consequences are costs, it is customary to list these costs in a cost table. In this
case, all monetary values are shown as positive costs. 

A payoff table lists the payoff for each decision–outcome pair. Positive values corre-
spond to rewards (or gains) and negative values correspond to costs (or losses).

Table 6.1 Payoff Table for Simple Decision Problem

Outcome
O1 O2 O3

Decision D1 10 10 10
D2 �10 20 30
D3 �30 30 80
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This table shows that the decision maker can play it safe by choosing decision D1.
This provides a sure $10 payoff. With decision D2, rewards of $20 or $30 are possible, but
a loss of $10 is also possible. Decision D3 is even riskier; the possible loss is greater, and
the maximum gain is also greater. Which decision would you choose? Would your choice
change if the values in the payoff table were measured in thousands of dollars? The
answers to these questions are what this chapter is all about. There must be a criterion for
making choices, and this criterion must be evaluated so that the best decision can be
identified. As you will see, it is customary to use one particular criterion for decisions
involving moderate amounts of money.

Before proceeding, there is one very important point we need to emphasize: the
distinction between good decisions and good outcomes. In any decision-making problem
where there is uncertainty, the “best” decision can have less than optimal results—that is,
you can be unlucky. Regardless of which decision you choose, you might get an outcome
that, in hindsight, makes you wish we had made a different decision. For example, if you
make decision D3, hoping for a large reward, you might get outcome O1, in which case
you will wish you had chosen decision D1 or D2. Or if you choose decision D2, hoping to
limit possible losses, you might get outcome O3, in which case you will wish you had cho-
sen decision D3. The point is that decision makers must make rational decisions, based on
the information they have when the decisions must be made, and then live with the conse-
quences. Second-guessing these decisions, just because of bad luck with the outcomes, is
not appropriate.
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A decision maker gets
to decide which row of
the payoff table she
wants. However, she
does not get to choose
the column.

FUNDAMENTAL INSIGHT

What Is a “Good” Decision?

In the context of decision making under uncertainty,

a “good” decision is one that is based on the sound

decision-making principles discussed in this chapter.

Because the decision must usually be made before

uncertainty is resolved, a good decision might have

unlucky consequences. However, decision makers

should not be criticized for unlucky outcomes.They

should be criticized only if their analysis at the time

the decision has to be made is faulty.

6.2.2 Possible Decision Criteria

What do we mean when we call a decision the “best” decision? We will eventually settle on
one particular criterion for making decisions, but we first explore some possibilities. With
respect to Table 6.1, one possibility is to choose the decision that maximizes the worst
payoff. This criterion, called the maximin criterion, is appropriate for a very conservative
(or pessimistic) decision maker. The worst payoffs for the three decisions are the minimums
in the three rows: 10, �10, and �30. The maximin decision maker chooses the decision
corresponding to the best of these: decision D1 with payoff 10. Such a criterion tends to
avoid large losses, but it fails to even consider large rewards. Hence, it is typically too
conservative and is seldom used.

The maximin criterion finds the worst payoff in each row of the payoff table and
chooses the decision corresponding to the best of these.
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At the other extreme, the decision maker might choose the decision that maximizes
the best payoff. This criterion, called the maximax criterion, is appropriate for a risk taker
(or optimist). The best payoffs for the three decisions are the maximums in the three rows:
10, 30, and 80. The maximax decision maker chooses the decision corresponding to the
best of these: decision D3 with payoff 80. This criterion looks tempting because it focuses
on large gains, but its very serious downside is that it ignores possible losses. Because this
type of decision making could eventually bankrupt a company, the maximax criterion is
also seldom used.
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The maximin and
maximax criteria make
sense in some situa-
tions, but they are
generally not used in
real decision-making
problems.

The maximax criterion finds the best payoff in each row of the payoff table and
chooses the decision corresponding to the best of these.

The expected monetary value, or EMV, for any decision is a weighted average of the
possible payoffs for this decision, weighted by the probabilities of the outcomes. Using
the EMV criterion, you choose the decision with the largest EMV. This is sometimes
called “playing the averages.”

6.2.3 Expected Monetary Value (EMV)

We have introduced the maximin and maximax criteria because (1) they are occasionally
used to make decisions, and (2) they illustrate that there are several “reasonable” criteria
for making decisions. In fact, there are other possible criteria that we will not discuss
(although a couple are explored in the problems). Instead, we now focus on a criterion that
is generally regarded as the preferred criterion in most decision problems. It is called the
expected monetary value, or EMV, criterion. To motivate the EMV criterion, we first
note that the maximin and maximax criteria make no reference to how likely the various
outcomes are. However, decision makers typically have at least some idea of these likeli-
hoods, and they ought to use this information in the decision-making process. After all, if
outcome O1 in our problem is extremely unlikely, then the pessimist who uses maximin is
being overly conservative. Similarly, if outcome O3 is quite unlikely, then the optimist who
uses maximax is taking an unnecessary risk.

The EMV approach assesses probabilities for each outcome of each decision and then
calculates the expected payoff from each decision based on these probabilities. This expected
payoff, or EMV, is a weighted average of the payoffs in any given row of the payoff table,
weighted by the probabilities of the outcomes. You calculate the EMV for each decision, then
choose the decision with the largest EMV. (Note that the terms expected payoff and mean
payoff are equivalent. We will use them interchangeably.)

Where do the probabilities come from? This is a difficult question to answer in general
because it depends on each specific situation. In some cases the current decision problem
is similar to those a decision maker has faced many times in the past. Then the probabili-
ties can be estimated from the knowledge of previous outcomes. If a certain type of
outcome occurred, say, in about 30% of previous situations, an estimate of its current prob-
ability might be 0.30.

However, there are many decision problems that have no parallels in the past. In such
cases, a decision maker must use whatever information is available, plus some intuition, to
assess the probabilities. For example, if the problem involves a new product decision, and
one possible outcome is that a competitor will introduce a similar product in the coming
year, the decision maker will have to rely on any knowledge of the market and the
competitor’s situation to assess the probability of this outcome. It is important to note that
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this assessment can be very subjective. Two decision makers could easily assess the prob-
ability of the same outcome as 0.30 and 0.45, depending on their information and feelings,
and neither could be considered “wrong.” This is the nature of assessing probabilities
subjectively in real business situations. Still, it is important for the decision maker to
consult all relevant sources (historical data, expert opinions, government forecasts, and so
on) when assessing these probabilities. As you will see, they are crucial to the decision-
making process.

With this general framework in mind, let’s assume that a decision maker assesses the
probabilities of the three outcomes in Table 6.1 as 0.3, 0.5, and 0.2 if decision D2 is made,
and as 0.5, 0.2, 0.3 if decision D3 is made.2 Then the EMV for each decision is the sum of
products of payoffs and probabilities:

EMV for D1: 10 (a sure thing)

EMV for D2: �10(0.3) � 20(0.5) � 30(0.2) � 13

EMV for D3: �30(0.5) � 30(0.2) � 80(0.3) � 15

These calculations lead to the optimal decision: Choose decision D3 because it has the
largest EMV.

It is important to understand what the EMV of a decision represents—and what it
doesn’t represent. For example, the EMV of 15 for decision D3 does not mean that you
expect to gain $15 from this decision. The payoff table indicates that the result from D3 will
be a loss of $30, a gain of $30, or a gain of $80; it will never be a gain of $15. The EMV is
only a weighted average of the possible payoffs. As such, it can be interpreted in one of two
ways. First, imagine that this situation can occur many times, not just once. If decision D3
is used each time, then on average, you will make a gain of about $15. About 50% of the
time you will lose $30, about 20% of the time you will gain $30, and about 30% of the time
you will gain $80. These average to $15. For this reason, using the EMV criterion is some-
times referred to as “playing the averages.”

But what if the current situation is a one-shot
deal that will not occur many times in the future?
Then the second interpretation of EMV is still rele-
vant. It states that the EMV is a “sensible” criterion
for making decisions under uncertainty. This is
actually a point that has been debated in intellectual
circles for years—what is the best criterion for
making decisions? However, researchers have gen-
erally concluded that EMV makes sense, even for
one-shot deals, as long as the monetary values are
not too large. For situations where the monetary
values are extremely large, we will introduce
an alternative criterion in the last section of this
chapter. Until then, however, we will use EMV.

This is the gist of decision-making uncertainty.
You develop a payoff table, assess probabilities of
outcomes, calculate EMVs, and choose the decision
with the largest EMV. However, before proceeding
to examples, it is useful to introduce a few other
concepts: sensitivity analysis, decision trees, and
risk profiles.
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2In a change from the previous edition of this book, we allow these probabilities to depend on the decision that is
made, which is often the case in real decision problems. 

What It Means to Be an EMV Maximizer

An EMV maximizer, by definition, is indifferent when

faced with the choice between entering a gamble

that has a certain EMV and receiving a sure dollar

amount in the amount of the EMV. For example,

consider a gamble where you flip a fair coin and win

$0 or $1000 depending on whether you get a head

or a tail. If you are an EMV maximizer, you are indif-

ferent between entering this gamble, which has EMV

$500, and receiving $500 for sure. Similarly, if the

gamble is between losing $1000 and winning $500,

based on the flip of the coin, and you are an EMV

maximizer, you are indifferent between entering this

gamble, which has EMV �$250, and paying a sure

$250 to avoid the gamble. (This latter scenario is the

basis of insurance.)

FUNDAMENTAL INSIGHT
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6.2.4 Sensitivity Analysis

Some of the quantities in a decision analysis, particularly the probabilities, are often
intelligent guesses at best. Therefore, it is important, especially in real-world business
problems, to accompany any decision analysis with a sensitivity analysis. Here we
systematically vary inputs to the problem to see how (or if) the outputs—the EMVs and the
best decision—change. For our simple decision problem, this is easy to do in a spreadsheet.
The spreadsheet model is shown in Figure 6.1. (See the file Simple Decision Problem.xlsx.)

280 Chapter 6 Decision Making under Uncertainty

Probabili�es

1
2
3
4
5
6
7
8
9

10
11

A B C D E F
Simple decision problem under uncertainty

Outcome
O1 O2 O3 EMV

Decision D1 10 10 10 10
D2 -10 20 30 13
D3 -30 30 80 15

D2 0.3 0.5 0.2
D3 0.5 0.2 0.3

Figure 6.1

Spreadsheet Model

of a Simple Decision

Problem

Usually, the most
important information
from a sensitivity
analysis is whether
the optimal decision
continues to be optimal
as one or more inputs
change.

After entering the payoff table and probabilities, calculate the EMVs in column F as a
sum of products, using the formula

�SUMPRODUCT(C6:E6,C10:E10)

in cell F6 and copying it down. (A link to the sure 10 for D1 is entered in cell F5.) Then it
is easy to change any of the inputs and see whether the optimal decision continues
to be D3. For example, you can check that if the probabilities for D3 change only slightly
to 0.6, 0.2, and 0.2, the EMV for D3 changes to 4. Now D3 is the worst decision and D2 is
the best, so it appears that the optimal decision is quite sensitive to the assessed probabili-
ties. As another example, if the probabilities remain the same but the last payoff for D2
changes from 30 to 45, then its EMV changes to 16, and D2 becomes the best decision.

Given a simple spreadsheet model, it is easy to make a number of ad hoc changes to
inputs, as we have done here, to answer specific sensitivity questions. However, it is often
useful to conduct a more systematic sensitivity analysis, as we will do this later in the
chapter. The important thing to realize at this stage is that a sensitivity analysis is not an
afterthought to the overall analysis; it is a key component of the analysis.

6.2.5 Decision Trees

The decision problem we have been analyzing is very basic. You make a decision, you then
observe an outcome, you receive a payoff, and that is the end of it. Many decision prob-
lems are of this basic form, but many are more complex. In these more complex problems,
you make a decision, you observe an outcome, you make a second decision, you observe a
second outcome, and so on. A graphical tool called a decision tree has been developed to
represent decision problems. Decision trees can be used for any decision problems, but
they are particularly useful for the more complex types. They clearly show the sequence of
events (decisions and outcomes), as well as probabilities and monetary values. The deci-
sion tree for the simple problem appears in Figure 6.2. This tree is based on one we drew
and calculated by hand. We urge you to try this on your own, at least once. However, later
in the chapter we will introduce an Excel add-in that automates the procedure.
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To explain this decision tree, we introduce a number of decision tree conventions that
have become standard.
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Decision Tree Conventions

1. Decision trees are composed of nodes (circles, squares, and triangles) and
branches (lines).

2. The nodes represent points in time. A decision node (a square) represents
a time when the decision maker makes a decision. A probability node
(a circle) represents a time when the result of an uncertain outcome becomes
known. An end node (a triangle) indicates that the problem is completed—
all decisions have been made, all uncertainty has been resolved, and all 
payoffs and costs have been incurred. (When people draw decision trees
by hand, they often omit the actual triangles, as we have done in Figure 6.2.
However, we still refer to the right-hand tips of the branches as the end
nodes.)

3. Time proceeds from left to right. This means that any branches leading into a
node (from the left) have already occurred. Any branches leading out of a node
(to the right) have not yet occurred.

4. Branches leading out of a decision node represent the possible decisions; the
decision maker can choose the preferred branch. Branches leading out of proba-
bility nodes represent the possible outcomes of uncertain events; the decision
maker has no control over which of these will occur.

5. Probabilities are listed on probability branches. These probabilities are 
conditional on the events that have already been observed (those to the left).
Also, the probabilities on branches leading out of any probability node must
sum to 1.

6. Monetary values are shown to the right of the end nodes. (As we discuss
shortly, some monetary values are also placed under the branches where they
occur in time.)

7. EMVs are calculated through a “folding-back” process, discussed next.
They are shown above the various nodes. It is then customary to mark the
optimal decision branch(es) in some way. We have marked ours with a
small notch.
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The decision tree in Figure 6.2 follows these conventions. The decision node comes first
(to the left) because the decision maker must make a decision before observing the uncertain
outcome. The probability nodes then follow the decision branches, and the probabilities
appear above their branches. (Actually, there is no need for a probability node after the D1
branch because its monetary value is a sure 10.) The ultimate payoffs appear next to the end
nodes, to the right of the probability branches. The EMVs above the probability nodes are for
the various decisions. For example, the EMV for the D2 branch is 13. The maximum of the
EMVs is for the D2 branch written above the decision node. Because it corresponds to D3,
we put a notch on the D3 branch to indicate that this decision is optimal.

This decision tree is almost a direct translation of the spreadsheet model in Figure 6.1.
Indeed, the decision tree is overkill for such a simple problem; the spreadsheet model
provides all of the required information. However, decision trees are very useful in
business problems. First, they provide a graphical view of the whole problem. This can be
useful in its own right for the insights it provides, especially in more complex problems.
Second, the decision tree provides a framework for doing all of the EMV calculations.
Specifically, it allows you to use the following folding-back procedure to find the EMVs
and the optimal decision.
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Folding-Back Procedure

Starting from the right of the decision tree and working back to the left:

1. At each probability node, calculate an EMV—a sum of products of monetary
values and probabilities.

2. At each decision node, take a maximum of EMVs to identify the optimal decision.

This is exactly what we did in Figure 6.2. At each probability node, we calculated
EMVs in the usual way (sums of products) and wrote them above the nodes. Then at the
decision node, we took the maximum of the three EMVs and wrote it above this node.
Although this procedure entails more work for more complex decision trees, the same two
steps—taking EMVs at probability nodes and taking maximums at decision nodes—are
the only arithmetic operations required. In addition, the PrecisionTree add-in in the next
section does the folding-back calculations for you.

6.2.6 Risk Profiles

In our small example each decision leads to three possible monetary payoffs with various
probabilities. In more complex problems, the number of outcomes could be larger, maybe
considerably larger. It is then useful to represent the probability distribution of the monetary
values for any decision graphically. Specifically, we show a “spike” chart, where the spikes
are located at the possible monetary values, and the heights of the spikes correspond to the
probabilities. In decision-making contexts, this type of chart is called a risk profile. By
looking at the risk profile for a particular decision, you can see the risks and rewards
involved. By comparing risk profiles for different decisions, you can gain more insight into
their relative strengths and weaknesses.

The folding-back
process is a systematic
way of calculating
EMVs in a decision
tree and thereby
identifying the optimal
decision strategy.

The risk profile for a decision is a “spike” chart that represents the probability
distribution of monetary outcomes for this decision.
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The risk profile for decision D3 appears in Figure 6.3. It shows that a loss of $30 has
probability 0.5, a gain of $30 has probability 0.2, and a gain of $80 has probability 0.3. The
risk profile for decision D2 is similar, except that its spikes are above the values �10, 20,
and 30, and the risk profile for decision D1 is a single spike of height 1 over the value 10.
(The finished version of the Simple Decision Problem.xlsx file provides instructions for
constructing such a chart with Excel tools.)
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Note that the EMV for any decision is a summary measure of the complete risk
profile—it is the mean of the corresponding probability distribution. Therefore, when you
use the EMV criterion for making decisions, you are not using all of the information in the
risk profiles; you are comparing only their means. Nevertheless, risk profiles can be useful
as extra information for making decisions. For example, a manager who sees too much risk
in the risk profile of the EMV-maximizing decision might choose to override this decision
and instead choose a somewhat less risky alternative.

We now apply all of these concepts to the following example.

A risk profile shows the
complete probability
distribution of mone-
tary outcomes, but you
typically use only its
mean, the EMV, for
making decisions.

E X A M P L E 6.1 BIDDING FOR A GOVERNMENT CONTRACT AT SCITOOLS

SciTools Incorporated, a company that specializes in scientific instruments, has been
invited to make a bid on a government contract. The contract calls for a specific

number of these instruments to be delivered during the coming year. The bids must be
sealed, so that no company knows what the others are bidding, and the low bid wins the
contract. SciTools estimates that it will cost $5000 to prepare a bid and $95,000 to supply
the instruments if it wins the contract. On the basis of past contracts of this type, SciTools
believes that the possible low bids from the competition, if there is any competition, and
the associated probabilities are those shown in Table 6.2. In addition, SciTools believes
there is a 30% chance that there will be no competing bids. What should SciTools bid to
maximize its EMV?

Objective To develop a decision model that finds the EMV for various bidding strategies
and indicates the best bidding strategy.
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Table 6.2 Data for Bidding Example

Low Bid Probability

Less than $115,000 0.2
Between $115,000 and $120,000 0.4
Between $120,000 and $125,000 0.3
Greater than $125,000 0.1

WHERE DO THE NUMBERS COME FROM?

The company has probably done a thorough cost analysis to estimate its cost to prepare a
bid and its cost to manufacture the instruments if it wins the contract. (Actually, even if
there is uncertainty in the manufacturing cost, the only value required for the decision
problem is the mean manufacturing cost.) The company’s estimates of whether, or how, the
competition will bid are probably based on previous bidding experience and some subjec-
tivity. This is discussed in more detail next.

Solution

Let’s examine the three elements of SciTools’s problem. First, SciTools has two basic
strategies: submit a bid or do not submit a bid. If SciTools submits a bid, then it must
decide how much to bid. Based on the cost to SciTools to prepare the bid and supply the
instruments, there is clearly no point in bidding less than $100,000—SciTools wouldn’t
make a profit even if it won the bid. (Actually, this isn’t totally true. Looking ahead to
future contracts, SciTools might make a low bid just to “get in the game” and gain experi-
ence. However, we won’t consider such a possibility here.) Although any bid amount over
$100,000 might be considered, the data in Table 6.2 suggest that SciTools might limit its
choices to $115,000, $120,000, and $125,000.3

The next element of the problem involves the uncertain outcomes and their probabili-
ties. We have assumed that SciTools knows exactly how much it will cost to prepare a bid
and how much it will cost to supply the instruments if it wins the bid. (In reality, these are
probably only estimates of the actual costs, and a follow-up study could perform a
sensitivity analysis on these quantities.) Therefore, the only source of uncertainty is the
behavior of the competitors—will they bid, and if so, how much? From SciTools’s stand-
point, this is difficult information to obtain. The behavior of the competitors depends on
(1) how many competitors are likely to bid and (2) how the competitors assess their costs
of supplying the instruments. Nevertheless, we assume that SciTools has been involved in
similar bidding contests in the past and can reasonably predict competitor behavior from
past competitor behavior. The result of such prediction is the assessed probability distribu-
tion in Table 6.2 and the 30% estimate of the probability of no competing bids.

The last element of the problem is the value model that transforms decisions and
outcomes into monetary values for SciTools. The value model is straightforward in this
example. If SciTools decides not to bid, its monetary value is $0—no gain, no loss. If it
makes a bid and is underbid by a competitor, it loses $5000, the cost of preparing the
bid. If it bids B dollars and wins the contract, it makes a profit of B minus $100,000—
that is, B dollars for winning the bid, minus $5000 for preparing the bid and $95,000 for
supplying the instruments. For example, if it bids $115,000 and the lowest competing
bid, if any, is greater than $115,000, then SciTools wins the bid and makes a profit of
$15,000.

3The problem with a bid such as $117,000 is that the data in Table 6.2 make it impossible to calculate the proba-
bility of SciTools winning the contract if it bids this amount. Other than this, however, there is nothing that rules
out such “in-between” bids.
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Developing the Payoff Table

The corresponding payoff table, along with probabilities of outcomes, appears in Table 6.3.
At the bottom of the table, the probabilities of the various outcomes are listed. For example,
the probability that the competitors’ low bid is less than $115,000 is 0.7 (the probability of
at least one competing bid) multiplied by 0.2 (the probability that the lowest competing bid
is less than $115,000).
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Table 6.3 Payoff Table for SciTools Bidding Example

Competitors’ Low Bid ($1000s)
No
bid �115 �115, �120 �120, �125 �125

SciTools’ Bid No 0 0 0 0 0
($1000s) bid

115 15 �5 15 15 15
120 20 �5 �5 20 20
125 25 �5 �5 �5 25

Probability 0.3 0.7(0.2) � 0.14 0.7(0.4) � 0.28 0.7(0.3) � 0.21 0.7(0.1) � 0.07

It is sometimes possible to simplify a payoff table to better understand the essence of
the problem. In the present example, if SciTools bids, the only necessary information about
the competitors’ bid(s) is whether SciTools has the lowest bid. That is, SciTools really only
cares whether it wins the contract. Therefore, an alternative way of presenting the payoff
table is shown in Table 6.4. (See the file SciTools Bidding Decision 1.xlsx for these and
other calculations. However, we urge you to work this problem on a piece of paper with a
calculator, just for practice with the concepts.)

Table 6.4 Alternative Payoff Table for SciTools Bidding Example

Probability That
Monetary Value SciTools Wins

SciTools Wins SciTools Loses

No Bid NA 0 0.00
SciTools’ Bid ($1000s) 115 15 �5 0.86

120 20 �5 0.58
125 25 �5 0.37 

The Monetary Value columns of this table indicate the payoffs to SciTools, depending
on whether it wins or loses the bid. The rightmost column shows the probability that
SciTools wins the bid for each possible decision. For example, if SciTools bids $120,000,
then it wins the bid if there are no competing bids (probability 0.3) or if there are competing
bids and the lowest of these is greater than $120,000 [probability 0.7(0.3 � 0.1) � 0.28].
In this case the total probability that SciTools wins the bid is 0.3 � 0.28 � 0.58.

Developing the Risk Profiles

Table 6.4 contains all the required information to obtain a risk profile for each of SciTools’s
decisions. Again, each risk profile indicates all possible monetary values and their correspond-
ing probabilities in a spike chart. For example, if SciTools bids $120,000, there are two mone-
tary values possible, a profit of $20,000 and a loss of $5000, and their probabilities are 0.58 and
0.42, respectively. The corresponding risk profile, shown in Figure 6.4, is a spike chart with two
spikes, one above �$5000 with height 0.42 and one above $20,000 with height 0.58. On the
other hand, if SciTools decides not to bid, there is a sure monetary value of $0—no profit, no
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loss. Therefore, the risk profile for the “no bid” decision, not shown here, has a single spike
above $0 with height 1.

Calculating EMVs

The EMVs for SciTools’s problem are listed in Table 6.5. As always, each EMV (other than
the EMV of $0 for not bidding) is a sum of products of monetary outcomes and probabili-
ties. These EMVs indicate that if SciTools uses the EMV criterion for making its decision,
it should bid $115,000. The EMV from this bid, $12,200, is the largest of the EMVs.
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Table 6.5 EMVs for SciTools Bidding Example

Alternative EMV Calculation EMV

No bid 0(1) $0
Bid $115,000 15,000(0.86) � (�5000)(0.14) $12,200
Bid $120,000 20,000(0.58) � (�5000)(0.42) $9500
Bid $125,000 25,000(0.37) � (�5000)(0.63) $6100 

As discussed previously, it is important to understand what an EMV implies and what
it does not imply. If SciTools bids $115,000, its EMV is $12,200. However, SciTools will
definitely not earn a profit of $12,200. It will earn $15,000 or it will lose $5000. The EMV
of $12,200 represents only a weighted average of these two possible values. Nevertheless,
it is the value that is used as the decision criterion. In words, if SciTools is truly an EMV
maximizer, it considers this gamble equivalent to a sure return of $12,200.

Developing the Decision Tree

The corresponding decision tree for this problem is shown in Figure 6.5. This is a direct
translation of the payoff table and EMV calculations. The company first makes a bidding
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decision, then observes what the competition bids, if anything, and finally receives a
payoff. The folding-back process is equivalent to the calculations shown in Table 6.5.

There are often equivalent ways to structure a decision tree. One alternative for this
example appears in Figure 6.6. This tree shows exactly how the problem unfolds. The
company first decides whether to bid at all. If the company does not make a bid, the profit
is a sure $0. Otherwise, the company then decides how much to bid. Note that if the
company decides to bid, it incurs a sure cost of $5000, so this cost is placed under the Bid
branch. It is a common procedure to place the monetary values on the branches where they
occur in time, and we typically do so. Once the company decides how much to bid, it then
observes whether there is any competition. If there isn’t any, the company wins the bid for
sure and makes a corresponding profit. Otherwise, if there is competition, the company
eventually discovers whether it wins or loses the bid, with the corresponding probabilities
and payoffs. Note that these payoffs are placed below the branches where they occur in
time. Also, the cumulative payoffs are placed at the ends of the branches. Each cumulative
payoff is the sum of all payoffs on branches that lead to that end node.
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Folding Back the Decision Tree

The folding-back procedure is somewhat more complex than it was for the smaller tree in
Figure 6.5. To illustrate, the nodes in Figure 6.6 have been numbered for reference. The
EMVs above a selected few of these nodes are calculated as follows:

■ Node 7: EMV � 20000(0.40) � (�5000)(0.60) � $5000 (uses monetary values
from end nodes)

■ Node 4: EMV � 20000(0.30) � (5000)(0.70) � $9500 (uses monetary value from
an end node and the EMV from node 7)

■ Node 2: EMV � max(12200, 9500, 6100) � $12,200 (uses EMVs from nodes 3,
4, and 5)

■ Node 1: EMV � max(0, 12200) � $12,200 (uses monetary value from an end node
and EMV from node 2)

The results are the same, regardless of whether you use the table of EMVs in Table 6.5, the
decision tree in Figure 6.5, or the decision tree in Figure 6.6, because they all calculate the
same EMVs in equivalent ways. In each case, the bottom line is that the company should bid
$115,000, with a resulting EMV of $12,200. Of course, this decision is not guaranteed to
produce a good outcome for the company. For example, the competition could bid less than
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$115,000, in which case SciTools would lose $5000. Alternatively, the competition could
bid more than $120,000, in which case SciTools would be kicking itself for not bidding
$120,000 and gaining an extra $5000 in profit. Unfortunately, in problems with uncertainty,
there is virtually never a guarantee that the optimal decision will produce the best result.
The only guarantee is that the EMV-maximizing decision is the most rational decision,
given the information known when the decision must be made.

Sensitivity Analysis

The next step in the SciTools decision analysis is to perform a sensitivity analysis. You will
eventually see that PrecisionTree, an Excel add-in that helps automate the decision-making
process, has some powerful sensitivity analysis tools. However, it is also possible to use
Excel data tables. One example is shown in Figure 6.7. (See the finished version of the file
SciTools Bidding Decision 1.xlsx.) The EMVs are calculated in column G, exactly as
described previously. Then you can find the maximum of these in cell B21, and you can
use the following nested IF formula in cell B22 to find the decision from column B that
achieves this maximum:

�INDEX(B16:B19,MATCH(B21,G16:G19,0))

This formula checks which EMV in column G matches the maximum EMV in cell B21
and returns the corresponding decision from column B. (This combination of the INDEX
and MATCH functions is often useful for finding the value that corresponds to a maximum
or minimum. For an explanation of this combination, see the Excel Tutorial.xlsx file that
accompanies this book.)
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GFEDCBA
SciTools Bidding Example

Inputs
Cost to prepare a 000,5$dib Range names used:
Cost to supply instruments $95,000 BidCost =Data!$B$4

PrNoBid =Data!$B$7
Probability of no compe�ng

distribu�on
5$B$!ataD=tsoCdorP3.0dib

Comp bid (if they bid)
2.0K511$<

$115K to $120K 0.4
$120K to $125K 0.3

1.0K521$>

EMV analysis Monetary outcomes
SciTools wins SciTools loses SciTools

Probabili�es
wins SciTools loses EMV

No bid NA 0 0 1 $0
SciTools' 00,511$diB 0 $15,000 -$5,000 0.86 0.14 $12,200

$120,000 $20,000 -$5,000 0.58 0.42 $9,500
$125,000 $25,000 -$5,000 0.37 0.63 $6,100

Maximum 02,21$VME 0
Best 00,511$noisiced 0

Data table for sensi�vity analysis
Probability of no compe�ng bid Maximum EMV Best decision

$12,200 $115,000
0.2 $11,800 $115,000
0.3 $12,200 $115,000
0.4 $12,600 $115,000
0.5 $13,000 $115,000
0.6 $14,200 $125,000
0.7 $16,900 $125,000

Figure 6.7 Sensitivity Analysis with a Data Table
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Once the formulas in cells B21 and B22 have been entered, the data table is easy. In
Figure 6.7 the probability of no competing bid is allowed to vary from 0.2 to 0.7. The data
table shows how the optimal EMV increases over this range. Also, its third column shows
that the $115,000 bid is optimal for small values of the input, but that a $125,000 bid
becomes optimal for larger values. The main point here is that if you set up a spreadsheet
model that links all of the EMV calculations to the inputs, it is easy to use data tables to
perform sensitivity analyses on selected inputs. ■
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P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com. 

Level A

1. For the example in Simple Decision Problem.xlsx,
are there any probabilities that make the EMV
criterion equivalent to the maximin criterion? Are
there any probabilities that make the EMV criterion
equivalent to the maximax criterion? Explain.

2. Using a data table in Excel, perform a sensitivity
analysis on the example in Simple Decision
Problem.xlsx. Specifically, keep the probabilities
in row 10 (for D2) as they are, but vary the probability
in cell C11 from 0 to 1 in increments of 0.05, and
keep the probabilities in cells D11 and E11 in the
same ratio as they are currently (2 to 3).

3. In the SciTools example, make two changes: change
all references to $115,000 to $110,000, and change all
references to $125,000 to $130,000. Rework the EMV
calculations and the decision tree. What is the best
decision and its corresponding EMV?

4. In the SciTools example, which decision would a
maximin decision maker choose? Which decision
would a maximax decision maker choose? Would you
defend either of these criteria for this particular
example? Explain.

5. In the SciTools example, use a two-way data table to
see how (or whether) the optimal decision changes as
the bid cost and the company’s production cost change
simultaneously. Let the bid cost vary from $2000 to
$8000 in increments of $1000, and let the production
cost vary from $90,000 to $105,000 in increments of
$2500. Explain your results.

6. In the SciTools example, the probabilities for the low
bid of competitors, given that there is at least one
competing bid, are currently 0.2, 0.4, 0.3, and 0.1.
Let the second of these be p, and let the others sum to
1 � p but keep the same ratios to one another: 2 to 3
to 1. Use a one-way data table to see how (or whether)
the optimal decision changes as p varies from 0.1 to
0.7 in increments of 0.05. Explain your results.

Level B

7. For the example in Simple Decision Problem.xlsx,
we found that decision D3 is the EMV-maximizing
decision for the given probabilities. See whether you
can find probabilities that make decision D1 the
best. If the probabilities in row 10 (for D2) are the
same as the probabilities in row 11 (for D3), is it
possible for D2 to be the best decision? What if
these two rows are allowed to be different?
Qualitatively, how can you explain the results? That
is, which types of probabilities tend to favor the
various decisions? (Hint: To search for probabilities
where D2 is better than the other two decisions,
given that rows 10 and 11 are the same, you can use
Solver.)

8. A decision d is said to be dominated by another deci-
sion D if, for every outcome, the payoff from D is
better than (or no worse than) the payoff from d.
a. Explain why you would never choose a dominated

decision using the maximin criterion, the maximax
criterion, or the EMV criterion.

b. Are any of the decisions in the example in Simple
Decision Problem.xlsx dominated by any others?
What about in the SciTools example?

9. Besides the maximin, maximax, and EMV criteria,
there are other possible criteria for making decisions.
One possibility involves regret. The idea behind
regret is that if you make any decision and then some
outcome occurs, you look at that outcome’s column
in the payoff table to see how much more you could
have made if you had chosen the best payoff in that
column. For example, if the decision you make and
the outcome you observe lead to a $50 payoff, and if
the highest payoff in this outcome’s column is $80,
then your regret is $30. You regret looking back and
seeing how much more you could have made, if only
you had made a different decision. Therefore, you
calculate the regret for each cell in the payoff table
(as the maximum payoff in that column minus the
payoff in that cell), calculate the maximum regret in
each row, and choose the row with the smallest
maximum regret. This is called the minimax regret
criterion.
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6.3 THE PRECISIONTREE ADD-IN

Decision trees present a challenge for Excel. We must somehow take advantage of Excel’s
calculating capabilities (to calculate EMVs, for example) and its graphical capabilities (to
depict the decision tree). Fortunately, there is a powerful add-in, PrecisionTree, developed
by Palisade Corporation, that makes the process relatively straightforward. This add-in not
only enables you to draw and label a decision tree, but it performs the folding-back procedure
automatically and then allows you to perform sensitivity analysis on key input parameters.

The first thing you must do to use PrecisionTree is to “add it in.” We assume you have
already installed the Palisade DecisionTools suite. Then to run PrecisionTree, you have
two options:

■ If Excel is not currently running, you can launch Excel and PrecisionTree by clicking
on the Windows Start button and selecting the PrecisionTree item from the Palisade
Decision Tools group in the list of Programs.

■ If Excel is currently running, the first procedure will launch PrecisionTree on top of
Excel.

You will know that PrecisionTree is ready for use when you see its tab and the associ-
ated ribbon (shown in Figure 6.8). If you want to unload PrecisionTree without closing
Excel, you can do so from its Utilities dropdown list in the Tools group.

Figure 6.8 PrecisionTree Ribbon

The Decision Tree Model

PrecisionTree is quite easy to use—at least its most basic items are. We will lead you through
the steps for the SciTools example. Figure 6.9 shows the results of this procedure, just so that
you can see what you are working toward. (See the file SciTools Bidding Decision 2.xlsx.)

a. Apply this criterion to the example in Simple
Decision Problem.xlsx. Which decision do you
choose?

b. Repeat part a for the SciTools example.
c. In general, discuss potential strengths and

weaknesses of this decision criterion.

10. Referring to the previous problem, another possible
criterion is called expected regret. Here you calculate
the regret for each cell, take a weighted average of
these regrets in each row, weighted by the probabilities
of the outcomes, and choose the decision with the
smallest expected regret.
a. Apply this criterion to the SciTools example.

Which decision do you choose?

b. The expected regret criterion is actually equivalent
to the EMV criterion, in that they always lead to
the same decisions. Argue why this is true.

11. In the SciTools example, you might argue that there is
a continuum of possible low competitor bids (given
that there is at least one competing bid), not just four
possibilities. In fact, assume the low competitor bid in
this case is normally distributed with mean $118,000
and standard deviation $4500. Also, assume that
SciTools will still either not bid or bid $115,000,
$120,000, or $125,000. Use Excel’s NORMDIST
function to find the EMV for each alternative. Which
is the best decision now? Why can’t this be
represented in a decision tree?
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However, we recommend that you work through the steps on your own, starting with a blank
spreadsheet.
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Figure 6.9 Completed Tree from PrecisionTree

Figure 6.10 Inputs for SciTools Bidding Example
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BUILDING THE DECISION TREE

1 Inputs. Enter the inputs shown in columns A and B of Figure 6.10. (We have listed
the possible bids in column D so that they can be linked through formulas in the tree.)
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14
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CBA
100.0%
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SciTools Bidding

15 0

Figure 6.11 Beginnings of a New Tree

Figure 6.12

Dialog Box for

Adding a New

Decision Node and

Branches

3 Decision nodes and branches. From here on, keep the tree in Figure 6.9 in mind.
This is the finished product you eventually want. To obtain decision nodes and branches,
select the (only) triangle end node to open the dialog box in Figure 6.12. Click on the green
square to indicate that you want a decision node, and fill in the dialog box as shown. Then
click on the Branches (2) tab and supply labels for the branches under Name, as shown in
Figure 6.13. By default, you get two branches, which is what you want in this case.
However, if you wanted more than two branches, you would click on Add to get additional
branches. The tree expands as shown in Figure 6.14. Under the “Yes” branch, enter the
following link to the bid cost cell:

�-BidCost

(Note that it is negative to reflect a cost.)

2 New tree. Click on the Decision Tree button on the PrecisionTree ribbon, and then
select cell A14 below the input section to start a new tree. You will immediately see a dia-
log box where, among other things, you can name the tree. Enter a descriptive name for the
tree, such as SciTools Bidding, and click on OK. You should now see the beginnings of a
tree, as shown in Figure 6.11.
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Figure 6.13 Dialog Box for Adding or Labeling Branches

Figure 6.15 Tree with All Decision Nodes and Branches

Figure 6.14 Decision Tree with Decision Branches Labeled
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PrecisionTree Tip: Allowable Entries
On your computer screen, you will note the color-coding PrecisionTree uses. If you inves-
tigate any colored (nonblack) cells, you will see strange formulas that PrecisionTree uses
for its own purposes. You should not modify these formulas. You should enter your own
probabilities and monetary values only in the cells with black font.

4 More decision branches. The top branch is completed; if SciTools does not bid, there is
nothing left to do. So click on the bottom end node (the triangle), following SciTools’s deci-
sion to bid, and proceed as in the previous step to add and label the decision node and three
decision branches for the amount to bid. (Again, refer to Figure 6.9.) The tree to this point
should appear as in Figure 6.15. Note that there are no monetary values below these decision
branches because no immediate payoffs or costs are associated with the bid amount decision.
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Figure 6.16 Decision Tree with One Set of Probability Nodes and Branches

6 Copying probability nodes and branches. You could now repeat the same proce-
dure from the previous step to build probability nodes and branches following the other
bid amount decisions, but because they are structurally equivalent, you can save a lot of
work by using PrecisionTree’s copy and paste feature. Right-click on the leftmost proba-
bility node and click on Copy SubTree. Then right-click on either end node below it and
click on Paste SubTree. Do this again with the other end node. Decision trees can get very
“bushy,” but this copy and paste feature can make them much less tedious to construct.

7 Enter probabilities on probability branches. You should now have the decision
tree shown in Figure 6.17. It is structurally the same as the completed tree in Figure 6.9,
but the probabilities and monetary values on the probability branches are incorrect. Note
that each probability branch has a value above and below the branch. The value above is
the probability (the default values make the branches equally likely), and the value below
is the monetary value (the default values are 0). You can enter any values or formulas in
these cells (remember, the cells with black font only), exactly as you do in typical Excel
worksheets. As usual, it is a good practice to enter cell references, not numbers, whenever
possible. In addition, range names can be used instead of cell addresses.

PrecisionTree Tip: Sum of Probabilities
PrecisionTree does not enforce the rule that probabilities on branches leading out of a
node must sum to 1. You must enforce this rule with appropriate formulas.

PrecisionTree Tip: Entering Monetary Values, Probabilities
A good practice is to calculate all of the monetary values and probabilities that will be
needed in the decision tree in some other area of the spreadsheet. Then the values needed
next to the tree branches can be created with simple linking formulas.

We will get you started with the probability branches following the decision to bid
$115,000. First, enter the probability of no competing bid in cell D18 with the formula

�PrNoBid

and enter its complement in cell D24 with the formula

�1-D18

5 Probability nodes and branches. Using the same procedure (and using Figure 6.9
as a guide), create probability nodes extending from the “bid $115,000” decision. You
should have the skeleton in Figure 6.16.
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Next, enter the probability that SciTools wins the bid in cell E22 with the formula

�SUM(B10:B12)

and enter its complement in cell E26 with the formula

�1-E22

(Remember that SciTools wins the bid only if the competition bids higher, and in this part
of the tree, SciTools is bidding $115,000.) For the monetary values, enter the formula

�D9-ProductionCost

in the two cells, D19 and E23, where SciTools wins the contract. Note that the cost of the
bid was already subtracted in cell B29, so it should not be subtracted again. This would be
double-counting, which you should always avoid in decision trees.

8 Enter the other formulas on probability branches. Using the previous step and
Figure 6.9 as a guide, enter formulas for the probabilities and monetary values on the other
probability branches, those following the decision to bid $120,000 or $125,000.

PrecisionTree Tip: Copying Subtrees
Before taking advantage of PrecisionTree’s subtree copying capability , it is generally a
good idea to fill the subtree as much as possible (with labels, probabilities, and monetary
values). In this way, the copies will require less work. Note that formulas on the subtree are
copied in the usual Excel way (in terms of relative and absolute references), so that the for-
mulas on the copies often have to be adjusted slightly. In this example, you could have sped
up the process slightly by completing step 7 before copying. Then step 8 would entail only
a few formula adjustments on the copied subtrees.
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Figure 6.17 Structure of Completed Tree
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Interpreting the Decision Tree

You are finished! The completed tree in Figure 6.9 shows the best strategy and its
associated EMV, as we discussed previously. In fact, a comparison of the decision tree in
Figure 6.6 that was created manually and the tree from PrecisionTree in Figure 6.9 indi-
cates virtually identical results. The best decision strategy is now indicated by the TRUE
and FALSE labels above the decision branches (rather than the notches we entered by
hand). Each TRUE corresponds to the optimal decision out of a decision node, whereas
each FALSE corresponds to a suboptimal decision. Therefore, you simply follow the
TRUE labels. In this case, the company should bid, and its bid amount should be $115,000.

Note that you do not have to perform the folding-back procedure manually.
PrecisionTree does this for you. Essentially, the tree is completed as soon as you finish
entering the relevant inputs. In addition, if you change any of the inputs, the tree reacts
automatically. For example, try changing the bid cost in cell B4 from $5000 to some large
value such as $20,000. You will see that the tree calculations update automatically, and the
best decision is then not to bid, with an associated EMV of $0.

PrecisionTree Tip: Values at End Nodes
You will notice that there are two values following each triangle end node. The bottom value is
the sum of all monetary values on branches leading to this end node. The top value is the prob-
ability of getting to this end node when the optimal strategy is used. This explains why many of
these probabilities are 0; the optimal strategy will never lead to these end nodes.

Policy Suggestion and Risk Profile for Optimal Strategy

Once the decision tree is completed, PrecisionTree has several tools you can use to gain
more information about the decision analysis. First, you can see a subtree (called a Policy
Suggestion) for the optimal decision. To do so, choose Policy Suggestion from
the Decision Analysis dropdown list and fill in the resulting dialog box as shown in
Figure 6.18. (You can experiment with other options.) The Policy Suggestion option shows
only the part of the tree that corresponds to the best decision, as shown in Figure 6.19.
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To find the optimal
decision strategy in any
PrecisionTree tree,
follow the TRUE labels.

The Policy Suggestion
shows only the subtree
corresponding to the
optimal decision
strategy.

Figure 6.18

Dialog Box for

Information about

Optimal Decision

You can also obtain a graphical risk profile of the optimal decision by selecting Risk
Profile from the Decision Analysis dropdown list and filling in the resulting dialog box as
shown in Figure 6.20. (Again, you can experiment with the other options.) As the risk pro-
file in Figure 6.21 indicates, there are only two possible monetary outcomes if SciTools
bids $115,000. It either wins $15,000 or loses $5000, and the former is much more likely.
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(The associated probabilities are 0.86 and 0.14, respectively.) This graphical information is
even more useful when there are a larger number of possible monetary outcomes. You can
see what they are and how likely they are.

Sensitivity Analysis

We have already stressed the importance of a follow-up sensitivity analysis to any decision
problem, and PrecisionTree makes this relatively easy to perform. Of course, you can enter
any values in the input cells and watch how the tree changes, but you can obtain more sys-
tematic information by clicking on PrecisionTree’s Sensitivity Analysis button. This
brings up the dialog box in Figure 6.22. Although it has a lot of options, it is easy to use
once you understand the ideas behind it. Here are the main options and how to use them.
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It takes some practice
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PrecisionTree’s
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are powerful and
worth learning.

Figure 6.22

Sensitivity Analysis

Dialog Box

■ The Analysis Type dropdown list allows you to vary one input (One-Way Sensitivity)
or two inputs (Two-Way Sensitivity) simultaneously.

■ The Starting Node dropdown list lets you choose any node in the tree, and the sensitivity
analysis is then performed for the EMV from that node to the right. In other words, it
assumes you have gotten to that node and are now interested in what will happen from
then on. The node selected in the figure, C29, is the leftmost node, so by selecting it, the
sensitivity analysis is on the EMV of the entire tree. This is the most common setting.

■ You add inputs to vary in the Inputs section. You can add as many as you like, and all
of the checked inputs are included in any particular sensitivity analysis. When you
add an input to this section, you can specify the range over which you want it to vary.
For example, you can vary it by plus or minus 10% in 10 steps from a selected base
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value, as we did for the production cost in cell B5, or you can vary it from 0 to 0.6 in
12 steps, as we did for the probability of no competing bids in cell B7.

■ The Include Results checkboxes allow you to select up to four types of charts,
depending on the type of sensitivity analysis. (The bottom two options are disabled
for a two-way sensitivity analysis.) You can experiment with these options, but we
will illustrate our favorites shortly.

When you click on OK, PrecisionTree varies each of the checked inputs in the middle
section, one at a time if you select the One-Way option, and presents the results in new work-
sheets. By default, these new worksheets are placed in a new workbook. If you would rather
have them in the same workbook as the model, click on the PrecisionTree Utilities dropdown
arrow, select Application Settings, and select Active Workbook from the Replace Reports In
option. (This is a global setting. It will take effect for all future PrecisionTree analyses.)

Strategy Region Chart

Figure 6.23 illustrates a strategy region chart from a one-way analysis. This chart shows
how the EMV varies with the production cost for both of the original decisions (bid or
don’t bid). This type of chart is useful for seeing whether the optimal decision changes
over the range of the input variable. It does so only if the two lines cross. In this particular
graph it is clear that the “Bid” decision dominates the “No bid” decision over the selected
production cost range.
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Tornado Chart

A tornado chart shows how sensitive the EMV of the optimal decision is to each of the
selected inputs over the specified ranges. (See Figure 6.24.) The length of each bar shows
the change in the EMV in either direction, so inputs with longer bars have a greater effect on the
selected EMV. (If you checked the next-to-bottom checkbox in Figure 6.22, the lengths of the
bars would indicate percentage changes from the base value.) The bars are always arranged
from longest on top to shortest on the bottom—hence the name tornado chart. Here it is appar-
ent that production cost has the largest effect on EMV, and bid cost has the smallest effect.

Tornado charts and
spider charts indicate
which inputs the
selected EMV is most
sensitive to.
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Spider Chart

Finally, a spider chart shows how much the optimal EMV varies in magnitude for vari-
ous percentage changes in the input variables. (See Figure 6.25.) The steeper the slope of
the line, the more the EMV is affected by a particular input. It is again apparent that the
production cost has a relatively large effect, whereas the other two inputs have relatively
small effects.
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Another Sensitivity Chart

Each time you click on the Sensitivity Analysis button, you can run a different sensitiv-
ity analysis. For example, you might want to choose cell C29 as the cell to analyze. This
is the optimal EMV for the problem, given that the company has decided to place a bid.
One interesting chart from this analysis is the strategy region chart in Figure 6.26. It
indicates how the EMV varies with the probability of no competing bid for each of the
three bid amount decisions. The $115,000 bid is best for most of the range, but when the
probability of no competing bid is sufficiently large (about 0.55), the $120,000 bid
becomes best (by a small margin.)
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Figure 6.26
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Two-Way Sensitivity Chart

Another interesting option is to run a two-way analysis. This shows how the selected EMV
varies as each pair of inputs varies simultaneously. We analyzed the EMV in cell C29 with
this option, using the same inputs as before. A typical result is shown in Figure 6.27. For
each of the possible values of production cost and the probability of no competitor bid, this
chart indicates which bid amount is optimal. (By choosing cell C29, we are assuming
SciTools will bid; the only question is how much.) As you can see, the optimal bid amount
remains $115,000 unless the production cost and the probability of no competing bid are
both large. Then it becomes optimal to bid $120,000 or $125,000. This makes sense intu-
itively. As the probability of no competing bid increases and a larger production cost must
be recovered, it seems reasonable that SciTools should increase its bid.

We reiterate that a sensitivity analysis is always an important component of any real-
world decision analysis. If you had to construct decision trees by hand—with paper and
pencil—a sensitivity analysis would be very tedious, to say the least. You would have to
recalculate everything each time through. Therefore, one of the most valuable features of
the PrecisionTree add-in is that it enables you to perform sensitivity analyses in a matter of
seconds.

A one-way sensitivity
analysis varies only one
input at a time. A two-
way analysis varies two
inputs simultaneously.
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P R O B L E M S

Level A

12. In a tree built with PrecisionTree, there are two blue
values at each end node, the top one of which is a
probability. Why are so many of these probabilities 0
in the finished tree in Figure 6.9? What do the
remaining (positive) probabilities represent?

13. In the SciTools example, there are two equivalent
decision tree structures, shown in Figures 6.5 and 
6.6. Use PrecisionTree to create the first of these,
and verify that it yields the same EMVs and the
same optimal decision as the tree developed in
this section.

14. For the completed decision tree in Figure 6.9, the
monetary values in black are those you enter. The
monetary values in color are calculated automatically
by PrecisionTree. For this particular example, explain
exactly how these latter values are calculated
(remember the folding-back process) and what they
represent. These include the blue values at the end

nodes, the red values at the probability nodes, and the
green values at the decision nodes.

15. For the SciTools example, once you build the tree as in
Figure 6.9 and then run a one-way sensitivity analysis
with the dialog box filled in as in Figure 6.22, you
obtain three strategy charts. (Try it.) Explain exactly
what each of these charts represents. (For this problem,
you can ignore the tornado and spider charts.)

16. The tornado chart in Figure 6.24 and the spider chart
in Figure 6.25 show basically the same information in
slightly different forms. Explain in words exactly what
information they provide. (If necessary, consult
PrecisionTree’s online help.)

17. Explain in words what information a two-way
sensitivity chart, such as the one in Figure 6.27,
provides. Demonstrate how you could provide this
same information without PrecisionTree’s sensitivity
tools, using only data tables. (You can still use the tree
built with PrecisionTree.)
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6.4 BAYES’ RULE

The examples to this point have required a single decision. We now examine multistage
problems, where a decision maker must make at least two decisions that are separated in
time, such as when a company must first decide whether to buy information that will help
it make a second decision. In multistage decision problems there are typically alternating
sets of decision nodes and probability nodes. The decision maker makes a decision, some
uncertainty is resolved, the decision maker makes another decision, more uncertainty is
resolved, and so on. Before analyzing such problems, we must discuss one important prob-
ability issue.

In a multistage decision tree, all probability branches at the right of the tree are con-
ditional on outcomes that have occurred earlier, to their left. Therefore, the probabilities
on these branches are of the form P(A|B), read “A given B,” where A is an event corre-
sponding to a current probability branch, and B is an event that occurs before event A in
time. However, when gathering data for the problem, it is sometimes more natural to
assess conditional probabilities in the opposite order, that is, P(B|A). Whenever this is the
case, Bayes’ rule must be used to obtain the probabilities needed on the tree. Essentially,
Bayes’ rule is a mechanism for revising probabilities as new information becomes
available.

To develop Bayes’ rule, let A1 through An be any outcomes. Without any further infor-
mation, we believe the probabilities of the As are P(A1) through P(An). These are called
prior probabilities. We then have the possibility of gaining some information. There are
several information outcomes we might observe, a typical one of which is labeled B. We
assume the probabilities of B, given that any of the As will occur, are known. These
probabilities, labeled P(B|A1) through P(B|An), are often called likelihoods. Because an
information outcome might influence our thinking about the probabilities of the As,
we need to find the conditional probability P(Ai|B) for each outcome Ai. This is called the
posterior probability of Ai. This is where Bayes’ rule enters the picture. It states that we
can calculate posterior probabilities from the following formula.
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The whole purpose of
Bayes’ rule is to revise
probabilities as new
information becomes
available.

Bayes’ rule

(6.1)P(At 
|

 
B) =

P(B | At)P(At)

P(B |A1)P(A1) +
Á

+ P(B | An)P(An)

Denominator of Bayes’ rule (Law of Total Probability)

(6.2)P(B) = P(B | A1)P(A1) +
Á

+ P(B |A1)P(An)

In words, Bayes’ rule says that the posterior is the likelihood times the prior, divided
by a sum of likelihoods times priors. As a side benefit, the denominator in Bayes’ rule is
also useful in multistage decision trees. It is the probability P(B) of the information out-
come.

This formula is important in its own right. For B to occur, it must occur along with one
of the As. Formula 6.2) simply decomposes the probability of B into all of these possibili-
ties. It is sometimes called the law of total probability.
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In the case where there are only two As, labeled as A and Not A, Bayes’ rule takes the
following form:

304 Chapter 6 Decision Making under Uncertainty

Bayes’ rule for two outcomes

(6.3)P(A|B) =

P(B|A)P(A)

P(B|A)P(A) + P(B|Not A)P(Not An)

We illustrate the mechanics of Bayes’ rule in the following example. [See Feinstein
(1990) for a real application of this example.]

E X A M P L E 6.2 DRUG TESTING COLLEGE ATHLETES

If an athlete is tested for a certain type of drug use (steroids, say), the test result will
be either positive or negative. However, these tests are never perfect. Some drug-free

athletes test positive, and some drug users test negative. The former are called false
positives; the latter are called false negatives. Let’s assume that 5% of all athletes use
drugs, 3% of all tests on drug-free athletes yield false positives, and 7% of all tests on
drug users yield false negatives. Suppose a typical athlete is tested. If this athlete tests
positive, can you be sure that he is a drug user? If he tests negative, can you be sure he
does not use drugs?

Objective To use Bayes’ rule to revise the probability of being a drug user, given the
positive or negative results of the test.

WHERE DO THE NUMBERS COME FROM?

The estimate that 5% of all athletes are drug users is probably based on a well-known national
average. The error rates from the tests are undoubtedly known from extensive experience with
the tests. (However, we are not claiming that the numbers used here match reality.)

Solution

Let D and ND denote that a randomly chosen athlete is or is not a drug user, and let T� and
T� indicate a positive or negative test result. (The outcomes D and ND correspond to A
and Not A in Equation (6.3), and either T� or T� corresponds to B.) The following
probabilities are given. First, because 5% of all athletes are drug users, you know that 
P(D) � 0.05 and P(ND) � 0.95. These are the prior probabilities. They represent the
chance that an athlete is or is not a drug user prior to the results of a drug test.

Second, from the information on the accuracy of the drug test, you know the condi-
tional probabilities P(T� |ND) � 0.03 and P(T�|D) � 0.07. In addition, a drug-free athlete
tests either positive or negative, and the same is true for a drug user. Therefore, you also
know the probabilities P(T�|ND) � 0.97 and P(T� |D) � 0.93. These four conditional
probabilities of test results given drug user status are the likelihoods of the test results.

Given these priors and likelihoods, you need to calculate posterior probabilities such
as P(D |T�), the probability that an athlete who tests positive is a drug user, and
P(ND |T�), the probability that an athlete who tests negative is drug free. They are called
posterior probabilities because they are assessed after the drug test results.
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Using Bayes’ rule for two outcomes, Equation (6.3), you can calculate

and

In words, if the athlete tests positive, there is still a 38% chance that he is not a drug user, but
if he tests negative, you are virtually sure he is not a drug user. The denominators of these two
formulas are the probabilities of the test results. They can be calculated from Equation (6.2):

P(T�) � 0.93(0.05) � 0.03(0.95) � 0.075

and

P(T�) � 0.07(0.05) � 0.97(0.95) � 0.925

The first Bayes’ rule result might surprise you. After all, the test is reasonably accurate, so if
you observe a positive test result, you should be pretty sure that the athlete is a drug user,
right? The reason the first posterior probability is “only” 0.620 is that very few athletes in the
population are drug users—only 5%. Therefore, you need a lot of evidence to be convinced
that a particular athlete is a drug user, and a positive test result from a somewhat inaccurate
test is not enough evidence to be totally convincing. On the other hand, a negative test result
simply adds confirmation to what you already suspected—that a typical athlete is not a drug
user. This is why P(ND|T�) is so close to 1.

A More Intuitive Calculation

If you have trouble understanding or implementing Bayes’ rule, you are not alone. At least one
study has shown that even trained medical specialists have trouble with this type of calculation
(in the context of tests for cancer). Most of us do not think intuitively about conditional prob-
abilities. However, there is an equivalent and more intuitive way to obtain the same result.

Imagine that there are 100,000 athletes. Because 5% of all athletes are drug users, we
assume that 5000 of these athletes use drugs and the other 95,000 do not. Now we administer
the test to all of them. We expect 3%, or 2850, of the nonusers to test positive (because the
false-positive rate is 3%), and we expect 93%, or 4650, of the drug users to test positive
(because the false-negative rate is 7%). Therefore, we observe a total of 2850 � 4650 � 7500
positives. If one of these 7500 athletes is chosen at random, what is the probability that a drug
user is chosen? It is clearly

P(D|T�) � 4650/7500 � 0.620

This is the same result we got using Bayes’ rule! So if you have trouble with Bayes’
rule using probabilities, you can use this alternative method of using counts. (By the way,
the 100,000 value is irrelevant. We could have used 10,000, 50,000, 1,000,000, or any
other convenient value.)

Spreadsheet Implementation of Bayes’ Rule

It is fairly easy to implement Bayes’ rule in a spreadsheet, as illustrated in Figure 6.28 for
the drug example. (See the file Bayes Rule.xlsx.4)

=

P(T- |ND)P(D)

P(T- |D)P(D) + P(T- |ND)P(ND)
=

(0.97)(0.95)

(0.07)(0.05) + (0.97)(0.95)
= 0.996

P(ND|T- )

=

P(T+ |D)P(D)

P(T+ |D)P(D) + P(T+ |ND)P(ND)
=

(0.93)(0.05)

(0.93)(0.05) + (0.03)(0.95)
= 0.620

P(D | T+ )
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This alternative
procedure, using 
counts instead of
probabilities, is
equivalent to Bayes’
rule and is probably
more intuitive.

4The Bayes2 sheet in this file illustrates how Bayes’ rule can be used when there are more than two possible test
results and/or drug user categories.
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The given priors and likelihoods are listed in the ranges B5:C5 and B9:C10. You first
use Equation (6.2) to calculate the denominators for Bayes’ rule, the unconditional proba-
bilities of the two possible test results, in the range B14:B15. Because each of these is a
sum of products of priors and likelihoods, the formula in cell B14 is

�SUMPRODUCT($B$5:$C$5,B9:C9)

and this is copied to cell B15. Then you use Equation (6.1) to calculate the posterior prob-
abilities in the range B20:C21. Because each of these is a product of a prior and a likeli-
hood, divided by a denominator, the formula in cell B20 is

�B$5*B9/$B14

and this is copied to the rest of the B20:C21 range. The various 1s in the margins of
Figure 6.28 are row sums or column sums that must equal 1. They are shown only as
checks of the logic.

As we have noted, a positive drug test still leaves a 38% chance that the athlete is not
a drug user. Is this a valid argument for not requiring drug testing of athletes? We explore
this question in a continuation of the drug-testing example in the next section. ■
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Test posi�v e 0.93 0.03
Test

Uncondi�onal probabili�es

 nega�ve 0.07 0.97
1 1
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Test posi�ve 0.075
Test nega�v e 0.925

1

Posterior probabili�es of drug user status (Bayes' rule)
User Non-user

Test posi�v e 0.620 0.380 1
Test nega�v e 0.004 0.996 1

Figure 6.28

Bayes’ Rule for

Drug-Testing

Example

P R O B L E M S

Level A

18. For each of the following, use a one-way data table to
see how the posterior probability of being a drug user,
given a positive test, varies as the indicated input
varies. Write a brief explanation of your results.
a. Let the input be the prior probability of being a drug

user, varied from 0.01 to 0.10 in increments of 0.01.
b. Let the input be the probability of a false positive from

the test, varied from 0 to 0.10 in increments of 0.01.

c. Let the input be the probability of a false negative
from the test, varied from 0 to 0.10 in increments
of 0.01.

19. In the drug testing, assume there are three possible
test results: positive, negative, and inconclusive. For
a drug user, the probabilities of these outcomes are
0.65, 0.06, and 0.29. For a nonuser, they are 0.03,
0.72, and 0.25. Use Bayes’ rule to find a table of all
posterior probabilities. (The prior probability of
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being a drug user is still 0.05.) Then answer the
following.
a. What is the posterior probability that the athlete is a

drug user, (1) given that her test results are positive,
(2) given that her test results are negative, and
(3) given that her drug results are inconclusive?

b. What is the probability of observing a positive test
result, a negative test result, or an inconclusive test
result?

20. Referring to the previous problem, find the same
probabilities through the counting argument explained
in this section. Start with 100,000 athletes and divide
them into the various categories.

21. Suppose you are a heterosexual white male and are
going to be tested to see if you are HIV positive.
Assume that if you are HIV positive, your test will
always come back positive. Assume that if you are not
HIV positive, there is still a 0.001 chance that your
test will indicate that you are HIV positive. In reality,
1 of 10,000 heterosexual white males is HIV positive.
Your doctor calls and says that you have tested HIV
positive. He is sorry but there is a 99.9% (1�0.001)
chance that you have HIV. Is he correct? What is the
actual probability that you are HIV positive?

Level B

22. The terms prior and posterior are relative. Assume
that the drug test has been performed, and the outcome

is positive, which leads to the posterior probabilities in
row 20 of Figure 6.28. Now assume there is a second
test, independent of the first, that can be used as a
follow-up. Assume that its false-positive and false-
negative rates are 0.02 and 0.06.
a. Use the posterior probabilities from row 20 as

prior probabilities in a second Bayes’ rule
calculation. (Now prior means prior to the second
test.) If the athlete also tests positive in this second
test, what is the posterior probability that he is a
drug user?

b. We assumed that the two tests are independent.
Why might this not be realistic? If they are not
independent, what kind of additional information
would you need about the likelihoods of the test
results?

23. In the OJ Simpson trial it was accepted that OJ had
battered his wife. OJ’s lawyer tried to negate the
impact of this information by stating that in a one-
year period, only 1 out of 2500 battered women are
murdered, so the fact that OJ battered his wife does
not give much evidence that he was the murderer.
The prosecution (foolishly!) let this go unchallenged.
Here are the relevant statistics: In a typical year
6.25 million women are battered, 2500 are battered
and murdered, and 2250 of the women who were
battered and murdered were killed by the batterer.
How should the prosecution have refuted the
defense’s argument?
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6.5 MULTISTAGE DECISION PROBLEMS

In this section we investigate multistage decision problems. In many such problems the
first-stage decision is whether to purchase information that will help make a better second-
stage decision. In this case the information, if obtained, typically changes the probabilities
of later outcomes. To revise the probabilities once the information is obtained, you often
need to apply Bayes’ rule, as discussed in the previous section. In addition, you typically
want to learn how much the information is worth. After all, information usually comes at a
price, so you want to know whether the information is worth its price. This leads to an
investigation of the value of information, an important theme of this section.

We begin with a continuation of the drug-testing example from the previous section. If drug
tests are not completely reliable, should they be used? As you will see, it all depends on the “costs.”5

5It might also depend on whether there is a second type of test that could help confirm the findings of the first test.
However, we will not consider such a test.
6Again, see Feinstein (1990) for an enlightening discussion of this drug-testing problem at a real university.

E X A M P L E 6.3 DRUG TESTING COLLEGE ATHLETES

The administrators at State University are trying to decide whether to institute manda-
tory drug testing for athletes. They have the same information about priors and likeli-

hoods as in Example 6.2, but they now want to use a decision tree approach to see whether
the benefits outweigh the costs.6
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Objective To use a multistage decision framework to see whether mandatory drug
testing can be justified, given a somewhat unreliable test and a set of “reasonable” mone-
tary values.

WHERE DO THE NUMBERS COME FROM?

We already discussed the source of the probabilities in Example 6.2. The monetary values
we need are discussed in detail here.

Solution

We have already discussed the uncertain outcomes and their probabilities. Now we need to
discuss the decision alternatives and the monetary values, the other two elements of a deci-
sion analysis. We will assume that there are only two alternatives: perform drug testing on
all athletes or don’t perform any drug testing. In the former case we assume that if an ath-
lete tests positive, this athlete is barred from athletics.

Assessing the Monetary Values

The “monetary” values are more difficult to assess. They include 
■ the benefit B from correctly identifying a drug user and barring this person from

athletics
■ the cost C1 of the test itself for a single athlete (materials and labor)
■ the cost C2 of falsely accusing a nonuser (and barring this person from athletics)
■ the cost C3 of not identifying a drug user and allowing this person to participate in

athletics
■ the cost C4 of violating a nonuser’s privacy by performing the test.

It is clear that only C1 is a direct monetary cost that is easy to measure. However, the
other “costs” and the benefit B are real, and they must be compared on some scale to
enable administrators to make a rational decision. We will do so by comparing everything
to the cost C1, to which we assign value 1. (This does not mean that the cost of testing an
athlete is necessarily $1; it just means that all other monetary values are expressed as mul-
tiples of C1.) Clearly, there is a lot of subjectivity involved in making these comparisons,
so sensitivity analysis on the final decision tree is a must.

Developing a Benefit–Cost Table

Before developing this decision tree, it is useful to form a benefit–cost table for both alter-
natives and all possible outcomes. Because we will eventually maximize expected net ben-
efit, all benefits in this table have a positive sign and all costs have a negative sign. These
net benefits are listed in Table 6.6. As before, let D and ND denote that a randomly chosen
athlete is or is not a drug user, and let T� and T� indicate a positive or negative test result.
The first two columns are relevant if no tests are performed; the last four are relevant when
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Real decision problems
often involve
nonmonetary benefits
and costs.These must
be assessed, relative to
one another, before
rational decisions can
be made.

Table 6.6 Net Benefit for Drug-Testing Example

Don’t Test Perform Test

Ultimate decision D ND D and T� ND and T� D and T� ND and T�

Bar from athletics B �C2 B�C1 �(C1�C2�C4) B�C1 �(C1�C2�C4)

Don’t bar from �C3 0 �(C1�C3) �(C1�C4) �(C1�C3) �(C1�C4)
athletics
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testing is performed. For example, if a positive test is obtained for a nonuser and this ath-
lete is barred from athletics, there are three costs: the cost of the test (C1), the cost of
falsely accusing the athlete (C2), and the cost of violating the athlete’s privacy (C4). The
other entries are obtained similarly.

Developing the Decision Tree Model

The decision model, developed with PrecisionTree and shown in Figures 6.29 and 6.30, is
now fairly straightforward. (See the file Drug Testing Decision.xlsx.) You first enter all of
the benefits and costs in an input section. These, together with the Bayes’ rule calculations
from Example 6.2, appear at the top of Figure 6.29. Then you use PrecisionTree in the
usual way to build the tree in Figure 6.30 and enter the links to the values and probabilities.
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Figure 6.29 Inputs and Bayes’ Rule Calculations for Drug-Testing Example

It is important to understand the timing (from left to right) in this decision tree. If drug
testing is performed, the result of the drug test is observed first (a probability node). Each
test result leads to an action (bar from sports or don’t), and then the eventual benefit or cost
depends on whether the athlete uses drugs (again a probability node). You might argue that
the university never knows for certain whether the athlete uses drugs, but you must include
this information in the tree to get the correct benefits and costs. On the other hand, if no
drug testing is performed, there is no intermediate test result node or branch.

Make sure you understand which probabilities are used in the tree. In the lower part,
where no testing takes place, the probabilities are the prior probabilities. There is no test
information in this case. In the upper part, where the test is performed, the probabilities for
the user and nonuser branches are posterior probabilities, given the results of the test. The
reason is that by the time we get to these nodes, the results of the test have already been
observed. However, the probabilities for the test results are unconditional probabilities, the
denominators in Bayes’ rule. They are not conditional probabilities such as P(T� |D)
because you condition only on information to the left of any given branch. In other words, by
the time you get to the test result branches, you do not yet know whether the athlete is a user.

Discussion of the Solution

Now we analyze the solution. First, we discuss the benefits and costs shown in Figure 6.29.
These were chosen fairly arbitrarily, but with some hope of reflecting reality. The largest

Bayes’ rule is required
because it yields
exactly those
probabilities that 
are needed in the
decision tree.
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cost is falsely accusing (and then barring) a nonuser. This is 50 times as large as the cost of
the test. The benefit of identifying a drug user is only half this large, and the cost of not
identifying a user is 40% as large as barring a nonuser. The violation of the privacy of a
nonuser is twice as large as the cost of the test. Based on these values, the decision tree
implies that drug testing should not be performed (and no athletes should be barred). The
EMVs for testing and for not testing are both negative, indicating that the costs outweigh
the benefits for each, but the EMV for not testing is slightly less negative.7

Sensitivity Analysis

What would it take to change this decision? We begin with the assumption, probably
accepted by most people in our society, that the cost of falsely accusing a nonuser (C2) is
the largest of the benefits and costs in the range B4:B10. In fact, because of possible legal
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Figure 6.30 Decision Tree for Drug-Testing Example

7The university in the Feinstein (1990) study came to the same conclusion.
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costs, you might argue that C2 is more than 50 times the cost of the test. But if C2 increases,
the scales are tipped even further in the direction of not testing. On the other hand, if the
benefit B from identifying a user and the cost C3 for not identifying a user increase, then
testing might be the preferred alternative. We tried this, keeping C2 constant at 50. When B
and C3 both had value 45, no testing was still optimal, but when they both increased to
50—the same magnitude as C2—testing won out by a small margin. However, it would be
difficult to argue that B and C3 are of the same magnitude as C2.

Other than the benefits and costs, the only other input you might vary is the accuracy
of the test, measured by the error probabilities in cells B14 and B15. Presumably, if the test
makes fewer false positives and false negatives, testing might be a more attractive alterna-
tive. We tried this, keeping the benefits and costs the same as those in Figure 6.29 but
changing the error probabilities. Even when each error probability was decreased to 0.01,
however, the no-testing alternative was still optimal—by a fairly wide margin.

In summary, based on a number of reasonable assumptions and parameter settings,
this example has shown that it is difficult to make a case for mandatory drug testing. ■

6.5.1 The Value of Information

The drug-testing decision problem represents a typical multistage decision problem. You first
decide whether to obtain some information that could be useful—the results of a drug test. If
you decide not to obtain the information, you make a decision right away (bar the athlete or
don’t), based on prior probabilities. If you do decide to obtain the information, then you first
observe the information and then make the final decision, based on posterior probabilities.

The questions we ask now are: How much is the information worth, and if it costs a
given amount, should you purchase it? Presumably, information that will help you make
your ultimate decision should be worth something, but it might not be clear how much the
information is worth. In addition, even if the information is worth something, it might not
be worth as much as its actual price. Fortunately, the answers to these questions are
embedded in the decision tree itself.

We will find the values of two types of information: sample information and perfect
information. Sample information is the information from the experiment itself. For exam-
ple, it is the information from the (less than perfect) drug test. (It has become customary to
use the term sample information, and we will continue the practice here, but a more precise
term would be imperfect information.) Perfect information, on the other hand, is infor-
mation from a perfect test—that is, a test that will indicate with certainty which ultimate
outcome will occur. In the drug example, this would correspond to a test that never makes
mistakes. Admittedly, perfect information is almost never available at any price, but find-
ing its value is still useful because it provides an upper bound on the value of any informa-
tion. For example, if perfect information is valued at $2000, then no information can
possibly be worth more than $2000.

We will find the expected value of sample information, or EVSI, and the expected
value of perfect information, or EVPI. They are defined as follows:
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The EVSI is the most you would be willing to pay for the sample information.

The EVPI is the most you would be willing to pay for perfect information.

Formula for EVSI

EVSI � EMV with (free) sample information – EMV without information (6.4)
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We first make one important general point about the value of information. Suppose there
is an ultimate decision to make. Before making this decision, you can obtain information, sup-
posedly to help you make the ultimate decision. But suppose you make the same ultimate
decision, regardless of the information you obtain—the same decision you would have made
in the absence of information. Can you guess the value of this information? It is zero. The
information cannot be worth anything if it never leads to a different decision than you would
have made without the information. The moral is that if you plan to pay something for infor-
mation, you are wasting your money unless this information influences your decision making.
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Formula for EVPI

EVPI � EMV with (free) perfect information – EMV without information (6.5)

Information that has
no effect on the
ultimate decision is
worthless.

FUNDAMENTAL INSIGHT

The Value of Information

The amount you should be willing to spend for infor-

mation is the expected increase in EMV you can

obtain from having the information. If the actual price

of the information is less than or equal to this amount,

you should purchase it; otherwise, the information is

not worth its price. In addition, information that never

affects your decision is worthless, and it should not be

purchased at any price. Finally, the value of any infor-

mation can never be greater than the value of perfect

information that would eliminate all uncertainty.

We now see how Bayes’ rule can be used and the value of information can be evalu-
ated in a typical multistage decision problem.

EXAMPLE 6.4 MARKETING A NEW PRODUCT AT ACME

The Acme Company is trying to decide whether to market a new product. As in many
new-product situations, there is considerable uncertainty about whether the new

product will eventually succeed. Acme believes that it might be wise to introduce the prod-
uct in a regional test market before introducing it nationally. Therefore, the company’s first
decision is whether to conduct the test market.

Acme estimates that the net cost of the test market is $100,000. We assume this is mostly
fixed costs, so that the same cost is incurred regardless of the test-market results. If Acme
decides to conduct the test market, it must then wait for the results. Based on the results of the
test market, it can then decide whether to market the product nationally, in which case it will
incur a fixed cost of $7 million. On the other hand, if the original decision is not to run a test
market, then the final decision—whether to market the product nationally—can be made
without further delay. Acme’s unit margin, the difference between its selling price and its unit
variable cost, is $18. We assume this is relevant only for the national market.

Acme classifies the results in either the test market or the national market as great, fair,
or awful. Each of these results in the national market is accompanied by a forecast of total
units sold. These sales volumes (in 1000s of units) are 600 (great), 300 (fair), and 90 (awful).
In the absence of any test market information, Acme estimates that probabilities of the three
national market outcomes are 0.45, 0.35, and 0.20, respectively.

In addition, Acme has the following historical data from products that were intro-
duced into both test markets and national markets. 
■ Of the products that eventually did great in the national market, 64% did great in the

test market, 26% did fair in the test market, and 10% did awful in the test market.

This is clearly an
approximation of the
real problem. In the
real problem, there
would be a continuum
of possible outcomes,
not just three.
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■ Of the products that eventually did fair in the national market, 18% did great in the
test market, 57% did fair in the test market, and 25% did awful in the test market.

■ Of the products that eventually did awful in the national market, 9% did great in the
test market, 48% did fair in the test market, and 43% did awful in the test market.8

The company wants to use a decision tree approach to find the best strategy. It also wants
to find the expected value of the information provided by the test market.

Objective To develop a decision tree to find the best strategy for Acme, to perform a sen-
sitivity analysis on the results, and to find EVSI and EVPI.

WHERE DO THE NUMBERS COME FROM?

The fixed costs of the test market and the national market are probably accurate estimates,
based on planned advertising and overhead expenses. The unit margin is just the difference
between the anticipated selling price and the known unit cost of the product. The sales
volume estimates are clearly approximations to reality, because the sales from any new
product would form a continuum of possible values. Here, the company has “discretized”
the problem into three possible outcomes for the national market, and it has estimated the
sales for each of these discrete outcomes. The conditional probabilities of national-market
results given test-market results are probably based on results from previous products that
went through test markets and then national markets.

Solution

We begin by discussing the three basic elements of this decision problem: the possible
strategies, the possible outcomes and their probabilities, and the value model. The possible
strategies are clear. Acme must first decide whether to run a test market. Then it must
decide whether to introduce the product nationally. However, it is important to realize that
if Acme decides to run a test market, it can base the national market decision on the results
of the test market. In this case its final strategy will be a contingency plan, where it con-
ducts the test market, then introduces the product nationally if it receives sufficiently posi-
tive test-market results but abandons the product if it receives sufficiently negative
test-market results. The optimal strategies from many multistage decision problems
involve similar contingency plans.
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8You can question why the company ever marketed products nationally after awful test-market results, but we
will assume that, for whatever reason, the company made a few such decisions—and that a few even turned out to
be winners.

In a contingency plan, later decisions can depend on earlier decisions and
information received.

FUNDAMENTAL INSIGHT

Making Sequential Decisions

Whenever you have a chance to make several

sequential decisions and you will learn useful

information between decision points, the decision

you make initially depends on the decisions you

plan to make in the future, and these depend on

the information you will learn in the meantime. In

other words, when you decide what to do initially,

you should look ahead to see what your future

options will be, and what your decision will be

under each option. Such a contingency plan is

typically superior to a myopic (short-sighted) plan

that doesn’t take into account future options in

the initial decision making.
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Regarding the uncertain outcomes and their probabilities, we note that the given prior
probabilities of national-market results in the absence of test-market results will be needed
in the part of the tree where Acme decides not to run a test market. However, the historical
percentages we quoted are really likelihoods of test-market results, given national-market
results. For example, one of these is P(Great test market | Great national market) � 0.64.
Such probabilities are the opposite of those needed in the tree. This is because the event to
the right of the given sign, “great national market,” occurs in time after the event to the left
of the given sign, “great test market.” This is a sure sign that Bayes’ rule is required.

The required posterior probabilities of national-market results, given test-market
results, are calculated directly from Bayes’ rule, Equation (6.1). For example, if NG, NF,
and NA represent great, fair, and awful national-market results, respectively, and if TG, TF,
and TA represent similar events for the test market, than one typical example of a posterior
probability calculation is

This is a reasonable result. In the absence of test market information, the probability
of a great national market is 0.45. However, after a test market with only fair results, the
probability of a great national market is revised down to 0.2836. The other posterior prob-
abilities are calculated similarly. In addition, the denominator in this calculation, 0.4125, is
the unconditional probability of a fair test market. Such test-market probabilities will be
needed in the tree.

Finally, the monetary values in the tree are straightforward. There are fixed costs of
test marketing or marketing nationally, which are incurred as soon as these go-ahead deci-
sions are made. From that point, if the company markets nationally, it observe the sales
volumes and multiplies them by the unit margin to obtain the selling profits.

Implementing Bayes’ Rule

The inputs and Bayes’ rule calculations are shown in Figure 6.31. (See file Acme
Marketing Decisions 1.xlsx.) You perform the Bayes’ rule calculations exactly as in the

=

0.26(0.45)

0.26(0.45) + 0.57(0.35) + 0.48(0.20)
=

0.117

0.4125
= 0.2836

P(NG | TF) =

P(TF | NG)P(NG)

P(TF | NG)P(NG) + P(TF | NF)P(NF) + P(TF | NA)P(NA)
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Bayes’ rule is required
whenever the
probabilities in the
statement of the
problem are in the
opposite order of 
those needed in the
tree.

1
2
3
4

A B C D E F G H I J K L M N
Acme marketing decisions

Inputs
Fixed costs ($1000s)

5
6
7
8
9

10
11
12
13
14
15
16
17

Test
Na�onal

001tekram
0007tekram

Unit margin (either market) $18

Possible quan��es sold (1000s of units) in na�onal market
006taerG
003riaF
09lufwA

Bayes' rule calculations
Prior probabili�es of na�onal market lanoitidnocnUstluser  probabili�es of test mkt results (denominators of Bayes' rule)

Great Fair Awful Great 0.3690
0.45 0.35 0.20 Fair 0.4125

18
19
20
21
22
23
24

Awful 0.2185
Likelihoods of test market results (along side), given na�onal market results (along top) from historical data

Great Fair Awful Posterior probabili�es of na�onal mkt results (along top), given test mkt results (along side)
lufwAriaFtaerG90.081.046.0taerG

8840.07071.05087.0taerG84.075.062.0riaF
7232.06384.06382.0riaF34.052.001.0lufwA

Awful 0.2059 0.4005 0.3936

Figure 6.31 Inputs and Bayes’ Rule Calculations for Acme Marketing Example
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drug example. To calculate the unconditional probabilities for test-market results, the
denominators for Bayes’ rule from Equation (6.2), enter the formula

�SUMPRODUCT($B$17:$D$17,B21:D21)

in cell G16 and copy it down to cell G18. To calculate the posterior probabilities from
Equation (6.1), enter the formula

�B$17*B21/$G16

in cell G22 and copy it to the range G22:I24.

DEVELOPING THE DECISION TREE MODEL

The tree is now straightforward to build and label, as shown in Figure 6.32. Note that the
fixed costs of test marketing and marketing nationally appear on the decision branches
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Figure 6.32 Decision Tree for Acme Marketing Example
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where they occur in time, so that only the selling profits need to be placed on the probabil-
ity branches. For example, the formula for the selling profit in cell D33 is

�$B$8*$B$11

Pay particular attention to the probabilities on the branches. The top group are the prior
probabilities from the range B17:D17. In the bottom group, the probabilities on the left
are unconditional probabilities of test-market results from the range G16:G18, and those
on the right are posterior probabilities of national-market results from the range
G22:I24. Again, this corresponds to the standard decision tree convention, where
all probabilities on the tree are conditioned on any events that have occurred to the left
of them.

Discussion of the Solution

To interpret this tree, note that each value just below each node name is an EMV. (These
are colored red or green in Excel.) For example, the 796.76 in cell B41 is the EMV for the
entire decision problem. It means that Acme’s best EMV from acting optimally is
$796,760. As another example, the 74 in cell D35 means that if Acme ever gets to that
point—there is no test market and the product is marketed nationally—the EMV is
$74,000. Actually, this is the expected selling profit minus the $7 million fixed cost, so the
expected selling profit, given that no information from a test market has been obtained, is
$7,074,000.

Acme’s optimal strategy is apparent by following the TRUE branches from left to
right. Acme should first run a test market. If the test-market result is great, the product
should be marketed nationally. However, if the test-market result is fair or awful, the prod-
uct should be abandoned. In these cases the prospects from a national market look bleak,
so Acme should cut its losses. (And there are losses. In these latter two cases, Acme has
already spent $100,000 on the test market and has nothing to show for it.)

Once you have done the work to build the tree, you can reap the benefits of
PrecisionTree’s tools. For example, its policy suggestion and risk profile outputs are given
in Figures 6.33 and 6.34. The policy suggestion shows only the part of the tree corre-
sponding to the optimal strategy. Note that there are two values at each end node. The
bottom number is the combined monetary value along this sequence of branches, and the
top number is the probability of this sequence of branches. This information leads directly
to probability distribution in the risk profile. For this optimal strategy, the only possible
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monetary outcomes are a gain of $3,700,000 and losses of $100,000, $1,700,000, and
$5,480,000. Their respective probabilities are 0.288, 0.631, 0.063, and 0.018. Fortunately,
the large possible losses are unlikely enough that the EMV is still positive, $796,760.

You might argue that the large potential losses and the slightly higher than 70%
chance of some loss should persuade Acme to abandon the product right away—without a
test market. However, this is what “playing the averages” with EMV is all about. Because
the EMV of this optimal strategy is greater than 0, the EMV from abandoning the product
right away, Acme should go ahead with this optimal strategy if the company is indeed an
EMV maximizer. In Section 6.6 we will see how this reasoning can change if Acme is
a risk-averse decision maker—as it might be with multimillion-dollar losses looming in
the future.

Sensitivity Analysis

There are several sensitivity analyses that can performed on this model. We investigate
how things change when the unit margin, currently $18, varies from $8 to $28. This could
change the decision about whether to run a test market or to market nationally.

We first analyze the overall EMV in cell B41, setting up the sensitivity dialog box as
in Figure 6.35. The resulting chart is shown in Figure 6.36. The chart indicates that for
small unit margins, it is better not to run a test market. The top line, at value 0, corresponds
to abandoning the product altogether, whereas the bottom line, at value �100, corresponds
to running a test market and then abandoning the product regardless of the results.
Similarly, for large unit margins, it is also best not to run a test market. Again, the top line
is 100 above the bottom line. However, the reasoning now is different. For large unit
margins, the company should market nationally regardless of test-market results, so there
is no reason to spend money on a test market. Finally, for intermediate unit margins, as in
the original model, the chart shows that it is best to run a test market. We hope you agree
that this one single chart provides a lot of information and insight.

By changing the cell to analyze in Figure 6.35, we can gain additional insight. For exam-
ple, if no test market is available, the EMV for deciding nationally right away, in cell C31, is
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Figure 6.34
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Sensitivity analysis is
often important for 
the insights it provides.
It makes you ask,
“Why do these results
occur?”
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Figure 6.36
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relevant. The resulting chart appears in Figure 6.37. Now it is a contest between getting zero
profit from abandoning the product and getting a linearly increasing profit from marketing
nationally. The breakpoint appears to be slightly below $18. If the unit margin is above this
value, Acme should market nationally; otherwise, it should abandon the product.
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You can also choose to analyze any of the EMVs in cells D45, D59, or D71. Each of
these is relevant in the case where the company has run the test market, has observed the
test-market results, and is about to decide whether to market nationally. For example, if you
choose D71 as the cell to analyze, you obtain the chart in Figure 6.38. It indicates that there
are indeed situations—where the unit margin is about $26 or more—when the company
should market nationally, even though the test market is awful. In contrast, the chart in
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Figure 6.37
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Figure 6.39, where we analyze cell D45, indicates the opposite behavior. It shows that if
the unit margin is low enough—about $13.50 or less—the company should abandon the
product nationally, even though the test-market results are great. These are again very useful
insights.

Expected Value of Sample Information

The role of the test market in this example is to provide information in the form of more
accurate probabilities of national-market results. Information usually costs something,
as it does in Acme’s problem. Currently, the fixed cost of the test market is $100,000,
which is evidently not too much to pay because Acme’s best strategy is to run the test
market. However, you might ask how much this test market is really worth. This is the
expected value of sample information, or EVSI, and it is easy to obtain from the tree.
From Figure 6.32, the EMV from test marketing is $796,760, $100,000 of which is the
cost of the test market. Therefore, if this test market were free, the expected profit would
be $896,760. On the other hand, the EMV from not running a test market is $74,000 (see
cell C31 in the tree). From Equation (6.4), the difference is EVSI:

EVSI � $896,760 � $74,000 � $822,760

You can check that if you put any value less than 822.76 in the test-market fixed-cost cell
(cell B5), the decision to test-market will continue to be best.

Intuitively, running the test market is worth something because it changes the optimal
decision. With no test-market information, the best decision is to market nationally. (See
the top part of the tree in Figure 6.32.) However, with the test-market information, the ulti-
mate decision depends on the test-market results. Specifically, Acme should market
nationally only if the test-market result is great. This is what makes information worth
something—its outcome affects the optimal decision.
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Figure 6.39
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Expected Value of Perfect Information

It took a lot of work to find EVSI. You had to assess various conditional probabilities, use
Bayes’ rule, and then build a fairly complex decision tree. In general, Acme might have
many sources of information it could obtain that would help it make its national decision;
the test market is just one of them. The question, then, is how much such information could
be worth. This is answered by EVPI, the expected value of perfect information. It provides
an upper bound on how much any information could be worth, and it is relatively easy to
calculate.

Imagine that Acme could purchase an envelope that has the true national-market
result—great, fair, or awful—written inside. Once opened, this envelope would remove all
uncertainty, and Acme could make an easy decision. (We assume that Acme can open the
envelope before having to make the national decision.) EVPI is what this envelope is worth.
To calculate it, you build the tree in Figure 6.40. The key here is that the nodes are reversed
in time. You first open the envelope to discover what is inside. This corresponds to the prob-
ability node. Then you make the final decision. Given the cost parameters, it is easy to see
that Acme should market nationally only if the contents of the envelope reveal that the
national market will be great. Otherwise, Acme should abandon the product right away.

6.5 Multistage Decision Problems 321

This perfect infor-
mation envelope is
obviously a fiction, but
it helps to explain how
perfect information
works.

DCBA
1
2
3
4
5

FALSE 0.0%

0 0

45.0% Natl mkt?

0 3800

TRUE 45.0%

Great

No

Yes
6
7
8
9

10

$3,800 3800

Natl mkt result

1710

TRUE 35.0%

0 0

EVPI

Yes

No

11
12
13
14
15

35.0% Natl mkt?

0 0

FALSE 0.0%

($1,600) -1600

TRUE 20.0%

Fair

Yes

No
16
17
18
19
20

0 0

20.0% Natl mkt?

0 0

FALSE 0.0%

($5,380) -5380

Awful

No

Yes

21
22
23
24
25

EVPI calcula�on
EMV with free 0171IP
EMV with no 47ofnI

6361IPVE

Figure 6.40

Decision Tree for

Evaluating EVPI

The EVPI calculation is now straightforward. If the envelope (perfect information) is
free, the tree in Figure 6.40 indicates that the EMV is $1,710,000. If there is no information,
the EMV is $74,000 (cell C31 of Figure 6.32). Therefore, from Equation (6.5),

EVPI � $1,710,000 � $74,000 � $1,636,000

No sample information, test market or otherwise, could possibly be worth more than
this. So if some hotshot market analyst offers to provide “extremely reliable” market
information to Acme for, say, $1.8 million, Acme knows this information cannot be worth
its cost. ■
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P R O B L E M S

Level A

24. In deciding whether to perform mandatory drug
testing, we claimed that it is difficult to justify such
testing under reasonable conditions. Check this
yourself in the following questions.
a. Drug testing ought to be more attractive if the test

is more reliable. Keeping the costs the same as 
in the example, use PrecisionTree’s two-way
sensitivity tool to see whether the optimal decision
(test or not test) changes as the probability of a
false positive and the probability of a false negative
both change. You can let them vary through some
reasonable ranges. Explain the results.

b. Repeat part a, but first double the two monetary
values that make the test more attractive: the
benefit of identifying a user and the cost of not
identifying a user. How do your results differ from
those in part a?

c. In this part, keep the probabilities of false positives
and false negatives the same, but let the benefits
and costs vary. Specifically, let the benefit of
identifying a user and the cost of not identifying a
user be of the form 25a and 20a, where a is some
factor that you can vary. Similarly, let the cost of
barring a nonuser and the cost of violating privacy
be of the form 50b and 2b. The cost of the test is
still 1. (The idea is that large values of a and/or
small values of b will make the testing more
attractive.) Use PrecisionTree’s two-way sensitivity
tool to see whether the optimal decision (test or not
test) changes for a reasonable range of values of a
and b. Discuss your results.

25. In the drug testing decision, find and interpret EVSI
and EVPI. Here, “sample” information refers to the
information from the imperfect drug test, whereas
“perfect” information refers to completely reliable
information on whether the athlete uses drugs.

26. Explain in general why EVSI is the same, regardless
of the actual cost of the information. For example, in
the Acme problem EVSI is the same regardless of
whether the actual cost of the test market is $100,000,
$200,000, or any other value. Then explain how EVSI,
together with the actual cost of the information, leads
to the decision about whether to purchase the
information.

27. Following up on the previous problem, the expected
net gain from information is defined as the expected
amount gained by having access to the information, at
its given cost, as opposed to not having access to the
information. Explain how you would calculate this in
general. What is its value for the Acme problem?

28. Prior probabilities are often educated guesses at best,
so it is worth performing a sensitivity analysis on their
values. However, you must make sure that they are
varied so that all probabilities are nonnegative and
sum to 1. For the Acme problem, perform the
following sensitivity analyses on the three prior
probabilities and comment on the results.
a. Vary the probability of a great national market in a

one-way sensitivity analysis from 0 to 0.6 in
increments of 0.1. Do this in such a way that the
probabilities of the two other outcomes, fair and
awful, stay in the same ratio as they are currently,
7 to 4.

b. Vary the probabilities of a great and a fair national
market independently in a two-way sensitivity
analysis. You can choose the ranges over which
these vary, but you must ensure that the three prior
probabilities continue to be nonnegative and sum to
1. (For example, you couldn’t choose ranges where
the probabilities of great and fair are 0.6 and 0.5.)

29. In the Acme problem, perform a sensitivity analysis on
the quantity sold from a great national market (the
value in cell B11). Let this value vary over a range of
values greater than the current value of 600, so that a
great national market is even more attractive than
before. Does this ever change the optimal strategy? If
so, in what way?

30. Using trial and error on the prior probabilities in the
Acme problem, find values of them that make EVSI
equal to 0. These are values where Acme will make
the same decision, regardless of the test-market results
it observes. Comment on why the test market is
worthless for your particular prior probabilities.

Level B

31. We related EVPI to the value of an envelope that
contains the true ultimate outcome. This concept can
be extended to “less than perfect” information. For
example, in the Acme problem suppose that the
company could purchase information that would
indicate, with certainty, that one of the following two
outcomes will occur: (1) the national market will be
great, or (2) the national market will not be great. Note
that outcome (2) doesn’t say whether the national
market will be fair or awful; it just says that it won’t
be great. How much should Acme be willing to pay
for such information?

32. The concept behind EVPI is that you purchase perfect
information (the envelope), then open the envelope to
see which outcome occurs, and then make an easy
decision. You do not, however, get to choose what
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6.6 INCORPORATING ATTITUDES TOWARD RISK

Rational decision makers are sometimes willing to violate the EMV maximization crite-
rion when large amounts of money are at stake. These decision makers are willing to sac-
rifice some EMV to reduce risk. Are you ever willing to do so personally? Consider the
following scenarios.

■ You have a chance to enter a lottery where you will win $100,000 with probability
0.1 or win nothing with probability 0.9. Alternatively, you can receive $5000 for
certain. How many of you—truthfully—would take the certain $5000, even though
the EMV of the lottery is $10,000? Or change the $100,000 to $1,000,000 and the
$5000 to $50,000 and ask yourself whether you’d prefer the sure $50,000.

■ You can buy collision insurance on your expensive new car or not buy it. The insur-
ance costs a certain premium and carries some deductible provision. If you decide to
pay the premium, then you are essentially paying a certain amount to avoid a gamble:
the possibility of wrecking your car and not having it insured. You can be sure that the
premium is greater than the expected cost of damage; otherwise, the insurance com-
pany would not stay in business. Therefore, from an EMV standpoint you should not
purchase the insurance. But how many of you drive without this type of insurance?

These examples, the second of which is certainly realistic, illustrate situations where
rational people do not behave as EMV maximizers. Then how do they act? This question has
been studied extensively by many researchers, both mathematically and behaviorally.
Although there is still not perfect agreement, most researchers believe that if certain
basic behavioral assumptions hold, people are expected utility maximizers—that is, they
choose the alternative with the largest expected utility. Although we will not go deeply into the
subject of expected utility maximization, the discussion in this section presents the main ideas.

6.6 Incorporating Attitudes Toward Risk 323

information the envelope contains. In contrast, some-
times a company can pay, not to obtain information,
but to influence the outcome. Consider the following
version of the Acme problem. There is no possibility
of a test market, so that Acme must decide right away
whether to market nationally. However, suppose Acme
can pay to change the probabilities of the national
market outcomes from their current values, 0.45, 0.35,
and 0.20, to the new values p, (7/11)(1 � p), and
(4/11)(1 � p), for some p. (In this way, the probabili-
ties of fair and awful stay in the same ratio as before, 

7 to 4, but by making p large, the probability of a great
outcome increases.)
a. How much should Acme be willing to pay for the

change if p � 0.6? If p � 0.8? If p � 0.95?
b. Are these types of changes realistic? Answer by

speculating on the types of actions Acme might be
able to take to make the probability of a great
national market higher. Do you think such actions
would cost more or less than what Acme should be
willing to pay for them (from part a)?

FUNDAMENTAL INSIGHT

Risk Aversion

When large amounts of money are at stake, most of

us are risk averse, at least to some extent.We are

willing to sacrifice some EMV to avoid risk.The exact

way this is done, using utility functions and expected

utility, can be difficult to implement in real situations,

but the idea is simple. If you are an EMV maximizer,

you are indifferent between a gamble with a given

EMV and a sure dollar amount equal to the EMV of

the gamble.However, if you are risk averse, you prefer

the sure dollar amount to the gamble.That is, you are

willing to accept a sure dollar amount that is some-

what less than the EMV of the gamble, just to avoid

risk. The more EMV you are willing to give up, the

more risk averse you are.
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6.6.1 Utility Functions

We begin by discussing an individual’s utility function. This is a mathematical function
that transforms monetary values—payoffs and costs—into utility values. Essentially, an
individual’s utility function specifies the individual’s preferences for various monetary
payoffs and costs and, in doing so, it automatically encodes the individual’s attitudes
toward risk. Most individuals are risk averse, which means intuitively that they are willing
to sacrifice some EMV to avoid risky gambles. In terms of the utility function, this means
that every extra dollar of payoff is worth slightly less to the individual than the previous
dollar, and every extra dollar of cost is considered slightly more costly (in terms of utility)
than the previous dollar. The resulting utility functions are shaped as shown in Figure 6.41.
Mathematically, these functions are said to be increasing and concave. The increasing part
means that they go uphill—everyone prefers more money to less money. The concave part
means that they increase at a decreasing rate. This is the risk-averse behavior.
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There are two aspects of implementing utility maximization in a real decision
analysis. First, an individual’s (or company’s) utility function must be assessed. This is a
time-consuming task that typically involves many trade-offs. It is usually carried out by
experts in the field, and we do not discuss the details of the process here. Second, the
resulting utility function is used to find the best decision. This second step is relatively
straightforward. You substitute utility values for monetary values in the decision tree and
then fold back as usual. That is, you calculate expected utilities at probability branches and
take maximums (of expected utilities) at decision branches. We will look at a numerical
example later in this section.

6.6.2 Exponential Utility

As we have indicated, utility assessment is tedious. Even in the best of circumstances,
when a trained consultant attempts to assess the utility function of a single person, the
process requires the person to make a series of choices between hypothetical alternatives
involving uncertain outcomes. Unless the person has some training in probability, these
choices will probably be difficult to understand, let alone make, and it is unlikely that
the person will answer consistently as the questioning proceeds. The process is even more
difficult when a company’s utility function is being assessed. Because different company
executives typically have different attitudes toward risk, it can be difficult for these people
to reach a consensus on a common utility function.

For these reasons, classes of ready-made utility functions have been developed. One
important class is called exponential utility and has been used in many financial invest-
ment decisions. An exponential utility function has only one adjustable numerical parame-
ter, called the risk tolerance, and there are straightforward ways to discover an appropriate
value of this parameter for a particular individual or company. So the advantage of using
an exponential utility function is that it is relatively easy to assess. The drawback is that
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exponential utility functions do not capture all types of attitudes toward risk. Nevertheless,
their ease of use has made them popular.

An exponential utility function has the following form:
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Exponential utility
(6.6)U(x) = 1 - e-x/R

Here x is a monetary value (a payoff if positive, a cost if negative), U(x) is the utility
of this value, and R � 0 is the risk tolerance. As the name suggests, the risk tolerance mea-
sures how much risk the decision maker will accept. The larger the value of R, the less risk
averse the decision maker is. That is, a person with a large value of R is more willing to
take risks than a person with a small value of R. In the limit, a person with an extremely
large value of R is an EMV maximizer.

The risk tolerance for an exponential utility function is a single number that specifies
an individual’s aversion to risk. The higher the risk tolerance, the less risk averse the
individual is.

To assess a person’s (or company’s) exponential utility function, only one number, the
value of R, needs to be assessed. There are a couple of tips for doing this. First, it has been
shown that the risk tolerance is approximately equal to that dollar amount R such that the
decision maker is indifferent between the following two options:

■ Option 1: Obtain no payoff at all.
■ Option 2: Obtain a payoff of R dollars or a loss of R/2 dollars, depending on the flip

of a fair coin.

For example, if you are indifferent between a bet where you win $1000 or lose $500, with
probability 0.5 each, and not betting at all, your R is approximately $1000. From this
criterion it certainly makes intuitive sense that a wealthier person (or company) ought to
have a larger value of R. This has been found in practice.

A second tip for finding R is based on empirical evidence found by Ronald Howard, a
prominent decision analyst. Through his consulting experience with large companies, he
discovered tentative relationships between risk tolerance and several financial variables:
net sales, net income, and equity. [See Howard (1988).] Specifically, he found that R was
approximately 6.4% of net sales, 124% of net income, and 15.7% of equity for the compa-
nies he studied. For example, according to this prescription, a company with net sales of
$30 million should have a risk tolerance of approximately $1.92 million. Howard admits
that these percentages are only guidelines. However, they do indicate that larger and more
profitable companies tend to have larger values of R, which means that they are more will-
ing to take risks involving large dollar amounts.

We illustrate the use of the expected utility criterion, and exponential utility in partic-
ular, in the following example.

Finding the appropriate
risk tolerance value for
any company or indi-
vidual is not necessarily
easy, but it is easier
than assessing an
entire utility function.

E X A M P L E 6.5 DECIDING WHETHER TO ENTER RISKY VENTURES AT VENTURE

LIMITED

Venture Limited is a company with net sales of $30 million. The company currently
must decide whether to enter one of two risky ventures or invest in a sure thing. The

gain from the latter is a sure $125,000. The possible outcomes for the less risky venture are
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a $0.5 million loss, a $0.1 million gain, and a $1 million gain. The probabilities of these
outcomes are 0.25, 0.50, and 0.25, respectively. The possible outcomes of the more risky
venture are a $1 million loss, a $1 million gain, and a $3 million gain. The probabilities of
these outcomes are 0.35, 0.60, and 0.05, respectively. If Venture Limited must decide on
exactly one of these alternatives, what should it do?

Objective To see how the company’s risk averseness, determined by its risk tolerance in
an exponential utility function, affects its decision.

WHERE DO THE NUMBERS COME FROM?

The outcomes for each of the risky alternatives probably form a continuum of possible
values. However, as in Example 6.4, the company has classified these into a few possibili-
ties and made intelligent estimates of the monetary consequences and probabilities of these
discrete possibilities.

Solution

We assume that Venture Limited has an exponential utility function. Also, based on
Howard’s guidelines, we assume that the company’s risk tolerance is 6.4% of its net sales,
or $1.92 million. (A sensitivity analysis on this parameter will be performed later on.) You
can substitute into Equation (6.6) to find the utility of any monetary outcome. For example,
the gain from the riskless alternative (in $1000s) is 125, and its utility is

As another example, the utility of a $1 million loss is

These are the values we use (instead of monetary values) in the decision tree.

DEVELOPING THE DECISION TREE MODEL

Fortunately, PrecisionTree takes care of the details. After building a decision tree and
labeling it (with monetary values) in the usual way, click on the name of the tree (the box
on the far left of the tree) to open the dialog box shown in Figure 6.42. Then fill in the
information under the Utility Function tab as shown in the figure. This says to use an expo-
nential utility function with risk tolerance 1920, the value in cell B5.9 (As indicated in the
spreadsheet, all monetary values are measured in $1000s.) It also indicates that expected
utilities (as opposed to EMVs) should appear in the decision tree.

The completed tree for this example is shown in Figure 6.43. (See the file 
Using Exponential Utility.xlsx.) You build it in exactly the same way as usual and link prob-
abilities and monetary values to its branches in the usual way. For example, there is a link in
cell C22 to the monetary value in cell B12. However, the expected values shown in the tree
(those shown in color on a computer screen) are expected utilities, and the optimal decision is
the one with the largest expected utility. In this case the expected utilities for the riskless

U(-1000) = 1 - e-(-1000)/1920
= 1 - 1.6834 = -0.6834

U(125) = 1 - e-125/1920
= 1 - 0.9370 = 0.0630

326 Chapter 6 Decision Making under Uncertainty

9This is a definite improvement over the previous version of PrecisionTree. The “R” value is now linked to a cell,
so that it is easy to perform sensitivity analysis on R.

Don’t worry about the
actual utility values
(for example, whether
they are positive or
negative). Only the
relative magnitudes
matter in terms of
decision making.

The tree is built 
and labeled (with
monetary values)
exactly as before.
PrecisionTree then
takes care of
calculating the
expected utilities.
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option, investing in the less risky venture, and investing in the more risky venture are 0.0630,
0.0525, and 0.0439, respectively. Therefore, the optimal decision is to take the riskless option.

Discussion of the Solution

As indicated in the tree, the riskless option is best in terms of the expected utility crite-
rion; it has the largest expected utility. However, note that the EMVs of the three
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Decision Tree for

Risky Venture

Example

A risk-averse decision
maker typically gives
up EMV to avoid
risk—when the stakes
are large enough.
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decisions are $125,000, $175,000, and $400,000. (The latter two of these are calculated
in row 15 as the usual SUMPRODUCT of monetary values and probabilities.) So from
an EMV point of view, the more risky venture is definitely best. In fact, the ordering of
the three alternatives using the EMV criterion is exactly the opposite of the ordering
using expected utility. But because Venture Limited is sufficiently risk averse and the
monetary values are sufficiently large, the company is willing to sacrifice $275,000 of
EMV to avoid risk.

Sensitivity Analysis

How sensitive is the optimal decision to the key parameter, the risk tolerance? You can
answer this by changing the risk tolerance and watching how the decision tree changes.
You can check that when the company becomes more risk tolerant, the more risky venture
eventually becomes optimal. In fact, this occurs when the risk tolerance increases to
approximately $2.210 million. In the other direction, of course, when the company
becomes less risk tolerant, the riskless decision continues to be optimal. (The “middle”
decision, the less risky alternative, is evidently not optimal for any value of the risk toler-
ance.) The bottom line is that the decision considered optimal depends entirely on the
attitudes toward risk of Venture Limited’s top management. ■
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6.6.3 Certainty Equivalents

Now let’s change the problem slightly so that Venture Limited has only two options. It can
either enter the less risky venture or receive a certain dollar amount x and avoid the gamble
altogether. We want to find the dollar amount x so that the company is indifferent between
these two options. If it enters the risky venture, its expected utility is 0.0525, calculated ear-
lier. If it receives x dollars for certain, its utility is

To find the value x where the company is indifferent between the two options, set
equal to 0.0525, or , and solve for x. Taking natural loga-

rithms of both sides and multiplying by 1920, the result is

(Because of the units of measure, this is really $104,000.) This value is called the
certainty equivalent of the risky venture. The company is indifferent between entering
the less risky venture and receiving $104,000 to avoid it. Although the EMV of the less
risky venture is $175,000, the company acts as if it is equivalent to a sure $104,000. In
this sense, the company is willing to give up the difference in EMV, $71,000, to avoid a
gamble.

By a similar calculation, the certainty equivalent of the more risky venture is approxi-
mately $86,000. That is, the company acts as if this more risky venture is equivalent to a
sure $86,000, when in fact its EMV is a hefty $400,000. In this case, the company is
willing to give up the difference in EMV, $314,000, to avoid this particular gamble. Again,
the reason is that the company wants to avoid risk. You can see these certainty equivalents
in PrecisionTree by changing the Display box in Figure 6.42 to show Certainty Equivalent.
The resulting tree is shown in Figure 6.44. The certainty equivalents we just discussed
appear in cells C24 and C32. (Note that we rounded the values in the text to the nearest
$1000. The values in the figure are more exact.)

x = -1920 ln(0.9475) = 104

e-x/1920
= 0.94751 - e-x/1920

U(x) = 1 - e-x/1920
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Figure 6.44 Certainty Equivalents in Tree

E X A M P L E 6.4 MARKETING A NEW PRODUCT AT ACME (CONTINUED)

Before concluding this section, we take a last look at the Acme marketing decision from
the previous section. Suppose Acme decides to use expected utility as its criterion

with an exponential utility function? Is the EMV-maximizing decision still optimal?
Remember that this strategy first performed the test market and then marketed nationally
only if the test-market results were great.

Objective To see how risk aversion affects Acme’s strategy.

Solution

There is very little work to do. You first enter a risk tolerance value in a blank cell. Then,
starting with the tree from Figure 6.32, fill out the dialog box in Figure 6.42, with a link to the
risk tolerance cell. (See the finished version of the file Acme Marketing Decisions 2.xlsx for
the details.) It is then interesting to perform a sensitivity analysis on the risk tolerance.
We tried this, letting the risk tolerance vary from 1000 to 10,000 (remember that these are in
thousands of dollars) and seeing whether the decision to run a test market changes. The
results appear in Figure 6.45.

Do you understand why it is better to run the test market only if the risk tolerance is
sufficiently large? It is not really because of the cost of the test market. When the risk tol-
erance is small, the company is so risk averse that it never markets nationally—on any of
the “National market?” decision nodes. So information from the test market is worthless.
However, as R increases, the company becomes less risk averse and in some scenarios, its
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best decision is to market nationally. In these cases, the information from the test market
can be worth its price. (If you don’t follow this reasoning, open the finished version of the
file, try large and small values of the risk tolerance, and see how the TRUEs and FALSEs
on the decision tree change.) ■
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Figure 6.45 Sensitivity to Risk Tolerance for Acme Decision

6.6.4 Is Expected Utility Maximization Used?

The previous discussion indicates that expected utility maximization is a fairly involved
task. The question, then, is whether the effort is justified. Theoretically, expected utility
maximization might be interesting to researchers, but is it really used in the business
world? The answer appears to be: not very often. For example, one article on the practice
of decision making [see Kirkwood (1992)] quotes Ronald Howard—the same person we
quoted previously—as having found risk aversion to be of practical concern in only 5%
to 10% of business decision analyses. This same article quotes the president of a Fortune
500 company as saying, “Most of the decisions we analyze are for a few million dollars.
It is adequate to use expected value (EMV) for these.”

P R O B L E M S

Level A

33. For the risky venture example, create a line chart that
includes three series—that is, three lines (or curves).
Each line should show the expected utility of a
particular decision for a sequence of possible risk

tolerance values. This chart should make it clear when
the more risky option becomes optimal and whether
the less risky option is ever optimal.

34. In the risky venture example, the more risky alternative,
in spite of its dominating EMV, is not preferred by a
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decision maker with a risk tolerance of $1.92 million.
Now suppose everything stays the same except for the
best monetary outcome of the more risky alternative
(the value in cell D14). How much larger must this
value be for the decision maker to prefer the more
risky alternative? What is the corresponding EMV at
that point?

35. In the risky venture example, suppose there is no
riskless alternative; the only two possible decisions
are the less risky venture and the more risky venture.
Explore which of these is the preferred alternative for
a range of risk tolerances. Can you find a cutoff point
for the risk tolerance such that the less risky venture
is preferred for risk tolerances below the cutoff and
the more risky venture is preferred otherwise?

Level B

36. Do the absolute magnitudes of the monetary outcomes
matter in the risky venture example? Consider the
following two possibilities. In each case, multiply all
monetary values in the example by a factor of A. (For
example, double them if A � 2.) For each part, briefly
explain your findings.

a. Currently, an EMV maximizer would choose the
most risky venture. Would this continue to be the
case for any factor A?

b. Currently, an expected utility maximizer with a risk
tolerance of $1.92 million prefers the riskless
alternative. Would this continue to be the case for
any factor A greater than 1? What about when A
is less than 1? You can answer by using trial and
error on A.

c. Referring to the dialog box in Figure 6.42, there
is a Display dropdown list with three options:
expected value (EMV), expected utility, and
certainty equivalent. The latter is defined for any
gamble as the sure monetary amount a risk-averse
person would take as a trade for the risky gamble.
For example, you can check that the certainty
equivalent for the more risky alternative is
86.2017 (in thousands of dollars). Explain what
this really means by calculating the utility of
86.2017 manually and comparing it to the
expected utility from the more risky venture (as
shown on the tree). How does this explain why
the decision maker prefers the riskless alternative
to the more risky venture?
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6.7 CONCLUSION

In this chapter we have discussed methods that can be used in decision-making problems
where uncertainty is a key element. Perhaps the most important skill you can gain from
this chapter is the ability to approach decision problems with uncertainty in a systematic
manner. This systematic approach requires you to list all possible decisions or strategies,
list all possible uncertain outcomes, assess the probabilities of these outcomes (possibly
with the aid of Bayes’ rule), calculate all necessary monetary values, and finally do the
necessary calculations to obtain the best decision. If large dollar amounts are at stake, you
might also need to perform a utility analysis, where the decision maker’s attitudes toward
risk are taken into account. Once the basic analysis has been completed, using best
guesses for the various parameters of the problem, you should perform a sensitivity
analysis to see whether the best decision continues to be best within a range of input
parameters.

Summary of Key Terms

Term Explanation Excel Page Equation
Payoff (or cost) A table that lists the payoffs (or costs) 318
table for all combinations of decisions 

and uncertain outcomes

Maximin criterion The pessimist’s criterion; find the worst 277
possible payoff for each decision, and
choose the decision with the best of these

(continued)
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Summary of Key Terms (Continued)

Term Explanation Excel Page Equation
Maximax criterion The optimist’s criterion; find the best 278

possible payoff for each decision, and
choose the decision with the best of these

Expected monetary The weighted average of the possible 278
value (EMV) payoffs from a decision, weighted by

their probabilities

EMV criterion Choose the decision with the 278
maximum EMV

Decision tree A graphical device for illustrating all 280
of the aspects of the decision problem
and for finding the optimal decision
(or decision strategy)

Folding-back Calculation method for decision tree; 282
procedure starting at the right, take EMVs at 

probability nodes, maximums of 
EMVs at decision nodes

Risk profile Chart that represents the probability 282
distribution of monetary outcomes for 
any decision

PrecisionTree Useful Excel add-in developed Has its 290
by Palisade for building and own ribbon
analyzing decision trees in Excel

PrecisionTree Useful for seeing how the optimal Use PrecisionTree 299
strategy region chart decision changes as selected Sensitivity 

inputs vary Analysis button

PrecisionTree Useful for seeing which inputs Use PrecisionTree 299–00
tornado and affect a selected EMV Sensitivity Analysis
spider charts the most button

Bayes’ rule Formula for updating probabilities 303 6.1
as new information becomes available; 
prior probabilities are transformed 
into posterior probabilities

Law of total The denominator in Bayes’ rule, 303 6.2
probability for calculating the (unconditional)

probability of an information outcome

Expected value of The most the (imperfect) sample information 311 6.4
sample information (such as the results of a test market) would
(EVSI) be worth

Expected value of The most perfect information on some 311 6.5
perfect information uncertain outcome would be worth; 
(EVPI) represents an upper bound on any EVSI

Contingency plan A decision strategy where later decisions 313
depend on earlier decisions and 
outcomes observed in the meantime

Expected utility Choosing the decision that maximizes the 330
maximization expected utility; typically sacrifices 

EMV to avoid risk when large monetary 
amounts are at stake

Utility function A mathematical function that encodes an 324
individual’s (or company’s) attitudes 
toward risk

(continued)
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Term Explanation Excel Page Equation
Exponential utility A popular class of utility functions, 325 6.6
function, risk where only a single parameter, the risk
tolerance tolerance, has to be specified

Certainty equivalent The sure dollar value equivalent to the 328
expected utility of a gamble

P R O B L E M S

Conceptual Questions

C.1. Your company needs to make an important decision
that involves large monetary consequences. You have
listed all of the possible outcomes and the monetary
payoffs and costs from all outcomes and all potential
decisions. You want to use the EMV criterion, but
you realize that this requires probabilities and you see
no way to find the required probabilities. What can
you do?

C.2. If your company makes a particular decision in the
face of uncertainty, you estimate that it will either
gain $10,000, gain $1000, or lose $5000, with proba-
bilities 0.40, 0.30, and 0.30, respectively. You 
(correctly) calculate the EMV as $2800. However,
you distrust the use of this EMV for decision-
making purposes. After all, you reason that you will
never receive $2800; you will receive $10,000,
$1000, or lose $5000. Discuss this reasoning.

C.3. In the previous question, suppose you have the
option of receiving a check for $2700 instead of
making the risky decision described. Would you
make the risky decision, where you could lose
$5000, or would you take the sure $2700? What
would influence your decision?

C.4. In a classic oil-drilling example, you are trying to
decide whether to drill for oil on a field that might
or might not contain any oil. Before making this
decision, you have the option of hiring a geologist
to perform some seismic tests and then predict
whether there is any oil or not. You assess that if
there is actually oil, the geologist will predict there is
oil with probability 0.85. You also assess that if there
is no oil, the geologist will predict there is no oil
with probability 0.90. Why will these two
probabilities not appear on the decision tree? Which
probabilities will be on the decision tree?

C.5. Your company has signed a contract with a good
customer to ship the customer an order no later than
20 days from now. The contract indicates that the
customer will accept the order even if it is late, but
instead of paying the full price of $10,000, it will be
allowed to pay 10% less, $9000, due to lateness. You
estimate that it will take anywhere from 17 to 22

days to ship the order, and each of these is equally
likely. You believe you are in good shape, reasoning
that the expected days to ship is the average of 17
through 22, or 19.5 days. Because this is less than
20, you will get your full $10,000. What is wrong
with your reasoning?

C.6. You must make one of two decisions, each with
possible gains and possible losses. One of these
decisions is much riskier than the other, having much
larger possible gains but also much larger possible
losses, and it has a larger EMV than the safer decision.
Because you are risk averse and the monetary values
are large relative to your wealth, you base your
decision on expected utility, and it indicates that you
should make the safer decision. It also indicates that
the certainty equivalent for the risky decision is
$210,000, whereas its EMV is $540,000. What do
these two numbers mean? What do you know about
the certainty equivalent of the safer decision? 

C.7. A potentially huge hurricane is forming in the
Caribbean, and there is some chance that it might
make a direct hit on Hilton Head Island, South
Carolina, where you are in charge of emergency
preparedness. You have made plans for evacuating
everyone from the island, but such an evacuation is
obviously costly and upsetting for all involved, so
the decision to evacuate shouldn’t be made lightly.
Discuss how you would make such a decision. Is
EMV a relevant concept in this situation? How
would you evaluate the consequences of uncertain
outcomes?

C.8. It seems obvious that if you can purchase infor-
mation before making an ultimate decision, this
information should generally be worth something,
but explain exactly why (and when) it is sometimes
worth nothing.

C.9. Insurance companies wouldn’t exist unless
customers were willing to pay the price of the
insurance and the insurance companies were making
a profit. So explain how insurance is a win-win
proposition for customers and the company.

C.10. You often hear about the trade-off between risk and
reward. Is this trade-off part of decision making

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



under uncertainty when the decision maker uses the
EMV criterion? For example, how does this work in
investment decisions?

C.11. Can you ever use the material in this chapter to help
you make your own real-life decisions? Consider the
following. You are about to take an important and
difficult exam in one of your MBA courses, and
you see an opportunity to cheat. Obviously, from an
ethical point of view, you shouldn’t cheat, but from
a purely monetary point of view, could it also be the
wrong decision? To model this, consider the long-
term monetary consequences of all possible
outcomes.

Level A

37. The SweetTooth Candy Company knows it will need
10 tons of sugar six months from now to implement its
production plans. Jean Dobson, SweetTooth’s
purchasing manager, has essentially two options for
acquiring the needed sugar. She can either buy the
sugar at the going market price when she needs it,
six months from now, or she can buy a futures contract
now. The contract guarantees delivery of the sugar in
six months but the cost of purchasing it will be based
on today’s market price. Assume that possible sugar
futures contracts available for purchase are for five tons
or ten tons only. No futures contracts can be purchased
or sold in the intervening months. Thus, SweetTooth’s
possible decisions are to (1) purchase a futures contract
for ten tons of sugar now, (2) purchase a futures
contract for five tons of sugar now and purchase five
tons of sugar in six months, or (3) purchase all ten tons
of needed sugar in six months. The price of sugar
bought now for delivery in six months is $0.0851 per
pound. The transaction costs for five-ton and ten-ton
futures contracts are $65 and $110, respectively.
Finally, Ms. Dobson has assessed the probability
distribution for the possible prices of sugar six months
from now (in dollars per pound). The file P06_37.xlsx
contains these possible prices and their corresponding
probabilities.
a. Given that SweetTooth wants to acquire the needed

sugar in the least costly way, create a cost table that
specifies the cost (in dollars) associated with each
possible decision and possible sugar price in the
future.

b. Use PrecisionTree to identify the decision that
minimizes SweetTooth’s expected cost of meeting
its sugar demand.

c. Perform a sensitivity analysis on the optimal
decision, letting each of the three currency inputs
vary one at a time plus or minus 25% from its base
value, and summarize your findings. In response to
which of these inputs is the expected cost value
most sensitive?

38. Carlisle Tire and Rubber, Inc., is considering
expanding production to meet potential increases in
the demand for one of its tire products. Carlisle’s
alternatives are to construct a new plant, expand the
existing plant, or do nothing in the short run. The
market for this particular tire product may expand,
remain stable, or contract. Carlisle’s marketing
department estimates the probabilities of these market
outcomes as 0.25, 0.35, and 0.40, respectively. The file
P06_38.xlsx contains Carlisle’s estimated payoff (in
dollars) table.
a. Use PrecisionTree to identify the strategy that

maximizes this tire manufacturer’s expected profit.
b. Perform a sensitivity analysis on the optimal

decision, letting each of the monetary inputs vary
one at a time plus or minus 10% from its base
value, and summarize your findings. In response
to which monetary inputs is the expected profit
value most sensitive?

39. A local energy provider offers a landowner $180,000
for the exploration rights to natural gas on a certain
site and the option for future development. This
option, if exercised, is worth an additional $1,800,000
to the landowner, but this will occur only if natural
gas is discovered during the exploration phase. The
landowner, believing that the energy company’s
interest in the site is a good indication that gas is
present, is tempted to develop the field herself. To do
so, she must contract with local experts in natural gas
exploration and development. The initial cost for such
a contract is $300,000, which is lost forever if no gas
is found on the site. If gas is discovered, however, the
landowner expects to earn a net profit of $6,000,000.
The landowner estimates the probability of finding gas
on this site to be 60%.
a. Create a payoff table that specifies the landowner’s

payoff (in dollars) associated with each possible
decision and each outcome with respect to finding
natural gas on the site.

b. Use PrecisionTree to identify the strategy that
maximizes the landowner’s expected net earnings
from this opportunity.

c. Perform a sensitivity analysis on the optimal
decision, letting each of the inputs vary one at a
time plus or minus 25% from its base value, and
summarize your findings. In response to which
model inputs is the expected profit value most
sensitive?

40. Techware Incorporated is considering the introduction
of two new software products to the market. In
particular, the company has four options regarding
these two proposed products: introduce neither
product, introduce product 1 only, introduce product
2 only, or introduce both products. Research and
development costs for products 1 and 2 are $180,000
and $150,000, respectively. Note that the first option
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entails no costs because research and development
efforts have not yet begun. The success of these
software products depends on the trend of the national
economy in the coming year and on the consumers’
reaction to these products. The company’s revenues
earned by introducing product 1 only, product 2
only, or both products in various states of the national
economy are given in the file P06_40.xlsx. The
probabilities of observing a strong, fair, or weak trend
in the national economy in the coming year are
assessed to be 0.30, 0.50, and 0.20, respectively.
a. Create a payoff table that specifies Techware’s net

revenue (in dollars) for each possible decision and
each outcome with respect to the trend in the
national economy.

b. Use PrecisionTree to identify the strategy that
maximizes Techware’s expected net revenue from
the given marketing opportunities.

c. Perform a sensitivity analysis on the optimal
decision, letting each of the inputs vary one at a
time plus or minus 25% from its base value, and
summarize your findings. In response to which
model inputs is the expected net revenue value
most sensitive?

41. Consider an investor with $10,000 available to invest.
He has the following options regarding the allocation
of his available funds: (1) he can invest in a risk-free
savings account with a guaranteed 3% annual rate
of return; (2) he can invest in a fairly safe stock, where
the possible annual rates of return are 6%, 8%, or
10%; or (3) he can invest in a more risky stock,
where the possible annual rates of return are 1%, 9%,
or 17%. Note that the investor can place all of his
available funds in any one of these options, or he can
split his $10,000 into two $5000 investments in any
two of these options. The joint probability distribution
of the possible return rates for the two stocks is given
in the file P06_41.xlsx.
a. Create a payoff table that specifies this investor’s

return (in dollars) in one year for each possible
decision and each outcome with respect to the two
stock returns.

b. Use PrecisionTree to identify the strategy that
maximizes the investor’s expected earnings in one
year from the given investment opportunities.

c. Perform a sensitivity analysis on the optimal
decision, letting the amount available to invest and
the risk-free return both vary, one at a time, plus or
minus 100% from their base values, and
summarize your findings. 

42. A buyer for a large department store chain must place
orders with an athletic shoe manufacturer six months
prior to the time the shoes will be sold in the
department stores. In particular, the buyer must decide
on November 1 how many pairs of the manufacturer’s
newest model of tennis shoes to order for sale during

the coming summer season. Assume that each pair of
this new brand of tennis shoes costs the department
store chain $45 per pair. Furthermore, assume that
each pair of these shoes can then be sold to the chain’s
customers for $70 per pair. Any pairs of these shoes
remaining unsold at the end of the summer season will
be sold in a closeout sale next fall for $35 each. The
probability distribution of consumer demand for these
tennis shoes during the coming summer season has
been assessed by market research specialists and is
provided in the file P06_42.xlsx. Finally, assume that
the department store chain must purchase these tennis
shoes from the manufacturer in lots of 100 pairs.
a. Create a payoff table that specifies the contribution

to profit (in dollars) from the sale of the tennis
shoes by this department store chain for each
possible purchase decision and each outcome with
respect to consumer demand.

b. Use PrecisionTree to identify the strategy that
maximizes the department store chain’s expected
profit earned by purchasing and subsequently
selling pairs of the new tennis shoes.

c. Perform a sensitivity analysis on the optimal
decision, letting the three monetary inputs vary one
at a time over reasonable ranges, and summarize
your findings. In response to which model inputs is
the expected earnings value most sensitive?

43. Each day the manager of a local bookstore must decide
how many copies of the community newspaper to order
for sale in her shop. She must pay the newspaper’s
publisher $0.40 for each copy, and she sells the news-
papers to local residents for $0.75 each. Newspapers
that are unsold at the end of day are considered worth-
less. The probability distribution of the number of
copies of the newspaper purchased daily at her shop is
provided in the file P06_43.xlsx. Create a payoff table
that lists the profit from each order quantity (multiples
of 1000 only) and each demand, and use it to find the
order quantity that maximizes expected profit. Why is
this an easier approach than a decision tree for this
particular problem?

44. Two construction companies are bidding against one
another for the right to construct a new community
center building in Bloomington, Indiana. The first
construction company, Fine Line Homes, believes that
its competitor, Buffalo Valley Construction, will place
a bid for this project according to the distribution
shown in the file P06_44.xlsx. Furthermore, Fine Line
Homes estimates that it will cost $160,000 for its own
company to construct this building. Given its fine
reputation and long-standing service within the local
community, Fine Line Homes believes that it will
likely be awarded the project in the event that it and
Buffalo Valley Construction submit exactly the same
bids. Create a payoff table that lists the profit from
each Fine Line bid and each competing bid, and use it
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to find the bid that maximizes Fine Line’s expected
profit. Why is this an easier approach than a decision
tree for this particular problem?

45. Suppose that you have sued your employer for damages
suffered when you recently slipped and fell on an icy
surface that should have been treated by your company’s
physical plant department. Specifically, your injury
resulting from this accident was sufficiently serious that
you, in consultation with your attorney, decided to sue
your company for $500,000. Your company’s insurance
provider has offered to settle this suit with you out of
court. If you decide to reject the settlement and go to
court, your attorney is confident that you will win the
case but is uncertain about the amount the court will
award you in damages. He has provided his assessment
of the probability distribution of the court’s award to you
in the file P06_45.xlsx. In addition, there are extra legal
fees of $10,000 you will have to pay if you go to court.
Let S be the insurance provider’s proposed out-of-court
settlement (in dollars). For which values of S will you
decide to accept the settlement? For which values of S
will you choose to take your chances in court? Assume
that you are seeking to maximize the expected net payoff
from this litigation.

46. One of your colleagues has $2000 available to invest.
Assume that all of this money must be placed in one
of three investments: a particular money market fund,
a stock, or gold. Each dollar your colleague invests in
the money market fund earns a virtually guaranteed
3% annual return. Each dollar he invests in the stock
earns an annual return characterized by the probability
distribution provided in the file P06_46.xlsx. Finally,
each dollar he invests in gold earns an annual return
characterized by the probability distribution given in
the same file.
a. If your colleague must place all of his available

funds in a single investment, which investment
should he choose to maximize his expected
earnings over the next year?

b. Suppose now that your colleague can place all of
his available funds in one of these three investments
as before, or he can invest $1000 in one alternative
and $1000 in another. Assuming that he seeks to
maximize his expected total earnings in one year,
how should he allocate his $2000?

47. Consider a population of 2000 individuals, 800 of
whom are women. Assume that 300 of the women in
this population earn at least $60,000 per year, and 200
of the men earn at least $60,000 per year.
a. What is the probability that a randomly selected

individual from this population earns less than
$60,000 per year?

b. If a randomly selected individual is observed to
earn less than $60,000 per year, what is the
probability that this person is a man?

c. If a randomly selected individual is observed to
earn at least $60,000 per year, what is the
probability that this person is a woman?

48. Yearly automobile inspections are required for
residents of the state of Pennsylvania. Suppose that
18% of all inspected cars in Pennsylvania have
problems that need to be corrected. Unfortunately,
Pennsylvania state inspections fail to detect these
problems 12% of the time. On the other hand, assume
that an inspection never detects a problem when there
is no problem. Consider a car that is inspected and is
found to be free of problems. What is the probability
that there is indeed something wrong that the
inspection has failed to uncover?

49. Consider again the landowner’s decision problem
described in Problem 39. Suppose now that, at a cost
of $90,000, the landowner can request that a soundings
test be performed on the site where natural gas is
believed to be present. The company that conducts the
soundings concedes that 30% of the time the test will
indicate that no gas is present when it actually is. When
natural gas is not present in a particular site, the
soundings test is accurate 90% of the time.
a. Given that the landowner pays for the soundings

test and the test indicates that gas is present, what
is the landowner’s revised estimate of the
probability of finding gas on this site?

b. Given that the landowner pays for the soundings
test and the test indicates that gas is not present,
what is the landowner’s revised estimate of the
probability of not finding gas on this site?

c. Should the landowner request the given soundings
test at a cost of $90,000? Explain why or why not.
If not, at what price (if any) would the landowner
choose to obtain the soundings test?

50. The chief executive officer of a firm in a highly
competitive industry believes that one of her key
employees is providing confidential information to the
competition. She is 90% certain that this informer is
the vice president of finance, whose contacts have been
extremely valuable in obtaining financing for the
company. If she decides to fire this vice president and
he is the informer, she estimates that the company will
gain $500,000. If she decides to fire this vice president
but he is not the informer, the company will lose his
expertise and still have an informer within the staff;
the CEO estimates that this outcome would cost her
company about $2.5 million. If she decides not to fire
this vice president, she estimates that the firm will lose
$1.5 million regardless of whether he actually is the
informer (because in either case the informer is still
with the company). Before deciding whether to fire
the vice president for finance, the CEO could order lie
detector tests. To avoid possible lawsuits, the lie
detector tests would have to be administered to all
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company employees, at a total cost of $150,000.
Another problem she must consider is that the available
lie detector tests are not perfectly reliable. In particular,
if a person is lying, the test will reveal that the person
is lying 95% of the time. Furthermore, if a person is
not lying, the test will indicate that the person is not
lying 85% of the time.
a. To minimize the expected total cost of managing

this difficult situation, what strategy should the
CEO adopt?

b. Should the CEO order the lie detector tests for all
of her employees? Explain why or why not.

c. Determine the maximum amount of money that the
CEO should be willing to pay to administer lie
detector tests.

d. How sensitive are the results to the accuracy of the
lie detector test? Are there any “reasonable” values
of the error probabilities that change the optimal
strategy?

51. A customer has approached a bank for a $100,000 one-
year loan at a 12% interest rate. If the bank does not
approve this loan application, the $100,000 will be
invested in bonds that earn a 6% annual return. Without
additional information, the bank believes that there is a
4% chance that this customer will default on the loan,
assuming that the loan is approved. If the customer
defaults on the loan, the bank will lose $100,000. At
a cost of $1000, the bank can thoroughly investigate
the customer’s credit record and supply a favorable or
unfavorable recommendation. Past experience indicates
that in cases where the customer did not default on the
approved loan, the probability of receiving a favorable
recommendation on the basis of the credit investigation
was 0.80. Furthermore, in cases where the customer
defaulted on the approved loan, the probability of
receiving a favorable recommendation on the basis of
the credit investigation was 0.25.
a. What strategy should the bank follow to maximize

its expected profit?
b. Calculate and interpret the expected value of

sample information (EVSI) for this decision
problem.

c. Calculate and interpret the expected value of
perfect information (EVPI) for this decision
problem.

d. How sensitive are the results to the accuracy of the
credit record recommendations? Are there any
“reasonable” values of the error probabilities that
change the optimal strategy?

52. A company is considering whether to market a new
product. Assume, for simplicity, that if this product is
marketed, there are only two possible outcomes: success
or failure. The company assesses that the probabilities of
these two outcomes are p and 1 � p, respectively. If the
product is marketed and it proves to be a failure, the
company will have a net loss of $450,000. If the product

is marketed and it proves to be a success, the company
will have a net gain of $750,000. If the company
decides not to market the product, there is no gain or
loss. The company is also considering whether to survey
prospective buyers of this new product. The results of
the consumer survey can be classified as favorable,
neutral, or unfavorable. In similar cases where proposed
products were eventually market successes, the fractions
of cases where the survey results were favorable, neutral,
or unfavorable were 0.6, 0.3, and 0.1, respectively. In
similar cases where proposed products were eventually
market failures, the fractions of cases where the survey
results were favorable, neutral, or unfavorable were 0.1,
0.2, and 0.7, respectively. The total cost of administering
this survey is C dollars.
a. Let p � 0.4. For which values of C, if any, would this

company choose to conduct the consumer survey?
b. Let p � 0.4. What is the largest amount that this

company would be willing to pay for perfect
information about the potential success or failure
of the new product?

c. Let p � 0.5 and C � $15,000. Find the strategy
that maximizes the company’s expected earnings in
this situation. Does the optimal strategy involve
conducting the consumer survey? Explain why or
why not.

53. The U.S. government is attempting to determine
whether immigrants should be tested for a contagious
disease. Assume that the decision will be made on a
financial basis. Furthermore, assume that each
immigrant who is allowed to enter the United States
and has the disease costs the country $100,000. Also,
each immigrant who is allowed to enter the United
States and does not have the disease will contribute
$10,000 to the national economy. Finally, assume
that x percent of all potential immigrants have the
disease. The U.S. government can choose to admit all
immigrants, admit no immigrants, or test immigrants
for the disease before determining whether they
should be admitted. It costs T dollars to test a person
for the disease, and the test result is either positive or
negative. A person who does not have the disease
always tests negative. However, 10% of all people
who do have the disease test negative. The
government’s goal is to maximize the expected net
financial benefits per potential immigrant.
a. If x � 10, what is the largest value of T at which

the U.S. government will choose to test potential
immigrants for the disease?

b. How does your answer to the question in part a
change if x increases to 15?

c. If x � 5 and T � $500, what is the government’s
optimal strategy?

d. If x � 5, calculate and interpret the expected value
of perfect information (EVPI) for this decision
problem.
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54. The senior executives of an oil company are trying to
decide whether to drill for oil in a particular field in
the Gulf of Mexico. It costs the company $600,000 to
drill in the selected field. Company executives believe
that if oil is found in this field its estimated value will
be $3,400,000. At present, this oil company believes
that there is a 45% chance that the selected field
actually contains oil. Before drilling, the company
can hire a geologist at a cost of $55,000 to prepare a
report that contains a recommendation regarding
drilling in the selected field. In many similar situations
in the past where this geologist has been hired, the
geologist has predicted oil on 75% of all fields that
have contained oil, and he has predicted no oil on 85%
of all fields that have not contained oil.
a. Assuming that this oil company wants to 

maximize its expected net earnings, use a decision
tree to determine its optimal strategy.

b. Calculate and interpret EVSI for this decision
problem. Experiment with the accuracy
probabilities of the geologist to see how EVSI
changes as they change.

c. Calculate and interpret EVPI for this decision
problem.

55. FineHair is developing a new product to promote hair
growth in cases of male pattern baldness. If FineHair
markets the new product and it is successful, the com-
pany will earn $1,000,000 in additional profit. If the
marketing of this new product proves to be unsuccess-
ful, the company will lose $350,000 in development
and marketing costs. In the past, similar products have
been successful 30% of the time. At a cost of
$50,000, the effectiveness of the new restoration
product can be thoroughly tested. In past tests on sim-
ilar products, the test predicted success on 70% of
products that were ultimately successful, and it pre-
dicted failure on 75% of products that were ultimately
failures.
a. Identify the strategy that maximizes FineHair’s

expected net earnings in this situation.
b. Calculate and interpret EVSI for this decision

problem.
c. Calculate and interpret EVPI for this decision

problem.

56. A product manager at Clean & Brite (C&B) wants to
determine whether her company should market a
new brand of toothpaste. If this new product
succeeds in the marketplace, C&B estimates that it
could earn $1,800,000 in future profits from the sale
of the new toothpaste. If this new product fails,
however, the company expects that it could lose
approximately $750,000. If C&B chooses not to
market this new brand, the product manager believes
that there would be little, if any, impact on the
profits earned through sales of C&B’s other

products. The manager has estimated that the new
toothpaste brand will succeed with probability 0.50.
Before making her decision regarding this toothpaste
product, the manager can spend $75,000 on a market
research study. Based on similar studies with past
products, C&B believes that the study will predict a
successful product, given that product would
actually be a success, with probability 0.75. It also
believes that the study will predict a failure, given
that the product would actually be a failure, with
probability 0.65.
a. To maximize expected profit, what strategy should

the C&B product manager follow?
b. Calculate and interpret EVSI for this decision

problem.
c. Calculate and interpret EVPI for this decision

problem.

57. Ford is going to produce a new vehicle, the Pioneer,
and wants to determine the amount of annual capacity
it should build. Ford’s goal is to maximize the profit
from this vehicle over the next 10 years. Each vehicle
will sell for $13,000 and incur a variable production
cost of $10,000. Building one unit of annual capacity
will cost $3000. Each unit of capacity will also cost
$1000 per year to maintain, even if the capacity is
unused. Demand for the Pioneer is unknown but mar-
keting estimates the distribution of annual demand to
be as shown in the file P06_57.xlsx. Assume that the
number of units sold during a year is the minimum of
capacity and annual demand.
a. Explain why a capacity of 1,300,000 is not a good

choice.
b. Which capacity level should Ford choose?

58. Pizza King (PK) and Noble Greek (NG) are competitive
pizza chains. PK believes there is a 25% chance that NG
will charge $6 per pizza, a 50% chance NG will charge
$8 per pizza, and a 25% chance that NG will charge $10
per pizza. If PK charges price p1 and NG charges price
p2, PK will sell 100 � 25(p2 � p1) pizzas. It costs PK $4
to make a pizza. PK is considering charging $5, $6, $7,
$8, or $9 per pizza. To maximize its expected profit,
what price should PK charge for a pizza?

59. Many decision problems have the following simple
structure. A decision maker has two possible decisions,
1 and 2. If decision 1 is made, a sure cost of c is
incurred. If decision 2 is made, there are two possible
outcomes, with costs c1 and c2 and probabilities p and
1 � p. We assume that c1 � c � c2. The idea is that
decision 1, the riskless decision, has a moderate cost,
whereas decision 2, the risky decision, has a low cost
c1 or a high cost c2.
a. Find the decision maker’s cost table, that is, the

cost for each possible decision and each possible
outcome.
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b. Calculate the expected cost from the risky decision.
c. List as many scenarios as you can think of that

have this structure. (Here’s an example to get you
started. Think of insurance, where you pay a sure
premium to avoid a large possible loss.)

60. A nuclear power company is deciding whether to
build a nuclear power plant at Diablo Canyon or at
Roy Rogers City. The cost of building the power
plant is $10 million at Diablo and $20 million at Roy
Rogers City. If the company builds at Diablo,
however, and an earthquake occurs at Diablo during
the next five years, construction will be terminated
and the company will lose $10 million (and will still
have to build a power plant at Roy Rogers City).
Without further expert information the company
believes there is a 20% chance that an earthquake
will occur at Diablo during the next five years. For
$1 million, a geologist can be hired to analyze the
fault structure at Diablo Canyon. She will predict
either that an earthquake will occur or that an
earthquake will not occur. The geologist’s past record
indicates that she will predict an earthquake on 95%
of the occasions for which an earthquake will occur
and no earthquake on 90% of the occasions for which
an earthquake will not occur. Should the power
company hire the geologist? Also, calculate and
interpret EVSI and EVPI.

61. Consider again Techware’s decision problem described
in Problem 40. Suppose now that Techware’s utility
function of net revenue x (measured in dollars), 
earned from the given marketing opportunities, is 

.
a. Find the decision that maximizes Techware’s

expected utility. How does this optimal decision
compare to the optimal decision with an EMV
criterion? Explain any difference between the two
optimal decisions.

b. Repeat part a when Techware’s utility function is
.

62. Consider again the bank’s customer loan decision
problem in Problem 51. Suppose now that the 
bank’s utility function of profit x (in dollars) is

. Find the strategy that
maximizes the bank’s expected utility in this case.
How does this optimal strategy compare to the optimal
decision with an EMV criterion? Explain any
difference between the two optimal strategies.

63. The Indiana University basketball team trails by two
points with eight seconds to go and has the ball. Should
it attempt a two-point shot or a three-point shot?
Assume that the Indiana shot will end the game and that
no foul will occur on the shot. Assume that a three-
point shot has a 30% chance of success, and a 
two-point shot has a 45% chance of success. Finally,

assume that Indiana has a 50% chance of winning in
overtime.

Level B

64. George Lindsey (1959) looked at box scores of more
than 1000 baseball games and found the expected
number of runs scored in an inning for each on-base
and out situation to be as listed in the file P06_64.xlsx.
For example, if a team has a man on first base with
one out, it scores 0.5 run on average until the end of
the inning. You can assume throughout this problem
that the team batting wants to maximize the expected
number of runs scored in the inning.
a. Use this data to explain why, in most cases,

bunting with a man on first base and no outs is a
bad decision. In what situation might bunting with
a man on first base and no outs be a good
decision?

b. Assume there is a man on first base with one out.
What probability of stealing second makes an
attempted steal a good idea?

65. One controversial topic in basketball (college or any
other level) is whether to foul a player deliberately
with only a few seconds left in the game. Specifically,
consider the following scenario. With about 10
seconds left in the game, team A is ahead of team B
by three points, and team B is just about to inbound
the ball. Assume team A has committed enough fouls
so that future fouls result in team B going to the free-
throw line. If team A purposely commits a foul as
soon as possible, team B will shoot two foul shots (a
point apiece). The thinking is that this is better than
letting team B shoot a three-point shot, which would
be their best way to tie the game and send it into
overtime. However, there is a downside to fouling.
Team B could make the first free throw, purposely
miss the second, get the rebound, and score a two-
point shot to tie the game, or it even score a three-
point shot to win the game. Examine this decision,
using reasonable input parameters. It doesn’t appear
that this deliberate fouling strategy is used very often,
but do you think it should be used?

66. The following situation actually occurred in a 2009
college football game between Washington and
Notre Dame. With about 3.5 minutes left in the game,
Washington had fourth down and one yard to go for
a touchdown, already leading by two points. Notre
Dame had just had two successful goal-line stands
from in close, so Washington’s coach decided not
to go for the touchdown and the virtually sure win.
Instead, Washington kicked a field goal, and Notre
Dame eventually won in overtime. Use a decision
tree, with some reasonable inputs, to see whether
Washington made a wise decision or should have gone

U(x) = 1 - e-x/150000

U(x) = 1 - e-x/50000

U(x) = 1 - e-x/350000
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for the touchdown. Note the only “monetary” values
here are 1 and 0. You can think of Washington getting
$1 if they win and $0 if they lose. Then the EMV is
1*P(Win) � 0*P(lose) � P(Win), so maximizing
EMV is equivalent to maximizing the probability of
winning.

67. Mr. Maloy has just bought a new $30,000 sport utility
vehicle. As a reasonably safe driver, he believes that
there is only about a 5% chance of being in an accident
in the coming year. If he is involved in an accident, the
damage to his new vehicle depends on the severity of
the accident. The probability distribution for the range
of possible accidents and the corresponding damage
amounts (in dollars) are given in the file P06_67.xlsx.
Mr. Maloy is trying to decide whether he is willing to
pay $170 each year for collision insurance with a $300
deductible. Note that with this type of insurance, he
pays the first $300 in damages if he causes an accident
and the insurance company pays the remainder.
a. Create a cost table that specifies the cost (in

dollars) associated with each possible decision and
type of accident.

b. Use PrecisionTree to identify the strategy that
minimizes Mr. Maloy’s annual expected cost.

c. Perform a sensitivity analysis on the optimal
decision with respect to the probability of an
accident, the premium, and the deductible amount,
and summarize your findings. (You can choose the
ranges to test.) In response to which of these three
inputs is the expected cost most sensitive?

68. The purchasing agent for a PC manufacturer is
currently negotiating a purchase agreement for a
particular electronic component with a given supplier.
This component is produced in lots of 1000, and the
cost of purchasing a lot is $30,000. Unfortunately,
past experience indicates that this supplier has
occasionally shipped defective components to its
customers. Specifically, the proportion of defective
components supplied by this supplier has the
probability distribution given in the file P06_68.xlsx.
Although the PC manufacturer can repair a defective
component at a cost of $20 each, the purchasing agent
learns that this supplier will now assume the cost of
replacing defective components in excess of the first
100 faulty items found in a given lot. This guarantee
may be purchased by the PC manufacturer prior to the
receipt of a given lot at a cost of $1000 per lot. The
purchasing agent wants to determine whether it is
worthwhile to purchase the supplier’s guarantee
policy.
a. Create a cost table that specifies the PC

manufacturer’s total cost (in dollars) of purchasing
and repairing (if necessary) a complete lot of
components for each possible decision and each
outcome with respect to the proportion of defective
items.

b. Use PrecisionTree to identify the strategy that
minimizes the expected total cost of achieving a
complete lot of satisfactory microcomputer
components.

c. Perform a sensitivity analysis on the optimal decision
with respect to the number of components per lot
and the three monetary inputs, and summarize your
findings. (You can choose the ranges to test.) In
response to which of these inputs is the expected cost
most sensitive?

69. A home appliance company is interested in marketing
an innovative new product. The company must decide
whether to manufacture this product in house or
employ a subcontractor to manufacture it. The file
P06_69.xlsx contains the estimated probability
distribution of the cost of manufacturing one unit
of this new product (in dollars) if the home appliance
company produces the product in house. This file also
contains the estimated probability distribution of the
cost of purchasing one unit of the product if from the
subcontractor. There is also uncertainty about demand
for the product in the coming year, as shown in the
same file. The company plans to meet all demand,
but there is a capacity issue. The subcontractor has
unlimited capacity, but the home appliance company
has capacity for only 5000 units per year. If it decides
to make the product in house and demand is greater
than capacity, it will have to purchase the excess
demand from an external source at a premium: $225 per
unit. Assuming that the company wants to minimize
the expected cost of meeting demand in the coming
year, should it make the new product in house or buy it
from the subcontractor? Do you need a decision tree,
or will a cost table with EMV calculations suffice?
(You can assume that neither the company nor the
subcontractor will ever produce more than demand.)

70. A grapefruit farmer in central Florida is trying to
decide whether to take protective action to limit
damage to his crop in the event that the overnight
temperature falls to a level well below freezing. He is
concerned that if the temperature falls sufficiently
low and he fails to make an effort to protect his
grapefruit trees, he runs the risk of losing his entire
crop, which is worth approximately $75,000. Based
on the latest forecast issued by the National Weather
Service, the farmer estimates that there is a 60%
chance that he will lose his entire crop if it is left
unprotected. Alternatively, the farmer can insulate
his fruit by spraying water on all of the trees in his
orchards. This action, which would likely cost the
farmer C dollars, would prevent total devastation but
might not completely protect the grapefruit trees
from incurring some damage as a result of the
unusually cold overnight temperatures. The file
P06_70.xlsx contains the assessed distribution of
possible damages (in dollars) to the insulated fruit in
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light of the cold weather forecast. The farmer wants
to minimize the expected total cost of coping with
the threatening weather.
a. Find the maximum value of C below which the

farmer should insulate his crop to limit the damage
from the unusually cold weather.

b. Set C equal to the value identified in part a.
Perform sensitivity analysis to determine under
what conditions, if any, the farmer would be better
off not spraying his grapefruit trees and taking his
chances in spite of the threat to his crop.

c. Suppose that C equals $25,000, and in addition to
this protection, the farmer can purchase insurance
on the crop. Discuss possibilities for reasonable
insurance policies and how much they would be
worth to the farmer. You can assume that the
insurance is relevant only if the farmer purchases
the protection, and you can decide on the terms of
the insurance policy.

71. A retired partner from a large brokerage firm has one
million dollars available to invest in particular stocks
or bonds. Each investment’s annual rate of return
depends on the state of the economy in the coming
year. The file P06_71.xlsx contains the distribution of
returns for these stocks and bonds as a function of the
economy’s state in the coming year. As this file
indicates, the returns from stocks and bonds in a fair
economy are listed as X and Y. This investor wants to
allocate her one million dollars to maximize her
expected value of the portfolio one year from now.
a. If X � Y � 15%, find the optimal investment strat-

egy for this investor. (Hint: You could try a decision
tree approach, but it would involve a massive tree.
It is much easier to find an algebraic expression for
the expected final value of the investment when a
percentage p is put in stocks and the remaining
percentage is put in bonds. Given this expression,
the best value of p should be obvious.)

b. For which values of X (where 10% � X � 20%)
and Y (where 12.5% � Y � 17.5%), if any, will this
investor prefer to place all of her available funds in
stocks? Use the same method as in part a for each
combination of X and Y.

72. A city in Ohio is considering replacing its fleet of
gasoline-powered automobiles with electric cars. The
manufacturer of the electric cars claims that this
municipality will experience significant cost savings
over the life of the fleet if it chooses to pursue the
conversion. If the manufacturer is correct, the city will
save about $1.5 million dollars. If the new technology
employed within the electric cars is faulty, as some
critics suggest, the conversion to electric cars will cost
the city $675,000. A third possibility is that less
serious problems will arise and the city will break
even with the conversion. A consultant hired by the
city estimates that the probabilities of these three

outcomes are 0.30, 0.30, and 0.40, respectively. The
city has an opportunity to implement a pilot program
that would indicate the potential cost or savings
resulting from a switch to electric cars. The pilot
program involves renting a small number of electric
cars for three months and running them under typical
conditions. This program would cost the city $75,000.
The city’s consultant believes that the results of the
pilot program would be significant but not conclusive;
she submits the values in the file P06_72.xlsx, a
compilation of probabilities based on the experience
of other cities, to support her contention. For example,
the first row of her table indicates that given that a
conversion to electric cars actually results in a savings
of $1.5 million, the conditional probabilities that the
pilot program will indicate that the city saves money,
loses money, and breaks even are 0.6, 0.1, and 0.3,
respectively. What actions should the city take to
maximize its expected savings? When should it run
the pilot program, if ever? (Note: If you set up the
input section of your spreadsheet in the right way,
you will be able to perform all of the Bayes’ rule
calculations with a couple of copyable formulas.)

73. A manufacturer must decide whether to extend credit
to a retailer who would like to open an account with
the firm. Past experience with new accounts indicates
that 45% are high-risk customers, 35% are moderate-
risk customers, and 20% are low-risk customers. If
credit is extended, the manufacturer can expect to lose
$60,000 with a high-risk customer, make $50,000 with
a moderate-risk customer, and make $100,000 with a
low-risk customer. If the manufacturer decides not to
extend credit to a customer, the manufacturer neither
makes nor loses any money. Prior to making a credit
extension decision, the manufacturer can obtain a
credit rating report on the retailer at a cost of $2000.
The credit agency concedes that its rating procedure
is not completely reliable. In particular, the credit
rating procedure will rate a low-risk customer as a
moderate-risk customer with probability 0.10 and as a
high-risk customer with probability 0.05. Similarly,
the given rating procedure will rate a moderate-risk
customer as a low-risk customer with probability 0.06
and as a high-risk customer with probability 0.07.
Finally, the rating procedure will rate a high-risk
customer as a low-risk customer with probability 0.01
and as a moderate-risk customer with probability 0.05.
Find the strategy that maximizes the manufacturer’s
expected net earnings. (Note: If you set up the input
section of your spreadsheet in the right way, you will
be able to perform all of the Bayes’ rule calculations
with a couple of copyable formulas.)

74. A television network earns an average of $1.6 million
each season from a hit program and loses an average
of $400,000 each season on a program that turns out to
be a flop. Of all programs picked up by this network
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in recent years, 25% turn out to be hits and 75% turn
out to be flops. At a cost of C dollars, a market
research firm will analyze a pilot episode of a prospec-
tive program and issue a report predicting whether the
given program will end up being a hit. If the program
is actually going to be a hit, there is a 90% chance that
the market researchers will predict the program to be a
hit. If the program is actually going to be a flop, there
is only a 20% chance that the market researchers will
predict the program to be a hit.
a. Assuming that C � $160,000, find the strategy that

maximizes the network’s expected profit.
b. What is the maximum value of C that the network

should be willing to pay the market research firm?
c. Calculate and interpret EVPI for this decision

problem.

75. A publishing company is trying to decide whether
to publish a new business law textbook. Based on
a careful reading of the latest draft of the manuscript,
the publisher’s senior editor in the business textbook
division assesses the distribution of possible payoffs
earned by publishing this new book. The file
P06_75.xlsx contains this probability distribution.
Before making a final decision regarding the
publication of the book, the editor can learn more
about the text’s potential for success by thoroughly
surveying business law instructors teaching at
universities across the country. Historical frequencies
based on similar surveys administered in the past are
also provided in this file.
a. Find the strategy that maximizes the publisher’s

expected payoff if the survey cost is $10,000.
b. What is the most that the publisher would be

willing to pay to conduct a new survey of business
law instructors?

c. Assuming that a survey could be constructed that
provides perfect information to the publisher, how
much would the company be willing to pay to
acquire and implement such a survey?

76. Sharp Outfits is trying to decide whether to ship some
customer orders now via UPS or wait until after the
threat of another UPS strike is over. If Sharp Outfits
decides to ship the requested merchandise now and
the UPS strike takes place, the company will incur
$60,000 in delay and shipping costs. If Sharp Outfits
decides to ship the customer orders via UPS and no
strike occurs, the company will incur $4000 in
shipping costs. If Sharp Outfits decides to postpone
shipping its customer orders via UPS, the company
will incur $10,000 in delay costs regardless of whether
UPS goes on strike. Let p represent the probability that
UPS will go on strike and impact Sharp Outfits’s
shipments.
a. For which values of p, if any, does Sharp Outfits

minimize its expected total cost by choosing to
postpone shipping its customer orders via UPS?

b. Suppose now that, at a cost of $1000, Sharp Outfits
can purchase information regarding the likelihood
of a UPS strike in the near future. Based on similar
strike threats in the past, the company assesses that
if there will be a strike, the information will predict
a strike with probability 0.75, and if there will not
be a strike, the information will predict no strike
with probability 0.85. Provided that p � 0.15, what
strategy should Sharp Outfits pursue to minimize
its expected total cost?

c. Use the tree from part b to find the EVSI when 
p � 0.15. Then use a data table to find EVSI for p
from 0.05 to 0.30 in increments of 0.05, and chart
EVSI versus p. 

d. Continuing part b, compute and interpret the EVPI
when p � 0.15.

77. A homeowner wants to decide whether he should
install an electronic heat pump in his home. Given
that the cost of installing a new heat pump is fairly
large, the homeowner wants to do so only if he
can count on being able to recover the initial expense
over five consecutive years of cold winter weather.
After reviewing historical data on the operation of
heat pumps in various kinds of winter weather, he
computes the expected annual costs of heating his
home during the winter months with and without a heat
pump in operation. These cost figures are shown in the
file P06_77.xlsx. The probabilities of experiencing a
mild, normal, colder than normal, and severe winter
are 0.2(1 � x), 0.5(1 � x), 0.3(1 � x), and x, respec-
tively. In words, we let the last probability vary, we let
the other three be in the ratio 2 to 5 to 3, and we force
them to sum to 1.
a. Given that x � 0.1, what is the most that the

homeowner is willing to pay for the heat pump?
b. If the heat pump costs $500, how large must x be

before the homeowner decides it is economically
worthwhile to install the heat pump?

c. Given that x � 0.1, calculate and interpret EVPI
when the heat pump costs $500.

d. Repeat part c when x � 0.15.

78. Sarah Chang is the owner of a small electronics
company. In six months, a proposal is due for an elec-
tronic timing system for the next Olympic Games. For
several years, Chang’s company has been developing
a new microprocessor, a critical component in a
timing system that would be superior to any product
currently on the market. However, progress in
research and development has been slow, and Chang
is unsure whether her staff can produce the micro-
processor in time. If they succeed in developing the
microprocessor (probability p1), there is an excellent
chance (probability p2) that Chang’s company will
win the $1 million Olympic contract. If they do not,
there is a small chance (probability p3) that she will
still be able to win the same contract with an
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alternative but inferior timing system that has already
been developed. If she continues the project, Chang
must invest $200,000 in research and development. In
addition, making a proposal (which she will decide
whether to do after seeing whether the R&D is
successful) requires developing a prototype timing
system at an additional cost. This additional cost is
$50,000 if R&D is successful (so that she can develop
the new timing system), and it is $40,000 if R&D is
unsuccessful (so that she needs to go with the older
timing system). Finally, if Chang wins the contract,
the finished product will cost an additional $150,000
to produce.
a. Develop a decision tree that can be used to solve

Chang’s problem. You can assume in this part of
the problem that she is using EMV (of her net
profit) as a decision criterion. Build the tree so
that she can enter any values for p1, p2, and p3 (in
input cells) and automatically see her optimal
EMV and optimal strategy from the tree.

b. If p2 � 0.8 and p3 � 0.1, what value of p1 makes
Chang indifferent between abandoning the project
and going ahead with it?

c. How much would Chang benefit if she knew for
certain that the Olympic organization would
guarantee her the contract? (This guarantee would
be in force only if she were successful in developing
the product.) Assume p1 � 0.4, p2 � 0.8, and 
p3 � 0.1.

d. Suppose now that this is a relatively big project for
Chang. Therefore, she decides to use expected
utility as her criterion, with an exponential utility
function. Using some trial and error, see which risk
tolerance changes her initial decision from “go
ahead” to “abandon” when p1 � 0.4, p2 � 0.8, and
p3 � 0.1.

79. The Ventron Engineering Company has just been
awarded a $2 million development contract by the
U.S. Army Aviation Systems Command to develop a
blade spar for its Heavy Lift Helicopter program. The
blade spar is a metal tube that runs the length of and
provides strength to the helicopter blade. Due to the
unusual length and size of the Heavy Lift Helicopter
blade, Ventron is unable to produce a single-piece
blade spar of the required dimensions using existing
extrusion equipment and material. The engineering
department has prepared two alternatives for
developing the blade spar: (1) sectioning or (2) an
improved extrusion process. Ventron must decide
which process to use. (Backing out of the contract at
any point is not an option.) The risk report has been
prepared by the engineering department. The
information from this report is explained next.

The sectioning option involves joining several
shorter lengths of extruded metal into a blade spar of
sufficient length. This work will require extensive

testing and rework over a 12-month period at a total
cost of $1.8 million. Although this process will
definitely produce an adequate blade spar, it merely
represents an extension of existing technology.

To improve the extrusion process, on the other
hand, it will be necessary to perform two steps: 
(1) improve the material used, at a cost of $300,000, and
(2) modify the extrusion press, at a cost of $960,000.
The first step will require six months of work, and if this
first step is successful, the second step will require
another six months of work. If both steps are successful,
the blade spar will be available at that time, that is, a
year from now. The engineers estimate that the probabil-
ities of succeeding in steps 1 and 2 are 0.9 and 0.75,
respectively. However, if either step is unsuccessful
(which will be known only in six months for step 1 and
in a year for step 2), Ventron will have no alternative
but to switch to the sectioning process—and incur the
sectioning cost on top of any costs already incurred.

Development of the blade spar must be completed
within 18 months to avoid holding up the rest of the
contract. If necessary, the sectioning work can be done
on an accelerated basis in a six-month period, but the
cost of sectioning will then increase from $1.8 million
to $2.4 million. The director of engineering, Dr. Smith,
wants to try developing the improved extrusion process.
He reasons that this is not only cheaper (if successful)
for the current project, but its expected side benefits for
future projects could be sizable. Although these side
benefits are difficult to gauge, Dr. Smith’s best guess is
an additional $2 million. (These side benefits are
obtained only if both steps of the modified extrusion
process are completed successfully.)
a. Develop a decision tree to maximize Ventron’s

EMV. This includes the revenue from this project,
the side benefits (if applicable) from an improved
extrusion process, and relevant costs. You don’t
need to worry about the time value of money;
that is, no discounting or net present values are
required. Summarize your findings in words in
the spreadsheet.

b. What value of side benefits would make Ventron
indifferent between the two alternatives?

c. How much would Ventron be willing to pay, right
now, for perfect information about both steps of
the improved extrusion process? (This information
would tell Ventron, right now, the ultimate success
or failure outcomes of both steps.)

80. Suppose an investor has the opportunity to buy the
following contract, a stock call option, on March 1.
The contract allows him to buy 100 shares of ABC
stock at the end of March, April, or May at a
guaranteed price of $50 per share. He can exercise this
option at most once. For example, if he purchases the
stock at the end of March, he can’t purchase more in
April or May at the guaranteed price. The current price
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of the stock is $50. Each month, assume that the stock
price either goes up by a dollar (with probability 0.55)
or goes down by a dollar (with probability 0.45). If the
investor buys the contract, he is hoping that the stock
price will go up. The reasoning is that if he buys the
contract, the price goes up to $51, and he buys the
stock (that is, he exercises his option) for $50, he can
then sell the stock for $51 and make a profit of $1 per
share. On the other hand, if the stock price goes down,
he doesn’t have to exercise his option; he can just
throw the contract away.
a. Use a decision tree to find the investor’s optimal

strategy (that is, when he should exercise the
option), assuming he purchases the contract.

b. How much should he be willing to pay for such a
contract?

81. [Based on Balson et al. (1992).] An electric utility
company is trying to decide whether to replace its
PCB transformer in a generating station with a new
and safer transformer. To evaluate this decision, the
utility needs information about the likelihood of an
incident, such as a fire, the cost of such an incident,
and the cost of replacing the unit. Suppose that the
total cost of replacement as a present value is $75,000.
If the transformer is replaced, there is virtually no
chance of a fire. However, if the current transformer is
retained, the probability of a fire is assessed to be
0.0025. If a fire occurs, the cleanup cost could be high
($80 million) or low ($20 million). The probability of
a high cleanup cost, given that a fire occurs, is
assessed at 0.2.
a. If the company uses EMV as its decision criterion,

should it replace the transformer?
b. Perform a sensitivity analysis on the key parameters

of the problem that are difficult to assess, namely,
the probability of a fire, the probability of a high
cleanup cost, and the high and low cleanup costs.
Does the optimal decision from part a remain
optimal for a wide range of these parameters?

c. Do you believe EMV is the correct criterion to use
in this type of problem involving environmental
accidents?

82. The ending of the game between the Indianapolis
Colts and the New England Patriots (NFL teams) in

Fall 2009 was quite controversial. With about two
minutes left in the game, the Patriots were ahead
34 to 28 and had the ball on their own 28-yard line
with fourth down and two yards to go. Their coach,
Bill Belichick, decided to go for the first down rather
than punt, contrary to conventional wisdom. They
didn’t make the first down, so that possession went to
the Colts, who then scored a touchdown to win by a
point. Belichick was harshly criticized by most of
the media, but was his unorthodox decision really a
bad one? 
a. Use a decision tree to analyze the problem. You

can make some simplifying decisions: (1) the
game would essentially be over if the Patriots
made a first down, and (2) at most one score
would occur after a punt or a failed first down
attempt. (Note that there are no monetary values.
However, you can assume the Patriots receive $1
for a win and $0 for a loss, so that maximizing
EMV is equivalent to maximizing the probability
that the Patriots win.)

b. Show that the Patriots should go for the first down
if p � 1 � q/r. Here, p is the probability the
Patriots make the first down, q is the probability
the Colts score a touchdown after a punt, and r is
the probability the Colts score a touchdown after
the Patriots fail to make a first down. What are
your best guesses for these three probabilities?
Based on them, was Belichick’s decision a
good one?

83. Suppose you believe that the price of a particular stock
goes up each day with probability p and goes down
with probability 1-p. You also believe the daily price
changes are independent of one another. However,
you are not sure of the value of p. Based on your
current information, you believe p could be 0.40, 0.45,
0.50, or 0.55, with probabilities 0.15, 0.25, 0.35, and
0.25, respectively. Then you watch the stock price
changes for 25 days and observe 12 ups and 13 downs.
Use Bayes’ rule to find the posterior distribution of p.
Based on this posterior distribution, calculate the
probability that there will be at least 15 ups in the next
30 price changes. (Hint: Think in terms of the
binomial distribution.)
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The Jogger Shoe Company is trying to decide

whether to make a change in its most popular

brand of running shoes.The new style would cost the

same to produce and be priced the same, but it

would incorporate a new kind of lacing system that

(according to its marketing research people) would

make it more popular.

There is a fixed cost of $300,000 for changing

over to the new style.The unit contribution to

before-tax profit for either style is $8.The tax rate is

35%. Also, because the fixed cost can be depreciated

and will therefore affect the after-tax cash flow, a

depreciation method is needed. You can assume it is

straight-line depreciation.

The current demand for these shoes is 190,000

pairs annually.The company assumes this demand

will continue for the next three years if the current

style is retained. However, there is uncertainty about

demand for the new style, if it is introduced.The

company models this uncertainty by assuming a

normal distribution in year 1, with mean 220,000

and standard deviation 20,000.The company also

assumes that this demand, whatever it is, will remain

constant for the next three years. However, if

demand in year 1 for the new style is sufficiently low,

the company can always switch back to the current

style and realize an annual demand of 190,000.The

company wants a strategy that will maximize the

expected net present value (NPV) of total cash flow

for the next three years, where a 15% interest rate is

used for the purpose of calculating NPV. ■

6.1 JOGGER SHOE COMPANY
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C A S E

The Westhouser Paper Company in the state of

Washington currently has an option to purchase

a piece of land with good timber forest on it. It is

now May 1, and the current price of the land is $2.2

million.Westhouser does not actually need the

timber from this land until the beginning of July, but

its top executives fear that another company might

buy the land between now and the beginning of July.

They assess that there is a 5% chance that a

competitor will buy the land during May. If this does

not occur, they assess that there is a 10% chance that

the competitor will buy the land during June. If

Westhouser does not take advantage of its current

option, it can attempt to buy the land at the

beginning of June or the beginning of July, provided

that it is still available.

Westhouser’s incentive for delaying the purchase

is that its financial experts believe there is a good

chance that the price of the land will fall significantly

in one or both of the next two months.They assess

the possible price decreases and their probabilities

in Table 6.7 and Table 6.8.Table 6.7 shows the

probabilities of the possible price decreases during

May.Table 6.8 lists the conditional probabilities of the

possible price decreases in June, given the price

decrease in May. For example, it indicates that if the

price decrease in May is $60,000, then the possible

price decreases in June are $0, $30,000, and $60,000

with respective probabilities 0.6, 0.2, and 0.2.

If Westhouser purchases the land, it believes that

it can gross $3 million. (This does not count the

cost of purchasing the land.) But if it does not

purchase the land,Westhouser believes that it can

make $650,000 from alternative investments.What

should the company do?

Table 6.7 Distribution of Price Decrease in May

Price Decrease Probability

$0 0.5
$60,000 0.3
$120,000 0.2

6.2 WESTHOUSER PARER COMPANY
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Table 6.8 Distribution of Price Decrease in June

Price Decrease in May

$0 $60,000 $120,000

June Decrease Probability June Decrease Probability June Decrease Probability

$0 0.3 $0 0.6 $0 0.7
$60,000 0.6 $30,000 0.2 $20,000 0.2

$120,000 0.1 $60,000 0.2 $40,000 0.1
■
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C A S E

Biotechnical Engineering specializes in developing

new chemicals for agricultural applications.The

company is a pioneer in using the sterile-male pro-

cedure to control insect infestations. It operates

several laboratories around the world that raise

insects and expose them to extra-large doses of

radiation, making them sterile. As an alternative to

chlorinated hydrocarbon pesticides, such as DDT,

the sterile-male procedure has been used frequently

with a good track record of success, most notably

with the Mediterranean fruit fly (or Medfly).

That pest was controlled in California through

the release of treated flies on the premise that the

sterile male flies would compete with fertile wild

males for mating opportunities. Any female that has

mated with a sterile fly will lay eggs that do not hatch.

The California Medfly campaigns required about five

successive releases of sterile males—at intervals timed

to coincide with the time for newly hatched flies to

reach adulthood—before the Medfly was virtually

eliminated. (Only sterile flies were subsequently

caught in survey traps.) The effectiveness of the

sterile-male procedure was enhanced by the release

of malathion poisonous bait just a few days before

each release, cutting down on the number of viable

wild adults.

More recently, Biotechnical Engineering has had

particular success in using genetic engineering to

duplicate various insect hormones and pheromones

(scent attractants). Of particular interest is the

application of such methods against the Gypsy Moth,

a notorious pest that attacks trees.The company has

developed synthetic versions of both hormones and

pheromones for that moth. It has a synthetic sexual

attractant that male moths can detect at great

distances. Most promising is the synthetic juvenile

hormone.

The juvenile hormone controls moth meta-

morphosis, determining the timing for the trans-

formation of a caterpillar into a chrysalis and then into

an adult.Too much juvenile hormone wreaks havoc

with this process, causing caterpillars to turn into

freak adults that cannot reproduce.

Biotechnical Engineering has received a

government contract to test its new technology in

an actual eradication campaign.The company will

participate in a small-scale campaign against the

Gypsy Moth in the state of Oregon. Because the pest

is so damaging, Dr. June Scribner, the administrator in

charge, is considering using DDT as an alternative

procedure. Of course, that banned substance is only

available for government emergency use because of

the environmental damage it may cause. In addition

to spraying with DDT, two other procedures may be

employed: (1) using Biotechnical’s scent lure, followed

by the release of sterile males, and (2) spraying with

the company’s juvenile hormone to prevent larvae

from developing into adults. Dr. Scribner wants to

select the method that yields the best expected

payoff, described below.

Although both of the newer procedures are

known to work under laboratory conditions, there

is some uncertainty about successful propagation of

the chemicals in the wild and about the efficacy of

the sterile-male procedure with moths.

If the scent-lure program is launched at a cost of

$5 million, Biotechnical claims that it will have a fifty-

fifty chance of leaving a low number of native males

versus a high number. Once the results of that phase

are known, a later choice must be made to spray with

DDT or to release sterile males; the cost of the

sterilization and delivery of the insects to the countrsi

de is an additional $5 million. But if this two-phase

program is successful, the net present value of the

worth of trees saved is $30 million, including the

benefit of avoiding all other forms of environmental

damage.The indigenous moth population would be

destroyed, and a new infestation could occur only

from migrants. Biotechnical’s experience with other

eradication programs indicates that if the scent lure

leaves a small native male population, there is a 90%

chance for a successful eradication by using sterile

males; otherwise, there is only a 10% chance for

success by using sterile males.A failure results in

no savings.

10This case was written by Lawrence L. Lapin, San Jose State
University.

6.3 BIOTECHNICAL ENGINEERING10
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The cost of synthesizing enough juvenile

hormone is $3 million. Biotechnical maintains that

the probability that the hormone can be effectively

disseminated is only 0.20. If it works, the worth of the

trees saved and environmental damage avoided will be

$50 million.This greater level of savings is possible

because of the permanent nature of the solution

because a successful juvenile hormone can then be

applied wherever the moths are known to exist,

virtually eliminating the pest from the environment.

But if the hormone does not work, the DDT must

still be used to save the trees.

DDT constitutes only a temporary solution, and

the worth of its savings in trees is far less than the

worth of either of the esoteric eradication proce-

dures—if they prove successful.To compare alterna-

tives, Dr. Scribner proposes using the net advantage

(crop and environmental savings, minus cost) relative

to where she would be were she to decide to use

DDT at the outset or were she to be forced to spray

with it later. (Regardless of the outcome, Biotechnical

will be reimbursed for all expenditures.The decision is

hers, not the company’s.)

Questions

1. Under Biotechnical’s proposal, the selection

of DDT without even trying the other

procedures would lead to a neutral outcome

for the government, having zero payoff. Discuss

the benefits of Dr. Scribner’s proposed payoff

measure.

2. Construct Dr. Scribner’s decision tree diagram,

using the proposed payoff measure.

3. What action will maximize Dr. Scribner’s

expected payoff?

4. Dr. Scribner is concerned about the assumed fifty-

fifty probability for the two levels of surviving

native males following the scent-lure program.

a. Redo the decision tree analysis to find what

action will maximize Dr. Scribner’s expected

payoff when the probability of low native males

is, successively, (1) 0.40 or (2) 0.60 instead.

b. How is the optimal action affected by the

probability level assumed for the low native

male outcome?

5. Dr. Scribner is concerned about the assumed

0.20 probability for the dissemination success of

the juvenile hormone.

a. Keeping all other probabilities and cash flows

at their original levels, redo the decision tree

analysis to find what action will maximize 

Dr. Scribner’s expected payoff when the

probability of juvenile hormone success is,

successively, (1) 0.15 or (2) 0.25 instead.

b. How is the optimal action affected by the

probability level assumed for the juvenile

hormone’s success?

6. Dr. Scribner is concerned about the assumed

probability levels for the success of the sterile-

male procedure.

a. Keeping all other probabilities and cash flows

at their original levels, redo the decision tree

analysis to find what action will maximize

Dr. Scribner’s expected payoff when the

sterile-male success probabilities are instead

as follows:

(1) 80% for a low number of native males and

5% for a high number of native males

(2) 70% for a low number of native males and

15% for a high number of native males

b. How is the optimal action affected by the

probability level assumed for the success of

the sterile-male procedure?

7. Dr. Scribner is concerned about the assumed

levels for the net present value of the worth of

trees saved and damage avoided. She believes

these amounts are only accurate within a range

of �10%.

a. Keeping all other probabilities and cash flows

at their original levels, redo the decision tree

analysis to find what action will maximize Dr.

Scribner’s expected payoff when the two net

present values are instead, successively, (1)

10% lower or (2) 10% higher than originally

assumed.

b. How is the optimal action affected by the

level assumed for the NPVs of the savings

from using one of the two esoteric Gypsy

Moth eradication procedures? ■
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Sampling and Sampling Distributions

C H A P T E R

SAMPLE SIZE DETERMINATION IN A LEGAL CASE

This chapter introduces the important problem of estimating an unknown

population quantity by randomly sampling from the population. Sampling is

often expensive and/or time-consuming, so a key step in any sampling plan is to

determine the sample size that produces a prescribed level of accuracy. Some of

the issues in finding an appropriate sample size are discussed in Afshartous

(2008). The author was involved as an expert statistical witness for the plaintiff

in a court case. Over a period of several years, a service company had collected

a flat “special service handling fee” from its client during any month in which a

special service request was made.The plaintiff claimed that many of these fees

had been charged erroneously and sought to recover all of the money collected

from such erroneous fees.The statistical question concerns either the

proportion of all monthly billing records that were erroneous or the total number

of all erroneous billing records. Both sides had to agree on a sampling method

for sampling through the very large population of billing records.They eventually

agreed to simple random sampling, as discussed in this chapter. However, there

was some contention (and confusion) regarding the appropriate sample size.
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Their initial approach was to find a sample size n sufficiently large to accurately estimate

p, the unknown proportion of all monthly billing records in error. Specifically, if they wanted

to be 95% confident that the error in their estimate of p would be no more than 5%, then a

standard sample size formula (provided in Chapter 8) requires n to be 385. (This number is

surprisingly independent of the total number of billing records.) Then, for example, if the

sample discovered 77 errors, or 20% of the sampled items, they would be 95% confident

that between 15% and 25% (20% plus or minus 5%) of all billing records were in error.

The author argued that this “plus or minus 5%” does not necessarily provide the desired

level of accuracy for the quantity of most interest, the total number of erroneously charged

fees.A couple of numerical examples illustrate his point. Let’s suppose that there were 100,000

billing records total and that 20%,or 20,000,were billed erroneously. Then the plus or minus

5% interval translates to an interval from 15,000 to 25,000 bad billings.That is,we are 95%

confident that the estimate is not off by more than 5000 billing records on either side.The

author defines the relative error in this case to be 0.25: the potential error, 5000,divided by the

number to be estimated, 20,000.Now change the example slightly so that 60%,or 60,000,

were billed erroneously. Then plus or minus 5% translates to the interval from 55,000 to

65,000, and the relative error is 5000/60,000,or 0.083.The point is that the same plus or

minus 5% absolute error for p results in a much smaller relative error in the second example.

Using this reasoning, the author suggested that they should choose the sample size

to achieve a prescribed relative error in the number of bad billings.This can change the

magnitude of the sample size considerably. For example, the author shows by means of

a rather complicated sample size formula that if a relative error of 0.10 is desired and

the value of p is somewhere around 0.10, a sample size of about 3600 is required. On

the other hand, if a relative error of 0.10 is still desired but the value of p is somewhere

around 0.5, then the required sample size is only about 400.

Sample size formulas, and statistical arguments that lead to them, are far from

intuitive. In this legal case, by keeping the math to a minimum and using simple

terminology like relative error, the author eventually convinced the others to use his

approach, even though it led to a considerably larger sample size than the 385

originally proposed. ■
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7.1 INTRODUCTION

This chapter sets the stage for statistical inference, a topic that is explored in the following
few chapters. In a typical statistical inference problem you want to discover one or more
characteristics of a given population. For example, you might want to know the proportion
of toothpaste customers who have tried, or intend to try, a particular brand. Or you might
want to know the average amount owed on credit card accounts for a population of
customers at a shopping mall. Generally, the population is large and/or spread out, and it is
difficult, maybe even impossible, to contact each member. Therefore, you identify a sam-
ple of the population and then obtain information from the members of the sample.

There are two main objectives of this chapter. The first is to discuss the sampling
schemes that are generally used in real sampling applications. We focus on several types of
random samples and see why these are preferable to nonrandom samples. The second
objective is to see how the information from a sample of the population—for example, 1%
of the population—can be used to infer the properties of the entire population. The key
here is the concept of a sampling distribution. In this chapter we focus on the sampling
distribution of the sample mean, and we discuss the role of a famous mathematical result
called the central limit theorem. Specifically, we discuss how the central limit theorem is
the reason for the importance of the normal distribution in statistical inference.
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7.2 SAMPLING TERMINOLOGY

We begin by introducing some terminology that is used in sampling. In any sampling
problem there is a relevant population. A population is the set of all members about
which a study intends to make inferences, where an inference is a statement about a
numerical characteristic of the population, such as an average income or the proportion of
incomes below $50,000. It is important to realize that a population is defined in relation-
ship to any particular study. Any analyst planning a survey should first decide which
population the conclusions of the study will concern, so that a sample can be chosen from
this population.

7.2 Sampling Terminology 353

The relevant population contains all members about which a study intends to make
inferences.

The members of a probability sample are chosen according to a random mechanism,
whereas the members of a judgmental sample are chosen according to the sampler’s
judgment.

A frame is a list of all members, called sampling units, in the population.

For example, if a marketing researcher plans to use a questionnaire to infer consumers’
reactions to a new product, she must first decide which population of consumers is of
interest—all consumers, consumers over 21 years old, consumers who do most of their
shopping in shopping malls, or others. Once the relevant consumer population has been
designated, a sample from this population can then be surveyed. However, inferences made
from the study pertain only to this particular population.

Before you can choose a sample from a given population, you typically need a list of
all members of the population. In sampling terminology, this list is called a frame, and the
potential sample members are called sampling units. Depending on the context, sampling
units could be individual people, households, companies, cities, or others.

In this chapter we assume that the population is finite and consists of N sampling
units. We also assume that a frame of these N sampling units is available. Unfortunately,
there are situations where a complete frame is practically impossible to obtain. For
example, if the purpose of a study is to survey the attitudes of all unemployed teenagers in
Chicago, it is practically impossible to obtain a complete frame of them. In this situation
the best alternative is to obtain is a partial frame, from which the sample can be selected. If
the partial frame omits any significant segments of the population that a complete frame
would include, then the resulting sample could be biased. For instance, if you use the
Yellow Pages of a Los Angeles telephone book to choose a sample of restaurants, you
automatically omit all restaurants that do not advertise in the Yellow Pages. Depending on
the purposes of the study, this could be a serious omission.

There are two basic types of samples: probability samples and judgmental samples.
A probability sample is a sample in which the sampling units are chosen from the population
according to a random mechanism. In contrast, no formal random mechanism is used to select
a judgmental sample. In this case the sampling units are chosen according to the sampler’s
judgment.

It is customary in
virtually all statistical
literature to let
uppercase N be the
population size and
lowercase n be the
sample size.We follow
this convention as well.
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We do not discuss judgmental samples. The rea-
son is very simple—there is no way to measure the
accuracy of judgmental samples because the rules of
probability do not apply to them. In other words, if a
population characteristic is estimated from the obser-
vations in a judgmental sample, there is no way to
measure the accuracy of this estimate. In addition, it
is very difficult to choose a representative sample
from a population without using some random mech-
anism. Because our judgment is usually not as good
as we think, judgmental samples are likely to contain
our own built-in biases. Therefore, we focus exclu-
sively on probability samples from here on.
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Why Random Sampling?

One reason for sampling randomly from a population

is to avoid biases (such as choosing mainly stay-at-

home mothers because they are easier to contact).

An equally important reason is that random sampling

allows you to use probability to make inferences

about unknown population parameters. If sampling

were not random, there would be no basis for using

probability to make such inferences.

FUNDAMENTAL INSIGHT

7.3 METHODS FOR SELECTING RANDOM SAMPLES

In this section we discuss the types of random samples that are used in real sampling appli-
cations. Different types of sampling schemes have different properties. There is typically a
trade-off between cost and accuracy. Some sampling schemes are cheaper and easier to
administer, whereas others are more costly but provide more accurate information. We
discuss some of these issues. However, anyone who intends to make a living in survey
sampling needs to learn much more about the topic than we can cover here.

7.3.1 Simple Random Sampling

The simplest type of sampling scheme is appropriately called simple random sampling.
Consider a population of size N and suppose you want to sample n units from this popula-
tion. Then a simple random sample of size n has the property that every possible sample
of size n has the same probability of being chosen. Simple random samples are the easiest
to understand, and their statistical properties are fairly straightforward. Therefore, we will
focus primarily on simple random samples in the rest of this book. However, as we discuss
shortly, more complex random samples are often used in real applications.

A simple random sample of size n is one where each possible sample of size n has
the same chance of being chosen.

Let’s illustrate the concept with a simple random sample for a small population. Suppose
the population size is N � 5, and the five members of the population are labeled a, b, c, d,
and e. Also, suppose the sample size is n � 2. Then the possible samples are (a, b), (a, c), (a,
d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), and (d, e). That is, there are 10 possible samples—
the number of ways two members can be chosen from five members. Then a simple random
sample of size n � 2 has the property that each of these 10 possible samples has the same
probability, 1/10, of being chosen.

One other property of simple random samples can be seen from this example. If you
focus on any member of the population, say, member b, you will see that b is a member of 4 of
the 10 samples. Therefore, the probability that b is chosen in a simple random sample is 4/10,
or 2/5. In general, any member has the same probability n/N of being chosen in a simple ran-
dom sample. If you are one of 100,000 members of a population, then the probability that you
will be selected in a simple random sample of size 100 is 100/100,000, or 1 out of 1000.
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There are several ways simple random samples can be chosen, all of which involve
random numbers. One approach that works well for the small example with N � 5 and 
n � 2 is to generate a single random number with the RAND function in Excel. You divide
the interval from 0 to 1 into 10 equal subintervals of length 1/10 each and see which of
these subintervals the random number falls into. You then choose the corresponding sam-
ple. For example, suppose the random number is 0.465. This is in the fifth subinterval, that
is, the interval from 0.4 to 0.5, so you choose the fifth sample, (b, c).

This method is clearly consistent with simple random sampling—each of the samples
has the same chance of being chosen—but it is prohibitive when n and N are large. In this
case there are too many possible samples to list. Fortunately, there is another method that
can be used. The idea is simple. You sort the N members of the population randomly, using
Excel’s RAND function to generate random numbers for the sort. Then you include the
first n members from the sorted sequence in the random sample. This procedure is illus-
trated in the following example.
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For those who have not
yet covered the sim-
ulation sections of
previous chapters:The
RAND function in
Excel generates
numbers that are
distributed randomly
and uniformly between
0 and 1.

E X A M P L E 7.1 SELECTING A SAMPLE OF FAMILIES TO ANALYZE ANNUAL INCOMES

Consider the frame of 40 families with annual incomes shown in column B of Figure 7.1.
(See the file Random Sampling.xlsm. The extension is xlsm because this file contains

a macro. When you open it, you will need to click on the Options button above the formula
bar and elect to enable the macro.) We want to choose a simple random sample of size 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
47
48
49

A B C D
Simple random sampling

Summary statistics
Mean Median Stdev

$39,985 $38,500 $7,377
Sample
Population

Population
Family Income

1 $43,300
2 $44,300
3 $34,600
4 $38,000
5 $44,700
6 $45,600
7 $42,700
8 $36,900
9 $38,400

10 $33,700
11 $44,100
12 $51,500
13 $35,900
14 $35,600
15 $43,000
38 $46,900
39 $37,300
40 $41,000

Figure 7.1

Population Income

Data
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from this frame. How can this be done? And how do summary statistics of the chosen
families compare to the corresponding summary statistics of the population?

Objective To illustrate how Excel’s random number function, RAND, can be used to
generate simple random samples.

Solution

The idea is very simple. You first generate a column of random numbers in column F. Then
you sort the rows according to the random numbers and choose the first 10 families in the
sorted rows. The following procedure produces the results in Figure 7.2. (See the first sheet
in the finished version of the file.)
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

A B C D E F
Simple random sampling

Summary statistics
Mean Median Stdev

$39,985 $38,500 $7,377
Sampl
Popula�on

e $41,490 $42,850 $5,323

Population Random sample
Family Income Family Income Random #

1 $43,300 1 $43,300 0.04545
2 $44,300 2 $44,300 0.1496768
3 $34,600 12 $51,500 0.23527
4 $38,000 7 $42,700 0.2746325
5 $44,700 13 $35,900 0.3003506
6 $45,600 15 $43,000 0.3197393
7 $42,700 6 $45,600 0.3610983
8 $36,900 3 $34,600 0.3852641
9 $38,400 9 $38,400 0.4427564

10 $33,700 14 $35,600 0.4447877
11 $44,100 5 $44,700 0.4505899
12 $51,500 $41,000 0.459736121

22
23
24
47
48
49

40
13 $35,900 11 $44,100 0.5621297
14 $35,600 4 $38,000 0.5860911
15 $43,000 38 $46,900 0.7192539
38 $46,900 39 $37,300 0.8644119
39 $37,300 8 $36,900 0.9059098
40 $41,000 10 $33,700 0.9637509

Figure 7.2

Selecting a Simple

Random Sample

1 Random numbers next to a copy. Copy the original data to columns D and E. Then
enter the formula

��RAND()

in cell F10 and copy it down column F.

2 Replace with values. To enable sorting, you must first “freeze” the random num-
bers—that is, replace their formulas with values. To do this, copy the range F10:F49 and
select Paste Values from the Paste dropdown menu on the Home ribbon.
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3 Sort. Sort on column F in ascending order. Then the 10 families with the 10 smallest
random numbers are the ones in the sample. These are shaded in the figure. (Note that you
could instead have chosen the 10 families with the 10 largest random numbers. This would
be an equally valid method.)

4 Means. Use the AVERAGE, MEDIAN, and STDEV functions in row 6 to calculate
summary statistics of the first 10 incomes in column E. Similar summary statistics for the
population have already been calculated in row 5. (Cell D5 uses the STDEVP function
because this is the population standard deviation.)

To obtain more random samples of size 10 (for comparison), you would need to go through
this process repeatedly. To save you the trouble of doing so, we wrote a macro to automate
the process. (See the Automated sheet in the Random Samples.xlsm file.) This sheet
looks essentially the same as the sheet in Figure 7.2, except that there is a button to run the
macro, and only the required data remain on the spreadsheet. Try clicking on this button.
(Don’t forget to enable the macro first.) Each time you do so, you will get a different
random sample—and different summary measures in row 6. By doing this many times and
keeping track of the sample summary data, you can see how the summary measures vary
from sample to sample. We will have much more to say about this variation later in the
chapter. ■
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The procedure described in Example 7.1 can be used in Excel to select a simple random
sample of any size from any population. All you need is a frame that lists the population
values. Then it is just a matter of inserting random numbers, freezing them, and sorting
on the random numbers. 

Perhaps surprisingly, simple random samples are used infrequently in real applications.
There are several reasons for this.

■ Because each sampling unit has the same chance of being sampled, simple random
sampling can result in samples that are spread over a large geographical region.
This can make sampling extremely expensive, especially if personal interviews
are used.

■ Simple random sampling requires that all sampling units be identified prior to
sampling. Sometimes this is infeasible.

■ Simple random sampling can result in underrepresentation or overrepresentation 
of certain segments of the population. For example, if the primary—but not 
sole—interest is in the graduate student subpopulation of university students, a 
simple random sample of all university students might not provide enough 
information about the graduate students.

Despite this, most of the statistical analysis in this book assumes simple random samples.
The analysis is considerably more complex for other types of random samples and is best
left to more advanced books on sampling.

Using StatTools to Generate Simple Random Samples

The method described in Example 7.1 is simple but somewhat tedious, especially if you
want to generate more than one random sample. (Even the macro described at the end of
the example works only for that particular file.) Fortunately, a more general method is
available in StatTools. This procedure generates any number of simple random samples of
any specified sample size from a given data set. It can be found among the Data Utilities
(not Utilities) on the StatTools ribbon.
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E X A M P L E 7.2 SAMPLING FROM ACCOUNTS RECEIVABLE AT SPRING MILLS COMPANY

The file Accounts Receivable.xlsx contains 280 accounts receivable for the Spring
Mills Company. There are three variables:

■ Size: customer size, categorized as small, medium, or large depending on its volume
of business with Spring Mills

■ Days: number of days since the customer was billed
■ Amount: amount of the bill

Generate 25 random samples of size 15 each from the small customers only, calculate the
average amount owed in each random sample, and construct a histogram of these 25 averages.

Objective To illustrate StatTools’s method of choosing simple random samples and to
demonstrate how sample means are distributed.

Solution

In most real-world applications, you would generate only a single random sample from a pop-
ulation, so why do we ask you to generate 25 random samples in this example? The reason is
that we want to introduce the concept of a sampling distribution, in this case the sampling
distribution of the sample mean. This is the distribution of all possible sample means you
could generate from all possible samples (of a given size) from a population. By generating a
fairly large number of random samples from the population of accounts receivable, you can
begin to see what the sampling distribution of the sample mean looks like.

We proceed in several steps. First, because you want random samples of the small
customers only and the data are already sorted on Size, you first create a StatTools data set of
the small customers only. (It is the range A1:D151.) Then use the Random Sample item from
StatTools Data Utilities dropdown menu to generate 25 samples of size 15 each of the Amount
variable.1 (The Random Sample dialog box should be filled out as shown in Figure 7.3.) These

Figure 7.3

Random Sample

Dialog Box

1Strictly speaking, the sampling distribution of the sample mean is the distribution of all possible sample means
when sampling is done with replacement, where any member of the population can be sampled multiple times.
However, real-world sampling is almost always done without replacement, so this is what we illustrate here. 
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will appear on a new Random Sample sheet, as shown in Figure 7.4 (with many columns hid-
den). Each of these columns is a random sample of 15 Amount values.

Next, insert a new column A, as shown in Figure 7.4, and calculate the averages in
row 17 for each sample with Excel’s AVERAGE function. Finally, to obtain a histogram
of the averages in row 17, define a second StatTools data set of the data in row 17 of
Figure 7.4 but, for a change, specify that the only variable for this data set is in a row, not
a column. (This is an option in the StatTools Data Set Manager.) You can then create a
histogram of these 25 averages in the usual way. It appears in Figure 7.5.

The histogram in Figure 7.5 indicates the variability of sample means you might
obtain by selecting many different random samples of size 15 from this particular popula-
tion of small customer accounts. This histogram, which is approximately bell-shaped,
approximates the sampling distribution of the sample mean. We will come back to this
important idea when we discuss sampling distributions in Section 7.4.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

A B C D X Y Z
Amount(1) Amount(2) Amount(3) Amount(23) Amount(24) Amount(25)

260 200 290 250 240 260
230 240 260 220 210 290
250 310 240 240 230 300
280 250 290 260 220 240
210 210 330 270 200 250
310 270 210 280 220 270
280 270 290 220 240 270
260 190 260 290 410 250
280 240 370 210 300 230
240 190 290 260 260 240
210 240 260 240 270 250
270 240 260 210 210 150
240 240 230 240 210 180
220 300 240 250 250 310
260 320 240 210 280 200

Average 253.333 247.333 270.667 243.333 250.000 246.000
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In the next several subsections we describe sampling plans that are often used. These
plans differ from simple random sampling both in the way the samples are chosen and in
the way the data analysis is performed. However, we will barely touch on this latter issue.
The details are quite complicated and are better left to a book devoted entirely to sampling.
[See, for example, the excellent book by Levy and Lemeshow (1999).]
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FUNDAMENTAL INSIGHT

Types of Random Samples

There are actually many methods for choosing random

samples, some described only briefly in this book, and

they all have their advantages and disadvantages from

practical and statistical standpoints. Surprisingly, the

simplest of these, where each subset of the population

has the same chance of being chosen, is not the most

frequently used method in real applications.This is basi-

cally because other more complex methods can make

more efficient use of a given sample size. Nevertheless,

the concepts you learn here remain essentially the same,

regardless of the exact sampling method used.

7.3.2 Systematic Sampling

Suppose you are asked to select a random sample of 250 names from the white pages of
a telephone book. Let’s also say that there are 55,000 names listed in the white pages. A
systematic sample provides a convenient way to choose the sample. First, you divide the
population size by the sample size: 55,000/250 � 220. Conceptually, you can think of
dividing the book into 250 “blocks” with 220 names per block. Next, you use a random
mechanism to choose a number between 1 and 220. Suppose this number is 131. Then you
choose the 131st name and every 220th name thereafter. So you would choose name 131,
name 351, name 571, and so on. The result is a systematic sample of size n � 250.

In general, one of the first k members is selected randomly, and then every kth mem-
ber after this one is selected. The value k is called the sampling interval and equals the ratio
N/n, where N is the population size and n is the desired sample size.

Systematic sampling is quite different from simple random sampling because not
every sample of size 250 has a chance of being chosen. In fact, there are only 220 different
samples possible (depending on the first number chosen), and each of these is equally
likely. Nevertheless, systematic sampling is generally similar to simple random sampling
in its statistical properties. The key is the relationship between the ordering of the sampling
units in the frame (the white pages of the telephone book in this case) and the purpose of
the study.

If the purpose of the study is to analyze personal incomes, then there is probably no
relationship between the alphabetical ordering of names in the telephone book and
personal income. However, there are situations where the ordering of the sampling units is
not random, which could make systematic sampling more or less appealing. For example,
suppose that a company wants to sample randomly from its customers, and its customer
list is in decreasing order of order volumes. That is, the largest customers are at the top of
the list and the smallest are at the bottom. Then systematic sampling might be more repre-
sentative than simple random sampling because it guarantees a wide range of customers in
terms of order volumes.

However, some type of cyclical ordering in the list of sampling units can lead to very
unrepresentative samples. As an extreme, suppose a company has a list of daily transac-
tions (Monday through Saturday) and it decides to draw a systematic sample with the
sampling interval equal to 6. Then if the first sampled day is Monday, all other days in
the sample will be Mondays. This could clearly bias the sample. Except for obvious

Systematic random
samples are typically
chosen because of
their convenience.
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examples like this one, however, systematic sampling can be an attractive alternative to
simple random sampling and is often used because of its convenience.

7.3.3 Stratified Sampling

Suppose various subpopulations within the total population can be identified. These sub-
populations are called strata. Then instead of taking a simple random sample from the
entire population, it might make more sense to select a simple random sample from each
stratum separately. This sampling method is called stratified sampling. It is a particularly
useful approach when there is considerable variation between the various strata but rela-
tively little variation within a given stratum.
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In stratified sampling, the population is divided into relatively homogeneous subsets
called strata, and then random samples are taken from each stratum.

There are several advantages to stratified sampling. One obvious advantage is that
separate estimates can be obtained within each stratum—which would not obtained with a
simple random sample from the entire population. Even if the samples from the individual
strata are eventually pooled, it cannot hurt to have the total sample broken down into
separate samples initially.

A more important advantage of stratified sampling is that the accuracy of the resulting
population estimates can be increased by using appropriately defined strata. The trick is to
define the strata so that there is less variability within the individual strata than in the
population as a whole. You want strata such that there is relative homogeneity within the
strata, but relative heterogeneity across the strata, with respect to the variable(s) being
analyzed. By choosing the strata in this way, you can generally obtain more accuracy for a
given sampling cost than you could obtain from a simple random sample at the same cost.
Alternatively, you can achieve the same level of accuracy at a lower sampling cost.

The key to using stratified sampling effectively is selecting the appropriate strata.
Suppose a company that advertises its product on television wants to estimate the reaction
of viewers to the advertising. Here the population consists of all viewers who have seen the
advertising. But what are the appropriate strata? The answer depends on the company’s
objectives and its product. The company could stratify the population by gender, by
income, by amount of television watched, by the amount of the product class consumed,
and probably others. Without knowing more specific information about the company’s
objectives, it is impossible to say which of these stratification schemes is most appropriate.

Suppose that you have identified I nonoverlapping strata in a given population. Let N
be the total population size, and let Ni be the population size of stratum i, so that

To obtain a stratified random sample, you must first choose a total sample size n, and then
choose a sample size ni from each stratum i such that

You can then select a simple random sample of the specified size from each stratum
exactly as in Example 7.1.

However, how do you choose the individual sample sizes n1 through nI, given that the
total sample size n has been chosen? For example, if you decide to sample 500 customers
in total, how many should come from each stratum? There are many ways to choose
sample sizes n1 through nI that sum to n, but probably the most popular method is to use

n = n1 + n2 +
Á

+ nI

N = N1 + N2 +
Á

+ NI

Stratified samples 
are typically chosen
because they provide
more accurate esti-
mates of population
parameters for a given
sampling cost.
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proportional sample sizes. The idea is very simple. If one stratum has, say, 15% of the
total population, then you select 15% of the total sample from this stratum. For example, if
the total sample size is n � 500, you select 0.15(500) � 75 members from this stratum.
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With proportional sample sizes, the proportion of a stratum in the sample is the same
as the proportion of that stratum in the population.

The advantage of proportional sample sizes is that they are very easy to determine.
The disadvantage is that they ignore differences in variability among the strata. To
illustrate, suppose that you are attempting to estimate the population mean amount paid
annually per student for textbooks at a large university. You identify three strata: under-
graduates, master’s students, and doctoral students. Their population sizes are 20,000,
4000, and 1000, respectively. Therefore, the proportions of students in these strata are
20,000/25,000 � 0.80, 4000/25,000 � 0.16, and 1000/25,000 � 0.04. If the total sample
size is n � 150, then the sample should include 120 undergraduates, 24 master’s students,
and 6 doctoral students if proportional sample sizes are used.

However, let be the standard deviation of annual textbook payments in stratum i,
and suppose that , , and . That is, there is considerably
more variation in the amounts paid by doctoral students than by undergraduates, with the
master’s students in the middle. If you are interested in estimating the mean amount spent
per student, then despite its small sample size, the doctoral sample is likely to have a large
effect on the accuracy of your estimate of the mean. This is because of its relatively large
standard deviation. In contrast, you might not need to sample as heavily from the under-
graduate population because of its relatively small standard deviation. In general, strata
with less variability can afford to be sampled less heavily than proportional sampling calls
for, and the opposite is true for strata with larger variability. In fact, there are optimal
sample size formulas that take the ’s into account, but they are not presented here.

The following example illustrates how stratified sampling can be implemented in
Excel.

si

s3 = $180s2 = $120s1 = $50
si

E X A M P L E 7.3 STRATIFIED SAMPLING FROM THE MIDTOWN POPULATION OF SEARS

CREDIT CARD HOLDERS

The file Stratified Sampling.xlsx contains a frame of all 50,000 people in the city of
Midtown who have Sears credit cards. Sears is interested in estimating the average

number of other credit cards these people own, as well as other information about their use
of credit. The company decides to stratify these customers by age, select a stratified sam-
ple of size 200 with proportional sample sizes, and then contact these 200 people by
phone. How might Sears proceed?

Objective To illustrate how stratified sampling, with proportional sample sizes, can be
implemented in Excel.

Solution

First, Sears has to decide exactly how to stratify by age. Their reasoning is that different
age groups probably have different attitudes and behavior regarding credit. After some pre-
liminary investigation, they decide to use three age categories: 18–30, 31–62, and 63–80.
(We assume that no one in the population is younger than 18 or older than 80.)
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Figure 7.6 shows how the calculations might then proceed. You begin with the follow-
ing inputs: (1) the total sample size in cell B3, (2) the definitions of the strata in rows
6 through 8, and (3) the customer data in the range A11:B50010. To see which age
category each customer is in, enter the formula

��IF(B11����$D$6,1,IF(B11����$D$7,2,3))

in cell C11 and then copy it down column C. Then sort on column C to put all of the
customers in the same age groups together.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

50007
50008
50009
50010

A B C D E F G H
Stratified sampling by Sears

Total sample size 200

Strata based on elpmaStnuoCmutartSega  size
Stratum 1482301103ot811
Stratum 20120452226ot132
Stratum 7507241308ot363

Customer Age Stratum Random # Stratum index In sample?
23741 24 1 1.82E-05 1 Yes
49746 21 1 0.0002263 2 Yes
17423 29 1 0.00027 3 Yes
10163 22 1 0.0002908 4 Yes
44672 26 1 0.0005457 5 Yes
46491 20 1 0.0007039 6 Yes
15166 28 1 0.0007196 7 Yes
10026 26 1 0.0007706 8 Yes
39884 21 1 0.0008722 9 Yes

4809 21 1 0.0009341 10 Yes
37710 23 1 0.0009347 11 Yes
12883 27 1 0.000977 12 Yes

8434 64 3 0.9997092 14267 No
43033 68 3 0.9998092 14268 No
35265 79 3 0.9999229 14269 No
28813 79 3 0.9999873 14270 No

Figure 7.6 Selecting a Stratified Sample

The next step is to find the proportional sample sizes. First, find the number of
customers in stratum 1 with the formula

��COUNTIF($C$11:$C$50010,F6)

in cell G6 and copy it down to cell G8. Then find the required sample size for stratum 1 in
cell H6 with the formula

��ROUND($B$3*G6/50000,0)

and copy it down to cell H8. Note that the ROUND function has been used to round to the
nearest integer.
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Finally, there are a number of ways the sampled members can be chosen. Here is one
fairly simple procedure.

1 Enter random numbers with the RAND function in column D and then freeze them.

2 Do a custom sort, first on the strata in column C and then on the random numbers in
column D.

3 Enter indexes, starting at 1 for each stratum, in column E by entering 1 in cell E11 and
then entering the formula

��IF(C12��C11,E11��1,1)

in cell E12 and copying down.

4 Create a Yes/No column in column F by entering the formula

��IF(E11����VLOOKUP(C11,$F$6:$H$8,3),"Yes","No")

in cell F11 and copying down.

If you want a different random sample, just repeat these four steps. The setup will appear
(with many hidden rows) as in Figure 7.6. You can check that there are as many “Yes” entries
for each stratum in column F as required by the proportional sample sizes in column H. ■
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7.3.4 Cluster Sampling

Suppose that a company is interested in various characteristics of households in a particular
city. The sampling units are households. You could select a random sample of households
by one of the sampling methods already discussed. However, it might be more convenient to
proceed somewhat differently. You could first divide the city into city blocks and consider
the city blocks as sampling units. You could then select a simple random sample of city
blocks and then sample all of the households in the chosen blocks. In this case the city
blocks are called clusters and the sampling scheme is called cluster sampling.

In cluster sampling, the population is separated into clusters, such as cities or city
blocks, and then a random sample of the clusters is selected.

The primary advantage of cluster sampling is sampling convenience (and possibly
lower cost). If an agency is sending interviewers to interview heads of household, it is
much easier for them to concentrate on particular city blocks than to contact households
throughout the city. The downside, however, is that the inferences drawn from a cluster
sample can be less accurate, for a given sample size, than from other sampling plans.

Consider the following scenario. A nationwide company wants to survey its salespeople
with regard to management practices. It decides to randomly select several sales districts
(the clusters) and then interview all salespeople in the selected districts. It is likely that in any
particular sales district the attitudes toward management are somewhat similar. This overlap-
ping information means that the company is probably not getting the maximum amount of
information per sampling dollar spent. Instead of sampling 20 salespeople from a given
district, all of whom have similar attitudes, it might be better to sample 20 salespeople from
different districts who have a wider variety of attitudes. Nevertheless, the relative conve-
nience of cluster sampling sometimes outweighs these statistical considerations.

Selecting a cluster sample is straightforward. The key is to define the sampling units
as the clusters—the city blocks, for example. Then a simple random sample of clusters can
be chosen exactly as in Example 7.1. Once the clusters are selected, it is typical to sample
all of the population members in each selected cluster.

Cluster analysis is
typically more
convenient and less
costly than other
random sampling
methods.
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7.3.5 Multistage Sampling Schemes

The cluster sampling scheme just described, where a sample of clusters is chosen and then all
of the sampling units within each chosen cluster are taken, is called a single-stage sampling
scheme. Real applications are often more complex than this, resulting in multistage
sampling schemes. For example, the Gallup organization uses multistage sampling in its
nationwide surveys. A random sample of approximately 300 locations is chosen in the first
stage of the sampling process. City blocks or other geographical areas are then randomly
sampled from the first-stage locations in the second stage of the process. This is followed by
a systematic sampling of households from each second-stage area. A total of about 1500
households comprise a typical Gallup poll.

We do not pursue the topic of multistage sampling schemes in this book. However,
you should realize that real-world sampling procedures can be very complex.
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P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. The file P02_07.xlsx includes data on 204 employees
at the (fictional) company Beta Technologies. For this
problem, consider this data set as the population
frame.
a. Using the method in this section (not StatTools),

generate a simple random sample of size 20 from
this population.

b. Use StatTools to generate 10 simple random
samples of size 20 from this population.

c. Calculate the population mean, median, and
standard deviation of Annual Salary. Then
calculate the sample mean, median, and standard
deviation of Annual Salary for each of the samples
in parts a and b. Comment briefly on how they
compare to each other and the population
measures.

2. The file P07_02.xlsx contains data on the 1995
students who have gone through the MBA program at
State University. You can consider this the population
of State University’s MBA students.
a. Find the mean and standard deviation for each of

the numerical variables in this population. Also,
find the following proportions: the proportion of
students who are male, the proportion of students
who are international (not from the USA), the
proportion of students under 30 years of age, and
the proportion of students with an engineering
undergrad major.

b. Using the method in this section (not StatTools),
generate a simple random sample of 100 students
from this population, and find the mean and

standard deviation of each numerical variable in
the sample. Is there any way to know (without
the information in part a) whether your summary
measures for the sample are lower or higher than
the (supposedly unknown) population summary
measures?

c. Use StatTools to generate 10 simple random
samples of size 100. For each, find the mean
of School Debt and its deviation from the
population mean in part a (negative if it is
below the population mean, positive if it is above
the population mean). What is the average of
these 10 deviations? What would you expect it
to be?

d. We want random samples to be representative of the
population in terms of various demographics. For
each of the samples in part c, find each of the pro-
portions requested in part a. Do these samples
appear to be representative of the population in
terms of age, gender, nationality, and undergrad
major? Why or why not? If they are not representa-
tive, is it because there is something wrong with the
sampling procedure?

3. The file P02_35.xlsx contains data from a survey of
500 randomly selected households.
a. Suppose you decide to generate a systematic

random sample of size 25 from this population of
data. How many such samples are there? What is
the mean of Debt for each of the first three such
samples, using the data in the order given?

b. If you wanted to estimate the (supposedly
unknown) population mean of Debt from a system-
atic random sample as in part a, why might it be a
good idea to sort first on Debt? If you do so, what
is the mean of Debt for each of the first three such
samples?
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4. Recall from Chapter 2 that the file Supermarket
Transactions.xlsx contains over 14,000 transactions
made by supermarket customers over a period of
approximately two years. For this problem, consider
this data set the population of transactions.
a. If you were interesting in estimating the mean of

Revenue for the population, why might it make
sense to use a stratified sample, stratified by
product family, to estimate this mean?

b. Suppose you want to generate a stratified random
sample, stratified by product family, and have
the total sample size be 250. If you use pro-
portional sample sizes, how many transactions
should you sample from each of the three product
families?

c. Calculate the population standard deviations for
each of the three product families. Given these
and the discussion in the book, do you think the
optimal sample sizes would be much different from
the proportional sample sizes?

d. Using the sample sizes from part b, generate a
corresponding stratified random sample. What are
the individual sample means from the three product
families? What are the sample standard deviations?

Level B

5. This problem illustrates an interesting variation of
simple random sampling.
a. Open a blank spreadsheet and use the RAND()

function to create a column of 1000 random
numbers. Don’t freeze them. This is actually a
simple random sample from the uniform distribution
between 0 and 1. Use the COUNTIF function to
count the number of values between 0 and 0.1,
between 0.1 and 0.2, and so on. Each such interval
should contain about 1/10 of all values. Do they?

(Keep pressing the F9 key to see how the results
change.)

b. Repeat part a, generating a second column of
random numbers, but now generate the first 100
as uniform between 0 and 0.1, the next 100 as
uniform between 0.1 and 0.2, and so on, up to
0.9 to 1. (Hint: For example, to create a random
number uniformly distributed between 0.5 and 0.6,
use the formula ��0.5��0.1*RAND(). (Do you see
why?) Again, use COUNTIF to find the number of
the 1000 values in each of the intervals, although
there shouldn’t be any surprises this time. Why
might this type of random sampling be preferable
to the random sampling in part a? (Note: The
sampling in part a is called Monte Carlo sampling,
whereas the sampling in part b is basically Latin
Hypercube sampling, the form of sampling we
advocate in Chapters 15 and 16 on simulation.)

6. Another type of random sample is called a bootstrap
sample. (It comes from the expression “pulling
yourself up by your own bootstraps.”) Given a data set
with n observations, a bootstrap sample, also of size n,
is when you randomly sample from the data set with
replacement. To do so, you keep choosing a random
integer from 1 to n and include that item in the sample.
The “with replacement” part means that you can
sample the same item more than once. For example,
if n � 4, the sampled items might be 1, 2, 2, and 4.
Using the data in the file Accounts Receivable.xlsx,
illustrate a simple method for choosing bootstrap
samples with the RANDBETWEEN and VLOOKUP
functions. For each bootstrap sample, find the mean
and standard deviation of Days and Amount, and find
the counts in the different size categories. How do
these compare to the similar measures for the original
data set? (For more on bootstrap sampling, do a Web
search. Wikipedia has a nice overview.) 
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7.4 AN INTRODUCTION TO ESTIMATION

The purpose of any random sample, simple or otherwise, is to estimate properties of a
population from the data observed in the sample. The following is a good example to keep
in mind. Suppose a government agency wants to know the average household income over
the population of all households in Indiana. Then this unknown average is the population
parameter of interest, and the government is likely to estimate it by sampling several rep-
resentative households in Indiana and reporting the average of their incomes.

The mathematical procedures appropriate for performing this estimation depend on
which properties of the population are of interest and which type of random sampling
scheme is used. Because the details are considerably more complex for more complex
sampling schemes such as multistage sampling, we will focus on simple random samples,
where the mathematical details are relatively straightforward. Details for other sampling
schemes such as stratified sampling can be found in Levy and Lemeshow (1999).
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However, even for more complex sampling schemes, the concepts are the same as those we
discuss here; only the details change.

Throughout most of this section, we focus on the population mean of some variable
such as household income. Our goal is to estimate this population mean by using the data
in a randomly selected sample. We first discuss the types of errors that can occur.

7.4.1 Sources of Estimation Error

There are two basic sources of errors that can occur when you sample randomly from a
population: sampling error and all other sources, usually lumped together as nonsampling
error. Sampling error results from “unlucky” samples. As such, the term error is somewhat
misleading. Suppose, for example, that the mean household income in Indiana is $58,225.
(We assume this is the true value. It wouldn’t actually be known without taking a census.) A
government agency wants to estimate this mean, so it randomly samples 500 Indiana house-
holds and finds that their average household income is $60,495. If the agency then infers
that the mean of all Indiana household incomes is $60,495, the resulting sampling error is
the difference between the reported value and the true value: $60,495�$58,225 � $2270.
Note that the agency hasn’t done anything wrong. This sampling error is essentially due
to bad luck.
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Sampling error is the inevitable result of basing an inference on a random sample
rather than on the entire population.

We will soon discuss how to measure the potential sampling error involved. The point
here is that the resulting estimation error is not caused by anything the government agency
is doing wrong—it might just get unlucky.

Nonsampling error is quite different and can occur for a variety of reasons. We dis-
cuss a few of them.

■ Perhaps the most serious type of nonsampling error is nonresponse bias. This occurs
when a portion of the sample fails to respond to the survey. Anyone who has ever
conducted a questionnaire, whether by mail, by phone, or any other method, knows
that the percentage of nonrespondents can be quite large. The question is whether this
introduces estimation error. If the nonrespondents would have responded similarly to
the respondents, you don’t lose much by not hearing from them. However, because
the nonrespondents don’t respond, you typically have no way of knowing whether
they differ in some important respect from the respondents. Therefore, unless you are
able to persuade the nonrespondents to respond—through a follow-up email, for
example—you must guess at the amount of nonresponse bias.

■ Another source of nonsampling error is nontruthful responses. This is particularly
a problem when there are sensitive questions in a questionnaire. For example, if the
questions “Have you ever had an abortion?” or “Do you regularly use cocaine?” are
asked, most people will answer “no,” regardless of whether the true answer is “yes”
or “no.”

There is a way of getting at such sensitive information, called the randomized
response technique. Here the investigator presents each respondent with two questions,
one of which is the sensitive question. The other is innocuous, such as, “Were you born
in the summer?” The respondent is asked to decide randomly which of the two
questions to answer—by flipping a coin, say—and then answer the chosen question
truthfully. The investigator sees only the answer (yes or no), not the result of the coin
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flip. That is, the investigator doesn’t know which question is being answered. However,
by using probability theory, it is possible for the investigator to infer from many such
responses the percentage of the population whose truthful answer to the sensitive
question is “yes.”

■ Another type of nonsampling error is measurement error. This occurs when the
responses to the questions do not reflect what the investigator had in mind. It
might result from poorly worded questions, questions the respondents don’t fully
understand, questions that require the respondents to supply information they don’t
have, and so on. Undoubtedly, there have been times when you were filling out a
questionnaire and said to yourself, “OK, I’ll answer this as well as I can, but I know
it’s not what they want to know.”

■ One final type of nonsampling error is voluntary response bias. This occurs when the
subset of people who respond to a survey differ in some important respect from all
potential respondents. For example, suppose a population of students is surveyed to see
how many hours they study per night. If the students who respond are predominantly
those who get the best grades, the resulting sample mean number of hours could be
biased on the high side.

From this discussion and your own experience with questionnaires, you should realize that
the potential for nonsampling error is enormous. However, unlike sampling error, it cannot
be measured with probability theory. It can be controlled only by using appropriate sam-
pling procedures and designing good survey instruments. We will not pursue this topic any
further here. If you are interested, however, you can learn about methods for controlling
nonsampling error, such as proper questionnaire design, from books on survey sampling.

7.4.2 Key Terms in Sampling

We now set the stage for the rest of this chapter, as well as for the next few chapters.
Suppose there is some numerical population parameter you would like to know. This para-
meter could be a population mean, a population proportion, the difference between two pop-
ulation means, the difference between two population proportions, or many others. Unless
you measure each member of the population—that is, you take a census—you cannot learn
the exact value of this population parameter. Therefore, you instead take a random sample
of some type and estimate the population parameter from the data in the sample.

You typically begin by calculating a point estimate (or, simply, an estimate) from the
sample data. This is a “best guess” of the population parameter. The difference between
the point estimate and the true value of the population parameter is called the sampling error
(or estimation error). You then use probability theory to gauge the magnitude of the
sampling error. The key to this is the sampling distribution of the point estimate, which is
defined as the distribution of the point estimates you would see from all possible samples (of
a given sample size) from the population. Often you report the accuracy of the point estimate
with an accompanying confidence interval. A confidence interval is an interval around the
point estimate, calculated from the sample data, that is very likely to contain the true value of
the population parameter. (We will say much more about this in the next chapter.)
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A point estimate is a single numeric value, a “best guess” of a population parameter,
based on the data in a random sample.

The sampling error (or estimation error) is the difference between the point
estimate and the true value of the population parameter being estimated.
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Additionally, there are two other key terms you should know. First, consider the mean
of the sampling distribution of a point estimate. It is the average value of the point estimates
you would see from all possible samples. When this mean is equal to the true value of the
population parameter, the point estimate is unbiased. Otherwise, it is biased. Naturally,
unbiased estimates are preferred. Even if they sometimes miss on the low side and some-
times miss on the high side, they tend to be on target on average.
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The sampling distribution of any point estimate is the distribution of the point
estimates from all possible samples (of a given sample size) from the population.

An unbiased estimate is a point estimate such that the mean of its sampling distri-
bution is equal to the true value of the population parameter being estimated.

The standard error of an estimate is the standard deviation of the sampling distribution
of the estimate. It measures how much estimates vary from sample to sample.

A confidence interval is an interval around the point estimate, calculated from the
sample data, that is very likely to contain the true value of the population parameter.

Unbiased estimates are desirable because they average out to the correct value.
However, this isn’t enough. Point estimates from different samples should vary as little as
possible from sample to sample. If they vary wildly, a point estimate from a single random
sample isn’t very reliable. Therefore, it is common to measure the standard deviation of the
sampling distribution of the estimate. This indicates how much point estimates from
different samples vary. In the context of sampling, this standard deviation is called the stan-
dard error of the estimate. Ideally, estimates should have small standard errors.

The terms in this subsection are relevant for practically any population parameter you
might want to estimate. In the following subsection we discuss them in the context of
estimating a population mean.

7.4.3 Sampling Distribution of the Sample Mean

In this section we discuss the estimation of the population mean from some population.
For example, you might be interested in the mean household income for all families in a
particular city, the mean diameter of all parts from a manufacturing process, the mean
amount of underreported taxes by all U.S. taxpayers, and so on. We label the unknown
population mean by �.

The point estimate of � typically used, based on a sample from the population, is the
sample mean , the average of the observations in the sample. There are other possible point
estimates for a population mean besides the sample mean, such as the sample median, the
trimmed mean (where all but the few most extreme observations are averaged), and others.
However, it turns out that the “natural” estimate, the sample mean, has very good theoretical
properties, so it is the point estimate used most often.

How accurate is in estimating �? That is, how large does the estimation error
tend to be? The sampling distribution of the sample mean provides the key.

Before describing this sampling distribution in some generality, we provide some insight
XX - m

X

X
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into it by revisiting the population of 40 incomes in Example 7.1. There we showed how
to generate a single random sample of size 10. For the particular sample we generated
(see Figure 7.2), the sample mean was $41,490. Because the population mean of all 40
incomes is $39,985, the estimation error based on this particular sample is the difference
$41,490 – $39,985, or $1505 on the high side.

However, this is only one of many possible samples. To see other possibilities, you can
use StatTools’s procedure for generating random samples to generate 100 random samples
of size 10 from the population of 40 incomes. (You must do this by generating four groups
of 25 samples each because the academic version of StatTools limits you to 25 random
samples at a time.) You can then calculate the sample mean for each random sample and
create a histogram of these sample means. We did this, with the result shown in Figure 7.7.
Although this is not exactly the sampling distribution of the sample mean (because there
are many more than 100 possible samples of size 10 from a population of size 40), it indi-
cates how the possible sample means are distributed. They are most likely to be near the
population mean ($39,985), very unlikely to be more than about $3000 from this popula-
tion mean, and have an approximately bell-shaped distribution.
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The insights in the previous paragraph can be generalized. It turns out that the
sampling distribution of the sample mean has the following properties, regardless of the
underlying population. First, it is an unbiased estimate of the population mean, as indi-
cated in Equation (7.1). The sample means from some samples will be too low, and those
from other samples will be too high, but on the average, they will be on target.
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Distribution of
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Unbiased Property of Sample Mean
(7.1)E(X) = m

The second property involves the variability of the estimate. Recall that the standard
deviation of an estimate, called the standard error, indicates how much the estimate varies
from sample to sample. The standard error of is given in Equation (7.2). Here, SE( ) isXX

X

2This formula for SE( ) assumes that the sample size n is small relative to the population size N. As a rule of
thumb, we assume that n is no more than 5% of N. Later we provide a “correction” to this formula when n is a
larger percentage of N.

X

an abbreviation for the standard error of , � is the standard deviation of the population,
and n is the sample size. You can see that the standard error is large when the observations
in the population are spread out (large �), but that the standard error can be reduced by tak-
ing a larger sample.2

X
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There is one problem with the standard error in Equation (7.2). Its value depends on another
unknown population parameter, �. Therefore, it is customary to approximate the standard
error by substituting the sample standard deviation, s, for �. This leads to Equation (7.3).
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Standard Error of Sample Mean
(7.2)SE(X) = ��1n

Approximate Standard Error of Sample Mean
(7.3)SE(X) = s �1n

(Approximate) Confidence Interval for Population Mean
(7.4)X ; 2s/1n

As we discuss in the next subsection, the shape of the sampling distribution of is approx-
imately normal. Therefore, you can use the standard error exactly as you have used standard
deviations in previous chapters to obtain confidence intervals for the population mean.
Specifically, if you go two standard errors out on either side of the sample mean, as shown
in Expression (7.4), you are 95% confident of capturing the population mean.3

Alternatively, you are 95% confident that the estimation error will be no greater than two
standard errors in magnitude.

X

The following example illustrates a typical use of sample information.

3Strictly speaking, as we discuss in the next chapter, this is an approximate 95% confidence interval for the mean.

FUNDAMENTAL INSIGHT

Sampling Distributions and 
Standard Errors

Any point estimate, such as the sample mean, is ran-

dom because it depends on the random sample that

happens to be chosen.The sampling distribution of the

point estimate is the probability distribution of point

estimates from all possible random samples. This

distribution describes how the sample means would

vary from one sample to another.The corresponding

standard error is the standard deviation of the sam-

pling distribution.These two concepts, sampling distri-

bution and standard error, are the keys to statistical

inference, as discussed in the next few chapters.

E X A M P L E 7.4 ESTIMATING THE MEAN OF ACCOUNTS RECEIVABLE FOR A FURNITURE

RETAILER

An internal auditor for a furniture retailer wants to estimate the average of all accounts
receivable, where this average is taken over the population of all customer accounts.

Because the company has approximately 10,000 accounts, an exhaustive enumeration of
all accounts receivable is impractical. Therefore, the auditor randomly samples 100 of
the accounts. The data from the sample appear in Figure 7.8. (See the file Auditing
Receivables.xlsx.) What can the auditor conclude from this sample?

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Objective To illustrate the meaning of standard error of the mean in a sample of acco-
unts receivable.

Solution

The receivables for the 100 sampled accounts appear in column B. This is the only information
available to the auditor, so he must base all conclusions on these sample data. Begin by calcu-
lating the sample mean and sample standard deviation in cells E7 and E8 with the formulas

�AVERAGE(B8:B107)

and

�STDEV(B8:B107)

Then use Equation (7.3) to calculate the (approximate) standard error of the mean in cell
E9 with the formula

�E8/SQRT(B4)

The auditor should interpret these values as follows. First, the sample mean $279 is a point
estimate of the unknown population mean. It provides a best guess for the average of the
receivables from all 10,000 accounts. In fact, because the sample mean is an unbiased
estimate of the population mean, there is no reason to suspect that $279 either underesti-
mates or overestimates the population mean. Second, the standard error $42 provides a mea-
sure of accuracy of the $279 estimate. Specifically, there is about a 95% chance that the
estimate differs by no more than two standard errors (about $84) from the true but unknown
population mean. Therefore, the auditor can be 95% confident that the mean from all 10,000
accounts is within the interval $279 	 $84, that is, between $195 and $363. ■
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1
2
3
4
5
6
7
8
9

10
11
12
13

105
106
107

A B C D E
Random sample of accounts receivable

 size 10000
Sample size 100

Sample of receivables Summary measures from sample
Account Amount Sample mean $278.92

1 $85 Sample stdev $419.21
2 $1,061 Std Error of mean $41.92
3 $0
4 $1,260 With fpc $41.71
5 $924
6 $129

98 $657
99 $86

100 $0

Popula�on

Figure 7.8

Sampling in

Auditing Example

It is important to distinguish between the sample standard deviation s and the standard error
of the mean, approximated by . The sample standard deviation in the auditing exam-
ple, $419, measures the variability across individual receivables in the sample (or in the
population). By scrolling down column B, you can see that there are some very low
amounts (many zeros) and some fairly large amounts. This variability is indicated by the
rather large sample standard deviation s. However, this value does not measure the accuracy

s/1n
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of the sample mean as an estimate of the population mean. To judge its accuracy, you need
to divide s by the square root of the sample size n. The resulting standard error, about $42,
is much smaller than the sample standard deviation. It indicates that you can be about 95%
confident that the sampling error is no greater than $84. In short, sample means vary much
less than individual observations from a given population.

The Finite Population Correction 

We mentioned that Equation (7.2) [or Equation (7.3)] for the standard error of is appro-
priate when the sample size n is small relative to the population size N. Generally, “small”
means that n is no more than 5% of N. In most realistic samples this is certainly true. For
example, political polls are typically based on samples of approximately 1000 people from
the entire U.S. population.

There are situations, however, when the sample size is greater than 5% of the popula-
tion. In this case the formula for the standard error of the mean should be modified with a
finite population correction, or fpc, factor. The modified standard error of the mean
appears in Equation (7.5), where the fpc is given by Equation (7.6). Note that this factor is
always less than 1 (when n 
 1) and it decreases as n increases. Therefore, the standard
error of the mean decreases—and the accuracy increases—as n increases.

X
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Standard Error of Mean with Finite Population Correction Factor
(7.5)SE(X) = fpc * (s/1n)

Finite Population Correction Factor

(7.6)fpc =

A

N - n

N - 1

To see how the fpc varies with n and N, consider the values in Table 7.1. Rather than listing
n, we have listed the percentage of the population sampled, that is, . It is clear
that when 5% or less of the population is sampled, the fpc is very close to 1 and can safely
be ignored. In this case you can use as the standard error of the mean. Otherwise,
you should use the modified formula in Equation (7.5).

s/1n

n/N * 100%

Table 7.1 Finite Population Correction Factors

N % Sampled fpc

100 5 0.980
100 10 0.953
10,000 1 0.995
10,000 5 0.975
10,000 10 0.949
1,000,000 1 0.995
1,000,000 5 0.975
1,000,000 10 0.949 

In the auditing example, n/N � 100/100,000 � 0.1%. This suggests that the fpc can
safely be omitted. We illustrate this in cell E11 of Figure 7.8, which uses the formula from
Equation (7.5):

�SQRT((B3-B4)/(B3-1))*E9

If less than 5% of the
population is sampled,
as is often the case,
the fpc can safely be
ignored.
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Clearly, it makes no practical difference in this example whether you use the fpc or not.
The standard error, rounded to the nearest dollar, is $42 in either case.

Virtually all standard error formulas used in sampling include an fpc factor. However,
because it is rarely necessary—the sample size is usually very small relative to the population
size—we omit it from here on.

7.4.4 The Central Limit Theorem

Our discussion to this point has concentrated primarily on the mean and standard deviation
of the sampling distribution of the sample mean. In this section we discuss this sampling
distribution in more detail. Because of an important theoretical result called the central
limit theorem, this distribution is approximately normal with mean � and standard devia-
tion . This theorem is the reason why the normal distribution appears in so many sta-
tistical results. The theorem can be stated as follows.
s/1n
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For any population distribution with mean � and standard deviation �, the sampling
distribution of the sample mean is approximately normal with mean � and standard
deviation , and the approximation improves as n increases.s/1n

X

The important part of this result is the normality of the sampling distribution. We
know, without any conditions placed upon the sample size n, that the mean and standard
deviation are � and . However, the central limit theorem also implies normality,
provided that n is reasonably large.

s/1n

FUNDAMENTAL INSIGHT

The Central Limit Theorem

This important result states that when you sum or

average n randomly selected values from any distrib-

ution, normal or otherwise, the distribution of the

sum or average is approximately normal, provided

that n is sufficiently large.This is the primary reason

why the normal distribution is relevant in so many

real applications.

How large must n be for the approximation to

be valid? Most textbooks suggest n � 30 as a rule of

thumb. However, this depends on the population

distribution. If the population distribution is very

nonnormal—extremely skewed or bimodal, for

example—then the normal approximation might

not be accurate unless n is considerably greater

than 30. On the other hand, if the population

distribution is already approximately symmetric, the

normal approximation is quite good for n consider-

ably less than 30. In fact, in the special case where

the population distribution itself is normal, the sam-

pling distribution of is exactly normal for any value

of n.

X

The central limit theorem is not a simple concept to grasp. To help explain it, we use
simulation in the following example.

E X A M P L E 7.5 AVERAGE WINNINGS FROM SPINNING A WHEEL OF FORTUNE

Suppose you have the opportunity to play a game with a “wheel of fortune” (similar to
the one in a popular television game show). When you spin a large wheel, it is equally

likely to stop in any position. Depending on where it stops, you win anywhere from $0 to
$1000. Let’s suppose your winnings are actually based on not one but the average of
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n spins of the wheel. For example, if n � 2, your winnings are based on the average of two
spins. If the first spin results in $580 and the second spin results in $320, you win the
average, $450. How does the distribution of your winnings depend on n?

Objective To illustrate the central limit theorem in the context of winnings in a game of
chance.

Solution

First, what does this experiment have to do with random sampling? Here, the population is
the set of all outcomes you could obtain from a single spin of the wheel—that is, all dollar
values from $0 to $1000. Each spin results in one randomly sampled dollar value from this
population. Furthermore, because we have assumed that the wheel is equally likely to land
in any position, all possible values in the continuum from $0 to $1000 have the same
chance of occurring. The resulting population distribution is called the uniform distribu-
tion on the interval from $0 to $1000. (See Figure 7.9, where the 1 on the horizontal axis
corresponds to $1000.) It can be shown (with calculus) that the mean and standard devia-
tion of this uniform distribution are � � $500 and � � $289.4
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4In general, if a distribution is uniform on the interval from a to b, its mean is the midpoint (a � b)/2 and its stan-
dard deviation is .(b - a)/112

Figure 7.9

Uniform

Distribution

Before we go any further, take a moment to test your own intuition. If you play this
game once and your winnings are based on the average of n spins, how likely is that you
will win at least $600 if n � 1? if n � 3? if n � 10? (The answers are 0.4, 0.27, and 0.14,
respectively, where the last two answers are approximate and are based on the central limit
theorem or the simulation. So you are much less likely to win big if your winnings are
based on the average of many spins.)

Now we analyze the distribution of winnings based on the average of n spins. We do so by
means of a sequence of simulations in Excel. (See the file Wheel of Fortune Simulation.xlsx,
which is set up to work for any number of spins up to 10.) For each simulation, consider 1000
replications of an experiment. Each replication of the experiment simulates n spins of
the wheel and calculates the average—that is, the winnings—from these n spins. Based on
these 1000 replications, the average and standard deviation of winnings can be calculated, and
a histogram of winnings can be formed, for any value of n. These will show clearly how the
distribution of winnings depends on n.

The values in Figure 7.10 and the histogram in Figure 7.11 show the results for n � 1.
Here there is no averaging—you spin the wheel once and win the amount shown. To repli-
cate this experiment 1000 times and collect statistics, proceed as follows.
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CALCULATING THE DISTRIBUTION OF WINNINGS BY SIMULATION

1 Random outcomes. To generate outcomes uniformly distributed between $0 and
$1000, enter the formula

�IF(B$9��$B$6,$B$3�($B$4-$B$3)*RAND(), “ ”)

in cell B11 and copy it to the entire range B11:K1010. The effect of this formula, given the
values in cells B3 and B4, is to generate a random number between 0 and 1 and multiply it
by $1000. The effect of the IF part is to fill as many Outcome columns as there are spins in
cell B6 and to leave the rest blank.

2 Winnings. Calculate the winnings in each row in column L as the average of the
outcomes of the spins in that row. (Note that the AVERAGE function ignores blanks.)
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1
2
3
4
5
6
7
8

A B C D E F G H I J K L
Wheel of fortune simulation

Minimum winnings $0 Summary measures of winnings
Maximum winnings $1,000 Mean $503

Stdev $291
Number of spins 1 P(>600) 0.411

Simulation of spins
S i9

10
11
12
13
14
15
16
17
18

Spin 1 2 3 4 5 6 7 8 9 10
Outcome Outcome Outcome Outcome Outcome Outcome Outcome Outcome Outcome Outcome Winnings

1 $236 $236
2 $23 $23
3 $504 $504
4 $130 $130
5 $132 $132
6 $59 $59
7 $596 $596
8 $762 $762

19
20
21
22
23
24
25

9 $936 $936
10 $995 $995
11 $603 $603
12 $766 $766
13 $746 $746
14 $59 $59
15 $18 $18

Replica�on

Figure 7.10 Simulation of Winnings from a Single Spin
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3 Summary measures. Calculate the average and standard deviation of the 1000 win-
nings in column L with the AVERAGE and STDEV functions. These values appear in cells
L4 and L5.

4 Histogram. Use the StatTools Histogram procedure to create a histogram of the val-
ues in column L.

Note the following from Figures 7.10 and 7.11:

■ The sample mean of the winnings (cell L4) is very close to the population mean,
$500.

■ The standard deviation of the winnings (cell L5) is very close to the population
standard deviation, $289.

■ The histogram is nearly flat.

These properties should come as no surprise. When n � 1, the sample mean is a single
observation—that is, no averaging takes place. Therefore, the sampling distribution of the
sample mean is equivalent to the flat population distribution in Figure 7.9.

But what happens when n 
 1? Figure 7.12 shows the results for n � 2. All you need
to do is change the number of spins in cell B6, and everything updates automatically. The
average winnings is again very close to $500, but the standard deviation of winnings is
much lower. In fact, it is close to , exactly as the theory pre-
dicts. In addition, the histogram of winnings is no longer flat. It is triangularly shaped—
symmetric, but not yet bell-shaped.

s /12 = 289/12 = $204
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To develop similar simulations for n � 3, n � 6, n � 10, or any other n, simply change
the number of spins in cell B6. The resulting histograms appear in Figures 7.13 through
7.15. They clearly show two effects of increasing n: (1) the histogram becomes more bell-
shaped, and (2) there is less variability. However, the mean stays right at $500. This behav-
ior is exactly what the central limit theorem predicts. In fact, because the population
distribution is symmetric in this example—it is flat—you can see the effect of the central
limit theorem for n much less than 30; it is already evident for n as low as 6.

Finally, it is easy to answer the question we posed previously: How does the probabil-
ity of winning at least $600 depend on n? For any specific value of n, you can find the frac-
tion of the 1000 replications where the average of n spins is greater than $600 with a
COUNTIF formula in cell L6. (The value shown in Figure 7.10, 0.411, is only a point esti-
mate of the true probability, which turns out to be very close to 0.4.)
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What are the main lessons from this example? For one, you can see that the sampling distri-
bution of the sample mean (winnings) is bell-shaped when n is reasonably large. This is in
spite of the fact that the population distribution is flat—far from bell-shaped. Actually, the
population distribution could have any shape, not just uniform, and the bell-shaped property
would still hold (although n might have to be larger than in the example). This bell-shaped
normality property allows you to perform probability calculations with the NORMDIST
and NORMINV functions.
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Figure 7.14

Histogram of

Simulated Winnings

from Six Spins
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Figure 7.15

Histogram of

Simulated Winnings

from Ten Spins
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Equally important, this example demonstrates the decreased variability in the sample
means as n increases. Why should an increased sample size lead to decreased variability?
The reason is the averaging process. Think about winning $750 based on the average of
two spins. All you need is two lucky spins. In fact, one really lucky spin and an average
spin will do. But think about winning $750 based on the average of 10 spins. Now you
need a lot of really lucky spins—and virtually no unlucky ones. The point is that you are
much less likely to obtain a really large (or really small) sample mean when n is large than
when n is small. This is exactly what we mean when we say that the variability of the sam-
ple means decreases with larger sample sizes.

This decreasing variability is predicted by the formula for the standard error of the
mean, . As n increases, the standard error decreases. This is what drives the behavior
in Figures 7.12 through 7.15. In fact, using � � $289, the (theoretical) standard errors for
n � 2, n � 3, n � 6, and n � 10 are $204, $167, $118, and $91, respectively.

Finally, what does this decreasing variability have to do with estimating a population
mean with a sample mean? Very simply, it means that the sample mean tends to be a more
accurate estimate when the sample size is large. Because of the approximate normality
from the central limit theorem, you know from Chapter 5 that there is about a 95% chance
that the sample mean will be within two standard errors of the population mean. In other
words, there is about a 95% chance that the sampling error will be no greater than two
standard errors in magnitude. Therefore, because the standard error decreases as the sam-
ple size increases, the sampling error is likely to decrease as well.

s/1n
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FUNDAMENTAL INSIGHT

The Averaging Effect

As you average more and more observations from a

given distribution, the variance of the average

decreases. This has a very intuitive explanation. For

example, suppose you average only two observations.

Then it is easy to get an abnormally large (or small)

average.All it takes are two abnormally large (or small)

observations. But if you average a much larger number

of observations, you aren’t likely to get an abnormally

large (or small) average.The reason is that a few abnor-

mally large observations will typically be cancelled by a

few abnormally small observations. This cancellation

produces the averaging effect. It also explains why a

larger sample size tends to produce a more accurate

estimate of a population mean.

7.4.5 Sample Size Determination

The problem of determining the appropriate sample size in any sampling context is not an easy
one (as illustrated in the chapter opener), but it must be faced in the planning stages, before any
sampling is done. We focus here on the relationship between sampling error and sample size.
As we discussed previously, the sampling error tends to decrease as the sample size increases,
so the desire to minimize sampling error encourages us to select larger sample sizes. We
should note, however, that several other factors encourage us to select smaller sample sizes.
The ultimate sample size selection must achieve a trade-off between these opposing forces.

To illustrate this, reconsider the auditor in Example 7.4. The standard error based on a
sample of size n � 100 yielded a sample standard deviation of $419 and a standard error of
about $42. Therefore, the sampling error has a 95% chance of being less than two standard
errors, or $84, in magnitude. If the auditor believes that this sampling error is too large and
therefore randomly samples 300 more accounts, the new standard error will be

. Now there is about a 95% chance that the sampling error will be no
more than $42. Note that because of the square root, small standard errors come at a high
price. To halve the standard error, the sample size must be quadrupled.

419>2400 M 21
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What are these other factors? First, there is the obvious cost of sampling. Larger samples
are more costly. Sometimes, a company or agency might have a budget for a given sampling
project. If the sample size required to achieve an acceptable sampling error is 500, but the bud-
get allows for a sample size of only 300, budget considerations will probably prevail.

Another problem caused by large sample sizes is timely collection of the data. Suppose
a retailer wants to collect sample data from its customers to decide whether to run an adver-
tising blitz in the coming week. Obviously, the retailer needs to collect the data quickly if
they are to be of any use, and a large sample could require too much time to collect.

Finally, a more subtle problem caused by large sample sizes is the increased chance of
nonsampling error, such as nonresponse bias. As we discussed previously in this chapter,
there are many potential sources of nonsampling error, and they are usually very difficult
to quantify. However, they are likely to increase as the sample size increases. Arguably, the
potential increase in sampling error from a smaller sample could be more than offset by a
decrease in nonsampling error, especially if the cost saved by the smaller sample size
is used to reduce the sources of nonsampling error—conducting more follow-up of
nonrespondents, for example.

Nevertheless, the determination of sample size is usually driven by sampling error
considerations. If you want to estimate a population mean with a sample mean, then the
key is the standard error of the mean, given by

The central limit theorem says that if n is reasonably large, there is about a 95% chance
that the magnitude of the sampling error will be no more than two standard errors. Because
� is fixed in the formula for SE( ), n can be chosen to make 2SE( ) acceptably small.XX

SE(X) = ��1n
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FUNDAMENTAL INSIGHT

Effect of Larger Sample Sizes

Accurate estimates of population parameters require

small standard errors, and small standard errors

require large sample sizes. However, standard errors

are typically inversely proportional to the square root

of the sample size (or sample sizes).The implication is

that if you want to decrease the standard error by a

given factor, you must increase the sample size by a

much larger factor. For example, to decrease the

standard error by a factor of 2, you must increase the

sample size by a factor of 4. Accurate estimates are

not cheap.

We postpone further discussion of sample size selection until the next chapter, where
we will discuss in detail how it can be used to control confidence interval length.

7.4.6 Summary of Key Ideas for Simple Random Sampling

To this point, we have covered some very important concepts. Because we build on these
concepts in later chapters, we summarize them here.

Key Concepts of Simple Random Sampling

■ To estimate a population mean with a simple random sample, the sample mean is
typically used as a “best guess.” This estimate is called a point estimate. That is, is
a point estimate of �.

■ The accuracy of the point estimate is measured by its standard error. It is the standard
deviation of the sampling distribution of the point estimate. The standard error of 
is approximately , where s is the sample standard deviation.s/1n

X

X
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■ A confidence interval (with 95% confidence) for the population mean extends to
approximately two standard errors on either side of the sample mean.

■ From the central limit theorem, the sampling distribution of is approximately
normal when n is reasonably large.

■ There is approximately a 95% chance that any particular will be within two
standard errors of the population mean �.

■ The sampling error can be reduced by increasing the sample size n. Appropriate
sample size formulas for controlling confidence interval length are given in the next
chapter.

X

X
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P R O B L E M S

Level A

7. A manufacturing company’s quality control personnel
have recorded the proportion of defective items for
each of 500 monthly shipments of one of the computer
components that the company produces. The data
are in the file P07_07.xlsx. The quality control
department manager does not have sufficient time
to review all of these data. Rather, she would like to
examine the proportions of defective items for a
sample of these shipments. For this problem, you can
assume that the population is the data from the 500
shipments.
a. Use Excel to generate a simple random sample of

size 25 from the data.
b. Calculate a point estimate of the population mean

from the sample selected in part a. What is the
sampling error, that is, by how much does the
sample mean miss the population mean?

c. Calculate a good approximation for the standard
error of the mean.

d. Repeat parts b and c after generating a simple
random sample of size 50 from the population. Is
this estimate bound to be more accurate than the
one in part b? Is its standard error bound to be
smaller than the one in part c?

8. The manager of a local fast-food restaurant is
interested in improving the service provided to
customers who use the restaurant’s drive-up window.
As a first step in this process, the manager asks his
assistant to record the time it takes to serve a large
number of customers at the final window in the
facility’s drive-up system. The results are in the file
P07_08.xlsx, which consists of nearly 1200 service
times. For this problem, you can assume that the
population is the data in this file.
a. Use Excel to generate a simple random sample of

size 30 from the data.
b. Calculate a point estimate of the population mean

from the sample selected in part a. What is the

sampling error, that is, by how much does the
sample mean miss the population mean?

c. Calculate a good approximation for the standard
error of the mean.

d. If you wanted to halve the standard error from
part c, what approximate sample size would you
need? Why is this only approximate?

9. The file P02_16.xlsx contains traffic data from 256
weekdays on four variables. Each variable lists the
number of arrivals during a specific 5-minute period
of the day. For this problem, consider this data set a
simple random sample from all possible weekdays.
a. For each of the four variables, find the sample

mean. If each of these is used as an estimate from
the corresponding (unknown) population mean, is
there any reason to believe that they either
underestimate or overestimate the population
means? Why or why not?

b. What are the (approximate) standard errors of the
estimates in part a? How can you interpret these
standard errors? Be as specific as possible.

c. Is it likely that the estimates in part a are accurate
to within 0.4 arrival? Why or why not? (Answer for
each variable separately.)

10. The file P02_35.xlsx contains data from a survey of
500 randomly selected households. For this problem,
consider this data set a simple random sample from all
possible households, where the number of households
in the population is well over 1,000,000.
a. Create a new variable, Total Income, that is the

sum of First Income and Second Income.
b. For each of the four variables Total Income,

Monthly Payment, Utilities, and Debt, find the
sample mean. If each of these is used as an estimate
from the corresponding (unknown) population
mean, is there any reason to believe that they either
underestimate or overestimate the corresponding
population means? Why or why not?

c. What are the (approximate) standard errors of the esti-
mates in part b? How can you interpret these standard
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errors? Be as specific as possible. Is the finite popula-
tion correction required? Why or why not?

d. Is it likely that the estimate of Total Income in part b
is accurate to within $1500? Why or why not?

11. The file P02_10.xlsx contains midterm and final exam
scores for 96 students in a corporate finance course.
For this problem, assume that these 96 students
represent a sample of the 175 students taking the
course, and that these 175 students represent the
relevant population.
a. Assuming the same instructor is teaching all four

sections of this course and that the 96 students are
the students in two of these sections, is it fair to say
that the 96 students represent a random sample
from the population? Does it matter?

b. Find the sample mean and the standard error of the
sample mean, based on the 96 students in the file.
Should the finite population correction be used?
What is the standard error without it? What is the
standard error with it?

Level B

12. Create a simulation similar to the one in the Wheel of
Fortune Similation.xlsx file. However, suppose that
the outcome of each spin is no longer uniformly
distributed between $0 and $1000. Instead, it is the
number of 7s you get in 20 rolls of two dice. In other
words, each spin results in a binomially distributed
random number with parameters n � 20 and p � 1/6
(because the chance of rolling a 7 is 1 out of 6). The
simulation should still allow you to vary the number

of “spins” from 1 to 10, and the “winnings” is still the
average of the outcomes of the spins. What is
fundamentally different from the simulation in the
text? Does the central limit theorem still work?
Explain from the results you obtain. 

13. Suppose you plan to take a simple random sample
from a population with N members. Specifically,
you plan to sample a percentage p of the population.
If p is 1%, is the finite population correction really
necessary? Does the answer depend on N? Explain.
Then answer the same questions when p is 5%, 10%,
25%, and 50%, respectively. In general, explain what
goes wrong if the finite population correction is really
necessary but isn’t used.

14. The file P07_14.xlsx contains a very small population
of only five members. For each member, the height of
the person is listed. The purpose of this problem is to
let you see exactly what a sampling distribution is. Find
the exact sampling distribution of the sample mean with
sample size 3. Verify that Equation (7.1) holds, that is,
the mean of this sampling distribution is equal to the
population mean. Also, verify that Equation (7.2) holds,
that is, the standard deviation of this sampling distribu-
tion is equal to the population standard deviation
divided by the square root of 3. (Hint: You will have
to do this by brute force. There are 125 different sam-
ples of size 3 that could be drawn from this population.
These include samples with duplicate members, and
order counts. For example, they include (1,1,2), (1,2,1),
(2,1,1), and (1,1,1). You will need to find the sample
mean of each and then find the mean and standard devi-
ation of these sample means.)
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7.5 CONCLUSION

This chapter has provided the fundamental concepts behind statistical inference. We dis-
cussed ways to obtain random samples from a population; how to calculate a point esti-
mate of a particular population parameter, the population mean; and how to measure the
accuracy of this point estimate. The key idea is the sampling distribution of the estimate
and specifically its standard deviation, called the standard error of the estimate. Due to the
central limit theorem, the sampling distribution of the sample mean is approximately nor-
mal, which implies that the sample mean will be within two standard errors of the popula-
tion mean in approximately 95% of all random samples. In the next two chapters we build
on these important concepts.

Summary of Key Terms

Term Symbol Explanation Excel Page Equation
Population Contains all members about which a 353

study intends to make inferences

Frame A list of all members of the 353
population

(continued)
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Term Symbol Explanation Excel Page Equation
Sampling Potential members of a sample from 353
units a population

Probability Any sample that is chosen by using a 353
sample random mechanism

Judgmental Any sample that is chosen according 353
sample to a sampler’s judgment rather a

random mechanism

Simple A sample where each member of the StatTools/ 354
random population has the same chance of Data Utilities
sample being chosen

Systematic A sample where one of the first k 360
sample members is selected randomly, and

then every kth member after this one
is selected

Stratified A sample in which the population 361
sample is divided into relatively homogeneous

subsets called strata, and then  
random samples are taken from each 
of the strata

Proportional The property of each stratum selected 362
sample sizes having the same proportion from stratum 
(in stratified to stratum
sampling)

Cluster A sample where the population is 364
sampling separated into clusters, such as cities

or city blocks, and then a random
sample of the clusters is selected

Sampling The inevitable result of basing an 367
error inference on a sample rather

than on the entire population

Nonsampling Any type of estimation error that is 367
error not sampling error, including

nonresponse bias, nontruthful
responses, measurement error, and
voluntary response bias

Point A single numeric value, a “best 368
estimate guess” of a population parameter,

based on the data in a sample

Sampling Difference between the estimate of a 368
error (or population parameter and the true
estimation error) value of the parameter

Sampling The distribution of the point 368
distribution estimates from all possible samples

(of a given sample size) from
the population

Confidence An interval around the point 368
interval estimate, calculated from the sample

data, where the true value of the population
parameter is very likely to be

Unbiased An estimate where the mean of its 369
estimate sampling distribution equals the

value of the parameter being estimated

(continued)
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Summary of Key Terms (Continued)

Term Symbol Explanation Excel Page Equation
Standard error The standard deviation of the sampling 369
of an estimate distribution of the estimate

Mean of E( ) Indicates property of unbiasedness 370 7.1
sample mean of sample mean

Standard SE( ) Indicates how sample means from 371 7.2, 7.3
error of different samples vary
sample mean

Confidence An interval that is very likely 371 7.4
interval for to contain the population mean
population
mean

Finite fpc A correction for the standard error 373 7.5, 7.6
population when the sample size is fairly large
correction relative to the population size

Central limit States that the distribution of the 374
theorem sample mean is approximately

normal for sufficiently large sample sizes 

X

X

P R O B L E M S

Note: Because the material in this chapter is more conceptual than
calculation-based, we have included only conceptual questions
here. You will get plenty of practice with calculations in the next
two chapters, which build upon the concepts in this chapter.

Conceptual Questions

C.1. Suppose that you want to know the opinions of
American secondary school teachers about estab-
lishing a national test for high school graduation. You
obtain a list of the members of the National Education
Association (the largest teachers’ union) and mail a
questionnaire to 3000 teachers chosen at random from
this list. In all, 823 teachers return the questionnaire.
Identify the relevant population. Do you believe there
is a good possibility of nonsampling error? Why or
why not?

C.2. A sportswriter wants to know how strongly the
residents of Indianapolis, Indiana, support the local
minor league baseball team, the Indianapolis
Indians. He stands outside the stadium before a
game and interviews the first 30 people who enter
the stadium. Suppose that the newspaper asks 
you to comment on the approach taken by this
sportswriter in performing the survey. How would
you respond?

C.3. A large corporation has 4520 male and 567 female
employees. The organization’s equal employment
opportunity officer wants to poll the opinions of a
random sample of employees. To give adequate

attention to the opinions of female employees,
exactly how should the EEO officer sample from the
given population? Be specific.

C.4. Suppose that you want to estimate the mean monthly
gross income of all households in your local
community. You decide to estimate this population
parameter by calling 150 randomly selected
residents and asking each individual to report the
household’s monthly income. Assume that you use
the local phone directory as the frame in selecting
the households to be included in your sample. What
are some possible sources of error that might arise
in your effort to estimate the population mean?

C.5. Provide an example of when you might want to
take a stratified random sample instead of a simple
random sample, and explain what the advantage of
a stratified sample might be.

C.6. Provide an example of when you might want to take
a cluster random sample instead of a simple random
sample, and explain what the advantage of a cluster
sample might be. Also, explain how you would
choose the cluster sample.

C.7. Do you agree with the statement that nonresponse
error can be overcome with larger samples? If you
agree, explain why. If you disagree, provide an
example that backs up your opinion.

C.8. When pollsters take a random sample of about 1000
people to estimate the mean of some quantity over a
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population of millions of people, how is it possible
for them to gauge the accuracy of the sample mean?

C.9. Suppose you want to estimate the population mean
of some quantity when the population consists of
millions of members (such as the population of
all U.S. households). How is it possible that you
can obtain a fairly accurate estimate, using the
sample mean of only about 1000 randomly selected
members?

C.10. What is the difference between a standard deviation
and a standard error? Be precise.

C.11. Explain as precisely as possible what it means that
the sample mean is an unbiased estimate of the
population mean (as indicated in Equation (7.1)).

C.12. Explain the difference between the standard error
formulas in equations (7.2) and (7.3). Why is Equation
(7.3) the one necessarily used in real situations?

C.13. Explain as precisely as possible what Equation (7.4)
means, and the reason for the 2 in the formula.

C.14. Explain as precisely as possible the role of the finite
population correction. In which types of situations is
it necessary? Is it necessarily used in typical polls
you see in the news?

C.15. In the wheel of fortune simulation with, say, 
three spins, many people mistakenly believe that
the distribution of the average is the flat graph 
in Figure 7.9, that is, they believe the average 
of three spins is uniformly distributed between
$0 and $1000. Explain intuitively why they are
wrong.

C.16. Explain the difference between a point estimate for
the mean and a confidence interval for the mean.
Which provides more information?

C.17. Explain as precisely as possible what the central
limit theorem says about averages.

C.18. Many people seem to believe that the central limit
theorem “kicks in” only when n is at least 30. Why
is this not necessarily true? When is such a large n
necessary?

C.19. Suppose you are a pollster and are planning to take
a sample that is very small relative to the population.
In terms of estimating a population mean, can you
say that a sample of size 9n is about 3 times as
accurate as a sample of size n? Why or why not?
Does the answer depend on the population size? For
example, would it matter if the population size were
50 million instead of 10 million?

C.20. You saw in Equation (7.1) that the sample mean is
an unbiased estimate of the population mean.
However, some estimates of population parameters
are biased. In such cases, there are two sources of
error in estimating the population parameter: the bias
and the standard error. To understand these, imagine
a rifleman shooting at a bull’s-eye. The rifleman
could be aiming wrong and/or his shots could vary
wildly from shot to shot. If he is aiming wrong but
his shots are very consistent, what can you say about
his bias and standard error? Answer the same
question if he is correctly aiming at the bull’s-eye
but is very inconsistent. Can you say which of these
two situations is worse?

7.5 Conclusion 385

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C A S E

The file DVD Movies.xlsx contains a large data

set of 10,000 customer transactions for a

fictional chain of video stores in the United States.

Each row corresponds to a different customer and

lists (1) a customer ID number (1–10,000), (2) the

state where the customer lives, (3) the city where

the customer lives, (4) the customer’s gender, (5) the

customer’s favorite type of movie (drama, comedy,

science fiction, or action), (6) the customer’s next

favorite type of movie, (7) the number of times the

customer has rented movies in the past year, and

(8) the total dollar amount the customer has spent

on movie rentals during the past year.The data are

sorted by state, then city, then gender. We assume

that this data set represents the entire population of

customers for this video chain. (Of course, national

chains would have significantly larger customer

populations, but this data set is large enough to

illustrate the ideas.)

Imagine that only the data in columns A through

D are readily available for this population.The

company is interested in summary statistics of the

data in columns E through H, such as the percentage

of customers whose favorite movie type is drama or

the average amount spent annually per customer, but

it will have to do some work to obtain the data in

columns E through H for any particular customer.

Therefore, the company wants to perform sampling.

The question is: What form—simple random

sampling, systematic sampling, stratified sampling,

cluster sampling, or even some type of multistage

sampling—is most appropriate?

Your job is to investigate the possibilities and

to write a report on your findings. For any sampling

method, any sample size, and any quantity of interest

(such as average dollar amount spent annually), you

should be concerned with sampling cost and accuracy.

One way to judge the latter is to generate several

random samples from a particular method and

calculate the mean and standard deviation of your

point estimates from these samples. For example, you

might generate 10 systematic samples, calculate the

average amount spent (an ) for each sample, and

then calculate the mean and standard deviation of

these 10 s. If your sampling method is accurate, the

mean of the s should be close to the population

average, and the standard deviation should be small. By

doing this for several sampling methods and possibly

several sample sizes, you can experiment to see what

is most cost-efficient for the company. You can make

any reasonable assumptions about the cost of

sampling with any particular method. ■

X

X

X

7.1 SAMPLING FROM DVD MOVIE RENTERS
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Confidence Interval Estimation

C H A P T E R

ESTIMATING A COMPANY’S TOTAL 
TAXABLE INCOME

In Example 7.4 in the previous chapter, we illustrated how sampling can

be used in auditing. We see another illustration of sampling in auditing in

Example 8.5 of this chapter. In both examples, the point of the sampling is

to discover some property (such as a mean or a proportion) from a large

population of a company’s accounts by examining a small fraction of these

accounts and projecting the results to the population. An article by Press

(1995) offers an interesting variation on this problem. He poses the question

of how a government revenue agency should assess a business taxpayer’s

income for tax purposes on the basis of a sample audit of the company’s

business transactions.A sample of the company’s transactions will indicate

a taxable income for each sampled transaction. The methods of this chapter

will be applied to the sample information to obtain a confidence interval for

the total taxable income owed by the company.
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Suppose for the sake of illustration that this confidence interval extends from

$1,000,000 to $2,200,000 and is centered at $1,600,000. In other words, the govern-

ment’s best guess of the company’s taxable income is $1,600,000, and the government is

fairly confident that the true taxable income is between $1,000,000 and $2,200,000.

How much tax should it assess the company? Press argues that the agency would like to

maximize its revenue while minimizing the risk that the company will be assessed more

than it really owes. This last assumption, that the government does not want to

overassess the company, is crucial. By making several reasonable assumptions, he is able

to argue that the agency should base the tax on the lower limit of the confidence

interval, in this case, $1,000,000.1

On the other hand, if the agency were indifferent between overcharging and

undercharging, then it would base the tax on the midpoint, $1,600,000, of the confidence

interval. Using this strategy, the agency would overcharge in about half the cases and

undercharge in the other half. This would certainly be upsetting to companies—it would

appear that the agency is flipping a coin to decide whether to overcharge or

undercharge.

If the government agency does indeed decide to base the tax on the lower limit

of the confidence interval, Press argues that it can still increase its tax revenue—by

increasing the sample size of the audit. When the sample size increases, the confidence

interval shrinks in width, and the lower limit, which governs the agency’s tax revenue,

almost surely increases. But there is some point at which larger samples are not

warranted, for the simple reason that larger samples cost more money to obtain.

Therefore, there is an optimal size that will balance the cost of sampling with the desire

to obtain more tax revenue. ■
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1In case this sounds overly generous on the government’s part, the result is based on two important assumptions:
(1) the confidence interval is a 90% confidence interval, and (2) the agency is 19 times more concerned about
overassessing than about underassessing.

8.1 INTRODUCTION

This chapter expands on the ideas from the previous chapter. Given an observed data set,
we want to make inferences to some larger population. Two typical examples follow:

■ A mail-order company has accounts with thousands of customers. The company
would like to infer the average time its customers take to pay their bills, so it
randomly samples a relatively small number of its customers, sees how long these
customers take to pay their bills, and draws inferences about the entire population
of customers.

■ A manufacturing company is considering two compensation schemes to implement
for its workers. It believes that these two different compensation schemes might
provide different incentives and hence result in different worker productivity. To see
whether this is true, the company randomly assigns groups of workers to the two
different compensation schemes for a period of three months and observes their
productivity. Then it attempts to infer whether any differences observed in the
experiment can be generalized to the overall worker population.

In each of these examples, there is an unknown population parameter a company would like
to estimate. In the mail-order example, the unknown parameter is the mean length of time
customers take to pay their bills. Its true value could be discovered only by learning how
long every customer in the entire population takes to pay its bills. This is not really possible,
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given the large number of customers. In the manufacturing example, the unknown parame-
ter is a mean difference, the difference between the mean productivities with the two differ-
ent compensation schemes. This mean difference could be discovered only by subjecting
each worker to each compensation scheme and measuring their resulting productivities.
This procedure would almost certainly be impossible from a practical standpoint.
Therefore, the companies in these examples are likely to select random samples and base
their estimates of the unknown population parameters on the sample data.

The inferences discussed in this chapter are always based on an underlying probabil-
ity model, which means that some type of random mechanism must generate the data. Two
random mechanisms are generally used. The first involves sampling randomly from a
larger population, as we discussed in the previous chapter. This is the mechanism respon-
sible for generating the sample of customers in the mail-order example. Regardless of
whether the sample is a simple random sample or a more complex random sample, such as
a stratified sample, the fact that it is random allows us to use the rules of probability to
make inferences about the population as a whole.

The second commonly used random mechanism is called a randomized experiment. The
compensation scheme example just described is a typical randomized experiment. Here the
company selects a set of subjects (employees), randomly assign them to two different
treatment groups (compensation schemes), and then compare some quantitative measure
(productivity) across the groups. The fact that the subjects are randomly assigned to the two
treatment groups is useful for two reasons. First, it allows us to rule out a number of factors
that might have led to differences across groups. For example, assuming that males and
females are randomly spread across the two groups, we can rule out gender as the cause of
any observed group differences. Second, the random selection allows us to use the rules of
probability to infer whether observed differences can be generalized to all employees.

Generally, statistical inferences are of two types: confidence interval estimation and
hypothesis testing. The first of these is the subject of the current chapter; hypothesis testing
is discussed in the next chapter. They differ primarily in their point of view. For example,
the mail-order company might sample 100 customers and find that they average 15.5 days
before paying their bills. In confidence interval estimation, the data are used to obtain a
point estimate and a confidence interval around this point estimate. In this example the
point estimate is 15.5 days. It is a best guess for the mean bill-paying time in the entire
customer population. Then, using the methods in this chapter, the company might find that
a 95% confidence interval for the mean bill-paying time in the population is from
13.2 days to 17.8 days. The company is now 95% confident that the true mean bill-paying
time in the population is within this interval.

Hypothesis testing takes a different point of view. Here we wish to check whether the
observed data provide support for a particular hypothesis. In the compensation scheme
example, suppose the manager believes that workers will have higher productivity if they
are paid by salary than by an hourly wage. He runs the three-month randomized experi-
ment described previously and finds that the salaried workers produce on average eight
more parts per day than the hourly workers. Now he must make one of two conclusions.
Either salaried workers are in general no more productive than hourly workers and the ones
in the experiment just got lucky, or salaried workers really are more productive. The next
chapter explains how to decide which of these conclusions is more reasonable.

There are only a few key ideas in this chapter, and the most important of these, sam-
pling distributions, was introduced in the previous chapter. It is important to concentrate
on these key ideas and not get bogged down in formulas or numerical calculations.
Statistical software such as StatTools is generally available to take care of these calcula-
tions. The job of a businessperson is much more dependent on knowing which methods to
use in which situations and how to interpret computer output than on memorizing and
plugging into formulas.

8.1 Introduction 389

We actually introduced
95% confidence inter-
vals for the mean in
the previous chapter.
We generalize this
method in the current
chapter.
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8.2 SAMPLING DISTRIBUTIONS

As you will soon learn, most confidence intervals are of the form in Expression (8.1). For
example, when estimating a population mean, the point estimate is the sample mean, the
standard error is the sample standard deviation divided by the square root of the sample
size, and the multiple is approximately equal to 2. To learn why it works this way, you
must first learn a bit about sampling distributions. This knowledge will then be put to use
in the next section.
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Typical Form of Confidence Interval
(8.1)Point Estimate ; Multiple * Standard Error

In the previous chapter, we introduced the sampling distribution of the sample mean 
and saw how it was related to the central limit theorem. In general, whenever you make
inferences about one or more population parameters, such as a mean or the difference
between two means, you always base this inference on the sampling distribution of a point
estimate, such as the sample mean. Although the concepts of point estimates and sampling
distributions are no different from those in the previous chapter, there are some new details
to learn.

We again begin with the sample mean . The central limit theorem states that if the
sample size n is reasonably large, then for any population distribution, the sampling distri-
bution of is approximately normally distributed with mean � and standard devia-
tion , where � and � are the population mean and standard deviation. An equivalent
statement is that the standardized quantity Z defined in Equation (8.2) is approximately
normal with mean 0 and standard deviation 1.

� /1n
X

X

X

Standardized Z-Value

(8.2)Z =

X - �

��1n

Typically, this fact is used to make inferences about an unknown population mean �.
There is one problem, however—the population standard deviation � is almost always
unknown. This parameter, �, is called a nuisance parameter. Although it is typically not
the parameter of primary interest, its value is needed for making inferences about the
mean �. The solution appears to be straightforward: Replace the nuisance parameter � by
its sample estimate s in the formula for Z and proceed from there. However, when � is
replaced by the sample standard deviation s, this introduces a new source of variability, and
the sampling distribution is no longer normal. It is instead called the t distribution, a close
relative of the normal distribution that appears in a variety of statistical applications.

8.2.1 The t Distribution

We first set the stage for this new sampling distribution. We are interested in estimating
a population mean � with a sample of size n. We assume the population distribution is
normal with unknown standard deviation �. We intend to base inferences on the standardized
value of from Equation (8.2), where � is replaced by the sample standard deviation s,
as shown in Equation (8.3). Then the standardized value in Equation (8.3) has a t distribution
with n � 1 degrees of freedom.

X

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The degrees of freedom is a numerical parameter of the t distribution that defines the
precise shape of the distribution. Each time we encounter a t distribution, we will specify
its degrees of freedom. In this particular sampling context, where we are basing inferences
about � on the sampling distribution of , the degrees of freedom turns out to be 1 less
than the sample size n.

The t distribution looks very much like the standard normal distribution. It is bell-
shaped and centered at 0. The only difference is that it is slightly more spread out, and this
increase in spread is greater for small degrees of freedom. In fact, when n is large, so that
the degrees of freedom is large, the t distribution and the standard normal distribution are
practically indistinguishable. This is illustrated in Figure 8.1. With 5 degrees of freedom, it
is possible to see the increased spread in the t distribution. With 30 degrees of freedom, the
t and standard normal curves are practically the same curve.

X
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Standardized Value

(8.3)t =

X - �

s�1n

Figure 8.1

The t and Standard

Normal

Distributions

The t-value in Equation (8.3) is very much like a typical Z-value such as in Equation
(8.2). That is, the t-value represents the number of standard errors by which the sample
mean differs from the population mean. For example, if a t-value is 2.5, the sample mean is
2.5 standard errors above the population mean. In contrast, if a t-value is �2.5, the sample
mean is 2.5 standard errors below the population mean. Also, t-values greater in magnitude
than 3 are quite unexpected because of the same property of the normal distribution: It is
very unlikely for a random value to be more than three standard deviations from its mean.
(In this case the random value is a sample mean, and the standard deviation is the standard
error of the mean.)

The t distribution and
the standard normal
distribution are
practically the same
when the degrees of
freedom parameter is
large.

A t-value indicates the number of standard errors by which a sample mean differs
from a population mean.

Because of this interpretation, t-values are perfect candidates for the multiple term in
Expression (8.1), as you will soon see. First, however, we briefly examine some Excel
functions that are useful for working with the t distribution in Excel.
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In Chapter 5 you learned how to use Excel’s NORMSDIST and NORMSINV func-
tions to calculate probabilities or percentiles from the standard normal distribution. There
are similar Excel functions for the t distribution: TDIST and TINV. Unfortunately,
these functions are somewhat more difficult to master than their normal counterparts. The
file t Calculations.xlsx spells out the possibilities (see Figure 8.2). The top three examples
use the TDIST function, which finds the probability to the left or right of a given value.
The bottom three examples use the TINV function, which finds the value with a given
probability beyond it in one or both tails.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Calcula�ons for the t distribu�on

Sample 03ezis
Degrees of 

One-tailed probabili�es
t-value -
Probability in le� 

t- 2eulav
Probability in right 

Two-tailed probability
t- 2eulav
Probability in both 

TINV calcula�ons
Probability in le� 
t-value -

Probability in right 

freedom 29

tail 0.05

tail 0.05
t-

Probability in both 
t-

A B C D E F G H I J

2 Formulas Formulas in Excel 2010 (preferred)
tail 0.0275 =TDIST(-B7,B4,1) =T.DIST(B7,B4,1)

tail 0.0275 =TDIST(B10,B4,1) =T.DIST.RT(B10,B4)

tails 0.0549 =TDIST(B14,B4,2) =T.DIST.2T(B14,B4)
Half of this probability is in each tail

1.699 =-TINV(2*B18,B4) =T.INV(B18,B4)

1(VNI.T=)4B,51B*2(VNIT=996.1eulav -B21,B4)

tails 0.05 Half of this probability is in each tail
)4B,42B(T2.VNI.T=)4B,81B(VNIT=540.2eulav

CHANGES IN EXCEL 2010

In Chapter 5, we discussed new statistical functions in Excel 2010. Except possibly for the

replacement of CRITBINOM by BINOM.INV, these changes don’t really seem to make much

difference. However, the latest changes definitely help with the t distribution. Before, the 

only available functions were TDIST and TINV, and because of the rather obscure way they work,

everyone has had problems using them correctly.Therefore, Microsoft introduced five new

functions in Excel 2010:T.DIST, T.DIST.RT, T.DIST.2T, T.INV, and T.INV.2T.As usual, a 

“DIST” function takes a value and returns a probability, whereas an “INV” function takes a

probability and returns a value. Normally, these kinds of functions are written for left-hand tails

(“�” problems), and this is the case for T.DIST and T.INV. However,T.DIST.RT lets you work with

right-hand tails (“�” problems), and T.DIST.2T and T.INV.2T let you work with both tails. Figure 8.2

shows both the old and the new functions, and the t Calculations.xlsx file provides more details

on their use.We strongly recommend that you use the new functions if you have Excel 2010.

Figure 8.2 Excel Functions for the t Distribution
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In general, here are the technical details for using the TDIST function properly. (These are
the obscure rules for the old TDIST function only. You can ignore these if you are using
the new Excel 2010 functions.)

■ Its first argument must be nonnegative.
■ Unlike the NORMSDIST function, TDIST returns the probability to the right of the

first argument (if the third argument is 1).
■ The third argument of the TDIST function is either 1 or 2 and indicates the number

of tails. By using 1 for this argument, you get the probability in the right-hand tail
only. If you use 2 for the third argument, you obtain the probability of greater than
the first argument or less than its negative.

The technical details for using the TINV function properly are as follows. (Again,
these are for the old TINV function only.)

■ The first argument is the total probability you want in both tails—half of this goes in
the right-hand tail and half goes in the left-hand tail.

■ Unlike the TDIST function, there is no third argument for the TINV function.

We agree that these functions, old or new, are somewhat difficult to learn. Fortunately, the
StatTools add-in simplifies the process for most statistical inference applications. It does
the t distribution calculations for you.

8.2.2 Other Sampling Distributions

The t distribution, a close relative of the normal distribution, is used to make inferences
about a population mean when the population standard deviation is unknown. Throughout
this chapter (and later chapters) you will see other contexts where the t distribution appears.
The theme is always the same—one or more means are of interest, and one or more standard
deviations are unknown.

The t (and normal) distributions are not the only sampling distributions you will
encounter. Two other close relatives of the normal distribution that appear in various con-
texts are the chi-square and F distributions. These are used primarily to make inferences
about variances (or standard deviations), as opposed to means. We omit the details of these
distributions for now, but you will see them in later sections.
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P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. Calculate the following probabilities using Excel. 
(If you have Excel 2010, we suggest using its new
functions.)
a. P(t10 � 1.75), where t10 has a t distribution with

10 degrees of freedom.
b. P(t100 � 1.75), where t100 has a t distribution with

100 degrees of freedom. How do you explain the

difference between this result and the one obtained
in part a?

c. P(Z � 1.75), where Z is a standard normal random
variable. Compare this result to the results obtained
in parts a and b. How do you explain the differ-
ences in these probabilities?

d. P(t20 	 �0.80), where t20 has a t distribution with
20 degrees of freedom.

e. P(t3 	 �0.80), where t3 has a t distribution with
3 degrees of freedom. How do you explain the
difference between this result and the result
obtained in part d?
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2. Calculate the following quantities using Excel.
(If you have Excel 2010, we suggest using its new
functions.)
a. P(�2.00 	 t10 	 1.00), where t10 has a

t distribution with 10 degrees of freedom.
b. P(�2.00 	 t100 	 1.00), where t100 has a t distri-

bution with 100 degrees of freedom. How do you
explain the difference between this result and
the one obtained in part a?

c. P(�2.00 	 Z 	 1.00), where Z is a standard
normal random variable. Compare this result to the
results obtained in parts a and b. How do you
explain the differences in these probabilities?

d. Find the 68th percentile of the t distribution with
20 degrees of freedom.

e. Find the 68th percentile of the t distribution with
3 degrees of freedom. How do you explain the

difference between this result and the result
obtained in part d?

3. Calculate the following quantities using Excel. (If you
have Excel 2010, we suggest using its new functions.)
a. Find the value of x such that P(t10 � x) 
 0.75,

where t10 has a t distribution with 10 degrees of
freedom.

b. Find the value of y such that P(t100 � y) 
 0.75,
where t100 has a t distribution with 100 degrees of
freedom. How do you explain the difference
between this result and the result obtained in part a?

c. Find the value of z such that P(Z � z) 
 0.75,
where Z is a standard normal random variable.
Compare this result to the results obtained in
parts a and b. How do you explain the differences
in the values of x, y, and z?
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8.3 CONFIDENCE INTERVAL FOR A MEAN

We now come to the focal point of this chapter: using results about sampling distributions
to construct confidence intervals. We assume that data have been generated by some
random mechanism, either by observing a random sample from some population or by
performing a randomized experiment. The goal is to infer the values of one or more
population parameters such as the mean, the standard deviation, or a proportion from
sample data. For each such parameter, you use the data to calculate a point estimate, which
can be considered a best guess for the unknown parameter. You then calculate a confidence
interval around the point estimate to gauge its accuracy. 

We begin by deriving a confidence interval for a population mean �, and we discuss
its interpretation. Although the particular details pertain to a specific parameter, the mean,
the same ideas carry over to other parameters as well, as will be described in later sections.
As usual, the sample is used as the point estimate of �.

To obtain a confidence interval for �, you first specify a confidence level, usually
90%, 95%, or 99%. You then use the sampling distribution of the point estimate to
determine the multiple of the standard error (SE) to go out on either side of the point
estimate to achieve the given confidence level. If the confidence level is 95%, the value
used most frequently in applications, the multiple is approximately 2. More precisely, it is
a t-value. That is, a typical confidence interval for � is of the form in Expression (8.4),
where SE( ) 
 .s/1nX

X

Confidence Interval for Population Mean
(8.4)X ; t-multiple * SE(X)

To obtain the correct t-multiple, let � be one minus the confidence level (expressed as
a decimal). For example, if the confidence level is 90%, then � 
 0.10. Then the appropri-
ate t-multiple is the value that cuts off probability �/2 in each tail of the t distribution with
n � 1 degrees of freedom. For example, if n 
 30 and the confidence level is 95%, cell
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B25 of Figure 8.2 indicates that the correct t-value is 2.045. The corresponding 95%
confidence interval for � is then

If the confidence level is instead 90%, the appropriate t-value is 1.699 (change the proba-
bility in cell B24 to 0.10 to see this), and the resulting 90% confidence interval is

If the confidence level is 99%, the appropriate t-value is 2.756 (change the probability in
cell B24 to 0.01 to see this), and the resulting 99% confidence interval is

Note that as the confidence level increases, the width of the confidence interval also
increases. Because narrow confidence intervals are desirable, this presents a trade-off. You
can either have less confidence and a narrow interval, or you can have more confidence and
a wide interval. However, you can also take a larger sample. As n increases, the standard
error decreases, and the length of the confidence interval tends to decrease for any
confidence level. (Why won’t it decrease for sure? The larger sample might result in a
larger value of s that could offset the increase in n.)

The following example illustrates confidence interval estimation for a population
mean. It uses the One-Sample procedure in StatTools to perform the calculations.
However, by examining the resulting Excel formulas, you can check that all it is really
doing is (1) calculating the sample mean, (2) calculating the standard error of the sample
mean, , (3) finding the appropriate t-multiple, and (4) combining these to form the
confidence interval via Expression (8.4).

s/1n

s/1n

X ; 2.756(s/1n)

X ; 1.699(s/1n)

X ; 2.045(s/1n)
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Confidence interval
widths increase when
you ask for higher
confidence levels, but
they tend to decrease
when you use larger
sample sizes.

E X A M P L E 8.1 CUSTOMER RESPONSE TO A NEW SANDWICH

Afast-food restaurant recently added a new sandwich to its menu. To estimate the
popularity of this sandwich, a random sample of 40 customers who ordered the sand-

wich were surveyed. Each of these customers was asked to rate the sandwich on a scale
of 1 to 10, 10 being the best. The results of this survey appear in column B of Figure 8.4.
(See the file Satisfaction Ratings.xlsx.) The manager wants to estimate the mean satisfac-
tion rating over the entire population of customers by finding a 95% confidence interval.
How should she proceed?

Objective To use StatTools’s One-Sample procedure to obtain a 95% confidence interval
for the mean satisfaction rating of the new sandwich.

Solution

You need to use StatTools’s One-Sample procedure on the Satisfaction variable. To do so,
make sure a StatTools data set has been designated, select Confidence Interval from the
StatTools Statistical Inference dropdown list, and select the Mean/Std. Deviation option.
Fill in the resulting dialog box as shown in Figure 8.3. In particular, select One-Sample
Analysis as the Analysis type. (Other types will be used later in the chapter.) You should
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Figure 8.3

Dialog Box for

Confidence Interval

for Mean

Sa�sfac�on1
2
3
4
5
6
7
8
9

10
11
12
13
39
40
41

A B C D E
Custome Sa�sfac�onr

1 7 Conf. Intervals (One-Sample) Data Set #1

2 5 Sample Size 40
3 5 Sample Mean 6.250
4 6 Sample Std Dev 1.597
5 8 Confidence Level (Mean) 95.0%
6 7 Degrees of Freedom 39
7 6 Lower Limit 5.739
8 7 Upper Limit 6.761
9 10

10 7
11 9
12 5
38 9
39 5
40 4

Figure 8.4

Analysis of New

Sandwich Data

obtain the output shown in Figure 8.4. (Note: To get the output to be next to the data, select
Settings from the StatTools ribbon, and, in the Report group, select either of the last two
Placement options.)

The principal results are that (1) the best guess for the population mean rating is 6.250,
the sample average in cell E4, and (2) a 95% confidence interval for the population mean
rating extends from 5.739 to 6.761, as seen in cells E8 and E9. The manager can be 95%
confident that the true mean rating over all customers who might try the sandwich is within
this confidence interval.

The degrees of freedom for the t distribution is one less than the sample size, as
shown in cell E7. The formulas for the confidence interval limits, in cells E8 and E9, are

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



equivalent to the general formula in Expression (8.4), but they use special StatTools func-
tions to calculate the t-multiples.

We stated previously that as the confidence level increases, the length of the
confidence interval increases. You can convince yourself of this by entering different
confidence levels such as 90% or 99% in cell E6. The lower and upper limits of the
confidence interval in cells E8 and E9 will change automatically, getting closer together
for the 90% level and farther apart for the 99% level. Just remember that you, the
analyst, can choose the confidence level you favor, although 95% is the level most
commonly chosen.

Before leaving this example, we discuss the assumptions that lead to the confidence
interval. First, you might question whether the sample is really a random sample—or
whether it matters. Perhaps the manager used some random mechanism to select the
customers to be surveyed. More likely, however, she simply surveyed 40 consecutive
customers who tried the sandwich on a given day. This is called a convenience sample and
is not really a random sample. However, unless there is some reason to believe that these
40 customers differ in some relevant aspect from the entire population of customers, it is
probably safe to treat them as a random sample.

A second assumption is that the population distribution is normal. We made this
assumption when we introduced the t distribution. Obviously, the population distribution
cannot be exactly normal because it is concentrated on the 10 possible satisfaction ratings,
and the normal distribution describes a continuum. However, this is probably not a
problem for two reasons. First, confidence intervals based on the t distribution are robust to
violations of normality. This means that the resulting confidence intervals are valid for any
populations that are approximately normal. Second, the normal population assumption is
less crucial for larger sample sizes because of the central limit theorem. A sample size of
40 should be large enough.

Finally, it is important to recognize what this confidence interval implies and what it
doesn’t. In the entire population of customers who ordered this sandwich, there is a distri-
bution of satisfaction ratings. Some fraction rate it as 1, some rate it as 2, and so on. All we
are trying to determine here is the average of all these ratings. Based on the analysis, the
manager can be 95% confident that this (still unknown) average is between 5.739 and
6.761. However, this confidence interval doesn’t tell her other characteristics of the popu-
lation of ratings that might be of interest, such as the proportion of customers who rate the
sandwich 6 or higher. It only provides information about the mean rating. Later in this
chapter, you will see how to find a confidence interval for a proportion, which allows you
to analyze another important characteristic of a population distribution. ■
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To understand where
these numbers come
from, take a look 
at the formulas in
column E.

In the sandwich example we said that the manager can be 95% confident that the true
mean rating is between 5.739 and 6.761. What does this statement really mean? Contrary
to what you might expect, it does not mean that the true mean lies between 5.739 and
6.761 with probability 0.95. Either the true mean is inside this interval or it is not. The
true meaning of a 95% confidence interval is based on the procedure used to obtain it.
Specifically, if you use this procedure on a large number of random samples, all from the
same population, then approximately 95% of the resulting confidence intervals will be
“good” ones that include the true mean, and the other 5% will be “bad” ones that do not
include the true mean. Unfortunately, when you have only a single sample, as in the sand-
wich example, you have no way of knowing whether your confidence interval is one of
the good ones or one of the bad ones, but you can be 95% confident that you obtained one
of the good intervals.

Because this is such an important concept, we illustrate it in Figure 8.5 with
simulation. (See the file Confidence Interval Simulation.xlsx.) The data in column B are
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generated randomly from a normal distribution with the known values of � and � in cells
B3 and B4. Next, StatTools’s One-Sample Confidence Interval procedure is used to
calculate a 95% confidence interval for the true value of �, exactly as in the sandwich
example. However, because the true value of � is known, it is possible to record a 1 in cell
H6 if the true mean is inside the interval and a 0 otherwise. The appropriate formula is

�IF(AND(B3��D13,B3��D14),1,0)

Finally, a data table can be used to replicate the simulated results 1000 times.2

Specifically, the formula in G11 is

�G6

Then to build the data table in the range G11:H1011, leave the row input cell box empty
and specify any blank cell as the column input cell. Then the AVERAGE function can be
used in cell H7 to find the fraction of 1s in the range G12:G1011.
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This simulation is
performed only to
illustrate the true
meaning of a “95%
confidence interval.” In
any real situation, you
obtain only a single
random sample and
the corresponding
confidence interval.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

HGFEDCBA
Interpreta�on of a "95% confidence interval"

Popula�on mean 100
Popula�on stdev 20

Random sample Random sample Mean 1?derutpac
61.47 Conf. Intervals (One-Sample) Data Set #1 % of CI's capturing mean 95.0%
90.67 Sample Size 30

115.94 Sample Mean 103.94 Data table to replicate confidence interval
128.39 Sample Std Dev 16.66 Replica�on Mean captured?
101.11 Confidence Level (Mean) 95.0% 1
124.82 Degrees of Freedom 29 1 1

92.88 Lower Limit 97.72 2 1
121.72 Upper Limit 110.16 3 1
117.49 4 1
100.24 Graphical representa�on 5 1

16thgieHtimiL40.511
07127.7979.78
18161.01160.801

114.35 9 1
101thgieHnaeM47.001
111100108.09

83.30 12 1
121.87 13 1

84.70 14 1
82.66 15 1

110.82 16 1
110.04 17 1

84.71 18 1
111.35 19 1
117.51 20 1
138.46 21 1

99.58 22 1
103.16 23 1

94.50 24 1
103.79 25 1

26 1
27 1

0

1

2

80.00 90.00 100.00 110.00 120.00

Confidence limits

Mean

This simula�on uses a normal popula�on for illustra�on. But you could generate the random
sample from another distribu�on (e.g., triangular) to see if the confidence intervals are s�ll
valid, i.e, if the % in cell H7 is about 95%.

Figure 8.5 Simulation Demonstration of Confidence Intervals

2It can take quite a while to simulate 1000 samples of size 30 in this data table. Therefore, it is a good idea to set
the recalculation mode to “automatic except tables.” (You can find this option under the Calculation Options
dropdown menu on the Formulas ribbon.) That way, the data table recalculates only if you explicitly tell it to
(by pressing the F9 key).
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You can see that 948 of the simulated confidence intervals (each based on a different
random sample of size 30) contain the true mean 100. In theory, 950 of the 1000 intervals
should cover the true mean, and this is almost exactly what occurred. Of course, in a par-
ticular application you might unluckily obtain the seventh sample (in row 18). However,

without knowing that the true mean is 100, you
would have no way of knowing that you obtained a
“bad” interval.

We also show this graphically in the file. (See
Figure 8.5.) The small square in this graph is posi-
tioned at the known mean and never changes.
The blue line represents a particular confidence
interval. Put your cursor below this chart in, say,
cell C35, and press the Delete key. (This forces a
recalculation without recalculating the whole data
table.) The position of the blue line will change.
About 95% of the time, the blue line will straddle
the small square—the confidence interval will
include the true mean—but about 1 time out of 20,
it will not. This also illustrates the meaning of a
“95% confidence interval.”
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True Meaning of a 95% Confidence
Interval

Given the data in a particular sample, a 95% confi-

dence interval for the mean will either include the

(unknown) population mean or it won’t. The true

meaning of a 95% confidence interval is that if the

same procedure is used on many different random

samples, about 95% of the resulting confidence inter-

vals will include the population mean, and only about

5% won’t. Therefore, you can be 95% confident that

any particular confidence interval is a “good” one.

FUNDAMENTAL INSIGHT

P R O B L E M S

Level A

4. A manufacturing company’s quality control personnel
have recorded the proportion of defective items for each
of 500 monthly shipments of one of the computer com-
ponents that the company produces. The data are in the
file P07_07.xlsx. The quality control department man-
ager does not have sufficient time to review all of these
data. Rather, she would like to examine the proportions
of defective items for a sample of these shipments.
a. Use StatTools to generate a simple random sample

of size 25.
b. Using the sample generated in part a, construct a

95% confidence interval for the mean proportion of
defective items over all monthly shipments. Assume
that the population consists of the proportion of
defective items for each of the given 500 monthly
shipments.

c. Interpret the 95% confidence interval constructed
in part b.

d. Does the 95% confidence interval contain the
actual population mean in this case? If not, explain
why not. What proportion of many similarly
constructed confidence intervals should include the
true population mean?

5. The file P08_05.xlsx contains salary data on all NFL
players in each of the years 2002 to 2009. Because
this file contains all players for each of these years,
you can calculate the population mean for each year if

population is defined as all NFL players that year.
However, proceed as in the previous chapter to select
a random sample of size 50 from the 2009 population.
Based on this random sample, calculate a 95%
confidence interval for the mean NFL total salary in
2009. Does it contain the population mean? Repeat
this procedure several times until you find a random
sample where the population mean is not included in
the confidence interval.

6. The file P08_06.xlsx contains data on repetitive task
times for each of two workers. John has been doing
this task for months, whereas Fred has just started.
Each time listed is the time (in seconds) to perform
a routine task on an assembly line. The times shown
are in chronological order.
a. Find a 95% confidence interval for the mean time it

takes John to perform the task. Do the same for Fred.
b. Do you believe both of the confidence intervals in

part a are valid and/or useful? Why or why not?
Which of the two workers would you rather have,
assuming that task time is the only issue?

7. The manager of a local fast-food restaurant is
interested in improving the service provided to
customers who use the restaurant’s drive-up window.
As a first step in this process, the manager asks an
assistant to record the time (in seconds) it takes to
serve a large number of customers at the final window
in the facility’s drive-up system. The file P08_07.xlsx
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contains a random sample of 200 service times during
the busiest hour of the day.
a. Identify the relevant population.
b. Construct and interpret a 95% confidence interval

for the mean service time of all customers arriving
during the busiest hour of the day at this fast-food
operation. 

c. If the manager wants to improve service, at least
during the busiest time of day, does this confidence
interval provide useful information? What useful
information does it not provide?

Level B

8. Continuing Problem 5, generate a random sample of 50
players for each of the eight years in the P08_05.xlsx
file. For each of these samples, construct a 95%
confidence interval for the mean total salary for that
year. What is the confidence level that any particular one
of these confidence intervals includes the population
mean for that year? Is this the same confidence level that
all eight of these confidence intervals include the
respective population means? Why or why not?

9. The Confidence Interval Simulation.xlsx generates
observations randomly from a normal population.
Suppose instead that each observation in column A
is exponentially distributed with mean 10. (Refer to
Section 5.6 for a brief explanation of the exponential
distribution.) Unlike a normal distribution, an expo-
nential distribution is very skewed to the right. A
value from this distribution can be generated with 
the formula 
�10*LN(RAND()). Rerun the
simulation, still with sample size 30, with this
exponential distribution. Are 95% confidence
intervals still valid? What does it mean for them to
be valid?

10. Answer the questions in the previous problem when
the population is a mixture of two normal distributions.
Specifically, suppose each observation has a 65%
chance of coming from a normal distribution with
mean 100 and standard deviation 20, and a 35%
chance of coming from a normal distribution with
mean 200 and standard deviation 40. What is the mean
of this mixture distribution? You will need it for the
simulation.
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8.4 CONFIDENCE INTERVAL FOR A TOTAL3

There are situations where a population mean is not the population parameter of most inter-
est. A good example is the auditing example discussed in the previous chapter (Example 7.4).
Rather than estimating the mean amount of receivables per account, the auditor might be
more interested in the total amount of all receivables, summed over all accounts. In this
section we provide a point estimate and a confidence interval for a population total.

First, we introduce some notation. Let T be a population total we want to estimate, such
as the total of all receivables, and let be a point estimate of T based on a simple random
sample of size n from a population of size N. We first need a point estimate of T. For the
population total T, it is reasonable to sum all of the values in the sample, denoted TS, and
then “project” this total to the population with Equation (8.5), where the second equality
follows because the sample total TS divided by the sample size n is the sample mean .X

NT

Point Estimate for Population Total

(8.5)NT =

N

n
  TS = NX

Equation (8.5) is quite intuitive. For example, suppose there are 1000 accounts in the
population, you sample 50 of them, and you observe a sample total of $5000. Then,
because only 1/20 of the population was sampled, a natural estimate of the population total
is .

Like the sample mean , the estimate has a sampling distribution. The mean and
standard deviation of this sampling distribution are given in Equations (8.6) and (8.7),
where � is again the population standard deviation.

NTX
20 * $5000 = $100,000

3This section can be omitted without any loss of continuity.
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Because � is usually unknown, s is used instead of � to obtain the approximate stan-
dard error of given in Equation (8.8). The second equality follows because is the
standard error of .X

s/1nNT
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Mean and Standard Error of Point Estimate for Population Total

(8.6)

(8.7)SE( NT) = N�/1n

E( NT) = T

Approximate Standard Error of Point Estimate for Population Total

(8.8)SE( NT) = Ns/1n = N * SE(X)

Note from Equation (8.6) that is an unbiased estimate of the population total T.
Therefore, it has no tendency to either overestimate or underestimate T.

From equations (8.5) and (8.8), the point estimate of T is the point estimate of the
mean multiplied by N, and the standard error of this point estimate is the standard error of
the sample mean multiplied by N. This has a very nice consequence. A confidence interval
for T can be formed with the following two-step procedure:

1. Find a confidence interval for the sample mean in the usual way.

2. Multiply each endpoint of the confidence interval by the population size N.

We illustrate this procedure in the following example.

NT

E X A M P L E 8.2 ESTIMATING TOTAL TAX REFUNDS

The Internal Revenue Service would like to estimate the total net amount of refund due
to a particular set of 1,000,000 taxpayers. Each taxpayer will either receive a refund, in

which case the net refund is positive, or will have to pay an amount due, in which case the
net refund is negative. Therefore the total net amount of refund is a natural quantity of
interest; it is the net amount the IRS will have to pay out (or receive, if negative). Find a
95% confidence interval for this total using the refunds from a random sample of 500
taxpayers in the file IRS Refunds.xlsx.

Objective To use StatTools’s One-Sample Confidence Interval procedure, with an
appropriate modification, to find a 95% confidence interval for the total (net) amount the
IRS must pay out to these 1,000,000 taxpayers.

Solution

The solution appears in Figure 8.6 (with only part of the sample shown). Although there is
no explicit StatTools procedure for dealing with population totals, you can take advantage
of the close relationship between the confidence interval for a mean and the confidence
interval for a total. First use StatTools to find a 95% confidence interval for the population
mean. This output appears in rows 5–11. The average refund per taxpayer in the sample is
slightly less than $300 (cell E6), and the standard error of this sample mean (not shown
explicitly) is about $26. The confidence interval for the mean (in cells E10 and E11) extends
from $244 to $346. This part of the output analyzes the average refund per taxpayer.
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Next, project these results to the entire population. This is done in the range E15:E18
by multiplying each of the values in the previous paragraph by the population size,
1,000,000. The IRS can be 95% confident that it will need to pay out somewhere between
244 and 346 million dollars to these 1,000,000 taxpayers. ■
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

500
501

A B C D E
Customer Refund size 1000000

1 $70
2 $1,190 Refund
3 $220 Conf. Intervals (One-Sample) Data Set #1

4 -$280 Sample Size 500
5 $260 Sample Mean $294.98
6 $370 Sample Std Dev $581.31
7 $450 Confidence Level (Mean) 95.0%
8 $210 Degrees of Freedom 499
9 $1,150 Lower Limit $243.90

10 $270 Upper Limit $346.06
11 $470
12 -$10 Confidence interval for popula�on total

13 -$160 Confidence level 95.0%
Point es�mate $294,980,00014 $2,430

15 $140 Standard error $25,997,048
16 -$190 Lower limit $243,902,836
17 -$810 Upper limit $346,057,164
18 -$20

499 $1,840
500 -$20

Figure 8.6

Confidence Interval

for Population Total

P R O B L E M S

Level A

11. The file P02_16.xlsx contains the number of arrivals at
a turnpike tollbooth for each of four 5-minute intervals
for each of 256 days. For this problem, assume that
each column, such as arrivals from 8:00 AM to 8:05 AM,
is a random sample of all arrivals from the correspond-
ing hour of the day, such as 8:00 AM to 9:00 AM. Find
a 95% confidence interval for the mean number of
arrivals during each corresponding hour of the day, that
is, one for 8:00 AM to 9:00 AM, one for 9:00 AM to
10:00 AM, and so on.

12. A lightbulb manufacturer wants to estimate the total
number of defective bulbs contained in all of the
boxes shipped by the company during the past week.
Production personnel at this company have recorded
the number of defective bulbs found in each of 50
randomly selected boxes shipped during the past
week. These data are provided in the file
P08_12.xlsx. Find a 95% confidence interval for
the total number of defective bulbs contained in the
1000 boxes shipped by this company during the
past week. 

13. Auditors of a particular bank are interested in
comparing the reported value of all 2265 customer
savings account balances with their own findings
regarding the actual value of such assets. Rather than
reviewing the records of each savings account at the
bank, the auditors decide to examine a representative
sample of savings account balances. The population
from which they will sample is given in the file
P08_13.xlsx.
a. Select 10 simple random samples, each consisting of

100 savings account balances from this population.
b. For each sample generated in part a, construct a

95% confidence interval for the total value of all
2265 savings account balances within this bank.
How many of them include the (known) population
total?

Level B

14. Suppose you are gambling on a roulette wheel. Each
time the wheel is spun, the result is one of the out-
comes 0, 1, and so on through 36. Of these outcomes,
16 are red, 16 are black, and 1 is green. On each spin
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you bet $5 that a red outcome will occur and $1 that
the green outcome will occur. If red occurs, you win
a net $4. (You win $10 from red and nothing from
green.) If green occurs, you win a net $24. (You win
$30 from green and nothing from red.) If black occurs,
you lose everything you bet for a loss of $6. 
a. Use simulation to generate 20 plays from this

strategy. Each play should indicate the net amount
won or lost. Then, based on these 20 outcomes, find

a 95% confidence interval for the total net amount
won or lost from 1000 plays of the game. Would you
conclude that this strategy is a winning one for you? 

b. Repeat part a, but with slightly changed rules. Now
your betting strategy is the same, but if red occurs,
your net gain is $5 (you win $11 from red, nothing
from green). Comment on whether this slight
change makes much of a difference in the mean
total from 1000 bets.
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8.5 CONFIDENCE INTERVAL FOR A PROPORTION

How often have you heard on the evening news a survey finding such as, “52% of the
public agree with the president’s handling of the economy, with a sampling error of plus or
minus 3%”? Surveys are often used to estimate proportions, such as the proportion of the
public who agree with the president’s handling of the economy. We will now discuss how
to form a confidence interval for any population proportion p.

The basic procedure is very similar to the procedure for a population mean. It requires
a point estimate, the standard error of this point estimate, and a multiple that depends on
the confidence level. Then the confidence level has the same form as in Expression (8.1):

point estimate � multiple  standard error

In the news example the point estimate is 52% and the “multiple  standard error” is 3%.
Therefore, the confidence interval extends from 49% to 55%. Although the news show
doesn’t state the confidence level explicitly, it is 95% by convention. In words, they are
95% confident that the percentage of the public who agree with the president’s handling of
the economy is somewhere between 49% and 55%.

The theory that leads to this result is fairly straightforward. Let A be any property
that members of a population either have or do not have. As examples, A might be the
property that

■ a person agrees with the president’s handling of the economy
■ a person has purchased a company’s product at least once in the past three months
■ the diameter of a part is within specification limits
■ a customer’s account is at least two months overdue
■ a customer’s rating of a new sandwich is at least 6 on a 10-point scale.

In each of these examples, let p be the proportion of the population with property A. From
a random sample of size n, let be the sample proportion of members with property A. For Np

Standard Error of Sample Proportion

(8.9)SE( Np) =

A

Np(1 - Np)

n

example, if 10 out of 50 sampled members have property A, then 
 10/50 
 0.2. 
Then is used as a point estimate of p.

It can be shown that for sufficiently large n, the sampling distribution of is approxi-
mately normal with mean p and standard error . Because p is the unknown
parameter, is substituted for p in this standard error to obtain the following approximate
standard error of :Np

Np
1p(1 - p)/n

Np
Np

Np
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Finally, the multiple used to obtain a confidence interval for p is a Z-value. It is the
standard normal value that cuts off an appropriate probability in each tail. For example, the
z-multiple for a 95% confidence interval is 1.96 because this value cuts off probability
0.025 in each tail of the standard normal distribution. In general, the confidence interval
has the form in Expression (8.10):
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Confidence Interval for a Proportion

(8.10)Np ; z-multiple *

A

Np(1 - Np)

n

This confidence interval is based on the assumption of a large sample size. A rule of
thumb for checking the validity of this assumption is the following. Let pL and pU be the
lower and upper limits of the confidence interval. Then the sample size is sufficiently
large—and the confidence interval is valid—if npL � 5, n(1 � pL) � 5, npU � 5, and 
n(1 � pU) � 5. Essentially, these mean that n should be reasonably large and the two
values of p should not be too close to 0 or 1.

We illustrate the procedure in the following example.

E X A M P L E 8.3 ESTIMATING THE RESPONSE TO A NEW SANDWICH

4The solution shown here is new. Starting in version 5.5, StatTools performs statistical inference on proportions,
either a single proportion or the difference between two proportions.

The fast-food manager from Example 8.2 has already sampled 40 customers to estimate
the population mean rating of the restaurant’s new sandwich. Recall that each rating is

on a 1-to-10 scale, 10 being the best. The manager would now like to use the same sample
to estimate the proportion of customers who rate the sandwich at least 6. Her thinking is
that these are the customers who are likely to purchase the sandwich on subsequent visits.

Objective To illustrate the procedure for finding a confidence interval for the proportion
of customers who rate the new sandwich at least 6 on a 10-point scale.

Solution

The solution appears in Figure 8.7.4 (See the file Satisfaction Ratings.xlsx.) It is first
useful to create a 0/1 column that indicates whether a customer’s rating is at least 6. To do
this, enter the formula


IF(B2�
6,1,0)

1
2
3
4
5
6
7

A B C D E F
Customer n At least 6? Confidence interval based on column C

1 7 1 At least 6?
Conf. Interval (Propor�on) Data Set #2

Category 1
Sample Size 40
Sample Propor�on 0.625

6 7 1 C fid L l 95 0%7
8
9

10
11
12
13

6 7 1 Confidence Level 95.0%
Standard Error of Propor�on 0.077
Lower Limit 0.475
Upper Limit 0.775

0
0
1
1

1

2 5
3 5
4 6
5 8

7 6
8 7 1
9 10 1

10 7 1
11 9 1
12 5 0

Figure 8.7

Confidence Interval

for Proportion
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in cell C2 and copy it down. Next, designate a StatTools data set that includes this new
column. (It can include columns A and B, but they are not relevant for the confidence interval.)
Finally, select Confidence Interval from the Statistical Inference dropdown list, and select
Proportion. Then fill out the dialog box as shown in Figure 8.8. Specifically, check the 1 in the
Categories to Analyze section to analyze the proportion of 1s, not the proportion of 0s. 
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Figure 8.8

StatTools Dialog Box

for Confidence

Interval for

Proportion

As the Data Type dropdown list indicates, the data for the confidence interval can be in three
formats: (1) a sample of 0s and 1s, as in this example, (2) a summary table with counts, or
(3) a summary table with proportions. These latter two options are also illustrated in the
finished version of the Satisfaction Ratings.xlsx file. The reason for these options is that
you could very easily start with a table of counts or proportions, rather than a long column
of 0s and 1s. StatTools (version 5.5 and later) accommodates these possibilities. 

Finally, using the confidence interval limits, pL 
 0.475 and pU 
 0.775, you can check
the assumption of sufficiently large sample size. With n 
 40, npL, n(1 � pL), npU, and 
n(1 � pU) are all well above 5, so that the validity of this confidence interval is established.

The output is fairly good news for the manager. Based on this sample of size 40, she
can be 95% confident that the percentage of all customers who would rate the sandwich 6
or higher is somewhere between 47.5% and 77.5%. Of course, she realizes that this is a
very wide interval, so there is still a lot of uncertainty about the true population proportion.
To reduce the length of this interval, she would need to sample more customers—quite a
few more customers. Typically, confidence intervals for proportions are fairly wide unless
n is quite large. ■
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We explore this final statement a bit more. Referring again to news shows, you have
probably noticed that they almost always quote a sampling error of plus or minus 3%. In
words, the “plus or minus” part of their 95% confidence interval is 3%, or 0.03. How large
a sample size must they use to achieve this? The “plus or minus” part of the confidence
interval is 1.96 times the standard error of , so we must have

Now, the quantity is fairly constant for values of between 0 and 1, provided
that isn’t too close to 0 or 1. To get a reasonable estimate of the required n, we use


 0.5. Then we have

Solving for n, we obtain .
This is a rather remarkable result. To obtain a 95% confidence interval of this length

for a population proportion, where the population consists of millions of people, only
about 1000 people need to be sampled. The remarkable fact is that this small a sample can
provide such accurate information about such a large population.

One of many business applications of confi-
dence intervals for proportions is in auditing.
Auditors typically use attribute sampling to check
whether certain procedures are being followed cor-
rectly. The term “attribute” means that each item
checked is done either correctly or incorrectly—
there is no in-between. Examples of items not done
correctly might include (1) an invoice copy that is
not initialed by an accounting clerk, (2) an invoice
quantity that does not agree with the quantity on the
shipping document, (3) an invoice price that does
not agree with the price on an authorized price list,
and (4) an invoice with a clerical inaccuracy.
Typically, an auditor focuses on one of these types
of errors and then estimates the proportion of items
with this type of error.

Because auditors are concerned primarily with how large the proportion of errors
might be, they usually calculate one-sided confidence intervals for proportions. Instead
of using sample data to find lower and upper limits pL and pU of a confidence interval,
they automatically use pL 
 0 and then determine an upper limit pU such that the 95%
confidence interval is from 0 to pU. A simple modification of the confidence interval in
Expression (8.10) provides the result in Equation (8.11), where the z-multiple is chosen
so that the entire probability (0.05 for a 95% interval) is in the right-hand tail. For a
95% confidence level, the relevant z-multiple is 1.645.

One further complication occurs, however. This formula for pU relies on the large-
sample approximation of the normal distribution to the binomial distribution. Auditors typ-
ically use an exact procedure to find pU that is based directly on the binomial distribution.
We illustrate how this is done in the following example.

n = [(1.96)(0.5)/0.03]2
M 1067

1.96 * 1(0.5)(0.5)/n = 0.03

Np

Np
NpNp(1 - Np)

1.96 * 1 Np(1 - Np)/n = 0.03

Np
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Upper Limit of a One-Sided Confidence Interval for a Proportion

(8.11)pU = Np + z-multiple * 1pN(1 - pN)/n

Sample Size for Estimating a Proportion

To obtain an estimate of a proportion that is accurate

to within 3 percentage points with 95% confidence, it

is sufficient to sample approximately 1000 members

of the population, regardless of the population size.This

remarkable fact allows news broadcasters to make

such statements about various proportions on a

nightly basis. By sampling only about 1000 people from

the entire country, they can estimate very nearly what

the entire population believes.

FUNDAMENTAL INSIGHT
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E X A M P L E 8.4 AUDITING FOR PRICE ERRORS

An auditor wants to check the proportion of invoices that contain price errors—that is,
prices that do not agree with those on an authorized price list. He checks 93 randomly

sampled invoices and finds that two of them include price errors. What can he conclude, in
terms of a one-sided 95% confidence interval, about the proportion of all invoices with
price errors?

Objective To find the upper limit of a one-sided 95% confidence interval for the propor-
tion of errors in the context of attribute sampling in auditing.

Solution

The results appear in Figure 8.9, where StatTools has not been used because it does not
include a procedure for one-sided confidence intervals. (See the file One-Sided Confidence
Interval.xlsx.) The sample proportion is p 
 2/93 
 0.0215 and the upper confidence limit
based on the large-sample approximation is 0.046. This latter value is calculated in cell B14
with the formula


B7�B13*SQRT(B7*(1-B7)/B5)

However, note that npU 
 93(0.046) 
 4.278, which is less than 5. This indicates that the
large-sample approximation is not very accurate.

1
2

A B C D E F
An exact one-sided confidence interval in auditing

2
3
4
5
6
7
8

Confidence level 95%
Number of errors 2
Sample size 93

Sample n 0.0215

9
10
11
12
13
14

Exact upper confidence limit for p Goal seek
Upper limit 0.066 0.050 = 0.05

Large-sample upper confidence limit for p
z- e 1.645
Upper limit 0.046

Figure 8.9

Analysis of Auditing

Example

A more accurate procedure, based on the binomial distribution, appears in row 10. It
turns out that if pU is the appropriate upper confidence limit, then pU satisfies the equation

(8.12)

Here, X is binomially distributed with parameters n and pU, k is the observed number of
errors, and � is one minus the confidence level. There is no way to find pU directly (by
means of a formula) from Equation (8.12). However, you can use Excel’s Goal Seek tool.
First, enter any trial value of pU in cell B10 and the binomial formula

�BINOMDIST(B4,B5,B10,1)

P(X … k) = �
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in cell D10. (This formula calculates P(X 	 k) from the trial value in cell B10.) Then use
Goal Seek from the What-If Analysis dropdown menu on the Data ribbon, with cell D10 as
the Set cell, 0.05 as the target value, and cell B10 as the Changing cell. (See Figure 8.10.)
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Figure 8.10

Settings in Goal Seek

Dialog Box

The resulting value of pU is 0.066. This is considerably different (from the auditor’s
point of view) from the 0.046 value found from the large-sample approximation. It allows
the auditor to state with 95% confidence that the percentage of invoices with price errors is
no greater than 6.6%, based on the two errors out of 93 observed in the sample. ■

P R O B L E M S

Level A

15. A drugstore manager needs to purchase adequate sup-
plies of various brands of toothpaste to meet the ongoing
demands of its customers. In particular, the company is
interested in estimating the proportion of its customers
who favor the country’s leading brand of toothpaste,
Crest. The Data sheet of the file P08_15.xlsx contains
the toothpaste brand preferences of 200 randomly
selected customers, obtained recently through a cus-
tomer survey. Find a 95% confidence interval for the
proportion of all of the company’s customers who prefer
Crest toothpaste. How might the manager use this confi-
dence interval for purchasing decisions?

16. The same data as in the previous problem are stored
in a different format in the last two sheets of the
P08_15.xlsx file.
a. Use StatTools to find a 95% confidence interval for

the proportion who favor Crest from the data in the
Counts sheet. Using this same data on counts,
calculate the confidence interval directly from the
appropriate formulas, without using StatTools.

b. Use StatTools to find a 95% confidence interval
for the proportion who favor Crest from the data
in the proportions sheet. Using this same data on
proportions, calculate the confidence interval
directly from the appropriate formulas, without
using StatTools.

17. The employee benefits manager of a large public
university would like to estimate the proportion of

full-time employees who prefer adopting the first
(plan A) of three available health care plans in the next
annual enrollment period. A random sample of the
university’s employees and their tentative health care
preferences are given in the file P08_17.xlsx.
a. Find a 90% confidence interval for the propor-

tion of all the university’s employees who favor
plan A.

b. The file also includes the classification of each
employee (administrative staff, support staff, or
faculty). Find a separate 90% confidence interval
for each of these groups for the proportion who
favor plan A. How do these confidence intervals
compare to one another? How do their lengths
compare to the confidence interval in part a?
Is this what you would expect? Explain.

18. A market research consultant hired by a leading soft-
drink company wants to determine the proportion of
consumers who favor its low-calorie brand over the
leading low-calorie competitor in a particular geo-
graphic region. A random sample of 250 consumers
from the market under investigation is provided in
P08_18.xlsx. 
a. Find a 90% confidence interval for the proportion

of all consumers in this market who prefer the
company’s brand. 

b. The file contains the gender and age group for each
customer in the sample. Find a separate 90%
confidence for each gender for the proportion who
prefer the company’s brand. Then do the same for
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each age group. Explain briefly how these
confidence intervals compare to each other and to
the confidence interval in part a. 

Level B

19. Starting with the data from problem 17 in the file
P08_17.xlsx, restructure the data so that you have a

table of counts. Then use StatTools on the counts to
answer the same questions as in problem 17.

20. Starting with the data from problem 18 in the file
P08_18.xlsx, restructure the data so that you have a
table of proportions. Then use StatTools on the
proportions to answer the same questions as in
problem 18.
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8.6 CONFIDENCE INTERVAL FOR A STANDARD DEVIATION5

In Section 8.3 we focused primarily on estimation of a population mean. We had to deal with
the population standard deviation � in its role as a nuisance parameter. That is, we needed an
estimate of � to estimate the standard error of the sample mean. However, there are cases
where the variability in the population, measured by �, is of interest in its own right. We
briefly describe a procedure for obtaining a confidence interval for � in this section.

The theory is somewhat more complex than for the case of the mean. As you might
expect, the sample standard deviation s is used as a point estimate of �. However, the
sampling distribution of s is not symmetric—in particular, it is not the normal distribution
or the t distribution. Rather, the appropriate sampling distribution is a right-skewed
distribution called the chi-square distribution. Like the t distribution, the chi-square
distribution has a degrees of freedom parameter, which (for this procedure) is again n � 1.

Tables of the chi-square distribution, for selected degrees of freedom, appear in many
statistics books, but the necessary information can be obtained more easily with Excel’s
CHIDIST and CHIINV functions. The CHIDIST function takes the form

�CHIDIST(v,df)

This function returns the probability to the right of value v when the degrees of freedom
parameter is df. Similarly, the CHIINV function takes the form

�CHIINV(p,df)

This returns the value with probability p to the right of it when the degrees of freedom
parameter is df.

CHANGES IN EXCEL 2010

These chi-square functions have been changed considerably in Excel 2010.There are now

CHISQ.DIST and CHISQ.INV functions for left tails, and CHISQ.DIST has a last “cum” argument

just like NORM.DIST and T.DIST. Also, there are two functions, CHISQ.DIST.RT and CHISQ.INV.RT,

for right tails.

We do not present the rather complex confidence interval formulas for �. However, we
point out that because of the skewness of the sampling distribution of s, a confidence inter-
val for � is not centered at s. That is, the confidence interval is not the point estimate plus
or minus a multiple of a standard error. Instead, s is always closer to the left endpoint of the
confidence interval than to the right endpoint, as indicated in Figure 8.11.

5This section can be omitted without any loss of continuity.
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The StatTools One-Sample Confidence Interval procedure enables you to obtain a
confidence interval for a population standard deviation as easily as for a mean. We illus-
trate this in the following example.
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Figure 8.11

Confidence Interval

for Standard

Deviation

E X A M P L E 8.5 ANALYZING VARIABILITY IN DIAMETERS OF MACHINE PARTS

Amachine produces parts that are supposed to have diameter 10 centimeters. However, due
to inherent variability, some diameters are greater than 10 and some are less. The

production supervisor is concerned about two things. First, he is concerned that the mean
diameter is not what it should be, 10 centimeters. Second, he is worried about the extent of
variability in the diameters. Even if the mean is on target, excessive variability implies that
many of the parts will fail to meet specifications. To analyze the process, he randomly samples
50 parts during the course of a day and measures the diameter of each part to the nearest
millimeter. The results are shown in columns A and B of Figure 8.12. (See the file 
Part Diameters.xlsx.) Should the supervisor be concerned about the results from this sample?

1
2
3

A B C D E F G H I
Part Diameter Diameter

1 10.031 Conf. Intervals (One-Sample) Data Set #1

2 10 011 Sample Size 503
4
5
6
7
8
9

10
11
12

2 10.011 Sample Size 50
3 10.003 Sample Mean 9.996
4 10.025 Sample Std Dev 0.034
5 10.048 Confidence Level (Mean) 95.0%
6 10.014 Degrees of Freedom 49
7 10.030 Lower Limit 9.986
8 10.008 Upper Limit 10.005
9 10.049 Confidence Level (Std Dev) 95.0%

10 9.995 Degrees of Freedom 49
11 9 965 0 02912

13
14
15
16
17
18
19

11 9.965 Lower Limit 0.029
12 10.003 Upper Limit 0.043
13 9.959
14 10.013 of unusable parts
15 10.012 Maximum for usability 0.065
16 10.005 Assumed mean 10
17 9.921 Assumed standard 0.043
18 9.930 unusuable 0.13119

20
21
22
23
24
25
26

18 9.930 unusuable 0.131
19 9.990
20 9.948 Twoway data table for finding unusable as a of mean and stdev

demussA770.0112 standard
340.0430.0920.0131.0959.922

23 10.000 Assumed mean 9.986 0.041 0.080 0.149
031.0060.0520.0699.9899.942
131.0160.0620.0500.01389.952

27
49
50
51

26 9.995
48 10.009
49 9.973
50 9.970

Figure 8.12 Analysis of Parts Data
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Objective To use StatTools’s One-Sample Confidence Interval procedure to find a confi-
dence interval for the standard deviation of part diameters, and to see how variability
affects the proportion of unusable parts produced.

Solution

Because the manager is concerned about the mean and the standard deviation of diameters,
it is useful to obtain 95% confidence intervals for both. This is easy to do with StatTools’s
One-Sample Confidence Interval procedure for Mean/Std. Deviation. Go through the same
dialog box as before (see Figure 8.3), but now check the boxes for both confidence interval
options—mean and standard deviation. The top part of the output in Figure 8.12 (through
cell E9) provides a 95% confidence interval for the mean. This confidence interval extends
from 9.986 cm to 10.005 cm. Therefore, there is probably not too much cause for concern
about the mean. The supervisor can be fairly confident that the mean diameter of all parts
is close to 10 cm.

The bottom part of the output (the range E10:E13) provides a 95% confidence interval
for the standard deviation of diameters. This interval extends from 0.029 cm to 0.043 cm.
Is this good news or bad news? It depends. Let’s say that a part is unusable if its diameter
is more than 0.065 cm from the target. Let’s also assume that the true mean is right on
target and that the standard deviation is at the upper end of the confidence interval, that is,
� 
 0.043 cm. Finally, assume that the population distribution of diameters is normal.
Then the calculation in cell E19 shows that 13.1% of the parts will be unusable. The
formula in cell E19 is

�NORMDIST(10-E16,E17,E18,1)�(1-NORMDIST(10�E16,E17,E18,1))

It adds the normal probabilities of being below or above the usable range.
To pursue this analysis one step further, a two-way data table in the range E23:H26 is

useful. The means used in column E are the lower confidence limit, the sample mean, and
the upper confidence limit. Similarly, the assumed standard deviations used in row 23 are
the lower confidence limit, the sample standard deviation, and the upper confidence limit.
To form the table, enter the formula =E19 in cell E23, highlight the range E23:H26, and
create a data table with cells E18 and E17 as the row and column input cells.

Each value in the body of the data table is the resulting proportion of unusable parts.
Obviously, a mean close to the target and a small standard deviation are best, but even this
best-case scenario results in 2.5% unusable parts (see cell F25). However, a mean off
target and a large standard deviation can lead to as many as 14.9% unusable parts (see cell
H24). In any case, the message for the supervisor is clear—he must work to reduce the
underlying variability in the process. This variability is hurting him much more than an
off-target mean. ■
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P R O B L E M S

Level A

21. Senior management of a large consulting firm
is concerned about a growing decline in the
organization’s weekly number of billable hours.
Ideally, the organization expects each professional
employee to spend at least 40 hours per week on
work. The file P08_21.xlsx contains the work hours

reported by a random sample of employees in a
typical week.
a. Find a 95% confidence interval for the mean

number of hours worked by the company’s
employees in a typical week.

b. Find a 95% confidence interval for the standard
deviation of the number of hours worked by the
company’s employees in a typical week.
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c. Given the target range of 40 to 60 hours of work per
week, should senior management be concerned about
the number of hours their employees are currently
devoting to work? Explain how the answers to both
parts a and b help to answer this question.

Level B

22. The file P08_06.xlsx contains data on repetitive task
times for each of two workers. John has been doing
this task for months, whereas Fred has just started.

Each time listed is the time (in seconds) to perform a
routine task on an assembly line. The times shown are
in chronological order.
a. Find a 95% confidence interval for the standard

deviation of times for John. Do the same for Fred.
What do these indicate?

b. Given that these times are listed chronologically,
how useful are the confidence intervals in part a?
Specifically, is there any evidence that the variation
in times is changing through time for either of the
two workers?

412 Chapter 8 Confidence Interval Estimation

8.7 CONFIDENCE INTERVAL FOR THE DIFFERENCE
BETWEEN MEANS

One of the most important applications of statistical inference is the comparison of two
population means. There are many applications to business, including the following.

Applications of Comparisons of Means in Business

■ Men and women shop at a retail clothing store. The manager would like to know
how much more (or less), on average, a woman spends on a typical purchase
occasion than a man.

■ Two airline companies fly similar routes. A consumer organization would like to
check how much the average delay differs between the two airlines, where delay is
defined as the actual arrival time at the destination minus the scheduled arrival time.

■ A supermarket chain mails coupons for various products to a randomly selected
subset of its customers in a particular city. Its other customers in this city receive no
such coupons. The chain would like to check how much the average amount spent on
these products differs between the two sets of customers over the next couple of
months.

■ A computer company has a customer service center that responds to customers’
questions and complaints. The center employs two types of people: those who have
had a recent course in dealing with customers (but little actual experience) and those
with a lot of experience dealing with customers (but no formal course). The company
would like to know how these two types of employees differ with respect to the
average number of customer complaints of poor service in the last six months.

■ A consulting company hires business students directly out of undergraduate school.
The new hires all take a problem-solving test. They then go through an intensive
three-month training program, after which they take another similar problem-solving
test. The company wants to know how much the average test score improves after the
training program.

■ A car dealership often deals with husband–wife pairs shopping for cars. To check
whether husbands react differently than their wives to the sales presentation, husbands
and wives are asked (separately) to rate the quality of the sales presentation. The
dealership wants to know how much husbands differ from their wives in terms of
average ratings.

Each of these examples deals with a difference between means from two populations.
However, the first four examples differ in one important respect from the last two. In the
last two examples, there is a natural pairing across the two samples. In the first of these,

Statisticians call these
general types of
problems “comparison
problems.”They are
among the most
important types of
problems tackled with
statistical methods.
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each employee takes a test before a course and then a test after the course, so that each
employee is naturally paired with himself or herself. In the final example, husbands and
wives are naturally paired with one another. There is no such pairing in the first four
examples. Instead, we assume that the samples in these first four examples are chosen
independently of one another. For statistical reasons we need to distinguish these two
cases, independent samples and paired samples, in the discussion that follows.

8.7.1 Independent Samples

The framework for this situation is the following. We are interested in some quantity, such as
dollars spent or airplane delay, for each of two populations. The population means are �1 and
�2, and the population standard deviations are �1 and �2. We take random samples of sizes
n1 and n2 (which need not be equal) from the populations to estimate the difference between
means, �1 � �2. A point estimate of this difference is the natural one, the difference between

sample means, . Starting with this estimate, we want to form a confidence interval

for the unknown population mean difference, �1 � �2.
It can be shown mathematically that the appropriate sampling distribution of the

difference between sample means is again the t distribution, now with n1 � n2 � 2 degrees
of freedom.6 Therefore, a confidence interval for �1 � �2 is given by Expression (8.13).
The t-multiple is the value that cuts off the appropriate probability (depending on the con-
fidence level) in each tail of the t distribution with  n1 � n2 � 2 degrees of freedom. For
example, if the confidence level is 95% and n1 
 n2 
 30, the appropriate t-multiple is
2.002, which can be found in Excel with the function TINV(0.05,58) (or T.INV(0.025,58)
in Excel 2010).

X1 - X2
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6This assumes that either the population distributions are normal or that the sample sizes are reasonably large,
conditions that are at least approximately met in a wide variety of applications.

Confidence Interval for Difference Between Means
(8.13)X1 - X2 ; t-multiple * SE(X1 - X2)

Pooled Estimate of Common Standard Deviation

sp =

C

(n1 - 1)s1
2

+ (n2 - 1)s2
2

n1 + n2 - 2

The standard error, SE( ), is more involved. We must first make the assumptionX1 - X2

that the population standard deviations are equal, that is, �1 
 �2. (We shortly present an
alternative procedure for the situation where the population standard deviations are not
equal.) Then an estimate of this common standard deviation is provided by the “pooled”
estimate from both samples, labeled sp.

Here, s1 and s2 are the sample standard deviations from the two samples. This pooled
estimate is somewhere between s1 and s2, with the relative sample sizes determining its exact
value. Then the standard error of is given by Equation (8.14):X1 - X2
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Fortunately, the StatTools Two-Sample Confidence Interval procedure takes care of
these calculations, as illustrated in the following example.
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Standard Error of Difference Between Sample Means

(8.14)SE(X1 - X2) = spA

1
n1

+

1
n2

E X A M P L E 8.6 RELIABILITY OF TREADMILL MOTORS AT THE SURESTEP COMPANY

The SureStep Company manufactures high-quality treadmills for use in exercise clubs.
SureStep currently purchases its motors for these treadmills from supplier A.

However, it is considering a change to supplier B, which offers a slightly lower cost. The
only question is whether supplier B’s motors are as reliable as supplier A’s. To check this,
SureStep installs motors from supplier A on 30 of its treadmills and motors from supplier
B on another 30 of its treadmills. It then runs these treadmills under typical conditions and,
for each treadmill, records the number of hours until the motor fails. The data from this
experiment appear in Figure 8.13. (See the file Treadmill Motors.xlsx.) What can
SureStep conclude?

1
2

A B C D E F
Supplier A Supplier B Supplier A Supplier B

1358 658 Sample Summaries Data Set #1 Data Set #1

3
4
5
6
7
8
9

10

793 404 Sample Size 30 30
587 735 Sample Mean 748.80 655.67
608 457 Sample Std Dev 283.88 259.99
472 431
562 658 Equal Unequal
879 453 Conf. Intervals (Difference of Means) Variances Variances

575 488 Confidence Level 95.0% 95.0%
1293 522 Sample Mean Difference 93.13 93.1310

11
12
13
14
15
16
17
18

1293 522 Sample Mean Difference 93.13 93.13
1457 1247 Standard Error of Difference 70.281 70.281

705 1095 Degrees of Freedom 58 58
623 430 Lower Limit -47.549 -47.549
725 726 Upper Limit 233.815 233.815
569 793
424 498
436 502 Equality of Variances Test

1250 589 1 192318
19
20
21
29
30
31

1250 589 of Sample Variances 1.1923
493 975 p-Value 0.6390
485 808
462 456
791 846
684 732
666 507

Figure 8.13 Analysis of Treadmill Motors Data
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Objective To use StatTools’s Two-Sample Confidence Interval procedure to find a con-
fidence interval for the difference between mean lifetimes of motors, and to see how this
confidence interval can help SureStep choose the better supplier.

Solution

In any comparison problem it is a good idea to look initially at side-by-side box plots of the
two samples. These appear in Figure 8.14. These show that (1) the distributions of times until
failure are skewed to the right for each supplier, (2) the mean for supplier A is somewhat
greater than the mean for supplier B, and (3) there are several mild outliers. There seems to
be little doubt that supplier A’s motors will last longer on average than supplier B’s—or is
there? A confidence interval for the mean difference allows you to see whether the differ-
ences apparent in the box plots can be generalized to all motors from the two suppliers.
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Figure 8.14

Box Plots for

Treadmill Motors

Data

You can find this confidence interval by using the StatTools Two-Sample Confidence
Interval procedure. To do so, select Confidence Interval and Mean/Std. Deviation from the
StatTools Statistical Inference dropdown list, and fill in the resulting dialog box as shown
in Figure 8.15. Specifically, make sure the Analysis Type dropdown list shows Two-
Sample Analysis, and click on the Format button to make sure the Unstacked option is
checked. You will then see the dialog box in Figure 8.16. By default, the difference ana-
lyzed will be “A minus B,” but you can change it to “B minus A” by clicking on the
Reverse Order button. For now, click on OK. This produces the output in Figure 8.13. The
top part of the output summarizes the two samples. It shows that the sample means differ
by approximately 93 hours and the sample standard deviations are of roughly the same
magnitude.

StatTools Tip The data are “unstacked” because there are separate columns for sup-
plier A’s times and supplier B’s times. The Format button in the StatTools dialog box
allows you to select the appropriate option: Stacked or Unstacked.

The confidence interval calculations appear in the range E9:E14. The difference
between sample means is 93.133 hours, the standard error of the sample mean difference is
70.281 hours, and a 95% confidence interval for the mean difference extends from
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�47.549 to 233.815 hours. Not only is this interval quite wide, but it extends from a nega-
tive value to a positive value. If SureStep had to make a guess, it would say that supplier
A’s motors last longer on average than supplier B’s. But because of the negative part of the
confidence interval, there is still a possibility that the opposite is true.

Should SureStep continue with supplier A? This depends on the trade-off between the
cost of the motors and warranty costs (and any other relevant costs). Because the warranty
probably depends on whether a motor lasts a certain amount of time, warranty costs prob-
ably depend on a proportion (the proportion that fail before 500 hours, say) rather than a
mean. Therefore, we postpone further discussion of this issue until we discuss differences
between proportions in Section 8.8. ■
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Figure 8.15

Dialog Box for Two-

Sample Procedure

Figure 8.16

Dialog Box for

Reversing the

Difference

Equal-Variance Assumption

This two-sample analysis makes the strong assumption that the standard deviations
(or variances) from the two populations are equal. How can you tell if they are equal, and
what do you do if they are clearly not equal?

To check whether they are equal, first look at the two sample standard deviations. If
they are of widely different magnitudes, this certainly casts doubt on the equal-variance
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assumption. The sample standard deviations in the treadmill example, 283.88 and 259.98,
are of similar magnitudes and present no clear evidence of unequal population variances.
However, a statistical test for equality of two population variances is automatically shown
at the bottom of the StatTools Two-Sample output. Because we have not yet discussed
hypothesis testing, we postpone the discussion of this test for now. Suffice it to say that the
test presents no evidence of unequal variances for this example.

If there is reason to believe that the population variances are unequal, then a slightly
different procedure can be used to calculate a confidence interval for the difference
between means. The appropriate standard error of is now

and the degrees of freedom used to find the t-multiple is given by a complex expression not
shown here.

StatTools’s Two-Sample procedure automatically calculates the confidence interval
under this unequal-variance assumption. For the treadmill example the results are in the
range F9:F14 of Figure 8.13. In this example they are exactly the same as the results (in col-
umn E), which makes the equal-variance assumption. This is a consequence of equal sam-
ple sizes and roughly equal sample variances. In general, the two results differ appreciably
only when the sample sizes and the sample variances differ considerably across samples. In
any case, the appropriate results to use are those on the right (column F) if there is reason to
suspect unequal population variances and those on the left (column E) otherwise.

SE(X1 - X2) = 2s1
2/n1 + s2

2/n2

X1 - X2
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StatTools always
calculates the results in
both columns.When
they are nearly the
same, as they often
are, it makes no
practical difference
which you quote.

FUNDAMENTAL INSIGHT

Role of Variances in Estimating the
Difference Between Means

It might be surprising that variances (or standard

deviations) play such an important role in estimating

the difference between means, but this is actually

quite intuitive. If there is a lot of variability in the pop-

ulations, it is more difficult to get accurate estimates

of the population means, and hence the difference

between the means. But if there is very little variabil-

ity, it is much easier to estimate the means accurately.

E X A M P L E 8.7 ANALYZING CUSTOMER WAITING AT R&P SUPERMARKET

The manager of the R&P Supermarket has collected a week’s worth of data on customer
arrivals, departures, and waiting. There are 48 observations per day, each taken at 

the end of a half-hour period. The data appear in the file Customer Checkouts.xlsx. The
various times of day are listed in the TimeInterval variable. (See Figure 8.17.) They
include Morning Rush, Morning, Lunch Rush, Afternoon, Afternoon Rush, Evening, and
Night. (The comment in cell C3 explains exactly which time intervals these refer to.) There
is also a variable, EndWaiting, that records the number of customers still being served or
waiting in line at the end of each half-hour period.

We next examine customer waiting lines in a supermarket. We again make a compari-
son between two means, this time the mean number of customers in line during rush times
versus normal times. There are two objectives in this example. First, it provides one more
illustration of the two-sample procedure, now with unequal sample sizes. Perhaps more
importantly, it illustrates that not all data sets come ready-made for performing a particular
analysis. Some data manipulation is necessary before StatTools’s Two-Sample procedure
can be used. Indeed, this is sometimes the most time-consuming part of statistical analysis
in real applications—getting the data ready for the analysis.
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The manager would like to check whether the average value of EndWaiting differs
during rush periods from normal, non-night periods. She is concerned that there might be
excessive waiting during rush periods, in which case she might need to add more checkout
people during these times. She plans to exclude the night period from the analysis because
she knows from experience that customers very seldom need to wait during the night.

Objective To use StatTools’s Two-Sample Confidence Interval procedure to find a con-
fidence interval for the difference between mean waiting times during the supermarket’s
rush periods versus its normal periods.

Solution

Starting with the data set in its original form, two main steps are required:

1 Rename the seven time intervals (Morning rush, Morning, and so on) so that there are
only three: Rush, Normal, and Night.

2 Perform the statistical comparison between the EndWaiting variables for the Rush and
Normal periods.

The finished version of the file contains the results of step 1 in the Renamed Data sheet and
the results of step 2 in this same sheet (next to the renamed data). If you want to follow
along, hands-on, with the step-by-step procedure, you should use the “data only” version
of the Customer Checkouts. xlsx file and perform the following steps.

PERFORMING A STATISTICAL COMPARISON BETWEEN VARIABLES

1 Copy sheet. Create a copy of the Data sheet by pressing the Ctrl key and dragging
the Data sheet tab to the right. Double-click on the new sheet tab and name it Renamed
Data.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

A B C D E F G H I
Day StartTime TimeInterval g Arrivals Departures g Checkers TotalCustomers
Mon 8:00 AM Morning rush 2 21 22 1 3 23
Mon 8:30 AM Morning rush 1 25 18 8 3 26
Mon 9:00 AM Morning 8 27 28 7 3 35
Mon 9:30 AM Morning 7 21 23 5 3 28
Mon 10:00 AM Morning 5 20 23 2 5 25
Mon 10:30 AM Morning 2 36 31 7 5 38
Mon 11:00 AM Morning 7 30 36 1 5 37
Mon 11:30 AM Lunch rush 1 34 29 6 5 35
Mon 12:00 PM Lunch rush 6 56 48 14 7 62
Mon 12:30 PM Lunch rush 14 58 64 8 7 72
Mon 1:00 PM Lunch rush 8 53 52 9 7 61
Mon 1:30 PM n 9 30 36 3 5 39
Mon 2:00 PM n 3 34 31 6 5 37
Mon 2:30 PM n 6 36 37 5 5 42
Mon 3:00 PM n 5 30 28 7 5 35
Mon 3:30 PM n 7 29 34 2 5 36
Mon 4:00 PM n 2 35 33 4 5 37
Mon 4:30 PM rush 4 32 25 11 5 36

Figure 8.17 Original Data for Supermarket Example
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2 Rename time intervals. To rename the time intervals on the Renamed Data sheet,
use Excel’s Find and Replace feature. Click on column C’s tab to select the entire column,
and then select Replace from the Find & Select dropdown menu on the Home ribbon. Type
Morning rush in the “Find what:” box, type Rush in the “Replace with:” box, and click
on the Replace All button. Repeat this for the other time intervals to be renamed. That is,
replace Lunch rush and Afternoon rush by Rush, and replace Morning, Afternoon, and
Evening by Normal. Figure 8.18 shows some of the results. (You could accomplish the same
thing with a complex IF formula or a lookup table.)
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

A B C D E F G H I
Day StartTime TimeInterval g Arrivals Departures g Checkers TotalCustomers
Mon 8:00 AM Rush 2 21 22 1 3 23
Mon 8:30 AM Rush 1 25 18 8 3 26
Mon 9:00 AM Normal 8 27 28 7 3 35
Mon 9:30 AM Normal 7 21 23 5 3 28
Mon 10:00 AM Normal 5 20 23 2 5 25
Mon 10:30 AM Normal 2 36 31 7 5 38
Mon 11:00 AM Normal 7 30 36 1 5 37
Mon 11:30 AM Rush 1 34 29 6 5 35
Mon 12:00 PM Rush 6 56 48 14 7 62
Mon 12:30 PM Rush 14 58 64 8 7 72
Mon 1:00 PM Rush 8 53 52 9 7 61
Mon 1:30 PM Normal 9 30 36 3 5 39
Mon 2:00 PM Normal 3 34 31 6 5 37
Mon 2:30 PM Normal 6 36 37 5 5 42
Mon 3:00 PM Normal 5 30 28 7 5 35
Mon 3:30 PM Normal 7 29 34 2 5 36
Mon 4:00 PM Normal 2 35 33 4 5 37
Mon 4:30 PM Rush 4 32 25 11 5 36

Figure 8.18 Supermarket Data with Time Categories Renamed

TimeInterval = Rush

Box Plot of Comparison of EndWai�ng

TimeInterval = Night

TimeInterval = Normal

0 5 10 15 20 25

Figure 8.19

Box Plots for

Supermarket

Example

3 Create box plots. Define a StatTools data set from the data on the Renamed Data
sheet, and use StatTools’s Box Plot procedure to create side-by-side box plots of the
EndWaiting variable. Select the Stacked option, and select TimeInterval as the Cat variable
and EndWaiting as the Val variable. See Figure 8.19 for the box plots.
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4 Perform two-sample analysis. Select Confidence Interval and Mean/Std. Deviation
from the StatTools Statistical Inference dropdown list using the renamed data set. In the
resulting dialog box, select the Stacked option, and again select TimeInterval as the
Cat variable and EndWaiting as the Val variable. Because there are three categories for
TimeInterval, StatTools will ask you which two of these you want to base the difference
on. Select Normal and Rush. StatTools then analyzes the difference “Normal minus Rush.”
If you checked the Analyze in Reverse Order option, StatTools would analyze the opposite
difference, “Rush minus Normal.” (See the StatTools dialog boxes in Figures 8.20 and
8.21.)
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Figure 8.20

Two-Sample Dialog

Box

Figure 8.21

Dialog Box for

Selecting Two

Categories of

Interest
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The side-by-side box plots in Figure 8.19 show that (1) the distribution of EndWaiting
is skewed to the right for each time interval, with a number of outliers, and (2) the mean
value of EndWaiting is slightly larger for Rush than for Normal, with Night a distant third.
Given the nature of the data, it should not really be surprising that the data are skewed to
the right with a number of outliers. When the supermarket gets busy, waiting lines can
really build. All it takes are a few really long checkout times to produce an excessively
large value of EndWaiting, and this is evidently what happened at R&P.

The output from the two-sample procedure appears in Figure 8.22. The sample means
of EndWaiting are 5.480 and 5.014 for the Rush and Normal periods, the sample standard
deviations are 4.284 and 4.293, and these are based on sample sizes of 98 and 140 half-hour
periods. These summary statistics provide some evidence of a difference between popula-
tion means but very little evidence of different population variances. This latter statement
means that the results in column L, not column M, are relevant (although the two are practi-
cally identical). A point estimate for the mean difference (Normal minus Rush) is �0.465,
and a 95% confidence interval for this mean difference extends from �1.578 to 0.648.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

K L M
(Normal) (Rush)

Sample Summaries Data Set #1 Data Set #1

Sample Size 140 98
Sample Mean 5.014 5.480
Sample Std Dev 4.293 4.284

Equal Unequal
Conf. Intervals (Difference of Means) Variances Variances

Confidence Level 95.0% 95.0%
Sample Mean Difference -0.465 -0.465
Standard Error of Difference 0.565 0.565
Degrees of Freedom 236 209
Lower Limit -1.578 -1.579
Upper Limit 0.648 0.648

Equality of Variances Tes t

of Sample Variances 1.0042
p-Value 0.9912

Figure 8.22

Analysis of

Supermarket Data

What can the manager conclude from this analysis? Should she add extra checkout peo-
ple during rush periods? This is difficult to answer because it obviously involves a trade-off
between the cost of extra checkout people and the “cost” of making customers wait in line.
Also, there is no way of knowing, at least not from the present analysis, how much effect
extra checkout people would have on waiting. However, the manager does know from this
analysis that the mean difference between rush and normal periods is rather minor.
Specifically, because the confidence interval extends from a negative value to a positive
value, it is possible that the true mean difference is positive. That is, the mean for normal
times could be larger than the mean for rush times. Therefore, the results of this analysis do
not provide a strong incentive for the manager to change the current system. ■

8.7.2 Paired Samples

When the samples to be compared are paired in some natural way, such as a pretest and
posttest for each person, or husband–wife pairs, there is a more appropriate form of analy-
sis than the two-sample procedure. Consider the example where each new employee takes
a test, then receives a three-month training course, and finally takes another similar test.
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There is likely to be a fairly strong correlation between the pretest and posttest scores.
Employees who score relatively low on the first test are likely to score relatively low on the
second test, and employees who score relatively high on the first test are likely to score
relatively high on the second test. The two-sample procedure does not take this correlation
into account and therefore ignores important information. The paired procedure described
in this section, on the other hand, uses this information to advantage.

The procedure itself is very straightforward. You do not directly analyze two separate
variables (pretest scores and posttest scores, say); you analyze their differences. For each
pair in the sample, you calculate the difference between the two scores for the pair. Then
you perform a one-sample analysis, as in Section 8.3, on these differences. Actually,
StatTools’s Paired-Sample procedure does the difference calculations and the ensuing one-
sample analysis automatically, as described in the following example.
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E X A M P L E 8.8 HUSBAND AND WIFE REACTIONS TO SALES PRESENTATIONS AT

STEVENS HONDA-BUICK

The Stevens Honda-Buick automobile dealership often sells to husband-wife pairs. The
manager would like to check whether the sales presentation is viewed any more or less

favorably by the husbands than the wives. If it is, then some new training might be recom-
mended for its salespeople. To check for differences, a random sample of husbands and
wives are asked (separately) to rate the sales presentation on a scale of 1 to 10, 10 being the
most favorable rating. The results appear in Figure 8.23. (See the Sales Presentation
Ratings.xlsx file.) What can the manager conclude from these data?

1
2

A B C
Pair Husband Wife

1 6 32
3
4
5
6
7
8

1 6 3
8
5
4
5
6
5

9
10
31
32
33
34
35

7

2 7
3 8
4 6
5 8
6 7
7 8
8 6
9 7 8

30 7 3
31 7 5
32 5 1
33 7 5
34 7

36
4

35 10 5

Figure 8.23

Data for Sales

Presentation

Example

Objective To use StatTools’s Paired-Sample Confidence Interval procedure to find a
confidence interval for the mean difference between husbands’ and wives’ ratings of sales
presentations.

Solution

We illustrate two ways to perform the analysis. Normally, you would use only the second
of these, but the first sheds some light on the procedure. For the first method, make a copy
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of the Data sheet and name it OneSample. Then manually form a new variable in column
D called Difference by entering the formula

�B2-C2

in cell D2 and copying it down column D. (See Figure 8.24.) This new variable is, for each
couple, the husband’s rating minus the wife’s rating. Next, with the cursor anywhere in the
resulting data set, select Confidence Interval and Mean/Std. Deviation from the StatTools
Statistical Inference dropdown list, select One-Sample Analysis as the Analysis Type, and
select the Difference variable. This produces the output shown in Figure 8.24. The sample
mean Husband minus Wife difference is 1.629 and a 95% confidence interval for this
difference extends from 1.057 to 2.200.
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1
2
3
4
5
6
7
8
9

10
11
34
35
36

A B C D E F G
Pair Husband Wife Difference Difference

3 3 Conf. Intervals (One-Sample) OneSampleData

8 -1 Sample Size 35
5 3 Sample Mean 1.629
4 2 Sample Std Dev 1.664
5 3 Confidence Level (Mean) 95.0%
6 1 Degrees of Freedom 34
5 3 Lower Limit 1.057
7 -1 Upper Limit 2.200

1 6
2 7
3 8
4 6
5 8
6 7
7 8
8 6
9 7 8 -1

10 7 5 2
33 7 5 2
34 7 4 3
35 10 5 5

Figure 8.24 One-Sample Analysis of Differences for Sales Presentation Data

To perform this analysis more efficiently, again make a copy of the Data sheet and
name it PairedSample. After creating a StatTools data set from the data on this sheet, select
Confidence Interval and Mean/Std. Deviation from the StatTools Statistical Inference
dropdown, and fill in the resulting dialog box as shown in Figure 8.25. Specifically, select
Paired-Sample Analysis as the Analysis Type. (As usual, you will then get a chance to
reverse the order of the difference, but don’t do so; let it remain “Husband minus Wife.”)
The resulting output appears in Figure 8.26. The results are exactly the same as before.
This is because StatTools’s Paired-Sample procedure performs a one-sample analysis on
the differences—and it saves you the work of creating the differences.

Figure 8.27 shows side-by-side box plots of the husband and wife scores. These box
plots are not as useful here as in the two-sample procedure because you lose sight of which
husbands are paired with which wives. A more useful box plot is of the differences, shown
in Figure 8.28. Here it is apparent that the sample mean difference is positive, but even
more importantly, the vast majority of husband scores are greater than the corresponding
wife scores. There is little doubt that most husbands tend to react more favorably to the
sales presentations than their wives. Perhaps the salespeople need to be somewhat more
sensitive to their female customers.

Before leaving this example, let’s see what would have happened if the two-sample
procedure had been used on the Husband and Wife variables. The results appear in 
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Figure 8.25

Dialog Box for

Paired-Sample

Analysis

1
2
3
4
5
6
7
8
9

10
11
33
34
35
36

A B C D E F
Pair Husband Wife

3 Conf. Intervals (Paired-Sample) Husband - Wife

8 Sample Size 35
5 Sample Mean 1.629
4 Sample Std Dev 1.664
5 Confidence Level 95.0%
6 Degrees of Freedom 34
5 Lower Limit 1.057
7 Upper Limit 2.200

1 6
2 7
3 8
4 6
5 8
6 7
7 8
8 6
9 7 8

10 7 5
32 5 1
33 7 5
34 7 4
35 10 5

Figure 8.26

Paired-Sample

Analysis of Sales

Presentation Data

Wife

Box Plot Comparison

Husband

0 2 4 6 8 10 12

Figure 8.27

Side-by-Side Box

Plots for Sales

Presentation Data
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Figure 8.29. Because there is a considerable difference between the sample standard devi-
ations, the confidence interval output in column G, not column F, is relevant, although
there is not much difference between them. The important point is that the resulting con-
fidence interval for the mean difference extends from 0.895 to 2.362, which is somewhat
wider than the confidence interval from the paired-sample procedure. This is typical.
When the two-sample procedure is used in a situation where the paired-sample 
procedure is more appropriate, the data are not used as efficiently. The effect is that the
standard error of the difference tends to be larger, and the resulting confidence interval
tends to be wider.

Why is the paired-sample procedure appropriate here? It is not just because husbands
and wives naturally come in pairs. It is because they tend to react similarly to one another.
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Box Plot of Difference

-3 -2 -1 0 1 2 3 4 5 6

Figure 8.28

Single Box Plot of

Differences for Sales

Presentation Data

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
34
35
36

A B C D E F G
Pair Husband Wife Husband Wife

3 Sample Summaries TwoSampleData TwoSampleData

8 Sample Size 35 35
5 Sample Mean 6.914 5.286
4 Sample Std Dev 1.222 1.792
5
6 Equal Unequal
5 Conf. Intervals (Difference of Means) Variances Variances

7 Confidence Level 95.0% 95.0%

1 6
2 7
3 8
4 6
5 8
6 7
7 8
8 6
9 7 8 Sample Mean Difference 1.629 1.629

10 7 5 Standard Error of Difference 0.367 0.367
11 6 3 Degrees of Freedom 68 60
12 5 4 Lower Limit 0.897 0.895
13 8 5 Upper Limit 2.360 2.362
14 7 8
15 7 5
16 7 6 Equality of Variances Test

17 6 5 of Sample Variances 0.4649
18 5 4 p-Value 0.0285
19 6 5
33 7 5
34 7 4
35 10 5

Figure 8.29 Two-Sample Analysis of Sales Presentation Data
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You can check that the correlation between the husbands’ scores and their wives’ scores is
0.442. (This can be found with Excel’s CORREL function on the Husband and Wife vari-
ables.) This is far from a perfect correlation, but it is large enough to warrant using the
paired-sample procedure. ■

In general, the paired-sample procedure is appropriate when the samples are naturally
paired in some way and there is a reasonably large positive correlation between the pairs.
In this case the paired-sample procedure makes more efficient use of the data and generally
results in narrower confidence intervals.
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P R O B L E M S

Level A

23. The director of a university’s career development
center is interested in comparing the starting annual
salaries of male and female students who recently
graduated from the university and commenced full-
time employment. The director has formed pairs of
male and female graduates with the same major and
similar grade-point averages. Specifically, she has
collected a random sample of 50 such pairs and has
recorded the starting annual salary of each person.
These data are provided in the file P08_23.xlsx. Find a
95% confidence interval for the mean difference
between similar male and female graduates of this
university. Interpret your result.

24. A real estate agent has collected a random sample
of 75 houses that were recently sold in a suburban
community. She is particularly interested in comparing
the appraised value and recent selling price of the
houses in this particular market. The data are provided
in the file P08_24.xlsx. Using this sample data, find
a 95% confidence interval for the mean difference
between the appraised values and selling prices of
the houses sold in this suburban community. Interpret
the confidence interval for the real estate agent.

25. The Wall Street Journal CEO Compensation Study
analyzed CEO pay from many U.S. companies with
fiscal year 2008 revenue of at least $5 billion that filed
their proxy statements between October 2008 and
March 2009. The data are in the file P02_30.xlsx.
a. Create a new column, Total, that is the sum of

columns D and E.
b. After combining Telecommunications and

Technology into a single company type, there are
nine company types. For each of these, find a 95%
confidence interval for the difference between the
mean of Total for that company type and mean of
Total for all other company types. Comment on
what these nine confidence intervals indicate about
CEO pay in different industries.

Level B

26. The file P02_35.xlsx contains data from a survey of
500 randomly selected households.
a. Separate the households in the sample by the loca-

tion of their residence within the given community.
For each of the four locations, use the sample infor-
mation to find a 90% confidence interval 
for the mean annual income (sum of first income
and second income) of all relevant households.
Compare these four interval estimates. You might
also consider generating box plots of the total
income for households in each of the four 
locations.

b. Find a 90% confidence interval for the difference
between the mean annual income of all house-
holds in the first (i.e., SW) and second (i.e., NW)
sectors of this community. Find similar 90% con-
fidence intervals for the differences between the
mean annual income levels of all households from
all other pairs of locations (i.e., first and third,
first and fourth, second and third, second and
fourth, and third and fourth). Summarize your
findings.

27. A company employs two shifts of workers. Each shift
produces a type of gasket where the thickness is the
critical dimension. The average thickness and the
standard deviation of thickness for shift 1, based on a
random sample of 30 gaskets, are 10.53 mm and 
0.14 mm. The similar figures for shift 2, based on a
random sample of 25 gaskets, are 10.55 mm and 
0.17 mm. Let �1 � �2 be the mean difference in
thickness between shifts 1 and 2.
a. Using the formulas from this section, not StatTools,

find a 95% confidence interval for �1 � �2.
b. Based on your answer to part a, are you convinced

that the gaskets from shift 2 are, on average, wider
than those from shift 1? Why or why not?

c. How would your answers to parts a and b change if
the sample sizes were instead 300 and 250?
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8.8 CONFIDENCE INTERVAL FOR THE DIFFERENCE BETWEEN
PROPORTIONS

The final confidence interval we examine is a confidence interval for the difference
between two population proportions. As in the previous section, this comparison
procedure finds many real applications. Several potential business applications are the
following:

Applications of Comparisons of Proportions in Business

■ When an appliance store is about to have a sale, it sometimes sends selected
customers a mailing to notify them of the sale. On other occasions it includes a
coupon for 5% off the sale price in these mailings. The store’s manager would
like to know whether the inclusion of coupons affects the proportion of customers
who respond.

■ A manufacturing company has two plants that produce identical products. The
company wants to know how much the proportion of out-of-spec products differs
across the two plants.

■ A pharmaceutical company has developed a new over-the-counter sleeping pill. To
judge its effectiveness, the company runs an experiment where one set of randomly
chosen people takes the new pill and another set takes a placebo. (Neither set knows
which type of pill they are taking.) The company judges the effectiveness of the new
pill by comparing the proportions of people who fall asleep within a certain amount
of time with the new pill and with the placebo.

■ An advertising agency would like to check whether men are more likely than women to
switch TV channels when a commercial comes on. The agency runs an experiment where
the channel-switching behavior of randomly chosen men and women can be monitored,
and it collects data on the proportion of viewers who switch channels on at least half of
the commercial times. The agency then compares these proportions across gender.

The basic form of analysis in each of these examples is the same as in the two-sample
analysis for differences between means. However, instead of comparing two means, we
now compare proportions.

Formally, let p1 and p2 represent the two unknown population proportions, and let 1
and 2 be the two sample proportions, based on samples of sizes n1 and n2. Then the point

estimate of the difference between proportions, p1 � p2, is the difference between sample

proportions, 1 � 2. If the sample sizes are reasonably large, then the sampling distribution

of 1 � 2 is approximately normal.7

Therefore, a confidence interval for p1 � p2 is given by Expression (8.15). Here, the 
z-multiple is the usual value from the standard normal distribution that cuts off the appro-
priate probability in each tail (1.96 for a 95% confidence interval, for example). Also, the
standard error of 1 � 2 is given by Equation (8.16).NpNp

NpNp

NpNp

Np
Np
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Confidence Interval for Difference Between Proportions

(8.15)Np1 - Np2 ; z-multiple * SE( Np1 - Np2)

7This large-sample assumption is valid as long as and for i 
 1 and i 
 2.ni(1 - Npi) 7 5ni Npi 7 5
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The following example illustrates this procedure and how it is implemented in
StatTools. (As with the confidence interval for a proportion, the StatTools procedure for a
difference between proportions is new in version 5.5.)
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E X A M P L E 8.9 SALES RESPONSE TO COUPONS FOR DISCOUNTS ON APPLIANCES

An appliance store is about to have a big sale. It selects 300 of its best customers and ran-
domly divides them into two sets of 150 customers each. It then mails a notice of the

sale to all 300 customers but includes a coupon for an extra 5% off the sale price to the sec-
ond set of customers only. As the sale progresses, the store keeps track of which of these
customers purchase appliances. The resulting data appear in Figure 8.30. They are shown in
three equivalent ways, as discussed below. (See the file Coupon Effectiveness.xlsx.) What
can the store’s manager conclude about the effectiveness of the coupons?

1
2
3
4
5
6
7
8
9

10
11
12
13
14

300
301

A B C D E F G
Customer Received coupon Purchased Table of counts

coupon Didn't receive coupon
5355desahcruPseYseY3
51159esahcrup
051051sezis

Table of propor�ons

1 Yes Yes
2 Yes Yes Category Received

4 Yes Yes Didn't
5 Yes Yes Sample
6 Yes Yes
7 Yes Yes
8 Yes Yes
9 Yes Category Received coupon Didn't receive coupon

3332.07663.0desahcruPseY01
dn't purchase 0.6333 0.7667

051051sezis
11 e Yes Di
12 Yes Sample
13 Yes

299 No
300 No

Yes

e

Data Set #1

Y s
Yes
Yes
No
No

Data Set #3

Data Set #2

Figure 8.30 Equivalent Setups for Coupon Data

Objective To illustrate how to find a confidence interval for the difference between
proportions of customers purchasing appliances with and without 5% discount coupons.

Solution

First, keep in mind the overall objective. From Figure 8.30 (cells F11 and G11), you can see
that 36.67% of customers who received a coupon purchased something, as opposed to only
23.33% of those who didn’t receive a coupon. The difference, 36.67% � 23.33% 
 13.33%
(or 0.1333), is the quantity of interest. Specifically, the sample difference is 13.33%, and the
objective is to find a confidence interval for this difference. You could plug the data into
Equations (8.15) and (8.16), but StatTools will do it for you. This is fairly simple once you
understand how the difference between proportions procedure works in StatTools.

Standard Error of Difference Between Sample Proportions

SE (8.16)N(p1 - Np2) =

A

Np1(1 - Np1)

n1
+

Np2(1 - Np2)

n2
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The data could be given as a table of counts (top right part of Figure 8.30), as a table
of proportions (bottom right part of Figure 8.30), or as a long list of values (left part of
Figure 8.30, with many hidden rows). StatTools allows all three setups, and they are
discussed in detail in the finished version of the Coupons Effectiveness.xlsx file. For now,
let’s say the table of counts is available. Then the StatTools data set should be the top right
shaded region in Figure 8.30. The Category variable indicates the two possible responses
(purchased or didn’t purchase), and the other two columns show how many customers pur-
chased or didn’t purchase in each of the two subpopulations (received coupon or didn’t).
Given this setup, the next step is to select Confidence Interval and Proportion from the
Statistical Inference dropdown list and fill out the dialog box as shown in Figure 8.31.
Once you click on OK, you will have the chance to reverse the difference (switch from
“Received coupon minus Didn’t receive coupon” to the opposite), but don’t make this
switch here. (Also, ignore the sample sizes at the bottom of this dialog box. With the table
of counts option, StatTools figures out the correct sample sizes, in this case 150 for each
subpopulation.)
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Figure 8.31

Dialog Box for

Difference Between

Proportions

The output appears in Figure 8.32. It shows the sample difference between proportions, 0.133,
and the standard error of this difference, 0.052. The 95% confidence interval for the difference
is approximately plus or minus two standard errors from the sample difference. It extends
from 0.031 to 0.236, or from 3.1 percentage points to 23.6 percentage points. This interval
indicates how much higher the proportion of purchasers becomes when coupons are offered.
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This StatTools procedure is more complicated than the others in this book, because the
StatTools developers wanted to accommodate different data setups. The finished version of
the Coupon Effectiveness.xlsx file provides more details on how the procedure works. We
suggest that you mimic this file when you do it on your own. ■
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

ONM

Analyzed Category

Propor�on of Items in This Category Purchased

Received coupon Didn't receive coupon
Sample Summaries Data Set #2 Data Set #2

Sample Size 150 150
Sample Propor�on 0.367 0.233

Conf. Interval (Difference Between Propor�ons)

Confidence Level 95.0%
Difference Between Propor�ons 0.133
Standard Error of Difference 0.052
Lower Limit 0.031
Upper Limit 0.236

Figure 8.32

Confidence Interval

for Difference

Between

Proportions

We now revisit Example 8.6, where the SureStep Company is trying to decide which of
two suppliers to buy its treadmill motors from. We now compare the two suppliers with
regard to warranty costs by analyzing the difference between relevant proportions.

E X A M P L E 8.10 ANALYZING WARRANTIES ON TREADMILL MOTORS AT SURESTEP

COMPANY

As before, the SureStep Company is trying to decide whether to switch from supplier
A to supplier B for the motors in its treadmills. Let’s suppose that each treadmill

carries a three-month warranty on the motor. If the motor fails within three months,
SureStep will supply the customer with a new motor at no cost. This includes installation of
the new motor at SureStep’s expense. Based on the normal usage at most exercise clubs,
SureStep translates the three-month warranty period into approximately 500 hours of tread-
mill use. Therefore, using the data from Example 8.6 (in the Treadmill Warranty.xlsx file,
the same data as in the Treadmill Motors.xlsx file), the company would like to compare the
proportion of motors failing before 500 hours across the two suppliers.

Objective To illustrate how to find a confidence interval for the difference between pro-
portions of motors failing within the warranty period for the two suppliers.

Solution

The data and StatTools output appear in Figure 8.33. The data in column A and B are first
transformed to Yes/No values in columns C and D to see which motors fail within
warranty. The typical formula in cell C2 is

�IF(A2�500, "Yes","No")
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The StatTools data set should include columns C and D (but it can also include columns
A and B). To obtain the confidence interval, select Confidence Interval and Proportion
from the Statistical Inference dropdown list, and fill in the dialog box as shown in
Figure 8.34. Note the Data Type is now Population Sample (long columns, not just
counts), and the Format is Unstacked (one column for Supplier A, another for Supplier B).
Then reverse the difference, so that the output shows “B minus A.”

The output shows that the point estimate of the difference in proportions is 0.167 and
a 95% confidence interval for this difference extends from �0.057 to 0.391. Keep in mind
that this difference is the proportion for supplier B minus the proportion for supplier A.

This is fairly convincing, but not conclusive, evidence that a higher proportion of sup-
plier B motors will fail under warranty. It says that if 100 motors from each supplier were
tested, as many as 39 more B motors than A motors might fail before 500 hours—but as
many as five or six more A motors than B motors might fail before 500 hours. In other
words, there is still some uncertainty about which supplier makes the more reliable motors,
even though the weight of the evidence favors supplier A.

What does this mean in terms of costs? And should SureStep change suppliers? The
confidence interval implies that more motors are likely to fail under warranty if SureStep
changes to supplier B, but B’s motors cost less. A cost analysis might go as follows.
Suppose that each motor from supplier A costs SureStep $500, whereas supplier B offers
them for $475 apiece. Let’s follow 100 motors sent to exercise clubs for a period of three
months. If they are from supplier A, they cost $500 apiece, and approximately 20% (see
cell H5 in Figure 8.33) will fail within the warranty period. Each failure costs SureStep
another $500, so the expected cost to SureStep is

$500(100) � $500(20%)(100) 
 $60,000
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

HGFEDCBA
Supplier A Supplier B Supplier A fail Supplier B fail

Analyzed Category
Proportion of Items in This Category Yes

Supplier B fail Supplier A fail
Sample Summaries Data Set #1 Data Set #1
Sample Size 30 30
Sample Proportion 0.367 0.200

Conf. Interval (Difference Between Proportions)
Confidence Level 95.0%
Difference Between Proportions 0.167
Standard Error of Difference 0.114
Lower Limit -0.057
Upper Limit 0.391

791 846 No No

1358 658 No No
793 404 No Yes
587 735 No No
608 457 No Yes
472 431 Yes Yes
562 658 No No
879 453 No Yes
575 488 No Yes

1293 522 No No
1457 1247 No No

705 1095 No No
623 430 No Yes
725 726 No No
569 793 No No
424 498 Yes Yes
436 502 Yes No

1250 589 No No
493 975 Yes No
485 808 Yes No
462 456 Yes Yes
765 731 No No
854 491 No Yes
634 487 No Yes

1109 503 No No
800 465 No Yes
883 1475 No No
522 508 No No

684 732 No No
666 507 No No

Figure 8.33 Analysis of Treadmill Warranty Data
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On the other hand, if these 100 motors come from supplier B, the unit cost is only $475,
but approximately 36.7% of them will fail within the warranty period. Therefore, the
expected cost is


 $475(100) � $475(36.7%)(100) 
 $64,933

Based on this analysis, the cheaper motors from supplier B are likely to cost more in the
long run, so SureStep should probably not switch suppliers. (By the way, we omitted the
cost of installing the motors from the analysis. This would have made supplier A look
even better.) ■
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Figure 8.34

Dialog Box for

Difference Between

Proportions

P R O B L E M S

Level A

28. A company that advertises on the Web wants to
know which search engine its customers prefer as
their primary search engine: Google or Bing.
Specifically, the company wants to know whether the
preference depends on the browser being used. The

file P08_28.xlsx contains counts of 800 customers'
favorite search engine, broken down by the browser
used.
a. Find a 95% confidence interval for the difference

between two proportions: the proportion of Internet
Explorer users whose favorite search engine is
Google and the similar proportion of Firefox users.
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b. Repeat part a, replacing Google with Bing.
c. Interpret the results in parts a and b. Do the search

engine preferences seem to depend on the browser
used?

29. A market research consultant hired by a leading 
soft-drink company is interested in estimating the
difference between the proportions of female and male
consumers who favor the company’s low-calorie brand
over the leading competitor’s low-calorie brand in a
particular geographical region. A random sample of 
250 consumers from the market under investigation is
provided in the file P08_18.xlsx. After separating the
250 randomly selected consumers by gender, find a
95% confidence interval for the difference between
these two proportions. Of what value might this
interval estimate be to marketing managers at the
company?

Level B

30. The file P02_35.xlsx contains data from a survey
of 500 randomly selected households. Researchers
would like to use the available sample information to
see whether home ownership rates vary by
household location. For example, is there a nonzero
difference between the proportions of individuals

who own their homes (as opposed to those who rent
their homes) in households located in the first (i.e.,
SW) and second (i.e., NW) sectors of this
community? Use the given sample to find a 95%
confidence interval that estimates this difference
between proportions in home ownership rates for
each pair of locations. Interpret and summarize your
results. (The solution should include six confidence
intervals.) 

31. Continuing problem 29, marketing managers at the
soft-drink company have asked their market research
consultant to explore further the difference between
the proportions of women and men who prefer
drinking their brand over the leading competitor.
Specifically, the company’s managers would like to
know whether the difference between the proportions
of female and male consumers who favor their brand
varies by the age of the consumers. Use the same
data as in problem 29 to assess whether estimates of
this difference vary across the four given age
categories: under 20, between 20 and 40, between 40
and 60, and over 60. Use a 95% confidence level for
each of the four required confidence intervals.
Summarize your findings. What recommendations
would you make to the marketing managers in light
of your findings?

8.9 Controlling Confidence Interval Length 433

8.9 CONTROLLING CONFIDENCE INTERVAL LENGTH

In this section we discuss the most widely used methods for achieving a confidence inter-
val of a specified length. Confidence intervals are a function of three things: (1) the data in
the sample, (2) the confidence level, and (3) the sample size(s). We briefly discuss the role
of the first two in terms of their effect on confidence interval length and then discuss the
effect of sample size in more depth.

The data in the sample directly affect the length of a confidence interval through their
sample standard deviation(s). It might appear that because of random sampling, you have
no control over the sample data, but this is not entirely true. In the case of surveys from a
population, there are random sampling plans that can reduce the amount of variability in
the sample and hence reduce confidence interval length. Indeed, this is the primary reason
for using the stratified sampling procedure discussed in the previous chapter.

Variance reduction is also possible in randomized experiments. There is a whole area
of statistics called experimental design that suggests how to perform experiments to obtain
the most information from a given amount of sample data. Although this is often aimed at
scientific and medical research, it is also appropriate in business contexts. For example, the
automobile dealership in Example 8.8 was wise to use paired husband–wife data rather
than two independent samples of men and women. The pairing leads to a potential reduc-
tion in variability and hence a narrower confidence interval.

The confidence level has a clear effect on confidence interval length. As the confi-
dence level increases, the length of the confidence interval increases as well. For example,
a 99% confidence interval is always longer than a 95% confidence interval, assuming that
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they are both based on the same data. However, the confidence level is rarely used to con-
trol the length of the confidence interval. Instead, the confidence level choice is usually
based on convention, and 95% is by far the most commonly used value. In fact, it is the
default level built into most software packages, including StatTools. You can override this
default (by choosing 90% or 99%, for example), but it is not common to do so simply to
control confidence interval length.

The most obvious way to control confidence interval length is to choose the sample
size(s) appropriately. In the rest of this section, you will learn how this can be done. For
each parameter we discuss, the goal is to make the length of a confidence interval suffi-
ciently narrow. Because each confidence interval discussed so far (with the exception of
the confidence interval for a standard deviation) is a point estimate plus or minus some
quantity, we focus on the “plus or minus” part, called the half-length of the interval.
(See Figure 8.35.) The usual approach is to specify the half-length B you would like to
obtain. Then you find the sample size(s) necessary to achieve this half-length.
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Lower limit Point es�mate Upper limit

Half-length of interval
B

Figure 8.35

Half-Length of

Confidence Interval

8.9.1 Sample Size for Estimation of the Mean

We begin with a confidence interval for the mean. From Section 8.3, the relevant formula is

The goal is to make the half-length of this interval equal to some prescribed value B. For
example, if you want the confidence interval to be of the form , you use B 
 5.
Actually, it is not possible to achieve this half-length B exactly, but you can come close.

By setting

and solving for n, the appropriate sample size is

Unfortunately, sample size selection must be done before a sample is observed. Therefore,
no value of s is yet available. Also, because the t-multiple depends on n (through the
degrees of freedom parameter), it is not clear which t-multiple to use.

The usual solution is to replace s by some reasonable estimate �est of the population
standard deviation �, and to replace the t-multiple with the corresponding z-multiple from
the standard normal distribution. The latter replacement is justified because z-values and 
t-values are practically equal unless n is very small. The resulting sample size formula is
given in Equation (8.17). This formula generally results in a noninteger value of n, in
which case the practice is to round n up to the next larger integer.

n = a
t-multiple * s

B
b

2

t-multiple * s/1n = B

X ; 5

X ; t-multiple * s/1n

Keep in mind that the
sample size must be
determined before the
data are observed.

Sample Size Formula for Estimating a Mean

(8.17)n = a
z-multiple * �est

B
b

2
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The following example, an extension of Example 8.1, shows how to implement
Equation (8.17).
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E X A M P L E 8.11 SAMPLE SIZE SELECTION FOR ESTIMATING REACTION TO

A NEW SANDWICH

The fast-food manager in Example 8.1 surveyed 40 customers, each of whom rated a
new sandwich on a scale 1 to 10. Based on the data, a 95% confidence interval for the

mean rating of all potential customers extended from 5.739 to 6.761, with a half-length of
(6.761 � 5.739)/2 
 0.511. How large a sample would be needed to reduce this half-
length to approximately 0.3?

Objective To find the sample size of customers required to achieve a sufficiently narrow
confidence interval for the mean rating of the new sandwich.

Solution

Equation (8.17) for n uses three inputs: the z-multiple, which is 1.96 for a 95% confidence
level; the prescribed confidence interval half-length B, which is 0.3 for this example; and
an estimate �est of the standard deviation. This final quantity must be guessed, but based
on the given sample of size 40, the observed sample standard deviation, 1.597, from
Example 8.1 can be used. Therefore, Equation (8.17) yields

which is rounded up to n 
 109. The claim, then, is that if the manager surveys 109
customers, a 95% confidence interval will have approximate half-length 0.3. Its exact half-
length will differ slightly from 0.3 because the standard deviation from the sample will
almost surely not equal 1.597.

StatTools has a Sample Size Selection procedure that performs this sample size calcu-
lation and can be used anywhere in a spreadsheet. There doesn’t even have to be a data set.
Just select Sample Size Selection from the Statistical Inference dropdown list, select the
parameter to analyze (in this case the mean), and enter the requested values. In this case the
requested values are the confidence level (95%), the half-length of the interval (0.3), and
an estimate of the standard deviation (1.597). (See Figure 8.36, where the choices on the

n = a
1.96(1.597)

0.3
b

2
= 108.86

Figure 8.36

Sample Size

Selection Dialog Box
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right depend on which parameter is selected on the left.) This produces the output shown in
Figure 8.37, which indicates that a sample size of 109 is required.

What if the manager is at the planning stage and doesn’t have a “preliminary” sample
of size 40? What standard deviation estimate should she use for �est (because the value
1.597 is no longer available)? This is not an easy question to answer, but because of the
role of �est in Equation (8.17), it is crucial for the determination of n. The manager
basically has three choices: (1) she can base her estimate of the standard deviation on his-
torical data, assuming relevant historical data are available; (2) she can take a small
preliminary sample (of size 20, say) to get an estimate of the standard deviation; or (3) she
can simply guess a value for the standard deviation. We do not recommend the third
option, but there are cases in which it is the only feasible option available. ■
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3
4
5
6
7

BA
Sample Size for Mean
Confidence Level 95.00%
Half-length of Interval 0.30
Std Dev (estimate) 1.5970
Sample Size 109

Figure 8.37

Sample Size for

Mean

8.9.2 Sample Size for Estimation of Other Parameters

The sample-size analysis for the mean carries over with very few changes to other parameters.
We discuss three other parameters in this section: a proportion, the difference between two
means, and the difference between two proportions. In each case the required confidence inter-
val can be obtained by setting the half-length equal to a prescribed value B and solving for n.

There are two points worth mentioning. First, the confidence interval for the difference
between means uses a t-multiple. As was done for the mean, this can be replaced by a z-
multiple, which is perfectly acceptable in most situations. Second, the confidence intervals
for differences between means or proportions require two sample sizes, one for each sam-
ple. The formulas below assume that each sample uses the same sample size, denoted by n.

The sample size formula for a proportion p is given by Equation (8.18). Here, pest is an
estimate of the population proportion p. A conservative value of n can be obtained by
using pest 
 0.5. It is conservative in the sense that the sample size obtained by using 
pest 
 0.5 guarantees a confidence interval half-length no greater than B, regardless of the
true value of p.

Sample Size Formula for Estimating a Proportion

(8.18)n = a
z-multiple

B
b

2
 pest(1 - pest)

We have demonstrated the use of Equation (8.17) for a sample mean. In the same way, it can
also be used in the paired-sample procedure. In this case the resulting value of n refers to the
number of pairs that should be included in the sample, and �est refers to an estimate of the
standard deviation of the differences (Husband scores minus Wife scores, for example).

FUNDAMENTAL INSIGHT

Confidence Interval Length

The length of any confidence interval is influenced by

three things: the sample size, the confidence level, and

the variability in the population.The confidence level is

typically set at 95%, and you have no control over the

variability in the population (except possibly by choos-

ing an appropriate experimental design).Therefore, the

best way to control confidence interval length is

through the choice of the sample size.
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The sample size formula for the difference between means is given by Equation
(8.19). Here, �est is an estimate of the standard deviation of each population, where we
make the assumption (as in Section 8.7.1) that the two populations have a common stan-
dard deviation �.
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Sample Size Formula for Estimating the Difference Between Means

(8.19)n = 2a
z-multiple * �est

B
b

2
 

Finally, the sample size formula for the difference between proportions is given by
Equation (8.20). Here, p1est and p2est are estimates of the two unknown population propor-
tions p1 and p2. As in the case of a single proportion, a conservative value of n is obtained
by using the estimates p1est 
 p2est 
 0.5.

Sample Size Formula for Estimating the Difference Between Proportions

(8.20)n = a
z-multiple

B
b

2
 [p1est(1 - p1est) + p2est(1 - p2est)]

E X A M P L E 8.12 SAMPLE SIZE SELECTION FOR ESTIMATING THE PROPORTION

WHO HAVE TRIED A NEW SANDWICH

Suppose that the fast-food manager from the previous example wants to estimate the
proportion of customers who have tried its new sandwich. She wants a 90% confidence

interval for this proportion to have half-length 0.05. For example, if the sample proportion
turns out to be 0.42, a 90% confidence interval should be (approximately) 0.42 � 0.05.
How many customers need to be surveyed?

Objective To find the sample size of customers required to achieve a sufficiently narrow
confidence interval for the proportion of customers who have tried the new sandwich.

Solution

If the manager has no idea what the proportion is, she can use pest 
 0.5 in Equation (8.18)
to obtain a conservative value of n. The appropriate z-multiple is now 1.645 because this
value cuts off probability 0.05 in each tail of the standard normal distribution. (Remember
that we are asking for a 90% confidence level, not the usual 95% level.) Therefore, the
required value of n is

On the other hand, if the manager is fairly sure that the proportion who have tried the new
sandwich is around 0.3, she can use pest = 0.3 instead. This time, use StatTools and enter
the values 90% (confidence level), 0.05 (desired half-length), and 0.3 (estimate of the 
proportion). The resulting output is shown in Figure 8.38.

n = a
1.645

0.05
b

2
(0.5)(1 - 0.5) M 271
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10
11
12
13
14

BA
Sample Size for Proportion
Confidence Level 90.00%
Half-length of Interval 0.05
Proportion (estimate) 0.3000
Sample Size 228

Figure 8.38

Sample Size for

Proportion

These calculations indicate that if you have more specific information about the
unknown proportion, you can use a smaller sample size—in this case 228 rather than 271.
Also, note that we selected a 90% confidence level rather than the usual 95% level. There
is a trade-off here. Using 90% rather than 95% obviously provides less confidence in the
result, but it requires a smaller sample size. You can check that the required sample sizes
for a 95% confidence level increase from the current values, 271 and 228, to 385 and 323,
respectively. ■

Again, remember that
lower confidence levels
result in narrower
confidence intervals.

E X A M P L E 8.13 SAMPLE SIZE SELECTION FOR ANALYZING CUSTOMER COMPLAINTS

ABOUT POOR SERVICE

Acomputer company has a customer service center that responds to customers’ ques-
tions and complaints. The center employs two types of people: those who have had a

recent course in dealing with customers (but little actual experience) and those with a lot of
experience dealing with customers (but no formal course). The company wants to estimate
the difference between these two types of employees in terms of the average number of
customer complaints regarding poor service in the last six months. The company plans to
obtain information on a randomly selected sample of each type of employee, using equal
sample sizes. How many employees should be in each sample to achieve a 95% confidence
interval with approximate half-length 2?

Objective To see how many employees in each experimental group must be sampled to
achieve a sufficiently narrow confidence interval for the difference between the mean num-
bers of complaints.

Solution

Equation (8.19) should be used with z-multiple 1.96 and B 
 2. However, this formula also
requires a value for �est, an estimate of the (assumed) common standard deviation for each
group of employees, and there is no obvious estimate available. The manager might use the
following argument. Based on a brief look at complaint data, he believes that some
employees receive as few as 6 complaints over a six-month period, whereas others receive
as many as 36 (about six per month). Now he can estimate �est by arguing that all observa-
tions are likely to be within three standard deviations of the mean, so that the range of
data—minimum to maximum—is about six standard deviations. Therefore, he sets

6�est 
 36 � 6 
 30

and obtains �est 
 5. Using this value in Equation (8.19), the required sample size is

n = 2 a
1.96(5)

2
b

2
M 49
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The StatTools Sample Size Selection procedure confirms this value. Enter the values 95%
(confidence level), 2 (desired half-length), and 5 (estimated standard deviation). The
resulting output is shown in Figure 8.39.

Some analysts prefer the estimate

4�est 
 36 � 6 
 30

that is, �est 
 7.5, arguing that the quoted range (6 to 36) might not include “extreme”
values and hence might extend to only two standard deviations on either side of the mean.
By using this estimate of the standard deviation, you can check that the required sample
size increases from 49 to 109. The important point here is that the estimate of the standard
deviation can have a dramatic effect on the required sample size. (And don’t forget that this
size sample must be taken from each group of employees.) ■

The final example in this section illustrates what can happen when you ask for
extremely accurate confidence intervals.
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17
18
19
20
21

BA
Sample Size for Difference of Means
Confidence Level 95.00%
Half-length of Interval 2.00
Common Std Dev (estimate) 5.0000
Sample Size 49

Figure 8.39

Sample Size for

Difference Between

Means

E X A M P L E 8.14 SAMPLE SIZE SELECTION FOR ANALYZING PROPORTIONS OF

OUT-OF-SPEC PRODUCTS

Amanufacturing company has two plants that produce identical products. The produc-
tion supervisor wants to know how much the proportion of out-of-spec products dif-

fers across the two plants. He suspects that the proportion of out-of-spec products in each
plant is in the range of 3% to 5%, and he wants a 99% confidence interval to have approx-
imate half-length 0.005 (or 0.5%). How many items should he sample from each plant?

Objective To see how many products in each plant must be sampled to achieve a suffi-
ciently narrow confidence interval for the difference between the proportions of out-of-
spec products.

Solution

Equation (8.20) should be used with z-multiple 2.576 (the value that cuts off probability
0.005 in each tail of the standard normal distribution), B 
 0.005, and p1est 
 p2est 
 0.05.
The reasoning for the latter is that the supervisor believes each proportion is around 3%
to 5%, and the most conservative (largest) sample size corresponds to using the larger 5%
value. Then the required sample size is

This sample size (from each sample) is almost certainly prohibitive, so the supervisor real-
izes he must lower his goals. One way is to decrease the confidence level, say, from 99% to
95%. Another way is to increase the desired half-length from 0.005 to, say, 0.025. We
implemented both of these changes in the StatTools Sample Size Selection procedure by

n = a
2.576

0.005
b

2
[0.05(0.95) + 0.05(0.95)] M 25,213
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entering the values 95% (confidence level), 0.025 (desired half-length), and 0.05 and 0.05
(estimates of the proportions). The resulting output is shown in Figure 8.40. Even now
each required sample size is 584. Obviously, narrow confidence intervals for differences
between proportions can require very large sample sizes. ■
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24
25
26
27
28
29

BA
Sample Size for Difference of Proportions
Confidence Level 95.00%
Half-length of Interval 0.03
Proportion 1 (estimate) 0.0500
Proportion 2 (estimate) 0.0500
Sample Size 584

Figure 8.40

Sample Size for

Difference Between

Proportions

P R O B L E M S

Level A

32. Elected officials in a California city are preparing the
annual budget for their community. They would like to
estimate how much their constituents living in this city
are typically paying each year in real estate taxes. Given
that there are over 100,000 homeowners in this city, the
officials have decided to sample a representative subset
of taxpayers and study their tax payments. 
a. What sample size is required to generate a 95%

confidence interval for the mean annual real estate
tax payment with a half-length of $100? Assume
that the best estimate of the population standard
deviation � is $535.

b. If a random sample of the size from part a is
selected and a 95% confidence interval for the
mean is calculated from this sample, will the half-
length of the confidence interval be equal to $100?
Explain why or why not.

c. Now suppose that the officials want to construct a
95% confidence interval with a half-length of $75.
What sample size is required to achieve
this objective? Again, assume that the best estimate
of the population standard deviation � is $535.
Explain the difference between this result and the
result from part a.

33. You have been assigned to determine whether more
people prefer Coke or Pepsi. Assume that roughly
half the population prefers Coke and half prefers
Pepsi. How large a sample do you need to take to
ensure that you can estimate, with 95% confidence,
the proportion of people preferring Coke within 2% of
the actual value?

34. You are trying to estimate the average amount a family
spends on food during a year. In the past the standard
deviation of the amount a family has spent on food
during a year has been approximately $1000. If you

want to be 99% sure that you have estimated average
family food expenditures within $50, how many
families do you need to survey?

35. In past years, approximately 20% of all U.S. families
purchased potato chips at least once a month. You
are interested in determining the fraction of all U.S.
families that currently purchase potato chips at least
once a month. How many families must you survey if
you want to be 99% sure that your estimate of the
relevant proportion is accurate within 2%?

36. Continuing Problem 32, suppose that the officials in
this city want to estimate the proportion of taxpayers
whose annual real estate tax payments exceed $2000.
a. What sample size is required to generate a 99%

confidence interval for this proportion with a half-
length of 0.10? Assume for now that the relevant
population proportion p is close to 0.50.

b. Assume now that officials discover another
source that suggests that approximately 30% of all
property owners in this community pay more
than $2000 annually in real estate taxes. What
sample size is now required to generate the 99%
confidence interval requested in part a?

c. Why is there a difference between your answers to
parts a and b?

d. If a random sample of the size from part a is
selected and a 99% confidence for the proportion is
calculated from this sample, will the half-length of
the confidence interval be equal to 0.10? Explain
why or why not.

Level B

37. Continuing the previous problem, suppose that the
officials in this city want to estimate the difference
between the proportions, labeled p1 and p2, of taxpayers
living in neighborhood 1 whose annual real estate tax
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payments exceed $2000 and the similar proportion for
taxpayers living in neighborhood 2.
a. What sample size (randomly selected from all

taxpayers residing in each of neighborhoods 1 and 2)
is required to generate a 90% confidence interval for
this difference between proportions with a half-
length of 0.10? Assume for now that p1 and p2 are
both close to 0.5.

b. We assumed that the two population proportions
in part a are both close to 0.5. Use a two-way data
table to find the required (common) sample size
when each of the population proportions is allowed
to vary from 0.1 to 0.9 in increments of 0.1.
Comment on the sensitivity of the required sample
size to the magnitudes of the population
proportions.
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8.10 CONCLUSION

When you want to estimate a population parameter from sample data, one of the most use-
ful ways to do so is to report a point estimate and a corresponding confidence interval. This
confidence interval provides a quick sense of where the true parameter lies. It essentially
quantifies the amount of uncertainty in the point estimate. Obviously, narrow confidence
intervals are desired. You have seen that the length of a confidence interval is determined
by the variability in the data, the confidence level, usually set at 95%, and the sample
size(s). You have also seen how sample size formulas can be used at the planning stage to
achieve confidence intervals that are sufficiently narrow. Finally, you have seen how confi-
dence intervals can be calculated from mathematical formulas or with statistical software
such as StatTools. The advantage of software is that it enables you to concentrate on the
important issues for business applications: which confidence intervals are appropriate, how
to interpret them, and how to control their length.

Summary of Key Terms

Term Explanation Excel Pages Equation
Confidence interval An interval that, with a stated level of 389 8.1

confidence, captures a population 
parameter

t distribution The sampling distribution of the 
TDIST(value, 390 8.2
standardized sample mean when df, 1 or 2)
the sample standard deviation is used 
TINV(prob,df)
in place of the population standard
deviation

Confidence level Percentage (usually 90%, 95%, or 394
99%) that indicates how confident
you are that the interval captures
the true population parameter

Confidence interval Interval that is likely to capture a StatTools/ 394 8.4
for a mean population mean Statistical

Inference/
Confidence Interval

Confidence interval Interval that is likely to capture the Can be derived 400
for a total total of all observations in a from StatTools/

population Statistical
Inference/
Confidence Interval

Confidence interval Interval that is likely to capture the StatTools/ 404 8.10
for a proportion proportion of all population members Statistical

that satisfy a specified property Inference/
Confidence Interval

(continued)
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Summary of Key Terms (Continued)

Term Explanation Excel Pages Equation
Confidence interval Interval that is likely to capture a StatTools/ 409
for a standard population standard deviation Statistical
deviation Inference/

Confidence Interval

Chi-square Skewed distribution useful for 
CHIDIST(value,df) 409
distribution estimating standard deviations 
CHIINV(prob,df)

Confidence interval Interval that is likely to capture the StatTools/ 413–414 8.13, 8.14
for difference difference between two population Statistical
between means with means when the samples are Inference/
independent samples independent Confidence Interval

Confidence interval Interval that is likely to capture the StatTools/ 422
for difference difference between two population Statistical
between means with means when the samples are paired Inference/
paired samples in a natural way Confidence Interval

Confidence interval Interval that is likely to capture the StatTools/ 427–428 8.15, 8.16
for difference difference between similarly defined Statistical
between proportions proportions from two populations Inference/

Confidence Interval

Sample size Formulas that specify the sample StatTools/ 434–437 8.17–8.20
formulas size(s) required to obtain sufficiently Statistical Inference/ 

narrow confidence intervals Sample Size Selection 

P R O B L E M S

Conceptual Questions

C.1. Under what conditions, if any, is it not correct to
assume that the sampling distribution of the sample
mean is approximately normally distributed?

C.2. When, if ever, is it appropriate to use the standard
normal distribution as a substitute for the t distri-
bution with n � 1 degrees of freedom in estimating
a population mean?

C.3. “Assuming that all else remains constant, the length
of a confidence interval for a population mean
increases whenever the confidence level and sample
size increase simultaneously.” Is this statement true
or false? Explain your choice.

C.4. Assuming that all else remains constant, what
happens to the length of a 95% confidence interval
for a population parameter when the sample size
is reduced by half? You can assume that the
resulting sample size is still quite large. Justify
your answer.

C.5. “The probability is 0.99 that a 99% confidence
interval contains the true value of the relevant
population parameter.” Is this statement true or
false? Explain your choice.

C.6. Suppose you have a list salaries of all professional
athletes in a given sport in a given year. For example,
you might have the salaries of all Major League
Baseball players in 2010. Does it make sense to find
a 95% confidence interval for the mean salary? If so,
what is the relevant population?

C.7. Suppose that someone proposes a new way to cal-
culate a 95% confidence interval for a mean. This
could involve any arithmetic on the given data. For
example, it could say to go out 1.75 interquartile
ranges (IQRs) on either side of the median. What
would it mean to say that this procedure produces
valid 95% confidence intervals? How could you use
simulation to check whether the procedure produces
valid 95% confidence intervals?

C.8. The sample size formula for a confidence interval
for the population mean requires an estimate of the
population standard deviation. Intuitively, why is this
the case? Specifically, why is the required sample
size larger if the population standard deviation is
larger?

C.9. Suppose a 95% confidence interval for a population
mean has been calculated, and it extends from
123.7 to 155.2. Some people would then state,
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“The probability that the population mean is
between 123.7 and 155.2 is 0.95.” Why is this,
strictly speaking, an invalid statement? How would
you rephrase it to make it a valid statement?

C.10. Researchers often create multiple 95% confidence
intervals based on a given data set. For example, if the
variable of interest is home price and there are five
neighborhoods in the population, they might create 10
confidence intervals, one for each difference between
mean home prices for a given pair of neighborhoods.
(There are 10 pairs.) Can they then conclude that
there is 95% confidence that all 10 of their confidence
intervals will include the corresponding population
mean differences? Why or why not?

C.11. Based on a given random sample, suppose you
calculate a 95% confidence interval for the following
difference: the mean test score for students under
25 years old minus the mean test score for students
at least 25 years old, and the confidence interval
extends from �14.3 to 1.2. How would you interpret
these results? Would you claim that older students,
on average, score higher on this test? Would you
claim that, on average, it is possible that the younger
students score higher on this test?

Level A

38. A sample of 15 quality control managers with more
than 20 years experience have an average salary of
$68,000 and a sample standard deviation of $19,000.
a. You can be 95% confident that the mean salary for

all quality managers with at least 20 years of
experience is between what two numbers? What
assumption are you making about the distribution
of salaries?

b. What size sample is needed to ensure that you can
estimate the population mean salary of all quality
managers with more than 20 years of experience
and have only one chance in 100 of being off by
more than $500?

39. Political polls typically sample randomly from the
U.S. population to investigate the percentage of voters
who favor some candidate or issue. The number of
people polled is usually on the order of 1000. Suppose
that one such poll asks voters how they feel about the
President’s handling of environmental issues. The
results show that 575 out of the 1280 people polled
say they either approve or strongly approve of the
President’s handling. Find a 95% confidence interval
for the proportion of the entire voter population who
approve or strongly approve of the President’s
handling. If the same sample proportion were found in
a sample twice as large—that is 1150 out of 2560—
how would this affect the confidence interval? How
would the confidence interval change if the confidence
level were 90% instead of 95%?

40. Referring to the previous problem, you often hear the
results of such a poll in the news. In fact, the news-
casters usually report something such as, “44.9% of
the population approve or strongly approve of the
President’s handling of the environment. The margin
of error in this result is plus or minus 3%.” Where
does this 3% comes from? If the pollsters want the
margin of error to be plus or minus 3%, how does this
lead to a sample size of approximately 1000?

41. The widths of 100 elevator rails have been measured.
The sample mean and standard deviation of the eleva-
tor rails are 2.05 inches and 0.01 inch.
a. Find a 95% confidence interval for the average

width of an elevator rail. Do you need to assume
that the widths of elevator rails are normally
distributed?

b. How large a sample of elevator rails would you
have to measure to ensure that you could estimate,
with 95% confidence, the average diameter of an
elevator rail within 0.01 inch?

42. You want to determine the percentage of Fortune
500 CEOs who think Indiana University (IU)
deserves its current Business Week rating. You mail
a questionnaire to all 500 CEOs and 100 respond.
Exactly half of the respondents believe IU does
deserve its ranking.
a. Find a 95% confidence interval for the fraction of

Fortune 500 CEOs who believe IU deserves its
ranking.

b. Suppose again that you want to estimate the fraction
of Fortune 500 CEOs who believe IU deserves its
ranking. Your goal is to have only a 5% chance of
having your estimate be in error by more than 0.02.
What size sample would you need to take?

43. The SEC requires companies to file annual reports
concerning their financial status. It is impossible to
audit every account receivable. Suppose an auditor
audits a random sample of 49 accounts receivable
invoices and finds a sample average of $128 and a
sample standard deviation of $53.
a. Find a 99% confidence interval for the mean size

of an accounts receivable invoice. Does your
answer require the sizes of the accounts receivable
invoices to be normally distributed?

b. How large a sample is required for you to be 99%
sure that the estimate of the mean invoice size is
accurate within $5?

44. An opinion poll surveyed 900 people and reported that
36% believe a certain governor broke campaign
financing laws in his election campaign.
a. Find a 95% confidence interval for the population

proportion of people who believe the governor
broke campaign financing laws. Does the result of
the poll convince you that fewer than 38% of all
U.S. citizens favor that viewpoint?
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b. Suppose 10,000 (not 900) people are surveyed and
36% believe that the governor broke campaign
financing laws. Would you now be convinced that
fewer than 38% of all U.S. citizens favor that
viewpoint? Why is your answer different than in
part a?

c. How many people would you have to survey to be
99% confident that you can estimate to within 1%
the fraction of people who believe the governor
broke campaign financing laws?

45. The file P08_07.xlsx contains a random sample of
200 service times during the busiest hour of the day
at a particular fast-food restaurant. Find a 95%
confidence interval for each of the following
population parameters. Then explain how each result
might be useful to the manager of the restaurant in
terms of improving service.
a. The mean service time
b. The standard deviation of service times
c. The proportion of service times longer than 

90 seconds
d. The proportion of service times shorter than 

60 seconds
46. We know that IQs are normally distributed with a

mean of 100 and standard deviation of 15. Suppose
you want to verify this, so you take 100 random
samples of size four each and, for each sample, find a
95% confidence interval for the mean IQ. You expect
that approximately 95 of these intervals will contain
the true mean IQ (100) and approximately five of
these intervals will not contain the true mean. Use
simulation in Excel to see whether this is the case.

47. In Section 8.9, we gave a sample size formula for
confidence interval estimation of a mean. If the
confidence level is 95%, then because the z-multiple
is about 2, this formula is essentially

However, this formula is based on the assumption that
the sample size n will be small relative to the population
size N. If this is not the case, the appropriate formula
turns out to be

Now suppose you want to find a 95% confidence
interval for a population mean. Based on preliminary
(or historical) data, you believe that the population
standard deviation is approximately 15. You want 
the confidence interval to have length 4. That is, 
you want the confidence interval to be of the form

. What sample size is required if N 
 400?
if N 
 800? if N 
 10,000? if N 


100,000,000? How would you summarize these
findings in words?

48. The Ritter Manufacturing Company has kept track
of machine hours and overhead costs at its main
manufacturing plant for the past 52 weeks. The data
appear in the file P08_48.xlsx. Ritter has studied these
data to understand the relationship between machine
hours and overhead costs. Although the relationship is
far from perfect, Ritter believes a fairly accurate
prediction of overhead costs can be obtained from
machine hours through the equation

Estimated Overhead 
 746.5078 � 3.3175*Machine Hours

By substituting any observed value of Machine Hours
into this equation, Ritter obtains an estimated value
of Overhead, which is always somewhat different from
the true value of Overhead. The difference is called
the prediction error.
a. Find a 95% confidence interval for the mean

prediction error. Do the same for the absolute
prediction error. (Hint: For example, the prediction
error in week 1, actual overhead minus predicted
overhead, is –94.5303. The absolute prediction
error is the absolute value, 94.5303.)

b. A close examination of the data suggests that week
45 is a possible outlier. Illustrate this by creating a
box plot of the prediction errors. In what sense is
week 45 is an outlier? See whether week 45 has
much effect on the confidence intervals from part a
by recalculating these confidence intervals, this time
with week 45 deleted. Discuss your findings briefly.

Problems 49 through 58 are related to the data in
the file P08_49.xlsx. This file contains data on 400
customers’ orders from ElecMart, a company that sells
electronic appliances by mail order. (This same data
set was used in Example 3.4 of Chapter 3.) You can
consider the data as a random sample from all of
ElecMart’s orders.

49. Find a 95% confidence interval for the mean total cost
of all customer orders. Then do this separately for
each of the four regions. Create side-by-side box plots
of total cost for the four regions. Does the positive
skewness in these box plots invalidate the confidence
interval procedure used?

50. Find a 95% confidence interval for the proportion of
all customers whose order is for more than $100. Then
do this separately for each of three times of day.

51. Find a 95% confidence interval for the proportion of
all customers whose orders contain at least three items
and cost at least $100 total.

52. Find a 95% confidence interval for the difference
between the mean amount of the highest cost item
purchased for the High customer category and the
similar mean for the Medium customer category. Do
the same for the difference between the Medium and
Low customer categories. Because of the way these

X ; 2

n =

Ns2

s2
+ (N - 1)B2/4

n =

4s2

B2
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customer categories are defined, you would probably
expect these mean differences to be positive. Is this
what the data indicate?

53. Of the subpopulation of customers who order in the
evening, consider the proportion who are female.
Similarly, of the subpopulation of customers who
order in the morning, consider the proportion who are
female. Find a 95% confidence interval for the
difference between these two proportions.

54. Find a 95% confidence interval for the difference
between the following two proportions: the proportion
of female customers who order during the evening and
the proportion of male customers who order during the
evening.

55. Find a 95% confidence interval for the difference
between the following means: the mean total order
cost for West customers and the mean total order cost
of Northeast customers. Do the same for the other
combinations: West versus Midwest, West versus
South, Northeast versus South, Northeast versus
Midwest, and South versus Midwest.

56. Find a 95% confidence interval for the difference
between the mean cost per item for female orders and
the similar mean for males.

Level B

57. Let pE,F be the proportion of female orders that are
paid for with the ElecMart credit card, and let pE,M be
the similar proportion for male orders.
a. Find a 95% confidence interval for pE,F; for pE,M;

for the difference pE,F � pE,M.
b. Let pE,F,Wd be the proportion of female orders on

weekdays that are paid for with the ElecMart credit
card, and let pE,F,We be the similar proportion for
weekends. Define pE,M,Wd and pE,M,We similarly
for males. Find a 95% confidence interval for the
difference (pE,F,Wd � pE,M,Wd) � (pE,F,We � pE,M,We).
Interpret this difference in words. Why might it be 
of interest to ElecMart?

58. Suppose these 400 orders are a sample of the 4295
orders made during this time period, and suppose 2531
of these orders were placed by females. Find a 95%
confidence interval for the total paid for all 4295 orders.
Do the same for all 2531 orders placed by females. Do
the same for all 1764 orders placed by males.

Problems 59 through 64 are related to the data in the
file P08_59.xlsx. This file contains data on 91 billings
from Rebco, a company that sells plumbing supplies
to retailers. You can consider the data as a random
sample from all of Rebco’s billings.

59. Find a 95% confidence interval for the mean amount
of all Rebco’s bills. Do the same for each customer
size separately.

60. Find a 95% confidence interval for the mean number
of days it takes Rebco’s customers (as a combined
group) to pay their bills. Do the same for each
customer size separately. Create a box plot for the
variable Days, based on all 91 billings. Also, create
side-by-side box plots for Days for the three separate
customer sizes. Do any of these suggest problems
with the validity of the confidence intervals?

61. Find a 95% confidence interval for the proportion of
all large customers who pay bills of at least $1000 at
least 15 days after they are billed.

62. Find a 95% confidence interval for the proportion of
all bills paid within 15 days. Find a 95% confidence
interval for the difference between the proportion of
large customers who pay within 15 days and the
similar proportion of medium-size customers. Find
a 95% confidence interval for the difference between
the proportion of medium-size customers who pay
within 15 days and the similar proportion of small
customers.

63. Suppose a bill is considered late if it is paid after 
20 days. In this case its “lateness” is the number of
days over 20. For example, a bill paid 23 days after
billing has a lateness of 3, whereas a bill paid 18 days
after billing has a lateness of 0. Find a 95% confidence
interval for the mean amount of lateness for all
customers. Find similar confidence intervals for each
customer size separately. Why is the distribution of
lateness certainly not normal? Do you think this
matters for the validity of the confidence interval?

64. Suppose Rebco can earn interest at the rate of 0.011%
daily on excess cash. The company realizes that it
could earn extra interest if its customers paid their
bills more promptly.
a. Find a 95% confidence interval for the mean amount

of interest it could gain if each of its customers paid
exactly one day more promptly. Find similar confi-
dence intervals for each customer class separately.

b. Suppose these 91 billings represent a random sam-
ple of the 2792 billings Rebco generates during the
year. Find a 95% confidence interval for the total
amount of extra interest it could gain by getting
each of these 2792 billings to be paid two days
more promptly.

65. The file P08_65.xlsx contains data on the first 100
customers who entered a two-teller bank on Friday.
All variables in this file are times, measured in
minutes. 
a. Find a 95% confidence interval for the mean amount

of time a customer spends in service with a teller.
b. The bank is most interested in mean waiting times

because customers get upset when they have to
spend a lot of time waiting in line. Use the usual
procedure to calculate a 95% confidence interval
for the mean waiting time per customer.
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c. Your answer in part b is not valid! (It is much
too narrow. It makes you believe you have a much
more accurate estimate of the mean waiting time than
you really have.) We made two implicit assumptions
when we stated the confidence interval procedure for
a mean: (1) The individual observations come from
the same distribution, and (2) the individual observa-
tions are probabilistically independent. Why are both
of these, particularly (2), violated for the customer
waiting times? [Hint: For (1), how do the first few
customers differ from “typical” customers? For (2), if
you are behind someone in line who has to wait a
long time, what do you suspect about your own wait-
ing time?]

d. Following up on assumption (2) of part c, you
might expect waiting times of successive customers
to be autocorrelated, that is, correlated with each
other. Large waiting times tend to be followed by
large waiting times, and small by small. Check this
with StatTools’s Autocorrelation procedure, under
the Time Series & Forecasting/Autocorrelation
menu item. An autocorrelation of a certain lag, say,
lag 2, is the correlation in waiting times between a
customer and the second customer behind her. Do
these successive waiting times appear to be auto-
correlated? (A valid confidence interval for the
mean waiting time takes autocorrelations into
account—but it is considerably more difficult to
calculate.)

Problems 66 through 68 are related to the data in the
file P08_66.xlsx. The SoftBus Company sells PC
equipment and customized software to small
companies to help them manage their day-to-day
business activities. Although SoftBus spends time with
all customers to understand their needs, the customers
are eventually on their own to use the equipment and
software intelligently. To understand its customers
better, SoftBus recently sent questionnaires to a large
number of prospective customers. Key personnel—
those who would be using the software—were asked
to fill out the questionnaire. SoftBus received 82
usable responses, as shown in the file. You can assume
that these employees represent a random sample of all
of SoftBus’s prospective customers.

66. Construct a histogram of the PCKnowledge variable.
[Because there are only five possible responses (1–5),
this histogram should have only five bars.] Repeat this
separately for those who own a PC and those who do
not. Then find a 95% confidence interval for the mean
value of PCKnowledge for all of SoftBus’s prospective
customers; of all its prospective customers who own
PCs; of all its prospective customers who do not own
PCs. The PCKnowledge variable obviously can’t be
exactly normally distributed because it has only five
possible values. Do you think this invalidates the
confidence intervals? Explain your choice.

67. SoftBus believes it can afford to spend much less time
with customers who own PCs and score at least 4 on
PCKnowledge. Let’s call these the “PC-savvy” cus-
tomers. On the other hand, SoftBus believes it will have
to spend a lot of time with customers who do not own a
PC and score 2 or less on PCKnowledge. Let’s call
these the “PC-illiterate” customers.
a. Find a 95% confidence interval for the proportion

of all prospective customers who are PC-savvy.
Find a similar interval for the proportion who are
PC-illiterate.

b. Repeat part a twice, once for the subpopulation of
customers who have at least 12 years of experience
and once for the subpopulation who have less than
12 years of experience.

c. Again repeat part a twice, once for the subpopula-
tion of customers who have no more than a high
school diploma and once for the subpopulation
who have more than a high school diploma.

d. Find a 95% confidence interval for the difference
between two proportions: the proportion of all
customers with some college education who are
PC-savvy and the similar proportion of all cus-
tomers with no college education. Repeat this,
substituting “PC-savvy” with “PC-illiterate.”

e. Discuss any insights you gain from parts a through
d that might be of interest to SoftBus.

68. Following up on the previous problem, SoftBus
believes its profit from each prospective customer
depends on the customer’s level of PC knowledge. It
divides the customers into three classes: PC-savvy,
PC-illiterate, and all others (where the first two classes
are as defined in the previous problem). As a rough
guide, SoftBus figures it can gain profit P1 from each
PC-savvy customer, profit P3 from each PC-illiterate
company, and profit P2 from each of the others.
a. What values of P1, P2, and P3 seem reasonable?

For example, would you expect P1 � P2 � P3 or
the opposite?

b. Using any reasonable values for P1, P2, and P3,
find a 95% confidence interval for the mean profit
per customer that SoftBus can expect to obtain.

Problems 69 through 72 are related to the data in
the file P08_69.xlsx. The Comfy Company sells
medium-priced patio furniture through a mail-order
catalog. It has operated primarily in the East but is
now expanding to the Southwest. To get off to a good
start, it plans to send potential customers a catalog
with a discount coupon. However, Comfy is not sure
how large a discount is needed to entice customers to
buy. It experiments by sending catalogs to selected
residents in six cities. Tucson and San Diego receive
coupons for 5% off any furniture within the next 
two months, Phoenix and Santa Fe receive coupons for
10% off, and Riverside and Albuquerque receive
coupons for 15% off. 
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69. Find a 95% confidence interval for the proportion of
customers who will purchase at least one item if they
receive a coupon for 5% off. Repeat for 10% off and
for 15% off.

70. Find a 95% confidence interval for the proportion of
customers who will purchase at least one item and pay
at least $500 total if they receive a coupon for 5% off.
Repeat for 10% off and for 15% off.

71. Comfy wonders whether the customers who receive
larger discounts are buying more expensive items.
Recalling that the value in the TotPaid column is after
the discount, find a 95% confidence interval for the
difference between the mean original price per item
for customers who purchase something with the 5%
coupon and the similar mean for customers who pur-
chase something with the 10% coupon. Repeat with
5% and 10% replaced by 10% and 15%. What can you
conclude?

72. Comfy wonders whether there are differences across
pairs of cities that receive the same discount.
a. Find a 95% confidence interval for the difference

between the mean amount spent in Tucson and the
similar mean in San Diego. (These means should
include the “0 purchases.”) Repeat this for the
difference between Phoenix and Santa Fe and then
between Riverside and Albuquerque. Does city
appear to make a difference?

b. Repeat part a, but instead of analyzing differences
between means, analyze differences between
proportions of customers who purchase something.
Does city appear to make a difference?

Problems 73 through 76 are related to the data in the
file P08_73.xlsx. The Niyaki Company sells Blu-ray
disc players through a number of retail stores. On one
popular model, there is a standard warranty that covers
parts for the first six months and labor for the first
year. Customers are always asked whether they wish
to purchase an extended service plan for $50 that
extends the original warranty two more years—that is,
to 30 months on parts and 36 months on service. To
get a better understanding of warranty costs, the
company has gathered data on 70 Blu-ray units
purchased. This data is listed in the Data1 sheet of the
file P08_73.xlsx. The two costs in this sheet (columns
D and E) are tracked only for repairs covered by
warranty. [Otherwise, the customer bears the cost(s).] 

73. Create a histogram of the time until first failure for
this type of disc player. Then find a 95% confidence
interval for the mean time until failure for this type of
disc player. Does the shape of the histogram invalidate
the confidence interval? Why or why not?

74. Find a 95% confidence interval for the proportion of
customers who purchase the extended service plan.
Find a 95% confidence interval for the proportion of

all customers who would benefit by purchasing the
extended service plan.

75. Find a 95% confidence interval for Niyaki’s mean net
warranty cost per unit sold (net of the $50 paid for the
plan for those who purchase it). You can assume that
this mean is for the first failure only; subsequent fail-
ures of the same units are ignored here.

76. This problem follows up on the previous two problems
with the data in the Data2 sheet of the file. Here
Niyaki did more investigation on the same 70
customers. It tracked subsequent failures and costs 
(if any) that occurred within the warranty period.
(Note: Only two customers had three failures within
the warranty period, and parts weren’t covered for
either on the third failure. Also, no one had more than
three failures within the warranty period.)
a. With these data, find the confidence intervals

requested in the previous two problems.
b. Suppose that Niyaki sold this Blu-ray model to

12,450 customers during the year. Find a 95%
confidence interval for its total net cost due to
warranties from all of these sales.

77. The file P08_77.xlsx contains data on 856 customers
who have either tried or not tried a company’s new
frozen lasagna dinner. (This data set was used in
Example 3.5 in Chapter 3.) The manager of the
company would like to compare the proportion of
customers who have tried the lasagna across various
subpopulations. For each of the following, find a
95% confidence interval for the difference between
the proportions who have tried the lasagna for
the two specified subpopulations. Explain briefly
how the results help the manager to understand his
customers. (Hint: One approach is to use pivot tables
to get the count data you need.)
a. Those with weight under 190 versus those with

weight at least 190
b. Females versus males
c. Those who live alone versus those who do not live

alone
d. Those who live in a home or condo versus those

who live in an apartment
e. Those who live in the South or West versus those

who live in the East
f. Those who average five or more trips to the mall

per month versus those who average fewer than
five trips to the mall per month.

78. The formula for a 95% confidence interval for a mean
(sample mean plus or minus approximately two stan-
dard errors) is so well-rooted in statistical theory and
practice that you might not even consider other possi-
bilities. However, many researchers and even practi-
tioners favor a totally different method of calculating a
95% confidence interval for the mean. It is called the
bootstrap method. Starting with a sample of size n,
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they generate many “bootstrap samples,” calculate the
sample mean of each, and report the 
2.5 and 97.5 percentiles of these sample means as the
endpoints of the confidence interval. Each bootstrap
sample is a random sample of size n, with replace-
ment, from the given data. That is, each member of a
bootstrap sample is equally likely to be any of the
original n data points. Implement this in Excel, 

starting with the sample of 50 salaries in the file
P08_78.xlsx. Create at least 100 bootstrap samples.
Compare the resulting bootstrap confidence interval
with the one from StatTools (the traditional one).
(Hint: The bootstrap samples can be generated quickly
with a combination of the RANDBETWEEN and
VLOOKUP functions.)
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C A S E

Harrigan University is a liberal arts university in

the Midwest that attempts to attract the highest-

quality students, especially from its region of the

country. It has gathered data on 178 applicants who

were accepted by Harrigan (a random sample from all

acceptable applicants over the past several years).The

data are in the file University Admissions.xlsx.

The variables are as follows:

■ Accepted: whether the applicant accepts

Harrigan’s offer to enroll

■ MainRival: whether the applicant enrolls at

Harrigan’s main rival university

■ HSClubs: number of high school clubs applicant

served as an officer

■ HSSports: number of varsity letters applicant

earned

■ HSGPA: applicant’s high school GPA

■ HSPctile: applicant’s percentile (in terms of GPA)

in his or her graduating class

■ HSSize: number of students in applicant’s

graduating class

■ SAT: applicant’s combined SAT score

■ CombinedScore: a combined score for the

applicant used by Harrigan to rank applicants.

The derivation of the combined score is a

closely kept secret by Harrigan, but it is basically a

weighted average of the various components of high

school performance and SAT. Harrigan is concerned

that it is not getting enough of the best students, and

worse yet, that many of these best students are going

to Harrigan’s main rival. Solve the following problems

and then, based on your analysis, comment on

whether Harrigan appears to have a legitimate

concern.

1. Find a 95% confidence interval for the

proportion of all acceptable applicants who

accept Harrigan’s invitation to enroll. Do the

same for all acceptable applicants with a

combined score less than 330, with a combined

score between 330 and 375, and then with a

combined score greater than 375. (Note that

330 and 375 are approximately the first and

third quartiles of the CombinedScore variable.)

2. Find a 95% confidence interval for the pro-

portion of all acceptable students with a

combined score less than the median (356) who

choose Harrigan’s rival over Harrigan. Do the

same for those with a combined score greater

than the median.

3. Find 95% confidence intervals for the mean

combined score, the mean high school GPA,

and the mean SAT score of all acceptable

students who accept Harrigan’s invitation to

enroll. Do the same for all acceptable students

who choose to enroll elsewhere.Then find 95%

confidence intervals for the differences between

these means, where each difference is a mean

for students enrolling at Harrigan minus the

similar mean for students enrolling elsewhere.

4. Harrigan is interested (as are most schools) in

getting students who are involved in extracurric-

ular activities (clubs and sports). Does it appear

to be doing so? Find a 95% confidence interval

for the proportion of all students who decide to

enroll at Harrigan who have been officers of at

least two clubs. Find a similar confidence interval

for those who have earned at least four varsity

letters in sports.

5. The combined score Harrigan calculates for

each student gives some advantage to students

who rank highly in a large high school relative to

those who rank highly in a small high school.

Therefore, Harrigan wonders whether it is rela-

tively more successful in attracting students

from large high schools than from small high

schools. Develop one or more confidence inter-

vals for relevant parameters to shed some light

on this issue. ■
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C A S E

Demand for systems analysts in the consulting

industry is greater than ever. Graduates with a

combination of business and computer knowledge—

some even from liberal arts programs—are getting

great offers from consulting companies. Once these

people are hired, they frequently switch from one

company to another as competing companies lure

them away with even better offers. One consulting

company, D&Y, has collected data on a sample of sys-

tems analysts with undergraduate degrees they hired

several years ago.The data are in the file Employee

Retention.xlsx.The variables are as follows:

■ StartSal: employee’s starting salary at D&Y

■ OnRoadPct: percentage of time employee has

spent on the road with clients

■ StateU: whether the employee graduated from

State University (D&Y’s principal source of

recruits)

■ CISDegree: whether the employee majored in

Computer Information Systems (CIS) or a

similar computer-related area

■ Stayed3Yrs: whether the employee stayed at

least three years with D&Y

■ Tenure: tenure of employee at D&Y (months) if

he or she moved before three years

D&Y is trying to learn everything it can about

retention of these valuable employees.You can help

by solving the following problems and then, based on

your analysis, presenting a report to D&Y.

1. Although starting salaries are in a fairly narrow

band, D&Y wonders whether they have anything

to do with retention.

a. Find a 95% confidence interval for the mean

starting salary of all employees who stay at

least three years with D&Y. Do the same for

those who leave before three years.Then find

a 95% confidence interval for the difference

between these means.

b. Among all employees whose starting salary is

below the median ($37,750), find a 95% confi-

dence interval for the proportion who stay

with D&Y for at least three years. Do the

same for the employees with starting salaries

above the median.Then find a 95% confidence

interval for the difference between these pro-

portions.

2. D&Y wonders whether the percentage of time

on the road might influence who stays and who

leaves. Repeat the previous problem, but now do

the analysis in terms of percentage of time on

the road rather than starting salary. (The median

percentage of time on the road is 54%.)

3. Find a 95% confidence interval for the mean

tenure (in months) of all employees who leave

D&Y within three years of being hired.Why is it

not possible with the given data to find a

confidence interval for the mean tenure at D&Y

among all systems analysts hired by D&Y?

4. State University’s students, particularly those in

its nationally acclaimed CIS area, have

traditionally been among the best of D&Y’s

recruits. But are they relatively hard to retain?

Find one or more relevant confidence intervals

to help you make an argument one way or the

other. ■

8.2 EMPLOYEE RETENTION AT D&Y
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C A S E

The SnowPea Restaurant is a Chinese carryout/

delivery restaurant. Most of SnowPea’s deliveries

are within a 10-mile radius, but it occasionally delivers

to customers more than 10 miles away. SnowPea

employs a number of delivery people, four of whom

are relatively new hires.The restaurant has recently

been receiving customer complaints about exces-

sively long delivery times.Therefore, SnowPea has col-

lected data on a random sample of deliveries by its

four new delivery people during the peak dinner

time.The data are in the file Delivery Times.xlsx.

The variables are as follows:

■ Deliverer: which person made the delivery

■ PrepTime: time from when order was placed

until delivery person started driving it to the

customer

■ TravelTime: time to drive from SnowPea to

customer

■ Distance: distance (miles) from SnowPea to

customer

Solve the following problems and then, based on

your analysis, write a report that makes reasonable

recommendations to SnowPea management.

1. SnowPea is concerned that one or more of the

new delivery people might be slower than others.

a. Let �Di and �Ti be the mean delivery time and

mean total time for delivery person i,where the

total time is the sum of the delivery and prep

times. Find 95% confidence intervals for each of

these means for each delivery person.Although

these might be interesting, give two reasons

why they are not really fair measures for com-

paring the efficiency of the delivery people.

b. Responding to the criticisms in part a, find a

95% confidence interval for the mean speed of

delivery for each delivery person, where speed

is measured as miles per hour during the trip

from SnowPea to the customer.Then find 95%

confidence intervals for the mean difference in

speed between each pair of delivery people.

2. SnowPea would like to advertise that it can

achieve a total delivery time of no more than M

minutes for all customers within a 10-mile

radius. On all orders that take more than M

minutes, SnowPea will give the customers a $10

certificate on their next purchase.

a. Assuming for now that the delivery people in

the sample are representative of all of SnowPea’s

delivery people, find a 95% confidence interval

for the proportion of deliveries (within the 

10-mile limit) that will be on time if M 
 25 

minutes; if M 
 30 minutes; if M 
 35 minutes.

b. Suppose SnowPea makes 1000 deliveries

within the 10-mile limit. For each of the val-

ues of M in part a, find a 95% confidence

interval for the total dollar amount of certifi-

cates it will have to pay for being late.

3. The policy in the previous problem is simple to

state and simple to administer. However, it is

somewhat unfair to customers who live close to

SnowPea—they will never get $10 certificates.

A fairer, but more complex, policy is the

following. SnowPea first analyzes the data and

finds that total delivery times can be predicted

fairly well with the equation

Predicted Delivery Time 
 14.8 + 2.06*Distance

(This is based on regression analysis, the topic

of Chapters 10 and 11.) Also, most of these

predictions are within 5 minutes of the actual

delivery times.Therefore, whenever SnowPea

receives an order over the phone, it looks up the

customer’s address in its computerized geo-

graphical database to find distance, calculates the

predicted delivery time based on this equation,

rounds this to the nearest minute, adds 5 minutes,

and guarantees this delivery time or else a $10

certificate. It does this for all customers, even

those beyond the 10-mile limit.

a. Assuming again that the delivery people in the

sample are representative of all of SnowPea’s

delivery people, find a 95% confidence interval

for the proportion of all deliveries that will be

within the guaranteed total delivery time.

b. Suppose SnowPea makes 1000 deliveries. Find

a 95% confidence interval for the total dollar

amount of certificates it will have to pay for

being late. ■
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C A S E

Ralph Butts, manager of Woodland Operations for

Intergalactica Papelco’s Southeastern Region, had

to decide this morning whether to approve the

Bodfish Lot logging contract that was sitting on his

desk.Accompanying the contract was a cruise report

that gave Mr. Butts the results of a sample survey of

the timber on the Bodfish Lot.Was there enough

timber to make logging operations worthwhile?

The Pluto Mill of Intergalactica Papelco is

located on the River Styxx in Median, Michigan.The

scale of operations at Pluto is enormous. Just one of

its several $500 million, football-field-long, four-story-

high paper machines has the capability to produce a

20-mile-long, 16-foot-wide, 20-ton reel of paper

every hour. Such a machine is run nonstop 24 hours

a day for as many of the 365 days in the year that

mill maintenance can keep the machine running

within specified quality levels. In total, the Pluto Mill

produces about 400,000 tons of white paper a year.

Because it takes about a ton of wood to produce a

ton of paper, a huge quantity of cordwood logs

suitable for chipping and pulping must be supplied

continually to keep the mill operating. Intergalactica

Papelco runs a large-scale logistics, planning, and pro-

curement operation to provide the Pluto Mill with

the requisite species, quantity, and quality of wood in

a timely fashion.

The Pluto Mill sits on 500 acres of land in the

midst of a region in which the huge Intergalactica

Papelco owns over a quarter of a million acres of

forest.Although this wholly owned forest is the sin-

gle largest supplier of wood to the mill, more than

60% of the wood used at Pluto is purchased from

independent landowners and loggers under contract.

Supplying contract wood dependably on such an

enormous scale involves frequent purchasing deci-

sions by the Intergalactica Woodlands Operations as

to which independent woodlots have sufficient wood

volume and quality to support economical logging

operations.A prospective seller enters into a tenta-

tive agreement with Intergalactica on the basis of

market price and a visual scan of the woodlot.The

final decision about whether to proceed with the

logging is usually based on sampling estimates of the

total wood volume on the lot.

A case in point was the Bodfish Lot in

Henryville,Arkansas, whose owner approached

Intergalactica with a proposal for logging during the

1991 to 1992 season.Aerial photographs indicated

that the land was sufficiently promising to warrant

a “cruise” to estimate the total volume of wood.

(Cruising is a term used in the forestry industry to

describe a systematic procedure for estimating the

quantity, quality, variety, and value of the wood on a

plot of land. Indeed, standard cruising methods have

been developed and disseminated by the U.S.

Department of Agriculture and Forestry Service.)

Estimation based on limited sampling is essential.

Even for the modest-size Bodfish Lot, with 586 acres

of forested land, it would be practically impossible

to measure every tree on the lot.

For the Bodfish Lot cruise, it was decided to

sample 89 distinct 1/7-acre plots for actual measure-

ment.Although the plots were chosen systematically,

the sample was, Intergalactica hoped, still effectively

“random.” Indeed, no consistent attempt was made

to select the plots from areas of heavy tree growth,

large-diameter trees, heavy spruce concentration,

and so on. In fact, the opposite was true:The regular

spacing of the sampling grid more or less guaranteed

a good cross section of the entire lot.This was what

is called in forestry industry jargon a “standard line

plot cruise.” The total lot was 700 acres in area.The

plots were spaced at 8-chain intervals apart on a rec-

tangular grid drawn in advance at the Intergalactica

Woodlands Field Office at One Rootmean Square in

the town of Covariance, Illinois.The aerial pho-

tographs showed that, of the Bodfish Lot’s 700 total

acres, 586 acres were forested.The total volume esti-

mate, to be done separately for each species, was to

be based on the average for the 89 sampled plots on

these 586 acres.

A circular area two-person cruise was then initi-

ated.Typically, about 10 plots could be cruised in one

8.4 THE BODFISH LOT CRUISE8

452 Chapter 8 Confidence Interval Estimation

8This case was contributed by Peter Kolesar from Columbia
University.
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day.The foresters counted the entire number of

cordwood trees over 6 inches in diameter within

each 1/7-acre circle.Then, back in the office in

Covariance, the number of trees on each plot was

entered into a computer according to species, diam-

eter, and possible end product.The file Bodfish

Trees.xlsx contains this tabulation from the cruise

notes of the counts for spruce, hard maple, and

beech of the number of cordwood trees on the 89

sampled plots. (In the actual database, 13 different

species of trees were recorded, and Intergalactica

would have decided which trees were more suitable

for lumber, plywood, or pulping applications.)

With these data, Intergalactica now had to

decide whether to contract to log the lot. Ralph

Butts, manager of Woodlands Operations, knew that

even though Intergalactica would pay on the basis

of the weight received at the mill, he needed at

least 31,000 cordwood size trees on the lot to

make operations economical. More detailed knowl-

edge of the amount of timber by species would help

the Pluto Mill make the crucial blending decisions

that affect the cost and quality of the resulting

wood pulp.

This was just one of several hundred similiar

contracts to be made over the coming year. Butts

was concerned with the rising cost of cruising in the

Southeastern Region.Was the Bodfish Lot cruise

excessive, he wondered? Could he get by in the

future with considerably smaller samples? Suppose

that only one-half or one-quarter of the plots on

Bodfish had been cruised? ■
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Hypothesis Testing

C H A P T E R

OFFICIAL SPONSORS OF THE OLYMPICS

Hypothesis testing is one of the most frequently used tools in academic

research, including research in the area of business. Many studies

pose interesting questions, stated as hypotheses, and then test these with

appropriate statistical analysis of experimental data. One such study is

reported in McDaniel and Kinney (1996). They investigate the effectiveness

of “ambush marketing” in prominent sports events such as the Olympic

Games. Many companies pay significant amounts of money, perhaps 

$10 million, to become official sponsors of the Olympics. Ambushers are

their competitors, who pay no such fees but nevertheless advertise heavily

during the Olympics, with the intention of linking their own brand image to

the event in the minds of consumers. The question McDaniel and Kinney

investigate is whether consumers are confused into thinking that the

ambushers are the official sponsors.

At the time of the 1994 Winter Olympics in Lillehammer, Norway, the

researchers ran a controlled experiment using 215 subjects ranging in age

from 19 to 49 years old. Approximately half of the subjects—the “control
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group”—viewed a 20-minute tape of a women’s skiing event in which several actual

commercials for official sponsors in four product categories were interspersed.

(The categories were fast food, automobile, credit card, and insurance; the official

sponsors were McDonald’s, Chrysler,VISA, and John Hancock.) The other half—the

“treatment group”—watched the same tape but with commercials for competing

ambushers. (The ambushers were Wendy’s, Ford, American Express, and Northwestern

Mutual, all of which advertised during the 1994 Olympics.) After watching the tape,

each subject was asked to fill out a questionnaire.This questionnaire asked subjects to

recall the official Olympics sponsors in each product category, to rate their attitudes

toward the products, and to state their intentions to purchase the products.

McDaniel and Kinney tested several hypotheses. First, they tested the hypothesis

that there would be no difference between the control and treatment groups in terms

of which products they would recall as official Olympics sponsors. The experimental

evidence allowed them to reject this hypothesis decisively. For example, the vast majority

of the control group, who watched the McDonald’s commercial, recalled McDonald’s

as being the official sponsor in the fast-food category. But a clear majority of the

treatment group, who watched the Wendy’s commercial, recalled Wendy’s as being the

official sponsor in this category. Evidently,Wendy’s commercial was compelling.1

Because the ultimate objective of commercials is to increase purchases of a com-

pany’s brand, the researchers also tested the hypothesis that viewers of official sponsor

commercials would rate their intent to purchase that brand higher than viewers of

ambusher commercials would rate their intent to purchase the ambusher brand. After all,

isn’t this why the official sponsors were paying large fees? However, except for the credit

card category, the data did not support this hypothesis.VISA viewers did indeed rate their

intent to use VISA higher than American Express viewers rated their intent to use

American Express. But in the other three product categories, the ambusher brand came

out ahead of the official brand in terms of intent to purchase (although the differences

were not statistically significant).

There are at least two important messages this research should convey to business.

First, if a company is going to spend a lot of money to become an official sponsor of an

event such as the Olympic Games, it must create a more vivid link in the mind of

consumers between its product and the event. Otherwise, the company might be wasting

its money. Second, ambush marketing is very possibly a wise strategy. By seeing enough of

the ambushers’ commercials during the event, consumers get confused into thinking that

the ambusher is an official sponsor. In addition, previous research in the area suggests

that consumers do not view ambushers negatively for using an ambush strategy. ■
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1Whereas the McDonald’s commercial featured the five-ringed Olympics logo and had an Olympics theme, the
Wendy’s commercial used a humorous approach built around the company’s founder, Dave Thomas, and his
dream of winning gold in the Olympics bobsled competition.

9.1 INTRODUCTION

When you want to make inferences about a population on the basis of sample data, you can
perform the analysis in either of two ways. You can proceed as in the previous chapter,
where you calculate a point estimate of a population parameter and then form a confidence
interval around this point estimate. In this way you bring no preconceived ideas to the analy-
sis but instead let the data speak for themselves in telling you the parameter’s true value.

In contrast, an analyst often has a particular theory, or hypothesis, that he or she would
like to test. This hypothesis might be that a new packaging design will produce more sales
than the current design, that a new drug will have a higher cure rate for a given disease than
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any drug currently on the market, that people who smoke cigarettes are more susceptible to
heart disease than nonsmokers, and so on. In this case the analyst typically collects sample
data and checks whether the data provide enough evidence to support the hypothesis.

The hypothesis that the analyst is attempting to prove is called the alternative
hypothesis. It is also frequently called the research hypothesis. The opposite of the alter-
native hypothesis is called the null hypothesis. It usually represents the current thinking or
status quo. That is, the null hypothesis is usually the accepted theory that the analyst is
trying to disprove. In the previous examples the null hypotheses are:

■ The new packaging design is no better than the current design.
■ The new drug has a cure rate no higher than other drugs on the market.
■ Smokers are no more susceptible to heart disease than nonsmokers.

The burden of proof is traditionally on the alternative hypothesis. It is up to the analyst to
provide enough evidence in support of the alternative; otherwise, the null hypothesis will
continue to be accepted. A slight amount of evidence in favor of the alternative is usually
not enough. For example, if a slightly higher percentage of people are cured with a new
drug in a sequence of clinical tests, this still might not be enough evidence to warrant
introducing the new drug to the market. In general, we reject the null hypothesis—and
accept the alternative—only if the results of the hypothesis test are statistically significant,
a concept we will explain in this chapter.

9.2 Concepts in Hypothesis Testing 457

Hypothesis testing is
a form of decision
making under uncer-
tainty, where you
decide which of two
competing hypotheses
to accept, based on
sample data. However,
in contrast to the
methods discussed in
Chapter 6, it is
performed in a very
specific way, as
described in this
chapter.

The null hypothesis is usually the current thinking, or status quo. The alternative,
or research, hypothesis is usually the hypothesis a researcher wants to prove. The
burden of proof is on the alternative hypothesis.

As you will see in this chapter, confidence interval estimation and hypothesis testing use
data in much the same way and they often report basically the same results, only from
different points of view. There continues to be a debate (largely among academic researchers)
over which of these two procedures is more useful. We believe that in a business context,
confidence interval estimation is more useful and enlightening than hypothesis testing.
However, hypothesis testing continues to be a key aspect of statistical analysis. Indeed, sta-
tistical software packages routinely include the elements of standard hypothesis tests in their
outputs. You will see this, for example, when you study regression analysis in Chapters 10
and 11. Therefore, it is essential to understand the fundamentals of hypothesis testing so that
you can interpret this output intelligently.

9.2 CONCEPTS IN HYPOTHESIS TESTING

Before we plunge into the details of specific hypothesis tests, it is useful to discuss the 
concepts behind hypothesis testing. There are a number of concepts and statistical terms
involved, all of which lead eventually to the key concept of statistical significance. To make
this discussion somewhat less abstract, we place it in the context of the following example.

E X A M P L E 9.1 EXPERIMENTING WITH A NEW PIZZA STYLE AT THE PEPPERONI

PIZZA RESTAURANT

The manager of the Pepperoni Pizza Restaurant has recently begun experimenting with
a new method of baking pepperoni pizzas. He personally believes that the new method

produces a better-tasting pizza, but he would like to base the decision whether to switch
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from the old method to the new method on customer reactions. Therefore, he performs an
experiment. For 100 randomly selected customers who order a pepperoni pizza for home
delivery, he includes both an old-style and a free new-style pizza in the order. All he asks
is that these customers rate the difference between pizzas on a �10 to �10 scale, where
�10 means that they strongly favor the old style, �10 means they strongly favor the new
style, and 0 means they are indifferent between the two styles. Once he gets the ratings
from the customers, how should he proceed?

We begin by stating that Example 9.1 is used primarily to explain hypothesis-testing
concepts. We do not mean to imply that the manager would, or should, use a hypothesis-
testing procedure to decide whether to switch from the old method to the new method.
First, hypothesis testing does not take costs into account. If the new method of making piz-
zas uses more expensive cheese, for example, then hypothesis testing would ignore this
important aspect of the decision problem. Second, even if the costs of the two pizza-
making methods are equivalent, the manager might base his decision on a simple point
estimate and possibly a confidence interval. For example, if the sample mean rating is 1.8
and a 95% confidence interval for the mean rating extends from 0.3 to 3.3, this in itself
would probably be enough evidence to make the manager switch to the new method.

We come back to these ideas—basically, that hypothesis testing is not necessarily the
best procedure to use in a business decision-making context—throughout this chapter.
However, with these caveats in mind, we discuss how the manager might proceed by using
hypothesis testing. ■
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9.2.1 Null and Alternative Hypotheses

As we stated in the introduction to this chapter, the hypothesis the manager is trying to
prove is called the alternative, or research, hypothesis, whereas the null hypothesis rep-
resents the status quo. In this example the manager would personally like to prove that
the new method provides better-tasting pizza, so this becomes the alternative hypothesis.
The opposite, that the old-style pizzas are at least as good as the new-style pizzas,
becomes the null hypothesis. We assume he judges which of these is true on the basis of
the mean rating over the entire customer population, labeled �. If it turns out that � � 0,
then the null hypothesis is true. Otherwise, if � � 0, the alternative hypothesis is true.

Hypotheses for Pizza Example

Null hypothesis: � � 0

Alternative hypothesis: � � 0

where � is the mean population rating.

Usually, the null hypothesis is labeled H0 and the alternative hypothesis is labeled Ha.
Therefore, in our example they can be specified as H0:� � 0 and Ha:� � 0. This is typical.
The null and alternative hypotheses divide all possibilities into two nonoverlapping sets,
exactly one of which must be true. In our case the mean rating is less than or equal to 0 or
it is positive. Exactly one of these possibilities must be true, and the manager intends to use
sample data to learn which it is.

Traditionally, hypothesis testing has been phrased as a decision-making problem, where
an analyst decides either to accept the null hypothesis or reject it, based on the sample evi-
dence. In our example, accepting the null hypothesis means deciding that the new-style pizza
is not really better than the old-style pizza and presumably discontinuing the new style. In
contrast, rejecting the null hypothesis means deciding that the new-style pizza is indeed
better than the old-style pizza and presumably switching to the new style.
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9.2.2 One-Tailed Versus Two-Tailed Tests

The form of the alternative hypothesis can be either one-tailed or two-tailed, depending
on what the analyst is trying to prove. The pizza manager’s alternative hypothesis is 
one-tailed because he is hoping to prove that the customers’ ratings are, on average,
greater than 0. The only sample results that can lead to rejection of the null hypothesis are
those in a particular direction, namely, those where the sample mean rating is positive. On
the other hand, if the manager sets up his rating scale in the reverse order, so that negative
ratings favor the new-style pizza, then the test is still one-tailed, but now only negative
sample means lead to rejection of the null hypothesis.

In contrast, a two-tailed test is one where results in either of two directions can lead
to rejection of the null hypothesis. A slight modification of the pizza example where a 
two-tailed alternative might be appropriate is the following. Suppose the manager currently
uses two methods for producing pepperoni pizzas. He is thinking of discontinuing one of
these methods if it appears that customers, on average, favor one method over the other.
Therefore, he runs the same experiment as before, but now the hypotheses he tests are 
H0:� � 0 versus Ha:� � 0, where � is again the mean rating across the customer popula-
tion. In this case either a large positive sample mean or a large negative sample mean
will lead to rejection of the null hypothesis—and presumably to discontinuing one of the
production methods.
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A one-tailed alternative is one that is supported only by evidence in a single direction.

A two-tailed alternative is one that is supported by evidence in either of two directions.

Once the hypotheses are set up, it is easy to detect whether the test is one-tailed or
two-tailed. One-tailed alternatives are phrased in terms of “�” or “	” whereas two-tailed
alternatives are phrased in terms of “�”. The real question is whether to set up hypotheses
for a particular problem as one-tailed or two-tailed. There is no statistical answer to this
question. It depends entirely on what an analyst is trying to prove. If the pizza manager is
trying to prove that the new-style pizza is better than the old-style pizza—only results on
one side will lead to a switch—a one-tailed alternative is appropriate. However, if he is try-
ing to decide whether to discontinue either of two existing production methods—where
results on either side will lead to a switch—then a two-tailed alternative is appropriate.

9.2.3 Types of Errors

Regardless of whether the manager decides to accept or reject the null hypothesis, it might
be the wrong decision. He might incorrectly reject the null hypothesis when it is true 
(� � 0), and he might incorrectly accept the null hypothesis when it is false (� � 0). In
the tradition of hypothesis testing, these two types of errors have acquired the names type I
and type II errors. In general, you commit a type I error when you incorrectly reject a null
hypothesis that is true. You commit a type II error when you incorrectly accept a null
hypothesis that is false. These ideas appear graphically in Figure 9.1.

The pizza manager commits a type I error if he concludes, based on sample evidence,
that the new-style pizza is better (and switches to it) when in fact the entire customer

It is important to
realize that the
analyst, not the data,
determines the type of
alternative hypothesis.
The hypothesis
depends entirely on
what the analyst wants
to prove, and it should
be formed before the
data are collected.

Figure 9.1

Types of Errors in

Hypothesis Testing
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population would, on average, favor the old-style pizza. In contrast, he commits a type II
error if he concludes, again based on sample evidence, that the new style is no better
(and discontinues it) when in fact the entire customer population would, on average, favor
the new style.

460 Chapter 9 Hypothesis Testing

Possible Errors in Pizza Example

Type I error: Switching to new style when it is no better than old style

Type II error: Staying with old style when new style is better

The traditional hypothesis-testing procedure favors caution in terms of rejecting the
null hypothesis. The thinking is that if you reject the null hypothesis and it is really true,
then you commit a type I error—which is bad. Given this rather conservative way of think-
ing, you are inclined to accept the null hypothesis unless the sample evidence provides
strong support for the alternative hypothesis. Unfortunately, you can’t have it both ways. By
accepting the null hypothesis, you risk committing a type II error.

This is exactly the dilemma the pizza manager faces. If he wants to avoid a type I error
(where he switches to the new style but really shouldn’t), then he will require fairly
convincing evidence from the survey that he should switch. If he observes some evidence
to this effect, such as a sample mean rating of �1.5 and a 95% confidence interval that
extends from �0.3 to �3.3, this evidence might not be strong enough to make him switch.
However, if he decides not to switch, he risks committing a type II error.

9.2.4 Significance Level and Rejection Region

The real question, then, is how strong the evidence in favor of the alternative hypothesis
must be to reject the null hypothesis. Two approaches to this problem are commonly used.
In the first, you prescribe the probability of a type I error that you are willing to tolerate.
This type I error probability is usually denoted by 
 and is most commonly set equal
to 0.05, although 
 � 0.01 and 
 � 0.10 are also frequently used. The value of 
 is called
the significance level of the test. Then, given the value of 
, you use statistical theory to
determine a rejection region. If the sample evidence falls in the rejection region, you
reject the null hypothesis; otherwise, you accept it. The rejection region is chosen precisely
so that the probability of a type I error is at most 
. Sample evidence that falls into the
rejection region is called statistically significant at the 

 level. For example, if 
 � 0.05,
the evidence is statistically significant at the 5% level.

Type I errors are
usually considered
more costly, although
this can lead to
conservative decision
making.

The analyst gets to
choose the significance
level 
. It is tradi-
tionally chosen to be
0.05, but it is occa-
sionally chosen to be
0.01 or 0.10.

The rejection region is the set of sample data that leads to the rejection of the null
hypothesis.

The significance level, 
, determines the size of the rejection region. Sample results in
the rejection region are called statistically significant at the 
 level.

It is important to understand the effect of varying 
. If 
 is small, such as 0.01,
the probability of a type I error is small. Therefore, a lot of sample evidence in favor of the
alternative hypothesis is required before the null hypothesis can be rejected. Equivalently,
the rejection region in this case is small. In contrast, when 
 is larger, such as 0.10, the
rejection region is larger, and it is easier to reject the null hypothesis.
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9.2.5 Significance from p-values

A second approach, and one that is currently more popular, is to avoid the use of a signifi-
cance level 
 and instead simply report how significant the sample evidence is. This is done
by means of a p-value. The idea is quite simple—and very important. Suppose in the pizza
example that the true mean rating (if it could be observed) is � � 0. In other words, the
customer population, on average, judges the two styles of pizza to be equal. Now suppose
that the sample mean rating is �2.5. The manager has two options at this point. (Remember
that he doesn’t know that � � 0; he observes only the sample.) He can conclude that (1) the
null hypothesis is true—the new-style pizza is not preferred over the old style—and he just
observed an unusual sample, or (2) the null hypothesis is not true—customers do prefer the
new-style pizza—and the sample he observed is a typical one for such customers.

The p-value of the sample quantifies this. The p-value is the probability of seeing a
random sample at least as extreme as the observed sample, given that the null hypothesis
is true. Here, “extreme” is relative to the null hypothesis. For example, a sample mean
rating of �3.5 from the pizza customers is more extreme evidence than a sample mean
rating of �2.5. Each provides some evidence against the null hypothesis, but the former
provides stronger, more extreme evidence.
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The p-value of a sample is the probability of seeing a sample with at least as much
evidence in favor of the alternative hypothesis as the sample actually observed. The
smaller the p-value, the more evidence there is in favor of the alternative hypothesis.

Let’s suppose that the pizza manager collects data from the 100 sampled customers
and finds that the p-value for the sample is 0.03. This means that if the entire customer
population, on average, judges the two types of pizza to be approximately equal, then only
three random samples out of 100 would provide as much evidence in support of the new
style as the observed sample. So should he conclude that the null hypothesis is true and he
just happened to observe an unusual sample, or should he conclude that the null hypothe-
sis is not true? There is no clear statistical answer to this question; it depends on how
convinced the manager must be before switching. But we can say in general that smaller 
p-values indicate more evidence in support of the alternative hypothesis. If a p-value is
sufficiently small, then almost any analyst will conclude that rejecting the null hypothesis
(and accepting the alternative) is the most reasonable decision.

How small is a “small” p-value? This is largely a matter of semantics, but Figure 9.2
indicates the attitude of many analysts. A p-value less than 0.01 is regarded as convincing
evidence that the alternative hypothesis is true. After all, fewer than one sample out of 100
would provide such support for the alternative hypothesis if it weren’t true. If the p-value
is between 0.01 and 0.05, there is strong evidence in favor of the alternative hypothesis.
Unless the consequences of making a type I error are really serious, this is typically
enough evidence to reject the null hypothesis.

Figure 9.2

Evidence in Favor of

the Alternative

Hypothesis

The interval between 0.05 and 0.10 is a gray area. If a researcher is trying to prove a
research hypothesis and observes a p-value between 0.05 and 0.10, she will probably be
reluctant to publish her results as “proof” of the alternative hypothesis, but she will probably
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be encouraged to continue her research and collect more sample evidence. Finally, p-values
larger than 0.10 are generally interpreted as weak evidence (or no evidence) in support of the
alternative.

There is a strong connection between the 
-level approach and the p-value approach.
Specifically, the null hypothesis can be rejected at a specified significance level 
 only if
the p-value from the sample is less than or equal to 
. Equivalently, the sample evidence is
statistically significant at a given 
 level only if its p-value is less than or equal to 
. For
example, if the p-value from a sample is 0.03, the null hypothesis can be rejected at the
10% and the 5% significance levels but not at the 1% level. The p-value essentially states
how significant a given sample is.

462 Chapter 9 Hypothesis Testing

Sample evidence is statistically significant at the 
 level only if the p-value is less than 
.

The advantage of the p-value approach is that you don’t have to choose a significance
level 
 ahead of time. Because it is far from obvious what value of 
 to choose in any
particular situation, this is certainly an advantage. Another compelling advantage is that 
p-values for standard hypothesis tests are routinely included in virtually all statistical soft-
ware output. In addition, all p-values can be interpreted in basically the same way: A small
p-value provides support for the alternative hypothesis.

If you remember only
one thing from this
chapter, remember
that a p-value
measures how unlikely
the observed sample
results are, given that
the null hypothesis is
true. Therefore, a low
p-value provides
evidence for rejecting
the null hypothesis and
accepting the
alternative.

FUNDAMENTAL INSIGHT

Key Role of p-values

The single most important thing to remember from

this chapter is the role of p-values. This is especially

important because p-values are listed in virtually all out-

puts from statistical software. If a p-value is small, the

result is statistically significant, meaning that the null

hypothesis can be rejected in favor of the alternative.

Analysts don’t always agree on how “small” a p-value

needs to be—some say less than 0.01, some say less

than 0.05, and some say less than 0.10. But just about 

all analysts agree that if a p-value is greater than 0.10,

the result is not statistically significant, which means

that there is not enough evidence to reject the null

hypothesis.

9.2.6 Type II Errors and Power

A type II error occurs when the alternative hypothesis is true but there isn’t enough
evidence in the sample to reject the null hypothesis. This type of error is traditionally con-
sidered less important than a type I error, but it can lead to serious consequences in real
situations. For example, in medical trials on a proposed new cancer drug, a type II error
occurs if the new drug is really superior to existing drugs but experimental evidence is not
sufficiently conclusive to warrant marketing the new drug. For patients suffering from
cancer, this is obviously a serious error.

As we stated previously, the alternative hypothesis is typically the hypothesis a
researcher wants to prove. If it is in fact true, the researcher wants to be able to reject the
null hypothesis and hence avoid a type II error. The probability that she is able to do so is
called the power of the test—that is, the power is one minus the probability of a type II
error. There are several ways to achieve high power, the most obvious of which is to
increase sample size. By sampling more members of the population, you are better able to
see whether the alternative is really true and hence avoid a type II error if the alternative is
indeed true. As in the previous chapter, there are formulas that specify the sample size
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required to achieve a certain power for a given set of hypotheses. We will not pursue these
in this book, but you should be aware that they exist. 
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The power of a test is one minus the probability of a type II error. It is the probability
of rejecting the null hypothesis when the alternative hypothesis is true.

9.2.7 Hypothesis Tests and Confidence Intervals

The results of hypothesis tests are often accompanied by confidence intervals. This
provides two complementary ways to interpret the data. However, there is a more formal
connection between the two, at least for two-tailed tests. Let 
 be the stated significance
level of the test. We will state the connection for the most commonly used level, 
 � 0.05,
although it extends to any 
 value. The connection is that the null hypothesis can be
rejected at the 5% significance level if and only if a 95% confidence interval does not
include the hypothesized value of the parameter.

Using a Confidence Interval to Perform a Two-Tailed Hypothesis Test

Reject the null hypothesis if and only if the hypothesized value does not lie inside a
confidence interval for the parameter.

As an example, consider the test of H0:� � 0 versus Ha:� � 0. Suppose a 95% confi-
dence interval for � extends from 1.35 to 3.42, so that it does not include the hypothesized
value 0. Then H0 can be rejected at the 5% significance level, and the p-value from the
sample must be less than 0.05. On the other hand, if a 95% confidence interval for �
extends, say, from �1.25 to 2.31 (negative to positive), the null hypothesis cannot be
rejected at the 5% significance level, and the p-value must be greater than 0.05.

There is also a correspondence between one-tailed hypothesis tests and one-sided
confidence intervals, but we will not pursue it here.

9.2.8 Practical Versus Statistical Significance

We have stated that statistically significant results are those that produce sufficiently small 
p-values. In other words, statistically significant results are those that provide strong
evidence in support of the alternative hypothesis. You frequently hear about studies,
particularly in the medical sciences, that produce statistically significant results. For
example, you might hear that mice injected with one kind of drug develop significantly 
more cancer cells than mice injected with a second kind of drug.

The point of this section is that such results are not necessarily significant in terms of
being important. They might be significant only in the statistical sense. An example of
what could happen is the following. An education researcher wants to see whether quanti-
tative SAT scores differ, on average, across gender. He sets up the hypotheses H0:�M � �F
versus Ha:�M � �F , where �M and �F are the mean quantitative SAT scores for males and
females, respectively. He then randomly samples scores from 4000 males and 4000
females and finds the male and female sample averages to be 521 and 524. He also finds
that the sample standard deviation for each group is about 50. Based on these numbers, the
p-value for the sample data is approximately 0.007. (You will learn how to make this
calculation later in the chapter.) Therefore, he claims that the results are significant proof
that males do score differently (lower) than females.
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If you read these results in a newspaper, your immediate reaction might be, “Who
cares?” After all, the difference between 521 and 524 is certainly not very large from a
practical point of view. So why does the education researcher get to make his claim?
The reasoning is as follows. In all likelihood, the means �M and �F are not exactly equal.
There is bound to be some difference between genders over the entire population. If the
researcher takes large enough samples—and 4000 is plenty large—he is almost certain to
obtain enough evidence to “prove” that the means are not equal. That is, he will almost
surely obtain statistically significant results. However, the difference he finds, as in the
numbers we quoted, might be of little practical significance. No one really cares whether
females score three points higher or lower than males. If the difference were on the order
of 30 to 40 points, then the result would be more interesting.

As this example illustrates, there is always a possibility of statistical significance but
not practical significance with large sample sizes. To be fair, we should also mention the
opposite case, which typically occurs with small sample sizes. Here the results are not
statistically significant even though the truth about the population(s), if it were known,
would be of practical significance. Let’s assume that a medical researcher wants to test
whether a new form of treatment produces a higher cure rate for a deadly disease than the
best treatment currently on the market. Due to expenses, the researcher is able to run a
controlled experiment on only a relatively small number of patients with the disease.
Unfortunately, the results of the experiment are inconclusive. They show some evidence
that the new treatment works better, but the p-value for the test is only 0.25.

In the scientific community these results would not be enough to warrant a switch to the
new treatment. However, it is certainly possible that the new treatment, if it were used on a
large number of patients, would provide a “significant” improvement in the cure rate—where
“significant” now means practical significance. In this type of situation, the researcher could
easily fail to discover practical significance because the sample sizes are not large enough to
detect it statistically.

From here on, when we use the term “significant,” we mean statistically significant.
However, you should always keep the ideas in this section in mind. A statistically signifi-
cant result is not necessarily of practical importance. Conversely, a result that fails to be
statistically significant is not necessarily one that should be ignored.

9.3 HYPOTHESIS TESTS FOR A POPULATION MEAN

Now that we have covered the general concepts behind hypothesis testing and the principal
sampling distributions, the mechanics of hypothesis testing are fairly straightforward. We
discuss in some detail how the procedure works for a population mean. Then in later
sections we illustrate similar hypothesis tests for other parameters.

As with confidence intervals, the key to the analysis is the sampling distribution of
the sample mean. Recall that if you subtract the true mean � from the sample mean and
divide the difference by the standard error , the result has a t distribution with n � 1
degrees of freedom. In a hypothesis-testing context, the true mean to use is the null hypoth-
esis value, specifically, the borderline value between the null and alternative hypotheses.
This value is usually labeled �0, where the subscript indicates that it is based on the null
hypothesis.

To run the test, you calculate the test statistic in Equation (9.1). This t-value indicates
how many standard errors the sample mean is from the null value, �0. If the null hypothe-
sis is true, or more specifically, if � � �0, this test statistic has a t distribution with n � 1
degrees of freedom. The p-value for the test is the probability beyond the test statistic in
both tails (for a two-tailed alternative) or in a single tail (for a one-tailed alternative) of the
t distribution.

s/1n
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Extremely large
samples can easily 
lead to statistically
significant results that
are not practically
important. In contrast,
small samples can fail
to produce statistically
significant results that
might indeed be
practically important.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



We illustrate the procedure by continuing the pizza manager’s problem in Example 9.1.

9.3 Hypothesis Tests for a Population Mean 465

Test Statistic for Test of Mean

(9.1)t-value =

X - �0

s�1n

E X A M P L E 9.1 EXPERIMENTING WITH A NEW PIZZA STYLE AT THE PEPPERONI

PIZZA RESTAURANT (CONTINUED)

Recall that the manager of the Pepperoni Pizza Restaurant is running an experiment to test
the hypotheses H0:� � 0 versus Ha:� � 0, where � is the mean rating in the entire cus-

tomer population. Here, each customer rates the difference between an old-style pizza and a
new-style pizza on a scale from �10 to �10, where negative ratings favor the old style and
positive ratings favor the new style. The ratings for 40 randomly selected customers and
several summary statistics appear in Figure 9.3. (See the file Pizza Ratings.xlsx.) Is there
sufficient evidence from these sample data for the manager to reject H0?

1
2
3
4
5
6
7
8
9

A B C D E
Customer Rating

1 -7 One Variable Summary Data Set #1
2 7 Mean 2.100
3 -2 Std. Dev. 4.717
4 4 Count 40
5 7
6 6
7 0
8 2

Ra�ng
Figure 9.3

Data and Summary

Measures for Pizza

Example

Objective To use a one-sample t test to see whether consumers prefer the new-style
pizza to the old style.

Solution

From the summary statistics, we see that the sample mean is and the sample
standard deviation is s � 4.717. This positive sample mean provides some evidence in
favor of the alternative hypothesis, but given the rather large value of s and the box plot of
ratings in Figure 9.4, which indicates a lot of negative ratings, does it provide enough
evidence to reject H0?

To run the test, you calculate the test statistic, using the borderline null hypothesis
value �0 � 0, and report how much probability is beyond it in the right tail of the appro-
priate t distribution. The right tail is appropriate because the alternative is one-tailed of the
“greater than” variety. The test statistic is

t-value =

2.10 - 0

4.717>140
= 2.816

X = 2.10
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This t-value indicates that the sample mean is slightly more than 2.8 standard errors to
the right of the null value, 0. Intuitively, this provides a lot of evidence in favor of the
alternative—it is quite unlikely to see a sample mean 2.8 standard errors to right of a
“true” mean. The probability beyond this value in the right tail of a t distribution with 
n � 1 � 39 degrees of freedom is approximately 0.004, which can be found in Excel
with the formula =TDIST(2.816,39,1). (Recall that the first argument is the t-value, the
second is the degrees of freedom, and the third is the number of tails. Better yet, recall
that this value can be calculated in Excel 2010 with the more intuitive formula
=T.DIST.RT(2.816,39).)

This probability, 0.004, is the p-value for the test. It indicates that these sample results
would be very unlikely if the null hypothesis were true. The manager has two choices at
this point. He can conclude that the null hypothesis is true and he obtained a very unlikely
sample, or he can conclude that the alternative hypothesis is true—and presumably switch
to the new-style pizza. This second conclusion certainly appears to be the more reasonable
of the two.

Another way of interpreting the results of the test is in terms of traditional significance
levels. The null hypothesis can be rejected at the 1% significance level because the 
p-value is less than 0.01. Of course, it can also be rejected at the 5% level or the 10% level
because the p-value is also less than 0.05 and 0.10. But the p-value is the preferred way to
report the results because it indicates exactly how significant these sample results are.

The StatTools One-Sample Hypothesis Test procedure can be used to perform this
analysis easily, with the results shown in Figure 9.5. To use it, create a StatTools data set
and select Hypothesis Test and then Mean/Std. Deviation from the StatTools Statistical
Inference dropdown list. Then fill out the resulting dialog box as shown in Figure 9.6. In
particular, make sure the Analysis Type is One-Sample Analysis and the Alternative
Hypothesis Type is the “Greater Than” choice.

Most of the output in Figure 9.5 should be familiar: It mirrors the calculations we just
did, and you can check the formulas in the output cells to ensure that you understand
the procedure. Note the following. First, the value in cell E13, 0, is the null hypothesis
value �0 at the borderline between H0 and Ha; it is the value specified in the dialog box in
Figure 9.6. Second, look at the note entered in cell D9. (This note isn’t visible in Figure 9.5,
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Box Plot of Ra�ng

-8 -6 -4 -2 0 2 4 6 8 10 12

Figure 9.4

Box Plot for Pizza

Data
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but it can be seen in the completed file.) It reminds you that this test is based on the normal-
ity of the underlying population distribution and/or a sufficiently large sample size. If these
conditions are not satisfied (which is not a problem for this example), then other more
appropriate tests are available. Finally, StatTools compares the p-value to the three tradi-
tional significance levels, 1%, 5%, and 10%, and interprets significance in terms of these.
As indicated in cells E19, E20, and E21, the null hypothesis can be rejected in favor of the
alternative at each of these three significance levels. ■
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8
9

10
11
12
13
14
15
16
17
18
19
20
21

ED
Rating

Hypothesis Test (One-Sample) Data Set #1
Sample Size 40
Sample Mean 2.100
Sample Std Dev 4.717
Hypothesized Mean 0
Alternative Hypothesis > 0
Standard Error of Mean 0.746
Degrees of Freedom 39
t-Test Statistic 2.8159
p-Value 0.0038
Null Hypoth. at 10% Significance Reject
Null Hypoth. at 5% Significance Reject
Null Hypoth. at 1% Significance Reject

Figure 9.5

Hypothesis Test for

the Mean for the

Pizza Example

Figure 9.6

One-Sample

Hypothesis Test

Dialog Box
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Before leaving this example, we ask one last
question. Should the manager switch to the new-
style pizza on the basis of these sample results?
We would probably recommend “yes.” There is no
indication that the new-style pizza costs any more
to make than the old-style pizza, and the sample
evidence is fairly convincing that customers, on
average, prefer the new-style pizza. Therefore,
unless there are reasons for not switching that
we haven’t mentioned here, we recommend the
switch. However, if it costs more to make the new-
style pizza (and its price is no higher), hypothesis
testing is not the best way to perform the decision
analysis. We return to this theme throughout this
chapter.

Example 9.1 illustrates how to run and inter-
pret any one-tailed hypothesis for the mean, assuming the alternative is of the “greater
than” variety. If the alternative is still one-tailed but of the “less than” variety, there is
virtually no change. We illustrate this in Figure 9.7, where the ratings have been reversed
in sign. That is, each rating was multiplied by �1, so that negative ratings now favor the
new-style pizza. The hypotheses are now H0:� � 0 versus Ha:� 	 0 because a negative
mean now supports the new style. The only difference in running the analysis with
StatTools is that you select the “Less Than” choice for the Alternative Analysis Type in the
dialog box shown in Figure 9.6. As Figure 9.7 indicates, the test statistic is now the nega-
tive of the previous test statistic, �2.816, and the p-value, 0.004, is exactly the same. This
is now the probability in the left tail of the t distribution, but the interpretation of the results
is the same as before.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

A B C D E
Customer Ra�ng Rating

1 7 Hypothesis Test (One-Sample) Data Set #2
2 -7 Sample Size 40
3 2 Sample Mean -2.100
4 -4 Sample Std Dev 4.717
5 -7 Hypothesized Mean 0
6 -6 Alternative Hypothesis < 0
7 0 Standard Error of Mean 0.746
8 -2 Degrees of Freedom 39
9 -8 t-Test Statistic -2.8159

10 -2 p-Value 0.0038
11 -3 Null Hypoth. at 10% Significance Reject
12 4 Null Hypoth. at 5% Significance Reject
13 -8 Null Hypoth. at 1% Significance Reject
14 5
15 -7
16 5

Figure 9.7

Hypothesis Test with

Reverse Coding

The analysis of two-tailed tests for the mean is also quite similar to the analysis in
Example 9.1. A typical two-tailed test is illustrated in the following example.

Test Statistics and p-values

All hypothesis tests are implemented by calculating a

test statistic from the data and seeing how far out

this test statistic is in one of the tails of some well-

known distribution. The details of this procedure

might or might not be included in the output from

statistical software, but the p-value is always included.

The p-value specifies the probability in the tail 

(or tails) beyond the test statistic. In words, it mea-

sures how unlikely such an extreme value of the test

statistic is if the null hypothesis is true.

FUNDAMENTAL INSIGHT
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Objective To use a one-sample t test, with a two-tailed alternative, to see whether
students like the new textbook any more or less than the old textbook.

Solution

The first question is whether the test should be one-tailed or two-tailed. Of course, the
faculty have chosen the new textbook with the expectation that it will be preferred by the
students, but it is very possible that students will like it less than the previous textbook.
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E X A M P L E 9.2 MEASURING STUDENT REACTION TO A NEW TEXTBOOK

Alarge required chemistry course at State University has been using the same textbook
for a number of years. Over the years, the students have been asked to rate this text-

book on 10-point scale, and the average rating has been stable at about 5.2. This year, the
faculty decided to experiment with a new textbook. After the course, 50 randomly selected
students were asked to rate this new textbook, also on a scale of 1 to 10. The results appear
in column B of Figure 9.8. (See the file Textbook Ratings.xlsx.) Can we conclude that the
students like this new textbook any more or less than the previous textbook?

1
2

FEDCBA
Student g Mean  of previous textbook (on a 1-10 scale) 5.2

1 62
3
4
5
6
7
8
9

10

2 3
3 6 Hypothesis Test (One-Sample) Data Set #1

4 7 Sample Size 50
5 6 Sample Mean 5.680
6 10 Sample Std Dev 1.953
7 6 Hypothesized Mean 5.2
8 8  Hypothesis <> 5.2
9 7 d d f 0 276

11
12
13
14
15
16
17

Standard Error of Mean

10 10 Degrees of Freedom 49
11 3 t-Test  1.738
12 6 p-Value 0.088
13 4 Null Hypoth. at 10% Significance Reject
14 6 Null Hypoth. at 5% Significance Don't Reject
15 8 Null Hypoth. at 1% Significance Don't Reject
16 10

18
19
20
21
22
23
24
25

17 5
18 4 Conf. Intervals (One-Sample) Data Set #1

19 6 Sample Size 50
20 4 Sample Mean 5.680
21 6 Sample Std Dev 1.953
22 6 Confidence Level (Mean) 95.0%
23 4 Degrees of Freedom 49
24 5 i i 5 125

26
27
28
29

5 Lower Limit

25 7 Upper Limit 6.235
26 8
27 7
28 5

Figure 9.8 Test of Two-Tailed Alternative
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(Students are notoriously unpredictable in their acceptance of textbooks.) Therefore, we
set this up as a two-tailed test—that is, the alternative hypothesis is that the mean rating of
the new textbook is either less than or greater than the mean rating of the previous text-
book. Formally, we write the hypotheses as H0:� � 5.2 versus Ha:� � 5.2.

The test is run (and the StatTools One-Sample Hypothesis Test procedure can be used)
almost exactly as with a one-tailed test. The only difference is that you specify the “Not
Equal” choice for the Alternative Hypothesis Type, and the Null Hypothesis Value is
now 5.2, the historical average rating. (See Figure 9.9.) The t-distributed test statistic is
calculated in the same way as before:

The p-value is then the probability beyond �1.738 in the left tail and beyond �1.738 in
the right tail of a t distribution with n � 1 � 49 degrees of freedom. The effect is to double
the one-tailed p-value. From the output (cell E13) in Figure 9.8, you can see that the two-
tailed p-value is 0.088.

t-value =

X - 5.2

s�1n
=

5.680 - 5.2

1.953/150
= 1.738
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Figure 9.9

Dialog Box for Two-

Tailed Hypothesis

Test

This moderately small p-value provides some evidence, but not absolutely convincing
evidence, that the mean rating of the new textbook is different from the old mean rating of
5.2. Specifically, the output indicates that the null hypothesis can be rejected at the 10%
level, but not at the 5% or 1% levels. If the p-value were lower (which might occur if more
students were sampled), the evidence would be more conclusive. As in Example 9.1, we
can now ask whether the faculty should continue to use the new textbook. Here again, it is
probably not a decision that hypothesis testing, at least by itself, should determine. The
students appear to favor the new textbook, if only by a small margin. If the faculty also
favor it, we see no reason for not switching to it.
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Because this is a two-tailed test, you could also perform the test by appealing to
confidence intervals. A 95% confidence interval for the mean rating of the new textbook,
also shown in Figure 9.8, extends from 5.125 to 6.235. Because this interval does include
the old mean rating of 5.2, the null hypothesis cannot be rejected at the 5% significance
level. This is in agreement with the p-value of the test, which is greater than 0.05.
However, you can check that a 90% confidence interval for the mean does not include 5.2.
Therefore, the null hypothesis can be rejected at the 10% level. This too is in agreement
with the p-value, which is less than 0.10. ■

9.3 Hypothesis Tests for a Population Mean 471

P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. The file P09_01.xlsx contains a random sample of 100
lightbulb lifetimes. The company that produces these
lightbulbs wants to know whether it can claim that its
lightbulbs typically last more than 1000 burning hours. 
a. Identify the null and alternative hypotheses for this

situation.
b. Can this lightbulb manufacturer claim that its

lightbulbs typically last more than 1000 hours at
the 5% significance level? What about at the 1%
significance level? Explain your answers.

2. A manufacturer is interested in determining whether it
can claim that the boxes of detergent it sells contain,
on average, more than 500 grams of detergent. The
firm selects a random sample of 100 boxes and records
the amount of detergent (in grams) in each box. The
data are provided in the file P09_02.xlsx. 
a. Identify the null and alternative hypotheses for this

situation.
b. Is there statistical support for the manufacturer’s

claim? Explain.

3. A producer of steel cables wants to know whether
the steel cables it produces have an average breaking
strength of 5000 pounds. An average breaking strength
of less than 5000 pounds would not be adequate,
and to produce steel cables with an average breaking
strength in excess of 5000 pounds would unnecessarily
increase production costs. The producer collects a
random sample of 64 steel cable pieces. The breaking
strength for each of these cable pieces is recorded in
the file P09_03.xlsx.
a. Identify the null and alternative hypotheses for this

situation.
b. Using a 5% significance level, what statistical

conclusion can the producer reach regarding the
average breaking strength of its steel cables?
Would the conclusion be any different at the 
1% level? Explain your answers.

4. A U.S. Navy recruiting center knows from past experi-
ence that the heights of its recruits have traditionally
been normally distributed with mean 69 inches. The
recruiting center wants to test the claim that the aver-
age height of this year’s recruits is greater than 69
inches. To do this, recruiting personnel take a random
sample of 64 recruits from this year and record their
heights. The data are provided in the file P09_04.xlsx.
a. Identify the null and alternative hypotheses for this

situation.
b. On the basis of the available sample information,

do the recruiters find support for the given claim at
the 5% significance level? Explain.

c. Use the sample data to construct a 95% confidence
interval for the average height of this year’s
recruits. Based on this confidence interval, what
conclusion should recruiting personnel reach
regarding the given claim?

5. Suppose that you wish to test H0:� � 10 versus 
Ha:� � 10 at the 
 � 0.05 significance level.
Furthermore, suppose that you observe values of the
sample mean and sample standard deviation when 
n � 40 that do not lead to the rejection of H0. Is it
true that you might reject H0 if you observed the same
values of the sample mean and sample standard devia-
tion from a sample with n � 40? Why or why not?

Level B

6. A study is performed in a large southern town to
determine whether the average weekly grocery bill
per four-person family in the town is significantly
different from the national average. A random sample
of the weekly grocery bills of four-person families
in this town is given in the file P09_06.xlsx.
a. Identify the null and alternative hypotheses for this

situation.
b. Assume that the national average weekly grocery

bill for a four-person family is $100. Is the sample
evidence statistically significant? If so, at what
significance levels can you reject the null
hypothesis?
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c. For which values of the sample mean (i.e., average
weekly grocery bill) would you reject the null
hypothesis at the 1% significance level? For which
values of the sample mean would you reject the
null hypothesis at the 10% level?

7. An aircraft manufacturer needs to buy aluminum
sheets with an average thickness of 0.05 inch. The
manufacturer knows that significantly thinner sheets
would be unsafe and considerably thicker sheets
would be too heavy. A random sample of 100 sheets
from a potential supplier is collected. The thickness
of each sheet in this sample is measured (in inches)
and recorded in the file P09_07.xlsx.
a. Identify the null and alternative hypotheses for this

situation.

b. Based on the results of an appropriate hypothesis
test, should the aircraft manufacturer buy aluminum
sheets from this supplier? Explain why or why not.

c. For which values of the sample mean (i.e., average
thickness) would the aircraft manufacturer decide
to buy sheets from this supplier? Assume a
significance level of 5% in answering this 
question.

8. Suppose that you observe a random sample of size n
from a normally distributed population. If you are able
to reject H0:� � �0 in favor of a two-tailed alternative
hypothesis at the 10% significance level, is it true that
you can definitely reject H0 in favor of the appropriate
one-tailed alternative at the 5% significance level?
Why or why not?
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9.4 HYPOTHESIS TESTS FOR OTHER PARAMETERS

Just as we developed confidence intervals for a variety of parameters, we can develop
hypothesis tests for other parameters. They are based on the same sampling distributions
we discussed in the previous chapter, and they are run and interpreted exactly as the tests
for the mean in the previous section. In each case the sample data are used to calculate a
test statistic that has a well-known sampling distribution. Then a corresponding p-value
measures the support for the alternative hypothesis. Beyond this, only the details change,
as we illustrate in this section.

9.4.1 Hypothesis Tests for a Population Proportion

To test a population proportion p, recall that the sample proportion has a sampling distrib-
ution that is approximately normal when the sample size is reasonably large. Specifically,
the distribution of the standardized value

is approximately normal with mean 0 and standard deviation 1.
Let p0 be the borderline value of p between the null and alternative hypotheses. Then

p0 is substituted for p to obtain the test statistic in Equation (9.2). The p-value of the test is
found by seeing how much probability is beyond this test statistic in the tail (or tails) of the
standard normal distribution.2 A rule of thumb for checking the large-sample assumption
of this test is to check whether np0 � 5 and n(1 � p0) � 5.

Np - p

1p(1 - p)/n

Np

2Do not confuse the unknown proportion p with the p-value of the test. They are logically different concepts and
just happen to share the same letter p.

Test Statistic for Test of Proportion

(9.2)z-value =

Np - p0

1p0(1 - p0)/n

We illustrate this test of proportion in the following example.
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E X A M P L E 9.3 CUSTOMER COMPLAINTS AT WALPOLE APPLIANCE COMPANY

The Walpole Appliance Company has a customer service department that handles
customer questions and complaints. This department’s processes are set up to respond

quickly and accurately to customers who phone in their concerns. However, there is a
sizable minority of customers who prefer to write letters. Traditionally, the customer service
department has not been very efficient in responding to these customers.

Letter writers first receive a mailgram asking them to call customer service (which is
exactly what letter writers wanted to avoid in the first place), and when they do call, the
customer service representative who answers the phone typically has no knowledge of the
customer’s problem. As a result, the department manager estimates that 15% of letter writers
have not obtained a satisfactory response within 30 days of the time their letters were first
received. The manager’s goal is to reduce this value by at least half, that is, to 7.5% or less.

To do so, she changes the process for responding to letter writers. Under the new
process, these customers now receive a prompt and courteous form letter that responds to
their problem. (This is possible because the vast majority of concerns can be addressed by
one of several form letters.) Each form letter states that if the customer still has problems,
he or she can call the department. The manager also files the original letters so that if
customers do call back, the representative who answers will be able to find their letters
quickly and respond intelligently. With this new process in place, the manager has tracked
400 letter writers and has found that only 23 of them are classified as “unsatisfied” after a
30-day period. Does it appear that the manager has achieved her goal?

Objective To use a test for a proportion to see whether the new process of responding to
complaint letters results in an acceptably low proportion of unsatisfied customers.

Solution

The manager’s goal is to reduce the proportion of unsatisfied customers after 30 days from
0.15 to 0.075 or less. Because the burden of proof is on her to “prove” that she has accom-
plished this goal, we set up the hypotheses as H0:p � 0.075 versus Ha: p 	 0.075, where
p is the proportion of all letter writers who are still unsatisfied after 30 days. The sample
proportion she has observed is . This is obviously less than 0.075,
but is it enough less to reject the null hypothesis?

The test can be run with StatTools, as shown in Figure 9.10 and the file Customer
Complaints.xlsx. The trick is to arrange the data in one of the three formats for a StatTools
proportions analysis, as described in section 8.5 of the previous chapter. (Refer to the
finished version of the file Satisfaction Ratings.xlsx in the previous chapter for more
details.) For this example, the data are arranged as shown in the range A5:B7. This is the
StatTools data set, a table of counts. Then you run the test by selecting Hypothesis
Test/Proportion from the Statistical Inference dropdown list and filling in the dialog box
as shown in Figure 9.11. The results of the test appear in column E of Figure 9.10.
Specifically, the sample proportion is 23/400 � 0.058, its standard error is 0.013, the test
statistic is �1.329, and the p-value for the test is 0.092.

The p-value might not be as low as you expected—or as low as the manager would
like. In spite of the fact that the sample proportion appears to be well below the target 
proportion of 0.075, the evidence in support of the alternative hypothesis is not over-
whelming. In statistical terminology, the results are significant at the 10% level, but not at
the 5% or 1% levels.

Figure 9.10 also shows a 95% confidence interval for the unknown proportion p. This
confidence interval extends from 0.035 to 0.080. It includes the target value, 0.075, but just

Np = 23/400 = 0.0575
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23
24
25

DCBA
Test of a proportion: responding to customer complaint letters

Target propor�on with new procedure  
Hypothesis Test (Propor�on)

Category Category

Number of unsa�sfied customers Sample Size

Number of sa�sfied customers

0.075

Count
23

377 Sample Propor�on

Hypothesized Propor�on

Alterna�ve Hypothesis

Standard Error of Sample Propor�on

z-Test Sta�s�c

p-Value

Null Hypoth. at 10% Significance

Null Hypoth. at 5% Significance

Null Hypoth. at 1% Significance

Conf. Interval (Propor�on)

Category

Sample Size

Sample Propor�on

Confidence Level

Standard Error of Propor�on

Lower Limit

Upper Limit

E

Count
Data Set #1

Number of unsa�sfied customers
400

0.058
0.075

< 0.075
0.013

-1.3288
0.0920
Reject

Don't Reject
Don't Reject

Count
Data Set #1

Number of unsa�sfied customers
400

0.058
95.0%
0.012
0.035
0.080

Figure 9.10 Analysis of New Process for Letter Writers

Figure 9.11

Dialog Box for a Test

of a Proportion
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barely. In this sense it also provides some support for the argument that the manager has
indeed achieved her goal.3

Analysts might disagree on whether a hypothesis test or a confidence interval is the
more appropriate way to present these results. However, we see them as complementary
and do not necessarily favor one over the other. The bottom line is that they both provide
some, but not totally conclusive, evidence that the manager has achieved her goal. ■
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3Note that the standard error in cell E10 for the hypothesis test uses the target proportion 0.075. In contrast, the
standard error for the confidence interval in cell E23 uses the sample proportion 0.0575. The sampling distribu-
tion for a hypothesis test always uses the borderline value between H0 and Ha. But because confidence intervals
are not connected to any hypotheses, their standard errors must rely on sample data. In most cases the two stan-
dard errors are practically the same.

9.4.2 Hypothesis Tests for Differences between Population Means

We now discuss the comparison problem, where the difference between two population
means is tested. As in the previous chapter, the form of the analysis depends on whether
the two samples are independent or paired. For variety, we begin with the paired case.

If the samples are paired, then the test proceeds exactly as in section 9.3, using the dif-
ferences as the single variable of analysis. That is, if is the sample mean difference
between n pairs, D0 is the hypothesized difference (the borderline value between H0 and
Ha), and sD is the sample standard deviation of the differences, then the test is based on the
test statistic in Equation (9.3). If D0 is the true mean difference, this test statistic has a 
t distribution with n � 1 degrees of freedom. The validity of the test also requires that n
be reasonably large and/or the population of differences be approximately normally
distributed.

D

This comparison
problem—comparing
two population
means—is one of the
most important
problems analyzed
with statistical
methods. It can be
analyzed with
confidence intervals,
hypothesis tests, or
both.

Test Statistic for Paired Samples Test of Difference Between Means

(9.3)t-value =

D - D0

sD�1n

Test Statistic for Independent Samples Test of Difference Between Means

(9.4)t-value =

(X1 - X2) - D0

sp11/n1 + 1/n2

If the samples are independent and the population standard deviations are equal, the 
two-sample theory discussed in section 8.7 is relevant. It leads to the test statistic in
Equation (9.4). Here, and are the two sample means, D0 is the hypothesized differ-
ence, n1 and n2 are the sample sizes, and sp is the same pooled estimate of the common
population standard deviation as in the previous chapter:

If D0 is the true mean difference, this test statistic has a t distribution with n1 � n2 � 2
degrees of freedom. The validity of this test again requires that the sample sizes be reason-
ably large and/or the populations be approximately normally distributed.

sp =

C

(n1 - 1)s1
2

+ (n2 - 1)s2
2

n1 + n2 - 2

X2X1
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Fortunately, these formulas are implemented automatically by StatTools’s procedures. 
We begin by illustrating an example of the paired-sample t test.

476 Chapter 9 Hypothesis Testing

E X A M P L E 9.4 MEASURING THE EFFECTS OF TRADITIONAL AND NEW STYLES OF

SOFT-DRINK CANS

Beer and soft-drink companies have become very concerned about the style of their cans.
There are cans with fluted and embossed sides and cans with six-color graphics and

holograms. Coca-Cola has even introduced a contoured can, shaped like the old-fashioned
Coke bottle minus the neck. Evidently, these companies believe the style of the can makes a
difference to consumers, which presumably translates into higher sales.

Assume that a soft-drink company is considering a style change to its current can,
which has been the company’s trademark for many years. To determine whether this new
style is popular with consumers, the company runs a number of focus group sessions
around the country. At each of these sessions, randomly selected consumers are allowed to
examine the new and traditional styles, exchange ideas, and offer their opinions.
Eventually, they fill out a form where, among other questions, they are asked to respond to
the following items, each on a scale of 1 to 7, 7 being the best: 

■ Rate the attractiveness of the traditional-style can (AO).
■ Rate the attractiveness of the new-style can (AN).
■ Rate the likelihood that you would buy the product with the traditional-style can

(WBO).
■ Rate the likelihood that you would buy the product with the new-style can (WBN).

(A and WB stand for “attractiveness” and “would buy,” and O and N stand for “old” and
“new.”) What can the company conclude from these data? (See the file Soft-Drink Cans.xlsx.)
Are hypothesis tests appropriate?

Objective To use paired-sample t tests for differences between means to see whether
consumers rate the attractiveness, and their likelihood to purchase, higher for a new-style
can than for the traditional-style can.

Solution

First, it is a good idea to examine summary statistics for the data. The averages from each sur-
vey item are shown at the bottom of Figure 9.12. They indicate some support for the new-style
can. Also, you might expect the ratings for a given consumer to be correlated. This turns out to
be the case, as shown by the relatively large positive correlations in Figure 9.13. These large
positive correlations indicate that if you want to examine differences between survey items, a
paired-sample procedure will make the most efficient use of the data. Of course, a paired-
sample procedure also makes sense because each consumer answers each item on the form. (If
this is confusing, think about the following alternative setup, where there are four separate
groups of consumers. The first group responds to item 1 only, the second group responds to
item 2 only, and so on. Then the responses to the various items are in no way paired, and an
independent-sample procedure would be used instead. However, this experimental design is
not as efficient as the paired design in terms of making the best use of a given amount of data.)

There are several differences of interest. The two most obvious are the difference
between the attractiveness ratings of the two styles and the difference between the likelihoods
of buying the two styles—that is, column B minus column C and column D minus column E.
A third difference of interest is the difference between the attractiveness ratings of the new
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style and the likelihoods of buying the new can—that is, column C minus column E. This dif-
ference indicates whether perceptions of the new-style can are likely to translate into actual
sales. Finally, a fourth difference that might be of interest is the difference between the third
difference (column C minus column E) and the similar difference for the old style (column B
minus column D). This checks whether the translation of perceptions into sales is any
different for the two styles of cans.

All of these differences appear next to the original data in Figure 9.14. In terms of the
original data, they are labeled as:

■ Diff1: AO – AN
■ Diff2: WBO – WBN
■ Diff3: AN – WBN
■ Diff4: AO – WBO
■ Diff5: (AN – WBN) – (AO – WBO)

These differences have been calculated in columns F through J. (Actually, StatTools’s
Paired-Sample procedure generates the required differences internally when it tests
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4
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1
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1
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3.86

1
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1
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3
1
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1
3
3
7

4.34

Figure 9.12

Data on Soft-Drink

Cans

7
8
9
10
11
12

A B C D E

Correlation Table AO AN WBO WBN
AO 1.000
AN 0.740 1.000
WBO 0.746 0.595 1.000
WBN 0.594 0.401 0.774 1.000

Figure 9.13

Correlations for

Soft-Drink Can Data
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these differences. We manually inserted the differences in Figure 9.14 so that you can
see them explicitly.)

For each of the differences, Diff1, Diff2, Diff3, and Diff5, you can test the mean differ-
ence over all potential consumers with a paired-sample analysis. (You actually run the one-
sample procedure on the difference variables.) Exactly as in the previous chapter, each
difference variable is treated as a single sample and the same t test as in section 9.3 is run on
this sample. (This means that the differences in columns F through J of Figure 9.14 should
be included in the StatTools data set.) In each case the hypothesized difference, D0, is 0. The
only question is whether to run one-tailed or two-tailed tests. We suggest that the tests for
Diff1, Diff2, and Diff5 be two-tailed tests and that the test on Diff3 be a one-tailed test with
the alternative of the “greater than” variety. The reasoning is that the company probably has
little idea which way the differences Diff1, Diff2, and Diff5 will go (positive or negative),
whereas it expects that Diff3 to be positive on average. That is, the company expects
consumers’ ratings of the attractiveness of the new design to be larger, on average, than their
likelihoods of purchasing the product. However, any of these hypotheses could be run as
one-tailed or two-tailed tests. It depends on the prior beliefs of the company. In any case, to
change a one-tailed p-value to a two-tailed p-value, all you need to do is multiply by 2.
Similarly, you can change two-tailed p-values to one-tailed p-values by dividing by 2.

The results from the four tests appear in Figures 9.15 and 9.16. (These outputs also
include 99% confidence intervals for the corresponding mean differences.) You can obtain
each output for Diff1, Diff2, and Diff3 by selecting Confidence Interval or Hypothesis Test
from the StatTools Statistical Inference dropdown list, used on the appropriate difference
variable and the One-Sample analysis type.4

Results of the analysis of soft-drink can style

■ From the output for the Diff1 variable (AO – AN) in Figure 9.15, there is overwhelming
evidence that consumers, on average, rate the attractiveness of the new design higher
than the attractiveness of the current design. The t-distributed test statistic is �5.351,
calculated as

-0.539 - 0

0.101
= -5.351
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1
2
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4
5
6
7
8
9

10
11
12
13

A B C D E F G H I J
Consumer AO AN WBO WBN AO-AN WBO-WBN AN-WBN AO-WBO (AN-WBN)-(AO-WBO)

1 4 1 -2 3 6 1 5
2 6 6 0 0 1 1 0
3 7 6 -1 1 1 -1 2
4 1 1 -2 0 2 0 2
5 1 1 -1 0 3 2 1
6 7 7 0 0 0 0 0
7 4 6 -2 -2 1 1 0
8 6 7 -1 -1 0 0 0
9 6 6 -2 0 1 -1 2

10 4 6 1 -2 -2 1 -3
11 1 1 -2 0 2 0 2
12

5 7
7 7
6 7
1 3
3 4
7 7
5 7
6 7
5 7
5 4
1 3
2 1 1 3 1 -2 -2 1 -3

Figure 9.14 Original and Difference Variables for Soft-Drink Can Data

4Because this can be a source of confusion, we repeat again that when you want to run a paired-sample analysis
in StatTools, you can do it by creating the differences manually and then using the One-Sample option, or you can
choose the Paired-Sample option and select the two original variables you want to compare, in which case
StatTools creates the difference variable internally for you. The results are identical.
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EDCBA
AO-AN WBO-WBN

Conf. Intervals (One-Sample) Data Set #1 Conf. Intervals (One-Sample) Data Set #1

Sample Size 180 Sample Size 180
Sample Mean -0.539 Sample Mean -0.478
Sample Std Dev 1.351 Sample Std Dev 1.347
Confidence Level (Mean) 99.0% Confidence Level (Mean) 99.0%
Degrees of Freedom 179 Degrees of Freedom 179
Lower Limit -0.801 Lower Limit -0.739
Upper Limit -0.277 Upper Limit -0.216

AO-AN WBO-WBN
Hypothesis Test (One-Sample) Data Set #1 Hypothesis Test (One-Sample) Data Set #1

Sample Size 180 Sample Size 180
Sample Mean -0.539 Sample Mean -0.478
Sample Std Dev 1.351 Sample Std Dev 1.347
Hypothesized Mean 0 Hypothesized Mean 0
Alterna�ve Hypothesis <> 0 Alterna�ve Hypothesis <> 0
Standard Error of Mean 0.1007 Standard Error of Mean 0.1004
Degrees of Freedom 179 Degrees of Freedom 179
t-Test Sta�s�c -5.3514 t-Test Sta�s�c -4.7578
p-Value < 0.0001 p-Value < 0.0001
Null Hypoth. at 10% Significance Reject Null Hypoth. at 10% Significance Reject
Null Hypoth. at 5% Significance Reject Null Hypoth. at 5% Significance Reject
Null Hypoth. at 1% Significance Reject Null Hypoth. at 1% Significance Reject

Figure 9.15 Analysis of Diff1 and Diff2 Variables
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EDCBA
AN- NA(NBW -WBN)-(AO-WBO)

Conf. Intervals (One-Sample) Data Set #1 Conf. Intervals (One-Sample) Data Set #1

Sample Size 180 Sample Size 180
Sample Mean 0.611 Sample Mean 0.061
Sample Std Dev 2.213 Sample Std Dev 2.045
Confidence Level (Mean) 99.0% Confidence Level (Mean) 99.0%
Degrees of Freedom 179 Degrees of Freedom 179
Lower Limit 0.182 Lower Limit -0.336
Upper Limit 1.041 Upper Limit 0.458

AN- NA(NBW -WBN)-(AO-WBO)
Hypothesis Test (One-Sample) Data Set #1 Hypothesis Test (One-Sample) Data Set #1

Sample Size 180 Sample Size 180
Sample Mean 0.611 Sample Mean 0.061
Sample Std Dev 2.213 Sample Std Dev 2.045
Hypothesized Mean 0 Hypothesized Mean 0
Alterna�ve Hypothesis > 0 Alterna�ve Hypothesis <> 0
Standard Error of Mean 0.1650 Standard Error of Mean 0.1524
Degrees of Freedom 179 Degrees of Freedom 179
t-Test Sta�s�c 3.7046 t-Test Sta�s�c 0.4010
p-Value 0.0001 p-Value 0.6889
Null Hypoth. at 10% Significance Reject Null Hypoth. at 10% Significance Don't Reject
Null Hypoth. at 5% Significance Reject Null Hypoth. at 5% Significance Don't Reject
Null Hypoth. at 1% Significance Reject Null Hypoth. at 1% Significance Don't Reject

Figure 9.16 Analysis of Diff3 and Diff5 Variables
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The corresponding p-value for a two-tailed test of the mean difference is (to three
decimal places) 0.000. A 99% confidence interval for the mean difference extends
from �0.801 to �0.277. Note that this 99% confidence interval does not include the
hypothesized value 0. This is consistent with the fact that the two-tailed p-value is
less than 0.01. (Recall the relationship between confidence intervals and two-tailed
hypothesis tests from section 9.2.7.)

■ The results are basically the same for the difference between consumers’ likelihoods
of buying the product with the two styles. (See the output for the Diff2 variable,
WBO–WBN, in Figure 9.15.) Again, consumers are definitely more likely, on
average, to buy the product with the new-style can. A 99% confidence interval 
for the mean difference extends from �0.739 to �0.216, which is again all
negative.

■ The company’s hypothesis that consumers’ ratings of attractiveness of the new-style
can are greater, on average, than their likelihoods of buying the product with this
style can is confirmed. (See the output for the Diff3 variable, AN–WBN, in Figure
9.16.) The test statistic for this one-tailed test is 3.705 and the corresponding p-value
is 0.000. A 99% confidence interval for the mean difference extends from 0.182 to
1.041, which is all positive.

■ There is no evidence that the difference between attractiveness ratings and the likelihood
of buying is any different for the new-style can than for the current-style can. (See the
output for the Diff5 variable, (AN–WBN)–(AO–WBO), in Figure 9.16.) The test
statistic for a two-tailed test of this difference is 0.401 and the corresponding p-value,
0.689, isn’t even close to any of the traditional significance levels. Furthermore, a 99%
confidence interval for the mean difference extends from a negative value, �0.336, to a
positive value, 0.458.

These results are further supported by histograms of the difference variables, such as those
shown in Figures 9.17 and 9.18. (Box plots could be used, but we prefer histograms when
the variables include only a few possible integer values.) The histogram of the Diff1
variable in Figure 9.17 shows many more negative differences than positive differences.
This leads to the large negative test statistic and the all-negative confidence interval. In
contrast, the histogram of the Diff5 variable in Figure 9.18 is almost perfectly symmetric
around 0 and hence provides no evidence that the mean difference is not zero.
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This example illustrates once again how hypothesis tests and confidence intervals
provide complementary information, although the confidence intervals are arguably
more useful here. The hypothesis test for the first difference, for example, shows that the
average rating for the new style is undoubtedly larger than for the current style. This is
useful information, but it is even more useful to know how much larger the average for
the new style is. A confidence interval provides this information.

We conclude this example by recalling the distinction between practical significance
and statistical significance. Due to the extremely low p-values, the results in Figure 9.15,
for example, leave no doubt as to statistical significance. But this could be due to the large
sample size. That is, if the true mean differences are even slightly different from 0, large
samples will almost surely discover this and report small p-values. The soft-drink com-
pany, on the other hand, is more interested in knowing whether the observed differences
are of any practical importance. This is not a statistical question. It is a question of what
differences are important for the business. We suspect that the company would indeed be
quite impressed with the observed differences in the sample—and might very well switch
to the new-style can. ■
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FUNDAMENTAL INSIGHT

Signficance and Sample Size in 
Tests of Differences

The contrast between statistical and practical signifi-

cance is especially evident in tests of differences

between means. If the sample sizes are relatively small,

it is likely that no statistical significance will be found,

even though the real difference between means, if they

could be estimated more accurately with more data,

might be practically significant. On the other hand, if

the sample sizes are very large, then just about any dif-

ference between sample means is likely to be statisti-

cally significant, even though the real difference

between means might be of no practical importance.

The following example illustrates the independent two-sample t test. You can tell that
a paired-sample procedure is not appropriate because there is no attempt to match the
observations in the two samples in any way. Indeed, this is obvious because the sample
sizes are not equal.
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E X A M P L E 9.5 PRODUCTIVITY DUE TO EXERCISE AT INFORMATRIX SOFTWARE

COMPANY

Many companies have installed exercise facilities at their plants. The goal is not only
to provide a bonus (free use of exercise equipment) for their employees, but to make

the employees more productive by getting them in better shape. One such (fictional) com-
pany, the Informatrix Software Company, installed exercise equipment on site a year ago.
To check whether it has had a beneficial effect on employee productivity, the company
gathered data on a sample of 80 randomly chosen employees, all between the ages of
30 and 40 and all with similar job titles and duties. The company observed which of these
employees use the exercise facility regularly (at least three times per week on average).
This group included 23 of the 80 employees in the sample. The other 57 employees were
asked whether they exercise regularly elsewhere, and 6 of them replied that they do. The
remaining 51, who admitted to being nonexercisers, were then compared to the combined
group of 29 exercisers.

The comparison was based on the employees’ productivity over the year, as rated by
their supervisors. Each rating was on a scale of 1 to 25, 25 being the best. To increase the
validity of the study, neither the employees nor the supervisors were told that a study was
in progress. In particular, the supervisors did not know which employees were involved in
the study or which were exercisers. The data from the study appear in Figure 9.19. (See the
file Exercise & Productivity.xlsx.) Do these data support the company’s (alternative)
hypothesis that exercisers outperform nonexercisers on average? Can the company infer
that any difference between the two groups is due to exercise?

Objective To use a two-sample t test for the difference between means to see whether
regular exercise increases worker productivity.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A B C
Employee Exerciser Ra�ng

1 Yes 14
2 No 7
3 No 15
4 Yes 15
5 No 13
6 No 16
7 No 19
8 No 14
9 Yes 14

10 No 9
11 Yes 23
12 No 23
13 No 15
14 Yes 8
15 No 24
16 No 18
17 Yes 12
18 No 19
19 Yes 16
20 Yes 14

Figure 9.19

Data for Study on

Effectiveness of

Exercise

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Solution

To see whether there is any indication of a difference between the two groups, a good first
step is to create side-by-side box plots of the Rating variable. These appear in Figure 9.20.
Although there is a great deal of overlap between the two distributions, the distribution for
the exercisers is somewhat to the right of that for the nonexercisers. Also, the variances
of the two distributions appear to be roughly the same, although there is slightly more
variation in the nonexerciser distribution.
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Side-by-side box plots
are typically a good
way to begin the
analysis when
comparing two
populations.

Exerciser = Yes

Box Plot of Comparison of Ra�ng 

Exerciser = No

0 5 10 15 20 25 30

Figure 9.20

Box Plots for

Exercise Data

A formal test of the mean difference uses the hypotheses H0:�1 � �2 � 0 versus 
Ha:�1 � �2 	 0, where �1 and �2 are the mean ratings for the nonexerciser and exerciser
populations. It makes sense to use a one-tailed test, with the alternative of the “less than”
variety, because the company expects higher ratings, on average, for the exercisers. The out-
put for this test, along with a 95% confidence interval for �1 � �2, appears in Figure 9.21.
You can obtain the right part (the hypothesis test) by filling out the StatTools Hypothesis
Test dialog box as shown in Figure 9.22. Specifically, select Two-Sample Analysis as the
Analysis Type, click on the Format button and make sure the Stacked option is checked,
select Exerciser as the “Cat” variable and Rating as the “Val” variable, and choose the “Less
Than” Alternative Hypothesis Type.5

If the population standard deviations are at least approximately equal (and the values in
cells B11 and C11 suggest that this assumption is plausible), the output in the range
B37:B44 is relevant. It shows that the observed sample mean difference, �2.725, is indeed
negative. That is, the exercisers in the sample outperformed the nonexercisers by 2.725
rating points on average. The output also shows that (1) the standard error of the sample
mean difference is 1.142, (2) the test statistic is �2.387, and (3) the p-value for a one-tailed
test is slightly less than 0.010. In words, the data provide enough evidence to reject the null
hypothesis at the 1% significance level, as well as at the 5% and 10% levels. It is clear that
exercisers perform better, in terms of mean ratings, than nonexercisers. A 95% confidence
for this mean difference is all negative; it extends from �4.998 to �0.452.

This answers the first question we posed, but it doesn’t answer the second. There is no
way to be sure that the higher ratings for the exercisers are a direct result of exercise. It is

5The Stacked versus Unstacked issue is the same as you have seen before. The data in this file are stacked because
there are two long columns that list a categorical variable, Exerciser, and a numeric variable, Rating.
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possible that employees who exercise are naturally more ambitious and hard-working peo-
ple, and that this extra drive is responsible for both their exercising and their higher ratings.
This study is an observational study. The company observes two randomly selected groups
of employees and analyzes the results. It does not explicitly control for other factors, such
as personality, that might be responsible for differences in ratings. Therefore, the company
can never be sure that there is a causal relationship between exercise and performance
ratings. All the company can state is that exercisers appear, on average, to be more produc-
tive than nonexercisers—for whatever reason.

We are almost finished with this example, but not quite. What about the output in
column C, and the test in rows 48 and 49? The test we just performed and the confidence
interval we reported are based on the assumption of equal population standard deviations
(or variances). As we discussed in section 8.7.1, if this assumption is violated, then a
slightly different form of analysis should be performed, and its results are reported in
column C. As you can see, the results are very similar to those in column B, although the 
p-value is slightly lower and the confidence interval is slightly narrower.

The test reported in rows 48 and 49 is a formal test of the hypothesis 
versus , where the parameter being tested is the ratio of the two population
variances. (The details behind this test are explained in the following subsection.) If this
null hypothesis can be rejected on the basis of a low p-value in cell B49, then the equal-
variance assumption is almost certainly not valid, and the output in column C should be

Ha:s1
2/s2

2
Z 1

H0:s1
2/s2

2
= 1
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7
8
9

10
11
12
13
14
15
16
17
18
19
20
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47

48
49

A B C
(No) (Yes)

Sample Summaries Data Set #1 Data Set #1

Sample Size 51 29
Sample Mean 14.137 16.862
Sample Std Dev 5.307 4.103

Equal Unequal
Conf. Intervals (Difference of Means) Variances Variances

Confidence Level 95.0% 95.0%
Sample Mean Difference -2.725 -2.725
Standard Error of Difference 1.142 1.064
Degrees of Freedom 78 71
Lower Limit -4.998 -4.847
Upper Limit -0.452 -0.603

Equal Unequal

Hypothesis Test (Difference of Means) Variances Variances

Hypothesized Mean Difference 0 0
Hypothesis < 0 < 0

Sample Mean Difference -2.725 -2.725
Standard Error of Difference 1.142 1.064
Degrees of Freedom 78 70
t-Test -2.387 -2.560
p-Value 0.0097 0.0063
Null Hypoth. at 10% Significance Reject Reject
Null Hypoth. at 5% Significance Reject Reject
Null Hypoth. at 1% Significance Reject Reject

Equality of Variances Test

of Sample Variances 1.6725
p-Value 0.1454

Figure 9.21

Analysis of Exercise

Data
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used. Otherwise, the output in column B should be used. The p-value in cell B49, 0.1454,
suggests that the evidence against equal population variances is far from overwhelming.
Of course, the similarity of the outputs in columns B and C implies, especially from a prac-
tical point of view, that it doesn’t really make much difference. In other examples it could
be more critical. ■

StatTools Tip If the p-value for the test of equal variances is small, use the right column
(here column C) for testing the difference between means. Otherwise, use the (traditional)
left column (here column B).

9.4.3 Hypothesis Test for Equal Population Variances

As we just explained, the two-sample procedure for a difference between population means
depends on whether population variances are equal.6 Therefore, it is natural to test first for
equal variances. This test is phrased in terms of the ratio of population variances, . The
null hypothesis is that this ratio is 1 (equal variances), whereas the alternative is that it is not
1 (unequal variances). The test statistic for this test is the ratio of sample variances:

Assuming that the population variances are equal, this test statistic has an F distribution
with n1 � 1 and n2 � 1 degrees of freedom.

The F distribution, named after the famous statistician R. A. Fisher, is another sam-
pling distribution that arises frequently in statistical studies. (It will appear again in the next

F-value = s1
2/s2

2

s1
2/s2

2
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Figure 9.22

Dialog Box for Two-

Sample Analysis

6The test in this section is traditionally stated in terms of variances, as we do here. It could also be stated in terms
of standard deviations, because equal variances imply equal standard deviations and vice versa.
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two chapters on regression.) Because it always describes a ratio, there are two degrees of
freedom parameters, one for the numerator and one for the denominator, and the numerator
degrees of freedom is always quoted first.

Tables of the F distribution, for selected degrees of freedom, appear in many statistics
books, but the necessary information can be obtained more easily with Excel’s FDIST and
FINV functions. The FDIST function takes the form

�FDIST(v,df1,df2)

This function returns the probability to the right of value v when the degrees of freedom
are df1 and df2. Similarly, the FINV function takes the form

�FINV(p,df1,df2)

It returns the value with probability p to the right of it when the degrees of freedom are df1
and df2.

CHANGES IN EXCEL 2010

These F functions have been changed considerably in Excel 2010. There are now F.DIST and F.INV

functions for left tails, and F.DIST has a last “cum” argument just like NORM.DIST, T.DIST, and

CHISQ.DIST. Also, there are two functions, F.DIST.RT and F.INV.RT, for right tails.

When StatTools tests for equal variances, it first calculates the ratio of variances. (See
cell B48 in Figure 9.20.) It then implements the F test to calculate the corresponding p-
value (in cell B49). For our purposes, the most important thing is the p-value from the test.
A small p-value provides strong evidence that the population variances are not equal.
Otherwise, an equal-variance assumption is reasonable. The p-value for the exercise data,
0.1454, provides some evidence of unequal variances, but the evidence is certainly not
overwhelming.

9.4.4 Hypothesis Tests for Differences between Population
Proportions

One of the most common uses of hypothesis testing is to test whether two population pro-
portions are equal. Let p1 and p2 be the two population proportions, and let and be the
corresponding sample proportions, based on sample sizes n1 and n2. The goal is to test
whether the sample proportions differ enough to conclude that the population proportions
are not equal. As usual, a test on the difference p̂1 � p̂2, requires a standard error. If the null
hypothesis is true, so that p1 � p2, then it can be shown that the standard error of p̂1 � p̂2 is
given by Equation (9.5), where p̂c is the pooled proportion from the two samples com-
bined. For example, if p̂1 � 20/85 and � 34/115, then � (20 � 34)/(85 � 115) �
54/200. The reason for using this pooled estimate is that if the null hypothesis is true and
the two population proportions are equal, it makes sense to base an estimate of this com-
mon proportion on the combined sample of data.

pN cpN 2

Np2Np1
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The F distribution is a
distribution of positive
values and is always
skewed to the right.
It typically appears in
tests of equal
variances.

Standard Error for Difference between Sample Proportions

(9.5)SE( Np1 - Np2) = 2 Npc(1 - Npc)(1/n1 + 1/n2)
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Given this standard error, the rest is straightforward. Assuming that the sample sizes
are reasonably large, the test statistic in Equation (9.6) has (approximately) a standard nor-
mal distribution. The test can be run with StatTools, as illustrated in the next example.
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Test Statistic for Difference between Proportions

(9.6)z-value =

Np1 - Np2

SE( Np1 - Np2)

E X A M P L E 9.6 EMPLOYEE EMPOWERMENT AT ARMCO COMPANY

The ArmCo Company, a large manufacturer of automobile parts, has several plants in
the United States. For years, ArmCo employees have complained that their sugges-

tions for improvements in the manufacturing processes have been ignored by upper man-
agement. In the spirit of employee empowerment, ArmCo management at the Midwest
plant decided to initiate a number of policies to respond to employee suggestions. For
example, a mailbox was placed in a central location, and employees were encouraged to
drop suggestions into this box. No such initiatives were taken at the other ArmCo plants.
As expected, there was a great deal of employee enthusiasm at the Midwest plant shortly
after the new policies were implemented, but the question was whether life would revert to
normal and the enthusiasm would dampen with time.

To check this, 100 randomly selected employees at the Midwest plant and 300
employees from other plants were asked to fill out a questionnaire six months after the
implementation of the new policies at the Midwest plant. Employees were instructed to
respond to each item on the questionnaire by checking either a “yes” box or a “no” box.
Two specific items on the questionnaire were the following: 

■ Management at this plant is generally responsive to employee suggestions for
improvements in the manufacturing processes.

■ Management at this plant is more responsive to employee suggestions now than it
used to be.

The results of the questionnaire for these two items appear in rows 5 and 6 of Figure 9.23.
(See the file Empowerment 1.xlsx.) Does it appear that the policies at the Midwest plant
are appreciated? Should ArmCo implement these policies in its other plants?

Objective To use a test for the difference between proportions to see whether a program
of accepting employee suggestions is appreciated by employees.

Solution

For either questionnaire item, let p1 be the proportion of “yes” responses that would be
obtained at the Midwest plant if the questionnaire were given to all of its employees, and
define p2 similarly for the other plants. Management certainly hopes to find a larger
proportion of “yes” responses (to either item) at the Midwest plant than at the other plants,
so the appropriate test is one-tailed, with the hypotheses set up as H0: p1 � p2 � 0 versus
Ha: p1 � p2 � 0. (These could also be written as H0: p1 � p2 versus H0: p1 � p2, but this
has no effect on the test.)

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the counts in rows 5 and 6, StatTools can run the test for differences between
proportions. As with the test for a single proportion, you should recall the three possible
StatTools data setups that were discussed in section 8.8 of the previous chapter. (See the
finished version of the file Coupon Effectiveness.xlsx from the previous chapter for more
details.) For this example, the two relevant StatTools data sets are the tables of counts in
the ranges A4:C6 and E4:G6. To run the test for the first item (whether management
responds), select Hypothesis Test/Proportions from the Statistical Inference dropdown list
and fill in the resulting dialog box as shown in Figure 9.24. This implies that the difference
being tested is the difference between the proportion of “yes” votes in the Midwest and
Other. When you click on OK, you will see the dialog box in Figure 9.25. 
As it now stands, the difference will be Midwest minus Other. This is fine for this example,
so click on OK, but if you wanted Other minus Midwest, you would click on the Reverse
Order button. Of course, the test for the second item (whether things have improved) is
performed similarly.

As shown in Figure 9.23, the p-values for the two tests (row 27) are 0.070 and 0.004.
These results should be fairly good news for management. There is moderate, but not over-
whelming, support for the hypothesis that management at the Midwest plant is more
responsive than at the other plants, at least as perceived by employees. There is convincing
support for the hypothesis that things have improved more at the Midwest plant than at the
other plants. Corresponding 95% confidence intervals for the differences between propor-
tions appear in rows 47 and 48. Because they are almost completely positive, they support
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
43
44
45
46
47
48

GFEDCBA
Employee empowerment results

Item 1: Management responds Item 2: Things have improved
OtherMidwestCategoryOtherMidwestCategory

15968Yes9339Yes
14132No20761No
300100Totals300100Totals

Analyzed Category Analyzed Category

Propor�on of Items in This Category Yes Propor�on of Items in This Category

Midwest Other Other
Sample Summaries Data Set #1 Data Set #1 Sample Summaries Data Set #2

Sample Size 100 300 Sample Size

Sample Propor�on 0.390 0.310 Sample Propor�on

300
0.530

Hypothesis Test (Difference Between Propor�ons) Hypothesis Test (Difference Between Propor�ons)

Pooled Propor�on 0.330 Pooled Propor�on

Difference Between Propor�ons 0.080 Difference Between Propor�ons

Hypothesized Difference 0 Hypothesized Difference

Alterna�ve Hypothesis > 0 Alterna�ve Hypothesis

Standard Error of Difference 0.054 Standard Error of Difference

Test Sta�s�c 1.4734 Test Sta�s�c

p-Value 0.0703 p -Value

Null Hypoth. at 10% Significance

Null Hypoth. at 5% Significance

Null Hypoth. at 1% Significance

Reject Null Hypoth. at 10% Significance

Don't Reject Null Hypoth. at 5% Significance

Don't Reject Null Hypoth. at 1% Significance

Conf. Interval (Difference Between Propor�ons) Conf. Interval (Difference Between Propor�ons)

Confidence Level 95.0% Confidence Level

Difference Between Propor�ons 0.080 Difference Between Propor�ons

Standard Error of Difference 0.056 Standard Error of Difference

Lower Limit -0.029 Lower Limit

Upper Limit 0.189 Upper Limit

Yes

Midwest
Data Set #2

100
0.680

0.568
0.150

0
> 0

0.057
2.6221
0.0044
Reject
Reject
Reject

95.0%
0.150
0.055
0.043
0.257

Item 2: Things have improved

Note: The two StatTools data sets are in the ranges A4:C6 and E4:G6.

Figure 9.23 Results for Employee Empowerment Example
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the hypothesis-test findings. Moreover, they provide a range of plausible values for the
differences between the population proportions.

The only real downside to these findings, from Midwest management’s point of
view, is the sample proportion p̂1 for the first item. Only 39% of the sampled employees
at the Midwest plant believe that management generally responds to their suggestions,
even though 68% believe things are better than they used to be. A reasonable conclusion
by ArmCo management is that they are on the right track at the Midwest plant, and
the policies initiated there ought to be initiated at other plants, but more must be done at
all plants. ■
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Figure 9.24

Dialog Box for

Testing Difference

Between

Proportions

Figure 9.25

Dialog Box for

Reversing Difference
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P R O B L E M S

Level A

9. In the past, 60% of all undergraduate students enrolled
at State University earned their degrees within four
years of matriculation. A random sample of 95
students from the class that matriculated in the fall
of 2006 was recently selected to test whether there
has been a change in the proportion of students who
graduate within four years. Administrators found that
40 of these 95 students graduated in the spring of 2010
(i.e., four academic years after matriculation).
a. Given the sample outcome, find a 95% confidence

interval for the relevant population proportion.
Does this interval estimate suggest that there has
been in a change in the proportion of students who
graduate within four years? Why or why not?

b. Suppose now that State University administrators
want to test the claim made by faculty that the
proportion of students who graduate within four
years at State University has fallen below the
historical value of 60% this year. Use this sample
proportion to test their claim. Report a p-value and
interpret it.

10. Suppose a well-known baseball player states that, at
this stage of his career, he is a “300 hitter” or better.
That is, he claims that he gets a hit in at least 30%
of his at-bats. Over the next month of the baseball
season, this player has 105 at-bats and gets 33 hits.
a. Identify the null and alternative hypotheses from

the player’s point of view.
b. Is there enough evidence from this month’s data

to reject the null hypothesis at the 5% significance
level?

c. We might raise two issues with this test. First,
does the data come from a random sample from
some population? Second, what is the relevant
population? Discuss these issues. Do you think
the test in part b is valid? Is it meaningful?

11. The director of admissions of a distinguished (i.e., top-
20) MBA program is interested in studying the propor-
tion of entering students in similar graduate business
programs who have achieved a composite score on the
Graduate Management Admissions Test (GMAT) in
excess of 630. In particular, the admissions director
believes that the proportion of students entering top-rated
programs with such composite GMAT scores is now
50%. To test this hypothesis, he has collected a random
sample of MBA candidates entering his program in the
fall of 2010. He believes that these students’ GMAT
scores are indicative of the scores earned by their peers in
his program and in competitors’ programs. The GMAT
scores for these 125 individuals are given in the Data
2010 sheet of the file P09_11.xlsx. Test the admission

director’s claim at the 5% significance level and report
your findings. Does your conclusion change when the
significance level is increased to 10%?

12. A market research consultant hired by a leading soft-
drink company wants to determine the proportion of
consumers who favor its low-calorie drink over the
leading competitor’s low-calorie drink in a particular
urban location. A random sample of 250 consumers
from the market under investigation is provided in the
file P08_18.xlsx.
a. Find a 95% confidence interval for the proportion

of all consumers in this market who prefer this
company’s drink over the competitor’s. What
does this confidence interval tell us?

b. Does the confidence interval in part a support the
claim made by one of the company’s marketing
managers that more than half of the consumers in
this urban location favor its drink over the
competitor’s? Explain your answer.

c. Comment on the sample size used in this study.
Specifically, is the sample unnecessarily large? 
Is it too small? Explain your reasoning.

13. The CEO of a medical supply company is committed
to expanding the proportion of highly qualified women
in the organization’s staff of salespersons. He claims
that the proportion of women in similar sales positions
across the country in 2010 is less than 50%. Hoping
to find support for his claim, he directs his assistant
to collect a random sample of salespersons employed
by his company, which is thought to be representative
of sales staffs of competing organizations in the
industry. These data are listed in the Data 2010 sheet
of the file P09_13.xlsx. Test this manager’s claim
using the given sample data and report a p-value. 
Is there statistical support for his hypothesis that the
proportion of women in similar sales positions across
the country is less than 50%?

14. Management of a software development firm would
like to establish a wellness program during the lunch
hour to enhance the physical and mental health of its
employees. Before introducing the wellness program,
management must first be convinced that a sufficiently
large majority of its employees are not already exercis-
ing at lunchtime. Specifically, it plans to initiate the
program only if less than 40% of its personnel take
time to exercise prior to eating lunch. To make this
decision, management has surveyed a random sample
of 100 employees regarding their midday exercise
activities. The results of the survey are given in the
Before sheet of the file P09_14.xlsx. Is there sufficient
evidence at the 10% significance level for managers
of this organization to initiate a corporate wellness
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program? Why or why not? What about at the 1%
significance level?

15. The managing partner of a major consulting firm
is trying to assess the effectiveness of expensive
computer skills training given to all new entry-level
professionals. In an effort to make such an assessment,
she administers a computer skills test immediately
before and after the training program to each of 40
randomly chosen employees. The pretraining and
posttraining scores of these 40 individuals are recorded
in the file P09_15.xlsx. Do the given sample data
support the claim at the 10% significance level that the
organization’s training program is increasing the new
employee’s working knowledge of computing? What
about at the 1% significance level?

16. A large buyer of household batteries wants to decide
which of two equally priced brands to purchase. To
do this, he takes a random sample of 100 batteries of
each brand. The lifetimes, measured in hours, of the
randomly chosen batteries are recorded in the file
P09_16.xlsx.
a. Using the given sample data, find a 95% con-

fidence interval for the difference between the
mean lifetimes of brand 1 and brand 2 batteries.
Based on this confidence interval, which brand
would you advise the buyer to purchase? Would
you even need a confidence interval to make this
recommendation? Explain.

b. Repeat part a with a 99% confidence interval.
c. How are your results in parts a and b related to

hypothesis testing? Be specific.

17. The managers of a chemical manufacturing plant want
to determine whether recent safety training workshops
have reduced the weekly number of reported safety
violations at the facility. The management team has
randomly selected weekly safety violation reports
for each of 25 weeks prior to the safety training and
25 weeks after the safety workshops. These data are
provided in the file P09_17.xlsx. Given this evidence,
is it possible to conclude that the safety workshops
have been effective in reducing the number of safety
violations reported per week? Report a p-value and
interpret your findings for the management team.

18. A real estate agent has collected a random sample
of 75 houses that were recently sold in a suburban
community. She is particularly interested in comparing
the appraised value and recent selling price of the
houses in this particular market. The values of these
two variables for each of the 75 randomly chosen
houses are provided in the file P08_24.xlsx. Using
these sample data, test whether there is a statistically
significant mean difference between the appraised
values and selling prices of the houses sold in this
suburban community. Report a p-value. For which
levels of significance is it appropriate to conclude that

no difference exists between these two values? Which
is more appropriate, a one-tailed test or a two-tailed
test? Explain your reasoning.

19. The owner of two submarine sandwich shops located in
a particular city would like to know how the mean
daily sales of the first shop (located in the downtown
area) compares to that of the second shop (located on
the southwest side of town). In particular, he would
like to determine whether the mean daily sales levels
of these two restaurants are essentially equal. He
records the sales (in dollars) made at each location
for 30 randomly chosen days. These sales levels are
given in the file P09_19.xlsx. Find a 95% confidence
level for the mean difference between the daily sales of
restaurant 1 and restaurant 2. Based on this confidence
interval, is it possible to conclude that there is a sta-
tistically significant mean difference at the 5% level of
significance? Explain why or why not. Can you infer
from this confidence interval whether there is a
statistically significant mean difference at the 10%
level? What about at the 1% level? Again, explain why
or why not.

20. Suppose that an investor wants to compare the risks
associated with two different stocks. One way to
measure the risk of a given stock is to measure the
variation in the stock’s daily price changes. The investor
obtains a random sample of 25 daily price changes for
stock 1 and 25 daily price changes for stock 2. These
data are provided in the file P09_20.xlsx. Explain why
this investor can compare the risks associated with
the two stocks by testing the null hypothesis that the
variances of the stocks’ price changes are equal.
Perform this test, using a 10% significance level, and
interpret the results.

21. A manufacturing company wants to determine
whether there is a difference between the variance of
the number of units produced per day by one machine
operator and the similar variance for another machine
operator. The file P09_21.xlsx contain the number of
units produced by operator 1 and operator 2, respec-
tively, on each of 25 days. Note that these two sets of
days are not necessarily the same, so you can assume
that the two samples are independent of one another.
a. Identify the null and alternative hypotheses in this

situation.
b. Do these sample data indicate a statistically

significant difference at the 10% level? Explain
your answer. With your conclusion, which possible
error could you be making, a type I or type II
error?

c. At which significance levels could you not reject
the null hypothesis?

22. A large buyer of household batteries wants to decide
which of two equally priced brands to purchase. To do
this, he takes a random sample of 100 batteries of each

9.4 Hypothesis Tests for Other Parameters 491

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



brand. The lifetimes, measured in hours, of the batter-
ies are recorded in the file P09_16.xlsx. Before testing
for the difference between the mean lifetimes of these
two batteries, he must first determine whether the
underlying population variances are equal.
a. Perform a test for equal population variances.

Report a p-value and interpret its meaning.
b. Based on your conclusion in part a, which test

statistic should be used in performing a test for the
difference between population means? Perform this
test and interpret the results.

23. Do undergraduate business students who major in
finance earn, on average, higher annual starting
salaries than their peers who major in marketing?
Before addressing this question through a statistical
hypothesis test, you should determine whether the
variances of annual starting salaries of the two types
of majors are equal. The file P09_23.xlsx contains
(hypothetical) starting salaries of 50 randomly selected
finance majors and 50 randomly chosen marketing
majors.
a. Perform a test for equal population variances.

Report a p-value and interpret its meaning.
b. Based on your conclusion in part a, which test

statistic should you use in performing a test for the
existence of a difference between population
means? Perform this test and interpret the results.

24. The CEO of a medical supply company is committed
to expanding the proportion of highly qualified women
in the organization’s large staff of salespersons. Given
the recent hiring practices of his human resources
director, he claims that the company has increased the
proportion of women in sales positions throughout the
organization between 2005 and 2010. Hoping to find
support for his claim, he directs his assistant to collect
random samples of the salespersons employed by the
company in 2005 and 2010. These data are listed in
the file P09_13.xlsx. Test the CEO’s claim using the
sample data and report a p-value. Is there statistical
support for the claim that his strategy is effective?

25. The director of admissions of a top-20 MBA program
is interested in studying the proportion of entering
students in similar graduate business programs who
have achieved a composite score on the Graduate
Management Admissions Test (GMAT) in excess of
630. In particular, the admissions director believes that
the proportion of students entering top-rated programs
with such composite GMAT scores is higher in 2010
than it was in 2000. To test this hypothesis, he has
collected random samples of MBA candidates entering
his program in the fall of 2010 and in the fall of 2000.
He believes that these students’ GMAT scores are
indicative of the scores earned by their peers in his
program and in competitors’ programs. The GMAT
scores for the randomly selected students entering in

each year are listed in the file P09_11.xlsx. Test the
admission director’s claim at the 5% significance level
and report your findings. Does your conclusion change
when the significance level is increased to 10%?

26. Managers of a software development firm have estab-
lished a wellness program during the lunch hour to
enhance the physical and mental health of their
employees. Now, they would like to see whether the
wellness program has increased the proportion of
employees who exercise regularly during the lunch
hour. To make this assessment, the managers surveyed
a random sample of 100 employees about their noon-
time exercise habits before the wellness program was
initiated. Later, after the program was initiated,
another 100 employees were independently chosen
and surveyed about their lunchtime exercise habits.
The results of these two surveys are given in the file
P09_14.xlsx.
a. Find a 95% confidence interval for the difference

in the proportions of employees who exercise
regularly during their lunch hour before and after
the implementation of the corporate wellness
program.

b. Does the confidence interval found in part a support
the claim that the wellness program has increased
the proportion of employees who exercise regularly
during the lunch hour? If so, at which levels of
significance is this claim supported?

c. Would your results in parts a and b differ if the
same 100 employees surveyed before the program
were also surveyed after the program? Explain.

27. An Environmental Protection Agency official asserts
that more than 80% of the plants in the northeast
region of the United States meet air pollution
standards. An antipollution advocate is not convinced
by the EPA’s claim. She takes a random sample of 64
plants in the northeast region and finds that 56 meet
the federal government’s pollution standards.
a. Does the sample information support the EPA’s

claim at the 5% level of significance?
b. For which values of the sample proportion (based on

a sample size of 64) would the sample data support
the EPA’s claim, using a 5% significance level? 

c. Would the conclusion found in part a change if the
sample proportion remained constant but the sample
size increased to 124? Explain why or why not.

Level B

28. A television network decides to cancel one of its
shows if it is convinced that less than 14% of the
viewing public are watching this show.
a. If a random sample of 1500 households with

televisions is selected, what sample proportion
values will lead to this show’s cancellation,
assuming a 5% significance level?
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b. What is the probability that this show will be
cancelled if 13.4% of all viewing households are
watching it? That is, what is the probability that a
sample will lead to rejection of the null hypothesis?
You can assume that 13.4% is the population
proportion (even though it wouldn’t be known to
the network).

29. An economic researcher wants to know whether he
can reject the null hypothesis, at the 10% significance
level, that no more than 20% of the households in
Pennsylvania make more than $70,000 per year.
a. If 200 Pennsylvania households are chosen at

random, how many of them would have to be
earning more than $70,000 per year to allow the
researcher to reject the null hypothesis?

b. Assuming that the true proportion of all
Pennsylvania households with annual incomes of
at least $70,000 is 0.217, find the probability of
not rejecting a false null hypothesis when the
sample size is 200.

30. Senior partners of an accounting firm are concerned
about recent complaints by some female managers
that they are paid less than their male counterparts.
In response to these charges, the partners ask their
human resources director to record the salaries of
female and male managers with equivalent education,
work experience, and job performance. A random
sample of these pairs of managers is provided in the
file P09_30.xlsx. That is, each male-female pair is
matched in terms of education, work experience, and
job performance.
a. Do these data support the claim made by the

female managers? Report and interpret a p-value.
b. Assuming a 5% significance level, which values of

the sample mean difference between the female
and male salaries would support the claim of
discrimination against female managers?

31. Do undergraduate business students who major in
finance earn, on average, higher annual starting
salaries than their peers who major in marketing?
Address this question through a statistical hypothesis
test. The file P09_23.xlsx contains the starting salaries
of 50 randomly selected finance majors and 50
randomly selected marketing majors.
a. Is it appropriate to perform a paired-comparison 

t test with these data? Explain why or why not.
b. Perform an appropriate hypothesis test with a 5%

significance level. Summarize your findings.
c. How large would the difference between the mean

starting salaries of finance and marketing majors
have to be before you could conclude that finance
majors earn more on average? Employ a 5%
significance level in answering this question.

32. The file P02_35.xlsx contains data from a survey
of 500 randomly selected households. Test for the

existence of a significant difference between the 
mean debt levels of the households in the first (i.e.,
SW) and second (i.e., NW) sectors of this community.
Perform similar hypothesis tests for the differences
between the mean debt levels of households from all
other pairs of locations (i.e., first and third, first and
fourth, second and third, second and fourth, and third
and fourth). Summarize your findings.

33. Elected officials in a Florida city are preparing the
annual budget for their community. They want to
determine whether their constituents living across
town are typically paying the same amount in real
estate taxes each year. Given that there are over 20,000
homeowners in this city, they have decided to sample
a representative subset of taxpayers and thoroughly
study their tax payments. A randomly selected set of
170 homeowners is given in the file P09_33.xlsx.
Specifically, the officials want to test whether there is
a difference between the mean real estate tax bill paid
by residents of the first neighborhood of this town and
each of the remaining five neighborhoods. That is,
each pair referenced below is from neighborhood 1
and one of the other neighborhoods.
a. Before conducting any hypothesis tests on the

difference between various pairs of mean real 
estate tax payments, perform a test for equal
population variances for each pair of neighborhoods.
For each pair, report a p-value and interpret its
meaning.

b. Based on your conclusions in part a, which test
statistic should be used in performing a test for a
difference between population means in each
pair?

c. Given your conclusions in part b, perform an
appropriate test for the difference between mean real
estate tax payments in each pair of neighborhoods.
For each pair, report a p-value and interpret its
meaning.

34. Suppose that you sample two normal populations
independently. The variances of these two populations
are and . You take random samples of sizes n1
and n2 and observe sample variances of s2

1 and s2
2 .

a. If n1 � n2 � 21, how large must the fraction s1/s2
be before you can reject the null hypothesis that

is no greater than at the 5% significance
level?

b. Answer part a when n1 � n2 � 41.
c. If s1 is 25% greater than s2, approximately how

large must n1 and n2 be if you are able to reject the
null hypothesis in part a at the 5% significance
level? Assume that n1 and n2 are equal.

35. Two teams of workers assemble automobile engines
at a manufacturing plant in Michigan. Quality control
personnel inspect a random sample of the teams’
assemblies and judge each assembly to be acceptable

s2
2s1

2

s2
2s1

2
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or unacceptable. A random sample of 127 assemblies
from team 1 shows 12 unacceptable assemblies.
A similar random sample of 98 assemblies from team
2 shows 5 unacceptable assemblies.
a. Find a 95% confidence interval for the difference

between the proportions of unacceptable
assemblies from the two teams.

b. Based on the confidence interval found in part a,
is there sufficient evidence to conclude, at the 5%
significance level, that the two teams differ with
respect to their proportions of unacceptable
assemblies?

c. For which values of the difference between these
two sample proportions could you conclude that a
statistically significant difference exists at the 5%
level? 

36. A market research consultant hired by a leading soft-
drink company is interested in determining whether
there is a difference between the proportions of female
and male consumers who favor the company’s low-
calorie brand over the leading competitor’s low-calorie
brand in a particular urban location. A random sample
of 250 consumers from the market under investigation
is provided in the file P08_18.xlsx.
a. After separating the 250 randomly selected

consumers by gender, perform the statistical test
and report a p-value. At which levels of 
 will the
market research consultant conclude that there is
essentially no difference between the proportions
of female and male consumers who prefer this
company’s brand to the competitor’s brand in this
urban area?

b. Marketing managers at this company have asked
their market research consultant to explore further
the potential differences in the proportions of
women and men who prefer drinking the company’s
brand to the competitor’s brand. Specifically, the
company’s managers wants to know whether the
potential difference between the proportions of
female and male consumers who favor the com-
pany’s brand varies by the age of the consumers.
Using the same random sample of consumers as in
part a, assess whether this difference varies across
the four given age categories: under 20, between
20 and 40, between 40 and 60, and over 60.
Specifically, run the test in part a four times, one

for each age group. Are the results the same for
each age group?

37. The employee benefits manager of a large public
university wants to determine whether differences 
exist in the proportions of various groups of full-time
employees who prefer adopting the second (i.e., plan B)
of three available health care plans in the coming annual
enrollment period. A random sample of the university’s
employees and their tentative health care preferences is
given in the file P08_17.xlsx.
a. Perform tests for differences in the proportions of

employees within respective classifications who
favor plan B in the coming year. For instance, the
first such test should examine the difference between
the proportion of administrative employees who
favor plan B and the proportion of the support staff
who prefer plan B.

b. Report a p-value for each of your hypothesis tests
and interpret your results. How might the benefits
manager use the information you have derived
from these tests?

38. The file P02_35.xlsx contains data from a survey
of 500 randomly selected households. Researchers
would like to use the available sample information to
test whether home ownership rates vary by household
location. For example, is there a nonzero difference
between the proportions of individuals who own their
homes (as opposed to those who rent their homes) in
households located in the first (i.e., SW) and second
(i.e., NW) sectors of this community? Use the sample
data to test for a difference in home ownership rates
in these two sectors as well as for those of other pairs
of household locations. In each test, use a 5% sig-
nificance level. Interpret and summarize your results.
(You should perform and interpret a total of six
hypothesis tests.)

39. For testing the difference between two proportions,
is used as the approximate2 Npc(1 - Npc)(1/n1 + 1/n2)

494 Chapter 9 Hypothesis Testing

standard error of p̂1 � p̂2, where p̂c is the pooled
sample proportion. Explain why this is reasonable
when the null-hypothesized value of p1 � p2 is zero.
Why would this not be a good approximation when the
null-hypothesized value of p1 � p2 is a nonzero
number? What would you recommend using for the
standard error of p̂1 � p̂2 in that case?

9.5 TESTS FOR NORMALITY

In this section we discuss several tests for normality. As you have already seen, many
statistical procedures are based on the assumption that population data are normally dis-
tributed. The tests in this section allow you to test this assumption. The null hypothesis is
that the population is normally distributed, whereas the alternative is that the population
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distribution is not normal. Therefore, the burden of proof is on showing that the population
distribution is not normal. Unless there is sufficient evidence to this effect, the normal
assumption will continue to be accepted.

The first test we discuss is called a chi-square goodness-of-fit test. It is quite intu-
itive. A histogram of the sample data is compared to the expected bell-shaped histogram
that would be observed if the data were normally distributed with the same mean and
standard deviation as in the sample. If the two histograms are sufficiently similar, the null
hypothesis of normality is accepted. Otherwise, it can be rejected.

The test is based on a numerical measure of the difference between the two histograms.
Let C be the number of categories in the histogram, and let Oi be the observed number of
observations in category i. Also, let Ei be the expected number of observations in category i
if the population were normal with the same mean and standard deviation as in the sample.
Then the goodness-of-fit measure in Equation (9.7) is used as a test statistic. If the null
hypothesis of normality is true, this test statistic has (approximately) a chi-square distribu-
tion with C � 3 degrees of freedom. Because large values of the test statistic indicate a poor
fit—the Oi’s do not match up well with the Ei’s—the p-value for the test is the probability to
the right of the test statistic in the chi-square distribution with C � 3 degrees of freedom.

9.5 Tests for Normality 495

The chi-square test for
normality makes a
comparison between
the observed histogram
and a histogram based
on normality.

Test Statistic for Chi-Square Test of Normality

(9.7)x2-value = a
C

i=1
 
(Oi - Ei)

2/Ei

(Here,  is the Greek letter chi.)
Although it is possible to perform this test manually, it is certainly preferable to use

StatTools, as illustrated in the following example.

E X A M P L E 9.7 DISTRIBUTION OF METAL STRIP WIDTHS IN MANUFACTURING

Acompany manufactures strips of metal that are supposed to have width 10 centimeters.
For purposes of quality control, the manager plans to run some statistical tests on

these strips. However, realizing that these statistical procedures assume normally distrib-
uted widths, he first tests this normality assumption on 90 randomly sampled strips. How
should he proceed?

Objective To use the chi-square goodness-of-fit test to see whether a normal distribution
of the metal strip widths is reasonable.

Solution

The sample data appear in Figure 9.26, where each width is measured to three decimal
places. (See the file Testing Normality.xlsx.) A number of summary measures also appear.

To run the test, select Chi-square Test from the StatTools Normality Tests drop-
down list, which leads to basically the same dialog box as in StatTools’s Histogram
procedure. As with the Histogram procedure, you can specify the bins, or you can
accept StatTools’s default bins. For now, do the latter.7 The resulting histograms in

7You might try defining the bins differently and rerunning the test. The category definitions can make a difference
in the results. This is a disadvantage of the chi-square test.
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Figure 9.27 provide visual evidence of the goodness of fit. The left bars represent the
observed frequencies (the Ois), and the right bars represent the expected frequencies for
a normal distribution (the Eis). The normal fit to the data appears to be quite good.

The output in Figure 9.28 confirms this statistically. Each value in column E is an Ei,
calculated as the total number of observations multiplied by the normal probability of
being in the corresponding category. Column F contains the individual (Oi � Ei )

2/Ei
terms, and cell B11 contains their sum, the chi-square test statistic. The corresponding 
p-value in cell B12 is 0.5206.

This large p-value provides no evidence whatsoever of non-normality. It implies that if
this procedure were repeated on many random samples, each taken from a population known
to be normal, a fit at least this poor would occur in over 50% of the samples. Stated differ-
ently, fewer than 50% of the fits would be better than the one observed here. Therefore, the
manager can feel comfortable in making a normal assumption for this population.
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1
2

A B C D E
Part Width Width

1 9.990 One Variable Summary Data Set #1

3
4
5
6
7
8
9

2 10.031 Mean 9.999
3 9.985 Std. Dev. 0.010
4 9.983 Median 9.998
5 10.004 Minimum 9.970
6 10.000 Maximum 10.031
7 9.992 Count 90
8 9.996 1st Quar�le 9.993
9 9.997 3rd Quar�le 10.00610

11
12
13
14
15
16
17

10 9.993 5.00% 9.983
11 9.991 95.00% 10.014
12 9.991
13 10.006
14 9.998
15 9.995
16 9 989

18
.

17 9.987

Figure 9.26
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We make three comments about this chi-square procedure. First, the test does depend
on which (and how many) bins you use for the histogram. Reasonable choices are likely to
lead to the same conclusion, but this is not guaranteed. Second, the test is not very effective
unless the sample size is large, say, at least 80 or 100. Only then can you begin to see the
true shape of the histogram and judge accurately whether it is normal. Finally, the test
tends to be too sensitive if the sample size is really large. In this case any little “bump” on
the observed histogram is likely to lead to a conclusion of non-normality. This is one more
example of practical versus statistical significance. With a large sample size you might be
able to reject normality with a high degree of certainty, but the practical difference between
the observed and normal histograms could very well be unimportant.

The chi-square test of normality is an intuitive one because it is based on histograms.
However, it suffers from the first two points discussed in the previous paragraph. In partic-
ular, it is not as powerful as other available tests. This means that it is often unable to
distinguish between normal and non-normal distributions, and hence it often fails to reject
the null hypothesis of normality when it should be rejected. A more powerful test is called
the Lilliefors test.8 This test is based on the cumulative distribution function (cdf), which
shows the probability of being less than or equal to any particular value. Specifically,
the Lilliefors test compares two cdfs: the cdf from a normal distribution and the cdf corre-
sponding to the given data. This latter cdf, called the empirical cdf, shows the fraction of
observations less than or equal to any particular value. If the data come from a normal
distribution, the normal and empirical cdfs should be quite close. Therefore, the Lilliefors
test compares the maximum vertical distance between the two cdfs and compares it to spe-
cially tabulated values. If this maximum vertical distance is sufficiently large, the null
hypothesis of normality can be rejected.

To run the Lilliefors test for the Width variable in Example 9.7, select Lilliefors Test
from the StatTools Normality Tests dropdown list. StatTools then shows the numerical
outputs in Figure 9.29 and the corresponding graph in Figure 9.30 of the normal and
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7
8

A B C D E F
Width

Chi-Square Test Data Set #1

9
10
11
12
13
14
15

Mean 9.999256
Std Dev 0.009728
Chi-Square Stat. 4.2027
P-Value 0.5206

Chi-Squared Bins BinMin BinMax Actual Normal Distance

9.983000 0.127416
17
18
19
20
21
22
23

Bin # 1 -Inf 5 4.2630
Bin # 2 9.983000 9.988167 6 7.1827 0.1948
Bin # 3 9.988167 9.993333 14 12.9751 0.0810
Bin # 4 9.993333 9.998500 20 17.7934 0.2736
Bin # 5 9.998500 10.003667 13 18.5249 1.6477
Bin # 6 10.003667 10.008833 19 14.6421 1.2970
Bin # 7 10.008833 10.014000 9 8.7859 0.0052
Bin # 8 10.014000 +Inf 4 5.8328 0.5759

Figure 9.28 Chi-square Test of Normality

■

8This is actually a special case of the more general and widely known Kolmogorov-Smirnoff (or K-S) test.

The Lilliefors test is
based on a comparison
of the cdf from the
data and a normal cdf.
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empirical cdfs. The numeric output indicates that the maximum vertical distance between
the two curves is 0.0513. It also provides a number of “CVal” values for comparison. If the
test statistic is larger than any of these, the null hypothesis of normality can be rejected at
the corresponding significance level. In this case, however, the test statistic is relatively
small—not nearly large enough to reject the normal hypothesis at any of the usual signifi-
cance levels. This conclusion agrees with the one based on the chi-square goodness-of-fit
test (as well as the closeness of the two curves in Figure 9.30). Nevertheless, you should be
aware that the two tests do not agree on all data sets.

We conclude this section with a popular, but informal, test of normality. This is based
on a plot called a quantile-quantile (or Q-Q) plot. Although the technical details for
forming this plot are somewhat complex, it is basically a scatterplot of the standardized
values from the data set versus the values that would be expected if the data were perfectly
normally distributed (with the same mean and standard deviation as in the data set). If the
data are, in fact, normally distributed, the points in this plot tend to cluster around a 45°
line. Any large deviation from a 45° line signals some type of non-normality. Again, how-
ever, this is not a formal test of normality. A Q-Q plot is usually used only to obtain a gen-
eral idea of whether the data are normally distributed and, if they are not, what type of
non-normality exists. For example, if points on the right of the plot are well above a
45° line, this is an indication that the largest observations in the data set are larger than
would be expected from a normal distribution. Therefore, these points might be high-end
outliers and/or a signal of positive skewness.
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7
8

A B
Width

Lilliefors Test Results Data Set #1

9
10
11
12
13
14
15

Sample Size 90
Sample Mean 9.999256
Sample Std Dev 0.009728
Test Sta�s�c 0.0513
CVal (15% Sig. Level) 0.0810
CVal (10% Sig. Level) 0.0856
CVal (5% Sig. Level) 0.0936
CVal (2.5% Sig. Level) 0.099816

17 CVal (1% Sig. Level) 0.1367

Figure 9.29
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Results
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If data are normally
distributed, the points
on the corresponding
Q-Q plot should be
close to a 45° line.
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To obtain a Q-Q plot for the Width variable in Example 9.7, select Q-Q Normal Plot
from the StatTools Normality Tests dropdown list and check each option at the bottom of
the dialog box. The Q-Q plot for the Width data in Example 9.7 appears in Figure 9.31.
Although the points in this Q-Q plot do not all lie exactly on a 45° line, they are about as
close to doing so as can be expected from real data. Therefore, there is no reason to
question the normal hypothesis for these data—the same conclusion as from the chi-square
and Lilliefors tests. (Note that in the StatTools Q-Q plot dialog box, you can elect to plot
standardized Q-values. This option was used in Figure 9.31. The plot with unstandardized
Q-values, not shown here, provides virtually the same information. The only difference is
in the scale of the vertical axis.)
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P R O B L E M S

Level A

40. The file P02_11.xlsx contains data on 148 houses sold
in a certain suburban region.
a. Create a histogram of the selling prices. Is there

any visual evidence that the distribution of selling
prices is not normal?

b. Test the selling prices for normality using the 
chi-square test. Is there enough evidence at the 5%
significance level to conclude that selling prices are
not normally distributed? If so, what is there about
the distribution that is not normal?

c. Use the Lilliefors test and the Q-Q plot to check for
normality of selling prices. Do these suggest the
same conclusion as in part b? Explain.

41. The file P09_33.xlsx contains real estate taxes paid by
a sample of 170 homeowners in a Florida city. 
a. Create a histogram of the taxes paid. Is there any

visual evidence that the distribution of taxes paid is
not normal?

b. Test the taxes paid for normality using the chi-
square test. Is there enough evidence at the 5%
significance level to conclude that taxes paid are
not normally distributed? If so, what is there about
the distribution that is not normal?

c. Use the Lilliefors test and the Q-Q plot to check for
normality of taxes paid. Do these suggest the same
conclusion as in part b? Explain.

42. The file P09_42.xlsx contains many years of monthly
percentage changes in the Dow Jones Industrial
Average (DJIA). (This is the same data set that was
used for Example 2.5 in Chapter 2.)
a. Create a histogram of the percentage changes in

the DJIA. Is there any visual evidence that the 
distribution of the Dow percentage changes is not
normal?

b. Test the percentage changes of the DJIA for
normality using the chi-square test. Is there enough
evidence at the 5% significance level to conclude
that the Dow percentage changes are not normally
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distributed? If so, what is there about the distri-
bution that is not normal?

c. Use the Lilliefors test and the Q-Q plot to check for
normality of percentage changes. Do these suggest
the same conclusion as in part b? Explain.

d. Repeat parts a–c, but use data only from the years
1990 to 2006. Do you get the same results as for
the full data set?

Level B

43. Will the chi-square test ever conclude, at the 5% sig-
nificance level, that data are not normally distributed
when you know that they are? Check this with
simulation. Specifically, generate n normally
distributed numbers with mean 100 and standard
deviation 15. You can do this with the formula
=NORMINV(RAND(),100,12). Do not freeze them;
keep them random. Then run the chi-square normality
test on the random numbers. Because the chi-square
results are linked to the data, you will get new chi-
square results every time you press F9 to recalculate. 
a. Using n � 150, do you ever get a p-value less than

0.05? If so, what does such a p-value mean? Would
you expect to get a few such p-values? Explain.

b. Repeat part a using n � 1000. Do the results
change in any qualitative way? 

c. Repeat parts a and b, but use the Lilliefors test
instead of the chi-square test. Do you get the same
basic results?

44. Repeat the previous problem but with a different
nonnormal population. Specifically, generate n random
numbers from a fifty-fifty mixture of two normal
distributions with respective means 90 and 110
and common standard deviation 10. You can do this

with the formula �IF(RAND()�0.5,NORMINV
(RAND(),90,10),NORMINV(RAND(),110,10)) (This
is not a normal distribution because it has two peaks.) 

45. The file P09_45.xlsx contains measurements of
ounces in randomly selected cans from a soft-drink
filling machine. These cans reportedly contain 12
ounces, but because of natural variation, the actual
amounts differ slightly from 12 ounces. 
a. Can the company legitimately state that the

amounts in cans are normally distributed? 
b. Assuming that the distribution is normal with the

mean and standard deviation found in this sample,
calculate the probability that at least half of the next
100 cans filled will contain less than 12 ounces.

c. If the test in part a indicated that the data are not
normally distributed, how might you calculate the
probability requested in part b? 

46. The chi-square test for normality discussed in this
section is far from perfect. If the sample is too small,
the test tends to accept the null hypothesis of
normality for any population distribution even
remotely bell-shaped; that is, it is not powerful in
detecting non-normality. On the other hand, if the
sample is very large, it will tend to reject the null
hypothesis of normality for any data set.9 Check 
this by using simulation. First, simulate data from a
normal distribution using a large sample size. Is 
there a good chance that the null hypothesis will
(wrongly) be rejected? Then simulate data from a 
non-normal distribution (uniform, say, or the mixture
in Problem 44) using a small sample size. Is there 
is a good chance that the null hypothesis will
(wrongly) not be rejected? Summarize your findings
in a short report.
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9Actually, all of the tests for normality suffer from this latter problem.

9.6 CHI-SQUARE TEST FOR INDEPENDENCE

The test we discuss in this section, like one of the tests for normality from the previous
section, uses the name “chi-square.” However, this test, called the chi-square test for
independence, has an entirely different objective. It is used in situations where a population
is categorized in two different ways. For example, people might be characterized by their
smoking habits and their drinking habits. The question then is whether these two attributes
are independent in a probabilistic sense. They are independent if information on a person’s
drinking habits is of no use in predicting the person’s smoking habits (and vice versa). In this
particular example, however, you might suspect that the two attributes are dependent. In
particular, you might suspect that heavy drinkers are more likely (than non-heavy drinkers) to
be heavy smokers, and you might suspect that nondrinkers are more likely (than drinkers)
to be nonsmokers. The chi-square test for independence enables you to test this empirically.

The null hypothesis for this test is that the two attributes are independent. Therefore,
statistically significant results are those that indicate some sort of dependence. As always,

Rejecting independence
does not indicate the
form of dependence.To
see this, you must look
more closely at the
data.
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this puts the burden of proof on the alternative hypothesis of dependence. In the
smoking–drinking example, you will continue to believe that smoking and drinking habits
are unrelated—that is, independent—unless there is sufficient evidence from the data that
they are dependent. Furthermore, even if you are able to conclude that they are dependent,
the test itself does not indicate the form of dependence. It could be that heavy drinkers tend to
be nonsmokers, and nondrinkers tend to be heavy smokers. Although this is unlikely, it is
definitely a form of dependence. The only way you can decide which form of dependence
exists is to look closely at the data.

The data for this test consist of counts in various combinations of categories. These are
usually arranged in a rectangular contingency table, also called a cross-tabs, or, using Excel
terminology, a pivot table.10 For example, if there are three smoking categories and three
drinking categories, the table will have three rows and three columns, for a total of nine cells.
The count in a cell is the number of observations in that particular combination of categories.
We illustrate this data setup and the resulting analysis in the following example.
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10As discussed in Chapter 3, statisticians have long used the terms contingency table and cross-tabs (inter-
changeably) for the tables we are discussing here. Pivot tables are more general—they can contain summary
measures such as averages and standard deviations, not just counts. But when they contain counts, they are
equivalent to contingency tables and cross-tabs.

Chi-Square Test for Independence

The chi-square test for independence is based on the counts in a contingency (or
cross-tabs) table. It tests whether the row variable is probabilistically independent of
the column variable.

E X A M P L E 9.8 RELATIONSHIP BETWEEN DEMANDS FOR DESKTOPS AND LAPTOPS

AT BIG OFFICE

Big Office, a chain of large office supply stores, sells an extensive line of desktop and
laptop computers. Company executives want to know whether the demands for these

two types of computers are related in any way. They might act as complementary products,
where high demand for desktops accompanies high demand for laptops (computers in
general are hot), they might act as substitute products (demand for one takes away demand
for the other), or their demands might be unrelated. Because of limitations in its informa-
tion system, Big Office does not have the exact demands for these products. However, it
does have daily information on categories of demand, listed in aggregate (that is, over all
stores). These data appear in Figure 9.32. (See the file PC Demand.xlsx.) Each day’s
demand for each type of computer is categorized as Low, MedLow (medium-low),
MedHigh (medium-high), or High. The table is based on 250 days, so that the counts add

1
2
3
4
5
6
7
8
9

A B C D E F G
Counts on 250 days of demands at Big Office

Desktops
Low MedLow MedHigh High

Laptops Low 4 17 17 5 43
MedLow 8 23 22 27 80
MedHigh 16 20 14 20 70
High 10 17 19 11 57

38 77 72 63 250

Figure 9.32

Counts of Daily

Demands for

Desktops and

Laptops
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to 250. The individual counts show, for example, that demand was high for both desktops
and laptops on 11 of the 250 days. For convenience, the row and column totals are
provided in the margins. Based on these data, can Big Office conclude that demands for
these two products are independent?

Objective To use the chi-square test of independence to test whether demand for desk-
tops is independent of demand for laptops.

Solution

The idea of the test is to compare the actual counts in the table with what would be
expected under independence. If the actual counts are sufficiently far from the expected
counts, the null hypothesis of independence can be rejected. The distance measure used to
check how far apart they are, shown in Equation (9.8), is essentially the same chi-square
statistic used in the chi-square test for normality. Here, Oij is the actual count in cell i, j
(row i, column j), Eij is the expected count for this cell assuming independence, and the
sum is over all cells in the table. If this test statistic is sufficiently large, the independence
hypothesis can be rejected. (We provide more details of the test shortly.)
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Test Statistic for Chi-Square Test for Independence

(9.8)Chi-square test statistic = ©ij  
(Oij - Eij)

2/Eij

Expected Counts Assuming Row and Column Independence

(9.9)Eij = RiCj /N

What is expected under independence? The totals in row 9 indicate that demand for
desktops was low on 38 of the 250 days. Therefore, if you had to estimate the probability of
low demand for desktops, your estimate would be 38/250 � 0.152. Now, if demands for the
two products were independent, you should arrive at this same estimate from the data in any
of rows 5 through 8. That is, a probability estimate for desktops should be the same regard-
less of the demand for laptops. The probability estimate of low desktop from row 5, for
example, is 4/43 � 0.093. Similarly, for rows 6, 7, and 8 it is 8/80 = 0.100, 16/70 � 0.229,
and 10/57 � 0.175, respectively. These calculations provide some evidence that desktops
and laptops act as substitute products—the probability of low desktop demand is larger
when laptop demand is medium-high or high than when it is low or medium-low.

This reasoning is the basis for calculating the Eijs. Specifically, it can be shown that the
relevant formula for Eij is given by Equation (9.9), where Ri is the row total in row i, Ci is the
total in column j, and N is the number of observations. For example, E11 for these data is
43(38)/250 � 6.536, which is slightly larger than the corresponding observed count, O11 � 4.

You can perform the calculations for the test easily with StatTools. This is one
StatTools procedure that does not require a data set to be defined. You simply select 
Chi-square Independence Test from the StatTools Statistical Inference dropdown list to
obtain the dialog box shown in Figure 9.33. Here, you select the range of the contingency
table. This range can include the row and column category labels (row 4 and column B), in
which case you should check the top checkbox. The other two checkboxes, along with the
titles, are used to provide labels for the resulting output.

The output appears in Figure 9.34. The top table repeats the counts from the original
table. The next two tables show these counts as percentages of rows and percentages of

Tables of counts
expressed as
percentages of rows or
of columns are useful
for judging the form
(and extent) of any
possible dependence.
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Figure 9.33

Dialog Box for 

Chi-Square Test for

Independence

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

A B C D E F

Original Counts Low MedLow MedHigh High Total

Low 4 17 17 5 43
MedLow 8 23 22 27 80
MedHigh 16 20 14 20 70
High 10 17 19 11 57
Total 38 77 72 63 250

Percentage of Rows Low MedLow MedHigh High

Low 9.30% 39.53% 39.53% 11.63% 100.00%
MedLow 10.00% 28.75% 27.50% 33.75% 100.00%
MedHigh 22.86% 28.57% 20.00% 28.57% 100.00%
High 17.54% 29.82% 33.33% 19.30% 100.00%

Percentage of Columns Low MedLow MedHigh High

Low 10.53% 22.08% 23.61% 7.94%
MedLow 21.05% 29.87% 30.56% 42.86%
MedHigh 42.11% 25.97% 19.44% 31.75%
High 26.32% 22.08% 26.39% 17.46%

100.00% 100.00% 100.00% 100.00%

Expected Counts Low MedLow MedHigh High

Low 6.5360 13.2440 12.3840 10.8360
MedLow 12.1600 24.6400 23.0400 20.1600
MedHigh 10.6400 21.5600 20.1600 17.6400
High 8.6640 17.5560 16.4160 14.3640

Distance from Expected Low MedLow MedHigh High

Low 0.9840 1.0652 1.7206 3.1431
MedLow 1.4232 0.1092 0.0469 2.3207
MedHigh 2.7002 0.1129 1.8822 0.3157
High 0.2060 0.0176 0.4067 0.7878

Chi-Square Sta�s�c

Chi-Square 17.2420
p-Value 0.0451

Rows: Laptops / Columns: Desktops

Rows: Laptops / Columns: Desktops

Rows: Laptops / Columns: Desktops

Rows: Laptops / Columns: Desktops

Rows: Laptops / Columns: Desktops

Figure 9.34 Output for Chi-square Test
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columns, respectively. The expected counts and distances from actual to expected are
shown next. They lead to the chi-square statistic and corresponding p-value at the bottom.

The p-value of the test, 0.045, can be interpreted in the usual way. Specifically, the
null hypothesis of independence can be rejected at the 5% or 10% significance levels, but
not at the 1% level. There is a fairly strong evidence that the demands for the two products
are not independent.

If the alternative hypothesis of dependence is accepted, the output in Figure 9.34 can
be used to examine its form. The two tables in rows 17 through 20 and rows 24 through 27
are especially helpful. If the demands were independent, the rows of this first table should
be identical, and the columns of the second table should be identical. This is because each
row in the first table shows the distribution of desktop demand for a given category of
laptop demand, whereas each column in the second table shows the distribution of laptop
demand for a given category of desktop demand. A close study of these percentages again
provides some evidence that the two products act as substitutes, but the evidence is not
overwhelming.

It is worth noting that the table of counts necessary for the chi-square test of indepen-
dence can be a pivot table. For example, the pivot table in Figure 9.35 shows counts of the
Married and OwnHome attributes. (For Married, 1 means married, 0 means unmarried, and
for OwnHome, 1 means a home owner, 0 means not a home owner. This pivot table is
based on the data in the Catalog Marketing.xlsx file from Chapter 2.) To see whether
these two attributes are independent, the chi-square test would be performed on the table in
the range B5:C6. You might want to check that the p-value for the test is 0.000 (to three
decimals), so that Married and OwnHome are definitely not independent.
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Figure 9.35

Using a Pivot Table

for a Chi-Square

Test

P R O B L E M S

Level A

47. The file P08_49.xlsx contains data on 400 orders
placed to the ElecMart company over a period of
several months. For each order, the file lists the time
of day, the type of credit card used, the region of the
country where the customer resides, and others. (This
is the same data set used in Example 3.5 of Chapter 3.)
Use a chi-square test for independence to see whether
the following variables are independent. If the
variables appear to be related, discuss the form of
dependence you see.
a. Time and Region
b. Region and BuyCategory
c. Gender and CardType

48. The file P08_18.xlsx categorizes 250 randomly
selected consumers on the basis of their gender,
their age, and their preference for our brand or a
competitor’s brand of a low-calorie soft drink. Use
a chi-square test for independence to see whether the
drink preference is independent of gender, and then
whether it is independent of age. If you find any
dependence, discuss its nature.

49. The file P02_11.xlsx contains data on 148 houses
that were recently sold. Two variables in this data set
are the selling price of the house and the number of
bedrooms in the house. We want to use a chi-square
test for independence to see whether these two
variables are independent. However, this test requires

■
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categorical variables, and Selling Price is essentially
continuous. Therefore, to run the test, first divide the
prices into several categories: less than 120, 120 to
130, 130 to 140, and greater than 140. Then run the
test and report your results.

Level B

50. The file P03_50.xlsx contains annual salaries for all
NBA basketball players in each of five seasons. 
a. Using only the data for the most recent season

(2008–2009), check whether there is independence
between position and salary. To do this, first change
any hyphenated position such as C-F to the first
listed, in this case C. (Presumably, this is the player’s
primary position.) Then make Salary categorical with
four categories: the first is all salaries below the first
quartile, the second is all salaries from the first quar-
tile to the median, and so on. Explain your findings.

b. Repeat part a but with a Yes/No playoff team cate-
gorization instead of position. The playoff teams
in that season were Atlanta, Boston, Chicago,
Cleveland, Dallas, Denver, Detroit, Houston, 
Los Angeles Lakers, Miami, New Orleans, Orlando,
Philadelphia, Portland, San Antonio, and Utah.

51. The file P09_51.xlsx contains data on 1000 randomly
selected Walmart customers. The data set includes

demographic variables for each customer as well as
their salaries and the amounts they have spent at
Walmart during the past year.
a. A lookup table in the file suggests a way to cate-

gorize the salaries. Use this categorization and chi-
square tests of independence to see whether Salary
is independent of (1) Age, (2) Gender, (3) Home,
or (4) Married. Discuss any types of dependence
you find.

b. Repeat part a, replacing Salary with Amount
Spent. First you must categorize Amount Spent.
Create four categories for Amount Spent based on
the four quartiles. The first category is all values of
Amount Spent below the first quartile of Amount
Spent, the second category is between the first
quartile and the median, and so on.

52. The file DVD Movies.xlsx (the file that accompanies
the case for Chapter 7) contains data on close to
10,000 customers from several large cities in the
United States. The variables include the customers’
gender and their first choice among several types of
movies. Perform chi-square tests of independence to
test whether the following variables are related. If they
are, discuss the form of dependence you see.
a. State and First Choice
b. City and First Choice
c. Gender and First Choice
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9.7 ONE-WAY ANOVA

In sections 8.7.1 and 9.4.2, we discussed the two-sample procedure for analyzing the
difference between two population means. A natural extension is to more than two
population means. The resulting procedure is commonly called one-way analysis of
variance, or one-way ANOVA. There are two typical situations where one-way
ANOVA is used. The first is when there are several distinct populations. For example,
consider recent graduates with BS degrees in one of three disciplines: business, engi-
neering, and computer science. A random sample could be taken from each of these pop-
ulations to discover whether there are any significant differences between them with
respect to mean starting salary.

A second situation where one-way ANOVA is used is in randomized experiments. In
this case a single population is treated in one of several ways. For example, a pharmaceuti-
cal company might select a group of people who suffer from allergies and randomly assign
each person to a different type of allergy medicine currently being developed. Then the
question is whether any of the treatments differ from one another with respect to the mean
amount of symptom relief.

The data analysis in these two situations is identical; only the interpretation of the
results differs. For the sake of clarity, we will phrase this discussion in terms of the first sit-
uation, where a random sample is taken from each of several populations. Let I be the num-
ber of populations, and denote the means of these populations by �1 through �I. The null
hypothesis is that the I means are all equal, whereas the alternative is that they are not
all equal. Note that this alternative admits many possibilities. With I � 4, for example, it is
possible that �1 � �2 � �3 � 5 and �4 � 10, or that �1 � �2 � 5 and �3 � �4 � 10, or
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that �1 � 5, �2 � 7, �3 � 9, and �4 � 10. The alternative hypothesis simply specifies that
the means are not all equal.
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Hypotheses for One-Way ANOVA

Null hypothesis: All means are equal

Alternative hypothesis: At least one mean is different from the others

The one-way ANOVA procedure is usually run in two stages. In the first stage the null
hypothesis of equal means is tested. Unless the resulting p-value is sufficiently small,
there is not enough evidence to reject the equal-means hypothesis, and the analysis stops.
However, if the p-value is sufficiently small, you can conclude with some assurance that
the means are not all equal. Then the second stage attempts to discover which means are
significantly different from which other means. This latter analysis is usually accom-
plished by examining confidence intervals.

One-way ANOVA is basically a test of differences between means, so why is it called
analysis of variance? The answer to this question is the key to the procedure. Consider the
box plot in Figure 9.36. It corresponds to observations from four populations with slightly

Box Plot Comparison

High Var - Level 1

High Var - Level 2

High Var - Level 3

High Var - Level 4

0 10 20 30 40 50 60 70 80 90

Figure 9.36

Samples with Large

Within Variation

different means and fairly large variances. (The large variances are indicated by the rela-
tively wide boxes and long lines extending from them.) From these box plots, can you
conclude that the population means differ across the four populations? Does your answer
change if the data are instead as in Figure 9.37? It probably does.

The sample means in these two figures are virtually the same, but the variances within
each population in Figure 9.36 are quite large relative to the variance between the sample
means. In contrast, there is very little variance within each population in Figure 9.37. In the
first case, the large within variance makes it difficult to infer whether there are really any
differences between population means, whereas the small within variance in the second
case makes it easy to infer differences between population means.
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This is the essence of the ANOVA test. The variances within the individual samples
are compared to variance between the sample means. Only if the between variance is large
relative to the within variance can you conclude with any assurance that there are differ-
ences between population means—and reject the equal-means hypothesis.

The test itself is based on two assumptions: (1) the population variances are all equal
to some common variance �2, and (2) the populations are normally distributed. These are
analogous to the assumptions made for the two-sample t test. Although these assumptions
are never satisfied exactly in any application, you should keep them in mind and check for
gross violations whenever possible. Fortunately, the test we present is fairly robust to
violations of these assumptions, particularly when the sample sizes are large and roughly
the same.

To understand the test, let , , and ni be the sample mean, sample variance, ands2
iYi
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Box Plot Comparison
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Figure 9.37

Samples with Small

Within Variation

A test is robust if its
results are valid even
when the assumptions
behind it are not
exactly true.

The between variation
measures how much
the sample means
differ from one
another.

sample size from sample i. Also, let n and Y�� be the combined number of observations and
the sample mean of all n observations. (Y�� is called the grand mean.) Then a measure of the
between variation is SSB (sum of squares between):

Note that SSB is large if the individual sample means differ substantially from the
grand mean Y��, and this occurs only if they differ substantially from one another. A measure
of the within variation is SSW (sum of squares within):

This sum of squares is large if the individual sample variances are large. For example, SSW
is much larger in Figure 9.36 than in Figure 9.37. However, SSB is the same in both figures.

Each of these sums of squares has an associated degrees of freedom, labeled dfB and dfW:

dfB � I � 1

and

dfW � n � I

SSW = a
I

i=1
(ni - 1)si

2

SSB = a
I

i=1
ni 

(yi - y )2

The within variation
measures how much
the observations within
each sample differ
from one another.
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When the sums of squares are divided by their degrees of freedom, the results are called
mean squares, labeled MSB and MSW:

and

Actually, it can be shown that MSW is a weighted average of the individual sample vari-
ances, where the sample variance receives weight (ni � 1)/(n � I). In this sense MSW iss2

i

MSW =

SSW

dfW

MSB =

SSB

dfB
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a pooled estimate of the common variance �2, just as in the two-sample procedure.
Finally, the ratio of these mean squares, shown in Equation (9.10), is the test statistic

used in the one-way ANOVA test. Under the null hypothesis of equal population means,
this test statistic has an F distribution with dfB and dfW degrees of freedom. If the null
hypothesis is not true, then MSB will tend to be large relative to MSW, as in Figure 9.37.
Therefore, the p-value for the test is found by finding the probability to the right of the 
F-ratio in the F distribution with dfB and dfW degrees of freedom.

Test Statistic for One-Way ANOVA Test of Equal Means

(9.10)F-ratio =

MSB

MSW

The elements of this test are usually presented in an ANOVA table, as you will see
shortly. The bottom line in this table is the p-value. If it is sufficiently small, you can
conclude that the population means are not all equal. Otherwise, you cannot reject the
equal-means hypothesis.

If you can reject the equal-means hypothesis, then it is customary to examine confi-
dence intervals for the differences between all pairs of population means. This can lead to
quite a few confidence intervals. For example, if there are I � 5 samples, there are 10 pairs
of differences (the number of ways two means can be chosen from five means). As usual,
the confidence interval for any difference �i � �j is of the form

The appropriate standard error is

where sp is the pooled standard deviation, calculated as .
There are several forms of these confidence intervals, four of which are implemented

in StatTools. In particular, the appropriate multiplier for the confidence intervals depends
on which form is used. We will not pursue the technical details here, except to say that the
multiplier is sometimes chosen to be its “usual” value near 2 and is sometimes chosen to be
considerably larger, say, around 3.5. The reason for the latter is that if you want to con-
clude with 95% confidence that each of these confidence intervals includes its correspond-
ing mean difference, you must make the confidence intervals somewhat wider than usual.

For any of these confidence intervals that does not include the value 0, you can infer
that the corresponding means are not equal. Conversely, if a confidence interval does
include 0, you cannot conclude that the corresponding means are unequal.

1MSW

SE(Yi - Yj) = sp11/ni + 1/nj

Yi - Yj ; multiplier * SE(Yi - Yj)

If the confidence
interval for a particular
difference does not
include 0, you can
conclude that these
two means are
significantly different.
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We have presented the formulas for one-way ANOVA to provide some insight into the
procedure. However, StatTools’s one-way ANOVA procedure takes care of all the calcula-
tions, as illustrated in the following example.
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FUNDAMENTAL INSIGHT

ANOVA and Experimental Design

This discussion of ANOVA is an introduction to the

much larger topic of experimental design. Experi-

mental design is extremely important in academic

research, in the sciences, and in business. Indeed, large

books have been written about it, and powerful statis-

tical software, such as SPSS and SAS, implement many

versions of experimental design, of which one-way

ANOVA is probably the simplest. (Some packages use

the acronym DOE, for design of experiments.) In gen-

eral, the goal of experimental design is to discover

which factors make a difference in some variable.

This is done by carefully holding everything constant

except for the factors being varied.

E X A M P L E 9.9 EMPLOYEE EMPOWERMENT AT ARMCO COMPANY

We discussed the ArmCo Company in Example 9.6. It initiated an employee empow-
erment program at its Midwest plant, and the reaction from employees was basically

positive. Let’s assume now that ArmCo has initiated this policy in all five of its plants—in
the South, Midwest, Northeast, Southwest, and West—and several months later it wants to
see whether the policy is being perceived equally by employees across the plants. Random
samples of employees at the five plants have been asked to rate the success of the empow-
erment policy on a scale of 1 to 10, 10 being the most favorable rating. The data appear in
Figure 9.38.11 (See the file Empowerment 2.xlsx.) Is there any indication of mean differ-
ences across the plants? If so, which plants appear to differ from which others?

Objective To use one-way ANOVA to test whether the empowerment initiatives are
appreciated equally across Armco’s five plants.

Solution

First, note that the sample sizes are not equal. This could be because some employees
chose not to cooperate or it could be due to other reasons. Fortunately, equal sample sizes
are not necessary for the ANOVA test. (Still, it is worth noting that when you create a
StatTools data set as a first step in the ANOVA procedure, the data set range will extend to
the longest of the data columns, in this case the Midwest column.)

To run one-way ANOVA with StatTools on these data, select One-Way ANOVA from
the StatTools Statistical Inference dropdown and fill out the resulting dialog box as shown
in Figure 9.39. In particular, click on the Format button and make sure the Unstacked
option is selected, and then select the five variables. This dialog box indicates that there are
several types of confidence intervals available. Each of these uses a slightly different
multiplier in the general confidence interval formula. We will not pursue the differences
between these confidence interval types, except to say that the default Tukey type is
generally a good choice.

11StatTools’s One-Way ANOVA procedure accepts the data in stacked or unstacked form. The data in this exam-
ple are unstacked because there is a separate rating variable for each region.

One-way ANOVA does
not require equal
sample sizes.
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1
2
3
4
5
6
7
8
9

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

A B C D E
South Midwest Northeast Southwest West

7 7 7 6 6
1 6 5 4 6
8 10 5 7 6
7 3 5 10 6
2 9 4 7 3
9 10 3 6 4
3 8 4 6 8
8 4 5 7 6
7 2 3 3 4
4 7 3 7 5

7 3 8 6
5 5 9 4

10 5 10 7
10 4 4

6 10 3
3 4 5
5 6 4

72
66
44

5
2
7
8
7

Figure 9.38

Data for

Empowerment

Example

Figure 9.39

One-Way ANOVA

Dialog Box
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The resulting output in Figure 9.40 consists of three basic parts: summary mea-
sures and summary statistics, the ANOVA table, and confidence intervals. The sum-
mary statistics indicate that the Southwest has the largest mean rating, 6.745, and the
Northeast has the smallest, 4.140, with the others in between. The sample standard
deviations (or variances) vary somewhat across the plants, but not enough to invalidate
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The main thing to
remember from the
ANOVA table is that a
small p-value indicates
that the population
means are not all equal.

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

A B C D E F
ANOVA Summary

Total Sample Size 235
Grand Mean 5.383
Pooled Std Dev 1.976
Pooled Variance 3.904
Number of Samples 5
Confidence Level 95.00%

South Midwest Northeast Southwest West
ANOVA Sample Stats Data Set #1 Data Set #1 Data Set #1 Data Set #1 Data Set #1

Sample Size 40 55 43 47 50
Sample Mean 5.600 5.400 4.140 6.745 4.980
Sample Std Dev 2.073 2.469 1.820 1.687 1.635
Sample Variance 4.297 6.096 3.313 2.846 2.673
Pooling Weight 0.1696 0.2348 0.1826 0.2000 0.2130

Sum of Degrees of Mean
OneWay ANOVA Table Squares Freedom Squares

Between Varia�on 163.653 4 40.913 10.480 < 0.0001
Within Varia�on 897.879 230 3.904
Total Varia�on 1061.532 234

Difference
Confidence Interval Tests of Means Lower Upper

South-Midwest 0.200 -0.920 1.320
South-Northeast 1.460 0.276 2.644
South-Southwest -1.145 -2.304 0.015
South-West 0.620 -0.523 1.763
Midwest-Northeast 1.260 0.163 2.358
Midwest-Southwest -1.345 -2.415 -0.274
Midwest-West 0.420 -0.633 1.473
Northeast-Southwest -2.605 -3.743 -1.468
Northeast-West -0.840 -1.961 0.280
Southwest-West 1.765 0.670 2.860

F-Ra�o p-Value

Tukey

Figure 9.40 Analysis of Empowerment Data

the procedure. The side-by-side box plots in Figure 9.41 illustrate these summary
measures graphically. However, there is too much overlap between the box plots to 
tell (graphically) whether the observed differences between plants are statistically 
significant.
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The ANOVA table in rows 26 through 28 of Figure 9.40 displays the elements for the
F test of equal means. All of it is based on the theory developed above. The only part
we didn’t discuss is the Total Variation in row 28. It is based on the total variation of all
observations around the Grand Mean in cell B10, and is used mainly to check the calcula-
tions. Specifically, note that SSB and SSW in cells B26 and B27 add up to the total sum of
squares in cell B28. Similarly, the degrees of freedom add up in column C. The F-ratio for
the test is 10.480, in cell E26. Its corresponding p-value (to three decimal places) is 0.000.
This leaves practically no doubt that the five population means are not all equal.
Employees evidently do not perceive the empowerment policy equally across plants.

The 95% confidence intervals in rows 32 through 41 indicate which plants differ
significantly from which others. For example, the mean for the Southwest plant is some-
where between 1.468 and 3.743 rating points above the mean for the Northeast plant. You
can see that the Southwest plant is rated significantly higher than the Northeast, West, and
Midwest plants, and the South and Midwest plants are also rated significantly higher than
the Northeast plant. (StatTools boldfaces the significant differences.) Now it is up to ArmCo
management to decide whether the magnitudes of these differences are practically signifi-
cant, and, if so, what they can do to increase employee perceptions at the lower-rated plants.
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Southwest

West

Box Plot Comparison  
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Figure 9.41

Box Plots for

Empowerment Data

P R O B L E M S

Level A

53. An automobile manufacturer employs sales
representatives who make calls on dealers. The
manufacturer wishes to compare the effectiveness
of four different call-frequency plans for the sales
representatives. Thirty-two representatives are
chosen at random from the sales force and randomly
assigned to the four call plans (eight per plan). The
representatives follow their plans for six months, and
their sales for the six-month study period are recorded.
These data are given in the file P09_53.xlsx.
a. Do the sample data support the hypothesis that at

least one of the call plans helps produce a higher
average level of sales than some other call plan?

Perform an appropriate statistical test and report
a p-value.

b. If the sample data indicate the existence of mean
sales differences across the call plans, which plans
appear to produce different average sales levels?
Use 95% confidence levels for the differences
between all pairs of means to answer this question.

54. Consider a large chain of supermarkets that sells its
own brand of potato chips in addition to many other
name brands. Management would like to know
whether the type of display used for the store brand
has any effect on sales. Because there are four types
of displays being considered, management decides to
choose 24 similar stores to serve as experimental units.

■
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9.8 CONCLUSION

The concepts and procedures in this chapter form a cornerstone in both applied and theo-
retical statistics. Of particular importance is the interpretation of a p-value, especially
because p-values are outputs of all statistical software packages. A p-value summarizes the
evidence in support of an alternative hypothesis, which is usually the hypothesis an analyst
is trying to prove. Small p-values provide support for the alternative hypothesis, whereas
large p-values provide little or no support for it.

Although hypothesis testing continues to be an important tool for analysts, it is impor-
tant to note its limitations, particularly in business applications. First, given a choice
between a confidence interval for some population parameter and a test of this parameter,
we generally favor the confidence interval. For example, a confidence interval not only
indicates whether a mean difference is 0, but it also provides a plausible range for this
difference. Second, many business decision problems cannot be handled adequately with
hypothesis-testing procedures. Either they ignore important cost information or they treat
the consequences of incorrect decisions (type I and type II errors) in an inappropriate way.
Finally, the statistical significance at the core of hypothesis testing is sometimes quite
different from the practical significance that is of most interest to business managers.

A random six of these are instructed to use display
type 1, another random six are instructed to use
display type 2, a third random six are instructed to use
display type 3, and the final six stores are instructed
to use display type 4. For a period of one month, each
store keeps track of the fraction of total potato chips
sales that are of the store brand. The data for the
24 stores are shown in the file P09_54.xlsx. Note
that one of the stores using display 3 has a blank cell.
This store did not follow instructions properly, so its
observation is disregarded.
a. Why do you think each store keeps track of the

fraction of total potato chips sales that are of 
the store brand? Why do they not simply record 
the total amount of sales of the store brand 
potato chips?

b. Do the data suggest different mean proportions of
store brand sales at the 10% significance level? If
so, use 90% confidence intervals for the differences
between all pairs of mean proportions to identify
which of the display types are associated with
higher fractions of sales.

55. National Airlines recently introduced a daily early-
morning nonstop flight between Houston and Chicago.
The vice president of marketing for National Airlines
decided to perform a statistical test to see whether
National’s average passenger load on this new flight is
different from that of each of its two major competitors.
Ten early-morning flights were selected at random from
each of the three airlines and the percentage of unfilled
seats on each flight was recorded. These data are stored
in the file P09_55.xlsx.
a. Is there evidence that National’s average passenger

load on the new flight is different from that of its

two competitors? Report a p-value and interpret the
results of the statistical test.

b. Select an appropriate significance level and find
confidence intervals for all pairs of differences
between means. Which of these differences, if
any, are statistically significant at the selected
significance level?

Level B

56. How powerful is the ANOVA test in detecting
differences between means when you are sure
that there are differences? You can explore this
question with simulation. Use the generic formula
=NORMINV(RAND(),mean,stdev) to generate n
random numbers in each of four columns. The
numbers in any given column should have the same
mean, but the means can vary across columns. The
standard deviation should be the same in all columns.
(Remember that this is an assumption behind the
ANOVA test.) Do not freeze the random numbers;
keep them random. You can choose the means and
the common standard deviation. Run the ANOVA test
on the randomly generated data. Because the ANOVA
outputs are linked to the data, the results will change
each time you recalculate with the F9 key. Try a
number of settings for the means and report the
results. For example, you could make all of the means
different but very close to one another, you could
make them all far apart from one another, you could
make three of them equal and the fourth equal to some
other value, and so on. Explain whether the results go
in the direction you would expect. Is the ANOVA test
very powerful in detecting mean differences?
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Summary of Key Terms

Term Explanation Excel Pages Equation
Null hypothesis Hypothesis that represents the current 457

thinking or status quo

Alternative hypothesis Typically, the hypothesis the analyst is 457
trying to prove or research hypothesis

One-tailed test Test where values in only one direction will 459
lead to rejection of the null hypothesis

Two-tailed test Test where values in both directions will 459
lead to rejection of the null hypothesis

Type I error Error committed when null hypothesis is 459
true but is rejected

Type II error Error committed when null hypothesis is 459
false but is not rejected

Significance level The probability of a type I error an analyst 
chooses

Rejection region Sample results that lead to rejection of null 460
hypothesis

Statistically Sample results that lead to rejection of null 460
significant hypothesis
results

p-value Probability of observing a sample result at 461
least as extreme as the one actually observed

Power Probability of correctly rejecting the null 462
when it is false

t test for a population Test for a mean from a single population StatTools/ 465 9.1
mean Statistical Inference/

Hypothesis Test

Z test for a population Test for a proportion from a single StatTools/ 472 9.2
proportion population Statistical Inference/

Hypothesis Test

t test for difference Test for the difference between two StatTools/ 475 9.3
between means from population means when samples are Statistical Inference/
paired samples paired in a natural way Hypothesis Test

t test for difference Test for the difference between two StatTools/ 475 9.4
between means from population means when samples are Statistical Inference/
independent samples independent Hypothesis Test

F test for equality Test to check whether two population StatTools/ 485
of two variances variances are equal, used to check an Statistical Inference/

assumption of two-sample t test for Hypothesis Test
difference between means

F distribution Skewed distribution useful for testing � FDIST(value, df1, df2) 485
equality of variances � FINV(prob, df1, df2)

Z test for difference Test for difference between similarly StatTools/ 487 9.5, 9.6
between proportions defined proportions from two Statistical Inference/

populations Hypothesis Test

Tests for normality Tests to check whether a population is StatTools/ 494 9.7
normally distributed; alternatives include Normality Tests
chi-square test, Lilliefors test, and 
Q-Q plot

(continued)
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Term Explanation Excel Pages Equation
Chi-square test for Test to check whether two attributes are StatTools/ 500 9.8, 9.9
independence probabilistically independent Statistical Inference/

Chi-square 
Independence Test

One-way ANOVA Generalization of two-sample t test, StatTools/ 505 9.10
used to test whether means from several Statistical Inference/
populations are all equal, and if not, One-Way ANOVA
which are significantly different
from which others

P R O B L E M S

Conceptual Questions

C.1. Suppose you are testing the null hypothesis that a
mean equals 75 versus a two-tailed alternative. If the
true (but unknown) mean is 80, what kind of error
might you make? When will you not make this
error?

C.2. Suppose you hear the claim that a given test, such
as the chi-square test for normality, is not very
powerful. What exactly does this mean? If another
test, such as the Lilliefors test, is claimed to be more
powerful, how is it better than the less powerful test?

C.3. Explain exactly what it means for a test statistic to
fall in the rejection region.

C.4. Give an example of when a one-sided test on a
population mean would make more sense than a
two-tailed test. Give an example of the opposite. In
general, why do we say that there is no statistical
way to decide whether a test should be run as a 
one-tailed test or a two-tailed test?

C.5. For any given hypothesis test, that is, for any
specification of the null and alternative hypotheses,
explain why you could make only a type I error or a
type II error, but not both. When would you make a
type I error? When would you make a type II error?
Answer as generally as possible.

C.6. What are the null and alternative hypotheses in the
chi-square or Lilliefors test for normality? Where is
the burden of proof? Might you argue that it goes in
the wrong direction? Explain.

C.7. We didn’t discuss the role of sample size in this chap-
ter as thoroughly as we did for confidence intervals in
the previous chapter, but more advanced books do
include sample size formulas for hypothesis testing.
Consider the situation where you are testing the null
hypothesis that a population mean is less than or equal
to 100 versus a one-tailed alternative. A sample size

formula might indicate the sample size needed to
make the power at least 0.90 when the true mean is
103. What are the trade-offs here? Essentially, what is
the advantage of a larger sample size?

C.8. Suppose that you wish to test a researcher’s claim
that the mean height in meters of a normally dis-
tributed population of rosebushes at a nursery has
increased from its commonly accepted value of 1.60.
To carry out this test, you obtain a random sample of
size 150 from this population. This sample yields a
mean of 1.80 and a standard deviation of 1.30. What
are the appropriate null and alternative hypotheses?
Is this a one-tailed or two-tailed test?

C.9. Suppose that you wish to test a manager’s claim
that the proportion of defective items generated by a
particular production process has decreased from its
long-run historical value of 0.30. To carry out this
test, you obtain a random sample of 300 items
produced through this process. The test indicates a
p-value of 0.01. What exactly is this p-value telling
you? At what levels of significance can you reject
the null hypothesis?

C.10. Suppose that a 99% confidence interval for the
proportion p of all Lakeside residents whose annual
income exceeds $80,000 extends from 0.10 to 0.18.
The confidence interval is based on a random sample
of 150 Lakeside residents. Using this information
and a 1% significance level, you wish to test 
H0: p � 0.08 versus Ha: p � 0.08. Based on the
given information, are you able to reject the null
hypothesis? Why or why not?

C.11. Suppose that you are performing a one-tailed
hypothesis test. “Assuming that everything else
remains constant, a decrease in the test’s level of
significance (
) leads to a higher probability of
rejecting the null hypothesis.” Is this statement true
or false? Explain your reasoning.
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C.12. Can pleasant aromas help people work more
efficiently? Researchers conducted an investigation
to answer this question. Fifty students worked a
paper-and-pencil maze ten times. On five attempts,
the students wore a mask with floral scents. On the
other five attempts, they wore a mask with no scent.
The 10 trials were performed in random order and
each used a different maze. The researchers found
that the subjects took less time to complete the maze
when wearing the scented mask. Is this an example
of an observational study or a controlled
experiment? Explain.

C.13. Explain exactly what the one-way ANOVA test
says about the various population means if the null
hypothesis can be rejected. What does it imply if
the null hypothesis cannot be rejected?

Level A

57. The file P09_57.xlsx contains the number of days
44 mothers spent in the hospital after giving birth (in
the year 2005). Before health insurance rules were
changed (the change was effective January 1, 2005),
the average number of days spent in a hospital by
a new mother was two days. For a 5% level of
significance, do the data in the file indicate (the
research hypothesis) that women are now spending
less time in the hospital after giving birth than they
were prior to 2005? Explain your answer in terms of
the p-value for the test.

58. Eighteen readers took a speed-reading course. The
file P09_58.xlsx contains the number of words that
they could read before and after the course. Test the
alternative hypothesis at the 5% significance level that
reading speeds have increased, on average, as a result
of the course. Explain your answer in terms of the 
p-value. Do you need to assume that reading speeds
(before and after) are normally distributed? Why or
why not?

59. Statistics have shown that a child 0 to 4 years of age has
a 0.0002 probability of getting cancer in any given year.
Assume that during each of the last seven years there
have been 100 children ages 0 to 4 years whose parents
work in a university’s business school. Four of these
children have gotten cancer. Use this evidence to test
whether the incidence of childhood cancer among
children ages 0 to 4 years whose parents work at this
business school exceeds the national average. State your
hypotheses and determine the appropriate p-value.

60. African Americans in a St. Louis suburb sued the
city claiming they were discriminated against in
schoolteacher hiring. Of the city’s population, 5.7%
were African American; of 405 teachers in the school
system, 15 were African American. Set up appropriate
hypotheses and determine whether African Americans

are underrepresented. Does your answer depend on
whether you use a one-tailed or two-tailed test? In
discrimination cases, the Supreme Court always 
uses a two-tailed test at the 5% significance level.
(Source: U.S. Supreme Court Case, Hazlewood v. 
City of St. Louis)

61. In the past, monthly sales for HOOPS, a small
software firm, have averaged $20,000 with standard
deviation $4000. During the most recent year, sales
averaged $22,000 per month. Does this indicate
that monthly sales have changed (in a statistically
significant sense at the 5% level)? Assume monthly
sales are at least approximately normally distributed.

62. Twenty people have rated a new beer on a taste scale
of 0 to 100. Their ratings are in the file P09_62.xlsx.
Marketing has determined that the beer will be a
success if the average taste rating exceeds 76. Using a
5% significance level, is there sufficient evidence to
conclude that the beer will be a success? Discuss your
result in terms of a p-value. Assume ratings are at least
approximately normally distributed.

63. Twenty-two people were asked to rate a competitive
beer on a taste scale of 0 to 100. Another 22 people
were asked to rate our beer on the same taste scale.
The file P09_63.xlsx contains the results. Do these
data provide sufficient evidence to conclude, at the 1%
significance level, that people believe our beer tastes
better than the competitor’s? Assume ratings are at
least approximately normally distributed.

64. Callaway is thinking about entering the golf ball
market. The company will make a profit if its market
share is more than 20%. A market survey indicates
that 140 of 624 golf ball purchasers will buy a
Callaway golf ball.
a. Is this enough evidence to persuade Callaway to

enter the golf ball market?
b. How would you make the decision if you were

Callaway management? Would you use hypothesis
testing?

65. Sales of a new product will be profitable if the average of
sales per store exceeds 100 per week. The product was
test-marketed for one week at 10 stores, with the results
listed in the file P09_65.xlsx. Assume that sales at each
store are at least approximately normally distributed.
a. Is this enough evidence to persuade the company

to market the new product?
b. How would you make the decision if you were

deciding whether to market the new product?
Would you use hypothesis testing?

66. A recent study concluded that children born to mothers
who take Prozac tend to have more birth defects than
children born to mothers who do not take Prozac.
a. What do you think the null and alternative

hypotheses were for this study?

516 Chapter 9 Hypothesis Testing

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



b. If you were a spokesperson for Eli Lilly (the
company that produces Prozac), how might you
rebut the conclusions of this study?

67. The file P02_16.xlsx contains traffic data from 256
weekdays on four variables. Each variable lists the
number of arrivals during a specific five-minute period
of the day. Use one-way ANOVA to test whether the
mean numbers of arrivals for the four given time periods
are equal. If you can conclude that there are significant
differences at the 5% significance level, which means
are significantly different from which others?

68. The file P02_02.xlsx contains data on over 200
popular movies in the years 2006 and 2007. 
a. Run a one-way ANOVA to test whether there are

significant differences in mean Total US Gross
between different genres. Limit the genres to the
six most common: Action, Adventure, Comedy,
Drama, Horror, and Thriller/Suspense. If there are
significant differences at the 5% level, indicate
which genres have significantly different means
from which others. 

b. Is there any evidence that the equal-variance
assumption of ANOVA has been violated? Explain.

c. Statistical inference is all about making inferences
from a random sample to a population. Is this data
a random sample from some population? What is
the relevant population? Does it really matter?

Level B

69. Suppose that you are the state superintendent of
Tennessee public schools. You want to know whether
decreasing the class size in grades 1 through 3 will
improve student performance. Explain how you would
set up a test to determine whether decreased class size
improves student performance. What hypotheses
would you use in this experiment? (This was actually
done and smaller class size did help, particularly with
minority students.)

70. The file P02_35.xlsx contains data from a survey
of 500 randomly selected households. Economic
researchers would like to test for a significant differ-
ence between the mean annual income levels of the
first household wage earners in the first (i.e., SW) and
second (i.e., NW) sectors of this community. In fact,
they intend to perform similar hypothesis tests for the
differences between the mean annual income levels of
the first household wage earners from all other pairs of
locations (i.e., first and third, first and fourth, second
and third, second and fourth, and third and fourth).
a. Before conducting any hypothesis tests on the

difference between various pairs of mean income
levels, perform a test for equal population
variances in each pair of locations. For each pair,
report a p-value and interpret its meaning.

b. Based on your conclusions in part a, which test
statistic should be used in performing a test for the
existence of a difference between population means?

c. Given your conclusions in part b, perform a test for
the existence of a difference in mean annual
income levels in each pair of locations. For each
pair, report a p-value and interpret its meaning.

71. A group of 25 husbands and wives were chosen
randomly. Each person was asked to indicate the
most he or she would be willing to pay for a new car
(assuming each had decided to buy a new car). The
results are shown in the file P09_71.xlsx. Can you
accept the alternative hypothesis that the husbands
are willing to spend more, on average, than the wives
at the 5% significance level? What is the associated 
p-value? Is it appropriate to use a paired-sample or
independent-sample test? Does it make a difference?
Explain your reasoning.

72. A company is concerned with the high cholesterol
levels of many of its employees. To help combat the
problem, it opens an exercise facility and encourages
its employees to use this facility. After a year, it
chooses a random 100 employees who claim they use
the facility regularly, and another 200 who claim they
don’t use it at all. The cholesterol levels of these 300
employees are checked, with the results shown in the
file P09_72.xlsx.
a. Is this sample evidence “proof” that the exercise

facility, when used, tends to lower the mean
cholesterol level? Phrase this as a hypothesis-
testing problem and do the appropriate analysis.
Do you feel comfortable that your analysis answers
the question definitively (one way or the other)?
Why or why not?

b. Repeat part a, but replace “mean cholesterol level”
with “percentage with level over 215.” (The company
believes that any level over 215 is dangerous.)

c. What can you say about causality? Could you ever
conclude from such a study that the exercise causes
low cholesterol? Why or why not?

73. Suppose that you are trying to compare two populations
on some variable (GMAT scores of men versus women,
for example). Specifically, you are testing the null
hypothesis that the means of the two populations are
equal versus a two-tailed hypothesis. Are the following
statements correct? Why or why not?
a. A given difference (such as five points) between

sample means from these populations will probably
not be considered statistically significant if the
sample sizes are small, but it will probably be
considered statistically significant if the sample
sizes are large.

b. Virtually any difference between the population
means will lead to statistically significant sample
results if the sample sizes are sufficiently large.
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74. Continuing the previous problem, analyze part b in
Excel as follows. Start with hypothetical population
mean GMAT scores for men and women, along with
population standard deviations. Enter these at the top
of a worksheet. You can make the two means as close
as you like, but not identical. Simulate a sample of
men’s GMAT scores with your mean and standard
deviation in column A. Do the same for women in
column B. The sample sizes do not have to be the
same, but you can make them the same. Then run the
test for the difference between two means. (The point
of this problem is that if the population means are
fairly close and you pick relatively small sample sizes,
the sample mean differences probably won’t be
significant. If you find this, generate new samples of a
larger sample size and redo the test. Now they might
be significant. If not, try again with a still larger
sample size. Eventually, you should get statistically
significant differences.)

75. This problem concerns course scores (on a 0–100 scale)
for a large undergraduate computer programming
course. The class is composed of both underclassmen
(freshmen and sophomores) and upperclassmen (juniors
and seniors). Also, the students can be categorized
according to their previous mathematical background
from previous courses as “low” or “high” mathematical
background. The data for these students are in the file
P09_75.xlsx. The variables are: 
■ Score: score on a 0–100 scale
■ Upper Class: 1 for an upperclassman, 0 otherwise
■ High Math: 1 for a high mathematical background,

0 otherwise

For the following questions, assume that the students
in this course represent a random sample from all col-
lege students who might take the course. This latter
group is the population.
a. Find a 90% confidence interval for the population

mean score for the course. Do the same for the mean
of all upperclassmen. Do the same for the mean of
all upperclassmen with a high mathematical
background.

b. The professor believes he has enough evidence to
“prove” the research hypothesis that upperclassmen
score at least five points better, on average, than
lowerclassmen. Do you agree? Answer by running
the appropriate test.

c. If a “good” grade is one that is at least 80, is there
enough evidence to reject the null hypothesis that
the fraction of good grades is the same for students
with low math backgrounds as those with high
math backgrounds? Which do you think is more
appropriate, a one-tailed or two-tailed test? Explain
your reasoning.

76. A cereal company wants to see which of two promo-
tional strategies, supplying coupons in a local newspa-
per or including coupons in the cereal package itself, is

more effective. (In the latter case, there is a label on the
package indicating the presence of the coupon inside.)
The company randomly chooses 80 Kroger’s stores
around the country—all of approximately the same size
and overall sales volume—and promotes its cereal one
way at 40 of these sites, and the other way at the other
40 sites. (All are at different geographical locations,
so local newspaper ads for one of the sites should not
affect sales at any other site.) Unfortunately, as in many
business experiments, there is a factor beyond the
company’s control, namely, whether its main competi-
tor at any particular site happens to be running a
promotion of its own. The file P09_76.xlsx has 80
observations on three variables:
■ Sales: number of boxes sold during the first week

of the company’s promotion
■ Promotion Type:1 if coupons are in local paper, 0 if

coupons are inside box
■ Competitor Promotion:1 if main competitor is

running a promotion, 0 otherwise
a. Based on all 80 observations, find (1) the

difference in sample mean sales between stores
running the two different promotional types (and
indicate which sample mean is larger), (2) the
standard error of this difference, and (3) a 90%
confidence interval for the population mean
difference.

b. Test whether the population mean difference is
zero (the null hypothesis) versus a two-tailed
alternative. State whether you should accept or
reject the null hypothesis, and why.

c. Repeat part b, but now restrict the population to
stores where the competitor is not running a
promotion of its own.

d. Based on data from all 80 observations, can you
accept the (alternative) hypothesis, at the 5% level,
that the mean company sales drop by at least 30
boxes when the competitor runs its own promotion
(as opposed to not running its own promotion)?

e. We often use the term population without really
thinking what it means. For this problem, explain
in words exactly what the population mean refers
to. What is the relevant population?

77. There is a lot of concern about “salary compression”
in universities. This is the effect of paying huge
salaries to attract newly-minted Ph.D. graduates to
university tenure-track positions and not having
enough left in the budget to compensate tenured
faculty as fully as they might deserve. In short, it is
very possible for a new hire to make a larger salary
than a person with many years of valuable experience.
The file P09_77.xlsx contains (fictional but realistic)
salaries for a sample of business school professors,
some already tenured and some not yet through the
tenure process. Formulate reasonable null and
alternative hypotheses and then test them with this
data set. Write a short report of your findings.
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C A S E

In Chapters 10 and 11, you will study regression, a

method for relating one variable to other explana-

tory variables. However, the term regression has

sometimes been used in a slightly different way,

meaning “regression toward the mean.” The example

often cited is of male heights. If a father is unusually

tall, for example, his son will typically be taller than

average but not as tall as the father. Similarly, if a

father is unusually short, the son will typically be

shorter than average but not as short as the father.

We say that the son’s height tends to regress toward

the mean.This case illustrates how regression

toward the mean can occur.

Suppose a company administers an aptitude test

to all of its job applicants. If an applicant scores

below some value, he or she cannot be hired imme-

diately but is allowed to retake a similar exam at a

later time. In the interim the applicant can presum-

ably study to prepare for the second exam. If we

focus on the applicants who fail the exam the first

time and then take it a second time, we would prob-

ably expect them to score better on the second

exam. One plausible reason is that they are more

familiar with the exam the second time. However,

we will rule this out by assuming that the two exams

are sufficiently different from one another. A second

plausible reason is that the applicants have studied

between exams, which has a beneficial effect.

However, we will argue that even if studying has no

beneficial effect whatsoever, these applicants will tend

to do better the second time around.The reason is

regression toward the mean.All of these applicants

scored unusually low on the first exam, so they will

tend to regress toward the mean on the second

exam—that is, they will tend to score higher.

You can employ simulation to demonstrate this

phenomenon, using the following model. Assume that

the scores of all potential applicants are normally

distributed with mean � and standard deviation �.

Because we are assuming that any studying between

exams has no beneficial effect, this distribution of

scores is the same on the second exam as on the

first. An applicant fails the first exam if his or her

score is below some cutoff value L. Now, we would

certainly expect scores on the two exams to be pos-

itively correlated, with some correlation �. That is, if

everyone took both exams, then applicants who

scored high on the first would tend to score high on

the second, and those who scored low on the first

would tend to score low on the second. (This isn’t

regression to the mean, but simply that some appli-

cants are better than others.)

Given this model, you can proceed by simulating

many pairs of scores, one pair for each applicant.The

scores for each exam should be normally distributed

with parameters � and �, but the trick is to make

them correlated.You can use our Binormal_ function

to do this. (Binormal is short for bivariate normal.)

This function is supplied in the file Regression

Toward Mean.xlsx. (Binormal_ is not a built-in

Excel function.) It takes a pair of means (both equal

to �), a pair of standard deviations (both equal to �),

and a correlation � as arguments, with the syntax

=BINORMAL_(means,stdevs,correlation).To

enter the formula, highlight two adjacent cells such

as B5 and C5, type the formula, and press Ctrl-Shift-

Enter.Then copy and paste to generate similar values

for other applicants. (The Binormal_ Example sheet

in this file illustrates the procedure.You should cre-

ate another sheet in the same file to solve this case.)

Once you have generated pairs of scores for

many applicants, you should ignore all pairs except

for those where the score on the first exam is less

than L. (Sorting is suggested here, but freeze the ran-

dom numbers first.) For these pairs, test whether the

mean score on the second exam is higher than on

the first, using a paired-samples test. If it is, you have

demonstrated regression toward the mean. As you

will probably discover, however, the results will

depend on the values of the parameters you choose

for �, �, �, and L. You should experiment with these.

Assuming that you are able to demonstrate regres-

sion toward the mean, can you explain intuitively why

it occurs? ■

9.1 REGRESSION TOWARD THE MEAN
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C A S E

Baseball has long been the sport of statistics.

Probably more statistics—both relevant and

completely obscure—are kept on baseball games

and players than for any other sport. During the

early 1990s, the first author of this book was able

to acquire an enormous set of baseball data.12 It

includes data on every at-bat for every player in

every game for the four-year period from 1987 to

1990.The bulk of the data are in eight files with

names such as 89AL.exe—for the 1989 American

League. See the BB_Readme.txt file for detailed

information about the files.The files include data for

approximately 500 player-years during this period.

Each text file contains data for a particular player

during an entire year, such as Barry Bonds during

1989, provided that the player had at least 500 at-

bats during that year. Each record (row) of such a file

lists the information pertaining to a single at-bat,

such as whether the player got a hit, how many run-

ners were on base, the earned run average (ERA) of

the pitcher, and more.

The author analyzed these data to see whether

batters tend to hit in “streaks,” a phenomenon that

has been debated for years among avid fans. [The

results of this study are described in Albright (1993).]

However, the data set is sufficiently rich to enable

testing of any number of hypotheses.We challenge

you to develop your own hypotheses and test them

with these data. ■

9.2 BASEBALL STATISTICS

12The data were collected by volunteers of a group called Project
Scoresheet. These volunteers attended each game and kept detailed
records of virtually everything that occurred. Such detail is certainly
not available in newspaper box scores, but it is becoming increas-
ingly available on the Web.
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C A S E

Each year drinking and driving behavior are esti-

mated to be responsible for approximately

24,000 traffic fatalities in the United States. Data

show that a preponderance of this problem is due

to the behavior of young males. Indeed, a dispropor-

tionate number of traffic fatalities are young people

between 15 and 24 years of age. Market research

among young people has suggested that the perverse

behavior of driving automobiles while under the

influence of alcoholic beverages might be reduced by

a mass media communications/advertising program

based on an understanding of the “consumer psy-

chology” of young male drinking and driving.There is

some precedent for this belief. Reduction in cigarette

smoking over the last 25 years is often attributed in

part to mass antismoking advertising campaigns.

There is also precedent for being less optimistic

because past experimental campaigns against drunk

driving have shown little success.

Between March and August of 1986, an

anti–drinking and driving advertising campaign was

conducted in the city of Wichita, Kansas. In this

federally sponsored experiment, several carefully

constructed messages were aired on television and

radio and posted in newspapers and on billboards.

Unlike earlier and largely ineffective campaigns that

depended on donated talent and media time, this

test was sufficiently funded to create impressive

anti–drinking and driving messages, and to place

them so that the targeted audience would be

reached.The messages were pretested before the

program and the final version won an OMNI

advertising award.

To evaluate the effectiveness of this anti–drinking

and driving campaign, researchers collected before and

after data (preprogram and postprogram) of several

types. In addition to data collection in Wichita, they

also selected Omaha, Nebraska, as a control. Omaha,

another midwestern city on the Great Plains, was

arguably similar to Wichita, but was not subjected to

such an advertising campaign.The following tables

contain some of the data gathered by researchers to

evaluate the impact of the program.

Table 9.1 contains background demographics

on the test and control cities.Table 9.2 contains

data obtained from telephone surveys of 18- to 

24-year-old males in both cities.The surveys were

done using a random telephone dialing technique.

They had an 88% response rate during the prepro-

gram survey and a 91% response rate during the post-

program survey. Respondents were asked whether

they had driven under the influence of four or more

alcoholic drinks, or six or more alcoholic drinks, at

least once in the previous month.The preprogram

data were collected in September 1985, and the post-

program data were collected in September 1986.

9.3 THE WICHITA ANTI–DRUNK DRIVING ADVERTISING

CAMPAIGN13

Table 9.1 Demographics for Wichita and Omaha

Wichita Omaha

Total population 411,313 483,053
Percentage 15–24 years 19.2 19.5
Race

White 85 87
Black 8 9
Hispanic 4 2
Other 3 2

Percent high school graduates
among those 18 years and older 75.4 79.9
Private car ownership 184,641 198,723

Table 9.2 Telephone Survey of 18- to 24-Year-Old

Males

Wichita Omaha
Before After Before After 

Program Program Program Program

Respondents 205 221 203 157
Drove after 
4 drinks 71 61 77 69
Drove after 
6 drinks 42 37 45 38 

13This case was contributed by Peter Kolesar from Columbia
University.

Table 9.3 contains counts of fatal or incapacitat-

ing accidents involving young people gathered from

the Kansas and Nebraska traffic safety departments

during the spring and summer months of 1985
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(before program) and 1986 (during the program).

The spring and summer months were defined to be

the period from March to August.These data were

taken by the research team as indicators of driving

under the influence of alcohol. Researchers at first

proposed to also gather data on the blood alcohol

content of drivers involved in fatal accidents.

However, traffic safety experts pointed out that such

data are often inconsistent and incomplete because

police at the scene of a fatal accident have more

pressing duties to perform than to gather such data.

On the other hand, it is well established that alcohol

is implicated in a major proportion of nighttime traf-

fic fatalities, and for that reason, the data also focus

on accidents at night among two classes of young

people: the group of accidents involving 18- to 24-

year-old males as a driver, and the group of accidents

involving 15- to 24-year-old males and/or females 

as a driver.

The categories of accidents recorded were as

follows:

■ Total: total count of all fatal and incapacitating

accidents in the indicated driver group

■ Single vehicle: single vehicle fatal and inca-

pacitating accidents in the indicated driver group

■ Nighttime: nighttime (8 P.M. to 8 A.M.) fatal and

incapacitating accidents in the indicated driver

group

It was estimated that if a similar six-month

advertising campaign were run nationally, it would

cost about $25 million.The Commissioner of the

U.S. National Highway Safety Commission had

funded a substantial part of the study and needed 

to decide what, if anything, to do next. ■

Table 9.3 Average Monthly Number of Fatal and Incapacitating Accidents, March to August
Wichita Omaha

Driver Group Accident Type 1985 1986 1985 1986

18- to 24-year-old males Total 68 55 41 40
Single 13 13 13 14
Night 36 35 25 26

15- to 24-year-old Total 117 97 59 57
males and females Single 22 17 16 20

Night 56 52 34 38
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C A S E

John Jacobs works for the Fresh Toothpaste

Company and has recently been assigned to

investigate a new type of toothpaste dispenser.The

traditional tube of toothpaste uses a screw-off cap.

The new dispenser uses the same type of tube, but

there is now a flip-top cap on a hinge. John believes

this new cap is easier to use, although it is a bit

messier than the screw-off cap—toothpaste tends to

accumulate around the new cap. So far, the positive

aspects appear to outweigh the negatives. In informal

tests, consumers reacted favorably to the new cap.

The next step was to introduce the new cap in a

regional test market.The company has just con-

ducted this test market for a six-month period in 85

stores in the Cincinnati region.The results, in units

sold per store, appear in Figure 9.42. (See the file

Toothpaste.xlsx.)

John has done his homework on the financial

side. Figure 9.43 shows a break-even analysis for the

new dispenser relative to the current dispenser.The

analysis is over the entire U.S. market, which consists

of 9530 stores (of roughly similar size) that stock the

product. Based on several assumptions that we soon

discuss, John figures that to break even with the new

dispenser, the sales volume per store per six-month

period must be 3622 units.The question is whether

the test market data support a decision to abandon

the current dispenser and market the new dispenser

nationally.

We first discuss the break-even analysis in

Figure 9.43.The assumptions are listed in rows 4

through 8 and relevant inputs are listed in rows 11

through 17. In particular, the new dispenser involves

an up-front investment of $1.5 million, and its unit

cost is two cents higher than the unit cost for the

current dispenser. However, the company doesn’t

plan to raise the selling price. Rows 22 through 26

calculate the net present value (NPV) for the next

four years, assuming that the company does not

switch to the new dispenser. Starting with any first-

year sales volume in cell C30, rows 29 through 35

calculate the NPV for the next four years, assuming

that the company does switch to the new dispenser.

The goal of the break-even analysis is to find a value

in cell C30 that makes the two NPVs (in cells B26

and B35) equal.

The trickiest part of the analysis concerns the

depreciation calculations for the new dispenser. You

find the before-tax contribution from sales in row 31

and subtract the depreciation each year (one-quarter

of the investment) to figure the after-tax profit. For

example, the formula in cell C33 is

�(C31-C32)*(1-$C$16)

9.4 DECIDING WHETHER TO SWITCH TO A NEW TOOTHPASTE

DISPENSER

1
2
3
4
5
6
7
8
9

10
11
12
13
85
86
87
88

A B C D E F
Sales volumes in Cincinna� regional test market for 6 months

Store Units sold
1 4106
2 2786
3 3858
4 3015
5 3900
6 3572
7 4633
8 4128
9 3044

10 2585
82 1889
83 6436
84 4179
85 3539

Figure 9.42

Toothpaste

Dispenser Data from

Cincinnati Region
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Then you add back the depreciation to obtain

the cash flow, so that the formula in cell C34 is

�C33�C32

Finally, you can calculate the NPV for the new

dispenser in cell B35 with the formula

�B34�NPV(C17,C34:F34)

Note that the initial investment,which is assumed

to occur at the beginning of year 1, is not part of the

NPV function,which includes only end-of-year cash

flows.

You can then use Excel’s Goal Seek tool to force

the NPVs in cells B26 and B35 to be equal. Again,

begin by entering any value for first-year sales

volume with the new dispenser in cell C30.Then

select Goal Seek from the What-If Analysis

dropdown menu on the Data ribbon and fill out

the dialog box as shown in Figure 9.44.

The file Toothpaste.xlsx does not yet contain

the break-even calculations.Your first job is to enter

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

FEDCBA
Breakeven analysis for Stripe Toothpaste

Assump�ons:
The planning horizon is 4 years
Sales volume is expected to remain constant over the 4 years
Unit selling prices and unit costs will remain constant over the 4 years
Straight-line deprecia�on is used to depreciate the ini�al investment for the new dispenser
Breakeven analysis is based on NPV for the four-year period

Given data
Current volume (millions of units) using current dispenser 65.317
Ini�al investment ($ millions) for new dispenser 1.5
Unit selling price (either 97.1$)resnepsid
Unit cost (current 52.1$)resnepsid
Unit cost (new 72.1$)resnepsid
Tax %53etar
Discount %61etar

Note: From here on, all sales volumes are in millions of units, monetary values are in $ millions.

Analysis of current dispenser Year 1 Year 2 Year 3 Year 4
Sales volume
Before-tax contribu�on
A�er-tax profit
Cash flow
NPV

Analysis of new dispenser Year 1 Year 2 Year 3 Year 4
Ini�al 5.1$tnemtsevni
Sales volume
Before-tax contribu�on
Deprecia�on
A�er-tax profit
Cash flow
NPV

Number of stores na�onally 9530
Breakeven sales volume per store per 6 months

Figure 9.43

Break-even Analysis

for Toothpaste

Example
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the appropriate formulas, using any year 1 sales vol-

ume figure in cell C30. Next, you should use Excel’s

Goal Seek tool to find the break-even point. Finally,

you should test the alternative hypothesis that the

mean sales volume over all stores (for a six-month

period) will be large enough to warrant switching to

the new dispenser.This hypothesis test should be

based on the test-market data from Cincinnati.

Do you recommend that the company should 

switch to the new dispenser? Discuss whether 

this decision should be based on the results of a

hypothesis test. ■

Figure 9.44

Goal Seek Dialog

Box
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C A S E

For years, the drug Vioxx, developed and marketed

by Merck, was one of the blockbuster drugs on

the market. One of a number of so-called Cox-2

anti-inflammatory drugs,Vioxx was considered by

many people a miracle drug for alleviating the pain

from arthritis and other painful afflictions.Vioxx was

marketed heavily on television, prescribed by most

physicians, and used by an estimated two million

Americans.

All of that changed in October 2004, when the

results of a large study were released.The study,

which followed approximately 2600 subjects over a

period of about 18 months, concluded that Vioxx use

over a long period of time caused a significant

increase in the risk of developing serious heart prob-

lems. Merck almost immediately pulled Vioxx from

the American market and doctors stopped prescrib-

ing it. On the basis of the study, Merck faced not only

public embarrassment but the prospect of huge

financial losses.

More specifically, the study had 1287 patients

use Vioxx for an 18-month period, and it had another

1299 patients use a placebo over the same period.

After 18 months, 45 of the Vioxx patients had devel-

oped serious heart problems, whereas only 25

patients on the placebo developed such problems.

Given these results, would you agree with the

conclusion that Vioxx caused a significant increase in

the risk of developing serious heart problems? First,

answer this from a purely statistical point of view,

where significant means statistically significant. What

hypothesis should you test, and how should you run

the test? When you run the test, what is the corre-

sponding p-value? Next, look at it from the point of

view of patients. If you were a Vioxx user, would these

results cause you significant worry? After all, some of

the subjects who took placebos also developed heart

problems, and 45 might not be considered that much

larger than 25. Finally, look at it from Merck’s point of

view.Are the results practically significant to the com-

pany? What does it stand to lose? Develop an esti-

mate, no matter how wild it might be, of the financial

losses Merck might incur. Just think of all of those

American Vioxx users and what they might do. ■

9.5 REMOVING VIOXX FROM THE MARKET
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Regression Analysis: Estimating
Relationships

C H A P T E R

SITE LOCATION OF LA QUINTA MOTOR INNS

Regression analysis is an extremely flexible tool that can aid decision

making in many areas. Kimes and Fitzsimmons (1990) describe how it

has been used by La Quinta Motor Inns, a moderately priced hotel chain

oriented toward serving the business traveler, to help make site location

decisions. Location is one of the most important decisions for a lodging firm.

All hotel chains search for ideal locations and often compete against each

other for the same sites. A hotel chain that can select good sites more

accurately and quickly than its competition has a distinct competitive

advantage.

Kimes and Fitzsimmons, academics hired by La Quinta to model its

site location decision process, used regression analysis.They collected data

on 57 mature inns belonging to La Quinta during a three-year business

cycle.The data included profitability for each inn (defined as operating

margin percentage—profit plus depreciation and interest expenses, divided

by the total revenue), as well as a number of potential explanatory
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variables that could be used to predict profitability.These explanatory variables fell

into five categories: competitive characteristics (such as number of hotel rooms in

the vicinity and average room rates); demand generators (such as hospitals and office

buildings within a 4-mile radius that might attract customers to the area); demo-

graphic characteristics (such as local population, unemployment rate, and median

family income); market awareness (such as years the inn has been open and 

state population per inn); and physical considerations (such as accessibility, distance 

to downtown, and sign visibility).

The analysts then determined which of these potential explanatory variables

were most highly correlated (positively or negatively) with profitability and entered

these variables into a regression equation for profitability. The estimated regression

equation was

where StatePop is the state population (in 1000s) per inn, Price is the room rate for the

inn, MedIncome is the median income (in $1000s) of the area, ColStudents is the number

of college students (in 1000s) within four miles, and all variables in this equation are stan-

dardized to have mean 0 and standard deviation 1. This equation predicts that profitability

will increase when room rate and the number of college students increase and when state

population and median income decrease.The R2 value (to be discussed in this chapter)

was a respectable 0.51, indicating a reasonable predictive ability. Using good statistical

practice, the analysts validated this equation by feeding it explanatory variable data on a

set of different inns, attempting to predict profitability for these new inns. The validation

was a success—the regression equation predicted profitability fairly accurately for this

new set of inns.

La Quinta management, however, was not as interested in predicting the exact

profitability of inns as in predicting which would be profitable and which would be

unprofitable. A cutoff value of 35% for operating margin was used to divide the

profitable inns from the unprofitable inns. (Approximately 60% of the inns in the original

sample were profitable by this definition.) The analysts were still able to use the

regression equation they had developed. For any prospective site, they used the

regression equation to predict profitability, and if the predicted value was sufficiently

high, they predicted that site would be profitable.They selected a decision rule—that is,

how high was “sufficiently high”—from considerations of the two potential types of

errors. One type of error, a false positive, was predicting that a site would be profitable

when in fact it was headed for unprofitability. The opposite type of error, a false negative,

was predicting that a site would be unprofitable (and rejecting the site) when in fact it

would have been profitable. La Quinta management was more concerned about false

positives, so it was willing to be conservative in its decision rule and miss a few potential

opportunities for profitable sites.

Since the time of the study, La Quinta has implemented the regression model in

spreadsheet form. For each potential site, it collects data on the relevant explanatory

variables, uses the regression equation to predict the site’s profitability, and applies the

decision rule on whether to build. Of course, the model’s recommendation is only

that—a recommendation.Top management has the ultimate say on whether any site is

used. As Sam Barshop, then chairman of the board and president of La Quinta Motor

Inns stated,“We currently use the model to help us in our site-screening process and

have found that it has raised the ‘red flag’ on several sites we had under consideration.

We plan to continue using and updating the model in the future in our attempt to make

La Quinta a leader in the business hotel market.” ■

-3.091MedIncome + 1.75ColStudents

Predicted Profitability = 39.05 - 5.41StatePop + 5.81Price
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10.1 INTRODUCTION

Regression analysis is the study of relationships between variables. It is one of the most
useful tools for a business analyst because it applies to so many situations. Some potential
uses of regression analysis in business include the following:

■ How do wages of employees depend on years of experience, years of education, and
gender?

■ How does the current price of a stock depend on its own past values, as well as the
current and past values of a market index?

■ How does a company’s current sales level depend on its current and past advertising
levels, the advertising levels of its competitors, the company’s own past sales levels,
and the general level of the market?

■ How does the total cost of producing a batch of items depend on the total quantity
of items that have been produced?

■ How does the selling price of a house depend on such factors as the appraised value
of the house, the square footage of the house, the number of bedrooms in the house,
and perhaps others?

Each of these questions asks how a single variable, such as selling price or employee
wages, depends on other relevant variables. If we can estimate this relationship, then we
can not only better understand how the world operates, but we can also do a better job of
predicting the variable in question. For example, we can not only understand how a
company’s sales are affected by its advertising, but we can also use the company’s records
of current and past advertising levels to predict future sales.

The branch of statistics that studies such relationships is called regression analysis,
and it is the subject of this chapter and the next. Because of its generality and applicabil-
ity, regression analysis is one of the most pervasive of all statistical methods in the
business world. There are several ways to categorize regression analysis. One catego-
rization is based on the overall purpose of the analysis. As suggested previously, there
are two potential objectives of regression analysis: to understand how the world operates
and to make predictions. Either of these objectives could be paramount in any particular
application. If the variable in question is employee salary and we are using variables
such as years of experience, level of education, and gender to explain salary levels, then
the purpose of the analysis is probably to understand how the world operates—that is,
to explain how the variables combine in any given company to determine salaries.
More specifically, the purpose of the analysis might be to discover whether there is any
gender discrimination in salaries, after allowing for differences in work experience and
education level.

On the other hand, the primary objective of the analysis might be prediction. A good
example of this is when the variable in question is company sales, and variables such as
advertising and past sales levels are used as explanatory variables. In this case it is certainly
important for the company to know how the relevant variables impact its sales. But the
company’s primary objective is probably to predict future sales levels, given current and
past values of the explanatory variables. A company could even use a regression model for
a what-if analysis, where it predicts future sales for many conceivable patterns of advertis-
ing and then selects its advertising level on the basis of these predictions.

Fortunately, the same regression analysis enables us to solve both problems simulta-
neously. That is, it indicates how the world operates and it enables us to make predictions.
So although the objectives of regression studies might differ, the same basic analysis
always applies.
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Regression can be used
to understand how the
world operates, and it
can be used for
prediction.
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A second categorization of regression analysis is based on the type of data being ana-
lyzed. There are two basic types: cross-sectional data and time series data. Cross-sectional
data are usually data gathered from approximately the same period of time from a popula-
tion. The housing and wage examples mentioned previously are typical cross-sectional
studies. The first concerns a sample of houses, presumably sold during a short period of
time, such as houses sold in Florida during the first couple of months of 2010. The second
concerns a sample of employees observed at a particular point in time, such as a sample of
automobile workers observed at the beginning of 2011.

In contrast, time series data involve one or more variables that are observed at several,
usually equally spaced, points in time. The stock price example mentioned previously fits
this description. We observe the price of a particular stock and possibly the price of a
market index at the beginning of every week, say, and then try to explain the movement of
the stock’s price through time.

Regression analysis can be applied equally well to cross-sectional and time series
data. However, there are technical reasons for treating time series data somewhat differ-
ently. The primary reason is that time series variables are usually related to their own past
values. This property of many time series variables is called autocorrelation, and it adds
complications to the analysis that we will discuss briefly.

A third categorization of regression analysis involves the number of explanatory vari-
ables in the analysis. First, we need to introduce some terms. In every regression study
there is a single variable that we are trying to explain or predict, called the dependent
variable (also called the response variable or the target variable). To help explain or
predict the dependent variable, we use one or more explanatory variables (also called
independent variables or predictor variables).1 If there is a single explanatory variable,
the analysis is called simple regression. If there are several explanatory variables, it is
called multiple regression.

532 Chapter 10 Regression Analysis: Estimating Relationships

Regression can be
used to analyze cross-
sectional data or time
series data.

“Linear” regression
allows you to estimate
linear relationships as
well as some nonlinear
relationships.

1The traditional terms used in regression are dependent and independent variables. However, because these terms
can cause confusion with probabilistic independence, a completely different concept, there has been an increas-
ing use of the terms response and explanatory (or predictor) variables. We tend to prefer the terms dependent and
explanatory, but this is largely a matter of taste.

The dependent (or response or target) variable is the single variable being explained
by the regression. The explanatory (or independent or predictor) variables are used
to explain the dependent variable.

A simple regression analysis includes a single explanatory variable, whereas multiple
regression can include any number of explanatory variables.

There are important differences between simple and multiple regression. The primary
difference, as the name implies, is that simple regression is simpler. The calculations are sim-
pler, the interpretation of output is somewhat simpler, and fewer complications can occur.
We will begin with a simple regression example to introduce the ideas of regression. But
simple regression is really just a special case of multiple regression, and there is little need to
single it out for separate discussion—especially when computer software is available to
perform the calculations in either case.

A final categorization of regression analysis is of linear versus nonlinear models. The
only type of regression analysis we study here is linear regression. Generally, this means
that the relationships between variables are straight-line relationships, whereas the term
nonlinear implies curved relationships. By focusing on linear regression, it might appear
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that we are ignoring the many nonlinear relationships that exist in the business world.
Fortunately, linear regression can often be used to estimate nonlinear relationships. As you
will see, the term linear regression is more general than it appears. Admittedly, many of
the relationships we study can be explained adequately by straight lines. But it is also true
that many nonlinear relationships can be linearized by suitable mathematical transforma-
tions. Therefore, the only relationships we are ignoring in this book are those—and there
are some—that cannot be transformed to linear. Such relationships can be studied, but only
by advanced methods beyond the level of this book.

In this chapter we focus on line-fitting and curve-fitting; that is, on estimating equa-
tions that describe relationships between variables. We also discuss the interpretation of
these equations, and we provide numerical measures that indicate the goodness of fit of the
estimated equations. In the next chapter we extend the analysis to statistical inference of
regression output.

10.2 SCATTERPLOTS: GRAPHING RELATIONSHIPS

A good way to begin any regression analysis is to draw one or more scatterplots. As
discussed in Chapter 3, a scatterplot is a graphical plot of two variables, an X and a Y. If there
is any relationship between the two variables, it is usually apparent from the scatterplot.

The following example, which we will continue through the chapter, illustrates the
usefulness of scatterplots. It is a typical example of cross-sectional data.
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E X A M P L E 10.1 SALES VERSUS PROMOTIONS AT PHARMEX

Pharmex is a chain of drugstores that operate around the country. To see how effective
its advertising and other promotional activities are, the company has collected data

from 50 randomly selected metropolitan regions. In each region it has compared its own
promotional expenditures and sales to those of the leading competitor in the region over
the past year. There are two variables:

■ Promote: Pharmex’s promotional expenditures as a percentage of those of the leading
competitor

■ Sales: Pharmex’s sales as a percentage of those of the leading competitor

Note that each of these variables is an index, not a dollar amount. For example, if Promote
equals 95 for some region, this tells us only that Pharmex’s promotional expenditures in
that region are 95% as large as those for the leading competitor in that region. The
company expects that there is a positive relationship between these two variables, so that
regions with relatively larger expenditures have relatively larger sales. However, it is not
clear what the nature of this relationship is. The data are listed in the file Drugstore
Sales.xlsx. (See Figure 10.1 for a partial listing of the data.) What type of relationship, if
any, is apparent from a scatterplot?

Objective To use a scatterplot to examine the relationship between promotional
expenses and sales at Pharmex.

Solution

First, recall from Chapter 3 that there are two ways to create a scatterplot in Excel. You can
use Excel’s Chart Wizard to create an X–Y chart, or you can use StatTools’s Scatterplot
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procedure. The advantages of the latter are that it is slightly easier to implement and it
provides automatic formatting of the chart.

Which variable should be on the horizontal axis? It is customary to put the explana-
tory variable on the horizontal axis and the dependent variable on the vertical axis. In this
example the store believes large promotional expenditures tend to “cause” larger values of
sales, so Sales is on the vertical axis and Promote is on the horizontal axis. The resulting
scatterplot appears in Figure 10.2.
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1
2
3
4
5
6
7
8
9

10
11

A B C D E F G H
Region Promote Sales

1 77 85
2 110 103
3 110 102
4 93 109
5 90 85
6 95 103
7 100 110
8 85 86
9 96 92

10 83 87

Each value is a percentage of what
the leading compe�tor did.

Figure 10.1

Data for Drugstore

Example
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Sca�erplot of Sales vs Promote
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0.673Correla�on
Promote

Figure 10.2

Scatterplot of Sales

Versus Promote

This scatterplot indicates that there is indeed a positive relationship between Promote
and Sales—the points tend to rise from bottom left to top right—but the relationship is not
perfect. If it were perfect, a given value of Promote would prescribe the value of Sales
exactly. Clearly, this is not the case. For example, there are five regions with promotional
values of 96 but all of them have different sales values. So the scatterplot indicates that while
the variable Promote is helpful for predicting Sales, it does not lead to perfect predictions.

Note the correlation of 0.673 shown at the bottom of Figure 10.2. StatTools inserts this
value automatically (if you request it) to indicate the strength of the linear relationship
between the two variables. For now, just note that it is positive and its magnitude is moder-
ately large. We will say more about correlations in the next section.

Finally, we briefly discuss causation. There is a tendency for an analyst (such as a
drugstore manager) to say that larger promotional expenses cause larger sales values.
However, unless the data are obtained in a carefully controlled experiment—which is cer-
tainly not the case here—you can never be absolutely sure about causation. One reason is

Remember that a
StatTools chart is 
really just an Excel
chart. So you can
manipulate it using
Excel tools. For this
scatterplot, we 
changed the scales of
the axes so that the
scatter filled up more
of the chart area.
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that you can’t always be sure which direction the causation goes. Does X cause Y, or does 
Y cause X? Another reason is that you can almost never rule out the possibility that some
other variable is causing the variation in both of the observed variables. Although this is
unlikely in this drugstore example, it is still a possibility. ■
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FUNDAMENTAL INSIGHT

Regression and Causation

A successful regression analysis does not necessarily

imply that the the Xs cause Y to vary in a certain way.

This is one possibility, but there are two others. First,

even if a regression of Y versus X is promising, it

could very easily be that Y is causing X; that is, the

causality could go in the opposite direction. Second

and more common, there could be other variables

(not included in the regression) that are causing both

Y and the Xs to vary.

The following example uses time series data to illustrate several other features of scatter-
plots. We will follow this example throughout the chapter as well.

E X A M P L E 10.2 EXPLAINING OVERHEAD COSTS AT BENDRIX

The Bendrix Company manufactures various types of parts for automobiles. The manager
of the factory wants to get a better understanding of overhead costs. These overhead costs

include supervision, indirect labor, supplies, payroll taxes, overtime premiums, depreciation,
and a number of miscellaneous items such as insurance, utilities, and janitorial and mainte-
nance expenses. Some of these overhead costs are fixed in the sense that they do not vary
appreciably with the volume of work being done, whereas others are variable and do vary
directly with the volume of work. The fixed overhead costs tend to come from the supervision,
depreciation, and miscellaneous categories, whereas the variable overhead costs tend to come
from the indirect labor, supplies, payroll taxes, and overtime categories. However, it is not easy
to draw a clear line between the fixed and variable overhead components.

The Bendrix manager has tracked total overhead costs for the past 36 months. To help
explain these, he has also collected data on two variables that are related to the amount of
work done at the factory. These variables are: 

■ MachHrs: number of machine hours used during the month
■ ProdRuns: the number of separate production runs during the month

The first of these is a direct measure of the amount of work being done. To understand the
second, we note that Bendrix manufactures parts in large batches. Each batch corresponds
to a production run. Once a production run is completed, the factory must set up for the
next production run. During this setup there is typically some downtime while the machin-
ery is reconfigured for the part type scheduled for production in the next batch. Therefore,
the manager believes that both of these variables could be responsible (in different ways)
for variations in overhead costs. Do scatterplots support this belief?

Objective To use scatterplots to examine the relationships among overhead, machine
hours, and production runs at Bendrix.

Solution

The data appear in Figure 10.3. (See the Overhead Costs.xlsx file.) Each observation
(row) corresponds to a single month. The goal is to find possible relationships between the

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



536 Chapter 10 Regression Analysis: Estimating Relationships

1
2
3
4
5
6
7
8
9

10
11
35
36
37

A B C D
Month MachHrs ProdRuns Overhead

1 1539 31 99798
2 1284 29 87804
3 1490 27 93681
4 1355 22 82262
5 1500 35 106968
6 1777 30 107925
7 1716 41 117287
8 1045 29 76868
9 1364 47 106001

10 1516 21 88738
34 1723 35 107828
35 1413 30 88032
36 1390 54 117943

Figure 10.3

Data for Bendrix

Overhead Example

100000

110000

120000

Sca�erplot of Overhead vs MachHrs

70000

80000

90000

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

O
ve

rh
ea

d

MachHrs

Figure 10.4

Scatterplot of

Overhead Versus

Machine Hours

Overhead variable and the MachHrs and ProdRuns variables, but because these are time
series variables, you should also be on the lookout for any relationships between these
variables and the Month variable. That is, you should also investigate any time series
behavior in these variables.

This data set illustrates, even with a modest number of variables, how the number of
potentially useful scatterplots can grow quickly. At the very least, you should examine the
scatterplot between each potential explanatory variable (MachHrs and ProdRuns) and
the dependent variable (Overhead). These appear in Figures 10.4 and 10.5. You can see

This is precisely the
role of scatterplots:
to provide a visual
representation of
relationships or the
lack of relationships
between variables.

that Overhead tends to increase as either MachHrs increases or ProdRuns increases.
However, both relationships are far from perfect.

To check for possible time series patterns, you can also create a time series graph
for any of the variables. One of these, the time series graph for Overhead, is shown in
Figure 10.6. It indicates a fairly random pattern through time, with no apparent upward
trend or other obvious time series pattern. You can check that time series graphs of the
MachHrs and ProdRuns variables also indicate no obvious time series patterns.

Finally, when there are multiple explanatory variables, you should check for relation-
ships among them. The scatterplot of MachHrs versus ProdRuns appears in Figure 10.7.
(Either variable could be chosen for the vertical axis.) This “cloud” of points indicates no
relationship worth pursuing.
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In summary, the Bendrix manager should continue to explore the positive relationship
between Overhead and each of the MachHrs and ProdRuns variables. However, none of
the variables appears to have any time series behavior, and the two potential explanatory
variables do not appear to be related to each other. ■
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10.2.1 Linear Versus Nonlinear Relationships

Scatterplots are extremely useful for detecting behavior that might not be obvious other-
wise. We illustrate some of these in the next few subsections. First, the typical relationship
you hope to see is a straight-line, or linear, relationship. This doesn’t mean that all points
lie on a straight line—this is too much to expect in business data—but that the points tend
to cluster around a straight line. The scatterplots in Figures 10.2, 10.4, and 10.5 all exhibit
linear relationships. At least, there is no obvious curvature.

The scatterplot in Figure 10.8, on the other hand, illustrates a relationship that is
clearly nonlinear. The data in this scatterplot are 1990 data on more than 100 countries.
The variables listed are life expectancy (of newborns, based on current mortality condi-
tions) and GNP per capita. The obvious curvature in the scatterplot can be explained as fol-
lows. For poor countries, a slight increase in GNP per capita has a large effect on life
expectancy. However, this effect decreases for wealthier countries. A straight-line relation-
ship is definitely not appropriate for these data. However, as discussed previously, linear
regression—after an appropriate transformation of the data—might still be applicable.
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10.2.2 Outliers

Scatterplots are especially useful for identifying outliers, observations that lie outside the
typical pattern of points. The scatterplot in Figure 10.9 shows annual salaries versus years
of experience for a sample of employees at a particular company. There is a clear linear
relationship between these two variables—for all employees except the point at the top
right. Closer scrutiny of the data reveals that this one employee is the company CEO,
whose salary is well above that of all the other employees.

An outlier is an observation that falls outside of the general pattern of the rest of the
observations.

Although scatterplots are good for detecting outliers, they do not necessarily indicate
what you ought to do about any outliers you find. This depends entirely on the particular
situation. If you are attempting to investigate the salary structure for typical employees at a
company, then you should probably not include the company CEO. First, the CEO’s salary
is not determined in the same way as the salaries for typical employees. Second, if you do
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include the CEO in the analysis, it can greatly distort the results for the mass of typical
employees. In other situations, however, it might not be appropriate to eliminate outliers
just to make the analysis come out more nicely.

It is difficult to generalize about the treatment of outliers, but the following points are
worth noting. 

■ If an outlier is clearly not a member of the population of interest, then it is probably
best to delete it from the analysis. This is the case for the company CEO in Figure 10.9.

■ If it isn’t clear whether outliers are members of the relevant population, you can
run the regression analysis with them and again without them. If the results are
practically the same in both cases, then it is probably best to report the results with
the outliers included. Otherwise, you can report both sets of results with a verbal
explanation of the outliers.

10.2.3 Unequal Variance

Occasionally, there is a clear relationship between two variables, but the variance of the
dependent variable depends on the value of the explanatory variable. Figure 10.10 illustrates
a common example of this. It shows the amount spent at a mail-order company versus salary
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for the customers in the data set. There is a clear upward relationship, but the variability of
amount spent increases as salary increases. This is evident from the fan shape. As you will
see in the next chapter, this unequal variance violates one of the assumptions of linear
regression analysis, and there are special techniques to deal with it.

10.2.4 No Relationship

A scatterplot can provide one other useful piece of information: It can indicate that there is no
relationship between a pair of variables, at least none worth pursuing. This is usually the case
when the scatterplot appears as a shapeless swarm of points, as illustrated in Figure 10.11.
Here the variables are an employee performance score and the number of overtime hours
worked in the previous month for a sample of employees. There is virtually no hint of a
relationship between these two variables in this plot, and if these are the only two variables in
the data set, the analysis can stop right here. Many people who use statistics evidently believe
that a computer can perform magic on a set of numbers and find relationships that were com-
pletely hidden. Occasionally this is true, but when a scatterplot appears as in Figure 10.11,
the variables are not related in any useful way, and that’s all there is to it.
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10.3 CORRELATIONS: INDICATORS OF LINEAR RELATIONSHIPS

Scatterplots provide graphical indications of relationships, whether they are linear, non-
linear, or essentially nonexistent. Correlations are numerical summary measures that
indicate the strength of linear relationships between pairs of variables.2 A correlation
between a pair of variables is a single number that summarizes the information in a scat-
terplot. A correlation can be very useful, but it has an important limitation: It measures the
strength of linear relationships only. If there is a nonlinear relationship, as suggested by a
scatterplot, the correlation can be completely misleading. With this important limitation in
mind, let’s look a bit more closely at correlations.

The usual notation for a correlation between two variables X and Y is rXY. (The sub-
scripts can be omitted if the variables are clear from the context.) The formula for rXY is
given by Equation (10.1). Note that it is a sum of products in the numerator, divided by the

2This section includes some material from Chapter 3 that we repeat here for convenience.
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product sXsY of the sample standard deviations of X and Y. This requires a considerable
amount of computation, so correlations are almost always computed by software packages.
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Formula for Correlation

(10.1)rXY =

©(Xi - X)(Yi - Y)/(n - 1)

sXsY

The numerator of Equation (10.1) is also a measure of association between two variables X
and Y, called the covariance between X and Y. Like a correlation, a covariance is a single
number that measures the strength of the linear relationship between two variables. By
looking at the sign of the covariance or correlation—plus or minus—you can tell whether
the two variables are positively or negatively related. The drawback to a covariance,
however, is that its magnitude depends on the units in which the variables are measured.

To illustrate, the covariance between Overhead and MachHrs in the Bendrix manufac-
turing data set is 1,333,138. (It can be found with Excel’s COVAR function or with
StatTools.) However, if each overhead value is divided by 1000, so that overhead costs are
expressed in thousands of dollars, and each value of MachHrs is divided by 100, so that
machine hours are expressed in hundreds of hours, the covariance decreases by a factor of
100,000 to 13.33138. This is in spite of the fact that the basic relationship between these
variables has not changed and the revised scatterplot has exactly the same shape. For this
reason it is difficult to interpret the magnitude of a covariance, and we concentrate instead
on correlations.

Unlike covariances, correlations have the attractive property that they are completely
unaffected by the units of measurement. The rescaling described in the previous paragraph
has absolutely no effect on the correlation between Overhead and MachHrs. In either case
the correlation is 0.632. All correlations are between �1 and �1, inclusive. The sign of
a correlation, plus or minus, determines whether the linear relationship between two
variables is positive or negative. In this respect, a correlation is just like a covariance.
However, the strength of the linear relationship between the variables is measured by the
absolute value, or magnitude, of the correlation. The closer this magnitude is to 1, the
stronger the linear relationship is.

A correlation equal to 0 or near 0 indicates practically no linear relationship. A corre-
lation with magnitude close to 1, on the other hand, indicates a strong linear relationship.
At the extreme, a correlation equal to �1 or �1 occurs only when the linear relationship is
perfect—that is, when all points in the scatterplot lie on a single straight line. Although
such extremes practically never occur in business applications, large correlations greater in
magnitude than 0.9, say, are not at all uncommon.

Looking back at the scatterplots for the Pharmex drugstore data in Figure 10.2, you
can see that the correlation between Sales and Promote is positive—as the upward-sloping
scatter of points suggests—and is equal to 0.673. This is a moderately large correlation. It
confirms the pattern in the scatterplot, namely, that the points increase linearly from left to
right but with considerable variation around any particular straight line.

Similarly, the scatterplots for the Bendrix manufacturing data in Figures 10.4 and 10.5
indicate moderately large positive correlations, 0.632 and 0.521, between Overhead and
MachHrs and between Overhead and ProdRuns. However, the correlation indicated in
Figure 10.7 between MachHrs and ProdRuns, �0.229, is quite small and indicates almost
no relationship between these two variables.

You must be careful when interpreting the correlations in Figures 10.8 and 10.9.
The scatterplot between life expectancy and GNP per capita in Figure 10.8 is obviously
nonlinear, and correlations are relevant descriptors only for linear relationships. If 

Correlations can be
misleading when
variables are related
nonlinearly.

A correlation close to
�1 or �1 indicates a
strong linear relation-
ship. A correlation close
to 0 indicates virtually
no linear relationship.

The magnitude of a
covariance is difficult
to interpret because it
depends on the units
of measurement.
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anything, the correlation of 0.616 in this example tends to underestimate the true strength
of the relationship—the nonlinear one—between life expectancy and GNP per capita.
In contrast, the correlation between salary and years of experience in Figure 10.9 is large,
0.894, but it is not nearly as large as it would be if the outlier were omitted. (It is
then 0.992.) This example illustrates the considerable effect a single outlier can have on a
correlation.

An obvious question is whether a given correlation is “large.” This is a difficult ques-
tion to answer directly. Clearly, a correlation such as 0.992 is quite large—the points tend
to cluster very closely around a straight line. Similarly, a correlation of 0.034 is quite
small—the points tend to be a shapeless swarm. But there is a continuum of in-between
values, as exhibited in Figures 10.2, 10.4, and 10.5. We give a more definite answer to this
question when we examine the square of the correlation later in this chapter.

As for calculating correlations, there are two possibilities in Excel. To calculate a
single correlation rXY between variables X and Y, you can use Excel’s CORREL function in
the form

�CORREL(X-range,Y-range)

Alternatively, you can use StatTools to obtain a whole table of correlations between a set of
variables.

Finally, we reiterate the important limitation of correlations (and covariances),
namely, that they apply only to linear relationships. If a correlation is close to zero, you
cannot automatically conclude that there is no relationship between the two variables.
You should look at a scatterplot first. The chances are that the points are a shapeless swarm
and that no relationship exists. But it is also possible that the points cluster around some
curve. In this case the correlation is a misleading measure of the relationship.

10.4 SIMPLE LINEAR REGRESSION

Scatterplots and correlations are very useful for indicating linear relationships and the
strengths of these relationships. But they do not actually quantify the relationships.
For example, it is clear from the scatterplot of the Pharmex drugstore data that sales are
related to promotional expenditures. But the scatterplot does not specify exactly what this
relationship is. If the expenditure index for a given region is 95, what would you predict
this region’s sales index to be? Or if one region’s expenditure index is 5 points higher than
another’s, how much larger would you predict sales of the former to be? To answer these
questions, the relationship between the dependent variable Sales and the explanatory
variable Promote must be quantified.

In this section we answer these types of questions for simple linear regression, where
there is a single explanatory variable. We do so by fitting a straight line through the scat-
terplot of the dependent variable Y versus the explanatory variable X and then basing the
answers to the questions on the fitted straight line. But which straight line? We address this
issue next.

10.4.1 Least Squares Estimation

The scatterplot between Sales and Promote, repeated in Figure 10.12, hints at a linear
relationship between these two variables. It would not be difficult to draw a straight line
through these points to produce a reasonably good fit. In fact, a possible linear fit is
indicated in the graph. But we proceed more systematically than simply drawing lines
freehand. Specifically, we choose the line that makes the vertical distances from the points
to the line as small as possible, as explained next.

542 Chapter 10 Regression Analysis: Estimating Relationships

Remember that simple
linear regression does
not mean “easy”; it
means only that there
is a single explanatory
variable.
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Consider the magnified graph in Figure 10.13. Several points in the scatterplot are
shown, along with a line drawn through them. Note that the vertical distance from the hor-
izontal axis to any point, which is just the value of Sales for that point, can be decomposed
into two parts: the vertical distance from the horizontal axis to the line, and the vertical
distance from the line to the point. The first of these is called the fitted value, and the
second is called the residual. The idea is very simple. By using a straight line to reflect the
relationship between Sales and Promote, you expect a given Sales to be at the height of
the line above any particular value of Promote. That is, you expect Sales to equal the 
fitted value. 
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A fitted value is the predicted value of the dependent variable. Graphically, it is the
height of the line above a given explanatory value. The corresponding residual is
the difference between the actual and fitted values of the dependent variable.
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Fundamental Equation for Regression

Observed Value � Fitted Value � Residual (10.2)

Equation for Intercept in Simple Linear Regression

(10.4)a = Y - bX

But the relationship is not perfect. Not all (perhaps not any) of the points lie exactly on
the line. The differences are the residuals. They show how much the observed values differ
from the fitted values. If a particular residual is positive, the corresponding point is above
the line; if it is negative, the point is below the line. The only time a residual is zero is when
the point lies directly on the line. The relationship between observed values, fitted values,
and residuals is very general and is stated in Equation (10.2).
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We can now explain how to choose the best-fitting line through the points in the scatter-
plot. It is the line with the smallest sum of squared residuals. The resulting line is called the
least squares line. Why do we use the sum of squared residuals? Why not minimize some
other measure of the residuals? First, it is not appropriate to simply minimize the sum of
the residuals. This is because the positive residuals would cancel the negative residuals. In
fact, the least squares line has the property that the sum of the residuals is always exactly
zero. To adjust for this, we could minimize the sum of the absolute values of the residuals,
and this is a perfectly reasonable procedure. However, for technical and historical reasons,
it is not the procedure usually chosen. The minimization of the sum of squared residuals is
deeply rooted in statistical tradition, and it works well.

The least squares line is the line that minimizes the sum of the squared residuals. It is
the line quoted in regression outputs.

The minimization problem itself is a calculus problem and is not discussed here.
Virtually all statistical software packages perform this minimization automatically, so you
do not need to be concerned with the technical details. However, we do provide the formu-
las for the least squares line.

Recall from basic algebra that the equation for any straight line can be written as

Y � a � bX

Here, a is the Y-intercept of the line, the value of Y when X � 0, and b is the slope of the
line, the change in Y when X increases by one unit. Therefore, the least squares line is spec-
ified completely by its slope and intercept. These are given by equations (10.3) and (10.4).

Equation for Slope in Simple Linear Regression

(10.3)b =

©(Xi - X)(Yi - Y)

©(Xi - X)2 = rXY 

sY

sX

We have presented these formulas primarily for conceptual purposes, not for hand
calculations—the software takes care of the calculations. From the right-hand formula
for b, you can see that it is closely related to the correlation between X and Y. Specifically,
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if the standard deviations, sX and sY, of X and Y are kept constant, then the slope b of the
least squares line varies directly with the correlation between the two variables. The effect
of the formula for a is not quite as interesting. It simply forces the least squares line to go
through the point of sample means, .

It is easy to obtain the least squares line in Excel with StatTools’s Regression proce-
dure. We illustrate this in the following continuations of Examples 10.1 and 10.2.

(X, Y)

10.4 Simple Linear Regression 545

E X A M P L E 10.1 SALES VERSUS PROMOTIONS AT PHARMEX (CONTINUED)

Find the least squares line for the Pharmex drugstore data, using Sales as the dependent
variable and Promote as the explanatory variable.

Objective To use StatTools’s Regression procedure to find the least squares line for sales
as a function of promotional expenses at Pharmex.

Solution

To perform the analysis, select Regression from the StatTools Regression and Classification
dropdown list. Then fill in the resulting dialog box as shown in Figure 10.14. Specifically,
select Multiple as the Regression Type (this type is used for both single and multiple regres-
sion in StatTools), and select Promote as the single I variable and Sales as the single D
variable, where I and D stand for independent and dependent. (There is always a single D
variable, but in multiple regression there can be several I variables.) Note that there is an
option to create several scatterplots involving the fitted values and residuals. We suggest
checking the third option, as shown. Finally, there is an Include Prediction option. We will
explain it in a later section. You can leave it unchecked for now.

Figure 10.14

Regression Dialog

Box
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The regression output includes three parts. The first is the main regression output
shown in Figure 10.15. The last two are a scatterplot of residuals and fitted values requested
in the regression dialog box and a list of fitted values and residuals, a few of which are
shown in Figure 10.16. (The list of fitted values and residuals is part of the output only if at
least one of the optional scatterplots in the regression dialog box is selected.)
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We will eventually interpret all of the output in Figure 10.15, but for now, we focus on only
a small part of it. Specifically, the intercept and slope of the least squares line appear under the
Coefficient label in cells B18 and B19. They imply that the equation for the least squares line is3

Predicted Sales � 25.1264 � 0.7623Promote

3We always report the left side of the estimated regression equation as the predicted value of the dependent vari-
able. It is not the actual value of the dependent variable because the observations do not all lie on the estimated
regression line.
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Excel Tip The Regression procedure for simple regression uses special StatTools func-
tions to calculate all of the regression output. However, it can also be generated from
several built-in statistical functions available in Excel. These include the CORREL, RSQ,
STEYX, INTERCEPT, SLOPE, and LINEST functions. For example, the slope and intercept
of the least squares line can be calculated directly with the formulas

�SLOPE(Y-range,X-range)

and

�INTERCEPT(Y-range,X-range)

These formulas (with the appropriate X and Y ranges) can be entered anywhere in a
spreadsheet to obtain the slope and intercept for a simple regression equation—no add-ins
are necessary. The LINEST function can be used to find relevant output for a multiple
regression. You can look up all of these functions in Excel’s online help.

Excel Tip As discussed in Chapter 3, you can also use superimpose a trendline on a
scatterplot (by right-clicking on the chart and selecting the Trendline option). The line
superimposed is indeed the least-squares regression line. In addition, you can ask for the
equation of the trendline and its R2 value (to be discussed shortly) to be added to the chart.
However, this works only when there is a single X variable. There is no comparable trend-
line option for multiple regression.

The regression equation for this example can be interpreted as follows. The slope,
0.7623, indicates that the sales index tends to increase by about 0.76 for each one-unit
increase in the promotional expenses index. Alternatively, if two regions are compared,
where the second region spends one unit more than the first region, the predicted sales
index for the second region is 0.76 larger than the sales index for the first region. The inter-
pretation of the intercept is less important. It is literally the predicted sales index for a
region that does no promotions. However, no region in the sample has anywhere near a
zero promotional value. Therefore, in a situation like this, where the range of observed
values for the explanatory variable does not include zero, it is best to think of the intercept
term as simply an “anchor” for the least squares line that enables predictions of Y values
for the range of observed X values.

A useful graph in almost any regression analysis is a scatterplot of residuals (on the ver-
tical axis) versus fitted values. This scatterplot for the Pharmex data appears in Figure 10.16
(along with a few of the residuals and fitted values used to create the chart). You typically
examine such a scatterplot for any striking patterns. A good fit not only has small residuals,
but it has residuals scattered randomly around zero with no apparent pattern. This appears to
be the case for the Pharmex data. ■
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In many applications,
it makes no sense to
have the explanatory
variable(s) equal to
zero.Then the 
intercept term has 
no practical or
economic meaning.

A shapeless swarm of
points in a scatterplot
of residuals versus
fitted values is 
typically good 
news. It means that 
no regression
assumptions are
violated.

E X A M P L E 10.2 EXPLAINING OVERHEAD COSTS AT BENDRIX (CONTINUED)

The Bendrix manufacturing data set has two potential explanatory variables, MachHrs
and ProdRuns. Eventually, we will estimate a regression equation with both of these

variables included. However, if we include only one at a time, what do they tell us about
overhead costs?

Objective To use StatTools’s Regression procedure to regress overhead expenses at
Bendrix against machine hours and then against production runs.
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Solution

The regression output for Overhead with MachHrs as the single explanatory variable appears
in Figure 10.17. The output when ProdRuns is the only explanatory variable appears in
Figure 10.18. The two least squares lines are therefore

Predicted Overhead � 48621 � 34.7MachHrs (10.5)

and

Predicted Overhead � 75606 � 655.1ProdRuns (10.6)
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Figure 10.17

Regression Output

for Overhead versus

MachHrs
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R-Square

F- o p-Value

ttneiciffeoC -Value p-Value
Confidence Interval 95%

Figure 10.18

Regression Output

for Overhead versus

ProdRuns

Clearly, these two equations are quite different, although each effectively breaks
Overhead into a fixed component and a variable component. Equation (10.5) implies that
the fixed component of overhead is about $48,621. Bendrix can expect to incur this amount
even if zero machine hours are used. The variable component is the 34.7MachHrs term. It
implies that the expected overhead increases by about $35 for each extra machine hour.
Equation (10.6), on the other hand, breaks overhead down into a fixed component of
$75,606 and a variable component of about $655 per each production run.

The difference between these two equations can be attributed to the fact that
neither tells the whole story. If the manager’s goal is to split overhead into a fixed com-
ponent and a variable component, the variable component should include both of the
measures of work activity (and maybe others) to give a more complete explanation of
overhead. We will explain how to do this when this example is reanalyzed with multiple
regression. ■
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10.4.2 Standard Error of Estimate

We now examine fitted values and residuals to see how they lead to a useful summary mea-
sure for a regression equation. In a typical simple regression model, the expression a � bX
is the fitted value of Y. Graphically, it is the height of the estimated line above the value X.
The fitted value is often denoted as (pronounced Y-hat):4

Then a typical residual, denoted by e, is the difference between the observed value Y and
the fitted value [a restatement of Equation (10.2)]:

Some of the fitted values and associated residuals for the Pharmex drugstore example are
shown in Figure 10.19. (Recall that these columns are inserted automatically by StatTools’s
Regression procedure when you request the optional scatterplot of residuals versus
fitted values.)

e = Y - NY

NY

NY = a + bX

NY
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4We can also write Predicted Y instead of , but the latter notation is common in the statistics literature.NY
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A B C D
Graph Data Sales Fit Residual

1
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46
47
48
49
50
51
52

2 -5.979
3 -6.979
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8 -3.922
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103 108.979
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85 93.733

103 97.545 5.455
110 101.356 8.644
86 89.922

87 88.397 -1.397

Figure 10.19

Fitted Values and

Residuals for

Pharmex Example

The magnitudes of the residuals provide a good indication of how useful the regres-
sion line is for predicting Y values from X values. However, because there are numerous
residuals, it is useful to summarize them with a single numerical measure. This measure,
called the standard error of estimate and denoted se, is essentially the standard deviation
of the residuals. It is given by Equation (10.7).

Formula for Standard Error of Estimate

(10.7)se =

C

©ei
2

n - 2

Actually, because the average of the residuals from a least squares fit is always zero, this is
identical to the standard deviation of the residuals except for the denominator n � 2, not
the usual n � 1. As you will see in more generality later on, the rule is to subtract the
number of parameters being estimated from the sample size n to obtain the denominator.
Here there are two parameters being estimated: the intercept a and the slope b.

The usual empirical rules for standard deviations can be applied to the standard error
of estimate. For example, about two-thirds of the residuals are typically within one

About two-thirds of the
fitted values are
typically within one
standard error of the
actual Y values. About
95% are within two
standard errors.

NY
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standard error of their mean (which is zero). Stated another way, about two-thirds of the
observed Y values are typically within one standard error of the corresponding fitted
values. Similarly, about 95% of the observed Y values are typically within two standard
errors of the corresponding fitted values.5

The standard error of estimate se is included in all StatTools regression outputs.
Alternatively, it can be calculated directly with Excel’s STEYX function (when there is
only one X variable) in the form

�STEYX(Y-range,X-range)

The standard error for the Pharmex data appears in cell E9 of Figure 10.15. Its value,
approximately 7.39, indicates the typical magnitude of error when using promotional
expenses, via the regression equation, to predict sales. More specifically, if the regression
equation is used to predict sales for many regions, about two-thirds of the predictions will
be within 7.39 of the actual sales values, and about 95% of the predictions will be within
two standard errors, or 14.78, of the actual sales values.

Is this level of accuracy good? One measure of comparison is the standard deviation of
the sales variable, namely, 9.90. (This is obtained by the usual STDEV function applied to
the observed sales values.) It can be interpreted as the standard deviation of the residuals
around a horizontal line positioned at the mean value of Sales. This is the relevant regression
line if there are no explanatory variables—that is, if Promote is ignored. In other words, it is
a measure of the prediction error if the sample mean of Sales is used as the prediction for
every region and Promote is ignored. Unfortunately, the standard error of estimate, 7.39, is
not much less than 9.90. This means that the Promote variable adds a relatively small amount
to prediction accuracy. Predictions with it are not much better than predictions without it.
A standard error of estimate well below 9.90 would certainly be preferred.

The standard error of estimate can often be used to judge which of several potential
regression equations is the most useful. In the Bendrix manufacturing example we
estimated two regression lines, one using MachHrs and one using ProdRuns. From
Figures 10.17 and 10.18, their standard errors are approximately $8585 and $9457. These
imply that MachHrs is a slightly better predictor of overhead. The predictions based on
MachHrs will tend to be slightly more accurate than those based on ProdRuns. Of course,
the predictions based on both predictors should yield even more accurate predictions, as
you will see when we discuss multiple regression for this example.

10.4.3 The Percentage of Variation Explained: R2

We now discuss another important measure of the goodness of fit of the least squares line:
R2 (pronounced “R-square”). Along with the standard error of estimate se, it is the most
frequently quoted measure in applied regression analysis. With a value always between 0
and 1, R2 always has exactly the same interpretations: It is the fraction of variation of the
dependent variable explained by the regression line. (It is often expressed as a percentage,
so you hear about the percentage of variation explained by the regression line.)

NY

NY
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In general, the stan-
dard error of estimate
indicates the level of
accuracy of predictions
made from the regres-
sion equation.The
smaller it is, the more
accurate predictions
tend to be.

R2 is the percentage of variation of the dependent variable explained by the regression.

To see more precisely what this means, we look briefly into the derivation of R2. In the
previous section we suggested that one way to measure the regression equation’s ability to

5This requires that the residuals be at least approximately normally distributed, a requirement discussed in the
next chapter.
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predict is to compare the standard error of estimate, se, to the standard deviation of the
dependent variable, sY. The idea is that se is (essentially) the standard deviation of the
residuals, whereas sY is the standard deviation of the residuals from a horizontal regression
line at height , the sample mean of the dependent variable. Therefore, if se is small
compared to sY (that is, if se/sY is small), the regression line is evidently doing a good job
in explaining the variation of the dependent variable.

The R2 measure is based on this idea. It is defined by Equation (10.8). (This value is
obtained automatically with StatTools’s regression procedure, or it can be calculated with
Excel’s RSQ function when there is a single X variable.) Equation (10.8) indicates
that when the residuals are small, R2 will be close to 1, but when they are large, R2 will be
close to 0.

Y
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Formula for R2

(10.8)R2
= 1 -

©ei
2

©(Yi - Y)2

You can see from cell C9 of Figure 10.15 that the R2 measure for the Pharmex drugstore
data is 0.453. In words, the single explanatory variable Promote is able to explain only
45.3% of the variation in the Sales variable. This is not particularly good—the same
conclusion we made when we based goodness of fit on se. There is still 54.7% 
of the variation left unexplained. Of course, we would like R2 to be as close to 1 as
possible. Usually, the only way to increase it is to use better and/or more explanatory
variables.

Analysts often compare equations on the basis of their R2 values. You can see from
Figures 10.17 and 10.18 that the R2 values using MachHrs and ProdRuns as single
explanatory variables for the Bendrix overhead data are 39.9% and 27.1%, respectively.
These provide one more piece of evidence that MachHrs is a slightly better predictor of
Overhead than ProdRuns. Of course, they also suggest that the percentage of variation of
Overhead explained could be increased by including both variables in a single equation.
This is true, as you will see shortly.

There is a good reason for the notation R2. It turns out that R2 is the square of the
correlation between the observed Y values and the fitted values. This correlation appears
in all regression outputs as the multiple R. For the Pharmex data it is 0.673, as seen in cell
B9 of Figure 10.15. Aside from rounding, the square of 0.673 is 0.453, which is the R2 value
right next to it. In the case of simple linear regression, when there is only a single explana-
tory variable in the equation, the correlation between the Y variable and the fitted values is
the same as the absolute value of the correlation between the Y variable and the explanatory
X variable. For the Pharmex data you already saw that the correlation between Sales and
Promote is indeed 0.673.

This interpretation of R2 as the square of a correlation helps to clarify the issue of
when a correlation is “large.” For example, if the correlation between two variables Y and
X is �0.8, the regression of Y on X will have an R2 of 0.64; that is, the regression with X as
the only explanatory variable will explain 64% of the variation in Y. If the correlation
drops to �0.7, this percentage drops to 49%; if the correlation increases to �0.9, the
percentage increases to 81%. The point is that before a single variable X can explain a large
percentage of the variation in some other variable Y, the two variables must be highly
correlated—in either a positive or negative direction.

NY

NY

R2 measures the
goodness of a linear fit.
The better the linear fit
is, the closer R2 is to 1.

In simple linear regres-
sion, R2 is the square
of the correlation
between the depen-
dent variable and the
explanatory variable.
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P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. Explore the relationship between the selling prices (Y)
and the appraised values (X) of the 148 homes in the file
P02_11.xlsx by estimating a simple linear regression
model. Interpret the standard error of estimate se and R2

and the least squares line for these data.
a. Is there evidence of a linear relationship between

the selling price and appraised value? If so,
characterize the relationship. Is it positive or
negative? Is it weak or strong?

b. For which of the three remaining variables, the size
of the home, the number of bedrooms, and the
number of bathrooms, is the relationship with the
home’s selling price stronger? Justify your choice
with additional simple linear regression models.

2. The file P02_10.xlsx contains midterm and final exam
scores for 96 students in a corporate finance course.
Each row contains the two exam scores for a given
student, so you might expect them to be positively
correlated.
a. Create a scatterplot of the final exam score (Y)

versus the midterm score (X). Based on the visual
evidence, would you say that the scores for the two
exams are strongly related? Is the relationship a
linear one?

b. Superimpose a trend line on the scatterplot, and
use the option to display the equation and the R2

value. What does this equation indicate in terms
of predicting a student’s final exam score from his
or her midterm score? Be specific.

c. Run a regression to confirm the trend-line equation
from part b. What does the standard error of
estimate say about the accuracy of the prediction
requested in part b?

3. A company produces electric motors for use in home
appliances. One of the company’s production managers
is interested in examining the relationship between
inspection costs in a month (X) and the number of
motors produced that month that were returned by
dissatisfied customers (Y). He has collected the data
in the file P10_03.xlsx for the past 36 months.
Estimate a simple linear regression equation using the
given data and interpret it for this production manager.
Also, interpret se and R2 for these data.

4. The owner of the Original Italian Pizza restaurant chain
wants to understand which variable most strongly
influences the sales of his specialty deep-dish pizza.
He has gathered data on the monthly sales of deep-dish

pizzas at his restaurants and observations on other
potentially relevant variables for each of his 15 outlets
in central Indiana. These data are provided in the file
P10_04.xlsx. Estimate a simple linear regression
equation between the quantity sold (Y ) and each of the
following candidates for the best explanatory variable:
average price of deep-dish pizzas, monthly advertising
expenditures, and disposable income per household in
the areas surrounding the outlets. Which variable is
most strongly associated with the number of pizzas
sold? Explain your choice.

5. The human resources manager of DataCom, Inc.,
wants to examine the relationship between annual
salaries (Y) and the number of years employees have
worked at DataCom (X). These data have been
collected for a sample of employees and are given in
columns B and C of the file P10_05.xlsx.
a. Estimate the relationship between Y and X. Interpret

the least squares line.
b. How well does the estimated simple linear

regression equation fit the given data? Provide
evidence for your answer.

6. The file P02_02.xlsx contains information on over 200
movies that came out during 2006 and 2007.
a. Create two scatterplots and corresponding correla-

tions, one of Total US Gross (Y) versus 7-day Gross
(X) and one of Total US Gross (Y) versus 14-day
Gross (X). Based on the visual evidence, is it possi-
ble to predict the total U.S. gross of a movie from its
first week’s gross or its first two weeks’ gross?

b. Run two simple regressions corresponding to the
two scatterplots in part a. Explain exactly what
they tell you about the movie business. How accu-
rate would the two predictions requested in part a
tend to be? Be as specific as possible.

7. Examine the relationship between the average utility
bills for homes of a particular size (Y) and the average
monthly temperature (X). The data in the file
P10_07.xlsx include the average monthly bill and
temperature for each month of the past year.
a. Use the given data to estimate a simple linear

regression equation. Interpret the least squares line.
b. How well does the estimated regression equation

fit the given data? How might you do a better job
of explaining the variation of the average utility
bills for homes of a certain size?

8. The file P10_08.xlsx contains data on the top 200 pro-
fessional golfers in 2009. (The same data set, covering
multiple years, was used in Example 3.4 in Chapter 3.)
a. Create a new variable, Earnings per Round, and 

the ratio of Earnings to Rounds. Then create five
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scatterplots and corresponding correlations, each with
Earnings per Round on the Y axis. The X-axis vari-
ables are those that most golf enthusiasts probably
think are related to Earnings per Round: Yards/Drive,
Driving Accuracy, Greens in Regulation, Putting
Average, and Sand Save Pct. Comment on the results.
Are any of these highly related to Earnings per
Round? Do the correlations have the signs you would
expect (positive or negative)?

b. For the two most highly correlated variables with
Earnings per Round (positive or negative), run
the regressions corresponding to the scatterplots.
Explain exactly what they tell you about predicting
Earnings per Round. How accurate do you think
these predictions would be?

9. Management of a home appliance store wants to
understand the growth pattern of the monthly sales of
Blu-ray disc players over the past two years. The
managers have recorded the relevant data in the file
P10_09.xlsx. Have the sales of this product been
growing linearly over the past 24 months? Using
simple linear regression, explain why or why not.

10. Do the selling prices of houses in a given community
vary systematically with their sizes (as measured in
square feet)? Answer this question by estimating a
simple regression equation where the selling price of
the house is the dependent variable and the size of the
house is the explanatory variable. Use the sample data
given in the file P10_10.xlsx. Interpret your estimated
equation and the associated R2.

11. The file P10_11.xlsx contains annual observations
of the American minimum wage since 1955. Has the
minimum wage been growing at roughly a constant rate
over this period? Use simple linear regression analysis
to address this question. Explain the results you obtain.
(You can ignore the data in column C for now.)

12. Based on the data in the file P02_23.xlsx from
the U.S. Department of Agriculture, explore the
relationship between the number of farms (X) and
the average size of a farm (Y) in the United States.

Specifically, estimate a simple linear regression
equation and interpret it.

13. Estimate the relationship between monthly electrical
power usage (Y) and home size (X) using the data in
the file P10_13.xlsx. Interpret your results. How well
does a simple linear regression equation explain the
variation in monthly electrical power usage?

14. The file P02_12.xlsx includes data on the 50 top
graduate programs in the United States, according to a
recent U.S. News & World Report survey. Columns B, C,
and D contain ratings: an overall rating, a rating by peer
schools, and a rating by recruiters. The other columns
contain data that might be related to these ratings.
a. Find a table of correlations between all of the

numerical variables. From these correlations,
which variables in columns E–L are most highly
correlated with the various ratings?

b. For the Overall rating, run a regression using it as the
dependent variable and the variable (from columns
E–L) most highly correlated with it. Interpret this
equation. Could you have guessed the value of R2

before running the regression? Explain. What does
the standard error of estimate indicate?

c. Repeat part b with the Peers rating as the dependent
variable. Repeat again with the Recruiters rating as
the dependent variable. Discuss any differences
among the three regressions in parts b and c.

Level B

15. If you haven’t already done Problem 6 on 2006–2007
movies, do it now. The scatterplots of Total US Gross
versus 7-day Gross or 14-day Gross indicate some
possible outliers at the right—the movies that did great
during their first week or two. Identify these outliers
(you can decide how many qualify) and move them
out of the data set. Then redo Problem 6 without the
outliers. Comment on whether you get very different
results. Specifically, do these outliers affect the slope
of either regression line? Do they affect the standard
error of estimate or R2?
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10.5 MULTIPLE REGRESSION

In general, there are two possible approaches to obtaining improved fits. The first is to
examine a scatterplot of residuals for nonlinear patterns and then make appropriate
modifications to the regression equation. We will discuss this approach later in the chapter.
The second approach is much more straightforward: Add more explanatory variables to the
regression equation. In the Bendrix manufacturing example, we deliberately included only
a single explanatory variable in the equation at a time to keep the equations simple. But
because scatterplots indicate that both explanatory variables are also related to Overhead,
it makes sense to try including both in the regression equation. With any luck, the linear fit
should improve.
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When you include several explanatory variables in the regression equation, you move
into the realm of multiple regression. Some of the concepts from simple regression carry
over naturally to multiple regression, but some change considerably. The following list
provides a starting point that we expand on throughout this section.

Characteristics of Multiple Regression

■ Graphically, you are no longer fitting a line to a set of points. If there are exactly
two explanatory variables, you are fitting a plane to the data in three-dimensional
space. There is one dimension for the dependent variable and one for each of the
two explanatory variables. Although you can imagine a flat plane passing through a
swarm of points, it is difficult to graph this on a two-dimensional screen. If there
are more than two explanatory variables, then you can only imagine the regression
plane; drawing in four or more dimensions is impossible.

■ The regression equation is still estimated by the least squares method—that is, by mini-
mizing the sum of squared residuals. However, it is definitely not practical to implement
this method by hand. A statistical software package such as StatTools is required.

■ Simple regression is actually a special case of multiple regression—that is, an equation
with a single explanatory variable can be considered a “multiple” regression equation.
This explains why it is possible to use StatTools’s Multiple Regression procedure for
simple regression.

■ There is a slope term for each explanatory variable in the equation. The interpretation
of these slope terms is somewhat different than in simple regression, as explained in
the following subsection.

■ The standard error of estimate and R2 summary measures are almost exactly as in
simple regression, as explained in section 10.5.2.

■ Many types of explanatory variables can be included in the regression equation,
as explained in section 10.6. To a large part, these are responsible for the wide
applicability of multiple regression in the business world. However, the burden is
on you to choose the best set of explanatory variables. This is generally not easy.

10.5.1 Interpretation of Regression Coefficients

If Y is the dependent variable and X1 through Xk are the explanatory variables, then a typi-
cal multiple regression equation has the form shown in Equation (10.9), where a is again
the Y-intercept, and b1 through bk are the slopes. Collectively, a and the bs in Equation
(10.9) are called the regression coefficients. The intercept a is the expected value of Y
when all of the Xs equal zero. (Of course, this makes sense only if it is practical for all of
the Xs to equal zero, which is seldom the case.) Each slope coefficient is the expected
change in Y when this particular X increases by one unit and the other Xs in the equation
remain constant. For example, b1 is the expected change in Y when X1 increases by one
unit and the other Xs in the equation, X2 through Xk, remain constant.

554 Chapter 10 Regression Analysis: Estimating Relationships

A typical slope term
measures the expected
change in Y when the
corresponding X
increases by one unit.

General Multiple Regression Equation

(10.9) Predicted Y = a + b1X1 + b2X2 +
Á

+  bkXk

This extra proviso, “when the other Xs in the equation remain constant,” is crucial for the
interpretation of the regression coefficients. In particular, it means that the estimates of the
bs depend on which other Xs are included in the regression equation. We illustrate these
ideas in the following continuation of the Bendrix manufacturing example.
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E X A M P L E 10.2 EXPLAINING OVERHEAD COSTS AT BENDRIX (CONTINUED)

Estimate and interpret the equation for Overhead when both explanatory variables,
MachHrs and ProdRuns, are included in the regression equation.

Objective To use StatTools’s Regression procedure to estimate the equation for overhead
costs at Bendrix as a function of machine hours and production runs.

Solution

To obtain the regression output, select Regression from the StatTools Regression and
Classification dropdown list and fill out the resulting dialog box as shown in Figure 10.20.
As before, choose the Multiple option, specify the single D variable and the two I vari-
ables, and check any optional graphs you want to see. (This time we have selected the first
and third options.)

Figure 10.20

Multiple Regression

Dialog Box

The main regression output appears in Figure 10.21. The coefficients in the range
B18:B20 indicate that the estimated regression equation is

Predicted Overhead � 3997 � 43.54MachHrs � 883.62ProdRuns (10.10)

The interpretation of Equation (10.10) is that if the number of production runs is held con-
stant, the overhead cost is expected to increase by $43.54 for each extra machine hour, and
if the number of machine hours is held constant, the overhead cost is expected to increase
by $883.62 for each extra production run. The Bendrix manager can interpret the intercept,

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



$3997, as the fixed component of overhead. The slope terms involving MachHrs and
ProdRuns are the variable components of overhead.

It is interesting to compare Equation (10.10) with the separate equations for Overhead
involving only a single variable each. From the previous section these are

Predicted Overhead � 48621 � 34.7MachHrs

and

Predicted Overhead � 75606 � 655.1ProdRuns

Note that the coefficient of MachHrs has increased from 34.7 to 43.5 and the coefficient of
ProdRuns has increased from 655.1 to 883.6. Also, the intercept is now lower than either
intercept in the single-variable equations. In general, it is difficult to guess the changes that
will occur when more explanatory variables are included in the equation, but it is likely
that changes will occur.

The reasoning is that when MachHrs is the only variable in the equation, ProdRuns con-
stant is not being held constant—it is being ignored—so in effect the coefficient 34.7 of
MachHrs indicates the effect of MachHrs and the omitted ProdRuns on Overhead. But when
both variables are included, the coefficient 43.5 of MachHrs indicates the effect of MachHrs
only, holding ProdRuns constant. Because the coefficients of MachHrs in the two equations
have different meanings, it is not surprising that they result in different numerical estimates. ■
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7
8

A B C D E F G
rrEtSdetsujdAelpitluM of

Summary RR -Square
R-Square

9
10
11
12
13
14
15
16

0.9308 0.8664 0.8583 4108.993

Degrees of Sum of Mean of
ANOVA Table Freedom Squares Squares

Explained 2 3614020661 1807010330 107.0261 < 0.0001
Unexplained 33 557166199.1 16883824.22

Standard

F-Ra�o p-Value

t V l V l
Confidence Interval 95%

17
18
19
20

Standard
Regression Table reppUrewoLrorrE

Constant 3996.678 6603.651 0.6052 0.5492 -9438.551 17431.907
MachHrs 43.536 3.589 12.1289 < 0.0001 36.234 50.839
ProdRuns 883.618 82.251 10.7429 < 0.0001 716.276 1050.960

ttneiciffeoC -Value p-Value

Figure 10.21

Multiple Regression

Output for Bendrix

Example

FUNDAMENTAL INSIGHT

Multiple Regression, Correlations, and
Scatterplots

When there are multiple potential Xs for a regression

on Y, it is useful to calculate correlations and scatter-

plots of Y versus each X. But remember that correla-

tions and scatterplots are for two variables only; they

do not necessarily tell the whole story. Sometimes, as

in this overhead example, a multiple regression can

turn out quite differently than might be expected from

correlations and scatterplots alone. Specifically, the R2

value for the multiple regression can be considerably

smaller or larger than might be expected.

The estimated coeffi-
cient of any explana-
tory variable typically
depends on which
other explanatory
variables are included
in the equation.

10.5.2 Interpretation of Standard Error of Estimate and R2

The multiple regression output in Figure 10.21 is very similar to simple regression output.
In particular, cells C9 and E9 again show R2 and the standard error of estimate se. Also, the
square root of R2 appears in cell B9. The interpretation of these quantities is almost exactly
the same as in simple regression. The standard error of estimate is essentially the standard

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



deviation of residuals, but it is now given by Equation (10.11), where n is the number of
observations and k is the number of explanatory variables in the equation.
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Formula for Standard Error of Estimate in Multiple Regression

(10.11)se =

C

©ei
2

n - k - 1

Fortunately, you can interpret se exactly as before. It is a measure of the typical prediction
error when the multiple regression equation is used to predict the dependent variable. In
this example, about two-thirds of the predictions should be within one standard error, or
$4109, of the actual overhead cost. By comparing this with the standard errors from the
single-variable equations for Overhead, $8585 and $9457, you can see that the multiple
regression equation will tend to provide predictions that are more than twice as accurate as
the single-variable equations—a big improvement.

The R2 value is again the percentage of variation of the dependent variable explained by
the combined set of explanatory variables. In fact, it even has the same formula as before
[see Equation (10.8)]. For the Bendrix data you can see that MachHrs and ProdRuns com-
bine to explain 86.6% of the variation in Overhead. This is a big improvement over the
single-variable equations that were able to explain only 39.9% and 27.1% of the variation in
Overhead. Remarkably, the combination of the two explanatory variables explains a larger
percentage than the sum of their individual effects. This is not common, but this example
shows that it is possible.

The square root of R2 shown in cell B9 of Figure 10.21 (the multiple R) is again the
correlation between the fitted values and the observed values of the dependent variable.
For the Bendrix data the correlation between them is 0.931, quite high. A graphical indica-
tion of this high correlation can be seen in one of the requested scatterplots, the plot of
fitted versus observed values of Overhead. This scatterplot appears in Figure 10.22. If the
regression equation gave perfect predictions, all of the points in this plot would lie on a 45º
line—each fitted value would equal the corresponding observed value. Although a perfect
fit virtually never occurs, the closer the points are to a 45º line, the better the fit is, as
indicated by R2 or its square root.

Although the R2 value is one of the most frequently quoted values from a regression
analysis, it does have one serious drawback: R2 can only increase when extra explanatory

Sca�erplot of Fit vs Overhead
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Figure 10.22

Scatterplot of

Fitted Values 

Versus Observed

Values of Overhead

R2 is always the square
of the correlation
between the actual
and fitted Y values—in
both simple and
multiple regression.
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variables are added to an equation. This can lead to “fishing expeditions,” where you keep
adding variables to an equation, some of which have no conceptual relationship to the depen-
dent variable, just to inflate the R2 value. To avoid adding extra variables that do not really
belong, an adjusted R2 value is typically listed in regression outputs. This adjusted value
appears in cell D9 of Figure 10.21. Although it has no direct interpretation as “percentage of
variation explained,” it can decrease when unnecessary explanatory variables are added to an
equation. Therefore, it serves as an index that you can monitor. If you add variables and the
adjusted R2 decreases, the extra variables are essentially not pulling their weight and should
probably be omitted. We will say much more about this issue in the next chapter.

558 Chapter 10 Regression Analysis: Estimating Relationships

The adjusted R2 is a measure that adjusts R2 for the number of explanatory variables
in the equation. It is used primarily to monitor whether extra explanatory variables
really belong in the equation.

FUNDAMENTAL INSIGHT

R2,Adjusted R2, and Standard Error of
Estimate

Sometimes a regression equation is “built” by succes-

sively adding explantory variables to an equation. As

more variables are added, it is a mathematical fact

that R2 must increase; it cannot decrease. However,

the standard error of estimate can increase, and the

adjusted R2 can decrease, each signaling that the extra

variables are not useful and should probably be omit-

ted from the equation. In fact, the only purpose of

adjusted R2 is to monitor whether the equation is

getting better or worse as more variables are added.

P R O B L E M S

Level A

16. A trucking company wants to predict the yearly mainte-
nance expense (Y) for a truck using the number of miles
driven during the year (X1) and the age of the truck (X2,
in years) at the beginning of the year. The company has
gathered the data given in the file P10_16.xlsx, where
each observation corresponds to a particular truck.
a. Estimate a multiple regression equation using

the given data. Interpret each of the estimated
regression coefficients. Why is the magnitude of
the Miles Driven coefficient so much lower than
the magnitude of the Age of Truck coefficient?
Is it because Miles Driven is not as important in
predicting Maintenance Expense?

b. Interpret the standard error of estimate se and R2 for
these data.

17. DataPro is a small but rapidly growing firm that provides
electronic data-processing services to commercial 
firms, hospitals, and other organizations. For each of the
past 12 months, DataPro has tracked the number of
contracts sold, the average contract price, advertising

expenditures, and personal selling expenditures. These
data are provided in P10_17.xlsx. Using the number of
contracts sold as the dependent variable, estimate a
multiple regression equation with three explanatory
variables. Interpret each of the estimated regression
coefficients, the standard error of estimate, and R2.

18. An antique collector believes that the price received
for a particular item increases with its age and with the
number of bidders. The file P10_18.xlsx contains data
on these three variables for 32 recently auctioned
comparable items.
a. Estimate a multiple regression equation using the

given data. Interpret each of the estimated regression
coefficients. Is the antique collector correct in believ-
ing that the price received for the item increases with
its age and with the number of bidders?

b. Interpret the standard error of estimate se and R2.
Does it appear that predictions of price from this
equation will be very accurate?

19. Stock market analysts are continually looking for
reliable predictors of stock prices. Consider the
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problem of modeling the price per share of electric
utility stocks (Y). Two variables thought to influence
this stock price are return on average equity (X1) and
annual dividend rate (X2). The stock price, returns on
equity, and dividend rates on a randomly selected day
for 16 electric utility stocks are provided in the file
P10_19.xlsx.
a. Estimate a multiple regression equation using the

given data. Interpret each of the estimated regression
coefficients.

b. Interpret the standard error of estimate se, R
2, and

the adjusted R2. Does it appear that predictions of
price from this equation will be very accurate?

20. The manager of a commuter rail transportation
system was recently asked by her governing board to
determine which factors have a significant impact on
the demand for rides in the large city served by the
transportation network. The system manager collected
data on variables thought to be possibly related to the
number of weekly riders on the city’s rail system. The
file P10_20.xlsx contain these data.
a. What do you expect the signs of the coefficients of

the explanatory variables in this multiple regression
equation to be? Why? (Answer this before running
the regression.)

b. Estimate a multiple regression equation using the
given data. Interpret each of the estimated regres-
sion coefficients. Are the signs of the estimated
coefficients consistent with your expectations in
part a?

c. What proportion of the total variation in the
number of weekly riders is not explained by this
estimated multiple regression equation?

21. Consider the enrollment data for Business Week’s
top U.S. graduate business programs in the file
P10_21.xlsx. Use the data in the MBA Data sheet
to estimate a multiple regression equation to assess
whether there is a relationship between the total
number of full-time students (Enrollment) and the
following explanatory variables: (a) the proportion of
female students, (b) the proportion of minority
students, and (c) the proportion of international
students enrolled at these business schools.
a. Interpret the coefficients of the estimated regres-

sion equation. Do any of these results surprise you?
Explain.

b. How well does the estimated regression equation
fit the given data?

22. A regional express delivery service company recently
conducted a study to investigate the relationship
between the cost of shipping a package (Y), the
package weight (X1), and the distance shipped (X2).
Twenty packages were randomly selected from among
the large number received for shipment, and a detailed
analysis of the shipping cost was conducted for each

package. These sample observations are given in the
file P10_22.xlsx.
a. Estimate a simple linear regression equation

involving shipping cost and package weight.
Interpret the slope coefficient of the least squares
line and the R2 value.

b. Add another explanatory variable, distance shipped,
to the regression model in part a. Estimate and inter-
pret this expanded equation. How does the R2 value
for this multiple regression equation compare to that
of the simple regression equation in part a? Explain
any difference between the two R2 values. Interpret
the adjusted R2 value for the revised equation.

Level B

23. The owner of a restaurant in Bloomington, Indiana,
has recorded sales data for the past 19 years. He has
also recorded data on potentially relevant variables.
The entire data set appears in the file P10_23.xlsx.
a. Estimate a simple linear regression equation

involving annual sales (the dependent variable) and
the size of the population residing within 10 miles
of the restaurant (the explanatory variable).
Interpret the R2 value.

b. Add another explanatory variable—annual adver-
tising expenditures—to the regression equation in
part a. Estimate and interpret this expanded
equation. How does the R2 value for this equation
compare to the equation in part a? Explain any
difference between the two R2 values. What, if
anything, does the adjusted R2 value for the revised
equation indicate?

c. Add one more explanatory variable to the multiple
regression equation estimated in part b. In particu-
lar, estimate and interpret the coefficients of a
multiple regression equation that includes the
previous year’s advertising expenditure. How does
the inclusion of this third explanatory variable
affect the R2 and adjusted R2 values, in comparison
to the corresponding values for the equation of
part b? Explain any changes in these values.

24. Continuing Problem 8 on the 2009 golfer data in the
file P10_08.xlsx, the simple linear regressions for
Earnings per Round were perhaps not as good as you
expected. Explore several multiple regressions for
Earnings per Round, using the variables in columns
I–M and R. Proceed as follows. 
a. Create a table of correlations for these variables. 
b. Run a regression of Earnings per Round versus the

most highly correlated variable (positive or negative)
with Earnings per Round. Then run a second
regression with the two most highly correlated
variables with Earnings per Round. Then run a third
with the three most highly correlated, and so on until
all six explanatory variables are in the equation. 
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c. Comment on the changes you see from one
equation to the next. Does the coefficient of a
variable entered earlier change as you enter more
variables? How much better do the equations get,
in terms of standard error of estimate and R2, as
you enter more variables? Does adjusted R2 ever
indicate that an equation is worse than the one
before it?

d. The bottom line is whether these variables, as a
whole, do a very good job of predicting Earnings per
Round. Would you say they do? Why or why not? 

25. Using the sample data given in the file P10_10.xlsx,
use multiple regression to predict the selling price of
houses in a given community. Proceed as follows.

a. Add one explanatory variable at a time and
estimate each regression equation along the way.
Report and explain changes in the standard
error of estimate se, R

2, and adjusted R2 as each
explanatory variable is added to the model. Does
it matter which order you add the variables? Try
at least two different orderings to answer this
question.

b. Interpret each of the estimated regression coeffi-
cients in the full equation, that is, the equation with
all explanatory variables included.

c. What proportion of the total variation in the selling
price is explained by the multiple regression equa-
tion that includes all four explanatory variables?
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10.6 MODELING POSSIBILITIES

Once you move from simple to multiple regression, the floodgates open. All types of
explanatory variables are potential candidates for inclusion in the regression equation. In
this section we examine several new types of explanatory variables. These include dummy
variables, interaction variables, and nonlinear transformations. The techniques in this
section provide you with many alternative approaches to modeling the relationship
between a dependent variable and potential explanatory variables. In many applications
these techniques produce much better fits than you could obtain without them.

FUNDAMENTAL INSIGHT

Modeling Possibilities

As the title of this section suggests, these techniques

are modeling possibilities.They provide a wide variety

of explanatory variables to choose from. However,

this does not mean that it is wise to include all or

even many of these new types of explanatory

variables in any particular regression equation. The

chances are that only a few, if any, will significantly

improve the fit. Knowing which explanatory variables

to include requires a great deal of practical experi-

ence with regression, as well as a thorough under-

standing of the data in its context. The material in this

section should not be an excuse for a mindless fishing

expedition.

10.6.1 Dummy Variables

Some potential explanatory variables are categorical and cannot be measured on a quanti-
tative scale. However, these categorical variables are often related to the dependent
variable, so you need a way to include them in a regression equation. The trick is to use
dummy variables, also called indicator or 0–1 variables. Dummy variables are variables
that indicate the category a given observation is in. If a dummy variable for a given
category equals 1, the observation is in that category; if it equals 0, the observation is not
in that category.

A dummy variable is a variable with possible values 0 and 1. It equals 1 if the
observation is in a particular category and 0 if it is not.
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Categorical variables are used in two situations. The first and perhaps most common
situation is when a categorical variable has only two categories. A good example of
this is a gender variable that has the two categories “male” and “female.” In this case
only a single dummy variable is required, and you have the choice of assigning the 1s
to either category. If the dummy variable is called Gender, you can code Gender as 1 
for males and 0 for females, or you can code Gender as 1 for females and 0 for 
males. You just need to be consistent and specify explicitly which coding scheme you 
are using.

The other situation is when there are more than two categories. A good example of
this is when you have quarterly time series data and you want to treat the quarter of the
year as a categorical variable with four categories, 1 through 4. Then you can create four
dummy variables, Q1 through Q4. For example, Q2 equals 1 for all second-quarter
observations and 0 for all other observations. Although you can create four dummy
variables, only three of them—any three—can be used in a regression equation, as will
be explained shortly.

The following example illustrates how to create, use, and interpret dummy variables in
regression analysis.
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E X A M P L E 10.3 POSSIBLE GENDER DISCRIMINATION IN SALARY AT FIFTH NATIONAL

BANK OF SPRINGFIELD

The Fifth National Bank of Springfield is facing a gender discrimination suit.6 The
charge is that its female employees receive substantially smaller salaries than its male

employees. The bank’s employee data are listed in the file Bank Salaries.xlsx. For each of
its 208 employees, the data set includes the following variables: 

■ EducLev: education level, a categorical variable with categories 1 (finished high
school), 2 (finished some college courses), 3 (obtained a bachelor’s degree), 
4 (took some graduate courses), 5 (obtained a graduate degree)

■ JobGrade: a categorical variable indicating the current job level, the possible levels
being 1 through 6 (6 is highest)

■ YrsExper: years of experience with this bank
■ Age: employee’s current age
■ Gender: a categorical variable with values “Female” and “Male”
■ YrsPrior: number of years of work experience at another bank prior to working at

Fifth National
■ PCJob: a categorical yes/no variable depending on whether the employee’s current

job is computer-related
■ Salary: current annual salary

Figure 10.23 lists a few of the observations. Do these data provide evidence that there is
discrimination against females in terms of salary?

Objective To use StatTools’s Regression procedure to analyze whether the bank dis-
criminates against females in terms of salary.

6This example and the accompanying data set are based on a real case from 1995. Only the bank’s name has been
changed.
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Solution

A naive approach to this problem is to compare the average female salary to the average
male salary. This can be done with a pivot table, as in Chapter 3, or with a more formal
hypothesis test, as in Chapter 9. Using these methods, you can check that the average of all
salaries is $39,922, the female average is $37,210, the male average is $45,505, and the
difference between the male and female averages is statistically significant at any reason-
able level of significance. In short, the females definitely earn less. But perhaps there is a
reason for this. They might have lower education levels, they might have been hired more
recently, and so on. The question is whether the difference between female and male
salaries is still evident after taking these other attributes into account. This is a perfect task
for regression.

The first task is to create dummy variables for the various categorical variables. You
can do this manually with IF functions or you can use StatTools’s Dummy procedure. To
do it manually, create a dummy variable Female based on Gender in column J by entering
the formula

�IF(F45� "Female",1,0)

in cell J4 and copying it down. Note that females are coded as 1s and males as 0s.
(Remember that the quotes are necessary when a text value is used in an IF function.)

StatTools’s Dummy procedure is somewhat easier, especially when there are multiple
categories. For example, to create five dummies for the education levels, select Dummy from
the StatTools Data Utilities dropdown menu, select the Create One Dummy Variable for
Each Distinct Category option, and select the EducLev variable to base the dummies on. This
creates five dummy columns with variable names EducLev�1 through EducLev�5. You
could follow the same procedure to create six dummies, JobGrade�1 through JobGrade�6,
for the job grade categories.

Sometimes you might want to collapse several categories. For example, you might want
to collapse the five education categories into three categories: 1, (2,3), and (4,5). The new
second category includes employees who have taken undergraduate courses or have com-
pleted a bachelor’s degree, and the new third category includes employees who have taken
graduate courses or have completed a graduate degree. It is easy to do this. You can again use
IF functions, or you can simply add the EducLev�2 and EducLev�3 columns to get the
dummy for the new second category. Similarly, you add the EducLev�4 and EducLev�5
columns for the new third category. (Do you see why this works?)
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A B C D E F G H I
Employee EducLev JobGrade YrsExper Age Gender YrsPrior PCJob Salary

3 26 Male 1 No $32,000
1 14 38 Female 1 No $39,100
1 12 35 Female 0 No $33,200

8 40 Female 7 No $30,600
3 28 Male 0 No $29,000
3 24 Female 0 No $30,500
4 27 Female 0 No $30,000
8 33 Male 2 No $27,000
4 62 Female 0 No $34,000

10 9 31 Female 0 No $29,500
11 9 34 Female 2 No $26,800
12 8 37 Female 8 No $31,300
13 9 37 Female 0 No $31,200
14 1 10 58 Female 6 No $34,700
15

1 3 1
2 1
3 1
4 2 1
5 3 1
6 3 1
7 3 1
8 3 1
9 1 1

3 1
3 1
2 1
2 1
2
3 1 4 33 Female 0 No $30,000

Figure 10.23

Selected Data for

Bank Example

It is also possible to
add dummies to
effectively collapse
categories.
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Once the dummies have been created, you can run a regression analysis with Salary as
the dependent variable, using any combination of numerical and dummy explanatory vari-
ables. However, there are two rules you must follow: 

1. You shouldn’t use any of the original categorical variables, such as EducLev, that the
dummies are based on.

2. You should always use one fewer dummy than the number of categories for any cate-
gorical variable.

This second rule is a technical one. If you violate it, the statistical software (StatTools
or any other package) will display an error message. For example, if you want to use
education level as an explanatory variable, you should enter only four of the five dummies
EducLev�1 through EducLev�5. Any four of these can be used. The omitted dummy then
corresponds to the reference category. The interpretation of any dummy variable coeffi-
cient is relative to this reference category. When there are only two categories, as with the
gender variable, the common procedure is to name the variable with the category, such as
Female, that corresponds to the 1s. If you create the dummy variables manually, you
probably will not even bother to create a dummy for males. In this case “Male” automati-
cally becomes the reference category.

To explain dummy variables in regression, it is useful to proceed in several steps in
this example. (After you get used to the procedure, you can combine all of these steps into
a single step. Alternatively, you can use a stepwise procedure, as explained in the next
chapter.) The first step is to estimate a regression equation with only one explanatory
variable, Female. The output appears in Figure 10.24, and the resulting equation is

Predicted Salary � 45505 � 8296Female (10.12)
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Always include one
fewer dummy than the
number of categories.
The omitted dummy
corresponds to the
reference category.

To interpret regression
equations with dummy
variables, it is useful to
rewrite the equation
for each category.

7
8
9

10
11
12
13
14
15
16
17
18
19

A B C D E F G
rrEtSdetsujdAelpitluM of

Summary RR -Square

0.3465 0.1201 0.1158 10584.3

Degrees of Sum of Mean of
ANOVA Table Freedom Squares Squares

Explained 1 3149633845 3149633845 28.1151 < 0.0001
Unexplained 206 23077473386 112026569.8

Standard
Regression Table reppUrewoLrorrE

Constant 45505.4 1283.5 35.4533 < 0.0001 42974.9 48036.0
Female -8295.5 1564.5 -5.3024 < 0.0001 -11380.0 -5211.0

R-Square

F- o p-Value

ttneiciffeoC -Value p-Value
Confidence Interval 95%

Figure 10.24

Output for Bank

Example with a

Single Explanatory

Variable

To interpret this equation, recall that Female has only two possible values, 0 and 1. If
you substitute Female�1 into Equation (10.12), you obtain

Predicted Salary � 45505 � 8296(1) � 37209

Because Female�1 corresponds to females, this equation simply indicates the average
female salary. Similarly, if you substitute Female�0 into Equation (10.12), you obtain

Predicted Salary � 45505 � 8296(0) � 45505

Because Female�0 corresponds to males, this equation indicates the average male salary.
Therefore, the interpretation of the �8296 coefficient of the Female dummy variable is
straightforward. It is the average female salary relative to the reference (male) category. In
short, females get paid $8296 less on average than males.

However, Equation (10.12) tells only part of the story. It ignores all information except
for gender. The next step is to expand this equation by adding the experience variables
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YrsPrior and YrsExper. The output with the Female dummy variable and these two experi-
ence variables appears in Figure 10.25. The corresponding regression equation is

Predicted Salary � 35492 � 988YrsExper � 131YrsPrior � 8080Female (10.13)
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It is again useful to write Equation (10.13) in two forms: one for females (substituting
Female�1) and one for males (substituting Female�0). After doing the arithmetic, they become

Predicted Salary � 27412 � 988YrsExper � 131YrsPrior

and

Predicted Salary � 35492 � 988YrsExper � 131YrsPrior

Except for the intercept term, these equations are identical. You can now interpret the
coefficient �8080 of the Female dummy variable as the average salary disadvantage for
females relative to males after controlling for job experience. Gender discrimination still
appears to be a very plausible conclusion. However, note that the R2 value is only 49.2%.
Perhaps there is still more to the story.

The next step is to add education level to the equation by including four of the five
education level dummies. Although any four could be used, we use EducLev�2 through
EducLev�5, so that the lowest level becomes the reference category. (This should lead to
positive coefficients for these dummies, which are easier to interpret.) The resulting output
appears in Figure 10.26. The estimated regression equation is now

Predicted Salary � 26613 � 1033YrsExper � 362YrsPrior � 4501Female

� 160EducLev�2 � 4765EducLev�3 � 7320EducLev�4 � 11770EducLev�5 (10.14)
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Now there are two categorical variables involved, gender and education level. However,
you can still write a separate equation for each combination of categories by setting the
dummies to appropriate values. For example, the equation for females at education level 5
is found by setting Female and EducLev�5 equal to 1, and setting the other education
dummies equal to 0. After combining terms, this equation is

Predicted Salary � 33882 � 1033YrsExper � 362YrsPrior

The intercept 33882 is the intercept from Equation (10.14), 26613, plus the coefficients of
Female and EducLev�5.

Equation (10.14) can be interpreted as follows. For either gender and any education
level, the expected increase in salary for one extra year of experience with Fifth National is
$1033; the expected increase in salary for one extra year of prior experience with another
bank is $362. The coefficients of the education dummies indicate the average increase in
salary an employee can expect relative to the reference (lowest) education level. For example,
an employee with education level 4 can expect to earn $7320 more than an employee with
education level 1, all else being equal. Finally, the key coefficient, �$4501 for females, indi-
cates the average salary disadvantage for females relative to males, given that they have the
same experience levels and the same education levels. Note that the R2 value is now 64.5%,
quite a bit larger than when the education dummies were not included. We appear to be
getting closer to the truth. In particular, you can see that there appears to be gender
discrimination in salaries, even after accounting for job experience and education level.

One further explanation for gender differences in salary might be job grade. Perhaps
females tend to be in lower job grades, which would help explain why they get lower salaries
on average. One way to check this is with a pivot table, as in Figure 10.27, with job grade in
the row area, gender in the column area, and counts, displayed as percentages of columns in
the values area. Clearly, females tend to be concentrated at the lower job grades. For exam-
ple, 28.85% of all employees are at the lowest job grade, but 34.29% of all females are at this
grade and only 17.65% of males are at this grade. The opposite is true at the higher job
grades. This certainly helps to explain why females get lower salaries on average.
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Figure 10.27

Pivot Table of Job

Grade Counts for

Bank Data

It is possible to go one step further to see the effect of job grade on salary. As with the
education dummies, the lowest job grade is used as the reference category and only the five
dummies for the other categories are included. Two other potential explanatory variables can
be added to the equation: Age and HasPCJob, a dummy based on the PCJob categorical
variable. The regression output for this equation with all variables appears in Figure 10.28.
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As expected, the coefficients of the job grade dummies are all positive, and they
increase as the job grade increases—it pays to be in the higher job grades. The effect of age
appears to be minimal, and there appears to be a “bonus” of close to $5000 for having a
PC-related job. The R2 value has now increased to 76.5%, and the penalty for being a
female has decreased to $2555—still large but not as large as before.

However, even if this penalty, the coefficient of Female in this last equation, is considered
“small,” is it convincing evidence against the argument for gender discrimination? We believe
the answer is no. We have used variations in job grades to reduce the penalty for being female.
But the question is why females are predominantly in the low job grades. Perhaps this is the
real source of gender discrimination. Perhaps management is not advancing the females as
quickly as it should, which naturally results in lower salaries for females. In a sense, JobGrade
is not really an explanatory variable; it is a dependent variable.

We conclude this example for now, but we will say more about it in the next two
subsections. ■
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Regression Output
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The regression
indicates that being in
lower job grades
implies lower salaries,
but it doesn’t explain
why females are in 
the lower job grades 
in the first place.

10.6.2 Interaction Variables

Consider the following regression equation for a dependent variable Y versus a numerical
variable X and a dummy variable D. If the estimated equation is of the form

(10.15)

then, as in the previous section, this equation can be written as two separate equations:

and

The first corresponds to D � 1, and the second corresponds to D � 0. The only difference
between these two equations is the intercept term; the slope for each is b1. Geometrically,

NY = a + b1X

NY = (a + b2) + b1X

NY = a + b1X + b2D
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they correspond to two parallel lines that are a vertical distance b2 apart. For example, 
if D corresponds to gender, there is a female line and a parallel male line. The effect of X
on Y is the same for females and males. When X increases by one unit, Y is expected to
change by b1 units for males or females.

In effect, when you include only a dummy variable in a regression equation, as in
Equation (10.15), you are allowing the intercepts of the two lines to differ (by an amount b2),
but you are forcing the lines to be parallel. To be more realistic, you might want to allow them
to have different slopes, in addition to possibly different intercepts. You can do this by
including an interaction variable. Algebraically, an interaction variable is the product of
two variables. Its inclusion allows the effect of one of the variables on Y to depend on the
value of the other variable.
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An interaction variable is the product of two explanatory variables. You can include
such a variable in a regression equation if you believe the effect of one explanatory
variable on Y depends on the value of another explanatory variable.

Suppose you create the interaction variable XD (the product of X and D) and then esti-
mate the equation

As usual, this equation can be rewritten as two separate equations, depending on whether
D � 0 or D � 1. If D � 1, terms can be combined to write

If D � 0, the dummy and interaction variables drop out and the equation becomes

The notation is not important. The important part is that the interaction term, b3XD, allows
the slope of the regression line to differ between the two categories.

The following continuation of the bank discrimination example illustrates one possi-
ble use of interaction variables.

NY = a + b1X

NY = (a + b2) + (b1 + b3)X

NY = a + b1X + b2D + b3XD

E X A M P L E 10.3 POSSIBLE GENDER DISCRIMINATION IN SALARY AT FIFTH NATIONAL

BANK OF SPRINGFIELD (CONTINUED)

Earlier you estimated an equation for Salary using the numerical explanatory variables
YrsExper and YrsPrior and the dummy variable Female. If you drop the YrsPrior

variable from this equation (for simplicity) and rerun the regression, you obtain the
equation

Predicted Salary � 35824 � 981YrsExper � 8012Female (10.16)

The R2 value for this equation is 49.1%. If an interaction variable between YrsExper and
Female is added to this equation, what is its effect?

Objective To use multiple regression with an interaction variable to see whether the
effect of years of experience on salary is different across the two genders.
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Solution

You first need to form an interaction variable that is the product of YrsExper and Female.
This can be done in two ways in Excel. You can do it manually with an Excel formula that
multiplies the two variables involved, or you can use the Interaction option from the
StatTools Data Utilities dropdown menu. For the latter, select the Two Numeric Variables
option in the Interaction Between dropdown list, and select Female and YrsExper as the
variables to be used to create the interaction variable.7

Once the interaction variable has been created, you can include it in the regression
equation in addition to the other variables in Equation (10.16). The multiple regression
output appears in Figure 10.29. The estimated regression equation is

Predicted Salary � 30430 � 1528YrsExper � 4098Female

�1248Interaction(YrsExper,Female)

where Interaction(YrsExper,Female) is StatTools’s default name for the interaction
variable. As before, it is useful to write this as two separate equations, one for females and
one for males. The female equation (Female�1, so that Interaction(YrsExper,Female) �
YrsExper) is

Predicted Salary � (30430 + 4098) � (1528 � 1248)YrsExper

� 34528 � 280YrsExper

and the male equation (Female�0, so that Interaction(YrsExper,Female) � 0) is

Predicted Salary � 30430 � 1528YrsExper
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7See the StatTools online help for this data utility. It explains the various options for creating interaction
variables.
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Figure 10.29

Regression Output

with an Interaction

Variable

Graphically, these equations appear as in Figure 10.30. The Y-intercept for the female
line is slightly higher—females with no experience with Fifth National tend to start out
slightly higher than males—but the slope of the female line is much smaller. That is,
males tend to move up the salary ladder much more quickly than females. Again, this pro-
vides another argument, although a somewhat different one, for gender discrimination
against females. Notice that the R2 value with the interaction variable has increased from
49.1% to 63.9%. The interaction variable has definitely added to the explanatory power of
the equation.
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This example illustrates just one possible use of interaction variables. The product of any
two variables, a numerical and a dummy variable, two dummy variables, or even two numeri-
cal variables, can be used. The trick is to interpret the results correctly, and the easiest way to do
this is the way we have been doing it—by writing several separate equations and seeing how
they differ. To illustrate one further possibility (among many), suppose you include the
variables YrsExper, Female, and HighJob in the equation for Salary, along with interactions
between Female and YrsExper and between Female and HighJob. Here, HighJob is a new
dummy variable that is 1 for job grades 4 to 6 and is 0 for job grades 1 to 3. (It can be calculated
as the sum of the dummies JobGrade�4 through JobGrade�6.) The resulting equation is

Predicted Salary � 28168 � 1261YrsExper � 9242HighJob � 6601Female

�1224Interaction(YrsExper,Female) � 1564Interaction(Female,HighJob) (10.17)

and the R2 value is now 76.6%.
The interpretation of Equation (10.17) is quite a challenge because it is really composed

of four separate equations, one for each combination of Female and HighJob. For females in
the high job category, the equation becomes

Predicted Salary � (28168 � 9242 � 6601 � 1564) � (1261 � 1224)YrsExper

� 45575 � 37YrsExper

and for females in the low job category it is

Predicted Salary � (28168 � 6601) � (1261 � 1224)YrsExper

� 34769 � 37YrsExper

Similarly, for males in the high job category, the equation becomes

Predicted Salary � (28168 � 9242) � 1261YrsExper

� 37410 � 1261YrsExper
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and for males in the low job category it is

Predicted Salary � 28168 � 1261YrsExper

Putting this into words, the various coefficients can be interpreted as follows.

Interpretation of Regression Coefficients

■ The intercept 28168 is the average starting salary (that is, with no experience at Fifth
National) for males in the low job category.

■ The coefficient 1261 of YrsExper is the expected increase in salary per extra year of
experience for males (in either job category).

■ The coefficient 9242 of HighJob is the expected salary premium for males starting in
the high job category instead of the low job category.

■ The coefficient 6601 of Female is the expected starting salary premium for females
relative to males, given that they start in the low job category.

■ The coefficient �1224 of Interaction(YrsExper,Female) is the penalty per extra year
of experience for females relative to males—that is, male salaries increase this much
more than female salaries each year.

■ The coefficient 1564 of Interaction(Female,HighJob) is the extra premium (in
addition to the male premium) for females starting in the high job category instead
of the low job category.

There are clearly pros and cons to adding interac-
tion variables. On the plus side, they allow for more
complex and interesting models, and they can lead
to significantly better fits. On the minus side, they
can become extremely difficult to interpret cor-
rectly. Therefore, we recommend that you add them
only when there is good economic and statistical
justification for doing so.

Postscript to Example 10.3 

When regression analysis is used in a legal case, as
it was in the bank gender discrimination example, it
can uncover multiple versions of the “truth.” That
is, by including or omitting various variables, the
resulting equations can imply quite different things

about the issue in question, in this case, gender discrimination. If one side claims, for
example, that the equation

Predicted Salary � 35492 � 988YrsExper � 131YrsPrior � 8080Female

is the true equation for explaining how salaries are determined at the bank, it is ludicrous
for them to claim that the bank literally does it this way. No one believes that bank execu-
tives sit down and say: “We will start everyone at $35,492. Then we will add $988 for
every year of experience with our bank and $131 for every year of prior work experience at
another bank. Finally, we will subtract $8080 from this total if the person is female.” All
the analysts can claim is that the given regression equation is consistent, to a greater or
lesser extent, with the observed data. If a number of regression equations, such as the ones
estimated in this example, all point to lower salaries for females after controlling for other
factors, then it doesn’t matter whether management is deliberately discriminating against
females according to some preconceived formula; the regression analysis indicates that
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Interaction Variables

As this example indicates, interaction variables can

make a regression quite difficult to interpret, and they

are certainly not always necessary. However, without

them, the effect of each X on Y is independent of the

values of the other Xs. If you believe, for example,

that the effect of years of experience on salary is

different for males than it is for females, the only way

to capture this behavior is to include an interaction

variable between years of experience and gender.

FUNDAMENTAL INSIGHT
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females are compensated less than males with the same qualifications. Without a smoking
gun, it is very difficult for either side to prove anything, but regression analysis permits
either side to present evidence that is most consistent with the data. 

10.6.3 Nonlinear Transformations

The general linear regression equation has the form

It is linear in the sense that the right side of the equation is a constant plus a sum of
products of constants and variables. However, there is no requirement that the dependent
variable Y or the explanatory variables X1 through Xk be the original variables in the data
set. Most often they are, but they can also be transformations of original variables. You
already saw one example of this in the previous section with interaction variables. They are
not original variables but are instead products of original (or even transformed) variables.
The software treats them in the same way as original variables; only the interpretation
differs. In this section we look at several possible nonlinear transformations of variables.
These are often used because of curvature detected in scatterplots. They can also arise
because of economic considerations. That is, economic theory often leads to particular
nonlinear transformations.

You can transform the dependent variable Y or any of the explanatory variables, the Xs.
You can also do both. In either case there are a few nonlinear transformations that are typi-
cally used. These include the natural logarithm, the square root, the reciprocal, and the
square. The purpose of each of these is usually to “straighten out” the points in a scatterplot.
If several different transformations straighten out the data equally well, the one that is easi-
est to interpret is preferred.

We begin with a small example where only the X variable needs to be transformed.

Predicted Y = a + b1X1 + b2X2 +
Á

+  bkXk
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You typically include
nonlinear trans-
formations in 
a regression equation
because of economic
considerations or
curvature detected in
scatterplots.

E X A M P L E 10.4 DEMAND AND COST FOR ELECTRICITY

The Public Service Electric Company produces different quantities of electricity each
month, depending on the demand. The file Cost of Power.xlsx lists the number

of units of electricity produced (Units) and the total cost of producing these (Cost) for a 
36-month period. The data appear in Figure 10.31. How can regression be used to analyze
the relationship between Cost and Units?

1
2
3
4
5
6
7
8
9

10
11
12
13

A B C
Month Cost Units

1 45623 601
2 46507 738
3 43343 686
4 46495 736
5 47317 756
6 41172 498
7 43974 828
8 44290 671
9 29297 305

10 47244 637
11 43185 499
12 42658 578

Figure 10.31

Data for Electric

Power Example
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Objective To see whether the cost of supplying electricity is a nonlinear function of
demand, and, if it is, what form the nonlinearity takes.

Solution

A good place to start is with a scatterplot of Cost versus Units. This appears in Figure 10.32.
It indicates a definite positive relationship and one that is nearly linear. However, there is
also some evidence of curvature in the plot. The points increase slightly less rapidly as Units
increases from left to right. In economic terms, there might be economies of scale, so that
the marginal cost of electricity decreases as more units of electricity are produced.
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Residuals from a

Straight-Line Fit

Nevertheless, you can first use regression to estimate a linear relationship between
Cost and Units. The resulting regression equation is

Predicted Cost � 23651 � 30.53Units

The corresponding R2 and se are 73.6% and $2734. It is always a good idea to request a scat-
terplot of the residuals versus the fitted values. This scatterplot is shown in Figure 10.33.
Note that the residuals to the far left and the far right are all negative, whereas the majority of
the residuals in the middle are positive. Admittedly, the pattern is far from perfect—there are
several negative residuals in the middle—but this plot certainly suggests nonlinear behavior.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



This negative–positive–negative behavior of residuals suggests a parabola—that is, a
quadratic relationship with the square of Units included in the equation. The next step is
to create a new variable (Units)^2 in the data set. You can do this manually (with the
formula =C4^2 in cell D4, copied down) or with the Transform item in the StatTools Data
Utilities dropdown menu.8 This latter method has the advantage that it allows you to trans-
form several variables simultaneously. Then you can use multiple regression to estimate
the equation for Cost with both explanatory variables, Units and (Units)^2, included.
The resulting equation, as shown in Figure 10.34, is

Predicted Cost � 5793 � 98.35Units � 0.0600(Units)^2 (10.18)

Note that R2 has increased to 82.2% and se has decreased to $2281.
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A scatterplot of
residuals versus 
fitted values often
indicates the need 
for a nonlinear
transformation.

8StatTools provides four nonlinear transformations: natural logarithm, square, square root, and reciprocal.
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Regression Table reppUrewoLrorrE

Constant 5792.80 4763.06 1.2162 0.2325 -3897.72 15483.31
Units 98.350 17.237 5.7058 < 0.0001 63.282 133.419
(Units)^2 -0.0600 0.0151 -3.9806 0.0004 -0.0906 -0.0293

t-Value p-ValueCoefficient

Figure 10.34

Regression Output

with Squared Term

Included
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Figure 10.35

Quadratic Fit in

Electricity Example

One way to see how this regression equation fits the scatterplot of Cost versus Units
(in Figure 10.32) is to use Excel’s Trendline option. To do so, activate the scatterplot, right-
click on any point, select Add Trendline, and select the Polynomial type or order 2, that is,
a quadratic. A graph of Equation (10.18) is superimposed on the scatterplot, as shown in
Figure 10.35. It shows a reasonably good fit, plus an obvious curvature.

The main downside to a quadratic regression equation, as in Equation (10.18), is that
there is no easy way to interpret the coefficients of Units and (Units)^2. For example, you
can’t conclude from the 98.35 coefficient of Units that Cost increases by 98.35 dollars when
Units increases by one. The reason is that when Units increases by one, (Units)^2 doesn’t
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stay constant; it also increases. All you can say is that the terms in Equation (10.18)
combine to explain the nonlinear relationship between units produced and total cost.

Note that the coefficient of (Units)^2, �0.0600 is a small negative value. First, the fact
that it is negative makes the parabola bend downward. This produces the decreasing
marginal cost behavior, where every extra unit of electricity incurs a smaller cost. Actually,
the curve described by Equation (10.18) eventually goes downhill for large values of Units,
but this part of the curve is irrelevant because the company evidently never produces such
large quantities. Second, you should not be fooled by the small magnitude of this coeffi-
cient. Remember that it is the coefficient of Units squared, which is a large quantity.
Therefore, the effect of the product �0.0600(Units)^2 is sizable.

There is at least one other possibility you can examine. Rather than a quadratic fit, you
can try a logarithmic fit. In this case you need to create a new variable, Log(Units), the nat-
ural logarithm of Units, and then regress Cost against the single variable Log(Units). To
create the new variable, you can use a formula with Excel’s LN function or you can use the
Transform option from StatTools Data Utilities. Also, you can superimpose a logarithmic
curve on the scatterplot of Cost versus Units by using Excel’s Trendline feature with the
logarithm option. This curve appears in Figure 10.36. To the naked eye, it appears to
be similar, and about as good a fit, as the quadratic curve in Figure 10.35.
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Excel’s Trendline 
option allows you 
to superimpose a
number of different
curves on a 
scatterplot.
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Logarithmic Fit to

Electricity Data

The resulting regression equation is

Predicted Cost � �63993 � 16654Log(Units) (10.19)

and the R2 and se values are 79.8% and 2393. These latter values indicate that the logarith-
mic fit is not quite as good as the quadratic fit. However, the advantage of the logarithmic
equation is that it is easier to interpret. In fact, one reason logarithmic transformations of
variables are used so widely in regression analysis is that they are fairly easy to interpret.

In the present case, where the log of an explanatory variable is used, you can interpret
its coefficient as follows. Suppose that Units increases by 1%, for example, from 600 to
606. Then Equation (10.19) implies that the expected Cost will increase by approximately
0.01(16654) � 166.54 dollars. In words, every 1% increase in Units is accompanied by an
expected $166.54 increase in Cost. Note that for larger values of Units, a 1% increase rep-
resents a larger absolute increase (from 700 to 707 instead of from 600 to 606, say). But
each such 1% increase entails the same increase in Cost. This is another way of describing
the decreasing marginal cost property. ■

In general, if b is the
coefficient of the log 
of X, then the
expected change in Y
when X increases by
1% is approximately
0.01 times b.
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Symmetric

Distribution of

Log(Income)

The electricity example has shown two possible nonlinear transformations of the explanatory
variable (or variables) that you can use. All you need to do is create the transformed Xs and
run the regression. The interpretation of statistics such as R2 and se is exactly the same as
before; only the interpretation of the coefficients of the transformed Xs changes. It is also
possible to transform the dependent variable Y. Now, however, you must be careful when
interpreting summary statistics such as R2 and se, as explained in the following examples.

Each of these examples transforms the dependent variable Y by taking its natural log-
arithm and then using the log of Y as the new dependent variable. This approach has been
used in a wide variety of business applications. Essentially, it is often a good option when
the distribution of Y is skewed to the right, with a few very large values and many small to
medium values. The effect of the logarithm transformation is to spread the small values out
and squeeze the large values together, making the distribution more symmetric. This is
illustrated in Figures 10.37 and 10.38 for a hypothetical distribution of household incomes.
The histogram of incomes in Figure 10.37 is clearly skewed to the right. However, the
histogram of the natural log of income in Figure 10.38 is much more nearly symmetric—
and, for technical reasons, more suitable for use as the dependent variable in regression.

A logarithmic
transformation of Y is
often useful when the
distribution of Y values
is skewed to the right.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



576 Chapter 10 Regression Analysis: Estimating Relationships

E X A M P L E 10.3 POSSIBLE GENDER DISCRIMINATION IN SALARY AT FIFTH NATIONAL

BANK OF SPRINGFIELD (CONTINUED)

Returning to the bank discrimination example, a glance at the distribution of salaries of
the 208 employees shows some skewness to the right—a few employees make

substantially more than the majority of employees. Therefore, it might make more sense to
use the natural logarithm of Salary as the dependent variable, not Salary. If you do this,
how can you interpret the results?

Objective To reanalyze the bank salary data, now using the logarithm of salary as the
dependent variable.

Solution

All of the previous analyses with this data set could be repeated with Log(Salary) as the
dependent variable. For the sake of discussion, we look only at the regression equation
with Female and YrsExper as explanatory variables. After creating the Log(Salary) vari-
able and running the regression, the output in Figure 10.39 results. The estimated regres-
sion equation is

Predicted Log(Salary) � 10.4907 � 0.0188YrsExper � 0.1616Female (10.20)

The R2 and se values are 42.4% and 0.1794. For comparison, when this same equation
was estimated with Salary as the dependent variable, R2 and se were 49.1% and 8.070.
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Constant 10.4907 0.0280 374.8768 < 0.0001 10.4355 10.5458
YrsExper 0.0188 0.0018 10.5556 < 0.0001 0.0153 0.0224
Female -0.1616 0.0265 -6.0936 < 0.0001 -0.2139 -0.1093

t-Value p-Value

Figure 10.39

Regression Output

with Log of Salary as

Dependent Variable

You must be careful when interpreting R2 and se. Neither is directly comparable to the R2

or se value with Salary as the dependent variable. Recall that R2 in general is the percentage
of the dependent variable explained by the regression equation. The problem here is that the
two R2 values are percentages explained of different dependent variables, Log(Salary) and
Salary. The fact that one is smaller than the other (42.4% versus 49.1%) does not necessarily
mean that it corresponds to a worse fit. They simply are not comparable.

The situation is even worse with se. Each se is a measure of a typical residual, but the
residuals in the Log(Salary) equation are in log dollars, whereas the residuals in the Salary
equation are in dollars. These units are completely different. For example, the log of $1000
is only 6.91. Therefore, it is no surprise that se for the Log(Salary) equation is much
smaller than se for the Salary equation. If you want comparable standard error measures for
the two equations, you should take antilogs of fitted values from the Log(Salary) equation
to convert them back to dollars, subtract these from the original Salary values, and take the

When the logarithm 
of Y is used in the
regression equation,
the interpretations 
of se and R2 are 
different because 
the units of the
dependent variable 
are completely
different.
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standard deviation of these “residuals.” (The EXP function in Excel can be used to take
antilogs.) You can check that the resulting standard deviation is 7774.9 This is somewhat
smaller than se from the Salary equation, an indication of a slightly better fit.

Finally, it is fairly easy to interpret Equation (10.20) itself. When the dependent variable
is Log(Y ) and a term on the right-hand side of the equation is of the form bX, then whenever
X increases by one unit, the predicted value of Y changes by a constant percentage, and this
percentage is approximately equal to b (written as a percentage). For example, if b � 0.035,
then when X increases by one unit,the predicted value of Y increases by approximately 3.5%.
Applied to Equation (10.20), this means that for each extra year of experience with Fifth
National, an employee’s salary can be expected to increase by about 1.88%. To interpret the
Female coefficient, note that the only possible increase in Female is one unit (from 0 for male
to 1 for female). When this occurs, the expected percentage decrease in salary is approxi-
mately 16.16%. In other words, Equation (10.20) implies that females can expect to make
about 16% less than men for comparable years of experience. ■
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9To make the two “standard deviations” comparable, we use the denominator n � 3 in each.

We are not necessarily claiming that the bank data are fit better with Log(Salary) as the
dependent variable than with Salary—it appears to be a virtual toss-up. However, the
lessons from this example are important in general. They are as follows.

1. The R2 values with Y and Log(Y) as dependent variables are not directly comparable.
They are percentages explained of different variables.

2. The se values with Y and Log(Y) as dependent variables are usually of totally
different magnitudes. To make the se from the log equation comparable, you need 
to go through the procedure described in the example so that the residuals are in
original units.

3. To interpret any term of the form bX in the log equation, you should first express b as
a percentage. For example, b � 0.035 becomes 3.5%. Then when X increases by one
unit, the expected percentage change in Y is approximately this percentage b.

Remember these points, especially the third, when using the logarithm of Y as the depen-
dent variable.

The log transformation of a dependent variable Y is used frequently. This is partly
because it induces nice statistical properties (such as making the distribution of Y more
symmetric). But an important advantage of this transformation is its ease of interpretation
in terms of percentage changes.

Constant Elasticity Relationships

A particular type of nonlinear relationship that has firm grounding in economic theory is
called a constant elasticity relationship. It is also called a multiplicative relationship. It
has the form shown in Equation (10.21).

Any coefficient b can
now be interpreted as
the approximate
percentage change 
in Y when the corre-
sponding X increases
by one unit.

Formula for Multiplicative Relationship

(10.21)Predicted Y = aX1
b1 X2

b2 Á Xbk
k

One property of this type of relationship is that the effect of a one-unit change in any X on
Y depends on the levels of the other Xs in the equation. This is not true for the additive rela-
tionships of the form

Predicted Y = a + b1X1 + b2X2 +
Á

+  bkXk
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that we have been discussing. For additive relationships, when any X increases by one unit,
the predicted value of Y changes by the corresponding b units, regardless of the levels of
the other Xs. However, multiplicative relationships have the following nice property.
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In a multiplicative (or constant elasticity) relationship, the dependent variable is
expressed as a product of explanatory variables raised to powers. When any explanatory
variable X changes by 1%, the predicted value of the dependent variable changes by a
constant percentage, regardless of the value of this X or the values of the other Xs.

The term constant elasticity comes from economics. Economists define the elasticity
of Y with respect to X as the percentage change in Y that accompanies a 1% increase in X.
Often this is in reference to a demand–price relationship. Then the price elasticity is the
percentage decrease in demand when price increases by 1%. Usually, the elasticity
depends on the current value of X. For example, the price elasticity when the price is $35
might be different than when the price is $50. However, if the relationship is of the form

Predicted Y � aXb

then the elasticity is constant, the same for any value of X. In fact, it is approximately 
equal to the exponent b. For example, if Predicted Y � 2X�1.5, the constant elasticity is
approximately �1.5, so that when X increases by 1%, the predicted value of Y decreases by
approximately 1.5%.

The constant elasticity property carries over to the multiple-X relationship in Equation
(10.21). Then each exponent is the approximate elasticity for its X. For example, if 
Predicted Y � 2X1

�1.5X2
0.7, you can make the following statements:

■ When X1 increases by 1%, the predicted value of Y decreases by approximately
1.5%, regardless of the current values of X1 and X2.

■ When X2 increases by 1%, the predicted value of Y increases by approximately
0.7%, regardless of the current values of X1 and X2.

You can use linear regression to estimate the nonlinear relationship in Equation (10.21) by
taking natural logarithms of all variables. Here two properties of logarithms are used: (1)
the log of a product is the sum of the logs, and (2) the log of Xb is b times the log of X.
Therefore, taking logs of both sides of Equation (10.21) gives

This equation is linear in the log variables Log(X1) through Log(Xk), so you can estimate
it in the usual way with multiple regression. You can then interpret the coefficients of
the explanatory variables directly as elasticities. The following example illustrates the
method.

Predicted Log(Y) = Log(a) + b1Log(X1)+
Á

+bkLog(Xk)

The constant elasticity
for any X is approxi-
mately equal to the
exponent of that X.

FUNDAMENTAL INSIGHT

Using Logarithmic Transformations in
Regression

If scatterplots suggest nonlinear relationships, there

are an unlimited number of nonlinear transformations

of Y and/or the Xs that could be tried in a regression

analysis. The reason that logarithmic transformations

are arguably the most frequently used nonlinear trans-

formations, besides the fact that they often produce

good fits, is that they can be interpreted naturally in

terms of percentage changes. In real studies, this inter-

pretability is an important advantage over other

potential nonlinear transformations.
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E X A M P L E 10.5 FACTORS RELATED TO SALES OF DOMESTIC AUTOMOBILES

The file Car Sales.xlsx contains annual data (1970–1999) on domestic auto sales in the
United States. The data are listed in Figure 10.40. The variables are defined as

■ Sales: annual domestic auto sales (in number of units)
■ PriceIndex: consumer price index of transportation
■ Income: real disposable income
■ Interest: prime rate of interest

Our goal is to estimate and interpret a multiplicative (constant elasticity) relationship
between Sales and PriceIndex, Income, and Interest.

Objective To use logarithms of variables in a multiple regression to estimate a multiplica-
tive relationship for automobile sales as a function of price, income, and interest rate.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A B C D E F G H I
Year Sales PriceIndex Income Interest
1970 7,115,270 37.5 2630 7.91%
1971 8,676,410 39.5 2745.3 5.72%
1972 9,321,310 39.9 2874.3 5.25%
1973 9,618,510 41.2 3072.3 8.03%
1974 7,448,340 45.8 3051.9 10.81%
1975 7,049,840 50.1 3108.5 7.86%
1976 8,606,860 55.1 3243.5 6.84%
1977 9,104,930 59 3360.7 6.83%
1978 9,304,250 61.7 3527.5 9.06%
1979 8,316,020 70.5 3628.6 12.67%
1980 6,578,360 83.1 3658 15.27%
1981 6,206,690 93.2 3741.1 18.87%
1982 5,756,610 97 3791.7 14.86%
1983 6,795,230 99.3 3906.9 10.79%
1984 7,951,790 103.7 4207.6 12.04%
1985 8,204,690 106.4 4347.8 9.93%
1986 8,222,480 102.3 4486.6 8.33%
1987 7,080,890 105.4 4582.5 8.21%
1988 7,526,334 108.7 4784.1 9.32%
1989 7,014,850 114.1 4906.5 10.87%
1990 6,842,733 120.5 5041.2 10.01%
1991 6,072,255 123.8 5033 8.46%
1992 6,216,488 126.5 5189.3 6.25%
1993 6,674,458 130.4 5261.3 6.00%
1994 7,181,975 134.3 5397.2 7.15%
1995 7,023,843 139.1 5539.1 8.83%
1996 7,139,884 143 5677.7 8.27%
1997 6,907,992 144.3 5854.5 8.44%
1998 6,756,804 141.6 6168.6 8.35%
1999 6,987,208 144.4 6320 8.00%

Sources:  Automo�ve News, Market
Data Book (various issues) for column
B, from Economic Report of the
President, 2000, for columns C, D, E

Figure 10.40 Data for Automobile Demand Example
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Solution

The first step is to take natural logs of all four variables. (You can do this in one step with
the StatTools Transform utility or you can use Excel’s LN function.) Then you can run a
multiple regression, with Log(Quantity) as the dependent variable and Log(PriceIndex),
Log(Income), and Log(Interest) as the explanatory variables. The resulting output is
shown in Figure 10.41. The corresponding equation for Log(Quantity) is

Predicted Log(Sales) � 14.126 � 0.384Log(PriceIndex) � 0.388Log(Income)

� 0.070Log(Interest)
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Degrees of Sum of Mean of 
ANOVA Table Freedom Squares Squares

3 0 249567775 0 083189258 7 5073 0 0009

R-Square

F- o p-Value

13
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Explained 3 0.249567775 0.083189258 7.5073 0.0009
Unexplained 26 0.288107728 0.011081066

Standard
Regression Table reppUrewoLrorrE

Constant 14.1260 1.9838 7.1206 < 0.0001 10.0482 18.2037

ttneiciffeoC -Value p-Value
Confidence Interval 95%

19
20
21

Log(PriceIndex) -0.3837 0.2091 -1.8351 0.0780 -0.8135 0.0461
Log(Income) 0.3881 0.3621 1.0720 0.2936 -0.3561 1.1324
Log(Interest) -0.0698 0.0893 -0.7821 0.4412 -0.2534 0.1137

Figure 10.41 Regression Output for Multiplicative Relationship

If you like, you can convert this back to original variables, that is, back to multiplica-
tive form, by taking antilogs. The result is

Predicted Sales � 1364048PriceIndex�0.384Income0.388Interest�0.070

The constant 1364048 is the antilog of 14.126 (and be calculated in Excel with the EXP
function).

In either form the equation implies that the elasticities are approximately equal to
�0.384, 0.388, and �0.070. When PriceIndex increases by 1%, the predicted value of
Sales tends to decrease by about 0.384%; when Income increases by 1%, the predicted
value of Sales tends to increase by about 0.388%; and when Interest increases by 1%, the
predicted value of Sales tends to decrease by about 0.070%.

Does this multiplicative equation provide a better fit to the automobile data than an
additive relationship? Without doing considerably more work, it is difficult to answer this
question with any certainty. As discussed in the previous example, it is not sufficient to
compare R2 and se values for the two fits. Again, the reason is that one has Log(Sales) as the
dependent variable, whereas the other has Sales, so the R2 and se measures aren’t compara-
ble. We simply state that the multiplicative relationship provides a reasonably good fit 
(for example, a scatterplot of its fitted values versus residuals shows no unusual patterns),
and it makes sense economically. But the additive equation is arguably just about as good.

Before leaving this example, we note that the results for this data set are not quite as
clear as they might appear. (This is often the case with real data.) First, the correlation
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between Sales and Income, or between Log(Sales) and Log(Income), is negative, not pos-
itive. However, because of multicollinearity, a topic discussed in the next chapter, the
regression coefficient of Log(Income) is positive. Second, most of the behavior appears to
be driven by the early years. If you rerun the analysis from 1980 on, you will discover
almost no relationship between Sales and the other variables. ■
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One final example of a multiplicative relationship is the learning curve model. A learning
curve relates the unit production time (or cost) to the cumulative volume of output since
that production process first began. Empirical studies indicate that production times tend to
decrease by a relatively constant percentage every time cumulative output doubles. To
model this phenomenon, let Y be the time required to produce a unit of output, and let X be
the cumulative amount of output that has been produced so far. If we assume that the
relationship between Y and X is of the constant elasticity form

Predicted Y � aXb

then it can be shown that whenever X doubles, the predicted value of Y decreases to a constant
percentage of its previous value. This constant is often called the learning rate. For example,
if the learning rate is 80%, then each doubling of cumulative production yields a 20% reduc-
tion in unit production time. It can be shown that the learning rate satisfies the equation

b � LN(learning rate)/LN(2) (10.22)

(where LN refers to the natural logarithm). So once you estimate b, you can use Equation
(10.22) to estimate the learning rate.

The following example illustrates a typical application of the learning curve model.

E X A M P L E 10.6 THE LEARNING CURVE FOR PRODUCTION OF A NEW PRODUCT

AT PRESARIO

The Presario Company produces a variety of small industrial products. It has just fin-
ished producing 22 batches of a new product (new to Presario) for a customer. The file

Learning Curve.xlsx contains the times (in hours) to produce each batch. These data are
listed in Figure 10.42. Clearly, the times have tended to decrease as Presario has gained
more experience in making the product. Does the multiplicative learning model apply to
these data, and what does it imply about the learning rate?

Objective To use a multiplicative regression equation to estimate the learning rate for
production time.

Solution

One way to check whether the multiplicative learning model is reasonable is to create the
log variables Log(Time) and Log(Batch) in the usual way and then see whether a scatter-
plot of Log(Time) versus Log(Batch) is approximately linear. The multiplicative model
implies that it should be. Such a scatterplot appears in Figure 10.43, along with a super-
imposed linear trend line. The fit appears to be quite good.

The relationship can be estimated by regressing Log(Time) on Log(Batch). The result-
ing equation is

Predicted Log(Time) � 4.834 � 0.155Log(Batch) (10.23)
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There are a couple of ways to interpret this equation. First, because it is a constant
elasticity relationship, the coefficient �0.155 can be interpreted as an elasticity. That is,
when Batch increases by 1%, Time tends to decrease by approximately 0.155%.

Although this interpretation is correct, it is not as useful as the “doubling” interpre-
tation discussed previously. Equation (10.22) states that the estimated learning rate
satisfies

�0.155 � LN(learning rate)/LN(2)
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A B
Batch Time

1 125.00
2 110.87
3 105.35
4 103.34
5 98.98
6 99.90
7 91.49
8 93.10
9 92.23

10 86.19
11 82.09
12 82.32
13 87.67
14 81.72
15 83.72
16 81.53
17 80.46
18 76.53
19 82.06
20 82.81
21 76.52
22 78.45

Figure 10.42

Data for Learning

Curve Example

4.7

4.8

4.9
Sca�erplot of Log(Time) vs Log(Batch)

4.3

4.4

4.5

4.6

0 0.5 1 1.5 2 2.5 3 3.5

Lo
g(

Ti
m

e)

Log(Batch)

Figure 10.43

Scatterplot of Log
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Solving for the learning rate (multiply through by LN(2) and then take antilogs), you can
see that it is 0.898, or approximately 90%. In words, whenever cumulative production
doubles, the time to produce a batch decreases by about 10%.

Presario could use this regression equation to predict future production times. For
example, suppose the customer places an order for 15 more batches of the same product.
Note that Presario is already partway up the learning curve, that is, these batches are num-
bers 23 through 37, and the company already has experience producing the product. You
can use Equation (10.23) to predict the log of production time for each batch. Then you can
take their antilogs and sum them to obtain the total production time. The calculations are
shown in rows 24 through 39 of Figure 10.44. You enter the batch numbers and calculate
their logs in columns A and C. Then you substitute the values of Log(Batch) in column C
into equation (10.23) to obtain the predicted values of Log(Time) in column E. Finally, you
use Excel’s EXP function to calculate the antilogs of these predictions in column B, and
you calculate their sum in cell B39. The total predicted time to finish the order is about
1115 hours.
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

A B C D E F
20 82.81 2.995732274 4.416548827
21 76.52 3.044522438 4.337552145
22 78.45 3.091042453 4.362461479
23 77.324 3.135494216 4.348009995
24 76.816 3.17805383 4.341413654
25 76.332 3.218875825 4.335086627
26 75.869 3.258096538 4.329007785
27 75.426 3.295836866 4.323158388
28 75.003 3.33220451 4.317521744
29 74.596 3.36729583 4.312082919
30 74.205 3.401197382 4.306828497
31 73.829 3.433987204 4.301746382
32 73.466 3.465735903 4.296825631
33 73.117 3.496507561 4.292056313
34 72.779 3.526360525 4.287429384
35 72.453 3.555348061 4.282936587
36 72.137 3.583518938 4.278570366
37 71.832 3.610917913 4.274323782

1115.183 Predicted �me for next 15 batches

Figure 10.44

Using the Learning

Curve Model for

Predictions

P R O B L E M S

Level A

26. In a study of housing demand, a county assessor is
interested in developing a regression model to
estimate the selling price of residential properties
within her jurisdiction. She randomly selects 15
houses and records the selling price in addition to the
following values: the size of the house (in square
feet), the total number of rooms in the house, the age
of the house, and an indication of whether the house

has an attached garage. These data are stored in the
file P10_26.xlsx.
a. Estimate and interpret a multiple regression

equation that includes the four potential explana-
tory variables. How do you interpret the coefficient
of the Attached Garage variable?

b. Evaluate the estimated regression equation’s
goodness of fit.

c. Use the estimated equation to predict the sales
price of a 3000-square-foot, 20-year-old home that

■
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has seven rooms but no attached garage. How
accurate is your prediction?

27. A manager of boiler drums wants to use regression
analysis to predict the number of worker-hours needed
to erect the drums in future projects. Data for 36
randomly selected boilers have been collected. In
addition to worker-hours (Y), the variables measured
include boiler capacity, boiler design pressure, boiler
type, and drum type. All of these measurements are
listed in the file P10_27.xlsx.
a. Estimate an appropriate multiple regression

equation to predict the number of worker-hours
needed to erect boiler drums.

b. Interpret the estimated regression coefficients.
c. According to the estimated regression equation,

what is the difference between the mean number of
worker-hours required for erecting industrial and
utility field boilers?

d. According to the estimated regression equation,
what is the difference between the mean number
of worker-hours required for erecting boilers with
steam drums and those with mud drums?

e. Given the estimated regression equation, predict
the number of worker-hours needed to erect a 
utility-field, steam-drum boiler with a capacity of
550,000 pounds per hour and a design pressure of
1400 pounds per square inch. How accurate is your
prediction?

f. Given the estimated regression equation, predict
the number of worker-hours needed to erect an
industrial-field, mud-drum boiler with a capacity
of 100,000 pounds per hour and a design pressure
of 1000 pounds per square inch. How accurate is
your prediction?

28. Suppose that a regional express delivery service
company wants to estimate the cost of shipping a
package (Y ) as a function of cargo type, where cargo
type includes the following possibilities: fragile,
semifragile, and durable. Costs for 15 randomly
chosen packages of approximately the same weight
and same distance shipped, but of different cargo
types, are provided in the file P10_28.xlsx.
a. Estimate an appropriate multiple regression equation

to predict the cost of shipping a given package.
b. Interpret the estimated regression coefficients. You

should find that the estimated intercept and slope
of the equation are sample means. Which sample
means are they?

c. According to the estimated regression equation,
which cargo type is the most costly to ship? Which
cargo type is the least costly to ship?

d. How well does the estimated equation fit the given
sample data? How do you think the model’s
goodness of fit could be improved?

e. Given the estimated regression equation, predict the
cost of shipping a package with semifragile cargo.

29. The file P10_11.xlsx contains annual observations (in
column B) of the American minimum wage. The basic
question here is whether the minimum wage has been
growing at roughly a constant rate over this period.
a. Create a time series graph for these data. Comment

on the observed behavior of the minimum wage
over time.

b. Estimate a linear regression equation of the
minimum wage versus time (the Year variable).
What does the estimated slope indicate?

c. Analyze the residuals from the equation in part b.
Are they essentially random? If not, return to part b
and revise your equation appropriately. Then
interpret the revised equation.

30. Estimate a regression equation that adequately
estimates the relationship between monthly electrical
power usage (Y ) and home size (X ) using the data in
the file P10_13.xlsx. Interpret your results. How well
does your model explain the variation in monthly
electrical power usage?

31. An insurance company wants to determine how its
annual operating costs depend on the number of home
insurance (X1) and automobile insurance (X2) policies
that have been written. The file P10_31.xlsx contains
relevant information for 10 branches of the insurance
company. The company believes that a multiplicative
model might be appropriate because operating costs
typically increase by a constant percentage as the num-
ber of either type of policy increases by a given percent-
age. Use the given data to estimate a multiplicative
model for this insurance company. Interpret your
results. Does a multiplicative model provide a good fit
with these data? Answer by calculating the appropriate
standard error of estimate and R2 value, based on origi-
nal units of the dependent variable.

32. Suppose that an operations manager is trying to deter-
mine the number of labor hours required to produce
the ith unit of a certain product. Consider the data pro-
vided in the file P10_32.xlsx. For example, the second
unit produced required 517 labor hours, and the 600th
unit required 34 labor hours.
a. Use the given data to estimate a relationship

between the total number of units produced and the
labor hours required to produce the last unit in the
total set. Interpret your findings.

b. Use your estimated relationship to predict the
number of labor hours that will be needed to
produce the 800th unit.

Level B

33. The human resources manager of DataCom, Inc.,
wants to predict the annual salaries of given employ-
ees using the potential explanatory variables in the file
P10_05.xlsx.
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a. Estimate an appropriate multiple regression
equation to predict the annual salary of a given
DataCom employee using all of the data in
columns C–H.

b. Interpret the estimated regression coefficients.
c. According to the estimated regression model, is

there a difference between the mean salaries earned
by male and female employees at DataCom? If so,
how large is the difference? According to your
equation, does this difference depend on the values
of the other explanatory variables? Explain.

d. According to the estimated regression model, is
there a difference between the mean salaries earned
by employees in the sales department and those in
the advertising department at DataCom? If so, how
large is the difference? According to your equation,
does this difference depend on the values of the
other explanatory variables? Explain.

e. According to the estimated regression model, in
which department are DataCom employees paid
the highest mean salary (after controlling for
other explanatory variables)? In which department
are DataCom employees paid the lowest mean
salary?

f. Given the estimated regression model, predict the
annual salary of a female employee who served in
a similar department at another company for 10
years prior to coming to work at DataCom. This
woman, a graduate of a four-year collegiate
business program, has been supervising 12
subordinates in the purchasing department since
joining the organization five years ago.

34. Does the rate of violent crime acts vary across
different regions of the United States? Answer this
with the (somewhat old), 1999 data in the file
P10_34.xlsx as requested below.
a. Estimate an appropriate regression model to

explain the variation in violent crime rate across
the four given regions of the United States.
Interpret the estimated equation. Rank the four
regions from highest to lowest according to their
mean violent crime rate. Could you have done this
without regression? Explain.

b. How would you modify the regression model in
part a to account for possible differences in the
violent crime rate across the various subdivisions
of the given regions? Estimate your revised
regression equation and interpret your findings.
Rank the nine subdivisions from highest to lowest
according to their mean violent crime rate.

35. Continuing Problems 6 and 15 on the 2006–2007 
movie data in the file P02_02.xlsx, create a new vari-
able Total Revenue that is the sum of Total US Gross,
International Gross, and US DVD Sales. How well can
this new variable be predicted from the data in columns
C–F? For Distributor, relabel the categories so that there

are only two: Large Distributor and Small Distributor.
The former is any distributor that had at least 12 movies
in this period, and the latter is all the rest. For Genre,
relabel the categories to be Comedy, Drama, Adventure,
Action, Thriller/Suspense, and Other. (Other includes
Black Comedy, Documentary, Horror, Musical, and
Romantic Comedy.) Interpret the coefficients of the
estimated regression equation. How would you explain
the results to someone in the movie business? Do you
think that predictions of total revenue from this regres-
sion equation will be very accurate? Why?

36. Continuing Problem 18, suppose that the antique
collector believes that the rate of increase of the
auction price with the age of the item will be driven
upward by a large number of bidders. How would
you revise the multiple regression equation
developed previously to model this feature of the
problem?
a. Estimate your revised equation using the data in

the file P10_18.xlsx.
b. Interpret each of the estimated coefficients in your

revised model.
c. Does this revised model fit the given data better

than the original multiple regression model?
Explain why or why not.

37. Continuing Problem 19, revise the previous multiple
regression equation to include an interaction term
between the return on average equity (X1) and annual
dividend rate (X2).
a. Estimate your revised equation using the data

provided in the file P10_19.xlsx.
b. Interpret each of the estimated coefficients in

your revised equation. In particular, how do you
interpret the coefficient for the interaction term in
the revised equation?

c. Does this revised equation fit the given data better
than the original multiple regression equation?
Explain why or why not.

38. Continuing Problem 22, suppose that one of the
managers of this regional express delivery service
company is trying to decide whether to add an
interaction term involving the package weight (X1) 
and the distance shipped (X2) in the previous multiple
regression equation.
a. Why would the manager want to add such a term to

the regression equation?
b. Estimate the revised equation using the data given

in the file P10_22.xlsx.
c. Interpret each of the estimated coefficients in your

revised equation. In particular, how do you
interpret the coefficient for the interaction term in
the revised equation?

d. Does this revised equation fit the data better than
the original multiple regression equation? Explain
why or why not.
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10.7 VALIDATION OF THE FIT

The fit from a regression analysis is often overly optimistic. When you use the least
squares procedure on a given set of data, all of the idiosyncrasies of the particular data set
are exploited to obtain the best possible fit. However, there is no guarantee that the fit will
be as good when the estimated regression equation is applied to new data. In fact, it usually
isn’t. This is particularly important when the goal is to use the regression equation to
predict new values of the dependent variable. The usual situation is that you use a given
data set to estimate a regression equation. Then you gather new data on the explanatory
variables and use these, along with the already-estimated regression equation, to predict
the new (but unknown) values of the dependent variable.

One way to see whether this procedure will be
successful is to split the original data set into two
subsets: one subset for estimation and one subset
for validation. A regression equation is estimated
from the first subset. Then the values of explanatory
variables from the second subset are substituted
into this equation to obtain predicted values for the
dependent variable. Finally, these predicted values
are compared to the known values of the dependent
variable in the second subset. If the agreement is
good, there is reason to believe that the regression
equation will predict well for new data. This proce-
dure is called validating the fit.

This validation procedure is fairly simple 
to perform in Excel. We illustrate it for the Bendrix
manufacturing data in Example 10.2. (See the 
file Overhead Costs Validation.xlsx.) There we
used 36 monthly observations to regress Overhead on

MachHrs and ProdRuns. For convenience, the regression output is repeated in Figure 10.45. In
particular, it shows an R2 value of 86.6% and an se value of $4109.

Now suppose that this data set is from one of Bendrix’s two plants. The company
would like to predict overhead costs for the other plant by using data on machine hours and
production runs at the other plant. The first step is to see how well the regression from
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Training and Validation Sets

This practice of partitioning a data set into a set for esti-

mation and a set for validation is becoming much more

common as larger data sets become available. It allows

you to see how a given procedure such as regression

works on a data set where you know the Ys. If it works

well, you have more confidence that it will work well

on a new data set where you do not know the Ys.This

partitioning is a routine part of data mining, the explo-

ration of large data sets. In data mining, the first data

set is usually called the training set, and the second data

set is called the validation or testing set.

FUNDAMENTAL INSIGHT

7
8
9

10
11
12
13
14
15
16
17
18
19
20

A B C D E F G
rrEtSdetsujdAelpitluM  of

Summary RR -Square

0.9308 0.8664 0.8583 4108.993

Degrees of Sum of Mean of 
ANOVA Table Freedom Squares Squares

Explained 2 3614020661 1807010330 107.0261 < 0.0001
Unexplained 33 557166199.1 16883824.22

Standard
Regression Table reppUrewoLrorrE

Constant 3996.678 6603.651 0.6052 0.5492 -9438.551 17431.907
MachHrs 43.536 3.589 12.1289 < 0.0001 36.234 50.839
ProdRuns 883.618 82.251 10.7429 < 0.0001 716.276 1050.960

R-Square

F- o p-Value

ttneiciffeoC -Value p-Value
Confidence Interval 95%

Figure 10.45 Multiple Regression Output for Bendrix Example
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Figure 10.45 fits data from the other plant. This validation on the 36 months of data is
shown in Figure 10.46. 
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
45
46
47
48

A B C D E F
Valida�on data

Coefficients from regression equa�on (based on original data)
Constant MachHrs ProdRuns

3996.6782 43.5364 883.6179

Comparison of summary measures
Original Valida�on

R-square 0.8664 0.7733
StErr of Est 4108.99 5256.50

Month MachHrs ProdRuns Overhead d Residual
4 85023 7391

-8230

-5324

6 -3423
0 -1869

4 106552 -2198
6 104359 587

-1864
4 105999 -7525

1 1374 24 9241
2 1510 35 92433 100663
3 1213 21 81907 75362 6545
4 1629 27 93451 98775
5 1858 28 112203 109629 2574
6 1763 40 112673 11609
7 1449 44 104091 10596
8 1422 46 10435

33 1534 38 10494
34 1529 29 94325 96189
35 1389 47 9847
36 1350 34 90857 92814 -1957

Figure 10.46

Validation of

Bendrix Regression

Results

To obtain the results in this figure, proceed as follows.

PROCEDURE FOR VALIDATING REGRESSION RESULTS

1 Copy old results. Copy the results from the original regression to the ranges B5:D5
and B9:B10.

2 Calculate fitted values and residuals. The fitted values are now the predicted values
of overhead for the other plant, based on the original regression equation. Find these by sub-
stituting the new values of MachHrs and ProdRuns into the original equation. Specifically,
enter the formula

�$B$5�SUMPRODUCT($C$5:$D$5,B13:C13)

in cell E13 and copy it down. Then calculate the residuals (prediction errors for the other
plant) by entering the formula

�D13-E13

in cell F13 and copying it down.

3 Calculate summary measures. You can see how well the original equation fits the
new data by calculating R2 and se values. Recall that R2 in general is the square of the
correlation between observed and fitted values. Therefore, enter the formula

�CORREL(E13:E48,D13:D48)^2
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in cell C9. The se value is essentially the average of the squared residuals, but it uses the
denominator n � 3 (when there are two explanatory variables) rather than n � 1. Therefore,
enter the formula

�SQRT(SUMSQ((F13:F48)/33)

in cell C10.
The results in Figure 10.46 are typical. The validation results are usually not as good

as the original results. The value of R2 has decreased from 86.6% to 77.3%, and the value
of se has increased from $4109 to $5257. Nevertheless, Bendrix might conclude that the
original regression equation is adequate for making future predictions at either plant.

10.8 CONCLUSION

In this chapter we have illustrated how to fit an equation to a set of points and how to interpret
the resulting equation. We have also discussed two measures, R2 and se, that indicate the good-
ness of fit of the regression equation. Although the general technique is called linear regres-
sion, it can be used to estimate nonlinear relationships through suitable transformations of
variables. We are not finished with our study of regression, however. In the next chapter we
make some statistical assumptions about the regression model and then discuss the types of
inferences that can be made from regression output. In particular, we discuss the accuracy of
the estimated regression coefficients, the accuracy of predictions made from the regression
equation, and the choice of explanatory variables to include in the regression equation.
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Excel’s SUMSQ
function is often handy.
It sums the squares of
values in a range.

Summary of Key Terms

Term Symbol Explanation Excel Page Equation
Regression  A general method for estimating the 531
analysis relationship between a dependent 

variable and one or more explanatory 
variables

Dependent Y The variable being estimated 532
(or response) or predicted in a regression 
variable analysis

Explanatory X1, X2, The variables used to explain or 532
(or and predict the dependent variable
independent) so on
variables

Simple  A regression model with a StatTools/ 532
regression single explanatory variable Regression & 

Classification/
Regression

Multiple  A regression model with any StatTools/ 532
regression number of explanatory variables Regression &

Classification/ 
Regression

Correlation rXY A measure of the strength of the =CORREL 540 10.1
linear relationship between two (range1, range2),
variables X and Y or StatTools/

Summary Statistics/
Correlation and 
Covariance

(continued)
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10.8 Conclusion 589

Term Symbol Explanation Excel Page Equation
Fitted value The predicted value of the dependent 543 10.2

variable, found by substituting explana-
tory values into the regression equation

Residual The difference between the 543 10.2 
actual and fitted values of 
the dependent variable 

Least squares line The regression equation that StatTools/ 544 10.3, 10.4
minimizes the sum of squared Regression & 
residuals Classification/

Regression

Standard error se Essentially, the standard deviation of StatTools/  549 10.7, 10.11
of estimate the residuals; indicates the Regression &

magnitude of the prediction errors Classification/ 
Regression

R-square R2 The percentage of variation in the StatTools/  558 10.8
response variable explained by Regression &
the regression model Classification/ 

Regression

Adjusted R2 A measure similar to R2, but adjusted 558
for the number of explanatory 
variables in the equation

Regression b1, b2, The coefficients of the explanatory StatTools/  554 10.9
coefficients and variables in a regression equation Regression &

so on Classification/ 
Regression

Dummy (or indi- Variables coded as 0 or 1, used to StatTools/ 560
cator) variables capture categorical variables Data Utilities/

in a regression analysis Dummy

Interaction variables Products of explanatory variables, StatTools/ 567
used when the effect of one on the Data Utilities/ 
dependent variable depends on the Interaction
value of the other

Nonlinear Variables created to capture nonlinear StatTools/ 571
transformations relationships in a regression model Data Utilities/ 

Transform

Quadratic model A regression model with linear and StatTools/ 573
squared explanatory variables Regression &

Classification/ 
Regression

Model with A regression model using StatTools/ Regression & 574
logarithmic logarithms of Y and/or Xs Classification/ 
transformations Regression

Constant elasticity A relationship where predicted Y StatTools/ 577 10.21
(or multiplicative changes by a constant percentage Regression & 
relationship) when any X changes by 1%; Classification/

requires logarithmic transformations Regression

Learning curve A particular multiplicative relationship StatTools/ 581 10.22
used to indicate how cost or time in Regression & 
production decreases over time Classification/

Regression

Validation of fit Checks how well a regression  StatTools/ 586
model based on one sample Regression & 
predicts a related sample Classification/ 

Regression 

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



590 Chapter 10 Regression Analysis: Estimating Relationships

P R O B L E M S

Conceptual Questions

C.1. Consider the relationship between yearly wine
consumption (liters of alcohol from drinking wine,
per person) and yearly deaths from heart disease
(deaths per 100,000 people) in 19 developed
countries. Suppose that you read a newspaper article
in which the reporter states the following:

Researchers find that the correlation between yearly
wine consumption and yearly deaths from heart
disease is �0.84. Thus, it is reasonable to conclude
that increased consumption of alcohol from wine
causes fewer deaths from heart disease in
industrialized societies.

Comment on the reporter’s interpretation of the
correlation in this situation.

C.2. “It is generally appropriate to delete all outliers in a
data set that are apparent in a scatterplot.” Do you
agree with this statement? Explain.

C.3. How would you interpret the relationship between
two numeric variables when the estimated least
squares regression line for them is essentially
horizontal (i.e., flat)?

C.4. Suppose that you generate a scatterplot of residuals
versus fitted values of the dependent variable for an
estimated regression equation. Furthermore, you
find the correlation between the residuals and
fitted values to be 0.829. Does this provide a good
indication that the estimated regression equation is
satisfactory? Explain why or why not.

C.5. Suppose that you have generated three alternative
multiple regression equations to explain the variation
in a particular dependent variable. The regression
output for each equation can be summarized as
follows:

Equation 1 Equation 2 Equation 3
No. of Xs 4 6 9
R2 0.76 0.77 0.79
Adjusted R2 0.75 0.74 0.73

Which of these equation would you select as “best”?
Explain your choice.

C.6. Suppose you want to investigate the relationship
between a dependent variable Y and two potential
explanatory variables X1 and X2. Is the R2 value
for the equation with both X variables included
necessarily at least as large as the R2 value from
each equation with only a single X? Explain why
or why not. Could the R2 value for the equation with

both X variables included be larger than the sum of
the R2 values from the separate equations, each with
only a single X included? Is there any intuitive
explanation for this?

C.7. Suppose you believe that two variables X and Y
are related, but you have no idea which way the
causality goes. Does X cause Y or vice versa (or
maybe even neither)? Can you tell by regressing
Y on X and then regressing X on Y? Explain. Also,
provide at least one real example where the direction
of causality would be ambiguous.

C.8. Suppose you have two columns of monthly data,
one on advertising expenditures and one on sales.
If you use this data set, as is, to regress sales on
advertising, will it adequately capture the behavior
that advertising in one month doesn’t really affect
sales in that month but only in future months? What
should you do, in terms of regression, to capture this
timing effect?

C.9. Suppose you want to predict reading speed using,
among other variables, the device the person is
reading from. This device could be a regular book,
an iPhone, a Kindle, or others. Therefore, you create
dummy variables for device. How, exactly, would
you do it? If you use regular book as the reference
category and another analyst uses, say, Kindle as the
reference category, will you get the same regression
results? Explain.

C.10. Explain the benefits of using natural logarithms of
variables, either of Y or of the Xs, as opposed to
other possible nonlinear functions, when scatterplots
(or possibly economic considerations) indicate that
nonlinearities should be taken into account. Explain
exactly how you interpret regression coefficients if
logs are taken only of Y, only of the Xs, or of both
Y and the Xs.

C.11. The number of cars per 1000 people is known for
virtually every country in the world. For many
countries, however, per capita income is not known.
How might you estimate per capita income for
countries where it is unknown?

Level A

39. Many companies manufacture products that are at
least partially produced using chemicals (e.g., paint,
gasoline, and steel). In many cases, the quality of the
finished product is a function of the temperature and
pressure at which the chemical reactions take place.
Suppose that a particular manufacturer wants to
model the quality (Y) of a product as a function of
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the temperature (X1) and the pressure (X2) at which it is
produced. The file P10_39.xlsx contains data obtained
from a carefully designed experiment involving these
variables. Note that the assigned quality score can
range from a minimum of 0 to a maximum of 100 for
each manufactured product.
a. Estimate a multiple regression equation that

includes the two given explanatory variables.
Does the estimated equation fit the data well?

b. Add an interaction term between temperature and
pressure and run the regression again. Does the
inclusion of the interaction term improve the model’s
goodness of fit?

c. Interpret each of the estimated coefficients in the
two equations. How are they different? How do
you interpret the coefficient for the interaction term
in the second equation?

40. A power company located in southern Alabama wants to
predict the peak power load (i.e., the maximum amount
of power that must be generated each day to meet
demand) as a function of the daily high temperature (X).
A random sample of 25 summer days is chosen, and the
peak power load and the high temperature are recorded
each day. The file P10_40.xlsx contains these
observations.
a. Create a scatterplot for these data. Comment on the

observed relationship between Y and X.
b. Estimate an appropriate regression equation to

predict the peak power load for this power
company. Interpret the estimated regression
coefficients.

c. Analyze the estimated equation’s residuals. 
Do they suggest that the regression equation is
adequate? If not, return to part b and revise your
equation. Continue to revise the equation until the
results are satisfactory.

d. Use your final equation to predict the peak power
load on a summer day with a high temperature of
100 degrees.

41. Management of a home appliance store would like 
to understand the growth pattern of the monthly sales
of Blu-ray disc players over the past two years.
Managers have recorded the relevant data in the file
P10_09.xlsx. 
a. Create a scatterplot for these data. Comment on the

observed behavior of monthly sales at this store
over time.

b. Estimate an appropriate regression equation to
explain the variation of monthly sales over the
given time period. Interpret the estimated
regression coefficients.

c. Analyze the estimated equation’s residuals. Do
they suggest that the regression equation is
adequate? If not, return to part b and revise your
equation. Continue to revise the equation until the
results are satisfactory.

42. A small computer chip manufacturer wants to forecast
monthly operating costs as a function of the number
of units produced during a month. The company has
collected the 16 months of data in the file P10_42.xlsx.
a. Determine an equation that can be used to predict

monthly production costs from units produced. Are
there any outliers?

b. How could the regression line obtained in part a
be used to determine whether the company was
efficient or inefficient during any particular month?

43. The file P02_07.xlsx includes data on 204 employees
at the (fictional) company Beta Technologies.
a. Create a recoded version of Education, where 0 or

2 is recoded as 1, 4 is recoded as 2, and 6 or 8 is
recoded as 3. Then create dummy variables for
these three categories.

b. Use pivot tables to explore whether average salary
depends on gender, and whether it depends on the
recoded Education. Then use scatterplots to explore
whether salary is related to age, prior experience,
and Beta experience. Briefly state your results.

c. Run a regression of salary versus gender, prior
experience, Beta experience, and any two of the
education dummies, and interpret the results.

d. If any of the potential explanatory variables seems
to be unrelated to salary, based on the results from
part b, run one or more regressions without such a
variable. Comment on whether it makes much of
a difference in the regression outputs.

44. The file P10_44.xlsx contains data that relate the unit
cost of producing a fuel pressure regulator to the
cumulative number of fuel pressure regulators
produced at an automobile production plant. For
example, the 4000th unit cost $13.70 to produce.
a. Fit a learning curve to these data.
b. You would predict that doubling cumulative

production reduces the cost of producing a
regulator by what amount?

45. The beta of a stock is found by running a regression
with the monthly return on a market index as the
explanatory variable and the monthly return on the
stock as the dependent variable. The beta of the stock
is then the slope of this regression line.
a. Explain why most stocks have a positive beta.
b. Explain why a stock with a beta with absolute

value greater than one is more volatile than the
market index and a stock with a beta less than one
(in absolute value) is less volatile than the market
index.

c. Use the data in the file P10_45.xlsx to estimate the
beta for each of the four companies listed:
Caterpillar, Goodyear, McDonalds, and Ford. Use
the S&P 500 as the market index.

d. For each of these companies, what percentage of
the variation in its returns is explained by the
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variation in the market index? What percentage is
unexplained by variation in the market index?

e. Verify (using Excel’s COVAR and VARP functions)
that the beta for each company is given by

Also, verify that the correlation between each
company’s returns and the market’s returns is the
square root of R2.

46. Continuing the previous problem, explore whether the
beta for these companies changes through time. For
example, are the betas based on 1990s data different
from those based on 2000s data? Or are data based on
only five years of data different from those based on
longer time periods? 

47. The file Catalog Marketing.xlsx contains recent data
on 1000 HyTex customers. (This is the same data set
used in Example 2.7 in Chapter 2.)
a. Create a pivot table of average amount spent versus

the number of catalogs sent. Is there any evidence
that these two variables are related? Would it make
sense to enter Catalogs, as is, in a regression
equation for AmountSpent, or should dummies be
used? Explain.

b. Create a pivot table of average amount spent ver-
sus History. Is there any evidence that these two
variables are related? Would it make sense to
enter History, as is, in a regression equation for
AmountSpent, or should dummies be used?
Explain.

c. Answer part b with History replaced by Age.
d. Base on your results from parts a through c,

estimate an appropriate regression equation for
AmountSpent, using the appropriate forms for
Catalogs, History, and Age, plus the variables
Gender, OwnHome, Married, and Close. Interpret
this equation and comment on its usefulness in
predicting AmountSpent.

48. The file P10_48.xlsx contains monthly sales and price
of a popular candy bar.
a. Describe the type of relationship between price and

sales (linear/nonlinear, strong/weak).
b. What percentage of variation in monthly sales is

explained by variation in price? What percentage is
unexplained?

c. If the price of the candy bar is $1.05, predict
monthly candy bar sales.

d. Use the regression output to determine the
correlation between price and candy bar sales.

e. Are there any outliers?

49. The file P10_49.xlsx contains the amount of money
spent advertising a product and the number of units
sold for eight months.

a. Assume that the only factor influencing monthly
sales is advertising. Fit the following three curves
to these data: linear (Y � a � bX), exponential 
(Y � abX), and multiplicative (Y � aXb). Which
equation fits the data best?

b. Interpret the best-fitting equation.
c. Using the best-fitting equation, predict sales during

a month in which $60,000 is spent on advertising.

50. A golf club manufacturer is trying to determine how
the price of a set of clubs affects the demand for clubs.
The file P10_50.xlsx contains the price of a set of
clubs and the monthly sales.
a. Assume the only factor influencing monthly sales

is price. Fit the following three curves to these
data: linear (Y � a � bX), exponential (Y � abX),
and multiplicative (Y � aXb). Which equation fits
the data best?

b. Interpret your best-fitting equation.
c. Using the best-fitting equation, predict sales during

a month in which the price is $470.

51. The file P03_55.xlsx lists the average salary for each
Major League Baseball (MLB) team from 2004 to
2009, along with the number of team wins in each of
these years.
a. Rearrange the data so that there are four long

columns: Team, Year, Salary, and Wins. There
should be 6*30 values for each. 

b. Create a scatterplot of Wins (Y) versus Salary (X).
Is there any indication of a relationship between
these two variables? Is it a linear relationship?

c. Run a regression of Wins versus Salary. What does
it say, if anything, about teams buying their way to
success?

52. Repeat the previous problem with the basketball data
in the file P03_56.xlsx. (Now there will be 5*30 rows
in the rearranged data set.)

53. Repeat Problem 51 with the football data in the file
P03_57.xlsx. (Now there will be 8*32 rows in the
rearranged data set.)

54. The Baker Company wants to develop a budget to 
predict how overhead costs vary with activity levels.
Management is trying to decide whether direct labor
hours (DLH) or units produced is the better measure
of activity for the firm. Monthly data for the preceding
24 months appear in the file P10_54.xlsx. Use regres-
sion analysis to determine which measure, DLH or
Units (or both), should be used for the budget. How
would the regression equation be used to obtain the
budget for the firm’s overhead costs?

55. The auditor of Kiely Manufacturing is concerned about
the number and magnitude of year-end adjustments that
are made annually when the financial statements of
Kiely Manufacturing are prepared. Specifically, the
auditor suspects that the management of Kiely

Covariance between Company and Market

Variance of Market
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Manufacturing is using discretionary write-offs to
manipulate the reported net income. To check this,
the auditor has collected data from 25 companies
that are similar to Kiely Manufacturing in terms of
manufacturing facilities and product lines. The
cumulative reported third-quarter income and the final
net income reported are listed in the file P10_55.xlsx
for each of these 25 companies. If Kiely Manufacturing
reports a cumulative third-quarter income of $2,500,000
and a preliminary net income of $4,900,000, should
the auditor conclude that the relationship between
cumulative third-quarter income and the annual income
for Kiely Manufacturing differs from that of the 25
companies in this sample? Explain why or why not.

56. The file P10_56.xlsx contains some interesting data
on the U.S. presidential elections from 1880 through
2008. The variable definitions are on the Source sheet.
The question is whether the Vote variable can be
predicted very well from the other variables.
a. Create pivot tables and/or scatterplots to check

whether Vote appears to be related to the other
variables. Comment on the results.

b. Run a regression of Vote versus the other variables
(not including Year). Do the coefficients go in the
direction (positive or negative) you would expect? 
If you were going to use the regression equation to
predict Vote for the 2012 election and you had the
relevant data for the explanatory variables for 2012,
how accurate do you think your prediction would be?

Level B

57. We stated in the beginning of the chapter that
regression can be used to understand the way the
world works. That is, you can look at the regression
coefficients (their signs and magnitudes) to see the
effects of the explanatory variables on the dependent
variable. However, is it possible that apparently small
changes in the data can lead to very different-looking
equations? The file P10_57.xlsx lets you explore
this question. Columns K–R contain data on over
100 (fictional) homes that were recently sold. The
regression equation for this original data set is given in
the range T15:U21. (It was found with StatTools in the
usual way.) Columns C–I contain slight changes to the
original data, with the amount of change determined
by the adjustable parameters in row 2. (Look at the
formulas in columns C–I to see how the original data
have been changed randomly.) The regression
equation for the changed data appears in the range
T6:U12. It has been calculated through special matrix
functions (not StatTools), so that it changes
automatically when the random data change. (These
require the 1s in column B.) Experiment by pressing
the F9 key or changing the adjustable parameters to
see how much the two regression equations can differ.

After experimenting, briefly explain how you think
housing pricing works—or can you tell?

58. The file P02_35.xlsx contains data from a survey of
500 randomly selected households. For this problem,
use Monthly Payment as the dependent variable in
several regressions, as explained below.
a. Beginning with Family Size, iteratively add one

explanatory variable and estimate the resulting
regression equation to explain the variation in
Monthly Payment. If adding any explanatory
variable causes the adjusted R2 measure to fall,
do not include that variable in subsequent versions
of the regression model. Otherwise, include the vari-
able and consider adding the next variable in the set.
Which variables are included in the final version of
your regression model? (Add dummies for Location
in a single step, and use Total Income rather than
First Income and Second Income separately.)

b. Interpret the final estimated regression equation
you obtained through the process outlined in part a.
Also, interpret the standard error of estimate se, R

2,
and the adjusted R2 for the final estimated model.

59. (This problem is based on an actual court case in
Philadelphia.) In the 1994 congressional election,
the Republican candidate outpolled the Democratic
candidate by 400 votes (excluding absentee ballots).
The Democratic candidate outpolled the Republican
candidate by 500 absentee votes. The Republican
candidate sued (and won), claiming that vote fraud
must have played a role in the absentee ballot count.
The Republican’s lawyer ran a regression to predict
(based on past elections) how the absentee ballot
margin could be predicted from the votes tabulated on
voting machines. Selected results are given in the file
P10_59.xlsx. Show how this regression could be used
by the Republican to “prove” his claim of vote fraud. 

60. In the world of computer science, Moore’s law is
famous. Although there are various versions of this
law, they all say something to the effect that
computing power doubles every two years. Several
researchers estimated this law with regression using
real data in 2006. Their paper can be found online at
http://download.intel.com/pressroom/pdf/computer
trendsrelease.pdf. For example, one interesting chart
appears on page S1, backed up with regression results
on another page. What exactly do these results say
about doubling every two years (or do they contradict
Moore’s law)?

61. (The data for this problem are fictitious, but they are
not far off.) For each of the top 25 business schools,
the file P10_61.xlsx contains the average salary of a
professor. Thus, for Indiana University (number 15 in
the rankings), the average salary is $46,000. Use this
information and regression to show that IU is doing a
great job with its available resources.
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62. Suppose the correlation between the average height of
parents and the height of their firstborn male child is
0.5. You are also told that: 
■ The average height of all parents is 66 inches.
■ The standard deviation of the average height of

parents is 4 inches.
■ The average height of all male children is 70 inches.
■ The standard deviation of the height of all male

children is 4 inches.

If a mother and father are 73 and 80 inches tall,
respectively, how tall do you predict their son to be?
Explain why this is called “regression toward the
mean.”

63. Do increased taxes increase or decrease economic
growth? The file P10_63.xlsx lists tax revenues as a
percentage of gross domestic product (GDP) and the
average annual percentage growth in GDP per capita
for nine countries during the years 1970 through 1994.
Do these data support or contradict the dictum of
supply-side economics? 

64. For each of the four data sets in the file P10_64.xlsx,
calculate the least squares line. For which of these data
sets would you feel comfortable in using the least
squares line to predict Y? 

65. Suppose you run a regression on a data set of Xs and
Ys and obtain a least squares line of Y � 12 � 3X.
a. If you double each value of X, what is the new least

squares line?
b. If you triple each value of Y, what is the new least

squares line?
c. If you add 6 to each value of X, what is the new

least squares line?
d. If you subtract 4 from each value of Y, what is the

new least squares line?

66. The file P10_66.xlsx contains monthly cost accounting
data on overhead costs, machine hours, and direct
material costs. This problem will help you explore the
meaning of R2 and the relationship between R2 and
correlations.
a. Create a table of correlations between the individual

variables.
b. If you ignore the two explanatory variables

Machine Hours and Direct Material Cost and
predict each Overhead Cost as the mean of
Overhead Cost, then a typical “error” is Overhead
Cost minus the mean of Overhead Cost. Find the
sum of squared errors using this form of prediction,
where the sum is over all observations.

c. Now run three regressions: (1) Overhead Cost
(OHCost) versus Machine Hours, (2) OHCost
versus Direct Material Cost, and (3) OHCost
versus both Machine Hours and Direct Material
Cost. (The first two are simple regressions, the
third is a multiple regression.) For each, find 
the sum of squared residuals, and divide this by

the sum of squared errors from part b. What is
the relationship between this ratio and the
associated R2 for that equation? (Now do you 
see why R2 is referred to as the percentage of
variation explained?)

d. For the first two regressions in part c, what is the
relationship between R2 and the corresponding
correlation between the dependent and explanatory
variable? For the third regression it turns out that
the R2 can be expressed as a complicated function
of all three correlations in part a. That is, the
function involves not just the correlations between
the dependent variable and each explanatory
variable, but also the correlation between the
explanatory variables. Note that this R2 is not just
the sum of the R2 values from the first two
regressions in part c. Why do you think this is true,
intuitively? However, R2 for the multiple regression
is still the square of a correlation—namely, the
correlation between the observed and predicted
values of OHCost. Verify that this is the case for
these data.

67. The file P10_67.xlsx contains hypothetical starting
salaries for MBA students directly after graduation.
The file also lists their years of experience prior to
the MBA program and their class rank in the MBA
program (on a 0–100 scale).
a. Estimate the regression equation with Salary as

the dependent variable and Experience and Class
Rank as the explanatory variables. What does this
equation imply? What does the standard error of
estimate se tell you? What about R2?

b. Repeat part a, but now include the interaction term
Experience*Class Rank (the product) in the equa-
tion as well as Experience and Class Rank individu-
ally. Answer the same questions as in part a. What
evidence is there that this extra variable (the interac-
tion variable) is worth including? How do you 
interpret this regression equation? Why might you
expect the interaction to be present in real data of
this type?

68. In a study published in 1985 in Business Horizons,
Platt and McCarthy employed multiple regression
analysis to explain variations in compensation among
the CEOs of large companies. (Although the data set is
old, we suspect the results would be similar with more
current data.) Their primary objective was to discover
whether levels of compensations are affected more by
short-run considerations—“I’ll earn more now if my
company does well in the short run”—or long-run
considerations—“My best method for obtaining high
compensation is to stay with my company for a long
time.” The study used as its dependent variable the
total compensation for each of the 100 highest paid
CEOs in 1981. This variable was defined as the sum
of salary, bonuses, and other benefits (measured in
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$1000s). The following potential explanatory variables
were considered. To capture short-run effects, the
average of the company’s previous five years’
percentage changes in earnings per share (EPS) and
the projected percentage change in next year’s EPS
were used. To capture the long-run effect, age and
years as CEO, two admittedly correlated variables,
were used. Dummy variables for the CEO’s
background (finance, marketing, and so on) were also
considered. Finally, the researchers considered several
nonlinear and interaction terms based on these
variables. The best-fitting equation was the following:

Total Compensation � �3493 � 898.7*Years as CEO

� 9.28*(Years as CEO)2 �17.19*Years as CEO*Age

� 88.27*Age � 867.4*Finance

(The last variable is a dummy variable, equal to 1 if
the CEO had a finance background, 0 otherwise.) The
corresponding R2 was 19.4%.
a. Explain what this equation implies about CEO

compensations.
b. The researchers drew the following conclusions.

First, it appears that CEOs should indeed concen-
trate on long-run considerations—namely, those that
keep them on their jobs the longest. Second, the
absence of the short-run company-related variables
from the equations helps to confirm the conjecture
that CEOs who concentrate on earning the quick
buck for their companies may not be acting in their
best self-interest. Finally, the positive coefficient of
the dummy variable may imply that financial people
possess skills that are vitally important, and firms
therefore outbid one another for the best financial
talent. Based on the data given, do you agree with
these conclusions?

c. Consider a CEO (other than those in the study) who
has been in his position for 10 years and has a
financial background. Predict his total yearly
compensation (in $1000s) if he is 50 years old and
then if he is 55 years old. Explain why the difference
between these two predictions is not 5(88.27), where
88.27 is the coefficient of the Age variable.

69. The Wilhoit Company has observed that there is a
linear relationship between indirect labor expense

and direct labor hours. Data for direct labor hours
and indirect labor expense for 18 months are given
in the file P10_69.xlsx. At the start of month 7, all
cost categories in the Wilhoit Company increased by
10%, and they stayed at this level for months 7
through 12. Then at the start of month 13, another
10% across-the-board increase in all costs occurred,
and the company operated at this price level for
months 13 through 18.
a. Plot the data. Verify that the relationship between

indirect labor expense and direct labor hours is
approximately linear within each six-month period.
Use regression (three times) to estimate the slope
and intercept during months 1 through 6, during
months 7 through 12, and during months 13
through 18.

b. Use regression to fit a straight line to all 18 data
points simultaneously. What values of the slope
and intercept do you obtain?

c. Perform a price level adjustment to the data and
re-estimate the slope and intercept using all 18
data points. Assuming no cost increases for month
19, what is your prediction for indirect labor
expense if there are 35,000 direct labor hours in
month 19?

d. Interpret your results. What causes the difference in
the linear relationship estimated in parts b and c?

70. The Bohring Company manufactures a sophisticated
radar unit that is used in a fighter aircraft built by
Seaways Aircraft. The first 50 units of the radar unit
have been completed, and Bohring is preparing to
submit a proposal to Seaways Aircraft to manufacture
the next 50 units. Bohring wants to submit a
competitive bid, but at the same time, it wants to
ensure that all the costs of manufacturing the radar
unit are fully covered. As part of this process, Bohring
is attempting to develop a standard for the number of
labor hours required to manufacture each radar unit.
Developing a labor standard has been a continuing
problem in the past. The file P10_70.xlsx lists the
number of labor hours required for each of the first 50
units of production. Bohring accountants want to see
whether regression analysis, together with the concept
of learning curves, can help solve the company’s
problem.
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C A S E

The Firm Chair Company manufactures

customized wood furniture and sells the

furniture in large quantities to major furniture

retailers. Jim Bolling has recently been assigned to

analyze the company’s pricing policy. He has been

told that quantity discounts were usually given. For

example, for one type of chair, the pricing changed at

quantities of 200 and 400—that is, these were the

price breaks, where the marginal cost of the next

chair changed. For this type of chair, the file Firm

Chair.xlsx contains the quantity and total price to

the customer for 81 orders. Use regression to help

Jim discover the pricing structure that Firm Chair

evidently used. (Note: A linear regression of TotPrice

versus Quantity will give you a “decent” fit, but you

can do much better by introducing appropriate

variables into the regression.) ■

10.1 QUANTITY DISCOUNTS AT THE FIRM CHAIR COMPANY

596 Chapter 10 Regression Analysis: Estimating Relationships

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C A S E

Sales of single-family houses have been brisk in 

Mid City this year.This has especially been true

in older, more established neighborhoods, where

housing is relatively inexpensive compared to the

new homes being built in the newer neighborhoods.

Nevertheless, there are also many families who

are willing to pay a higher price for the prestige of

living in one of the newer neighborhoods.The file

Mid City.xlsx contains data on 128 recent sales in

Mid City. For each sale, the file shows the

neighborhood (1, 2, or 3) in which the house is

located, the number of offers made on the house,

the square footage, whether the house is made

primarily of brick, the number of bathrooms, the

number of bedrooms, and the selling price.

Neighborhoods 1 and 2 are more traditional

neighborhoods, whereas neighborhood 3 is a newer,

more prestigious neighborhood.

Use regression to estimate and interpret the

pricing structure of houses in Mid City. Here are

some considerations.

1. Do buyers pay a premium for a brick house, all

else being equal?

2. Is there a premium for a house in neighborhood

3, all else being equal?

3. Is there an extra premium for a brick house

in neighborhood 3, in addition to the usual

premium for a brick house?

4. For purposes of estimation and prediction, could

neighborhoods 1 and 2 be collapsed into a single

“older” neighborhood? ■

10.2 HOUSING PRICE STRUCTURE IN MID CITY

Case 10.2 Housing Price Structure in Mid City 597
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C A S E

Howie’s Bakery is one of the most popular

bakeries in town, and the favorite at Howie’s is

French bread. Each day of the week, Howie’s bakes a

number of loaves of French bread, more or less

according to a daily schedule.To maintain its fine

reputation, Howie’s gives away to charity any loaves

not sold on the day they are baked. Although this

occurs frequently, it is also common for Howie’s to

run out of French bread on any given day—more

demand than supply. In this case, no extra loaves are

baked that day; the customers have to go elsewhere

(or come back to Howie’s the next day) for their

French bread.Although French bread at Howie’s is

always popular, Howie’s stimulates demand by

running occasional 10% off sales.

Howie’s has collected data for 20 consecutive

weeks, 140 days in all.These data are listed in the

file Howies Bakery.xlsx.The variables are Day

(Monday–Sunday), Supply (number of loaves baked

that day), OnSale (whether French bread is on sale

that day), and Demand (loaves actually sold that

day). Howie’s would like you to see whether regres-

sion can be used successfully to estimate Demand

from the other data in the file. Howie reasons that

if these other variables can be used to predict

Demand, then he might be able to determine his

daily supply (number of loaves to bake) in a more

cost-effective way.

How successful is regression with these data? 

Is Howie correct that regression can help him

determine his daily supply? Is any information miss-

ing that would be useful? How would you obtain it?

How would you use it? Is this extra information

really necessary? ■

10.3 DEMAND FOR FRENCH BREAD AT HOWIE’S BAKERY

598 Chapter 10 Regression Analysis: Estimating Relationships
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C A S E

Financial advisors offer many types of advice to

customers, but they generally agree that one of

the best things people can do is invest as much as

possible in tax-deferred retirement plans. Not only

are the earnings from these investments exempt

from income tax (until retirement), but the

investment itself is tax-exempt.This means that if

a person invests, say, $10,000 of his $100,000 income

in a tax-deferred retirement plan, he pays income

tax that year on only $90,000 of his income.This is

probably the best method available to most people

for avoiding tax payments. However, which group

takes advantage of this attractive investment

opportunity: everyone, people with low salaries,

people with high salaries, or who?

The file Retirement Plan.xlsx lets you

investigate this question. It contains data on 194

(hypothetical) couples: number of dependent children,

combined annual salary of husband and wife, current

mortgage on home, average amount of other (non-

mortgage) debt, and percentage of combined income

invested in tax-deferred retirement plans (assumed to

be limited to 15%, which is realistic). Using correla-

tions, scatterplots, and regression analysis, what can

you conclude about the tendency of this group of

people to invest in tax-deferred retirement plans? ■

10.4 INVESTING FOR RETIREMENT

Case 10.4 Investing for Retirement 599
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601

Regression Analysis: Statistical
Inference

C H A P T E R

PREDICTING MOVIE REVENUES

In the opener for Chapter 3, we discussed the article by Simonoff and

Sparrow (2000) that examined movie revenues for 311 movies released

in 1998 and late 1997.We saw that movie revenues were related to several

variables, including genre, Motion Picture Association of America (MPAA)

rating, country of origin, number of stars in the cast, whether the movie was

a sequel, and whether the movie was released during a few choice times.

In Chapter 3, we were limited to looking at summary measures and charts

of the data. Now that we are studying regression, we can look further into

the analysis performed by Simonoff and Sparrow. Specifically, they examined

whether these variables, plus others, are effective in predicting movie

revenues.

The authors report the results from three multiple regression models.

All of these used the logarithm of the total U.S. gross revenue from the film

as the dependent variable. (They used the logarithm because the distribution

of gross revenues is very positively skewed.) The first model used only the
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prerelease variables listed in the previous paragraph.The values of these variables were all

known prior to the movie’s release.Therefore, the purpose of this model was to see

how well revenues could be predicted before the movie was released.

The second model used the variables from model 1, along with two variables that

could be observed after the first week of the movie’s release: the first weekend gross

and the number of screens the movie opened on. (Actually, the logarithms of these

latter two variables were used, again because of positive skewness. Also, the authors

found it necessary to run two separate regressions at this stage—one for movies

that opened on 10 or fewer screens, and another for movies that opened on more

than 10 screens.) The idea here was that the success or failure of many movies

depends to a large extent on how they do right after they are released.Therefore, it

was expected that this information would add significantly to the predictive power

of the regression model.

The third model built on the second by adding an additional explanatory variable:

the number of Oscar nominations the movie received for key awards (Best Picture,

Best Director, Best Actor, Best Actress, Best Supporting Actor, and Best Supporting

Actress).This information is often not known until well after a movie’s release, but it

was hypothesized that Oscar nominations would lead to a significant increase in a

movie’s revenues, and that a regression model with this information could lead to very

different predictions of revenue.

Simonoff and Sparrow found that the coefficients of the first regression model

were in line with the box plots shown earlier in Figure 3.1 of Chapter 3. For example,

the variables that measured the number of star actors and actresses were both positive

and significant, indicating that star power tends to lead to larger revenues. However, the

predictive power of this model was poor. Given its standard error of prediction (and

taking into account that the logarithm of revenue was the dependent variable), the

authors stated that “the predictions of total grosses for an individual movie can be

expected to be off by as much as a multiplicative factor of 100 high or low.” It appears

that there is no way to predict which movies will succeed and which will fail based on

prerelease data only.

The second model added considerable predictive power.The regression equations

indicated that gross revenue is positively related to first weekend gross and negatively

related to the number of opening screens, both of these variables being significant. As for

prediction, the factor of 100 mentioned in the previous paragraph decreased to a factor

of 10 (for movies with 10 or fewer opening screens) or 2 (for movies with more than

10 opening screens).This is still not perfect—predictions of total revenue made after the

movie’s first weekend can still be pretty far off—but this additional information about

initial success certainly helps.

The third model added only slightly to the predictive power, primarily because so

few of the movies (10 out of 311) received Oscar nominations for key awards. However,

the predictions for those that did receive nominations increased considerably. For

example, the prediction for the multiple Oscar nominee Saving Private Ryan, based on the

second model, was 194.622 (millions of dollars). Its prediction based on the third model

increased to a whopping 358.237. (Interestingly, the prediction for this movie from the

first model was only 14.791, and its actual gross revenue was 216.119. Perhaps the

reason Saving Private Ryan did not make as much as the third model predicted was that

the Oscar nominations were announced about nine months after its release—too long

after release to do much good.)

Simonoff and Sparrow then used their third model to predict gross revenues for

24 movies released in 1999—movies that were not in the data set used to estimate the

regression model.They found that 21 out of 24 of the resulting 95% prediction intervals

captured the actual gross revenues, which is about what would be expected. However,

602 Chapter 11 Regression Analysis: Statistical Inference
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many of these prediction intervals were extremely wide, and several of the predictions

were well above or below the actual revenues.The authors conclude by quoting Tim

Noonan, a former movie executive:“Since predicting gross is extremely difficult, you have

to serve up a [yearly] slate of movies and know that over time you’ll have 3 or 4 to the

left and 2 or 3 to the right.You must make sure you are doing things that mitigate your

downside risk.” ■

11.2 The Statistical Model 603

11.1 INTRODUCTION

In the previous chapter you learned how to fit a regression equation to a set of points by
using the least squares method. The purpose of this regression equation is to provide a
good fit to the points in the sample so that you can understand the relationship between a
dependent variable and one or more explanatory variables. The entire emphasis of the
discussion in the previous chapter was on finding a regression model that fits the observa-
tions in the sample. In this chapter we take a slightly different point of view: We assume
that the observations in the sample are taken from some larger population. For example,
the sample of 50 regions from the Pharmex drugstore example could represent a sample of
all the regions where Pharmex does business. In this case, we might be interested in the
relationship between variables in the entire population, not just in the sample.

There are two basic problems we discuss in this chapter. The first has to do with a
population regression model. We want to infer its characteristics—that is, its intercept
and slope term(s)—from the corresponding terms estimated by least squares. We also
want to know which explanatory variables belong in the equation. There are typically a
large number of potential explanatory variables, and it is often not clear which of these do
the best job of explaining variation in the dependent variable. In addition, we would like
to infer whether there is any population regression equation worth pursuing. It is possible
that the potential explanatory variables provide very little explanation of the dependent
variable.

The second problem we discuss in this chapter is prediction. We touched on the
prediction problem in the previous chapter, primarily in the context of predicting the
dependent variable for part of the sample held out for validation purposes. In reality, we had
the values of the dependent variable for that part of the sample, so prediction was not really
necessary. Now we go beyond the sample and predict values of the dependent variable for
new observations. There is no way to check the accuracy of these predictions, at least not
right away, because the true values of the dependent variable are not yet known. However, it
is possible to calculate prediction intervals to measure the accuracy of the predictions.

11.2 THE STATISTICAL MODEL

To perform statistical inference in a regression context, you must first make several
assumptions about the population. Throughout the analysis these assumptions remain
exactly that—they are only assumptions, not facts. These assumptions represent an ideal-
ization of reality, and as such, they are never likely to be entirely satisfied for the popula-
tion in any real study. From a practical point of view, all you can ask is that they represent
a close approximation to reality. If this is the case, then the analysis in this chapter is valid.
But if the assumptions are grossly violated, statistical inferences that are based on these
assumptions should be viewed with suspicion. Although you can never be entirely certain
of the validity of the assumptions, there are ways to check for gross violations, and we dis-
cuss some of these.
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Regression Assumptions

1. There is a population regression line. It joins the means of the dependent variable
for all values of the explanatory variables. For any fixed values of the explanatory
variables, the mean of the errors is zero.

2. For any values of the explanatory variables, the variance (or standard deviation) of
the dependent variable is a constant, the same for all such values.

3. For any values of the explanatory variables, the dependent variable is normally
distributed.

4. The errors are probabilistically independent.

Because these assumptions are so crucial to the regression analysis that follows, it is impor-
tant to understand exactly what they mean. Assumption 1 is probably the most important. It
implies that for some set of explanatory variables, there is an exact linear relationship in the
population between the means of the dependent variable and the values of the explanatory
variables.

To be more specific, let Y be the dependent variable, and assume that there are k
explanatory variables, X1 through Xk. Let �Y �X1,...,Xk

be the mean of all Ys for any fixed
values of the Xs. Then assumption 1 implies that there is an exact linear relationship
between the mean �Y �X1,...,Xk

and the Xs. That is, it implies that there are coefficients � and
�1 through �k such that the following equation holds for all values of the Xs: 

604 Chapter 11 Regression Analysis: Statistical Inference

These explanatory
variables could be
original variables 
or variables you 
create, such as
dummies, interactions,
or nonlinear
transformations.

We commonly use
Greek letters to denote
population parameters
and regular letters for
their sample estimates.

Population Regression Line Joining Means

�Y�X1,...,Xk
� � � �1X1 � ��� � �kXk (11.1)

Population Regression Line with Error 

Y � � � �1X1 � ��� � �kXk � � (11.2)

In the terminology of the previous chapter, � is the intercept term, and �1 through �k
are the slope terms. We use Greek letters for these coefficients to denote that they are
unobservable population parameters. Assumption 1 implies the existence of a population
regression equation and the corresponding � and �s. However, it tells us nothing about
the values of these parameters. They still need to be estimated from sample data, using the
least squares method to do so.

Equation (11.1) says that the means of the Ys lie on the population regression line.
However, it is clear from a scatterplot that most individual Ys do not lie on this line. The
vertical distance from any point to the line is called an error. The error for any point,
labeled �, is the difference between Y and �Y �X1,...,Xk

, that is,

Y � �Y�X1,...,Xk
� �

By substituting the assumed linear form for �Y �X1,...,Xk
, we obtain Equation (11.2). This

equation states that each value of Y is equal to a fitted part plus an error. The fitted part is
the linear expression � � �1X1 � ��� � �kXk. The error � is sometimes positive, in which
case the point is above the regression line, and sometimes negative, in which case the point
is below the regression line. The last part of assumption 1 states that these errors average to
zero in the population, so that the positive errors cancel the negative errors.
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Note that an error � is not quite the same as a residual e. An error is the vertical distance
from a point to the (unobservable) population regression line. A residual is the vertical dis-
tance from a point to the estimated regression line. Residuals can be calculated from
observed data; errors cannot.

Assumption 2 concerns variation around the population regression line. Specifically, it
states that the variation of the Ys about the regression line is the same, regardless of the val-
ues of the Xs. A technical term for this property is homoscedasticity. A simpler term is
constant error variance. In the Pharmex example (Example 11.1), constant error variance
implies that the variation in Sales values is the same regardless of the value of Promote. As
another example, recall the Bendrix manufacturing example (Example 11.2). There we
related overhead costs (Overhead) to the number of machine hours (MachHrs) and the
number of production runs (ProdRuns). Constant error variance implies that overhead
costs vary just as much for small values of MachHrs and ProdRuns as for large values—or
any values in between.

There are many situations where assumption 2 is questionable. The variation in Y
often increases as X increases—a violation of assumption 2. We presented an example of
this in Figure 10.10 (repeated here in Figure 11.1), which is based on customer spending at
a mail-order company. This scatterplot shows the amount spent versus salary for a sample
of the company’s customers. Clearly, the variation in the amount spent increases as salary
increases, which makes intuitive sense. Customers with small salaries have little dispos-
able income, so they all tend to spend small amounts for mail-order items. Customers with
large salaries have more disposable income. Some of them spend a lot of it on mail-order
items and some spend only a little of it—hence, a larger variation. Scatterplots with this
“fan” shape are not at all uncommon in real studies, and they exhibit a clear violation of
assumption 2.1 We say that the data in this graph exhibit heteroscedasticity, or more
simply, nonconstant error variance. These terms are summarized in the following box.

11.2 The Statistical Model 605

1The fan shape in Figure 11.1 is probably the most common form of nonconstant error variance, but it is not the
only possible form.

Homoscedasticity means that the variability of Y values is the same for all X values.

Heteroscedasticity means that the variability of Y values is larger for some X values
than for others.
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The easiest way to detect nonconstant error variance is through a visual inspection of
a scatterplot. You create a scatterplot of the dependent variable versus an explanatory vari-
able X and see whether the points vary more for some values of X than for others. You can
also examine the residuals with a residual plot, where residual values are on the vertical
axis and some other variable (Y or one of the Xs) is on the horizontal axis. If the residual
plot exhibits a fan shape or other evidence of nonconstant error variance, this also indicates
a violation of assumption 2.

Assumption 3 is equivalent to stating that the errors are normally distributed. You can
check this by forming a histogram (or a Q-Q plot) of the residuals. If assumption 3 holds,
the histogram should be approximately symmetric and bell-shaped, and the points in the
Q-Q plot should be close to a 45º line.2 But if there is an obvious skewness, too many
residuals more than, say, two standard deviations from the mean, or some other nonnormal
property, this indicates a violation of assumption 3.

Finally, assumption 4 requires probabilistic independence of the errors. Intuitively,
this assumption means that information on some of the errors provides no information on
the values of other errors. For example, if you are told that the overhead costs for months 1
through 4 are all above the regression line (positive residuals), you cannot infer anything
about the residual for month 5 if assumption 4 holds.

For cross-sectional data there is generally little reason to doubt the validity of assump-
tion 4 unless the observations are ordered in some particular way. For cross-sectional data
assumption 4 is usually taken for granted. However, for time series data, assumption 4 is
often violated. This is because of a property called autocorrelation. For now, we simply men-
tion that one output given automatically in many regression packages is the Durbin–Watson
statistic. The Durbin–Watson statistic is one measure of autocorrelation and thus it measures
the extent to which assumption 4 is violated. We briefly discuss this Durbin–Watson statistic
toward the end of this chapter and in the next chapter.

One other assumption is important for numerical calculations. No explanatory
variable can be an exact linear combination of any other explanatory variables. Another
way of stating this is that there should be no exact linear relationship between any set of
explanatory variables. This would be violated, for example, if one variable were an exact
multiple of another, or if one variable were equal to the sum of several other variables.
More generally, the violation occurs if one of the explanatory variables can be written as a
weighted sum of several of the others. This is called exact multicollinearity.

If exact multicollinearity exists, it means that there is redundancy in the data. One of
the Xs could be eliminated without any loss of information. Here is a simple example.
Suppose that MachHrs1 is machine hours measured in hours, and MachHrs2 is machine
hours measured in hundreds of hours. Then it is clear that these two variables contain
exactly the same information, and either of them could (and should) be eliminated.

As another example, suppose that Ad1, Ad2, and Ad3 are the amounts spent on radio
ads, television ads, and newspaper ads. Also, suppose that TotalAd is the amount spent on
radio, television, and newspaper ads combined. Then there is an exact linear relationship
among these variables:

TotalAd � Ad1 � Ad2 � Ad3

In this case there is no need to include TotalAd in the analysis because it contains no
information that is not already contained in the variables Ad1, Ad2, and Ad3. Therefore,
TotalAd should be eliminated from the analysis.
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2A Q-Q (quantile-quantile) plot is used to detect nonnormality. It is available in StatTools from the Normality
Tests dropdown list. Nonnormal data often produce a Q-Q plot that is close to a 45º line in the middle of the plot
but deviates from this line in one or both of the tails.

Assumption 4
(independence of
residuals) is usually in
doubt only for time
series data.

Exact multicollinearity
means that at least
one of the explanatory
variables is redundant
and is not needed 
in the regression
equation.
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StatTools Tip StatTools issues a warning if it detects an exact linear relationship
between explanatory variables in a regression model.

Generally, it is fairly simple to spot an exact linear relationship such as these, and then
to eliminate it by excluding the redundant variable from the analysis. However, if you do not
spot the relationship and try to run the regression analysis with the redundant variable
included, regression packages will typically respond with an error message. If the package
interrupts the analysis with an error message containing the words “exact multicollinearity”
or “linear dependence,” you should look for a redundant explanatory variable. The message
from StatTools in this case is shown in Figure 11.2. We got it by deliberately entering
dummy variables from each category of a categorical variable—something we have warned
you not to do.
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Figure 11.2

Error Message 

from StatTools

Indicating Exact

Multicollinearity

Although this problem can be a nuisance, it is usually caused by an oversight and can
be fixed easily by eliminating a redundant variable. A more common and serious problem
is multicollinearity, where explanatory variables are highly, but not exactly, correlated.
A typical example is an employee’s years of experience and age. Although these two
variables are not equal for all employees, they are likely to be highly correlated. If they are
both included as explanatory variables in a regression analysis, the software will not issue
any error messages, but the estimates it produces can be unreliable and difficult to
interpret. We will discuss multicollinearity in more detail later in this chapter.

11.3 INFERENCES ABOUT THE REGRESSION COEFFICIENTS

In this section we explain how to make inferences about the population regression coeffi-
cients from sample data. We begin by making the assumptions discussed in the previous
section. In particular, the first assumption states that there is a population regression line.
Equation (11.2) for this line is repeated here:

Y � � � �1X1 � ��� � �kXk � �

We refer to � and the �s collectively as the regression coefficients. Again, Greek letters are
used to indicate that these quantities are unknown and unobservable. There is one other
unknown constant in the model: the variance of the errors. Regression assumption 2 states
that these errors have a constant variance, the same for all values of the Xs. We label this
constant variance 	2. Equivalently, the common standard deviation of the errors is 	.

This is how it looks in theory. There is a fixed set of explanatory variables, and given
these variables, the problem is to estimate �, the �s, and 	. In practice, however, it is not
usually this straightforward. In real regression applications the choice of relevant explana-
tory variables is almost never obvious. There are at least two guiding principles: relevance
and data availability. You certainly want variables that are related to the dependent vari-
able. The best situation is when there is an established economic or physical theory to
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guide you. For example, economic theory suggests that the demand for a product (depen-
dent variable) is related to its price (possible explanatory variable). But there are not
enough established theories to cover every situation. You often have to use the available
data, plus some trial and error, to determine a useful set of explanatory variables. In this
sense, it is usually pointless to search for one single “true” population regression equation.
Instead, you typically estimate several competing models, each with a different set of
explanatory variables, and ultimately select one of them as being the most useful.

Deciding which explanatory variables to include in a regression equation is probably
the most difficult part of any applied regression analysis. Available data sets frequently
offer an overabundance of potential explanatory variables. In addition, it is possible and
often useful to create new variables from original variables, such as their logarithms. So
where do you stop? Is it best to include every conceivable explanatory variable that might
be related to the dependent variable? One overriding principle is parsimony—explaining
the most with the least. For example, if a dependent variable can be explained just as well
(or nearly as well) with two explanatory variables as with 10 explanatory variables, the
principle of parsimony says to use only two. Models with fewer explanatory variables are
generally easier to interpret, so they are preferred whenever possible.
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Typically, the most
challenging part of a
regression analysis is
deciding which
explanatory variables
to include in the
regression equation.

The principle of parsimony is to explain the most with the least. It favors a model
with fewer explanatory variables, assuming that this model explains the dependent
variable almost as well as a model with additional explanatory variables.

Before you can determine which equation has the best set of explanatory variables,
however, you must be able to estimate the unknown parameters for a given equation. That
is, for a given set of explanatory variables X1 through Xk, you must be able to estimate �,
the �s, and 	. You learned how to find point estimates of these parameters in the previous
chapter. The estimates of � and the �s are the least squares estimates of the intercept and
slope terms. For example, the 36 months of overhead data in the Bendrix example were
used to estimate the equation

Predicted Overhead � 3997 � 43.54MachHrs � 883.62ProdRuns

This implies that the least squares estimates of �, �1, and �2 are 3997, 43.54, and 883.62.
Furthermore, because the residuals are really estimates of the errors, the standard error of
estimate se is an estimate of 	. For the same overhead equation this estimate is se � $4109.

You learned in Chapter 8 that there is more to statistical estimation than finding point
estimates of population parameters. Each potential sample from the population typically
leads to different point estimates. For example, if Bendrix estimates the equation for over-
head from a different 36-month period (or possibly from another of its plants), the results
will almost certainly be different. Therefore, we now discuss how these point estimates
vary from sample to sample.

11.3.1 Sampling Distribution of the Regression Coefficients

The key idea is again sampling distributions. Recall that the sampling distribution of any
estimate derived from sample data is the distribution of this estimate over all possible sam-
ples. This idea can be applied to the least squares estimate of a regression coefficient. For
example, the sampling distribution of b1, the least squares estimate of �1, is the distribution
of b1s you would see if you observed many samples and ran a least squares regression on
each of them.
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Mathematicians have used theoretical arguments to find the required sampling distrib-
utions. We state the main result as follows. Let � be any of the �s, and let b be the least
squares estimate of �. If the regression assumptions hold, the standardized value (b 
 �)/sb
has a t distribution with n 
 k 
 1 degrees of freedom. Here, k is the number of explanatory
variables included in the equation, and sb is the estimated standard deviation of the sampling
distribution of b.
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Sampling Distribution of a Regression Coefficient 

If the regression assumptions are valid, the standardized value

has a t distribution with n 
 k 
 1 degrees of freedom.

t =

b - �

sb

This result has three important implications. First, the estimate b is unbiased in the
sense that its mean is �, the true but unknown value of the slope. If bs were estimated from
repeated samples, some would underestimate � and others would overestimate �, but on
average they would be on target.

Second, the estimated standard deviation of b is labeled sb. It is usually called the
standard error of b. This standard error is related to the standard error of estimate se, but
it is not the same. Generally, the formula for sb is quite complicated, and it is not shown

here, but its value is printed in all standard regres-
sion outputs. It measures how much the bs would
vary from sample to sample. A small value of sb is
preferred—it means that b is a more accurate esti-
mate of the true coefficient �.

Finally, the shape of the distribution of b is
symmetric and bell-shaped. The relevant distribu-
tion is the t distribution with n 
 k 
 1 degrees of
freedom.

We have stated this result for a typical coeffi-
cient of one of the Xs. These are usually the coeffi-
cients of most interest. However, exactly the same
result holds for the intercept term �. Now we illus-
trate how to use this result.

Standard Errors in Regression

There are two quite different standard errors in

regression outputs. The standard error of estimate,

usually shown at the top of the output, is a measure

of the error you are likely to make when you use the

regression equation to predict a value of Y. In con-

trast, the standard errors of the coefficients measure

the accuracy of the individual coefficients.

FUNDAMENTAL INSIGHT

E X A M P L E 11.1 EXPLAINING OVERHEAD COSTS AT BENDRIX

This example is a continuation of the Bendrix manufacturing example from the previous
chapter. As before, the dependent variable is Overhead and the explanatory variables are

MachHrs and ProdRuns. What inferences can be made about the regression coefficients?

Objective To use standard regression output to make inferences about the regression
coefficients of machine hours and production runs in the equation for overhead costs.

Solution

The output from StatTools’s Regression procedure is shown in Figure 11.3. (See the file
Overhead Costs.xlsx.) This output is practically identical to regression outputs from all
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other statistical software packages. The estimates of the regression coefficients appear
under the label Coefficient in the range B18:B20. These values estimate the true, but
unobservable, population coefficients. The next column, labeled Standard Error, shows
the sb values. Specifically, 3.589 is the standard error of the coefficient of MachHrs, and
82.251 is the standard error of the coefficient of ProdRuns.

Each b represents a point estimate of the corresponding �, based on this particular sam-
ple. The corresponding sb indicates the accuracy of this point estimate. For example, the point
estimate of �1, the effect on Overhead of a one-unit increase in MachHrs (when ProdRuns is
held constant), is 43.536. You can be about 95% confident that the true �1 is within two stan-
dard errors of this point estimate, that is, from approximately 36.357 to 50.715. Similar state-
ments can be made for the coefficient of ProdRuns and the intercept (Constant) term. ■
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7
8
9

A B C D E F G
rrEtSdetsujdAelpitluM of

Summary RR -Square Es�mate

0 9308 0 8664 0 8583 4108 993

R-Square

9
10
11
12
13
14
15
16
17
18

0.9308 0.8664 0.8583 4108.993

Degrees of
ANOVA Table

Explained 0.0001
Unexplained

of Sum

2 3614020661 1807010330 107.0261 <
33 557166199.1 16883824.22

Standard
Regression Table reppUrewoLrorrE

Constant 3996 678 6603 651 0 6052 0 5492 9438 551 17431 907

F-Ra�o
of Mean

Freedom Squares Squares
p-Value

ttneiciffeoC -Value p-Value
Confidence Interval 95%

18
19
20

Constant 3996.678 6603.651 0.6052 0.5492 -9438.551 17431.907
MachHrs 43.536 3.589 12.1289 <
ProdRuns

0.0001 36.234 50.839
883.618 82.251 10.7429 < 0.0001 716.276 1050.960

Figure 11.3 Regression Output for Bendrix Example

As with any population parameters, the sample data can be used to obtain confidence
intervals for the regression coefficients. For example, the preceding paragraph implies
that an approximate 95% confidence interval for the coefficient of MachHrs extends
from approximately 36.357 to 50.715. More precisely, a confidence interval for any � is
of the form

b � t-multiple � sb

where the t-multiple depends on the confidence level and the degrees of freedom (here 
n 
 k 
 1). StatTools always provides these 95% confidence intervals for the regression
coefficients automatically, as shown in the bottom right of Figure 11.3.

11.3.2 Hypothesis Tests for the Regression Coefficients and 
p-Values

There is another important piece of information in regression outputs: the t-values for the
individual regression coefficients. These are shown in the “t-Value” column of the regres-
sion output in Figure 11.3. Each t-value is the ratio of the estimated coefficient to its
standard error, as shown in Equation (11.3). Therefore, it indicates how many standard
errors the regression coefficient is from zero. For example, the t-value for MachHrs is
about 11.13, so the regression coefficient of MachHrs, 43.536, is more than 12 of its stan-
dard errors to the right of zero. Similarly, the coefficient of ProdRuns is more than 10 of its
standard errors to the right of zero.
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A t-value can be used in an important hypothesis test for the corresponding regression
coefficient. To motivate this test, suppose that you want to decide whether a particular
explanatory variable belongs in the regression equation. A sensible criterion for making
this decision is to check whether the corresponding regression coefficient is zero. If a
variable’s coefficient is zero, there is no point in including this variable in the equation; the
zero coefficient will cancel its effect on the dependent variable.

Therefore, it is reasonable to test whether a variable’s coefficient is zero. This is usu-
ally tested versus a two-tailed alternative. The null and alternative hypotheses are of the
form H0:� � 0 versus Ha:�  0. If you can reject the null hypothesis and conclude that
this coefficient is not zero, you then have an argument for including the variable in the
regression equation. Conversely, if you cannot reject the null hypothesis, you might decide
to eliminate this variable from the equation.

The t-value for a variable allows you to run this test easily. You simply compare the 
t-value in the regression output with a tabulated t-value and reject the null hypothesis only
if the t-value from the computer output is greater in magnitude than the tabulated t-value.

Most statistical packages, including StatTools, make this test even easier to run by
reporting the corresponding p-value for the test. This eliminates the need for finding the
tabulated t-value. The p-value is interpreted exactly as in Chapter 9. It is the probability (in
both tails) of the relevant t distribution beyond the listed t-value. For example, referring
again to Figure 11.3, the t-value for MachHrs is 12.13, and the associated p-value is less
than 0.0001. This means that there is virtually no probability beyond the observed t-value.
In words, you are still not exactly sure of the true coefficient of MachHrs, but you are vir-
tually sure it is not zero. The same can be said for the coefficient of ProdRuns.

In practice, you typically run a multiple regression with several explanatory variables
and scan their p-values. If the p-value of a variable is low, then this variable should be kept
in the equation; if the p-value is high, you might consider eliminating this variable from the
equation. In section 11.5, we will discuss this include/exclude decision in greater depth and
provide rules of thumb for the meaning of “low” and “high” p-values.

11.3.3 A Test for the Overall Fit: The ANOVA Table

The t-values for the regression coefficients allow you to see which of the potential explana-
tory variables are useful in explaining the dependent variable. But it is conceivable that
none of these variables does a very good job. That is, it is conceivable that the entire group
of explanatory variables explains only an insignificant portion of the variability of the
dependent variable. Although this is the exception rather than the rule in most real applica-
tions, it can certainly happen. An indication of this is that you obtain a very small R2 value.
Because R2 is the square of the correlation between the observed values of the dependent
variable and the fitted values from the regression equation, another indication of a lack of
fit is that this correlation (the “multiple R”) is small. In this section we state a formal pro-
cedure for testing the overall fit, or explanatory power, of a regression equation.

Suppose that the dependent variable is Y and the explanatory variables are X1 through
Xk. Then the proposed population regression equation is

Y � � � �1X1 � ��� � �kXk � �

To say that this equation has absolutely no explanatory power means that the same value of
Y will be predicted regardless of the values of the Xs. In this case it makes no difference
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t-value for Test of Regression Coefficient

t-value � b/sb (11.3)

The test for whether 
a regression coefficient 
is zero can be run 
by looking at the
corresponding p-value:
Reject the “equals
zero” hypothesis if the
p-value is small, say,
less than 0.05.
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which values of the Xs are used, because they all lead to the same predicted value of Y. But
the only way this can occur is if all of the �s are 0. So the formal hypothesis test in this
section is versus the alternative that at least one of the �s is not
zero. If the null hypothesis can be rejected, as it can in the majority of applications, this
means that the explanatory variables as a group provide at least some explanatory power.
These hypotheses are summarized as follows.

H0:�1 =
Á

= �k = 0
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Hypotheses for ANOVA Test

The null hypothesis is that all coefficients of the explanatory variables are zero. The
alternative is that at least one of these coefficients is not zero.

At first glance it might appear that this null hypothesis can be tested by looking at the
individual t-values. If they are all small (statistically insignificant), then the null hypothe-
sis of no fit cannot be rejected; otherwise, it can be rejected. However, as you will see in
the next section, it is possible, because of multicollinearity, to have small t-values even
though the variables as a whole have significant explanatory power.

The alternative is to use an F test. This is sometimes referred to as the ANOVA (analy-
sis of variance) test because the elements for calculating the required F-value are shown in
an ANOVA table.3 In general, an ANOVA table analyzes different sources of variation. In
the case of regression, the variation in question is the variation of the dependent variable Y.
The total variation of this variable is the sum of squared deviations about the mean and is
labeled SST (sum of squares total).

The ANOVA table splits this total variation into two parts, the part explained by the regres-
sion equation, and the part left unexplained. The unexplained part is the sum of squared
residuals, usually labeled SSE (sum of squared errors):

The explained part is then the difference between the total and unexplained variation. It is
usually labeled SSR (sum of squares due to regression):

SSR � SST 
 SSE

The F test is a formal procedure for testing whether the explained variation is large com-
pared to the unexplained variation. Specifically, each of these sources of variation has an
associated degrees of freedom (df ). For the explained variation, df � k, which is the num-
ber of explanatory variables. For the unexplained variation, df � n 
 k 
 1, the sample
size minus the total number of coefficients (including the intercept term). The ratio of
either sum of squares to its degrees of freedom is called a mean square, or MS. The two
mean squares in this case are MSR and MSE, given by

and

MSE =

SSE

n - k - 1

MSR =

SSR

k

SSE = a ei
2

= a (Yi -
NYi)

2

SST = a (Yi - Y)2

3This ANOVA table is similar to the ANOVA table discussed in Chapter 9. However, we repeat the necessary
material here for those who didn’t cover that section.
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Note that MSE is the square of the standard error of estimate, that is,

MSE � se
2

Finally, the ratio of these mean squares is the required F-ratio for the test:

When the null hypothesis of no explanatory power is true, this F-ratio has an F distribution
with k and n 
 k 
 1 degrees of freedom. If the F-ratio is small, the explained variation is
small relative to the unexplained variation, and there is evidence that the regression equa-
tion provides little explanatory power. But if the F-ratio is large, the explained variation is
large relative to the unexplained variation, and you can conclude that the equation does
have some explanatory power.

As usual, the F-ratio has an associated p-value that allows you to run the test easily. In
this case the p-value is the probability to the right of the observed F-ratio in the appropri-
ate F distribution. This p-value is reported in most regression outputs, along with the
elements that lead up to it. If it is sufficiently small, less than 0.05, say, then you can
conclude that the explanatory variables as a whole have at least some explanatory power.

Although this test is run routinely in most applications, there is often little doubt that
the equation has some explanatory power; the only questions are how much, and which
explanatory variables provide the best combination. In such cases the F-ratio from the
ANOVA table is typically “off the charts” and the corresponding p-value is practically
zero. On the other hand, F-ratios, particularly large ones, should not necessarily be used to
choose between equations with different explanatory variables included.

For example, suppose that one equation with three explanatory variables has an 
F-ratio of 54 with an extremely small p-value—very significant. Also, suppose that
another equation that includes these three variables plus a few more has an F-ratio of 37
and also has a very small p-value. (When we say small, we mean small. These p-values are
probably listed as �0.001.) Is the first equation better because its F-ratio is higher? Not
necessarily. The two F-ratios imply only that both of these equations have a good deal 
of explanatory power. It is better to look at their se values (or adjusted R2 values) and their
t-values to choose between them.

The ANOVA table is part of the StatTools output for any regression run. It appeared
for the Bendrix example in Figure 11.3, which is repeated for convenience in Figure 11.4.
The ANOVA table is in rows 12 through 14. The degrees of freedom are in column B, the

F-ratio =

MSR

MSE
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Reject the null
hypothesis—and
conclude that these 
X variables have at
least some explanatory
power—if the F-value
in the ANOVA table 
is large and the
corresponding p-value
is small.

7
8

A B C D E F G
rrEtSdetsujdAelpitluM  of

Summary RR -Square
R-Square

9
10
11
12
13
14
15
16
17

0.9308 0.8664 0.8583 4108.993

Degrees   of

Es�mate

F-Ra�o
 

ANOVA Table

Explained 2 3614020661 1807010330 107.0261 < 0.0001
Unexplained 33 557166199.1 16883824.22

Standard
Regression Table reppUrewoLrorrE

17431.907

of Sum of Mean
Freedom Squares Squares

p-Value

ttneiciffeoC -Value p-Value
Confidence Interval 95%

18
19
20

Constant 3996.678 6603.651 0.6052 0.5492 -9438.551
MachHrs 43.536 3.589 12.1289 < 0.0001 36.234 50.839
ProdRuns 883.618 82.251 10.7429 < 0.0001 716.276 1050.960

Figure 11.4 Regression Output for Bendrix Example
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sums of squares are in column C, the mean squares are in column D, the F-ratio is in cell
E13, and its associated p-value is in cell F13. As predicted, this F-ratio is “off the charts,”
and the p-value is practically zero.

This information wouldn’t be much comfort for the Bendrix manager who is trying to
understand the causes of variation in overhead costs. This manager already knows that
machine hours and production runs are related positively to overhead costs—everyone in
the company knows that. What he really wants is a set of explanatory variables that yields
a high R2 and a low se. The low p-value in the ANOVA tables does not guarantee these. All
it guarantees is that MachHrs and ProdRuns are of some help in explaining variations in
Overhead.

As this example indicates, the ANOVA table can be used as a screening device. If
the explanatory variables do not explain a significant percentage of the variation in the
dependent variable, then you can either discontinue the analysis or search for an entirely
new set of explanatory variables. But even if the F-ratio in the ANOVA table is
extremely significant (as it usually is), there is no guarantee that the regression equation
provides a good enough fit for practical uses. This depends on other measures such as 
se and R2.
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P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. Explore the relationship between the selling prices
(Y ) and the appraised values (X ) of the 148 homes in
the file P02_11.xlsx by estimating a simple linear
regression equation. Find a 95% confidence interval
for the model’s slope parameter (�1). What does this
confidence interval tell you about the relationship
between Y and X for these data?

2. The owner of the Original Italian Pizza restaurant
chain would like to predict the sales of his specialty,
deep-dish pizza. He has gathered data on the monthly
sales of deep-dish pizzas at his restaurants and
observations on other potentially relevant variables
for each of his 15 outlets in central Indiana. These data
are provided in the file P10_04.xlsx.
a. Estimate a multiple regression model between the

quantity sold (Y) and the explanatory variables in
columns C–E.

b. Is there evidence of any violations of the key
assumptions of regression analysis?

c. Which of the variables in this equation have
regression coefficients that are statistically different
from zero at the 5% significance level?

d. Given your findings in part c, which variables,
if any, would you choose to remove from the
equation estimated in part a? Why?

3. The file P02_10.xlsx contains midterm and final exam
scores for 96 students in a corporate finance course.

Based on a regression equation for the final exam
score as a function of the midterm exam score, find
a 95% confidence interval for the slope of the
population regression line. State exactly what this
confidence interval indicates. 

4. A trucking company wants to predict the yearly
maintenance expense (Y ) for a truck using the number
of miles driven during the year (X1) and the age of the
truck (X2, in years) at the beginning of the year. The
company has gathered the information given in the
file P10_16.xlsx. Each observation corresponds to a
particular truck.
a. Estimate a multiple regression equation using the

given data.
b. Does autocorrelation appear to be a problem?

What about multicollinearity? What about
heteroscedasticity?

c. Find 95% confidence intervals for the regression
coefficients of X1 and X2. Based on these interval
estimates, which variable, if any, would you
choose to remove from the equation estimated in
part a? Why?

5. Based on the data in the file P02_23.xlsx from the
U.S. Department of Agriculture, explore the
relationship between the number of farms (X ) and
the average size of a farm (Y ) in the United States.
a. Use the given data to estimate a simple linear

regression model.
b. Test whether there is sufficient evidence to conclude

that the slope parameter (�1) is less than zero. Use
a 5% significance level.
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c. Based on your finding in part b, is it possible to
conclude that a linear relationship exists between
the number of farms and the average farm size
during the given time period? Explain.

6. An antique collector believes that the price received
for a particular item increases with its age and the
number of bidders. The file P10_18.xlsx contains data
on these three variables for 32 recently auctioned
comparable items.
a. Estimate an appropriate multiple regression model

using the given data.
b. Interpret the ANOVA table for this model. In

particular, does this set of explanatory variables
provide at least some power in explaining the
variation in price? Report a p-value for this
hypothesis test.

7. The file P02_02.xlsx contains information on over 200
movies that came out during 2006 and 2007. Run a
regression of Total US Gross versus 7-day Gross, and
then run a multiple regression of Total US Gross
versus 7-day Gross and 14-day Gross. Report the 95%
confidence interval for the coefficient of 7-day Gross
in each equation. What exactly do these confidence
intervals tell you about the effect of 7-day Gross on
Total US Gross? Why are they not at all the same?
What is the relevant population that this data set is a
sample from?

8. The file P10_10.xlsx contains data on 150 homes that
were sold recently in a particular community.
a. Find a table of correlations between all of the

variables. Do the correlations between Price 
and each of the other variables have the sign
(positive or negative) you would expect? 
Explain briefly.

b. Run a regression of Price versus Rooms. What
does the 95% confidence interval for the coefficient
of Rooms tell you about the effect of Rooms on
Price for the entire population of such homes?

c. Run a multiple regression of Price versus Home
Size, Lot Size, Rooms, and Bathrooms. What is
the 95% confidence interval for the coefficient of
Rooms now? Why do you think it can be so
different from the one in part b? Based on this
regression, can you reject the null hypothesis that
the population regression coefficient of Rooms is
zero versus a two-tailed alternative? What does this
mean?

9. Suppose that a regional express delivery service
company wants to estimate the cost of shipping a
package (Y ) as a function of cargo type, where cargo
type includes the following possibilities: fragile,
semifragile, and durable. Costs for 15 randomly
chosen packages of approximately the same weight
and same distance shipped, but of different cargo
types, are provided in the file P10_28.xlsx.

a. Estimate an appropriate multiple regression
equation to predict the cost of shipping a given
package.

b. Interpret the ANOVA table for this model. In
particular, do the explanatory variables included
in your equation in part a provide at least some
power in explaining the variation in shipping costs?
Report a p-value for this hypothesis test.

10. The file P10_05.xlsx contains salaries for a sample
of DataCom employees, along with several variables
that might be related to salary. Run a multiple
regression of Salary versus Years Employed, Years
Education, Gender, and Number Supervised. For
each of these variables, explain exactly what the
results in the Coefficient, Standard Error, t-Value,
and p-Value columns mean. Based on the results, 
can you reject the null hypothesis that the population
coefficient of any of these variables is zero versus a
two-tailed alternative at the 5% significance level? 
If you can, what would you probably do next in the
analysis?

Level B

11. A multiple regression with 36 observations and three
explanatory variables yields the ANOVA table in
Table 11.1.
a. Complete this ANOVA table.
b. Can you conclude at the 1% significance level that

these three explanatory variables have some power
in explaining variation in the dependent variable?

Table 11.1 ANOVA Table

Degrees of Freedom Sum of Squares

Explained 1211
Unexplained
Total 2567

12. Suppose you find the ANOVA table shown in Table 11.2
for a simple linear regression.

Table 11.2 ANOVA Table

Degrees of Freedom Sum of Squares

Explained 52
Unexplained 87
Total 1598

a. Find the correlation between X and Y, assuming
that the slope of the least squares line is negative.

b. Find the p-value for the test of the hypothesis of no
explanatory power at all. What does it tell you in
this particular case?

11.3 Inferences About the Regression Coefficients 615

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11.4 MULTICOLLINEARITY

Recall that the coefficient of any variable in a regression equation indicates the effect of
this variable on the dependent variable, provided that the other variables in the equation
remain constant. Another way of stating this is that the coefficient represents the effect of
this variable on the dependent variable in addition to the effects of the other variables in
the equation. In the Bendrix example, if MachHrs and ProdRuns are included in the
equation for Overhead, the coefficient of MachHrs indicates the extra amount MachHrs
explains about variation in Overhead, in addition to the amount already explained by
ProdRuns. Similarly, the coefficient of ProdRuns indicates the extra amount ProdRuns
explains about variation in Overhead, in addition to the amount already explained by
MachHrs. Therefore, the relationship between an explanatory variable X and the depen-
dent variable Y is not always accurately reflected in the coefficient of X; it depends on
which other Xs are included or not included in the equation.

This is especially true when multicollinearity exists. By definition, multicollinearity is
the presence of a fairly strong linear relationship between two or more explanatory variables,
and it can make regression output difficult to interpret.
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Multicollinearity occurs when there is a fairly strong linear relationship among a set
of explanatory variables.

Consider the following example. It is a rather contrived example, but it is useful for illus-
trating the potential effects of multicollinearity.

E X A M P L E 11.2 HEIGHT AS A FUNCTION OF FOOT LENGTH

We want to explain a person’s height by means of foot length. The dependent variable
is Height, and the explanatory variables are Right and Left, the length of the right

foot and the length of the left foot, respectively. What can occur when Height is regressed
on both Right and Left?

Objective To illustrate the problem of multicollinearity when both foot length variables
are used in a regression for height.

Solution

Clearly, there is no need to include both Right and Left in an equation for Height—either one
of them suffices—but we include them both to make a point. It is likely that there is a large
correlation between height and foot size, so you would expect this regression equation to do
a good job. For example, the R2 value will probably be large. But what about the coefficients
of Right and Left? Here there is a problem. The coefficient of Right indicates the right foot’s
effect on Height in addition to the effect of the left foot. This additional effect is probably
minimal. That is, after the effect of Left on Height has been taken into account, the extra
information provided by Right is probably minimal. But it goes the other way also. The extra
effect of Left, in addition to that provided by Right, is probably also minimal.

To show what can happen numerically, we used simulation to generate a hypothetical
data set of heights and left and right foot lengths. We did this so that, except for random
error, height is approximately 31.8 plus 3.2 times foot length (all expressed in inches).
(See Figure 11.5 and the file Heights Simulation.xlsx. You can check the formulas in
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columns A–D to see how we generated the data with the desired properties.) It is clear that
the correlation between Height and either Right or Left is quite large, and the correlation
between Right and Left is very close to 1 (see cells G7 to G9).

The regression output when both Right and Left are entered in the equation for Height
appears at the bottom right in Figure 11.5. (We entered our own matrix formulas for the
regression because we wanted them to be “live,” unlike those in StatTools.) The output
tells a somewhat confusing story. The multiple R and the corresponding R2 are about as
expected, given the correlations between Height and either Right or Left. In particular, the
multiple R is close to the correlation between Height and either Right or Left. Also, the se
value is quite good. It implies that predictions of height from this regression equation will
typically be off by only about three inches.

However, the coefficients of Right and Left are not at all what you might expect,
given that the heights were generated as approximately 31.8 plus 3.2 times foot length. In
fact, the coefficient of Right is the wrong sign—it is negative. Besides this “wrong” sign,
the tip-off that there is a problem is that the t-value of Right is quite small and the corre-
sponding p-value is quite large. Judging by this, you might conclude that Height and
Right are either not related or are related negatively. But you know from the correlation in
cell G9 that both of these conclusions are wrong. In contrast, the coefficient of Left has
the “correct” sign, and its t-value and associated p-value do imply statistical significance.
However, this happened mostly by chance. Slight changes in the data could change the
results completely—the coefficient of Right could become negative and insignificant, or
both coefficients could become insignificant. For example, the random numbers in Figure
11.6, generated from the same model, lead to regression output where neither Right nor
Left is statistically significant.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

105
106

A B C D E F G H I J
Parameters of foot size n Parameters of regression, given generic foot size
Mean 12.95 Intercept 31.8
Stdev1 3.1 Slope 3.2
Stdev2 0.2 StErr of Est 3.0

Generic foot size Right Height Squares
15.381 15.063 15.111 83.631  vs Right 0.996

9.614 9.467 9.707 65.59  vs Height 0.960 0.922
10.067 9.827 9.878 63.918 Right vs Height 0.954 0.911
12.071 11.688 11.962 70.89
18.015 18.061 17.971 93.567 Regression 
13.567 13.676 13.164 77.095 Variable Coeff StErr t-value p-value
17.099 17.446 17.132 87.843 Constant 30.583 1.279 23.908 0.0000
18.784 18.49 18.878 90.079 4.385 1.131 3.876 0.0002
11.035 11.003 10.922 67.118 Right -1.046 1.122 -0.932 0.3535
10.271 10.055 10.196 63.502 Sum of coeffs 3.339
10.884 10.715 11.295 66.552
12.481 12.685 12.588 74.764 SSE 1017.020
13.861 13.744 13.883 80.754 MSE 10.485

4.008 4.031 4.441 38.922 StErr of est 3.238
14.227 13.958 14.113 75.058
13.537 13.211 13.888 78.243 R-square 0.923
13.028 12.608 12.957 68.337  R 0.961
12.804 12.524 12.874 68.494

14.02 14.055 14.291 69.627
16.354 16.401 16.62 75.977

Figure 11.5 One Example of Height versus Foot Length

Multicollinearity often
causes regression
coefficients to have 
the “wrong” sign,
t-values to be too
small, and p-values to
be too large.
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The problem is that although both Right and Left are clearly related to Height, it is
impossible for the least squares method to distinguish their separate effects. Note that the
regression equation does estimate the combined effect fairly well—the sum of the coeffi-
cients of Right and Left in cell G16 in both figures is close to the coefficient 3.2 that was
used to generate the data. Also, the estimated intercept is pretty close to the intercept 31.8
that was used to generate the data. Therefore, the estimated equation will work well for
predicting heights. It just does not produce reliable estimates of the individual coefficients
of Right and Left. ■
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

105
106

A B C D E F G H I J
Parameters of foot size n Parameters of regression, given generic foot size
Mean 12.95 Intercept 31.8
Stdev1 3.1 Slope 3.2
Stdev2 0.2 StErr of Est 3.0

Generic foot size Right Height Squares
12.207 12.36 12.301 68.985  vs Right 0.995
13.343 13.369 13.29 75.615  vs Height 0.950 0.903
10.981 11.183 11.185 59.805 Right vs Height 0.950 0.903
10.757 10.592 10.756 69.754
13.602 13.736 14.02 79.694 Regression 
11.688 11.932 11.692 65.166 Variable Coeff StErr t-value p-value
10.674 10.6 10.653 65.999 Constant 31.755 1.398 22.714 0.0000
12.731 12.766 12.55 68.061 1.639 1.079 1.519 0.1321
16.981 17.155 16.996 85.618 Right 1.559 1.096 1.422 0.1581
14.417 14.434 13.931 77.947 Sum of coeffs 3.198
15.369 15.57 15.408 82.511
11.514 11.776 11.392 67.787 SSE 1010.758
11.363 11.345 10.807 65.025 MSE 10.420
14.768 14.977 14.522 85.902 StErr of est 3.228
11.165 10.893 11.55 67.92

8.823 9.107 9.039 65.852 R-square 0.905
19.944 20.003 20.074 96.903  R 0.951
15.832 15.546 15.721 79.923

18.37 18.451 18.472 89.623
13.584 13.78 13.424 78.05

Figure 11.6 Another Example of Height versus Foot Length

Multicollinearity
typically causes
unreliable estimates 
of regression
coefficients, but it 
does not generally
cause poor predi-
ctions.

Moderate to extreme
multicollinearity poses
a problem in many
regression applications.
Unfortunately, there
are usually no easy
remedies.

This example illustrates an extreme form of multicollinearity, where two explanatory
variables are very highly correlated. In general, there are various degrees of multi-
collinearity. In each of them, there is a linear relationship between two or more explanatory
variables, and this relationship makes it difficult to estimate the individual effects of the Xs
on the dependent variable. The symptoms of multicollinearity can be “wrong” signs of
the coefficients, smaller-than-expected t-values, and larger-than-expected (insignificant) 
p-values. In other words, variables that are really related to the dependent variable can look
like they aren’t related, based on their p-values. The reason is that their effects on Y are
already explained by other Xs in the equation.

Sometimes multicollinearity is easy to spot and treat. For example, it would be silly to
include both Right and Left foot length in the equation for Height. They are obviously very
highly correlated and either one suffices in the equation for Height. One of them—either
one—should be excluded from the equation. However, multicollinearity is not usually this
easy to treat or even diagnose.
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Suppose, for example, that you want to use
regression to explain variations in salary. Three
potentially useful explanatory variables are age,
years of experience with the company, and years of
experience in the industry. It is very likely that each
of these is positively related to salary, and it is also
very likely that they are very closely related to each
other. However, it isn’t clear which, if any, you
should exclude from the regression equation. If you
include all three, you are likely to find that at least
one of them is insignificant (high p-value), in which
case you might consider excluding it from the equa-
tion. If you do so, the se and R2 values will probably
not change very much—the equation will provide

equally good predicted values—but the coefficients of the variables that remain in the
equation could change considerably.
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Effect of Multicollinearity

Multicollinearity occurs when Xs are highly corre-

lated with one another, and it is a problem in many

real regression applications. It prevents you from sep-

arating the influences of these Xs on Y. In short, it

prevents you from seeing clearly how the world

works. However, multicollinearity is not a problem if

you simply want to use a regression equation as a

“black box” for predictions.

FUNDAMENTAL INSIGHT

P R O B L E M S

Level A

13. Using the data given in P10_10.xlsx, estimate a multiple
regression equation to predict the price of houses in a
given community. Employ all available explanatory
variables. Is there evidence of multicollinearity in this
model? Explain why or why not.

14. Consider the data for Business Week’s top U.S.
MBA programs in the MBA Data sheet of the file
P10_21.xlsx. Use these data to estimate a multiple
regression model to assess whether there is a relation-
ship between the enrollment and the following explana-
tory variables: (a) the percentage of international
students, (b) the percentage of female students, (c) the
percentage of Asian American students, (d) the percent-
age of minority students, and (e) the resident tuition and
fees at these business schools.
a. Determine whether each of the regression

coefficients for the explanatory variables in this
model is statistically different from zero at the 5%
significance level. Summarize your findings.

b. Is there evidence of multicollinearity in this model?
Explain why or why not.

15. The manager of a commuter rail transportation system
was recently asked by her governing board to deter-
mine the factors that have a significant impact on the
demand for rides in the large city served by the trans-
portation network. The system manager has collected
data on variables that might be related to the number
of weekly riders on the city’s rail system. The file
P10_20.xlsx contains these data.
a. Estimate a multiple regression model using all of

the available explanatory variables. Perform a test

of significance for each of the model’s regression
coefficients. Are the signs of the estimated
coefficients consistent with your expectations?

b. Is there evidence of multicollinearity in this model?
Explain why or why not. If multicollinearity is present,
explain what you would do to remedy this problem.

Level B

16. The file P10_05.xlsx contains salaries for a sample
of DataCom employees, along with several variables
that might be related to salary.
a. Estimate the relationship between Y (Salary) and 

X (Years Employed) using simple linear regression.
(For this problem, ignore the other potential explana-
tory variables.) Is there evidence to support the
hypothesis that the coefficient for the number of
years employed is statistically different from zero 
at the 5% significance level?

b. Estimate a multiple regression model to explain
annual salaries of DataCom employees with X
and X2 as explanatory variables. Perform relevant
hypothesis tests to determine the significance of
the regression coefficients of these two variables.
Summarize your findings.

c. How do you explain your findings in part b in light
of the results found in part a?

17. The owner of a restaurant in Bloomington, Indiana,
has recorded sales data for the past 19 years. He has
also recorded data on potentially relevant variables.
The data appear in the file P10_23.xlsx.
a. Estimate a multiple regression equation that

includes annual sales as the dependent variable 
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and the following explanatory variables: year, size
of the population residing within 10 miles of the
restaurant, annual advertising expenditures, and
advertising expenditures in the previous year.

b. Which of the explanatory variables have significant
effects on sales at the 10% significance level? Do
any of these results surprise you? Explain why or
why not.

c. Exclude all insignificant explanatory variables
from the equation in part a and estimate the
equation with the remaining variables. Comment
on the significance of each remaining variable. 

d. Based on your analysis of this problem, does multi-
collinearity appear to be present in the original or
revised versions of the model? Explain.
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11.5 INCLUDE/EXCLUDE DECISIONS

In this section we make further use of the t-values of regression coefficients. In particu-
lar, we explain how they can be used to make include/exclude decisions for explanatory
variables in a regression equation. Section 11.3 explained how a t-value can be used to

test whether a population regression coefficient
is zero. But does this mean that you should 
automatically include a variable if its t-value is
significant and automatically exclude it if its 
t-value is insignificant? The decision is not always
this simple.

The bottom line is that you are always trying 
to get the best fit possible, and the principle of 
parsimony suggests using the fewest number of vari-
ables. This presents a trade-off, where there not
always easy answers. On the one hand, more vari-
ables certainly increase R2, and they usually reduce
the standard error of estimate se. On the other hand,
fewer variables are better for parsimony. To help
with the decision, we present several guidelines.
These guidelines are not hard and fast rules, and they
are sometimes contradictory. In real applications
there are often several equations that are equally
good for all practical purposes, and it is rather point-
less to search for a single “true” equation.

Searching for the “True” Regression
Equation

Finding the best Xs (or the best form of the Xs) to

include in a regression equation is undoubtedly the

most difficult part of any real regression analysis.We

offer two important things to keep in mind. First, it is

rather pointless to search for the “true” regression

equation. There are often several equations that, for

all practical purposes, are equally useful for describing

how the world works or making predictions. Second,

the guidelines provided here for including and exclud-

ing variables are not ironclad rules. They typically

involve choices at the margin, that is, between equa-

tions that are very similar and equally useful. In short,

there is usually no single “correct answer.”

FUNDAMENTAL INSIGHT

GUIDELINES FOR INCLUDING/EXCLUDING VARIABLES IN A REGRESSION EQUATION

1 Look at a variable’s t-value and its associated p-value. If the p-value is above some
accepted significance level, such as 0.05, this variable is a candidate for exclusion.

2 Check whether a variable’s t-value is less than 1 or greater than 1 in magnitude. If it
is less than 1, then it is a mathematical fact that se will decrease (and adjusted R2 will
increase) if this variable is excluded from the equation. If it is greater than 1, the opposite
will occur. Because of this, some statisticians advocate excluding variables with t-values
less than 1 and including variables with t-values greater than 1.

3 Look at t-values and p-values, rather than correlations, when making include/exclude
decisions. An explanatory variable can have a fairly high correlation with the dependent
variable, but because of other variables included in the equation, it might not be needed.
This would be reflected in a low t-value and a high p-value, and this variable could
possibly be excluded for reasons of parsimony. This often occurs in the presence of
multicollinearity.
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4 When there is a group of variables that are in some sense logically related, it is some-
times a good idea to include all of them or exclude all of them. In this case, their individ-
ual t-values are less relevant. Instead, a “partial F test” (discussed in section 11.7) can be
used to make the include/exclude decision.

5 Use economic and/or physical theory to decide whether to include or exclude variables,
and put less reliance on t-values and/or p-values. Some variables might really belong in an
equation because of their theoretical relationship with the dependent variable, and their low
t-values, possibly the result of an unlucky sample, should not necessarily disqualify them
from being in the equation. Similarly, a variable that has no economic or physical relation-
ship with the dependent variable might have a significant t-value just by chance. This does
not necessarily mean that it should be included in the equation. You should not use a soft-
ware package blindly to hunt for “good” explanatory variables. You should have some idea,
before running the package, of which variables belong and which do not belong.

Again, these guidelines can give contradictory signals. Specifically, guideline 2 bases the
include/exclude decision on whether the magnitude of the t-value is greater or less than 1.
However, analysts who base the decision on statistical significance at the usual 5% level, as
in guideline 1, typically exclude a variable from the equation unless its t-value is at least 2
(approximately). This latter approach is more stringent—fewer variables will be retained—
but it is probably the more popular approach. However, either approach is likely to result in
similar equations for all practical purposes.

In our experience, you should not agonize too much about whether to include or
exclude a variable “at the margin.” If you decide to exclude a variable that doesn’t add
much explanatory power, you get a somewhat cleaner equation, and you probably won’t
see any dramatic shifts in R2 or se. On the other hand, if you decide to keep such a variable
in the equation, the equation is less parsimonious and you have one more variable to inter-
pret, but otherwise, there is no real penalty for including it.

We illustrate how these guidelines can be used in the following example. 
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E X A M P L E 11.3 EXPLAINING SPENDING AMOUNTS AT HYTEX

The file Catalog Marketing.xlsx contains data on 1000 customers who purchased mail-
order products from the HyTex Company in the current year. (This is a slightly differ-

ent version of the file that was used in Chapter 2.) HyTex is a direct marketer of stereo
equipment, personal computers, and other electronic products. HyTex advertises entirely
by mailing catalogs to its customers, and all of its orders are taken over the telephone. The
company spends a great deal of money on its catalog mailings, and it wants to be sure that
this is paying off in sales. For each customer there are data on the following variables:

■ Age: age of the customer at the end of the current year
■ Gender: coded as 1 for males, 0 for females
■ OwnHome: coded as 1 if customer owns a home, 0 otherwise
■ Married: coded as 1 if customer is currently married, 0 otherwise
■ Close: coded as 1 if customer lives reasonably close to a shopping area that sells

similar merchandise, 0 otherwise
■ Salary: combined annual salary of customer and spouse (if any)
■ Children: number of children living with customer
■ PrevCust: coded as 1 if customer purchased from HyTex during the previous year, 

0 otherwise
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■ PrevSpent: total amount of purchases made from HyTex during the previous year
■ Catalogs: number of catalogs sent to the customer this year
■ AmountSpent: total amount of purchases made from HyTex this year

Estimate and interpret a regression equation for AmountSpent based on all of these variables.

Objective To see which potential explanatory variables are useful for explaining current
year spending amounts at HyTex with multiple regression.

Solution

With this much data, 1000 observations, it is possible to set aside part of the data set for vali-
dation, as discussed in section 10.7. Although any split can be used, we decided to base the
regression on the first 750 observations and use the other 250 for validation. Therefore, you
should select only the range through row 751 when defining the StatTools data set. 

You can begin by entering all of the potential explanatory variables. The goal is then to
exclude variables that aren’t necessary, based on their t-values and p-values. The multiple
regression output with all explanatory variables appears in Figure 11.7. It indicates a fairly
good fit. The R2 value is 74.7% and se is about $491. Given that the actual amounts spent in
the current year vary from a low of under $50 to a high of over $5500, with a median of about
$950, a typical prediction error of around $491 is decent but not great.

From the p-value column, you can see that there are four variables, Age, Gender,
OwnHome, and Married, that have p-values well above 0.05. These are the obvious candi-
dates for exclusion from the equation. You could rerun the equation with all three of these
variables excluded, but it is a better practice to exclude one variable at a time. It is possible
that when one of these variables is excluded, another one of them will become significant
(the Right–Left foot phenomenon).
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7
8
9

10
11
12
13

A B C D E F G
rrEtSdetsujdAelpitluM of

Summary RR -Square

0.8643 0.7470 0.7435 491.4513

Degrees of Sum of Mean of
ANOVA Table Freedom Squares Squares

Explained 10 526916948.1 52691694.81 218.1631 < 0.0001

R-Square

F- o p-Value

14
15
16
17
18
19
20
21

. . . .
Unexplained 739 178486506.7 241524.3663

Standard
Regression Table reppUrewoLrorrE

Constant 197.3915 85.8636 2.2989 0.0218 28.8259 365.9572
Age 0.6014 1.2596 0.4775 0.6332 -1.8715 3.0743
Gender -57.4924 37.9022 -1.5169 0.1297 -131.9013 16.9165

23 3068 40 3559 0 5775 0 5638 55 9191 102 5326

ttneiciffeoC -Value p-Value
Confidence Interval 95%

22
23
24
25
26
27
28

OwnHome . . . . - . .
Married 8.6877 48.5435 0.1790 0.8580 -86.6119 103.9872
Close -418.7341 45.2356 -9.2567 < 0.0001 -507.5397 -329.9284
Salary 0.0179 0.0012 15.5194 < 0.0001 0.0157 0.0202
Children -161.4875 21.0032 -7.6887 < 0.0001 -202.7205 -120.2544
PrevCust -546.0081 63.4794 -8.6013 < 0.0001 -670.6295 -421.3867
PrevSpent 0.2684 0.0528 5.0876 < 0.0001 0.1648 0.3719
Catalogs 43.9463 2.8618 15.3560 < 0.0001 38.3280 49.5646

Figure 11.7 Regression Output with All Explanatory Variables Included
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Actually, this did not happen. We first excluded the variable with the largest p-value,
Married, and reran the regression. At this point, Age, Gender, and OwnHome still had
large p-values, so we excluded Age, the variable with the largest remaining p-value, and
reran the regression. Next, we excluded OwnHome, the variable with the largest remaining
p-value, and finally, we excluded Gender because its p-value was still large. The resulting
output appears in Figure 11.8. The R2 and se values of 74.6% and $491are almost the same
as they were with all variables included, and all of the p-values are very small.
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7
8
9

10
11
12
13

A B C D E F G
rrEtSdetsujdAelpitluM of

Summary RR -Square

0.8636 0.7458 0.7438 491.2283

Degrees of Sum of Mean of
ANOVA Table Freedom Squares Squares

Explained 6 526113683.9 87685613.98 363.3805 < 0.0001

R-Square

F- o p-Value

14
15
16
17
18
19
20
21

. . . .
Unexplained 743 179289770.9 241305.2099

Standard
Regression Table reppUrewoLrorrE

Constant 205.0936 70.3152 2.9168 0.0036 67.0534 343.1338
Close -416.2462 45.0846 -9.2326 < 0.0001 -504.7546 -327.7378
Salary 0.0180 0.0009 19.8773 < 0.0001 0.0162 0.0197

161 1577 20 4828 7 8679 < 0 0001 201 3688 120 9466

ttneiciffeoC -Value p-Value
Confidence Interval 95%

22
23
24

Children - . . - . . - . - .
PrevCust -543.5948 63.2988 -8.5878 < 0.0001 -667.8606 -419.3290
PrevSpent 0.2724 0.0525 5.1844 < 0.0001 0.1692 0.3755
Catalogs 43.8067 2.8542 15.3481 < 0.0001 38.2034 49.4100

Figure 11.8 Regression Output with Insignificant Variables Excluded

This final regression equation can be interpreted as follows:

Interpretation of Regression Equation

■ The coefficient of Close implies that an average customer living close to stores with
this type of merchandise spent about $416 less than an average customer living far
from such stores.

■ The coefficient of Salary implies that, on average, about 1.8 cents of every extra
salary dollar was spent on HyTex merchandise.

■ The coefficient of Children implies that about $161 less was spent for every extra
child living at home.

■ The PrevCust and PrevSpent terms are somewhat more difficult to interpret. First,
both of these terms are zero for customers who didn’t purchase from HyTex in the
previous year. For those who did, the terms become 
544 � 0.27PrevSpent. The
coefficient 0.27 implies that each extra dollar spent the previous year can be expected
to contribute an extra 27 cents in the current year. The 
544 literally means that
if you compare a customer who didn’t purchase from HyTex last year to another
customer who purchased only a tiny amount, the latter is expected to spend about
$544 less than the former this year. However, none of the latter customers were in
the data set. A look at the data shows that of all customers who purchased from
HyTex last year, almost all spent at least $100 and most spent considerably more.
In fact, the median amount spent by these customers last year was about $900 (the
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median of all positive values for the PrevSpent variable). If you substitute this
median value into the expression –544 + 0.27PrevSpent, you obtain –298. Therefore,
this “median” spender from last year can be expected to spend about $298 less this
year than the previous year nonspender.

■ The coefficient of Catalogs implies that each extra catalog can be expected to gener-
ate about $44 in extra spending.

We conclude this example with a couple of cautionary notes. First, if you validate this final
regression equation on the other 250 customers, using the procedure from section 10.7,
you will find R2 and se values of 73.2% and $486. These are very promising. They are very
close to the values based on the original 750 customers. Second, we haven’t tried all possi-
bilities yet. We haven’t tried nonlinear or interaction variables, nor have we looked at
different coding schemes (such as treating Catalogs as a categorical variable and using
dummy variables to represent it). Also, we haven’t checked for nonconstant error variance
(Figure 11.1 is based on this data set) or looked at the potential effects of outliers. ■
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P R O B L E M S

Level A

18. The Undergraduate Data sheet of the file P10_21.xlsx
contains information on 101 undergraduate business
programs in the U.S., including various rankings by
Business Week. Use multiple regression to explore the
relationship between the median starting salary and 
the following set of potential explanatory variables:
annual cost, full-time enrollment, faculty-student ratio,
average SAT score, and average ACT score. Which
explanatory variables should be included in a final
version of this regression equation? Justify your
choices. Is multicollinearity a problem? Why or 
why not?

19. A manager of boiler drums wants to use regression
analysis to predict the number of worker-hours
needed to erect the drums in future projects.
Consequently, data for 36 randomly selected boilers
were collected. In addition to worker-hours (Y),
the variables measured include boiler capacity, boiler
design pressure, boiler type, and drum type. All of
these measurements are listed in the file P10_27.xlsx.
Estimate an appropriate multiple regression model
to predict the number of worker-hours needed to erect
given boiler drums using all available explanatory
variables. Which explanatory variables should be
included in a final version of this regression model?
Justify your choices.

20. The file P02_35.xlsx contains data from a survey of
500 randomly selected households.
a. In an effort to explain the variation in the size

of the monthly home mortgage or rent payment,

estimate a multiple regression equation that
includes all of the potential household explanatory
variables.

b. Using the regression output, determine which of
the explanatory variables should be excluded from
the regression equation. Justify your choices.

c. Do you obtain substantially different results if you
combine First Income and Second Income into a
Total Income variable and then use the latter as the
only income explanatory variable?

21. The file P02_07.xlsx includes data on 204 employees
at the (fictional) company Beta Technologies.
a. Estimate a multiple regression equation to 

explain the variation in employee salaries at 
Beta Technologies using all of the potential
explanatory variables.

b. Using the regression output, determine which
of the explanatory variables, if any, should be
excluded from the regression equation. Justify
your choices.

c. Regardless of your answer to part b, exclude the
least significant variable (not counting the
constant) and estimate the resulting equation.
Would you conclude that this equation and the
one from part a are equally good? Explain.

22. Stock market analysts are continually looking for
reliable predictors of stock prices. Consider the
problem of modeling the price per share of electric
utility stocks (Y). Two variables thought to influence
such a stock price are return on average equity (X1)
and annual dividend rate (X2). The stock price, returns
on equity, and dividend rates on a randomly selected

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



day for 16 electric utility stocks are provided in the
file P10_19.xlsx.
a. Estimate a multiple regression model using the

given data. Include linear terms as well as an
interaction term involving the return on average
equity (X1) and annual dividend rate (X2).

b. Which of the three explanatory variables (X1, X2,
and X1X2) should be included in a final version
of this regression model? Explain. Does your
conclusion make sense in light of your knowledge
of corporate finance?
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11.6 STEPWISE REGRESSION4

Multiple regression represents an improvement over simple regression because it allows
any number of explanatory variables to be included in the analysis. Sometimes, however,
the large number of potential explanatory variables makes it difficult to know which
variables to include. Many statistical packages provide some assistance by including auto-
matic equation-building options. These options estimate a series of regression equations by
successively adding (or deleting) variables according to prescribed rules. Generically, the
methods are referred to as stepwise regression.

Before discussing how stepwise procedures work, consider a naive approach to the
problem. You have already looked at correlation tables for indications of linear relation-
ships. Why not simply include all explanatory variables that have large correlations with the
dependent variable? There are two reasons for not doing this. First, although a variable is
highly correlated with the dependent variable, it might also be highly correlated with other
explanatory variables. Therefore, this variable might not be needed in the equation once 
the other explanatory variables have been included. Perhaps surprisingly, this happens
frequently.

Second, even if a variable’s correlation with the dependent variable is small, its contri-
bution when it is included with a number of other explanatory variables can be greater than
anticipated. Essentially, this variable can have something unique to say about the dependent
variable that none of the other variables provides, and this fact might not be apparent from
the correlation table. This behavior doesn’t happen as often, but it is possible.

For these reasons it is sometimes useful to let the software discover the best combina-
tion of variables by means of a stepwise procedure. There are a number of procedures for
building equations in a stepwise manner, but they all share a basic idea. Suppose there is an
existing regression equation and you want to add another variable to this equation from a
set of variables not yet included. At this point, the variables already in the equation have
explained a certain percentage of the variation of the dependent variable. The residuals
represent the part still unexplained. Therefore, in choosing the next variable to enter the
equation, you should pick the one that is most highly correlated with the current residuals.
If none of the remaining variables is highly correlated with the residuals, you might decide
to quit. This is the essence of stepwise regression. However, besides adding variables to the
equation, a stepwise procedure might delete a variable. This is sometimes reasonable
because a variable entered early in the procedure might no longer be needed, given the
presence of other variables that have entered subsequently.

Many statistical packages have three types of equation-building procedures: forward,
backward, and stepwise. A forward procedure begins with no explanatory variables in the
equation and successively adds one at a time until no remaining variables make a signifi-
cant contribution. A backward procedure begins with all potential explanatory variables in
the equation and deletes them one at a time until further deletion would do more harm than

4This section can be omitted without any loss of continuity.

Stepwise regression
(and its variations) 
can be helpful in
discovering a useful
regression model, but 
it should not be used
mindlessly.
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good. Finally, a true stepwise procedure is much like a forward procedure, except that it
also considers possible deletions along the way. All of these procedures have the same
basic objective—to find an equation with a small se and a large R2 (or adjusted R2). There
is no guarantee that they will all produce exactly the same final equation, but in most cases
their final results are very similar. The important thing to realize is that the equations
estimated along the way, including the final equation, are estimated exactly as before—by
least squares. Therefore, none of these procedures produces any new results. They merely
take the burden off the user of having to decide ahead of time which variables to include in
the equation.

StatTools implements each of the forward, backward, and stepwise procedures. To
use them, select the dependent variable and a set of potential explanatory variables. Then
specify the criterion for adding and/or deleting variables from the equation. This can be
done in two ways, with an F-value or a p-value. We suggest using p-values because they
are easier to understand, but either method is easy to use. In the p-value method, select a

p-value such as the default value of 0.05. If the
regression coefficient for a potential entering
variable would have a p-value less than 0.05 (if it
were entered), then it is a candidate for entering (if
the forward or stepwise procedure is used). The
procedure selects the variable with the smallest
p-value as the next entering variable. Similarly, if
any currently included variable has a p-value
greater than some value such as the default value of
0.10, then (with the stepwise and backward proce-
dures) it is a candidate for leaving the equation.
The methods stop when there are no candidates
(according to their p-values) for entering or leaving
the current equation.

The following continuation of the HyTex mail-
order example illustrates these stepwise procedures.
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Stepwise Regression

The option to let the statistical software build the

regression equation automatically makes the various

versions of stepwise regression very popular with many

users (and instructors). However, keep in mind that it

does nothing that can’t be done with multiple regres-

sion, where the choice of Xs is specified manually. And

sometimes a careful manual selection of the Xs to

include is better than letting the software make the

selection mindlessly. Stepwise regression has its place,

but it shouldn’t be a substitute for thoughtful analysis.

FUNDAMENTAL INSIGHT

E X A M P L E 11.3 EXPLAINING SPENDING AMOUNTS AT HYTEX (CONTINUED)

The analysis of the HyTex mail-order data (for the first 750 customers in the data set)
resulted in a regression equation that included all potential explanatory variables except

for Age, Gender, OwnHome, and Married. These were excluded because their t-values are
large and their p-values are small (less than 0.05). Do forward, backward, and stepwise
procedures produce the same regression equation for the amount spent in the current year?

Objective To use StatTools’s Stepwise Regression procedure to analyze the HyTex data.

Solution

Each of these options is found in the StatTools Regression dialog box. It is just a matter of
choosing the appropriate option from the Regression Type dropdown list. (See Figure 11.9.)
In each, specify AmountSpent as the dependent variable and select all of the other variables
(besides Customer) as potential explanatory variables. Once you choose one of the stepwise
types, the dialog box changes, as shown in Figure 11.10, to include a Parameters section and
an “advanced” option to Include Detailed Step Information. We suggest the choices in
Figure 11.10 for stepwise regression. 
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Figure 11.9

Regression Dialog

Box with Regression

Type Options

Figure 11.10

Dialog Box for

Stepwise Regression
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It turns out that each stepwise procedure (stepwise, forward, and backward) produces
the same final equation that we obtained previously, with all variables except Age, Gender,
OwnHome, and Married included. This often happens, but not always. The stepwise and
forward procedures add the variables in the order Salary, Catalogs, Close, Children,
PrevCust, and PrevSpent. The backward procedure, which starts with all variables in the
equation, eliminates variables in the order Age, Married, OwnHome, and Gender. A sam-
ple of the stepwise output appears in Figure 11.11. The variables that enter or exit the
equation are listed at the bottom of the output. The usual regression output for the final
equation also appears. Again, however, this final equation’s output is exactly the same as
when multiple regression is used with these particular variables.
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7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

A B C D E F G
rrEtSdetsujdAelpitluM of

Summary RR -Square

0.8636 0.7458 0.7438 491.2283

Degrees of Sum of Mean of
ANOVA Table Freedom Squares Squares

Explained 6 526113683.9 87685613.98 363.3805 < 0.0001
Unexplained 743 179289770.9 241305.2099

Standard
Regression Table Error Lower Upper

Constant 205.0936 70.3152 2.9168 0.0036 67.0534 343.1338
Salary 0.0180 0.0009 19.8773 < 0.0001 0.0162 0.0197
Catalogs 43.8067 2.8542 15.3481 < 0.0001 38.2034 49.4100
Close -416.2462 45.0846 -9.2326 < 0.0001 -504.7546 -327.7378
Children -161.1577 20.4828 -7.8679 < 0.0001 -201.3688 -120.9466
PrevCust -543.5948 63.2988 -8.5878 < 0.0001 -667.8606 -419.3290
PrevSpent 0.2724 0.0525 5.1844 < 0.0001 0.1692 0.3755

rrEtSdetsujdAelpitluM of Enter or
Step RR -Square e Exit

Salary 0.6837 0.4674 0.4667 708.6821 Enter
Catalogs 0.7841 0.6148 0.6138 603.0854 Enter
Close 0.8192 0.6710 0.6697 557.7264 Enter
Children 0.8477 0.7187 0.7171 516.1357 Enter
PrevCust 0.8583 0.7366 0.7349 499.6982 Enter
PrevSpent 0.8636 0.7458 0.7438 491.2283 Enter

R-Square

R-Square

F- o p-Value

ttneiciffeoC -Value p-Value
Confidence Interval 95%

Figure 11.11 Regression Output from Stepwise Procedure

Stepwise regression or any of its variations can be very useful for narrowing down
the set of all possible explanatory variables to a set that is useful for explaining a depen-
dent variable. However, these procedures should not be used as a substitute for thoughtful
analysis. With the availability of such procedures in statistical software packages, there is
sometimes a tendency to turn the analysis over to the computer and accept its output.
A good analyst does not just collect as much data as possible, throw it into a software
package, and blindly report the results. There should always be some rationale, whether it
is based on economic theory, business experience, or common sense, for the variables that
are used to explain a given dependent variable. A thoughtless use of stepwise regression
can sometimes capitalize on chance to obtain an equation with a reasonably large R2 but

■
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no useful or practical interpretation. It is very possible that such an equation will not gen-
eralize well to new data.

Finally, keep in mind that if one stepwise procedure produces slightly different outputs
than another (for example, one might include a variable, the other might exclude it), the
differences are typically very small and are not worth agonizing about. The two equations
typically have very similar R2 values and standard errors of estimate, and they typically pro-
duce very similar predictions. If anything, most analysts prefer the smaller equation because
of parsimony, but they realize that the differences are “at the margin.”
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P R O B L E M S

Level A

23. The Undergraduate Data sheet of the file P10_21.xlsx
contains information on 101 undergraduate business
programs in the U.S., including various rankings by
Business Week. Use forward, backward, and stepwise
regression analysis to explore the relationship between
the median starting salary and the following set of
potential explanatory variables: annual cost, full-time
enrollment, faculty-student ratio, average SAT score,
and average ACT score. Do these three methods all
lead to the same regression equation? If not, do you
think any of the final equations are substantially better
than any of the others? 

24. The file P10_08.xlsx contains data on the top 200
professional golfers in each of the years 2003–2009.
(The same data set was used in Example 3.4 in
Chapter 3.)
a. Create one large data set in a new sheet called All

Years that has the data for all seven years stacked
on top of one other. (This is possible because the
variables are the same in each year.) In this
combined data set, create a new column called
Earnings per Round, the ratio of Earnings to
Rounds. Similarly, create three other new variables,
Eagles per Round, Birdies per Round, and Bogies
per Round.

b. Using the data set from part a, run a forward regres-
sion of Earnings per Round versus the following
potential explanatory variables: Age, Yard/Drive,
Driving Accuracy, Greens in Regulation, Putting
Average, Sand Save Pct, Eagles per Round, Birdies
per Round, and Bogies per Round. Given the results,
comment on what seems to be important on the pro-
fessional tour in terms of earnings per round. For
any variable that does not end up in the equation, is
it omitted because it is not related to Earnings per
Round or because its effect is explained by other
variables in the equation?

c. Repeat part b with backward regression. Do you
get the same, or basically the same, results?

25. In a study of housing demand, a county assessor is
interested in developing a regression model to estimate
the selling price of residential properties within her
jurisdiction. She randomly selects 15 houses and
records the selling price in addition to the following
values: the size of the house (in hundreds of square
feet), the total number of rooms in the house, the age
of the house, and an indication of whether the house
has an attached garage. These data are listed in the file
P10_26.xlsx.
a. Use stepwise regression to decide which

explanatory variables should be included in the
assessor’s statistical model. Use the p-value
method with a cutoff value of 0.05 for entering
and leaving. Summarize your findings.

b. How do the results in part a change when the critical
p-value for entering and leaving is increased to 0.10?
Explain any differences between the regression
equation obtained here and the one found in part a.

26. Continuing Problem 2 with the data in the file
P10_04.xlsx, employ stepwise regression to evaluate
your conclusions regarding the specification of a
regression model to predict the sales of deep-dish
pizza by the Original Italian Pizza restaurant chain.
Use the p-value method with a cutoff value of 0.05
for entering and leaving. Compare your conclusions
in Problem 2 with those derived from a stepwise
regression.

Level B

27. How sensitive are stepwise regression results to
small changes in the data? This problem allows you
to explore this. The file P11_27.xlsm can be used to
generate 100 randomly chosen observations from a
given population. It contains macros that help you
do this. Specifically, the means, standard deviations,
and correlations for the population of 10 Xs and Y are
given in rows 2–14. The macro has already been used
to generate a “generic” row of data in row 16. It is
done so that the Xs and Y are normally distributed with
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the given means, standard deviations, and correlations.
Press the F9 key a few times to see how the data in
row 16 change. There is also a button you can click.
When you do so, the generic row 16 is copied to rows
20–119 to generate new random data, and the new
random data are frozen. Click on the button a few
times to see how this works. Designate a StatTools
data set in the range A19:L119 and run stepwise
regression on the data. Then generate new data by
clicking on the button and run stepwise regression
again. Repeat this a few times. Then explain the
results. Do all of the stepwise regressions produce

about the same results? Are they consistent with the
parameters in the top section, particularly the
correlations involving Y in row 14?

28. Repeat the previous problem at least once, using means,
standard deviations, and correlations of your choice. 
The interesting thing you will discover is that you can’t
arbitrarily enter just any correlations between 
1 and
�1. For many choices, the generic row will exhibit
#VALUE! errors. This means that no population could
possibly have the correlations you entered. Try to find
correlations that do not produce the #VALUE! errors.
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11.7 THE PARTIAL F TEST5

There are many situations where a set of explanatory variables form a logical group. It is
then common to include all of the variables in the equation or exclude all of them. An exam-
ple of this is when one of the explanatory variables is categorical with more than two cate-
gories. In this case you model it by including dummy variables—one fewer than the number
of categories. If you decide that the categorical variable is worth including, you might want
to keep all of the dummies (except of course for the reference dummy). Otherwise, you
might decide to exclude all of them. We look at an example of this type subsequently.

For now, consider the following general situation. You have already estimated an
equation that includes the variables X1 through Xj, and you are proposing to estimate a
larger equation that includes Xj�1 through Xk in addition to the variables X1 through Xj.
That is, the larger equation includes all of the variables from the smaller equation, but it
also includes k 
 j extra variables. These extra variables are the ones that form a group.
We assume that it makes logical sense to include all of them or none of them.

In this section we describe a test to determine whether the extra variables provide
enough extra explanatory power as a group to warrant their inclusion in the equation. The
test is called the partial F test. The original equation is called the reduced equation, and
the larger equation is called the complete equation. In simple terms, the partial F test tests
whether the complete equation is significantly better than the reduced equation.6

The test itself is intuitive. The output from the ANOVA tables of the reduced and
complete equations is used to form an F-ratio. This ratio measures how much the sum of
squared residuals, SSE, decreases by including the extra variables in the equation. It must
decrease by some amount because the sum of squared residuals cannot increase when extra
variables are added to an equation. But if it does not decrease sufficiently, the extra vari-
ables might not explain enough to warrant their inclusion in the equation, and they should
probably be excluded. The F-ratio measures this. If it is sufficiently large, the extra vari-
ables are worth including; otherwise, they can safely be excluded.

To state the test formally, let �j�1 through �k be the coefficients of the extra variables
in the complete equation. Then the null hypothesis is that these extra variables have no
effect on the dependent variable, that is, H0:�j�1 � ��� � �k � 0. The alternative is that at
least one of the extra variables has an effect on the dependent variable, so that at least one
of these �s is not zero. The hypotheses are summarized in the box.

5This section is somewhat more advanced and can be omitted without any loss of continuity.
6StatTools does not run the partial F test, but it provides all of the ingredients to do so.

The complete equation
always contains all of
the explanatory
variables in the
reduced equation, plus
some more. In other
words, the reduced
equation is a subset of
the complete equation.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



To run the test, estimate both the reduced and complete equations and look at the asso-
ciated ANOVA tables. Let SSER and SSEC be the sums of squared errors from the reduced
and complete equations, respectively. Also, let MSEC be the mean square error for the com-
plete equation. All of these quantities appear in the ANOVA tables. Next, form the F-ratio
in Equation (11.4).
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Hypotheses for the Partial F Test

The null hypothesis is that the coefficients of all the extra explanatory variables in the
complete equation are zero. The alternative is that at least one of these coefficients is
not zero.

Test Statistic for Partial F Test

(11.4)F-ratio =

(SSER - SSEC)/(k - j)

MSEC

The numerator includes the reduction in sum of squared errors discussed previously. If
the null hypothesis is true, this F-ratio has an F distribution with k 
 j and n 
 k 
 1
degrees of freedom. If it is sufficiently large, H0 can be rejected. As usual, the best way to
run the test is to find the p-value corresponding to this F-ratio. This is the probability
beyond the calculated F-ratio in the F distribution with k 
 j and n 
 k 
 1 degrees of
freedom. In words, you can reject the hypothesis that the extra variables have no explana-
tory power if this p-value is sufficiently small—less than 0.05, say.

This F-ratio and corresponding p-value are not part of the StatTools regression output.
However, they are fairly easy to obtain. To do so, run two regressions, one for the reduced
equation and one for the complete equation, and use the appropriate values from their
ANOVA tables to calculate the F-ratio in Equation (11.4). Then use Excel’s FDIST func-
tion in the form FDIST(F-ratio, k � j, n � k � 1) to calculate the corresponding p-value.
The procedure is illustrated in the following example. It uses the bank discrimination data
from Example 10.3 of the previous chapter.

E X A M P L E 11.4 POSSIBLE GENDER DISCRIMINATION IN SALARY AT FIFTH NATIONAL

BANK OF SPRINGFIELD

Recall from Example 11.3 that Fifth National Bank has 208 employees. The data for
these employees are stored in the file Bank Salaries.xlsx. In the previous chapter we

ran several regressions for Salary to see whether there is convincing evidence of salary dis-
crimination against females. We will continue this analysis here. First, we regress Salary
versus the Female dummy, YrsExper, and the interaction between Female and YrsExper,
Interaction(YrsExper,Female). This is the reduced equation. Then we will see whether
the EducLev dummies, EducLev�2 to EducLev�5, add anything significant to the
reduced equation. If so, we will then see whether the JobGrade dummies, JobGrade�2 to
JobGrade�6, add anything significant to what we already have. If so, we will finally see
whether the interactions between the Female dummy and the education dummies,
Interaction(Female,EducLev�2) to Interaction(Female,EducLev�5), add anything sig-
nificant to what we already have.
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Objective To use several partial F tests to see whether various groups of explanatory
variables should be included in a regression equation for salary, given that other variables
are already in the equation.

Solution

First, it is possible to create all of the dummies and interaction variables with StatTools’s
Data Utilities procedures. These could be entered directly with Excel functions, but StatTools
makes the process much quicker and easier. Also, note that there are three sets of dummies:
for gender, job grade, and education level. When these are used in a regression equation, the
dummy for one category of each should always be excluded; it is the reference category. The
reference categories we have used are male, job grade 1, and education level 1.

The output for the “smallest” equation, the one using Female, YrsExper, and
Interaction(YrsExper,Female) as explanatory variables, appears in Figure 11.12. (This output
is in a sheet called Regression1.) These three variables already explain 63.9% of the variation
in Salary.
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7
8

A B C D E F G
rrEtSdetsujdAelpitluM  of

Summary RR -Square
R-Square

9
10
11
12
13
14
15
16
17

0.7991 0.6386 0.6333 6816.298

Degrees of Sum of Mean

Es�mate

 of 
ANOVA Table Freedom Squares Squares

Explained 3 16748875071 5582958357 120.1620 < 0.0001
Unexplained 204 9478232160 46461922.35

Standard
Regression Table reppUrewoLrorrE

F-Ra�o p-Value

ttneiciffeoC -Value p-Value
Confidence Interval 95%

18
19
20
21

pp

Constant 30430.028 1216.574 25.0129 < 0.0001 28031.356 32828.700
YrsExper 1527.762 90.460 16.8887 < 0.0001 1349.405 1706.119
Female

Interac�on(YrsExper,Female)

4098.252 1665.842 2.4602 0.0147 813.776 7382.727
-1247.798 136.676 -9.1296 < 0.0001 -1517.277 -978.320

Figure 11.12 Reduced Equation for Bank Example

The output for the next equation, which adds the explanatory variables EducLev�2 to
EducLev�5, appears in Figure 11.13. (This output is in a sheet called Regression2.) This
equation appears to be much better. For example, R2 has increased to 73.1%. You can
check whether it is significantly better with the partial F test in rows 27 through 33. (This
part of the output is not given by StatTools; you have to enter it manually.) The degrees of
freedom in cell B28 is 4, the number of extra variables. The degrees of freedom in cell B29
is the same as the value in cell B14, the degrees of freedom for SSE. Then the F-ratio is cal-
culated in cell B32 with the formula

�((Regression1!C13-C14)/B28)/D14

where Regression1!C13 refers to the SSE for the reduced equation from the Regression1
sheet. Finally, the corresponding p-value can be calculated in cell B33 with the formula

�FDIST(B30,B28,B29)

It is practically zero, so there is no doubt that the education dummies add significantly to
the explanatory power of the equation.
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Do the job grade dummies add anything more? You can again use the partial F test,
but now the previous complete equation becomes the new reduced equation, and the equa-
tion that includes the new job grade dummies becomes the new complete equation. The
output for this new complete equation appears in Figure 11.14. (This output is in a sheet
called Regression3.) The partial F test is performed in rows 32 through 36 exactly as
before. For example, the formula for the F-ratio in cell B35 is

�(('Regression2'!C14-C14)/B33)/D14

Note how the SSER term in Equation (11.4) now comes from the Regression2 sheet
because this sheet contains the current reduced equation. The terms reduced and complete
are relative. The complete equation in one stage becomes the reduced equation in the next
stage. In any case, the p-value in cell B36 is again extremely small, so there is no doubt
that the job grade dummies add significantly to what was already in the equation. In fact,
R2 has increased from 73.1% to 81.5%.

Finally, you can add the interactions between Female and the education dummies. The
resulting output is shown in Figure 11.15. (This output is in a sheet called Regression4.)
Again, the terms reduced and complete are relative. This output now corresponds to the
complete equation, and the previous output corresponds to the reduced equation. The
formula in cell B39 for the F-ratio is now

�(('Regression3'!C14-C14)/B37)/D14

Its SSER value comes from the Regression3 sheet. Note that the increase in R2 is from
81.5% to only 82.0%. Also, the p-value in cell B40 is not extremely small. According to
the partial F test, it is not quite small enough to qualify for statistical significance at the 5%
level. Based on this evidence, there is not much to gain from including the interaction
terms in the equation, so you would probably elect to exclude them.
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7
8
9

10
11
12
13
14

A B C D E F G
rrEtSdetsujdAelpitluM of

Summary RR -Square

0.8552 0.7314 0.7220 5935.254

Degrees of Sum of Mean of
ANOVA Table Freedom Squares Squares

Explained 7 19181659773 2740237110 77.7875 < 0.0001
200 7045447458 35227237.29

R-Square

F- o p-Value

15
16
17
18
19
20
21
22

Unexplained

Standard
Regression Table reppUrewoLrorrE

Constant 24780.996 1551.053 15.9769 < 0.0001 21722.480 27839.512
YrsExper 1456.388 79.761 18.2593 < 0.0001 1299.107 1613.669
Female 4898.656 1454.087 3.3689 0.0009 2031.347 7765.965
EducLev = 2 546.549 1418.139 0.3854 0.7004 -2249.874 3342.972
EducLev = 3 3587.341 1287.361 2.7866 0.0058 1048.798 6125.885

ttneiciffeoC -Value p-Value
Confidence Interval 95%

23
24
25
26
27
28
29
30
31

. . . . . .
EducLev = 4 5862.894 2346.571 2.4985 0.0133 1235.700 10490.088
EducLev = 5 9428.090 1337.292 7.0501 < 0.0001 6791.089 12065.092

-1029.858 121.924 -8.4467 < 0.0001 -1270.279 -789.437

F test for including EducLev dummies

df numerator 4
df denominator 200
F 68.863
p-value 0.0000

Figure 11.13 Equation with Education Dummies Added
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Before leaving this example, we make several comments. First, the partial test is the
formal test of significance for an extra set of variables. Many users look only at the R2

and/or se values to check whether extra variables are doing a “good job.” For example, they
might cite that R2 went from 81.5% to 82.0% or that se went from 4988 to 4965 as evidence
that extra variables provide a “significantly” better fit. Although these are important indi-
cators, they are not the basis for a formal hypothesis test.

Second, if the partial F test shows that a block of variables is significant, it does not
imply that each variable in this block is significant. Some of these variables can have low
t-values. Consider Figure 11.13, for example. The education dummies as a whole are
significant, but one of these dummies, EducLev�2, is clearly not significant. Some ana-
lysts favor excluding the individual variables that aren’t significant, whereas others favor
keeping the whole block or excluding the whole block. We lean toward the latter but rec-
ognize that either approach is valid. Fortunately, the results are often nearly the same
either way.

Third, producing all of these outputs and doing the partial F tests is a lot of work.
Therefore, a Block option is included in StatTools to simplify the analysis. To run the
analysis in this example in one step, select the Block option from the Regression Type
dropdown list. The dialog box then changes, as shown in Figure 11.16. Select four
blocks and then check which variables are in which blocks (B1 to B4). Block 1 has
Female, YrsExper, and Interaction(YrsExper,Female), block 2 has the education
dummies, block 3 has the job grade dummies, and block 4 has the interactions between
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7
8
9

10
11
12
13
14

A B C D E F G
rrEtSdetsujdAelpitluM of

Summary RR -Square

0.9028 0.8150 0.8036 4988.127

Degrees of Sum of Mean of
ANOVA Table Freedom Squares Squares

Explained 12 21375231697 1781269308 71.5904 < 0.0001
195 4851875534 24881413

R-Square

F- o p-Value

15
16
17
18
19
20
21
22

Unexplained

Standard
Regression Table reppUrewoLrorrE

Constant 25624.820 1450.166 17.6703 < 0.0001 22764.798 28484.843
YrsExper 1109.889 105.608 10.5096 < 0.0001 901.610 1318.169
Female 6066.112 1267.472 4.7860 < 0.0001 3566.399 8565.825
EducLev = 2 -675.106 1204.702 -0.5604 0.5759 -3051.024 1700.812
EducLev = 3 447.269 1147.751 0.3897 0.6972 -1816.330 2710.868

ttneiciffeoC -Value p-Value
Confidence Interval 95%

23
24
25
26
27
28
29
30

= . . . . . .
EducLev = 4 525.063 2109.284 0.2489 0.8037 -3634.875 4685.001
EducLev = 5 1946.144 1394.627 1.3955 0.1645 -804.344 4696.633
JobGrade = 2 2245.355 1034.406 2.1707 0.0312 205.295 4285.414
JobGrade = 3 5552.070 1098.504 5.0542 < 0.0001 3385.596 7718.543
JobGrade = 4 9970.290 1314.585 7.5844 < 0.0001 7377.659 12562.921
JobGrade = 5 13235.194 1631.437 8.1126 < 0.0001 10017.667 16452.720
JobGrade = 6 14928.127 2695.706 5.5377 < 0.0001 9611.644 20244.610

-1002.905 119.060 -8.4235 < 0.0001 -1237.716 -768.094
31
32
33
34
35
36

F test for including JobGrade dummies

df numerator 5
df denominator 195
F 17.632
p-value 0.0000

Figure 11.14 Regression Output with Job Dummies Added

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11.7 The Partial F Test 635

7
8
9

10
11
12
13
14

A B C D E F G
rrEtSdetsujdAelpitluM of

Summary RR -Square

0.9058 0.8204 0.8054 4965.729

Degrees of Sum of Mean of
ANOVA Table Freedom Squares Squares

Explained 16 21517339674 1344833730 54.5384 < 0.0001
191 4709767556 24658468 88

R-Square

F- o p-Value

15
16
17
18
19
20
21
22

Unexplained .

Standard
Regression Table reppUrewoLrorrE

Constant 19845.279 3263.760 6.0805 < 0.0001 13407.637 26282.922
YrsExper 1166.782 109.100 10.6946 < 0.0001 951.586 1381.977
Female 12424.015 3457.402 3.5935 0.0004 5604.421 19243.609
EducLev = 2 3114.496 3666.760 0.8494 0.3967 -4118.048 10347.040
EducLev = 3 6991.038 3257.025 2.1464 0.0331 566.681 13415.395

ttneiciffeoC -Value p-Value
Confidence Interval 95%

23
24
25
26
27
28
29
30
31

EducLev = 4 6394.234 4312.345 1.4828 0.1398 -2111.702 14900.170
EducLev = 5 7550.157 3268.374 2.3101 0.0220 1103.414 13996.900
JobGrade = 2 2142.469 1038.726 2.0626 0.0405 93.621 4191.316
JobGrade = 3 5629.803 1096.800 5.1329 < 0.0001 3466.406 7793.200
JobGrade = 4 10092.551 1312.448 7.6899 < 0.0001 7503.796 12681.305
JobGrade = 5 13038.574 1636.716 7.9663 < 0.0001 9810.215 16266.934
JobGrade = 6 13672.521 2762.533 4.9493 < 0.0001 8223.528 19121.513

-1069.576 122.680 -8.7184 < 0.0001 -1311.558 -827.594
e EducLev 2) 3923 850 3882 671 1 0106 0 3135 11582 270 3734 570

32
33
34
35
36
37
38

l = - . . - . . - . .
= 3) -7533.870 3448.578 -2.1846 0.0301 -14336.060 -731.680
= 4) -6471.909 4864.678 -1.3304 0.1850 -16067.301 3123.484
= 5) -6178.817 3368.287 -1.8344 0.0681 -12822.635 465.000

F test for including EducLev/Female

df numerator 4
df denominator 191

39 F 1.441

Figure 11.15 Regression Output with Interaction Terms Added

Female and the education dummies. Finally, specify 0.05 as the p-value to enter, which
in this case indicates how significant the block as a whole must be to enter (for the
partial F test).

The regression calculations are then done in stages. At each stage, the partial F test
checks whether a block is significant. If it is, the variables in this block enter and the pro-
cedure goes to the next stage. If it is not, the procedure ends; neither this block nor any
later blocks enter.

The output from this procedure appears in Figure 11.17. The middle part of the output
shows the final regression equation. The output in rows 34 through 37 indicates summary
measures after successive blocks have entered. Note that the final block, the interactions
between Female and the education dummies, is not in the final equation. This block did not
pass the partial F test at the 5% level.

For comparison, we ran the block procedure a second time, changing the order of the
blocks. Now block 2 includes the job grade dummies, block 3 includes the education dum-
mies, and block 4 includes the interactions between Female and the education dummies.
The regression output appears in Figure 11.18. Note that neither of the last two blocks
enters the equation this time. Once the job grade dummies are in the equation, the terms
including education are no longer needed. The implication is that the order of the blocks
can make a difference.
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Figure 11.16

Dialog Box for Block

Regression Option

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

A B C D E F G
rrEtS

Es�mate
detsujdAelpitluM  of

Summary RR -Square

0.9028 0.8150 0.8036 4988.127

Degrees of Sum of Mean of 
ANOVA Table Freedom Squares Squares

Explained 12 21375231697 1781269308 70.1218 < 0.0001
Unexplained 191 4851875534 25402489.71

Standard
Regression Table reppUrewoLrorrE

Constant 25624.820 1450.166 17.670 < 0.0001 22764.424 28485.217
YrsExper 1109.889 105.608 10.510 < 0.0001 901.582 1318.196
Female 6066.112 1267.472 4.786 < 0.0001 3566.072 8566.152

-1002.905 119.060 -8.424 < 0.0001 -1237.747 -768.063
EducLev

Interac�on(YrsExper,Female)

 = 2 -675.106 1204.702 -0.560 0.5759 -3051.335 1701.123
EducLev = 3 447.269 1147.751 0.390 0.6972 -1816.626 2711.164
EducLev = 4 525.063 2109.284 0.249 0.8037 -3635.419 4685.545
EducLev = 5 1946.144 1394.627 1.395 0.1645 -804.704 4696.993
JobGrade = 2 2245.355 1034.406 2.171 0.0312 205.028 4285.681
JobGrade = 3 5552.070 1098.504 5.054 < 0.0001 3385.313 7718.826
JobGrade = 4 9970.290 1314.585 7.584 < 0.0001 7377.320 12563.260
JobGrade = 5 13235.194 1631.437 8.113 < 0.0001 10017.247 16453.141
JobGrade = 6 14928.127 2695.706 5.538 < 0.0001 9610.948 20245.306

rrEt
Es�mate
SdetsujdAelpitluM  of Entry

Step Informa�on RR -Square Number

Block 1 0.7991 0.6386 0.6333 6816.298 1
Block 2 0.8552 0.7314 0.7220 5935.254 2
Block 3 0.9028 0.8150 0.8036 4988.127 3
Block 4 Did Not Enter

R-Square

R-Square

F-Ra�o p-Value

ttneiciffeoC -Value p-Value
Confidence Interval 95%

Figure 11.17 Block Regression Output
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Finally, although we have concentrated on the partial F test and statistical significance
in this example, we don’t want you to lose sight of the bigger picture. Once you have
decided on a “final” regression equation such as the one in Figure 11.14, you need to
analyze its implications for the problem at hand. In this case the bank is interested in possi-
ble salary discrimination against females, so you should interpret this final equation in these
terms. We will not go through this exercise again here—we did similar interpretations in the
previous chapter. Our point is simply that you shouldn’t get so immersed in the details of
statistical significance that you lose sight of the original purpose of the analysis. ■
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7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

A B C D E F G
rrEtSdetsujdAelpitluM  of

Summary RR -Square Es�mate

0.9005 0.8109 0.8033 4991.635

Degrees of Sum of Mean of 
ANOVA Table Freedom Squares Squares

Explained 8 21268738998 2658592375 104.5557 < 0.0001
Unexplained 195 4958368233 25427529.4

Standard
Regression Table reppUrewoLrorrE

Constant 26104.223 1105.443 23.614 < 0.0001 23924.064 28284.381
YrsExper 1070.883 102.013 10.497 < 0.0001 869.692 1272.074
Female

Interac�on(YrsExper,Female)

6063.328 1266.322 4.788 < 0.0001 3565.883 8560.773
-1021.051 118.726 -8.600 < 0.0001 -1255.202 -786.900

JobGrade = 2 2596.493 1010.122 2.570 0.0109 604.325 4588.660
JobGrade = 3 6221.394 998.177 6.233 < 0.0001 4252.784 8190.003
JobGrade = 4 11071.954 1172.588 9.442 < 0.0001 8759.371 13384.537
JobGrade = 5 14946.576 1340.249 11.152 < 0.0001 12303.332 17589.821
JobGrade = 6 17097.372 2390.671 7.152 < 0.0001 12382.481 21812.262

rrEtS
Es�mate

detsujdAelpitluM  of Entry
Step Informa�on RR -Square Number

Block 1 0.7991 0.6386 0.6333 6816.298 1
Block 2 0.9005 0.8109 0.8033 4991.635 2
Block 3 Did Not Enter
Block 4 Did Not Enter

R-Square

R-Square

F-Ra�o p-Value

ttneiciffeoC -Value p-Value
Confidence Interval 95%

Figure 11.18 Block Regression Output with Order of Blocks Changed

P R O B L E M S

Level A

29. A regional express delivery service company recently
conducted a study to investigate the relationship between
the cost of shipping a package (Y), the package weight
(X1), and the distance shipped (X2). Twenty packages
were randomly selected from among the large number
received for shipment and a detailed analysis of the ship-
ping cost was conducted for each package. These sample
observations are given in the file P10_22.xlsx.
a. Estimate a multiple regression equation involving

the two given explanatory variables. What do the

results in the ANOVA table indicate about this
regression?

b. Is it worthwhile to add the terms X2
1 and X2

2 to the
regression equation in part a? Base your decision
here on a partial F test and a 5% significance level.

c. Is it worthwhile to add the term X1X2 to the most
appropriate reduced equation determined in part b?
Again, perform a partial F test with a 5%
significance level.

d. What regression equation should this company use
in predicting the cost of shipping a package?
Defend your recommendation.
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30. Continuing Problem 6 with the data in the file
P10_18.xlsx, refer to the original multiple regression
model (the one that includes the age of the auctioned
item and the number of bidders as explanatory vari-
ables) as the reduced equation. Suppose now that the
antique collector believes that the rate of increase of
the auction price with the age of the item will be
driven upward by a large number of bidders.
a. Revise the reduced regression equation to model this

additional feature of the problem. Estimate this larger
regression equation, called the complete equation.

b. Using a 5% significance level, perform a partial 
F test to check whether the complete equation is
significantly better than the reduced equation.
Briefly explain your findings.

31. Many companies manufacture products that are at
least partially produced using chemicals (for example,
paint, gasoline, and steel). In many cases, the quality
of the finished product is a function of the temperature
and pressure at which the chemical reactions take
place. Suppose that a particular manufacturer wants
to model the quality (Y) of a product as a function of
the temperature (X1) and the pressure (X2) at which it
is produced. The file P10_39.xlsx contains data
obtained from a designed experiment involving these
variables. Note that the quality score can range from a
minimum of 0 to a maximum of 100 for each product.
a. Estimate a multiple regression equation that

includes the two given explanatory variables. What
do the results in the ANOVA table indicate about
this regression?

b. Use a partial F test with a 5% significance level to
decide whether it is worthwhile to add second-
order terms (X2

1, X2
2 , and X1X2) to the regression

equation in part a. 
c. Which regression equation is the most appropriate

one for modeling the quality of the product? Keep

in mind that a good statistical model is usually
parsimonious.

Level B

32. Continuing Problem 27 with the simulated data in the
file P11_27.xlsm, suppose the analyst believes that
the variables X4 and X6 are the most important
variables, X2, X8, and X9 are next most important,
and the rest are of questionable importance. (Perhaps
this is based on economic considerations.) Run
stepwise regression on this data set. Then use the
block regression procedure in StatTools, using the
analyst’s three blocks, and compare the block results
to the stepwise results. Why are they different? Then
repeat the whole comparison several more times,
each time clicking on the button first to generate 
new data for the regressions. Do you get the same
results (about which blocks enter and which don’t)
on each run? 

33. The file P02_35.xlsx contains data from a survey of
500 randomly selected households.
a. To explain the variation in the size of the Monthly

Payment variable, estimate a multiple regression
equation that includes the numerical variables
Family Size, Total Income (sum of First Income
and Second Income), Utilities, and Debt. What do
the results in the ANOVA table indicate about this
regression?

b. Determine whether the categorical Location and
Ownership variables add significantly to explaining
Monthly Payment. Do this by using a partial F test,
at the 5% significance level, for the group of extra
variables that includes Ownership and the dummies
corresponding to Location. Do the results depend
on which Location dummy is used as the reference
category? Experiment to find out.
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11.8 OUTLIERS

In all of the regression examples so far, we have ignored the possibility of outliers.
Unfortunately, outliers cannot be ignored in many real applications. They are often pre-
sent, and they can often have a substantial effect on the results. In this section we briefly
discuss outliers in the context of regression—how to detect them and what to do about
them.

You probably tend to think of an outlier as an observation that has an extreme value
for at least one variable. For example, if salaries in a data set are mostly in the $40,000 to
$80,000 range, but one salary is $350,000, this observation is clearly an outlier with
respect to salary. However, in a regression context outliers are not always this obvious. In
fact, an observation can be considered an outlier for several reasons, and some types of
outliers can be difficult to detect. An observation can be an outlier for one or more of the
following reasons.
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Potential Characteristics of an Outlier

1. It has an extreme value for one or more variables.

2. Its value of the dependent variable is much larger or smaller than predicted by the
regression line, and its residual is abnormally large in magnitude. An example
appears in Figure 11.19. The line in this scatterplot fits most of the points, but it
misses badly on the one obvious outlier. This outlier has a large positive residual,
but its Y value is not abnormally large. Its Y value is only large relative to points
with the same X value that it has.

11.8 Outliers 639

Outliers can come in
several forms, as
indicated in this list.

Figure 11.19 Outlier with a Large Residual

3. Its residual is not only large in magnitude, but this point “tilts” the regression line
toward it. An example appears in Figure 11.20. The two lines shown are the regres-
sion lines with the outlier and without it. The outlier makes a big difference in the
slope and intercept of the regression line. This type of outlier is called an influential
point, for the obvious reason.

4. Its values of individual explanatory variables are not extreme, but they fall outside
the general pattern of the other observations. An example appears in Figure 11.21.
Here, we assume that the two variables shown, YrsExper (years of experience) and
Rating (an employee’s performance rating) are both explanatory variables for some
other dependent variable (Salary) that isn’t shown in the plot. The obvious outlier
does not have an abnormal value of either YrsExper or Rating, but it falls well 
outside the pattern of most employees.

Once outliers have been identified, there is still the dilemma of what to do with them.
In most cases the regression output will look “nicer” if you delete outliers, but this is not
necessarily appropriate. If you can argue that the outlier isn’t really a member of the
relevant population, then it is appropriate and probably best to delete it. But if no such
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argument can be made, then it is not really appropriate to delete the outlier just to make the
analysis come out better. Perhaps the best advice in this case is the advice we gave in the
previous chapter: Run the analysis with the outliers and run it again without them. If
the key outputs do not change much, then it does not really matter whether the outliers are
included or not. If the key outputs change substantially, then report the results both with
and without the outliers, along with a verbal explanation.

We illustrate this procedure in the following continuation of the bank discrimination
example.
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Figure 11.20

Outlier That Tilts

the Regression Line

Figure 11.21

Outlier Outside 

the Pattern of

Explanatory

Variables
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E X A M P L E 11.4 POSSIBLE GENDER DISCRIMINATION IN SALARY AT FIFTH NATIONAL

BANK OF SPRINGFIELD (CONTINUED)

Of the 208 employees at Fifth National Bank, are there any obvious outliers? In what
sense are they outliers? Does it matter to the regression results, particularly those

concerning gender discrimination, whether the outliers are removed?

Objective To locate possible outliers in the bank salary data, and to see to what extent
they affect the regression model.

Solution

There are several places to look for outliers. An obvious place is the Salary variable. The
box plot in Figure 11.22 shows that there are several employees making substantially more
in salary than most of the employees. You could consider these outliers and remove them,
arguing perhaps that these are senior managers who shouldn’t be included in the discrimi-
nation analysis. We leave it to you to check whether the regression results are any different
with these high-salary employees than without them.

Box Plot of Salary

0 20000 40000 60000 80000 100000 120000

Figure 11.22

Box Plot of Salaries

for Bank Data

Another place to look is at a scatterplot of the residuals versus the fitted values. This type
of plot (offered as an option by StatTools) shows points with abnormally large residuals. For
example, we ran the regression with Female, YrsExper, Interaction(YrsExper,Female), and
four education dummies, and we obtained the output and scatterplot in Figures 11.23 and
11.24. This scatterplot has several points that could be considered outliers, but we focus on
the point identified in the figure. The residual for this point is approximately 
23,000. Given
that se for this regression is approximately 5900, this residual is about four standard errors
below zero—quite a lot. If you examine this point more closely, you will see that it corre-
sponds to employee 208, who is a 62-year-old female employee in the highest job grade. She
has 33 years of experience with Fifth National, she has a graduate degree, and she earns only
$30,000. She is clearly an unusual employee, and there are probably special circumstances
that can explain her small salary, although we can only guess at what they are.
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In any case, if you delete this employee and rerun the regression with the same vari-
ables, you will obtain the output in Figure 11.25.7 Now, recalling that gender discrimina-
tion is the key issue in this example, you can compare the coefficients of Female and
Interaction (YrsExper,Female) in the two outputs. The coefficient of Female has dropped
from 4899 to 3774. In words, the Y-intercept for the female regression line used to be about
$4900 higher than for the male line; now it is only about $3800 higher. More importantly,
the coefficient of Interaction(YrsExper,Female) has changed from 
1030 to 
858. This
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Figure 11.23 Regression Output with Outlier Included

Figure 11.24

Scatterplot of

Residuals Versus

Fitted Values with

Outlier Identified

7As it turns out, this employee is the last observation in the data set. An easy way to run the regression (with
StatTools) without this employee is to redefine the StatTools data set so that it doesn’t include this last row.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



coefficient indicates how much less steep the female line for Salary versus YrsExper is
than the male line. So a change from 
1030 to 
858 indicates less discrimination against
females now than before. In other words, this unusual female employee accounts for a
good bit of the discrimination argument—although a strong argument still exists even
without her. ■
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Figure 11.25 Regression Output with Outlier Excluded

P R O B L E M S

Level A

34. The file P11.34.xlsx contains data on the top 40
golfers in 2008. (It is a subset of the data examined in
earlier chapters.) This was the year when Tiger Woods
won the U.S. Open in June and then had year-ending
surgery directly afterward. Using all 40 golfers, run
a forward stepwise regression of Earnings per Round
versus the potential explanatory variables in columns
B–G. (Don’t use Earnings in column H.) Then create
a second data set that omits Tiger Woods and repeat
the regression on this smaller data set. Are the results
about the same? Explain the effect, if any, of the Tiger
Woods outlier on the regression.

35. The file P02_07.xlsx includes data on 204 employees
at the (fictional) company Beta Technologies. 
a. Run a forward stepwise regression of Annual

Salary versus Gender, Age, Prior Experience, Beta
Experience, and Education. Would you say this
equation does a good job of explaining the
variation in salaries?

b. Add a new employee to the end of the data set, a
top-level executive. The values of Gender through
Annual Salary for this person are, respectively, 0,
56, 10, 15, 6, and $500,000. Run the regression in
part a again, including this executive. Are the
results much different? Is it “fair” to exclude this
executive when analyzing the salary structure at
this company?

Level B

36. Statistician Frank J. Anscombe created a data set to
illustrate the importance of doing more than just
examining the standard regression output. These data
are provided in the file P10_64.xlsx.
a. Regress Y1 on X. How well does the estimated

equation fit the data? Is there evidence of a linear
relationship between Y1 and X at the 5%
significance level?

b. Regress Y2 on X. How well does the estimated
equation fit the data? Is there evidence of a linear
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relationship between Y2 and X at the 5%
significance level?

c. Regress Y3 on X. How well does the estimated equa-
tion fit the data? Is there evidence of a linear relation-
ship between Y3 and X at the 5% significance level?

d. Regress Y4 on X4. How well does the estimated equa-
tion fit the data? Is there evidence of a linear relation-
ship between Y4 and X4 at the 5% significance level?

e. Compare these four simple linear regression
equations (1) in terms of goodness of fit and (2) in
terms of overall statistical significance.

f. How do you explain these findings, considering
that each of the regression equations is based on a
different set of variables?

g. What role, if any, do outliers have on each of these
estimated regression equations?
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11.9 VIOLATIONS OF REGRESSION ASSUMPTIONS

Much of the theoretical research in the area of regression has dealt with violations of the
regression assumptions discussed in section 11.2. There are three issues: how to detect
violations of the assumptions, what goes wrong if the violations are ignored, and what to
do about them if they are detected. Detection is usually relatively easy. You can look at
scatterplots, histograms, and time series graphs for visual signs of violations, and there are
a number of numerical measures (many not covered here) that have been developed for
diagnostic purposes. The second issue, what goes wrong if the violations are ignored,
depends on the type of violation and its severity. The third issue is the most difficult to
resolve. There are some relatively easy fixes and some that are well beyond the level of this
book. In this section we briefly discuss some of the most common violations and a few
possible remedies for them.

11.9.1 Nonconstant Error Variance

The second regression assumption states that the variance of the errors should be constant
for all values of the explanatory variables. This is a lot to ask, and it is almost always
violated to some extent. Fortunately, mild violations do not have much effect on the valid-
ity of the regression output, so you can usually ignore them.

However, one particular form of nonconstant error variance occurs fairly often and
should be dealt with. This is the fan shape shown earlier in the scatterplot of AmountSpent
versus Salary in Figure 11.1. As salaries increase, the variability of amounts spent also
increases. Although this fan shape appears in the scatterplot of the dependent variable
AmountSpent versus the explanatory variable Salary, it also appears in the scatterplot of
residuals versus fitted values if you regress AmountSpent versus Salary. If you ignore this
nonconstant error variance, the standard error of the regression coefficient of Salary is
inaccurate, and a confidence interval for this coefficient or a hypothesis test concerning it
can be misleading.

There are at least two ways to deal with this fan-shape phenomenon. The first is to use
a different estimation method than least squares. It is called weighted least squares, and it
is an option available in some statistical software packages. However, it is fairly advanced
and it is not available with StatTools, so we will not discuss it here.

The second method is simpler. When you see a fan shape, where the variability
increases from left to right in a scatterplot, you can try a logarithmic transformation of the
dependent variable. The reason this often works is that the logarithmic transformation
squeezes the large values closer together and pulls the small values farther apart. The scat-
terplot of the log of AmountSpent versus Salary is in Figure 11.26. Clearly, the fan shape
evident in Figure 11.1 is gone.

This logarithmic transformation is not a magical cure for all instances of nonconstant
error variance. For example, it appears to have introduced some curvature into the plot in

A fan shape can cause
an incorrect value for
the standard error of
estimate, so that
confidence intervals
and hypothesis tests
for the regression
coefficients are not
valid.

A logarithmic trans-
formation of Y can
sometimes cure the
fan-shape problem.
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Figure 11.26. However, as we discussed in the previous chapter, when the distribution of
the dependent variable is heavily skewed to the right, as it often is, the logarithmic trans-
formation is worth exploring.

11.9.2 Nonnormality of Residuals

The third regression assumption states that the error terms are normally distributed. You
can check this assumption fairly easily by forming a histogram of the residuals. You can
even perform a formal test of normality of the residuals by using the procedures discussed
in section 9.5 of Chapter 9. However, unless the distribution of the residuals is severely
nonnormal, the inferences made from the regression output are still approximately valid. In
addition, one form of nonnormality often encountered is skewness to the right, and this can
often be remedied by the same logarithmic transformation of the dependent variable that
remedies nonconstant error variance.

11.9.3 Autocorrelated Residuals

The fourth regression assumption states that the error terms are probabilistically indepen-
dent. This assumption is usually valid for cross-sectional data, but it is often violated for time
series data. The problem with time series data is that the residuals are often correlated with
nearby residuals, a property called autocorrelation. The most frequent type of autocorrela-
tion is positive autocorrelation. For example, if residuals separated by one month are corre-
lated—called lag 1 autocorrelation—in a positive direction, then an overprediction in
January, say, will likely lead to an overprediction in February, and an underprediction in
January will likely lead to an underprediction in February. If this autocorrelation is large,
serious prediction errors can occur if it isn’t dealt with appropriately.

A numerical measure has been developed to check for lag 1 autocorrelation. It is
called the Durbin–Watson statistic (after the two statisticians who developed it), and it is
quoted automatically in the regression output of many statistical software packages. The
Durbin–Watson (DW) statistic is scaled to be between 0 and 4. Values close to 2 indicate
very little lag 1 autocorrelation, values below 2 indicate positive autocorrelation, and
values above 2 indicate negative autocorrelation.
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Because positive autocorrelation is the usual culprit, the question becomes how much
below 2 the DW statistic must be before you should react. There is a formal hypothesis test
for answering this question, and a set of tables appears in some statistics texts. Without
going into the details, we simply state that when the number of time series observations, n,
is about 30 and the number of explanatory variables is fairly small, say, 1 to 5, then any
DW statistic less than 1.2 should get your attention. If n increases to around 100, then you
shouldn’t be concerned unless the DW statistic is below 1.5.

If ei is the ith residual, the formula for the DW statistic is

This is obviously not very attractive for hand calculation, so the StatDurbinWatson func-
tion is included in StatTools. To use it, run any regression and check the option to create a
graph of residuals versus fitted values. This automatically creates columns of fitted values
and residuals. Then enter the formula

�StatDurbinWatson(ResidRange)

in any cell, substituting the actual range of residuals for “ResidRange.”
The following continuation of Example 11.1 with the Bendrix manufacturing data—

the only time series data set we have analyzed with regression—checks for possible lag 1
autocorrelation.

DW =

©i=2
n (ei - ei-1)2

©i=1
n e2

i
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A Durbin–Watson
statistic below 2 
signals that nearby
residuals are positively
correlated with one
another.

E X A M P L E 11.1 EXPLAINING OVERHEAD COSTS AT BENDRIX (CONTINUED)

Is there any evidence of lag 1 autocorrelation in the Bendrix data when Overhead is
regressed on MachHrs and ProdRuns?

Objective To use the Durbin–Watson statistic to check whether there is any lag 1 auto-
correlation in the residuals from the Bendrix regression model for overhead costs.

Solution

You should run the usual multiple regression and check that you want a graph of residuals
versus fitted values. The results are shown in Figure 11.27. The residuals are listed in col-
umn D. Each represents how much the regression overpredicts (if negative) or underpre-
dicts (if positive) the overhead cost for that month. You can check for lag 1 autocorrelation
in two ways, with the DW statistic and by examining the time series graph of the residuals
in Figure 11.28.

44
45

A B C D E F
Graph Data nibruDlaudiseRtiFdaehrevO -Watson for residuals

1 313.1904946.604195053.1938989799
46
47
48
49

2 87804 85522.33322 2281.666779
3 93681 92723.59538 957.4046174
4 82262 82428.09201 -166.0920107
5 106968 100227.9028 6740.097234

Figure 11.27 Regression Output with Residuals and DW Statistic
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The DW statistic is calculated in cell F45 of Figure 11.27 with the formula

�StatDurbinWatson(D45:D80)

(Remember that StatDurbinWatson is not a built-in Excel function. It is available only if
StatTools is loaded.) Based on our guidelines for DW values, 1.3131 suggests positive
autocorrelation—it is less than 2—but not enough to cause concern.8 This general conclu-
sion is supported by the time series graph. Serious autocorrelation of lag 1 would tend to
show longer runs of residuals alternating above and below the horizontal axis—positives
would tend to follow positives, and negatives would tend to follow negatives. There is
some indication of this behavior in the graph but not an excessive amount. ■
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8A more formal test, using Durbin–Watson tables, supports this conclusion.

What should you do if the DW statistic signals significant autocorrelation? Unfortunately, the
answer to this question would take us much more deeply into time series analysis than we
can go in this book. Suffice it to say that time series analysis in the context of regression can
become very complex, and there are no easy fixes for the autocorrelation that often occurs.

P R O B L E M S

Level A

37. A company produces electric motors for use in home
appliances. One of the company’s production
managers is interested in examining the relationship
between the dollars spent per month in inspecting
finished motor products (X) and the number of motors
produced during that month that were returned by
dissatisfied customers (Y). He has collected the data
in the file P10_03.xlsx to explore this relationship for
the past 36 months.

a. Estimate a simple linear regression equation using
the given data and interpret it. What does the
ANOVA table indicate for this model?

b. Examine the residuals of the regression equation.
Do you see evidence of any violations of the
regression assumptions?

c. Conduct a Durbin–Watson test on the model’s
residuals. Interpret the result of this test.

d. In light of your result in part c, do you recommend
modifying the original regression model? If so,
how would you revise it?
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38. Examine the relationship between the average 
utility bills for homes of a particular size (Y) and the
average monthly temperature (X). The data in the 
file P10_07.xlsx include the average monthly bill and
temperature for each month of the past year.
a. Use the given data to estimate a simple linear

regression equation. How well does the estimated
regression model fit the given data? What does the
ANOVA table indicate for this model?

b. Examine the residuals of the regression equation.
Do you see evidence of any violations of the
regression assumptions?

c. Conduct a Durbin–Watson test on the model’s
residuals. Interpret the result of this test.

d. In light of your result in part c, do you recommend
modifying the original regression model? If so,
how would you revise it?

39. The manager of a commuter rail transportation
system was recently asked by her governing board 
to predict the demand for rides in the large city
served by the transportation network. The system
manager has collected data on variables thought to
be related to the number of weekly riders on the
city’s rail system. The file P10_20.xlsx contains
these data.
a. Estimate a multiple regression equation using 

all of the available explanatory variables. 
What does the ANOVA table indicate for this
model?

b. Is there evidence of autocorrelated residuals in this
model? Explain why or why not.
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11.10 PREDICTION

Once you have estimated a regression equation from a set of data, you might want to use
this equation to predict the value of the dependent variable for new observations. As an
example, suppose that a retail chain is considering opening a new store in one of several
proposed locations. It naturally wants to choose the location that will result in the largest
revenues. The problem is that the revenues for the new locations are not yet known. They
can be observed only after stores are opened in these locations, and the chain cannot
afford to open more than one store at the current time. An alternative is to use regression
analysis. Using data from existing stores, the chain can run a regression of the dependent
variable revenue on several explanatory variables such as population density, level of
wealth in the vicinity, number of competitors nearby, ease of access given the existing
roads, and so on.

Assuming that the regression equation has a reasonably large R2 and, even more
important, a reasonably small se, the chain can then use this equation to predict revenues
for the proposed locations. Specifically, it will gather values of the explanatory variables
for each of the proposed locations, substitute these into the regression equation, and look at
the predicted revenue for each proposed location. All else being equal, the chain will
probably choose the location with the highest predicted revenue.

As another example, suppose that you are trying to explain the starting salaries for
undergraduate college students. You want to predict the mean salary of all graduates with
certain characteristics, such as all male marketing majors from state-supported universi-
ties. To do this, you first gather salary data from a sample of graduates from various
universities. Included in this data set are relevant explanatory variables for each graduate in
the sample, such as the type of university, the student’s major, GPA, years of work experi-
ence, and so on. You then use these data to estimate a regression equation for starting
salary and substitute the relevant values of the explanatory variables into the regression
equation to obtain the required prediction.

These two examples illustrate two types of prediction problems in regression. The first
problem, illustrated by the retail chain example, is the more common of the two. Here the
objective is to predict the value of the dependent variable for one or more individual
members of the population. In this specific example you are trying to predict the future
revenue for several potential locations of the new store. In the second problem, illustrated by
the salary example, the objective is to predict the mean of the dependent variable for all

Regression can be used
to predict Y for a single
observation, or it can
be used to predict the
mean Y for many
observations, all with
the same X values.
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members of the population with certain values of the explanatory variables. In the first prob-
lem you are predicting an individual value; in the second problem you are predicting a mean.

The second problem is inherently easier than the first in the sense that the resulting
prediction is bound to be more accurate. The reason is intuitive. Recall that the mean of the
dependent variable for any fixed values of the explanatory variables lies on the population
regression line. Therefore, if you can accurately estimate this line—that is, if you can
accurately estimate the regression coefficients—you can accurately predict the required
mean. In contrast, most individual points do not lie on the population regression line.
Therefore, even if your estimate of the population regression line is perfectly accurate, you
still cannot predict exactly where an individual point will fall.

Stated another way, when you predict a mean, there is a single source of error: the pos-
sibly inaccurate estimates of the regression coefficients. But when you predict an individ-
ual value, there are two sources of error: the inaccurate estimates of the regression
coefficients and the inherent variation of individual points around the regression line. This
second source of error often dominates the first.

We illustrate these comments in Figure 11.29. For the sake of illustration, the depen-
dent variable is salary and the single explanatory variable is years of experience with the
company. Let’s suppose that you want to predict either the salary for a particular employee
with 10 years of experience or the mean salary of all employees with 10 years of experi-
ence. The two lines in this graph represent the population regression line (which in reality
is unobservable) and the estimated regression line. For each prediction problem the point
prediction—the best guess—is the value above 10 on the estimated regression line. The
error in predicting the mean occurs because the two lines in the graph are not the same—
that is, the estimated line is not quite correct. The error in predicting the individual value
(the point shown in the graph) occurs because the two lines are not the same and also
because this point does not lie on the population regression line.
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Figure 11.29

Prediction Errors for

an Individual Value

and a Mean

One general aspect of prediction becomes apparent by looking at this graph. If we
let Xs denote the explanatory variables, predictions for values of the Xs close to their
means are likely to be more accurate than predictions for Xs far from their means. In the
graph, the mean of YrsExper is about 7. (This is approximately where the two lines
cross.) Because the slopes of the two lines are different, they get farther apart as
YrsExper gets farther away from 7 (on either side). As a result, predictions tend to
become less accurate.
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This phenomenon shows up as higher standard errors of prediction as the Xs get
farther away from their means. However, for extreme values of the Xs, there is another
problem. Suppose, for example, that all values of YrsExper in the data set are between 1
and 15, and you attempt to predict the salary for an employee with 25 years of experience.
This is called extrapolation; you are attempting to predict beyond the limits of the sample.

The problem here is that there is no guarantee, and sometimes no reason to believe,
that the relationship within the range of the sample is valid outside of this range. It is
perfectly possible that the effect of years of experience on salary is considerably different
in the 25-year range than in the range of the sample. If it is, then extrapolation is bound to
yield inaccurate predictions. In general, you should avoid extrapolation whenever possible.
If you really want to predict the salaries of employees with 25-plus years of experience,
you should include some employees of this type in the original sample.

We now discuss how to make predictions and how to estimate their accuracy, both for
individual values and for means. To keep it simple, we first assume that there is a single
explanatory variable X. We choose a fixed “trial” value of X, labeled X0, and predict the
value of a single Y or the mean of all Ys when X equals X0. For both prediction problems
the point prediction, or best guess, is found by substituting into the right side of the
estimated regression equation. Graphically, this is the height of the estimated regression
line above X0.
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It is more difficult to
predict for extreme Xs
than for Xs close to
the mean.Trying to
predict for Xs beyond
the range of the data
set (extrapolation) is
quite risky.

To calculate a point prediction, substitute the given values of the Xs into the estimated
regression equation.

To measure the accuracy of these point predictions, you calculate a standard error for each
prediction. These standard errors can be interpreted in the usual way. For example, you are
about 68% certain that the actual values will be within one standard error of the point pre-
dictions, and you are about 95% certain that the actual values will be within two standard
errors of the point predictions. For the individual prediction problem, the standard error is
labeled sind and is given by Equation (11.5). As indicated by the approximate equality on
the right, when the sample size n is large and X0 is fairly close to , the last two terms
inside the square root are relatively small, and this standard error of prediction can be
approximated by se, the standard error of estimate.

X

The standard error of
prediction for a single Y
is approximately equal
to the standard error
of estimate.

Standard Error of Prediction for a Single Y

(11.5)sind = seC
1 +

1
n

+

(X0 - X)2

©i=1
n (Xi - X)2 M se

Standard Error of Prediction for the Mean Y

(11.6)smean = seC

1
n

+

(X0 - X)2

©i=1
n (Xi - X)2 M se/1n

For the prediction of the mean, the standard error is labeled smean and is given by
Equation (11.6). Here, if X0 is fairly close to , the last term inside the square root is rela-
tively small, and this standard error of prediction is approximately equal to the expression
on the right.

X
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These standard errors can be used to calculate a 95% prediction interval for an indi-
vidual value and a 95% confidence interval for a mean value. Exactly as in Chapter 8, you
go out a t-multiple of the relevant standard error on either side of the point prediction. The
t-multiple is the value that cuts off 0.025 probability in the right-hand tail of a t distribution
with n 
 2 degrees of freedom.

The term prediction interval (rather than confidence interval) is used for an individual
value because an individual value of Y is not a population parameter; it is an individual
point. However, the interpretation is basically the same. If you calculate a 95% prediction
interval for many members of the population, you can expect their actual Y values to fall
within the corresponding prediction intervals about 95% of the time.

To see how all of this can be implemented in Excel, we revisit the Bendrix example of
predicting overhead expenses.
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The standard error of
prediction for a mean
of Ys is approximately
equal to the standard
error of estimate
divided by the square
root of the sample
size.

E X A M P L E 11.1 PREDICTING OVERHEAD AT BENDRIX (CONTINUED)

We have already used regression to analyze overhead expenses at Bendrix, based on
36 months of data. Suppose Bendrix expects the values of MachHrs and ProdRuns

for the next three months to be 1430, 1560, 1520, and 35, 45, 40, respectively. What
are their point predictions and 95% prediction intervals for Overhead for these
three months?

Objective To predict Overhead at Bendrix for the next three months, given anticipated
values of MachHrs and ProdRuns.

Solution

StatTools has the capability to provide predictions and 95% prediction intervals, but you
must set up a second data set to capture the results. This second data set can be placed next
to (or below) the original data set. It should have the same variable name headings, and it
should include values of the explanatory variable to be used for prediction. (It can also
have LowerLimit95 and UpperLimit95 headings, but these are optional and will be added
by StatTools if they do not already exist.) For this example we called the original data set
Original Data and the new data set Data for Prediction. The regression dialog box and
results in Data for Prediction appear in Figures 11.30 and 11.31. In the dialog box, note
that the Prediction option is checked, and the second data set is specified in the
corresponding dropdown list.

The text box in Figure 11.31 explains how the second data set range should be set up.
Initially, you should enter the given values in the Month, MachHrs, and ProdRuns
columns. Then when the regression is run (with the Prediction option checked), the values
in the Overhead, LowerLimit95, and UpperLimit95 columns will be filled in. (Again, if
you do not create LowerLimit95 and UpperLimit95 columns as part of the second data set,
StatTools will do it for you.)

The Overhead values in column I are the point predictions for the next three months,
and the LowerLimit95 and UpperLimit95 values in column J and K indicate the 95% pre-
diction intervals. You can see from the wide prediction intervals how much uncertainty
remains. The reason is the relatively large standard error of estimate, se. If you could halve
the value of se, the length of the prediction interval would be only half as large. Contrary to
what you might expect, this is not a sample size problem. That is, a larger sample size
would probably not produce a smaller value of se. The whole problem is that MachHrs and
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StatTools provides prediction intervals for individual values, as you have just seen, but
it does not provide confidence intervals for the mean of Y, given a set of Xs. To obtain such
a confidence interval, you can use Equation (11.6) to get the required standard error of
prediction (for simple regression only), or you can approximate it by .se/1n
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Figure 11.30

Regression Dialog

Box with Predictions

Checked

1
2
3
4
5
6
7
8
9

10
11
12
13

F G H I J K L
Month MachHrs ProdRuns Overhead LowerLimit95 UpperLimit95

37 1430 35 97180.35 88700.80 105659.91
38 1560 45 111676.27 103002.95 120349.58
39 1520 40 105516.72 96993.16 114040.28

Above is the data set for predic�on. It is best to set this up ahead of �me, 
entering all of the column headings, entering the values of the explanatory 
variables you want to test, and defining this en�re range as a new StatTools data 
set. The values in the last three columns can be blank or have values, but when 
regression is run with the predic�on op� ons, they will be filled in or overwri�en. 
Also, if you don't include the last two columns in your StatTools data set, 
StatTools will create them for you.

Figure 11.31

Prediction of

Overhead

ProdRuns are not perfectly correlated with Overhead. The only way to decrease se and get
more accurate predictions is to find other explanatory variables that are more closely
related to Overhead. ■
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P R O B L E M S

Level A

40. The file P10_05.xlsx contains salaries for a sample
of DataCom employees, along with several variables
that might be related to salary.
a. Estimate an appropriate multiple regression

equation to predict the annual salary of a given
DataCom employee.

b. Given the estimated regression model, predict the
annual salary of a male employee who served in a
similar department at another company for five
years prior to coming to work at DataCom. This
man, a graduate of a four-year collegiate business
program, has been supervising six subordinates in
the sales department since joining the organization
seven years ago.

c. Find a 95% prediction interval for the salary earned
by the employee in part b.

d. Find a 95% confidence interval for the mean salary
earned by all DataCom employees sharing the
characteristics provided in part b.

e. How can you explain the difference between the
widths of the intervals in parts c and d?

41. The owner of a restaurant in Bloomington, Indiana,
has recorded sales data for the past 19 years. He has
also recorded data on potentially relevant variables.
The data appear in the file P10_23.xlsx.
a. Estimate a regression equation for sales as a function

of population, advertising in the current year, and
advertising in the previous year. Can you expect pre-
dictions of sales in future years to be very accurate if
they are based on this regression equation? Explain.

b. The company would like to predict sales in the next
year (year 20). It doesn’t know what the population

will be in year 20, so it assumes no change from
year 19. Its planned advertising level for year 20 is
$30,000. Find a prediction and a 95% prediction
interval for sales in year 20.

42. A power company located in southern Alabama
wants to predict the peak power load (i.e., Y, the
maximum amount of power that must be generated
each day to meet demand) as a function of the 
daily high temperature (X). A random sample of 
25 summer days is chosen, and the peak power 
load and the high temperature are recorded on 
each day. The file P10_40.xlsx contain these
observations.
a. Use the given data to estimate a simple linear

regression equation. How well does the regression
equation fit the given data?

b. Examine the residuals of the estimated regression
equation. Do you see evidence of any violations of
the assumptions regarding the errors of the
regression model?

c. Calculate the Durbin–Watson statistic on the
model’s residuals. What does it indicate?

d. Given your result in part d, do you recommend
modifying the original regression model in this
case? If so, how would you revise it?

e. Use the final version of your regression equation to
predict the peak power load on a summer day with
a high temperature of 90 degrees.

f. Find a 95% prediction interval for the peak power
load on a summer day with a high temperature of
90 degrees.

h. Find a 95% confidence interval for the average
peak power load on all summer days with a high
temperature of 90 degrees.

11.11 CONCLUSION

In these two chapters on regression, you have seen how useful regression analysis can be
for a variety of business applications and how statistical software such as StatTools enables
you to obtain relevant output—both graphical and numerical—with very little effort.
However, you have also seen that there are many concepts that you must understand well
before you can use regression analysis appropriately. Given that user-friendly software is
available, it is all too easy to generate enormous amounts of regression output and then
misinterpret or misuse much of it.

At the very least, you should (1) be able to interpret the standard regression output,
including statistics on the regression coefficients, summary measures such as R2 and se, and
the ANOVA table, (2) know what to look for in the many scatterplots available, (3) know
how to use dummy variables, interaction terms, and nonlinear transformations to improve a
fit, and (4) be able to spot clear violations of the regression assumptions. However, we
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haven’t covered everything. Indeed, many entire books are devoted exclusively to regres-
sion analysis. Therefore, you should recognize when you don’t know enough to handle a
regression problem such as nonconstant error variance or autocorrelation appropriately. In
this case, you should consult a statistical expert.
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Summary of Key Terms

Term Symbol Explanation Excel Page Equation
Statistical model A theoretical model including 603 11.1 

several assumptions that must be 
satisfied, at least approximately, 
for inferences from regression output 
to be valid

Error � The difference between the actual 604
Y value and the predicted value from
the population regression line

Homoscedasticity Equal (and unequal) variance 605
(and heteroscedasticity) of the dependent variable for different 

values of the explanatory variables

Parsimony The concept of explaining the most 608 
with the least 

Standard error sb Measures how much the estimates StatTools/ 609 
of regression of a regression coefficient vary Regression &
coefficient from sample to sample Classification/ 

Regression

Confidence An interval likely to contain the StatTools/ 610
interval for population regression coefficient Regression & 
regression Classification/ 
coefficient Regression

t-value for t The ratio of the estimate of a StatTools/ 611 11.3
regression regression coefficient to its Regression& 
coefficient standard error, used to test whether Classification/

the coefficient is 0 Regression

Hypothesis test Typically, a two-tailed test, StatTools/ 611
for regression where the null hypothesis is Regression & 
coefficient that the regression coefficient is 0 Classification/ 

Regression

ANOVA table for Used to test whether the explanatory StatTools/ 612
regression variables, as a whole, have any Regression & 

significant explanatory power Classification/ 
Regression

Multicollinearity Occurs when there is a fairly 616 
strong linear relationship 
between explanatory variables

Include/exclude Guidelines for deciding whether to 620
decisions include or exclude potential

explanatory variables

Stepwise A class of automatic equation- StatTools/ 625
regression building methods, where variables Regression & 

are added (or deleted) in order Classification/ 
of their importance Regression

(continued)
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Term Symbol Explanation Excel Page Equation
Partial F test Tests whether a set of extra Must be done 631 11.4

explanatory variables adds any manually, using 
explanatory power to an existing StatTools regression 
regression equation outputs

Outliers Observations that lie outside the 638
general pattern of points and can  
have a substantial effect on the 
regression model

Influential point A point that can “tilt” the 639 
regression line 

Autocorrelation Lack of independence in the series of 645 
of residuals residuals, especially relevant for time 

series data

Durbin–Watson A measure of the autocorrelation =StatDurbin 645
statistic between residuals, especially useful Watson(range),

for time series data a StatTools 
function

Point prediction The predicted value of Y from the 650
regression equation

Standard sind, Measures of the accuracy of StatTools/ 650 11.5, 11.6
errors smean prediction when predicting Y for Regression & 
of prediction an individual observation, or Classification/ 

predicting the mean of all Y’s, for Regression
fixed values of the explanatory 
variables 

P R O B L E M S

Conceptual Questions

C.1. Suppose a regression output produces the following
99% confidence interval for one of the regression
coefficients: [
32.47, 
16.88]. Given this informa-
tion, should an analyst reject the null hypothesis that
this population regression coefficient is equal to
zero? Explain your answer.

C.2. Explain why it is not possible to estimate a linear
regression model that contains all dummy variables
associated with a particular categorical explanatory
variable.

C.3. Suppose you have a data set that includes all of the
professional athletes in a given sport over a given
period of time, such as all NFL football players dur-
ing the 2008–2010 seasons, and you use regression 
to estimate a variable of interest. Are the inferences
discussed in this chapter relevant? Recall that we have
been assuming that the data represent a random sam-
ple of some larger population. In this sports example,
what is the larger population—or is there one?

C.4. Distinguish between the test of significance of an
individual regression coefficient and the ANOVA

test. When, if ever, are these two statistical tests
essentially equivalent?

C.5. Which of these intervals based on the same
estimated regression equation with fixed values of
the explanatory variables would be wider: (1) a 95%
prediction interval for an individual value of Y or
(2) a 95% confidence interval for the mean value
of Y? Explain your answer. How do you interpret
the wider of these two intervals in words?

C.6. Regression outputs from virtually all statistical
packages look the same. In particular, the section
on coefficients lists the coefficients, their standard
errors, their t-values, their p-values, and (possibly)
95% confidence intervals for them. Explain how all
of these are related.

C.7. If you are building a regression equation in a
forward stepwise manner, that is, by adding one
variable at a time, explain why it is useful to monitor
the adjusted R2 and the standard error of estimate.
Why is it not as useful to monitor R2?

C.8. You run a regression with two explanatory variables
and notice that the p-value in the ANOVA table is
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extremely small but the p-values of both explanatory
variables are larger than 0.10. What is the probable
reason? Can you conclude that neither explanatory
variable does a good job in predicting the dependent
variable?

C.9. Why are outliers sometimes called influential
observations? What could happen to the slope of a
regression of Y versus a single X when an outlier is
included versus when it is not included? Will this
necessarily happen when a point is an outlier?
Answer by giving a couple of examples.

C.10. The Durbin-Watson test is for detecting lag 1
autocorrelation in the residuals. Which values of
DW signal positive autocorrelation? If you observe
such a DW value but ignore it, what might go wrong
with predictions based on the regression equation?
Specifically, if the data are time series data, and
your goal is to predict the next six months, what
might go wrong with the predictions?

Level A

43. For 12 straight weeks you have observed the sales (in
number of cases) of canned tomatoes at Mr. D’s super-
market. Each week you kept track of the following: 
■ Was a promotional notice placed in all shopping

carts for canned tomatoes?
■ Was a coupon given for canned tomatoes?
■ Was a price reduction (none, 1, or 2 cents off)

given?

The file P11_43.xlsx contains these data.
a. Use multiple regression to determine how these

factors influence sales.
b. Discuss how you can tell whether autocorrelation,

heteroscedasticity, or multicollinearity might be a
problem.

c. Predict sales of canned tomatoes during a week
in which Mr. D’s uses a shopping cart notice, a
coupon, and a one-cent price reduction.

44. The file P11_44.xlsx contains quarterly data on pork
sales. Price is in dollars per hundred pounds, quantity
sold is in billions of pounds, per capita income is in
dollars, U.S. population is in millions, and GDP is in
billions of dollars.
a. Use the data to develop a regression equation that

could be used to predict the quantity of pork sold
during future periods. Discuss how you can tell
whether heteroscedasticity, autocorrelation, or
multicollinearity might be a problem.

b. Suppose that during each of the next two quarters,
price is 45, U.S. population is 240, GDP is 2620,
and per capita income is 10,000. (These are in 
the units described previously.) Predict the
quantity of pork sold during each of the next 
two quarters.

45. The file P11_45.xlsx contains monthly sales for a
photography studio and the price charged per portrait
during each month. Use regression to estimate an
equation for predicting the current month’s sales from
last month’s sales and the current month’s price.
a. If the price of a portrait during month 21 is $30,

predict month 21 sales.
b. Discuss how you can tell whether autocorrelation,

multicollinearity, or heteroscedasticity might be
a problem.

46. The file P11_46.xlsx contains data on a motel chain’s
revenue and advertising. Note that column C is simply
column B “pushed down” a row.
a. If the goal is to get the best-fitting regression

equation for Revenue, which of the Advertising
variables should be used? Or is it better to use
both?

b. Using the best-fitting equation from part a, make
predictions for the motel chain’s revenues during
the next four quarters. Assume that advertising
during each of the next four quarters is $50,000.

c. Does autocorrelation of the residuals from the 
best-fitting equation appear to be a problem?

47. The file P11_47.xlsx contains the quarterly revenues
(in millions of dollars) of a utility company for a
seven-year period. The goal is to use these data to
build a multiple regression model that can be used to
forecast future revenues.
a. Which variables should be included in the regres-

sion? Explain your rationale for including or exclud-
ing variables. (Look at a time series graph for clues.)

b. Interpret the coefficients of your final equation.
c. Make a forecast for revenues during the next

quarter, quarter 29. Also, estimate the probability
that revenue in the next quarter will be at least
$150 million. (Hint: Use the standard error of
prediction and the fact that the errors are approxi-
mately normally distributed.)

48. The belief that larger majorities for a president in a
presidential election help the president’s party increase
its representation in the House and Senate is called
the coattail effect. The file P11_48.xlsx lists the
percentage by which each president since 1948 won
the election and the number of seats in the House and
Senate gained (or lost) during each election by the
elected president’s party. Are these data consistent
with the idea of presidential coattails? 

49. When potential workers apply for a job that requires
extensive manual assembly of small intricate parts, 
they are initially given three different tests to measure
their manual dexterity. The ones who are hired are 
then periodically given a performance rating on a 0 to
100 scale that combines their speed and accuracy in
performing the required assembly operations. The file
P11_49.xlsx lists the test scores and performance
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ratings for a randomly selected group of employees. It
also lists their seniority (months with the company) at
the time of the performance rating.
a. Look at a matrix of correlations. Can you say with

certainty (based only on these correlations) that the
R2 value for the regression will be at least 35%?
Why or why not?

b. Is there any evidence (from the correlation matrix)
that multicollinearity will be a problem? Why or
why not?

c. Run the regression of Performance Rating versus
all four explanatory variables. List the equation,
the value of R2, and the value of se. Do all of the
coefficients have the signs (negative or positive)
you would expect? Briefly explain.

d. Referring to the equation in part c, if a worker
(outside of the 80 in the sample) has 15 months
of seniority and test scores of 57, 71, and 63, find
a prediction and an approximate 95% prediction
interval for this worker’s Performance Rating
score.

e. One of the t-values for the coefficients in part c
is less than 1. Explain briefly why this occurred.
Does it mean that this variable is not related to
Performance Rating?

f. Arguably, the three test measures provide
overlapping (or redundant) information. For the
sake of parsimony (explaining “the most with the
least”), it might be sensible to regress Performance
Rating versus only two explanatory variables,
Seniority and Average Test, where Average Test 
is the average of the three test scores—that is,
Average Test � (Test1 � Test2 � Test3)/3. Run
this regression and report the same measures as in
part c: the equation itself, R2, and se. Can you argue
that this equation is just as good as the equation in
part c? Explain briefly.

50. Nicklaus Electronics manufactures electronic compo-
nents used in the computer and space industries. The
annual rate of return on the market portfolio and the
annual rate of return on Nicklaus Electronics stock for
the last 36 months are listed in the file P11_50.xlsx.
The company wants to calculate the systematic risk
of its common stock. (It is systematic in the sense that
it represents the part of the risk that Nicklaus shares
with the market as a whole.) The rate of return Yt in
period t on a security is hypothesized to be related 
to the rate of return mt on a market portfolio by the
equation

Yt � � ��mt � �t

Here, � is the risk-free rate of return, � is the
security’s systematic risk, and �t is an error term.
Estimate the systematic risk of the common stock of
Nicklaus Electronics. Would you say that Nicklaus
stock is a risky investment? Why or why not?

51. The auditor of Kaefer Manufacturing uses regression
analysis during the analytical review stage of the
firm’s annual audit. The regression analysis attempts
to uncover relationships that exist between various
account balances. Any such relationship is subse-
quently used as a preliminary test of the reasonable-
ness of the reported account balances. The auditor
wants to determine whether a relationship exists
between the balance of accounts receivable at the 
end of the month and that month’s sales. The file
P11_51.xlsx contains data on these two accounts for
the last 36 months. It also shows the sales levels 
two months before month 1.
a. Is there any statistical evidence to suggest a

relationship between the monthly sales level and
accounts receivable?

b. Referring to part a, would the relationship be
described any better by including this month’s
sales and the previous month’s sales (called lagged
sales) in the equation for accounts receivable?
What about adding the sales from more than a
month ago to the equation? For this problem, why
might it make accounting sense to include lagged
sales variables in the equation? How do you
interpret their coefficients?

c. During month 37, which is a fiscal year-end 
month, the sales were $1,800,000. The reported
accounts receivable balance was $3,000,000. Does
this reported amount seem consistent with past
experience? Explain.

52. A company gives prospective managers four separate
tests for judging their potential. For a sample of 30
managers, the test scores and the subsequent job
effectiveness ratings (Rating) given one year later are
listed in the file P11_52.xlsx.
a. Look at scatterplots and the table of correlations

for these five variables. Does it appear that a
multiple regression equation for Rating, with the
test scores as explanatory variables, will be suc-
cessful? Can you foresee any problems in
obtaining accurate estimates of the individual
regression coefficients?

b. Estimate the regression equation that includes all
four test scores, and find 95% confidence intervals
for the coefficients of the explanatory variables.
How can you explain the negative coefficient of
Test3, given that the correlation between Rating
and Test3 is positive?

c. Can you reject the null hypothesis that these test
scores, as a whole, have no predictive ability
for job effectiveness at the 1% level? Why or
why not?

d. If a new prospective manager has test scores of 83,
74, 65, and 77, what do you predict his job effec-
tiveness rating will be in one year? What is the
standard error of this prediction?

11.11 Conclusion 657

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



53. Confederate Express is attempting to determine how
its monthly shipping costs depend on the number of
units shipped during a month. The file P11_53.xlsx
contains the number of units shipped and total
shipping costs for the last 15 months.
a. Use regression to determine a relationship between

units shipped and monthly shipping costs.
b. Plot the errors for the predictions in order of time

sequence. Is there any unusual pattern?
c. You have now been told that there was a trucking

strike during months 11 through 15, and you
believe that this might have influenced shipping
costs. How can the analysis in part a be modified
to account for the effects of the strike? After
accounting for the effects of the strike, does the
unusual pattern in part b disappear?

54. The file P11_54.xlsx contains monthly data on 
fatal automobile crashes in the U.S. in each of eight
three-hour intervals. Suppose you didn’t have the 
data on the midnight to 3AM time interval. How well
could multiple regression be used to predict the 
data for this interval? Which time intervals are most
useful in this prediction? Is multicollinearity a
problem?

Level B

55. You want to determine the variables that influence bus
usage in major American cities. For 24 cities, the
following data are listed in the file P11_55.xlsx:
■ Bus travel (annual, in thousands of hours)
■ Income (average per capita income)
■ Population (in thousands)
■ Land area (in square miles)
a. Use these data to fit the multiplicative equation

BusTravel � �Income�1Population�2LandArea�3

b. Are all variables significant at the 5% level?
c. Interpret the estimated values of �1, �2, and �3.

56. The file P11_56.xlsx contains data on 80 managers
at a large (fictitious) corporation. The variables are
Salary (current annual salary), YrsExper (years of
experience in the industry), YrsHere (years of 
experience with this company), and MglLevel 
(current level in the company, coded 1 to 4). 
You want to regress Salary on the potential explana-
tory variables. What is the best way to do so?
Specifically, how should you handle Mg1Level?
Should you include both YrsExper and YrsHere or
only one of them, and if only one, which one?
Present your results, and explain them and your 
reasoning behind them.

57. A toy company has assigned you to analyze the factors
influencing the sales of its most popular doll. The
number of these dolls sold during the last 23 years is

given in the file P11_57.xlsx. The following factors
are thought to influence sales of these dolls: 
■ Was there a recession?
■ Were the dolls on sale at Christmas?
■ Was there an upward trend over time?
a. Determine an equation that can be used to predict

annual sales of these dolls. Make sure that all vari-
ables in your equation are significant at the 10% level.

b. Interpret the coefficients in your equation.
c. Are there any outliers?
d. Is heteroscedasticity or autocorrelation of residuals

a problem?
e. During the current year (year 24), a recession is

predicted and the dolls will be put on sale at
Christmas. There is a 1% chance that sales of the
dolls will exceed what value? You can assume
here that heteroscedasticity and autocorrelation are
not a problem. (Hint: Use the standard error of
prediction and the fact that the errors are
approximately normally distributed.)

58. The file P11_58.xlsx shows the “yield curve” (at
monthly intervals). For example, in January 1985
the annual rate on a three-month T-bill was 7.76%
and the annual rate on a 30-year government bond was
11.45%. Use regression to determine which interest
rates tend to move together most closely. (Source:
International Investment and Exchange Database.
Developed by Craig Holden, Indiana University
School of Business) 

59. The Keynesian school of macroeconomics believes
that increased government spending leads to increased
growth. The file P11_59.xlsx contains the following
annual data: 
■ Government spending as percentage of GDP (gross

domestic product)
■ Percentage annual growth in annual GDP

Are these data consistent with the Keynesian school of
economics? (Source: Wall Street Journal)

60. The June 1997 issue of Management Accounting gave
the following rule for predicting your current salary if
you are a managerial accountant. Take $31,865. Next,
add $20,811 if you are top management, add $3604 if
you are senior management, or subtract $11,419 if you
are entry management. Then add $1105 for every year
you have been a managerial accountant. Add $7600 
if you have a master’s degree or subtract $12,467 if
you have no college degree. Add $11,257 if you have
a professional certification. Finally, add $8667 if you
are male.
a. How do you think the journal derived this method

of predicting an accountant’s current salary? Be
specific.

b. How could a managerial accountant use this
information to determine whether he or she is
significantly underpaid?
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61. A business school committee was charged with study-
ing admissions criteria to the school. Until that time,
only juniors were admitted. Part of the committee’s
task was to see whether freshman courses would be
equally good predictors of success as freshman and
sophomore courses combined. Here, we take “suc-
cess” to mean doing well in I-core (the integrated core,
a combination of the junior level finance, marketing,
and operations courses, F301, M301, and P301). The
file P11_61.xlsx contains data on 250 students who
had just completed I-core. For each student, the file
lists their grades in the following courses:
■ M118 (freshman)—finite math
■ M119 (freshman)—calculus
■ K201 (freshman)—computers
■ W131 (freshman)—writing
■ E201, E202 (sophomore)—micro- and

macroeconomics
■ L201 (sophomore)—business law
■ A201, A202 (sophomore)—accounting
■ E270 (sophomore)—statistics
■ I-core (junior)—finance, marketing, and operations

Except for I-core, each value is a grade point for a
specific course (such as 3.7 for an A–). For I-core,
each value is the average grade point for the three
courses comprising I-core.
a. The I-core grade point is the eventual dependent vari-

able in a regression analysis. Look at the correlations
between all variables. Is multicollinearity likely to be
a problem? Why or why not?

b. Run a multiple regression using all of the potential
explanatory variables. Now, eliminate the variables
as follows. (This is a reasonable variation of the
procedures discussed in the chapter.) Look at 95%
confidence intervals for their coefficients (as usual,
not counting the intercept term). Any variable whose
confidence interval contains the value zero is a
candidate for exclusion. For all such candidates,
eliminate the variable with the t-value lowest in
magnitude. Then rerun the regression, and use the
same procedure to possibly exclude another vari-
able. Keep doing this until 95% confidence intervals
of the coefficients of all remaining variables do not
include zero. Report this final equation, its R2 value,
and its standard error of estimate se.

c. Give a quick summary of the properties of the final
equation in part b. Specifically, (1) do the variables
have the “correct” signs, (2) which courses tend to
be the best predictors, (3) are the predictions from
this equation likely to be much good, and (4) are
there any obvious violations of the regression
assumptions?

d. Redo part b, but now use as your potential explana-
tory variables only courses taken in the freshman
year. As in part b, report the final equation, its R2,
and its standard error of estimate se.

e. Briefly, do you think there is enough predictive
power in the freshman courses, relative to the
freshman and sophomore courses combined, to
change to a sophomore admit policy? (Answer
only on the basis of the regression results; don’t
get into other merits of the argument.)

62. The file P11_62.xlsx has (somewhat old) data on
several countries. The variables are listed here.
■ Country: name of country
■ GNPCapita: GNP per capita
■ PopGrowth: average annual percentage change in

population, 1980–1990
■ Calorie: daily per capita calorie content of food

used for domestic consumption
■ LifeExp: average life expectancy of newborn given

current mortality conditions
■ Fertility: births per woman given current fertility

rates

With data such as these, cause and effect are difficult
to determine. For example, does low LifeExp cause
GNPCapita to be low, or vice versa? Therefore, 
the purpose of this problem is to experiment with 
the following sets of dependent and explanatory
variables. In each case, look at scatterplots (and 
use economic reasoning) to find and estimate the 
best form of the equation, using only linear and
logarithmic variables. Then interpret precisely what
each equation is saying.
a. Dependent: LifeExp; Explanatories: Calorie,

Fertility
b. Dependent: LifeExp; Explanatories: GNPCapita,

PopGrowth
c. Dependent: GNPCapita; Explanatories:

PopGrowth, Calorie, Fertility

63. Suppose that an economist has been able to gather
data on the relationship between demand and price for
a particular product. After analyzing scatterplots and
using economic theory, the economist decides to 
estimate an equation of the form Q � aPb, where Q is
quantity demanded and P is price. An appropriate
regression analysis is then performed, and the 
estimated parameters turn out to be a � 1000 and 
b � 
1.3. Now consider two scenarios: (1) the price
increases from $10 to $12.50; (2) the price increases
from $20 to $25.
a. Do you predict the percentage decrease in demand

to be the same in scenario 1 as in scenario 2? Why
or why not?

b. What is the predicted percentage decrease in
demand in scenario 1? What about scenario 2? 
Be as exact as possible. (Hint: Remember from
economics that an elasticity shows directly what
happens for a “small” percentage change in price.
These changes aren’t that small, so you’ll have to
do some calculating.)
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64. A human resources analyst believes that in a particular
industry, the wage rate ($/hr) is related to seniority by
an equation of the form W � aebS, where W equals
wage rate and S equals seniority (in years). However,
the analyst suspects that both parameters, a and b,
might depend on whether the workers belong to a
union. Therefore, the analyst gathers data on a number
of workers, both union and nonunion, and estimates
the following equation with regression:

ln(W) � 2.14 � 0.027S � 0.12U � 0.006SU

Here ln(W) is the natural log of W, U is 1 for union
workers and 0 for nonunion workers, and SU is the
product of S and U.
a. According to this model, what is the predicted

wage rate for a nonunion worker with 0 years of
seniority? What is it for a union worker with 0
years of seniority?

b. Explain exactly what this equation implies about
the predicted effect of seniority on wage rate for a
nonunion worker and for a union worker.

65. A company has recorded its overhead costs, machine
hours, and labor hours for the past 60 months. The
data are in the file P11_65.xlsx. The company decides
to use regression to explain its overhead hours linearly
as a function of machine hours and labor hours.
However, recognizing good statistical practice, it
decides to estimate a regression equation for the first
36 months and then validate this regression with the
data from the last 24 months. That is, it will substitute
the values of machine and labor hours from the last
24 months into the regression equation that is based
on the first 36 months and see how well it does.
a. Run the regression for the first 36 months. Explain

briefly why the coefficient of labor hours is not
significant.

b. For this part, use the regression equation from part
a with both variables still in the equation (even
though one was insignificant). Fill in the fitted and
residual columns for months 37 through 60. Then
do relevant calculations to see whether the R2 (or
multiple R) and the standard error of estimate se are
as good for these 24 months as they are for the first
36 months. Explain your results briefly. (Hint:
Remember the meaning of the multiple R and the
standard error of estimate.)

66. Pernavik Dairy produces and sells a wide range of
dairy products. Because most of the dairy’s costs
and prices are set by a government regulatory board,
most of the competition between the dairy and its
competitors takes place through advertising. The
controller of Pernavik has developed the sales and
advertising levels for the last 52 weeks. These appear
in the file P11_66.xlsx. Note that the advertising levels
for the three weeks prior to week 1 are also listed. The
controller wonders whether Pernavik is spending too

much money on advertising. He argues that the
company’s contribution-margin ratio is about 10%.
That is, 10% of each sales dollar goes toward covering
fixed costs. This means that each advertising dollar
has to generate at least $10 of sales or the advertising
is not cost-effective. Use regression to determine
whether advertising dollars are generating this type
of sales response. (Hint: It is very possible that the
sales value in any week is affected not only by
advertising this week, but also by advertising levels
in the past one, two, or three weeks. These are called
lagged values of advertising. Try regression models
with lagged values of advertising included, and see
whether you get better results.)

67. The Pierce Company manufactures drill bits. The
production of the drill bits occurs in lots of 1000 units.
Due to the intense competition in the industry and
the correspondingly low prices, Pierce has undertaken
a study of the manufacturing costs of each of the
products it manufactures. One part of this study
concerns the overhead costs associated with producing
the drill bits. Senior production personnel have
determined that the number of lots produced, the
direct labor hours used, and the number of production
runs per month might help to explain the behavior
of overhead costs. The file P11_67.xlsx contains the
data on these variables for the past 36 months.
a. How well can you can predict overhead costs on

the basis of these variables with a linear regression
equation? Why might you be disappointed with
the results?

b. A production supervisor believes that labor hours
and the number of production run setups affect
overhead because Pierce uses a lot of supplies
when it is working on the machines and because
the machine setup time for each run is charged to
overhead. As he says, “When the rate of production
increases, we use overtime until we can train the
additional people that we require for the machines.
When the rate of production falls, we incur idle
time until the surplus workers are transferred to
other parts of the plant. So it would seem to me
that there will be an additional overhead cost
whenever the level of production changes. I would
also say that because of the nature of this resched-
uling process, the bigger the change in production,
the greater the effect of the change in production
on the increase in overhead.” How might you use
this information to find a better regression equation
than in part a? (Hint: Develop a new explanatory
variable, and assume that the number of lots pro-
duced in the month preceding month 1 was 5964.)

68. Danielson Electronics manufactures color television
sets for sale in a highly competitive marketplace.
Recently Ron Thomas, the marketing manager of
Danielson Electronics, has been complaining that the
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company is losing market share because of a poor-
quality image, and he has asked that the company’s
major product, the 25-inch console model, be
redesigned to incorporate a higher quality level.
The company general manager, Steve Hatting, is
considering the request to improve the product quality
but is not convinced that consumers will be willing
to pay the additional expense for improved quality.
As the company controller, you are in charge of
determining the cost-effectiveness of improving the
quality of the television sets. With the help of the
marketing staff, you have obtained a summary of the
average retail price of the company’s television set and
the prices of 29 competitive sets. In addition, you have
obtained from The Shoppers’ Guide, a magazine that
evaluates and reports on various consumer products,
a quality rating of the television sets produced by
Danielson Electronics and its competitors. The file
P11_68.xlsx summarizes these data. According to
The Shoppers’ Guide, the quality rating, which varies
from 0 to 10 (10 being the highest level of quality),
considers such factors as the quality of the picture,
the frequency of repair, and the cost of repairs.
Discussions with the product design group suggest
that the cost of manufacturing this type of television
set is 125 � Q2, where Q is the quality rating.
a. Regress Average Price versus Quality Rating. Does

the regression equation imply that customers are
willing to pay a premium for quality? Explain.

b. Given the results from part a, is there a preferred
level of quality for this product? Assume that the
quality level will affect only the price charged and
not the level of sales of the product.

c. How might you answer part b if the level of sales
is also affected by the quality level (or alternatively,
if the level of sales is affected by price)?

69. The file P11_69.xlsx contains data on gasoline
consumption and several economic variables. The
variables are gasoline consumption for passenger
cars (GasUsed), service station price excluding taxes
(SSPrice), retail price of gasoline including state
and federal taxes (RPrice), Consumer Price Index for
all items (CPI), Consumer Price Index for public
transportation (CPIT), number of registered passenger
cars (Cars), average miles traveled per gallon (MPG),
and real per capita disposable income (DispInc). 
a. Regress GasUsed linearly versus CPIT, Cars,

MPG, DispInc, and DefRPrice, where DefRPrice is
the deflated retail price of gasoline (RPrice divided
by CPI). What signs would you expect the coeffi-
cients to have? Do they have these signs? Which of
the coefficients are statistically significant at the
5% significance level?

b. Suppose the government makes the claim that for
every one cent of tax on gasoline, there will be a $1
billion increase in tax revenue. Use the estimated

equation in part a to support or refute the govern-
ment’s claim.

70. On October 30, 1995, the citizens of Quebec went to
the polls to decide the future of their province. They
were asked to vote “Yes” or “No” on whether Quebec,
a predominantly French-speaking province, should
secede from Canada and become a sovereign country.
The “No” side was declared the winner, but only by
a thin margin. Immediately following the vote, how-
ever, allegations began to surface that the result was
closer than it should have been. (Source: Cawley and
Sommers (1996)). In particular, the ruling separatist
Parti Québécois, whose job was to decide which bal-
lots were rejected, was accused by the “No” voters
of systematic electoral fraud by voiding thousands of
“No” votes in the predominantly allophone and anglo-
phone electoral divisions of Montreal. (An allophone
refers to someone whose first language is neither
English nor French. An anglophone refers to someone
whose first language is English.)

Cawley and Sommers examined whether elec-
toral fraud had been committed by running a regres-
sion, using data from the 125 electoral divisions in
the October 1995 referendum. The dependent variable
was REJECT, the percentage of rejected ballots in the
electoral division. The explanatory variables were as
follows: 
■ ALLOPHONE: percentage of allophones in the

electoral division
■ ANGLOPHONE: percentage of anglophones in the

electoral division
■ REJECT94: percentage of rejected votes from

that electoral division during a similar referendum
in 1994

■ LAVAL: dummy variable equal to 1 for electoral
divisions in the Laval region, 0 otherwise

■ LAV_ALL: interaction (i.e., product) of LAVAL
and ALLOPHONE

The estimated regression equation (with t-values in
parentheses) is

Prediced REJECT � 1.112 � 0.020 ALLOPHONE
(5.68) (4.34)

� 0.001 ANGLOPHONE � 0.223 REJECT94
(0.12) (2.64)


 3.773 LAVAL � 0.387 LAV_ALL
(
8.61) (15.62)

The R2 value was 0.759. Based on this analysis,
Cawley and Sommers state that, “The evidence
presented here suggests that there were voting
irregularities in the October 1995 Quebec referendum,
especially in Laval.” Discuss how they came to this
conclusion.

71. Suppose you are trying to explain variations in salaries
for technicians in a particular field of work. The file
P11_71.xlsx contains annual salaries for 200 technicians.
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It also shows how many years of experience each techni-
cian has, as well as his or her education level. There are
four education levels, as explained in the comment in cell
D1. Three suggestions are put forth for the relationship
between Salary and these two explanatory variables:
■ You should regress Salary linearly versus the two

given variables, YrsExper and EducLev.
■ All that really matters in terms of education is

whether the person got a college degree or not.
Therefore, you should regress Salary linearly
versus YrsExper and a dummy variable indicating
whether he or she got a college degree.

■ Each level of education might result in different
jumps in salary. Therefore, you should regress
Salary linearly versus YrsExper and dummy
variables for the different education levels.

a. Run the indicated regressions for each of these
three suggestions. Then (1) explain what each
equation is saying and how the three are different
(focus here on the coefficients), (2) which you
prefer, and (3) whether (or how) the regression
results in your preferred equation contradict the
average salary results shown in the Pivot Table
sheet of the file.

b. Consider the four workers shown on the Prediction
sheet of the file. (These are four new workers, not
among the original 200.) Using your preferred
equation, calculate a predicted salary and a 95%
prediction interval for each of these four workers.

c. It turns out (you don’t have to check this) that the
interaction between years of experience and
education level is not significant for this data set.
In general, however, argue why you might expect
an interaction between them for salary data of
technical workers. What form of interaction would
you suspect? (There is not necessarily one right
answer, but argue convincingly one way or the
other for a positive or a negative interaction.)

72. The file P03_55.xlsx contains baseball data on all
MLB teams from during the years 2004–2009. For
each year and team, the total salary and the number
of (regular-season) wins are listed.
a. Rearrange the data so that there are six columns:

Team, Year, Salary Last Year, Salary This Year,
Wins Last Year, and Wins This Year. You don’t
need rows for 2004 rows, because the data for 2003
isn’t available for Salary Last Year and Wins Last
Year. Your ending data set should have 5*30 rows
of data.

b. Run a multiple regression for Wins This Year
versus the other variables (besides Team). Then
run a forward stepwise regression with these same

variables. Compare the two equations, and explain
exactly what the coefficients of the equation from
the forward method imply about wins.

c. The Year variable should be insignificant. Is it?
Why would it be contradictory for the “true”
coefficient of Year to be anything other than zero?

d. Statistical inference from regression equations is
all about inferring from the given data to a larger
population. Does it make sense to talk about a
larger population in this situation? If so, what is the
larger population?

73. Do the previous problem, but use the basketball data
on all NBA teams in the file P03_56.xlsx.

74. Do the previous problem, but use the football data on
all NFL teams in the file P03_57.xlsx.

75. The file P03_65.xlsx contains basketball data on all
NBA teams for five seasons. The SRS (simple rating
system) variable is a measure of how good a team is in
any given year. (It is explained in more detail in the
comment in cell F3.) 
a. Given the explanation of SRS, it makes sense to

use multiple regression, with PTS and O_PTS as
the explanatory variables, to predict SRS. Do you
get a good fit?

b. Suppose instead that the goal is to predict Wins.
Try multiple regression, using the variables in
columns G–AH or variables calculated from them.
For example, instead of FG and FGA, you could
try FG/FGA, the fraction of attempted field goals
made. You will have to guard against exact multi-
collinearity. For example, PTS can be calculated
exactly from FG, 3P, and FT. This is a good time
to use some form of stepwise regression. How well
is your best equation able to predict Wins?

76. Do the preceding problem, but now use the football
data in the file P03_66.xlsx. (This file contains
offensive and defensive ratings in the OSRS and
DSRS variables, but you can ignore them for this
problem. Focus only on the SRS rating in part a.)

77. The file P03_63.xlsx contains 2009 data on R&D
expenses and many financial variables for 85 U.S.
publicly traded companies in the computer and
electronic product manufacturing industry. The
question is whether R&D expenses can be predicted
from any combination of the potential variables.
Use scatterplots, correlations (possibly on nonlinear
transformations of variables) to search for promising
relationships. Eventually, find a regression that
seems to provide the best explanatory power for R&D
expenses. Interpret this best equation and indicate
how good a fit it provides.
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C A S E

The Artsy Corporation has been sued in U.S.

Federal Court on charges of sex discrimination

in employment under Title VII of the Civil Rights Act

of 1964.10 The litigation at contention here is a class-

action lawsuit brought on behalf of all females who

were employed by the company, or who had applied

for work with the company, between 1979 and 1987.

Artsy operates in several states, runs four quite

distinct businesses, and has many different types of

employees.The allegations of the plaintiffs deal with

issues of hiring, pay, promotions, and other

“conditions of employment.”

In such large class-action employment discrimi-

nation lawsuits, it has become common for statistical

evidence to play a central role in the determination

of guilt or damages. In an interesting twist on typical

legal procedures, a precedent has developed in these

cases that plaintiffs may make a prima facie case

purely in terms of circumstantial statistical evidence.

If that statistical evidence is reasonably strong, the

burden of proof shifts to the defendants to rebut the

plaintiffs’ statistics with other data, other analyses of

the same data, or nonstatistical testimony. In practice,

statistical arguments often dominate the proceedings

of such Equal Employment Opportunity (EEO) cases.

Indeed, in this case the statistical data used as evi-

dence filled numerous computer tapes, and the sup-

porting statistical analysis comprised thousands of

pages of printouts and reports.We work here with a

typical subset that pertains to one contested issue at

one of the company’s locations.

The data in the file Artsy Lawsuit.xlsx relate

to the pay of 256 employees on the hourly payroll at

one of the company’s production facilities.The data

include an identification number (ID) that would

identify the person by name or social security num-

ber; the person’s gender (Gender), where 0 denotes

female and 1 denotes male; the person’s job grade in

1986 (Grade); the length of time (in years) the per-

son had been in that job grade as of December 31,

1986 (TInGrade); and the person’s weekly pay rate as

of December 31, 1986 (Rate).These data permit a

statistical examination of one of the issues in the

case—fair pay for female employees.We deal with

one of three pay classes of employees—those on the

biweekly payroll at one of the company’s locations at

Pocahantas, Maine.

The plaintiffs’ attorneys have proposed settling

the pay issues in the case for this group of female

employees for a “back pay” lump payment to female

employees of 25% of their pay during the period

1979 to 1987. It is your task to examine the data

statistically for evidence in favor of, or against, the

charges.You are to advise the lawyers for the

company on how to proceed. Consider the following

issues as they have been laid out to you by the attor-

neys representing the firm:

1. Overall, how different is pay by gender? Are the

differences in pay statistically significant? Does a

statistical significance test have meaning in a case

like this? If so, how should it be performed? Lay

out as succinctly as possible the arguments that

you anticipate the plaintiffs will make with this

data set.

2. The company wishes to argue that a legitimate

explanation of the pay-rate differences may be

the difference in job grades. (In this analysis, we

will tacitly assume that each person’s job grade is,

in fact, appropriate for him or her, even though

the plaintiffs’ attorneys have charged that females

have been unfairly kept in the lower grades.

Other statistical data, not available here, are used

in that analysis.) The lawyers ask,“Is there a rela-

tively easy way to understand, analyze, and display

the pay differences by job grade? Is it easy enough

that it could be presented to an average jury

without confusing them?” Again, use the data to

anticipate the possible arguments of the plaintiffs.

To what extent does job grade appear to explain

the pay-rate differences between the genders?

Propose and carry out appropriate hypothesis

tests or confidence intervals to check whether

the difference in pay between genders is statisti-

cally significant within each of the grades.

11.1 THE ARTSY CORPORATION9

Case 11.1 The Artsy Corporation 663

9This case was contributed by Peter Kolesar from Columbia
University.
10Artsy is an actual corporation, and the data given in this case are
real, but the name has been changed to protect the firm’s true identity.
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3. In the actual case, the previous analysis sug-

gested to the attorneys that differences in pay

rates are due, at least in part, to differences in

job grades.They had heard that in another EEO

case, the dependence of pay rate on job grade

had been investigated with regression analysis.

Perform a simple linear regression of pay rate

on job grade for them. Interpret the results fully.

Is the regression significant? How much of the

variability in pay does job grade account for?

Carry out a full check of the quality of your

regression.What light does this shed on the pay

fairness issue? Does it help or hurt the com-

pany? Is it fair to the female employees?

4. It is argued that seniority within a job grade should

be taken into account because the company’s writ-

ten pay policy explicitly calls for the consideration

of this factor.How different are times in grade by

gender? Are they enough to matter?

5. The Artsy legal team wants an analysis of the

simultaneous influence of grade and time in

grade on pay. Perform a multiple regression of

pay rate versus grade and time in grade. Is the

regression significant? How much of the variabil-

ity in pay rates is explained by this model? Will

this analysis help your clients? Could the plain-

tiffs effectively attack it? Consider residuals in

your analysis of these issues.

6. Organize your analyses and conclusions in a

brief report summarizing your findings for your

client, the Artsy Corporation. Be complete but

succinct. Be sure to advise them on the settle-

ment issue. Be as forceful as you can be in argu-

ing “the Artsy Case” without misusing the data

or statistical theory.Apprise your client of the

risks they face, by showing them the forceful and

legitimate counterargument the female plaintiffs

could make. ■

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C A S E

Dupree Fuels Company is facing a difficult

problem. Dupree sells heating oil to residential

customers. Given the amount of competition in the

industry, both from other home heating oil suppliers

and from electric and natural gas utilities, the price

of the oil supplied and the level of service are critical

in determining a company’s success. Unlike electric

and natural gas customers, oil customers are

exposed to the risk of running out of fuel. Home

heating oil suppliers therefore have to guarantee

that the customer’s oil tank will not be allowed to

run dry. In fact, Dupree’s service pledge is,“50 free

gallons on us if we let you run dry.” Beyond the cost

of the oil, however, Dupree is concerned about the

perceived reliability of his service if a customer is

allowed to run out of oil.

To estimate customer oil use, the home heating

oil industry uses the concept of a degree-day, equal

to the difference between the average daily tempera-

ture and 68 degrees Fahrenheit. So if the average

temperature on a given day is 50, the degree-days

for that day will be 18. (If the degree-day calculation

results in a negative number, the degree-day number

is recorded as 0.) By keeping track of the number of

degree-days since the customer’s last oil fill, knowing

the size of the customer’s oil tank, and estimating

the customer’s oil consumption as a function of the

number of degree-days, the oil supplier can estimate

when the customer is getting low on fuel and then

resupply the customer.

Dupree has used this scheme in the past but is

disappointed with the results and the computational

burdens it places on the company. First, the system

requires that a consumption-per-degree-day figure

be estimated for each customer to reflect that

customer’s consumption habits, size of home, quality

of home insulation, and family size. Because Dupree

has more than 1500 customers, the computational

burden of keeping track of all of these customers is

enormous. Second, the system is crude and unreli-

able.The consumption per degree-day for each cus-

tomer is computed by dividing the oil consumption

during the preceding year by the degree-days during

the preceding year. Customers have tended to use

less fuel than estimated during the colder months

and more fuel than estimated during the warmer

months.This means that Dupree is making more

deliveries than necessary during the colder months

and customers are running out of oil during the

warmer months.

Dupree wants to develop a consumption estima-

tion model that is practical and more reliable.The

following data are available in the file Dupree

Fuels.xlsx:

■ The number of degree-days since the last oil fill

and the consumption amounts for 40 customers.

■ The number of people residing in the homes of

each of the 40 customers. Dupree thinks that

this might be important in predicting the oil

consumption of customers using oil-fired water

heaters because it provides an estimate of the

hot-water requirements of each customer. Each

of the customers in this sample uses an oil-fired

water heater.

■ An assessment, provided by Dupree sales staff,

of the home type of each of these 40 customers.

The home type classification, which is a number

between 1 and 5, is a composite index of the

home size, age, exposure to wind, level of

insulation, and furnace type.A low index implies

a lower oil consumption per degree-day, and a

high index implies a higher consumption of oil

per degree-day. Dupree thinks that the use of

such an index will allow them to estimate a

consumption model based on a sample data set

and then to apply the same model to predict

the oil demand of each of his customers.

Use regression to see whether a statistically

reliable oil consumption model can be estimated

from the data. ■
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Case 11.2 Heating Oil at Dupree Fuels Company 665

11Case Studies 11.2 through 11.4 are based on problems from
Advanced Management Accounting, 2nd edition, by Robert S. Kaplan
and Anthony A. Atkinson, 1989, Upper Saddle River, NJ: Prentice
Hall. We thank them for allowing us to adapt their problems.
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C A S E

The Gunderson Plant manufactures the industrial

product line of FGT Industries. Plant manage-

ment wants to be able to get a good, yet quick, esti-

mate of the manufacturing overhead costs that can

be expected each month.The easiest and simplest

method to accomplish this task is to develop a

flexible budget formula for the manufacturing over-

head costs.The plant’s accounting staff has suggested

that simple linear regression be used to determine

the behavior pattern of the overhead costs.The

regression data can provide the basis for the flexible

budget formula. Sufficient evidence is available to

conclude that manufacturing overhead costs vary

with direct labor hours.The actual direct labor hours

and the corresponding manufacturing overhead costs

for each month of the last three years have been

used in the linear regression analysis.

The three-year period contained various occur-

rences not uncommon to many businesses. During

the first year, production was severely curtailed

during two months due to wildcat strikes. In the sec-

ond year, production was reduced in one month

because of material shortages, and increased signifi-

cantly (scheduled overtime) during two months to

meet the units required for a one-time sales order.

At the end of the second year, employee benefits

were raised significantly as the result of a labor

agreement. Production during the third year was not

affected by any special circumstances.Various mem-

bers of Gunderson’s accounting staff raised some

issues regarding the historical data collected for the

regression analysis.These issues were as follows.

■ Some members of the accounting staff believed

that the use of data from all 36 months would

provide a more accurate portrayal of the cost

behavior.While they recognized that any of

the monthly data could include efficiencies and

inefficiencies, they believed these efficiencies

and inefficiencies would tend to balance out

over a longer period of time.

■ Other members of the accounting staff

suggested that only those months that were

considered normal should be used so that the

regression would not be distorted.

■ Still other members felt that only the most

recent 12 months should be used because they

were the most current.

■ Some members questioned whether historical

data should be used at all to form the basis for

a flexible budget formula.

The accounting department ran two regression

analyses of the data—one using the data from all

36 months and the other using only the data from

the last 12 months.The information derived from the

two linear regressions is shown below (t-values

shown in parentheses).The 36-month regression is

OHt � 123,810 � 1.60 DLHt, R2 � 0.32

(1.64)

The 12-month regression is

OHt � 109,020 � 3.00 DLHt, R2 � 0.48

(3.01)

Questions

1. Which of the two results (12 months versus 36

months) would you use as a basis for the flexible

budget formula?

2. How would the four specific issues raised by

the members of Gunderson’s accounting staff

influence your willingness to use the results of

the statistical analyses as the basis for the flexi-

ble budget formula? Explain your answer. ■

11.3 DEVELOPING A FLEXIBLE BUDGET AT THE

GUNDERSON PLANT
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C A S E

Wagner Printers performs all types of printing,

including custom work, such as advertising

displays, and standard work, such as business cards.

Market prices exist for standard work, and Wagner

Printers must match or better these prices to get

the business.The key issue is whether the existing

market price covers the cost associated with doing

the work. On the other hand, most of the custom

work must be priced individually. Because all custom

work is done on a job-order basis,Wagner routinely

keeps track of all the direct labor and direct materi-

als costs associated with each job. However, the

overhead for each job must be estimated.The over-

head is applied to each job using a predetermined

(normalized) rate based on estimated overhead and

labor hours. Once the cost of the prospective job is

determined, the sales manager develops a bid that

reflects both the existing market conditions and the

estimated price of completing the job.

In the past, the normalized rate for overhead

has been computed by using the historical average of

overhead per direct labor hour.Wagner has become

increasingly concerned about this practice for two

reasons. First, it hasn’t produced accurate forecasts

of overhead in the past. Second, technology has

changed the printing process, so that the labor

content of jobs has been decreasing, and the 

normalized rate of overhead per direct labor hour

has steadily been increasing.The file Wagner

Printers.xlsx shows the overhead data that Wagner

has collected for its shop for the past 52 weeks.

The average weekly overhead for the last 52 weeks

is $54,208, and the average weekly number of labor

hours worked is 716.Therefore, the normalized 

rate for overhead that will be used in the upcoming

week is about $76 (� 54208/716) per direct labor

hour.

Questions

1. Determine whether you can develop a more

accurate estimate of overhead costs.

2. Wagner is now preparing a bid for an important

order that may involve a considerable amount of

repeat business.The estimated requirements for

this project are 15 labor hours, 8 machine hours,

$150 direct labor cost, and $750 direct material

cost. Using the existing approach to cost estima-

tion,Wagner has estimated the cost for this job

as $2040 (� 150 � 750 � (76 � 15)). Given the

existing data, what cost would you estimate for

this job? ■

11.4 FORECASTING OVERHEAD AT WAGNER PRINTERS
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Time Series Analysis and Forecasting

C H A P T E R

REVENUE MANAGEMENT AT HARRAH’S
CHEROKEE CASINO & HOTEL

Real applications of forecasting are almost never done in isolation.They

are typically one part—a crucial part—of an overall quantitative solution

to a business problem.This is certainly the case at Harrah’s Cherokee

Casino & Hotel in North Carolina, as explained in an article by Metters et al.

(2008).This particular casino uses revenue management (RM) on a daily 

basis to increase its revenue from its gambling customers.As customers call

to request reservations at the casino’s hotel, the essential problem is to

decide which reservations to accept and which to deny.The idea is that

there is an opportunity cost from accepting early requests from lower-

valued customers because higher-valued customers might request the same

rooms later on.

As the article explains, there are several unique features about casinos,

and this casino in particular, that make a quantitative approach to RM
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successful. First, the detailed behaviors of customers can be tracked, via electronic cards

they use while placing bets in the electronic gambling machines, so that the casino can

create a large database of individual customers’ gambling patterns.This allows the casino

to segment the customers into different groups, based on how much they typically bet in

a given night. For example, one segment might contain all customers who bet between

$500 and $600 per night.When a customer calls for a room reservation and provides his

card number, the casino can immediately look up his information in the database and see

which segment he is in.

A second reason for the successful use of RM is that customers differ substantially

in the price they are willing to pay for the same commodity, a stay at the casino’s hotel.

Actually, many don’t pay anything for the room or the food—these are frequently com-

plimentary from the casino—but they pay by losing money at gambling. Some customers

typically gamble thousands of dollars per night while others gamble much less. (This is

quite different from the disparities in other hotels or in air travel, where a business trav-

eler might pay twice as much as a vacationer, but not much more.) Because some cus-

tomers are much more valuable than others, there are real opportunity costs from

treating all customers alike.

A third reason for the success of RM at this casino is that the casino can afford to

hold out for the best-paying customers until the last minute.The reason is that a significant

percentage of the customers from all segments wait until the last minute to make their

reservations. In fact, they often make them while driving, say, from Atlanta to the casino.

Therefore, the casino can afford to deny requests for reservations to lower-valued cus-

tomers made a day or two in advance, knowing that last-minute reservations, very possibly

from higher-valued customers, will fill up the casino’s rooms. Indeed, the occupancy rate is

virtually always 98% or above.

The overall RM solution includes (1) data collection and customer segmentation,

as explained above, (2) forecasting demand for reservations from each customer

segment, (3) a linear programming (LP) optimization model that is run frequently to

decide which reservations to accept, and (4) a customer relationship management

model to entice loyal customers to book rooms on nights with lower demand.The

forecasting model is very similar to the Winters’ exponential smoothing model dis-

cussed in this chapter. Specifically, the model uses the large volume of historical data

to forecast customer demand by each customer segment for any particular night in

the future.These forecasts include information about time-related or seasonal patterns

(weekends are busier, for example) and any special events that are scheduled.Also, the

forecasts are updated daily as the night in question approaches.These forecasts are

then used in an LP optimization model to determine which requests to approve. For

example, the LP model might indicate that, given the current status of bookings and

three nights to go, requests for rooms on the specified night should be accepted only

for the four most valuable customer segments.As the given night approaches and the

number of booked rooms changes, the LP model is rerun many times and provides

staff with the necessary information for real-time decisions. (By the way, a customer

who is refused a room at the casino is often given a free room at another nearby

hotel.After all, this customer can still be valuable enough to offset the price of the

room at the other hotel.)

It is difficult to measure the effect of this entire RM system because it has always

been in place since the casino opened. But there is no doubt that it is effective. Despite

the fact that it serves no alcohol and has only electronic games, not the traditional

gaming tables, the casino has nearly full occupancy and returns a 60% profit margin on

gross revenue—double the industry norm. ■
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12.1 INTRODUCTION

Many decision-making applications depend on a forecast of some quantity. Here are sev-
eral examples.

Examples of Forecasting Applications

■ When a service organization, such as a fast-food restaurant, plans its staffing over
some time period, it must forecast the customer demand as a function of time. This
might be done at a very detailed level, such as the demand in successive 15-minute
periods, or at a more aggregate level, such as the demand in successive weeks.

■ When a company plans its ordering or production schedule for a product it sells to
the public, it must forecast the customer demand for this product so that it can stock
appropriate quantities—neither too many nor too few.

■ When an organization plans to invest in stocks, bonds, or other financial instruments,
it typically attempts to forecast movements in stock prices and interest rates.

■ When government officials plan policy, they attempt to forecast movements in
macroeconomic variables such as inflation, interest rates, and unemployment.

Unfortunately, forecasting is a very difficult task, both in the short run and in the long run.
Typically, forecasts are based on historical data. Analysts search for patterns or relationships
in the historical data, and then make forecasts. There are two problems with this approach.
The first is that it is not always easy to uncover historical patterns or relationships. In partic-
ular, it is often difficult to separate the noise, or random behavior, from the underlying
patterns. Some forecasts can even overdo it, by attributing importance to patterns that are in
fact random variations and are unlikely to repeat themselves.

The second problem is that there are no guarantees that past patterns will continue in
the future. A new war could break out somewhere in the world, a company’s competitor
could introduce a new product into the market, the bottom could fall out of the stock
market, and so on. Each of these shocks to the system being studied could drastically
alter the future in a highly unpredictable way. This partly explains why forecasts are
almost always wrong. Unless they have inside information to the contrary, analysts must
assume that history will repeat itself. But we all know that history does not always repeat
itself. Therefore, there are many famous forecasts that turned out to be way off the mark,
even though the analysts made reasonable assumptions and used standard forecasting
techniques. Nevertheless, forecasts are required throughout the business world, so fear
of failure is no excuse for not giving it our best effort.

12.2 FORECASTING METHODS: AN OVERVIEW

There are many forecasting methods available, and all practitioners have their favorites. To
say the least, there is little agreement among practitioners or academics as to the best fore-
casting method. The methods can generally be divided into three groups: (1) judgmental
methods, (2) extrapolation (or time series) methods, and (3) econometric (or causal) meth-
ods. The first of these is basically nonquantitative and will not be discussed here; the last
two are quantitative. In this section we describe extrapolation and econometric methods in
some generality. In the rest of the chapter, we go into more detail, particularly about the
extrapolation methods.
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12.2.1 Extrapolation Methods

Extrapolation methods are quantitative methods that use past data of a time series variable—
and nothing else, except possibly time itself—to forecast future values of the variable. The
idea is that past movements of a variable, such as company sales or U.S. exports to Japan,
can be used to forecast future values of the variable. Many extrapolation methods are avail-
able, including trend-based regression, autoregression, moving averages, and exponential
smoothing. Some of these methods are relatively simple, both conceptually and in terms of
the calculations required, whereas others are quite complex. Also, as the names imply,
some of these methods use the same regression methods from the previous two chapters,
whereas others do not.

All of these extrapolation methods search for patterns in the historical series and then
extrapolate these patterns into the future. Some try to track long-term upward or downward
trends and then project these. Some try to track the seasonal patterns (such as sales up in
November and December, down in other months) and then project these. Basically, the
more complex the method, the more closely it tries to track historical patterns. Researchers
have long believed that good forecasting methods should be able to track the ups and
downs—the zigzags on a graph—of a time series. This has led to voluminous research and
increasingly complex methods. But is complexity always better?

Surprisingly, empirical evidence shows that complexity is not always better. This is
documented in a quarter-century review article by Armstrong (1986) and an article by
Schnarrs and Bavuso (1986). They document a number of empirical studies on literally
thousands of time series forecasts where complex methods fared no better, and sometimes
even worse, than simple methods. In fact, the Schnarrs and Bavuso article presents evidence
that a naive forecast from a “random walk” model sometimes outperforms all of the more
sophisticated extrapolation methods. This naive model forecasts that next period’s value will
be the same as this period’s value. So if today’s closing stock price is 51.375, it forecasts that
tomorrow’s closing stock price will be 51.375. This method is certainly simple, and it
sometimes works quite well. We discuss random walks in more detail in section 12.5.

The evidence in favor of simpler models is not accepted by everyone, particularly not
those who have spent years investigating complex models, and complex models continue
to be studied and used. However, there is a very plausible reason why simple models can
provide reasonably good forecasts. The whole goal of extrapolation methods is to extrapo-
late historical patterns into the future. But it is often difficult to determine which patterns
are real and which represent noise—random ups and downs that are not likely to repeat
themselves. Also, if something important changes (a competitor introduces a new product
or there is an oil embargo, for example), it is certainly possible that historical patterns will
change. A potential problem with complex methods is that they can track a historical series
too closely. That is, they sometimes track patterns that are really noise. Simpler methods,
on the other hand, track only the most basic underlying patterns and therefore can be more
flexible and accurate in forecasting the future.

12.2.2 Econometric Models

Econometric models, also called causal or regression-based models, use regression to
forecast a time series variable by using other explanatory time series variables. For exam-
ple, a company might use a causal model to regress future sales on its advertising level, the
population income level, the interest rate, and possibly others. In one sense, regression
analysis involving time series variables is similar to the regression analysis discussed in the
previous two chapters. The same least squares approach and the same multiple regression
software can be used in many time series regression models. In fact, several examples and
problems in the previous two chapters used time series data.
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However, causal regression models for time series data present new mathematical
challenges that go well beyond the level of this book. To get a glimpse of the potential
difficulties, suppose a company wants to use a regression model to forecast its monthly
sales for some product, using two other time series variables as predictors: its monthly
advertising levels for the product and its main competitor’s monthly advertising levels for
a competing product. The resulting regression equation has the form

Predicted Yt � a � b1X1t � b2X2t (12.1)

Here, Yt is the company’s sales in month t, and X1t and X2t are, respectively, the company’s
and the competitor’s advertising levels in month t. This regression model might provide
some useful results, but there are some issues that must be faced.

One issue is that the appropriate “lags” for the regression equation must be deter-
mined. Do sales this month depend only on advertising levels this month, as specified in
Equation (12.1), or also on advertising levels in the previous month, the previous two
months, and so on? A second issue is whether to include lags of the sales variable in the
regression equation as explanatory variables. Presumably, sales in one month might
depend on the level of sales in previous months (as well as on advertising levels). A third
issue is that the two advertising variables can be autocorrelated and cross-correlated.
Autocorrelation means correlated with itself. For example, the company’s advertising level
in one month might depend on its advertising levels in previous months. Cross-correlation
means being correlated with a lagged version of another variable. For example, the
company’s advertising level in one month might be related to the competitor’s advertising
levels in previous months, or the competitor’s advertising in one month might be related to
the company’s advertising levels in previous months.

These are difficult issues, and the way in which they are addressed can make a big
difference in the usefulness of the regression model. We will examine several regression-
based models in this chapter, but we won’t discuss situations such as the one just
described, where one time series variable Y is regressed on one or more time series of Xs.
[Pankratz (1991) is a good reference for these latter types of models. Unfortunately, the
level of mathematics is considerably beyond the level in this book.]

12.2.3 Combining Forecasts

There is one other general forecasting method that is worth mentioning. In fact, it has
attracted a lot of attention in recent years, and many researchers believe that it has poten-
tial for increasing forecast accuracy. The method is simple—it combines two or more
forecasts to obtain the final forecast. The reasoning behind this method is also simple: The
forecast errors from different forecasting methods might cancel one another. The forecasts
that are combined can be of the same general type—extrapolation forecasts, for example—
or they can be of different types, such as judgmental and extrapolation. 

The number of forecasts to combine and the weights to use in combining them have
been the subject of several research studies. Although the findings are not entirely consis-
tent, it appears that the marginal benefit from each individual forecast after the first two or
three is minor. Also, there is not much evidence to suggest that the simplest weighting
scheme—weighting each forecast equally, that is, averaging them—is any less accurate
than more complex weighting schemes.

12.2.4 Components of Time Series Data

In Chapter 2 we discussed time series graphs, a useful graphical way of displaying time
series data. We now use these time series graphs to help explain and identify four important
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components of a time series. These components are called the trend component, the sea-
sonal component, the cyclic component, and the random (or noise) component.

We start by looking at a very simple time series. This is a time series where every
observation has the same value. Such a series is shown in Figure 12.1. The graph in this
figure shows time (t) on the horizontal axis and the observed values (Y) on the vertical axis.
We assume that Y is measured at regularly spaced intervals, usually days, weeks, months,
quarters, or years, with Yt being the value of the observation at time period t. As indicated
in Figure 12.1, the individual observation points are usually joined by straight lines to
make any patterns in the time series more apparent. Because all observations in this time
series are equal, the resulting time series graph is a horizontal line. We refer to this time
series as the base series. We will now illustrate more interesting time series built from this
base series.

674 Chapter 12 Time Series Analysis and Forecasting

If the observations increase or decrease regularly through time, we say that the time
series has a trend. The graphs in Figure 12.2 illustrate several possible trends. The linear
trend in Figure 12.2a occurs if a company’s sales increase by the same amount from period
to period. This constant per period change is then the slope of the linear trend line. The
curve in Figure 12.2b is an exponential trend. It occurs in a business such as the personal
computer business, where sales have increased at a tremendous rate (at least during the
1990s, the boom years). For this type of curve, the percentage increase in Yt from period to
period remains constant. The curve in Figure 12.2c is an S-shaped trend. This type of trend
is appropriate for a new product that takes a while to catch on, then exhibits a rapid
increase in sales as the public becomes aware of it, and finally tapers off to a fairly constant

Figure 12.1

The Base Series

Figure 12.2 Series with Trends
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level because of market saturation. The series in Figure 12.2 all represent upward trends.
Of course, there are downward trends of the same types.

Many time series have a seasonal component. For example, a company’s sales of
swimming pool equipment increase every spring, then stay relatively high during the sum-
mer, and then drop off until next spring, at which time the yearly pattern repeats itself. An
important aspect of the seasonal component is that it tends to be predictable from one year
to the next. That is, the same seasonal pattern tends to repeat itself every year.

Figure 12.3 illustrates two possible seasonal patterns. In Figure 12.3a there is nothing
but the seasonal component. That is, if there were no seasonal variation, the series would
be the base series in Figure 12.1. Figure 12.3b illustrates a seasonal pattern superimposed
on a linear trend line.
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Figure 12.3

Series with

Seasonality

Figure 12.4

Series with Cyclic

Component

The third component of a time series is the cyclic component. By studying past move-
ments of many business and economic variables, it becomes apparent that there are business
cycles that affect many variables in similar ways. For example, during a recession housing
starts generally go down, unemployment goes up, stock prices go down, and so on. But
when the recession is over, all of these variables tend to move in the opposite direction.
Unfortunately, the cyclic component is more difficult to predict than the seasonal component.
The reason is that seasonal variation is much more regular. For example, swimming pool
supplies sales always start to increase during the spring. Cyclic variation, on the other hand, is
more irregular because the length of the business cycle varies, sometimes considerably. A
further distinction is that the length of a seasonal cycle is generally one year; the length of a
business cycle is generally longer than one year and its actual length is difficult to predict.

The graphs in Figure 12.4 illustrate the cyclic component of a time series. In Figure 12.4a
cyclic variation is superimposed on the base series in Figure 12.1. In Figure 12.4b this same
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cyclic variation is superimposed on the series in Figure 12.3b. The resulting graph has trend,
seasonal variation, and cyclic variation.

The final component in a time series is called random variation, or simply noise.
This unpredictable component gives most time series graphs their irregular, zigzag
appearance. Usually, a time series can be determined only to a certain extent by its trend,
seasonal, and cyclic components. Then other factors determine the rest. These other factors
may be inherent randomness, unpredictable “shocks” to the system, the unpredictable
behavior of human beings who interact with the system, and possibly others. These factors
combine to create a certain amount of unpredictability in almost all time series.

Figures 12.5 and 12.6 show the effect that noise can have on a time series graph.
The graph on the left of each figure shows the random component only, superimposed on
the base series. Then on the right of each figure, the random component is superimposed
on the trend-with-seasonal-component graph from Figure 12.3b. The difference between
Figures 12.5 and 12.6 is the relative magnitude of the noise. When it is small, as in
Figure 12.5, the other components emerge fairly clearly; they are not disguised by the
noise. But if the noise is large in magnitude, as in Figure 12.6, the noise makes it very
difficult to distinguish the other components.

676 Chapter 12 Time Series Analysis and Forecasting

Figure 12.5

Series with Noise

Figure 12.6

Series with More

Noise

12.2.5 Measures of Accuracy

We now introduce some notation and discuss aspects common to most forecasting
methods. In general, we let Y denote the variable of interest. Then Yt denotes the observed
value of Y at time t. Typically, the first observation (the most distant one) corresponds to
period t � 1, and the last observation (the most recent one) corresponds to period t � T,
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where T denotes the number of historical observations of Y. The periods themselves might
be days, weeks, months, quarters, years, or any other convenient unit of time.

Suppose that Yt�k has just been observed and you want to make a “k-period-ahead”
forecast; that is, you want to use the information through time t � k to forecast Yt. The
resulting forecast is denoted by Ft�k,t . The first subscript indicates the period in which the
forecast is made, and the second subscript indicates the period being forecast. As an exam-
ple, if the data are monthly and September 2009 corresponds to t � 67, then a forecast
of Y69, the value in November 2009, would be labeled F67,69. The forecast error is the
difference between the actual value and the forecast. It is denoted by E with appropriate
subscripts. Specifically, the forecast error associated with Ft�k,t is

Et�k,t � Yt � Ft�k,t

This double-subscript notation is necessary to specify when the forecast is being made and
which period is being forecast. However, the former is often clear from context. Therefore,
to simplify the notation, we usually drop the first subscript and write Ft and Et to denote
the forecast of Yt and the error in this forecast.

There are actually two steps in any forecasting procedure. The first step is to build a
model that fits the historical data well. The second step is to use this model to forecast the
future. Most of the work goes into the first step. For any trial model you see how well it
“tracks” the known values of the time series. Specifically, the one-period-ahead forecasts,
Ft (or more precisely, Ft�1,t) are calculated from the model, and these are compared to the
known values, Yt , for each t in the historical time period. The goal is to find a model that
produces small forecast errors, Et. Presumably, if the model tracks the historical data well,
it will also forecast future data well. Of course, there is no guarantee that this is true, but it
is often a reasonable assumption.

Forecasting software packages typically report several summary measures of the fore-
cast errors. The most important of these are MAE (mean absolute error), RMSE (root
mean square error), and MAPE (mean absolute percentage error). These are defined
in equations (12.2), (12.3), and (12.4). Fortunately, models that make any one of these
measures small tend to make the others small, so you can choose whichever measure you
want to minimize. In the following formulas, N denotes the number of terms in each sum.
This value is typically slightly less than T, the number of historical observations, because
it is usually not possible to provide a forecast for each historical period.

12.2 Forecasting Methods:An Overview 677

You first develop a
model to fit the
historical data.Then
you use this model to
forecast the future.

Mean Absolute Error

(12.2)MAE = aa
N

t=1
|Et|b /N

Root Mean Square Error

(12.3)RMSE =

C
aa

N

t=1
E2

t b /N

Mean Absolute Percentage Error

(12.4)MAPE = 100% * aa
N

t=1
|Et / Yt|b /N
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RMSE is similar to a standard deviation in that the errors are squared; because of the
square root, it is in the same units as those of the forecast variable. The MAE is similar to
the RMSE, except that absolute values of errors are used instead of squared errors.
The MAPE is probably the most easily understood measure because it does not depend on
the units of the forecast variable; it is always stated as a percentage. For example, the state-
ment that the forecasts are off on average by 2% has a clear meaning, even if you do not
know the units of the variable being forecast.

Some forecasting software packages choose the best model from a given class (such as
the best exponential smoothing model) by minimizing MAE, RMSE, or MAPE. However,
small values of these measures guarantee only that the model tracks the historical observa-
tions well. There is still no guarantee that the model will forecast future values accurately.

One other measure of forecast errors is the average of the errors. (It is not reported by
StatTools, but it is easy to calculate.) Recall from the regression chapters that the residuals
from any regression equation, which are analogous to forecast errors, always average to zero.
This is a mathematical property of the least-squares method. However, there is no such
guarantee for forecasting errors based on nonregression methods. For example, it is very pos-
sible that most of the forecast errors, and the corresponding average, are negative. This would
imply a bias, where the forecasts tend to be too high. Or the average of the forecast errors
could be positive , in which case the forecasts tend to be too low. If you choose an “appropri-
ate” forecasting method, based on the evidence from a time series graph, this type of bias is

not likely to be a problem, but it is easy to check.
Furthermore, if a company realizes that its forecast-
ing method produces forecasts that are consistently,
say, 5% below the actual values, it could simply mul-
tiply its forecasts by 1/0.95 to remove the bias.

We now examine a number of useful forecast-
ing models. You should be aware that more than
one of these models can be appropriate for any par-
ticular time series data. For example, a random
walk model and an autoregression model could be
equally effective for forecasting stock price data.
(Remember also that forecasts from more than one
model can be combined to obtain a possibly better
forecast.) We try to provide some insights into
choosing the best type of model for various types of
time series data, but ultimately the choice depends
on the experience of the analyst.

12.3 TESTING FOR RANDOMNESS

All forecasting models have the general form shown in Equation (12.5). The fitted value in
this equation is the part calculated from past data and any other available information (such
as the season of the year), and it is used as a forecast for Y. The residual is the forecast
error, the difference between the observed value of Y and its forecast:

Yt � Fitted Value � Residual (12.5)

For time series data, there is a residual for each historical period, that is, for each value of t.
We want this time series of residuals to be random noise, as discussed in section 12.2.4. The
reason is that if this series of residuals is not noise, it can be modeled further. For example, if
the residuals trend upwardly, then the forecasting model can be modified to include this trend

678 Chapter 12 Time Series Analysis and Forecasting

A model that makes
any one of these error
measures small tends
to make the other two
small as well.

Extrapolation and Noise

There are two important things to remember about

extrapolation methods. First, by definition, all such

methods try to extrapolate historical patterns into the

future. If history doesn’t essentially repeat itself, for

whatever reason, these methods are doomed to fail. In

fact, if you know that something has changed fundamen-

tally, you probably should not use an extrapolation

method. Second, it does no good to track noise and

then forecast it into the future. For this reason, most

extrapolation methods try to smooth out the noise, so

that the underlying pattern is more apparent.

FUNDAMENTAL INSIGHT

In a time series
context the terms
residual and 
forecast error are
used interchangeably.
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component in the fitted value. The point is that the fitted value should include all components
of the original series that can possibly be forecast, and the leftover residuals should be unpre-
dictable noise.

We now discuss ways to determine whether a time series of residuals is random noise
(which we usually abbreviate to “random”.) The simplest method, but not always a reliable
one, is to examine time series graphs of residuals visually. Nonrandom patterns are some-
times easy to detect. For example, the time series graphs in Figures 12.7 through 12.11
illustrate some common nonrandom patterns. In Figure 12.7, there is an upward trend. In
Figure 12.8, the variance increases through time (larger zigzags to the right). Figure 12.9
exhibits seasonality, where observations in certain months are consistently larger than
those in other months. There is a meandering pattern in Figure 12.10, where large observa-
tions tend to be followed by other large observations, and small observations tend to be
followed by other small observations. Finally, Figure 12.11 illustrates the opposite
behavior, where there are too many zigzags—large observations tend to follow small
observations and vice versa. None of the time series in these figures is random.

12.3 Testing for Randomness 679

Time series plot of Series1

100

125

150

175

200

225

250

Se
ri

es
1

1 2 3 4 5 6 7 8 9 2322212019181716151413121110
Observa�on Number

Figure 12.7

A Series with Trend

Time series plot of Series2

0

25

50

75

100

125

150

Se
ri

es
2

1 2 3 4 5 6 7 8 9 23
Observa�on Number

22212019181716151413121110

Figure 12.8

A Series with

Increasing Variance

Through Time

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



680 Chapter 12 Time Series Analysis and Forecasting

Time series plot of Series3
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12.3.1 The Runs Test

It is not always easy to detect randomness or the lack of it from the visual inspection of a
graph. Therefore, we discuss two quantitative methods that test for randomness. The first is
called the runs test. You first choose a base value, which could be the average value of the
series, the median value, or even some other value. Then a run is defined as a consecutive
series of observations that remain on one side of this base level. For example, if the base
level is 0 and the series is 1, 5, 3, –3, –2, –4, –1, 3, 2, there are three runs: 1, 5, 3; –3, –2,
–4, –1; and 3, 2. The idea behind the runs test is that a random series should have a number
of runs that is neither too large nor too small. If the series has too few runs, it could be
trending (as in Figure 12.7) or it could be meandering (as in Figure 12.10). If the series has
too many runs, it is zigzagging too often (as in Figure 12.11).

This runs test can be
used on any time
series, not just a series
of residuals.

The runs test is a formal test of the null hypothesis of randomness. If there are 
too many or too few runs in the series, the null hypothesis of randomness can be
rejected.

We do not provide the mathematical details of the runs test, but we illustrate how it is
implemented in StatTools in the following example.

E X A M P L E 12.1 FORECASTING MONTHLY STEREO SALES

Monthly sales for a chain of stereo retailers are listed in the file Stereo Sales.xlsx.
They cover the period from the beginning of 2006 to the end of 2009, during which

there was no upward or downward trend in sales and no clear seasonality. This behavior is
apparent in the time series graph of sales in Figure 12.12. Therefore, a simple forecast
model of sales is to use the average of the series, 182.67, as a forecast of sales for each
month. Do the resulting residuals represent random noise?

Objective To use StatTools’s Runs Test procedure to check whether the residuals from
this simple forecasting model represent random noise.
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Solution

The residuals for this forecasting model are found by subtracting the average, 182.67, from
each observation. Therefore, the plot of the residuals, shown in Figure 12.13, has exactly the
same shape as the plot of sales. The only difference is that it is shifted down by 182.67 and
has mean 0. The runs test can now be used to check whether there are too many or too few
runs around the base value of 0 in this residual plot. To do so, select Runs Test for
Randomness from the StatTools Time Series and Forecasting dropdown, choose Residual as
the variable to analyze, and choose Mean of Series as the cutoff value. (This corresponds to
the horizontal line at 0 in Figure 12.13.) The resulting output in shown in Figure 12.14.
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Observa�ons 48
Below Mean 22
Above Mean 26
Number of Runs 20
Mean 0.00
E(R) 24.8333
StdDev(R) 3.4027
Z-Value -1.420416

17
Z-Value -1.4204
P-Value (two-tailed) 0.1555

Figure 12.13

Time Series Graph

of Residuals

Figure 12.14

Runs Test for

Randomness

The important elements of this output are the following:

■ The number of observed runs is 20, in cell J12.
■ The number of runs expected under an assumption of randomness is 24.833, in cell

J14. (This follows from a probability argument not shown here.) Therefore, the series
of residuals has too few runs. Positive values tend to follow positive values, and 
negative values tend to follow negative values.

■ The z-value in cell J16, –1.42, indicates how many standard errors the observed 
number of runs is below the expected number of runs. The corresponding p-value

A small p-value in the
runs test provides
evidence of
nonrandomness.
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indicates how extreme this z-value is. It can be interpreted just like other p-values for
hypothesis tests. If it is small, say, less than 0.05, then the null hypothesis of random-
ness can be rejected. In this case, the conclusion is that the series of residuals is not
random noise. However, the p-value for this example is only 0.1555. Therefore, there
is not convincing evidence of nonrandomness in the residuals. In other words, it is
reasonable to conclude that the residuals represent noise. ■

12.3.2 Autocorrelation

In this section we discuss another way to check for randomness of a time series of residu-
als—we examine the autocorrelations of the residuals. The “auto”means that successive
observations are correlated with one another. For example, in the most common form of
autocorrelation, positive autocorrelation, large observations tend to follow large observa-
tions, and small observations tend to follow small observations. In this case the runs test is
likely to pick it up because there will be fewer runs than expected. Another way to check
for the same nonrandomness property is to calculate the autocorrelations of the time series.

Like the runs test,
autocorrelations can be
calculated for any time
series, not just a series
of residuals.

An autocorrelation is a type of correlation used to measure whether values of a time
series are related to their own past values.

To understand autocorrelations, it is first necessary to understand what it means to lag
a time series. This concept is easy to illustrate in a spreadsheet. We again use the monthly
stereo sales data in the Stereo Sales.xlsx file. To lag by one month, you simply “push
down” the series by one row. See column D of Figure 12.15. Note that there is a blank cell
at the top of the lagged series (in cell D2). You can continue to push the series down one
row at a time to obtain other lags. For example, the lag 3 version of the series appears in
column F. Now there are three missing observations at the top. Note that in December
2006, say, the first, second, and third lags correspond to the observations in November
2006, October 2006, and September 2006, respectively. That is, lags are simply previous
observations, removed by a certain number of periods from the present time. These lagged
columns can be obtained by copying and pasting the original series or by selecting Lag
from the StatTools Data Utilities dropdown menu.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A B C D E F
Month Sales Residual Lag1(Residual) Lag2(Residual) Lag3(Residual)
Jan-06 226 43.333
Feb-06 254 71.333 43.333
Mar-06 204 21.333 71.333 43.333
Apr-06 193 10.333 21.333 71.333 43.333

May-06 191 8.333 10.333 21.333 71.333
Jun-06 166 -16.667 8.333 10.333 21.333
Jul-06 175 -7.667 -16.667 8.333 10.333

Aug-06 217 34.333 -7.667 -16.667 8.333
Sep-06 167 -15.667 34.333 -7.667 -16.667
Oct-06 192 9.333 -15.667 34.333 -7.667

Nov-06 127 -55.667 9.333 -15.667 34.333
Dec-06 148 -34.667 -55.667 9.333 -15.667
Jan-07 184 1.333 -34.667 -55.667 9.333
Feb-07 209 26.333 1.333 -34.667 -55.667
Mar-07 186 3.333 26.333 1.333 -34.667

Figure 12.15

Lags for Stereo Sales
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Then the autocorrelation of lag k, for any integer
k, is essentially the correlation between the original
series and the lag k version of the series. For example,
in Figure 12.15 the lag 1 autocorrelation is the corre-
lation between the observations in columns C and D.
Similarly, the lag 2 autocorrelation is the correlation
between the observations in columns C and E.1

We have shown the lagged versions of Sales in
Figure 12.15, and we have explained autocorrela-
tions in terms of these lagged variables, to help
motivate the concept of autocorrelation. However,
you can use StatTools’s Autocorrelation procedure
directly, without forming the lagged variables, to
calculate autocorrelations. This is illustrated in the
following continuation of Example 12.1.
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Role of Autocorrelation in Time Series
Analysis

Due to the introductory nature of this book, we do

not discuss autocorrelation in much detail. However,

it is the key to many forecasting methods, especially

more complex methods. This is not surprising.

Autocorrelations essentially specify how observa-

tions in nearby time periods are related, so this infor-

mation is often useful in forecasting. However, it is

not at all obvious how to use this information—

hence the complexity of some forecasting methods.

FUNDAMENTAL INSIGHT

E X A M P L E 12.1 FORECASTING MONTHLY STEREO SALES (CONTINUED)

The runs test on the stereo sales data suggests that the pattern of sales is not completely
random. There is some tendency for large values to follow large values, and for small

values to follow small values. Do autocorrelations support this evidence?

Objective To examine the autocorrelations of the residuals from the forecasting model
for evidence of nonrandomness.

Solution

To answer this question, use StatTools’s Autocorrelation procedure, found on the StatTools
Time Series and Forecasting dropdown list. It requires you to specify the time series variable
(Residual), the number of lags you want (the StatTools default value was accepted here), and
whether you want a chart of the autocorrelations. This chart is called a correlogram. The
resulting autocorrelations and correlogram appear in Figure 12.16. A typical autocorrelation
of lag k indicates the relationship between observations k periods apart. For example, 
the autocorrelation of lag 3, 0.0814, indicates that there is very little relationship between
residuals separated by three months.

How large is a “large”autocorrelation? Under the assumption of randomness, it can be
shown that the standard error of any autocorrelation is approximately , in this case

. (Recall that T denotes the number of observations in the series.) If 
the series is truly random, then only an occasional autocorrelation will be larger than two
standard errors in magnitude. Therefore, any autocorrelation that is larger than two stan-
dard errors in magnitude is worth your attention. All significantly nonzero autocorrelations
are boldfaced in the StatTools output. For this example, the only “large” autocorrelation for
the residuals is the first, or lag 1, autocorrelation of 0.3492. The fact that it is positive indi-
cates once again that there is some tendency for large residuals to follow large residuals
and for small to follow small. The autocorrelations for other lags are less than two standard
errors in magnitude and can safely be ignored.

1/148 = 0.1443
1/1T

1We ignore the exact details of the calculations here. Just be aware that the formula for autocorrelations that is
usually used differs slightly from the correlation formula in Chapter 3. However, the difference is very slight and
of no practical importance.
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Typically, you can ask for autocorrelations up to as many lags as you like. However,
there are several practical considerations to keep in mind. First, it is common practice to
ask for no more lags than 25% of the number of observations. For example, if there are 48
observations, you should ask for no more than 12 autocorrelations (lags 1 to 12).
(StatTools chooses this number of lags if you accept its Auto setting.)

Second, the first few lags are typically the most important. Intuitively, if there is any
relationship between successive observations, it is likely to be between nearby observa-
tions. The June 2009 observation is more likely to be related to the May 2009 observation
than to the October 2008 observation. Sometimes there is a fairly large spike in the correl-
ogram at some large lag, such as lag 9. However, this can often be dismissed as a random
blip unless there is some obvious reason for its occurrence. A similarly large autocorrela-
tion at lag 1 or 2 is usually taken more seriously. The one exception to this is a seasonal
lag. For example, an autocorrelation at lag 12 for monthly data corresponds to a relation-
ship between observations a year apart, such as May 2009 and May 2008. If this autocor-
relation is significantly large, it probably should not be ignored.

As discussed briefly in the previous chapter, one measure of the lag 1 autocorrela-
tion, often the most important autocorrelation, is provided by the Durbin-Watson (DW)
statistic. (See section 11.9.3.) This statistic can be calculated with the StatTools function
StatDurbinWatson. Its value for the residuals in this example is 1.262, as shown in
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Lag #11 0.0121

-0.051642 Lag #12 -

 of ResidualAutocorrela�on

utocorrela�on

Figure 12.16

Correlogram and

Autocorrelations of

Residuals
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Figure 12.16. The DW statistic is always between 0 and 4. A DW value of 2 indicates no
lag 1 autocorrelation, a DW value less than 2 indicates positive autocorrelation, and a
DW value greater than 2 indicates negative autocorrelation. The current DW value,
1.262, is considerably less than 2, another indication that the lag 1 autocorrelation of the
residuals is positive and possibly significant. There are tables of significance levels for
DW statistics (how much less than 2 must DW be to be significant?), but they are not
presented here.

We will not examine autocorrelations much further in this book. However, many
advanced forecasting techniques are based largely on the examination of the autocorrela-
tion structure of time series. This autocorrelation structure indicates how a series is related
to its own past values through time, which can be very valuable information for forecasting
future values.
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P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. The file P12_01.xlsx contains the monthly number 
of airline tickets sold by a travel agency. Is this 
time series random? Perform a runs test and 
find a few autocorrelations to support your 
answer.

2. The file P12_02.xlsx contains the weekly sales at 
a local bookstore for each of the past 25 weeks. 
Is this time series random? Perform a runs test 
and find a few autocorrelations to support your
answer.

3. The number of employees on the payroll at a food-
processing plant is recorded at the start of each 
month. These data are provided in the file
P12_03.xlsx. Perform a runs test and find a 
few autocorrelations to determine whether this 
time series is random.

4. The quarterly numbers of applications for home
mortgage loans at a branch office of Northern Central
Bank are recorded in the file P12_04.xlsx. Perform a
runs test and find a few autocorrelations to determine
whether this time series is random.

5. The number of reported accidents at a manufacturing
plant located in Flint, Michigan, was recorded at the
start of each month. These data are provided in the file
P12_05.xlsx. Is this time series random? Perform a
runs test and find a few autocorrelations to support
your answer.

6. The file P12_06.xlsx contains the weekly sales at the
local outlet of West Coast Video Rentals for each of
the past 36 weeks. Perform a runs test and find a few

autocorrelations to determine whether this time series
is random.

Level B

7. Determine whether the RAND() function in Excel
actually generates a random stream of numbers.
Generate at least 100 random numbers to test their
randomness with a runs test and with autocorrelations.
Summarize your findings.

8. Use a runs test and calculate autorrelations to decide
whether the random series explained in each part of
this problem (a–c) are random. For each part, generate
at least 100 random numbers in the series.
a. A series of independent normally distributed

values, each with mean 70 and standard 
deviation 5.

b. A series where the first value is normally
distributed with mean 70 and standard deviation 
5, and each succeeding value is normally
distributed with mean equal to the previous
value and standard deviation 5. (For example, 
if the fourth value is 67.32, then the fifth value 
will be normally distributed with mean 67.32.)

c. A series where the first value, Y1, is normally
distributed with mean 70 and standard deviation 
5, and each succeeding value, Yt, is normally
distributed with mean (1 � at)Yt �1 and standard
deviation 5(1 � at), where the at values are
independent and normally distributed with mean 0
and standard deviation 0.2. (For example, if 
Yt�1 � 67.32 and at � �0.2, then Yt
will be normally distributed with mean 
0.8(67.32) � 53.856 and standard deviation 
0.8(5) � 4.)

Autocorrelation
analysis is somewhat
advanced. However, it
is the basis for many
useful forecasting
methods.
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12.4 REGRESSION-BASED TREND MODELS

Many time series follow a long-term trend except for random variation. This trend can be
upward or downward. A straightforward way to model this trend is to estimate a regression
equation for Yt, using time t as the single explanatory variable. In this section we discuss
the two most frequently used trend models, linear trend and exponential trend.

12.4.1 Linear Trend

A linear trend means that the time series variable changes by a constant amount each time
period. The relevant equation is Equation (12.6), where, as in previous regression equa-
tions, a is the intercept, b is the slope, and et is an error term.2

Linear Trend Model

Yt � a � bt � et (12.6)

The interpretation of b is that it represents the expected change in the series from one
period to the next. If b is positive, the trend is upward; if b is negative, the trend is down-
ward. The intercept term a is less important. It literally represents the expected value of
the series at time t � 0. If time t is coded so that the first observation corresponds to t � 1,
then a is where the series was one period before the observations began. However, it is
possible that time is coded in another way. For example, if the data are annual, starting in
1997, the first value of t might be entered as 1997, which means that the intercept a then
corresponds to a period 1997 years earlier. Clearly, its value should not be taken literally
in this case.

As always, a graph of the time series is a good place to start. It indicates whether a 
linear trend is likely to provide a good fit. Generally, the graph should rise or fall at
approximately a constant rate through time, without too much random variation. But
even if there is a lot of random variation—a lot of zigzags—a linear trend to the data
might still be a good starting point. Then the residuals from this trend line, which
should have no remaining trend, could possibly be modeled by some other method in
this chapter.

E X A M P L E 12.2 MONTHLY U.S. POPULATION

The file US Population.xlsx contains monthly population data for the United States
from January 1952 to October 2009 (in thousands). During this period, the population

has increased steadily from about 156 million to about 308 million. The time series graph
of these data appears in Figure 12.17. How well does a linear trend fit these data? Are the
residuals from this fit random?

Objective To fit a linear trend line to monthly population and examine its residuals for
randomness.

2It is traditional in the regression literature to use Greek letters for population parameters and Roman letters for
estimates of them. However, we decided to use only Roman letters in the regression sections of this chapter. For
a book at this level, they are less intimidating.
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Solution

The graph in Figure 12.17 indicates a clear upward trend with little or no curvature.
Therefore, a linear trend is certainly plausible. To estimate it with regression, a numeric
time variable is needed—labels such as Jan-52 will not do. This time variable appears in
column C of the data set, using the consecutive values 1 through 694. You can then run a
simple regression of Population versus Time, with the results shown in Figure 12.18. The
estimated linear trend line is

Forecast Population � 157003.69 � 211.55Time

688 Chapter 12 Time Series Analysis and Forecasting
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Time Series of Popula�on/Data Set #1

Figure 12.17 Time Series Graph of U.S. Population

rrEtSdetsujdAelpitluM  of
Summary RR -Square Es�mate

0.9982 0.9965 0.9965 2523.59

Degrees of Sum of Mean of 
ANOVA Table Freedom Squares Squares

Explained 1 1.24664E+12 1.24664E+12 195750.8446 < 0.0001
6368493.309

R-Square

F-Ra�o p-Value

Unexplained 692 4406997370

Standard
Regression Table reppUrewoLrorrE

Constant 157003.69 191.80 818.6000 < 0.0001 156627.12 157380.26
Time 211.55 0.48 442.4374 < 0.0001 210.62 212.49

ttneiciffeoC -Value p-Value
Confidence Interval 95%

Figure 12.18

Regression Output

for Linear Trend

This equation implies that the population tends to increase by 211.55 thousand per
month. (The 157003.69 value in this equation is the predicted population at time 0; that is,
December 1951.) To use this equation to forecast future population values, substitute later
values of Time into the regression equation, so that each future forecast is 211.55 larger
than the previous forecast. For example, the forecast for January 2010 is

Forecast Population Jan-2010 � 157003.69 � 211.55(697) � 304457

As described in Chapter 2, Excel provides an easier way to obtain this trend line. Once
the graph in Figure 12.17 is constructed, you can use Excel’s Trendline tool. To do so,
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right-click on any point on the chart and select Add Trendline. This provides several types
of trend lines to choose from, and the linear option works well for this example. You can
also check the options to show the regression equation and its R2 value on the chart, as
shown in Figure 12.19. This superimposed trend line indicates a very good fit.

y = 6.9505x + 25200
R² = 0.9965
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Figure 12.19 Time Series Graph with Linear Trend Superimposed
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However, the fit is not perfect, as the plot of the residuals in Figure 12.20 indicates.
These residuals tend to meander, staying negative for a while, then positive, then negative,
and then positive. You can check that the runs test for these residuals produces a z-value of
�26.13, with a corresponding p-value of 0.000, and that its first 32 autocorrelations are
significantly positive. In short, these residuals are definitely not random noise, and they
could be modeled further. However, we will not pursue this analysis here. In fact, it is not
at all obvious how the autocorrelations of the residuals could be exploited to get a better
forecast model.

Figure 12.20

Time Series Graph

of Residuals

■
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12.4.2 Exponential Trend

In contrast to a linear trend, an exponential trend is appropriate when the time series
changes by a constant percentage (as opposed to a constant dollar amount) each period.
Then the appropriate regression equation is Equation (12.7), where c and b are constants,
and ut represents a multiplicative error term.

690 Chapter 12 Time Series Analysis and Forecasting

An exponential trend
for Y is equivalent to a
linear trend for the
logarithm of Y.

Exponential Trend Model

Yt � cebtut (12.7)

Equation (12.7) is useful for understanding how an exponential trend works, as we
will discuss, but it is not useful for estimation. For that, a linear equation is required.
Fortunately, you can achieve linearity by taking natural logarithms of both sides of
Equation (12.7). (The key, as usual, is that the logarithm of a product is the sum of the log-
arithms.) The result appears in Equation (12.8), where a � ln(c) and et � ln(ut). This equa-
tion represents a linear trend, but the dependent variable is now the logarithm of the
original Yt. This implies the following important fact: If a time series exhibits an exponen-
tial trend, then a plot of its logarithm should be approximately linear.

Equivalent Linear Trend for Logarithm of Y

ln(Yt) � a � bt � et (12.8)

Because the software performs the calculations, your main responsibility is to interpret the
final result. This is fairly easy. It can be shown that the coefficient b (expressed as a per-
centage) is approximately the percentage change per period. For example, if b � 0.05, the
series is increasing by approximately 5% per period.3 On the other hand, if b � �0.05, the
series is decreasing by approximately 5% per period.

An exponential trend can be estimated with StatTools’s Regression procedure, but
only after the log transformation has been made on Yt. We illustrate this in the following
example.

E X A M P L E 12.3 QUARTERLY PC DEVICE SALES

The file PC Device Sales.xlsx contains quarterly sales data (in millions of dollars) for a
large PC device manufacturer from the first quarter of 1995 through the fourth quarter

of 2009. Are the company’s sales growing exponentially through this entire period?

Objective To estimate the company’s exponential growth and to see whether it has been
maintained during the entire period from 1995 until the end of 2009.

Solution

We first estimate and interpret an exponential trend for the years 1995 through 2005. Then
we see how well the projection of this trend into the future fits the data after 2005. The

3More precisely, this percentage change is eb � 1. For example, when b � 0.05, this is eb � 1 � 5.13%.
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time series graph through 2005 appears in Figure 12.21. You can use Excel’s Trendline
tool, with the Exponential option, to superimpose an exponential trend line and the corre-
sponding equation on this plot. The fit is evidently quite good. Equivalently, Figure 12.22
illustrates the time series of log sales for this same period, with a linear trend line super-
imposed. Its fit is equally good.

y = 61.376e0.0663x
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Figure 12.21 Time Series Graph of Sales with Exponential Trend Superimposed

Figure 12.22 Time Series Graph of Log Sales with Linear Trend Superimposed

You can also use StatTools’s Regression procedure to estimate this exponential trend, as
shown in Figure 12.23. To produce this output, you must first add a time variable in column
C (with values 1 through 44) and make a logarithmic transformation of Sales in column D.
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Then you can regress Log(Sales) on Time (using the data through 2005 only) to obtain the
regression output. Note that its two coefficients in cells B18 and B19 are the same as those
shown for the linear trend in Figure 12.22. If you take the antilog of the constant 4.117 (with
the formula � EXP(B18)), you will obtain the constant multiple shown in Figure 12.21. It
corresponds to the constant c in Equation (12.7).
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7
8

A B C D E F G
rrEtSdetsujdAelpitluM  of

Summary RR -Square Es�mate
R-Square

9
10
11
12
13
14
15

0.9922 0.9844 0.9840 0.1086

Degrees of Sum of Mean of 
ANOVA Table Freedom Squares Squares

Explained 1 31.21992793 31.21992793 2645.6403 < 0.0001
Unexplained 42 0.495621782 0.011800519

F-Ra�o p-Value

16
17
18
19

Standard
Regression Table reppUrewoLrorrE

Constant 4.1170 0.0333 123.5616 < 0.0001 4.0498 4.1843
Time 0.0663 0.0013 51.4358 < 0.0001 0.0637 0.0689

tCoefficient -Value p-Value
Confidence Interval 95%

Figure 12.23 Regression Output for Estimating Exponential Trend

What does it all mean? The estimated Equation (12.7) is

Forecast Sales � 61.376e0.0663t

The most important constant in this equation is the coefficient of Time, b � 0.0663.
Expressed as a percentage, this coefficient implies that the company’s sales increased by
approximately 6.63% per quarter throughout this 11-year period. (The constant multiple, 
c � 61.376, is the forecast of sales at time 0; that is, quarter 4 of 1994.) To use this equa-
tion for forecasting the future, substitute later values of Time into the regression equation,
so that each future forecast is about 6.63% larger than the previous forecast. For example,
the forecast of the second quarter of 2006 is

Forecast Sales in Q2-06 � 61.376e0.0663(46) � 1295.72

Has this exponential growth continued beyond 2005? It has not, due possibly to slumping
sales in the computer industry or increased competition from other manufacturers. You can
check this by creating the Forecast column in Figure 12.24 (by substituting into the regres-
sion equation for the entire period through Q4�09). You can then use StatTools to create a
time series graph of the two series Sales and Forecast, shown in Figure 12.25. It is clear
that sales in the forecast period did not exhibit nearly the 6.63% growth observed in the
estimation period. As the company clearly realizes, nothing this good lasts forever.

Before leaving this example, we comment briefly on the standard error of estimate
shown in cell E9 of Figure 12.23. This value, 0.1086, is in log units, not original dollar
units. Therefore, it is a totally misleading indicator of the forecast errors that might be
made from the exponential trend equation. To obtain more meaningful measures, you
should first obtain the forecasts of sales, as explained previously. Then you can easily
obtain any of the three forecast error measures discussed previously. The results appear in
Figure 12.26. The squared errors, absolute errors, and absolute percentage errors are first
calculated with the formulas =(B2-E2)^2, =ABS(B2-E2), and =G2/B2 in cells F2, G2,
and H2, which are then copied down. The error measures (for the data through 2005 only)
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then appear in cells K2, K3, and K4. The corresponding formulas for RMSE, MAE, and
MAPE are straightforward. RMSE is the square root of the average of the squared errors in
column F, and MAE and MAPE are the averages of the values in columns G and H, respec-
tively. The latter is particularly simple to interpret. Forecasts for the 11-year estimation
period were off, on average, by 7.86%. (Of course, as you can check, forecasts for the
quarters after 2005 were off by much more.)
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Creating Forecasts of

Sales

Figure 12.25

Time Series Graph

of Forecasts

Superimposed on

Sales for the Entire

Period

1
2
3
4
5
6
7

A B C D E F G H I J K L
Quarter Sales Time Log(Sales) Forecast SqError AbsError AbsPctError Measures of forecast error
Q1-95 61.14 1 4.1131663 65.58583 19.76541 4.445831 0.07271559 RMSE 41.86
Q2-95 64.07 2 4.1599762 70.08398 36.16795 6.013979 0.09386576 MAE 25.44
Q3-95 66.18 3 4.1923783 74.89063 75.87506 8.710629 0.13162027 MAPE 7.86%
Q4-95 72.76 4 4.2871664 80.02694 52.8084 7.266939 0.09987547
Q1-96 84.70 5 4.4391156 85.51552 0.66507 0.815518 0.00962831
Q2-96 90.05 6 4.5003651 91.38053 1.770302 1.330527 0.01477542

8 Q3-96 106.06 7 4.664005 97.64778 70.7654 8.412218 0.07931565

Figure 12.26 Measures of Forecast Errors
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Whenever you observe a time series that is increasing at an increasing rate (or decreas-
ing at a decreasing rate), an exponential trend model is worth trying. The key to the analy-
sis is to regress the logarithm of the time series variable versus time (or use Excel’s
Trendline tool). The coefficient of time, written as a percentage, is then the approximate
percentage increase (if positive) or decrease (if negative) per period. ■
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Level A

9. The file P12_01.xlsx contains the monthly number of
airline tickets sold by a travel agency.
a. Does a linear trend appear to fit these data well? 

If so, estimate and interpret the linear trend model
for this time series. Also, interpret the R2 and se
values.

b. Provide an indication of the typical forecast error
generated by the estimated model in part a.

c. Is there evidence of some seasonal pattern in
these sales data? If so, characterize the seasonal
pattern.

10. The file P12_10.xlsx contains the daily closing prices
of Walmart stock for a one-year period. Does a linear
or exponential trend fit these data well? If so, estimate
and interpret the best trend model for this time series.
Also, interpret the R2 and se values.

11. The file P12_11.xlsx contains monthly values of the
U.S. national debt (in dollars) from 1993 to early
2010. Fit an exponential growth curve to these data.
Write a short report to summarize your findings. If the
U.S. national debt continues to rise at the exponential
rate you find, approximately what will its value be at
the end of 2020?

12. The file P12_12.xlsx contains five years of monthly
data on sales (number of units sold) for a particular
company. The company suspects that except for
random noise, its sales are growing by a constant
percentage each month and will continue to do so for
at least the near future.
a. Explain briefly whether the plot of the series

visually supports the company’s suspicion.
b. Fit the appropriate regression model to the data.

Report the resulting equation and state explicitly
what it says about the percentage growth per
month.

c. What are the RMSE and MAPE for the forecast
model in part b? In words, what do they measure?
Considering their magnitudes, does the model
seem to be doing a good job?

d. In words, how does the model make forecasts for
future months? Specifically, given the forecast
value for the last month in the data set, what simple
arithmetic could you use to obtain forecasts for the
next few months?

13. The file P12_13.xlsx contains quarterly data on GDP.
(The data are expressed as an index where 2005 � 100,
and they are seasonally adjusted.)
a. Look at a time series plot of GDP. Does it suggest a

linear relationship; an exponential relationship?
b. Use regression to estimate a linear relationship

between GDP and Time (starting with 1 for Q1-
1966). Interpret the associated constant term and
the slope term. Would you say that the fit is
good?

Level B

14. The file P03_30.xlsx gives monthly exchange rates
(units of local currency per U.S. dollar) for nine
currencies. Technical analysts believe that by charting
past changes in exchange rates, it is possible to predict
future changes of exchange rates. After analyzing the
autocorrelations for these data, do you believe that
technical analysis has potential?

15. The unit sales of a new drug for the first 25 months
after its introduction to the marketplace are recorded
in the file P12_15.xlsx.
a. Estimate a linear trend equation using the given

data. How well does the linear trend fit these data?
Are the residuals from this linear trend model
random?

b. If the residuals from this linear trend model are not
random, propose another regression-based trend
model that more adequately explains the long-term
trend in this time series. Estimate the alternative
model(s) using the given data. Check the residuals
from the model(s) for randomness. Summarize
your findings.

c. Given the best estimated model of the trend in this
time series, interpret R2 and se.

P R O B L E M S
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12.5 THE RANDOM WALK MODEL

Random series are sometimes building blocks for other time series models. The model we
now discuss, the random walk model, is an example of this. In a random walk model, the
series itself is not random. However, its differences—that is, the changes from one period
to the next—are random. This type of behavior is typical of stock price data (as well as var-
ious other time series data). For example, the graph in Figure 12.27 shows monthly closing
prices for a tractor manufactor’s stock from January 2003 through April 2009. (See the file
Tractor Closing Prices.xlsx.) This series is not random, as can be seen from its gradual
upward trend at the beginning and the general meandering behavior throughout. (Although
the runs test and autocorrelations are not shown for the series itself, they confirm that the
series is not random. There are significantly fewer runs than expected, and the autocorrela-
tions are significantly positive for many lags.)
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Time Series of Closing Price

Figure 12.27 Time Series Graph of Tractor Stock Prices

If it were April 2009, and you were asked to forecast the company’s prices for the next
few months, it is intuitive that you would not use the average of the historical values as
your forecast. This forecast would tend to be too low because of the upward trend. Instead,
you might base your forecast on the most recent observation. This is exactly what the 
random walk model does.

Equation (12.9) for the random walk model is given as follows, where m (for mean
difference) is a constant and et is a random series (noise) with mean 0 and a standard 
deviation that remains constant through time.

12.5 The Random Walk Model 695
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If we let DYt � Yt � Yt�1, the change in the series from time t to time t � 1 (where D stands
for difference), then the random walk model can be rewritten as in Equation (12.10). This
implies that the differences form a random series with mean m and a constant standard devi-
ation. An estimate of m is the average of the differences, labeled D, and an estimate of the
standard deviation is the sample standard deviation of the differences, labeled sD.

Y
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E X A M P L E 12.4 RANDOM WALK MODEL OF STOCK PRICES

The monthly closing prices of the tractor company’s stock from January 2003 through
April 2009, shown in Figure 12.27, indicate some upward trend. (See the file Tractor

Sales.xlsx.) Does this series follow a random walk model with an upward trend? If so, how
should future values of these stock prices be forecast?

Objective To check whether the company’s monthly closing prices follow a random
walk model with an upward trend and to see how future prices can be forecast.

Solution

We have already seen that the closing price series itself is not random, due to the upward
trend. To check for the adequacy of a random walk model, a series of differences is
required. Each value in the differenced series is that month’s closing price minus the previ-
ous month’s closing price. You can calculate this series easily with an Excel formula, or
you can generate it automatically with the Difference item on the StatTools Data Utilities
dropdown menu. (When asked for the number of difference variables, accept the default
value of 1.) This differenced series appears in column C of Figure 12.28. This figure also
shows the mean and standard deviation of the differences, 0.418 and 4.245, which are used

Random Walk Model

Yt � Yt�1 � m � et (12.9)

Difference Form of Random Walk Model

DYt � m � et (12.10)

One-Step-Ahead Forecast for Random Walk Model

Ft�1 � Yt � D (12.11)Y

In words, a series that behaves according to this random walk model has random differ-
ences, and the series tends to trend upward (if m � 0) or downward (if m � 0) by an
amount m each period. If you are standing in period t and want to forecast Yt�1, then a rea-
sonable forecast is given by Equation (12.11). That is, you add the estimated trend to the
current observation to forecast the next observation.

We illustrate this method in the following example.
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in forecasting. Finally, this figure shows several autocorrelations of the differences, only
one of which is (barely) significant. A runs test for the differences, not shown here, has a
large p-value, which supports the conclusion that the differences are random.

utocorrela�on

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A B C D E F
Month Closing Price Diff1(Closing Price) Diff1(Closing Price)

Jan-03 22.595 One Variable Summary Data Set #1

Feb-03 22.134 -0.461 Mean 0.418
Mar-03 24.655 2.521 Std. Dev. 4.245
Apr-03 26.649 1.994 Count 75

May-03 26.303 -0.346
Jun-03 27.787 1.484 Diff1(Closing Price)

Jul-03 32.705 4.918 A  Table Data Set #1

Aug-03 29.745 -2.96 Number of Values 75
Sep-03 26.741 -3.004 Standard Error 0.1155
Oct-03 24.852 -1.889 Lag #1 -0.2435
Nov-03 28.050 3.198 Lag #2 0.1348
Dec-03 27.847 -0.203 Lag #3 -0.0049
Jan-04 30.040 2.193 Lag #4 -0.0507
Feb-04 29.680 -0.36 Lag #5 0.0696
Mar-04 30.139 0.459 Lag #6 0.0009
Apr-04 29.276 -0.863 Lag #7 -0.0630

May-04 29.703 0.427 Lag #8 -0.0295
Jun-04 30.017 0.314 Lag #9 0.0496
Jul-04 29.687 -0.33 Lag #10 -0.1728

Aug-04 31.765 2.078 Lag #11 -0.0334
Sep-04 33.788 2.023 Lag #12 -0.0554
Oct-04 30.942 -2.846
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The plot of the differences appears in Figure 12.29. A visual inspection of the plot also
supports the conclusion of random differences, although these differences do not vary

Figure 12.28

Differences of

Closing Prices

Figure 12.29 Time Series Graph of Differences
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around a mean of 0. Rather, they vary around a mean of 0.418. This positive value mea-
sures the upward trend—the closing prices increase, on average, by 0.418 per month.
Finally, the variability in this figure is fairly constant (except for the two wide swings in
2007). Specifically, the zigzags do not tend to get appreciably wider through time.
Therefore, it is reasonable to conclude that the random walk model with an upward drift
fits this series fairly well.

To forecast future closing prices, simply multiply the mean difference by the number
of periods ahead, and add this to the final closing price (53.947 in April 2009). For exam-
ple, a forecast of the closing price for September 2009 is:

Forecast Closing Price for 9/09 � 53.947 � 0.418(5) � 56.037

As a rough measure of the accuracy of this forecast, you can use the standard deviation of
the differences, 4.245. Specifically, it can be shown that the standard error for forecasting
k periods ahead is the standard deviation of the differences multiplied by the square root of
k. In this case, the standard error is 9.492. As usual, you can be 95% confident that the
actual closing price in September will be no more than two standard errors from the fore-
cast. Unfortunately, this results in a wide interval—from about 37 to 75. This reflects the
fact that it is very difficult to make accurate forecasts, especially long-range forecasts, for
a series with this much variability. ■
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Level A

16. The file P12_16.xlsx contains the daily closing prices
of American Express stock for a one-year period.
a. Use the random walk model to forecast the closing

price of this stock on the next trading day.
b. You can be about 95% certain that the forecast

made in part a will be off by no more than how
many dollars?

17. The closing value of the AMEX Airline Index for each
trading day during a one-year period is given in the
file P12_17.xlsx.
a. Use the random walk model to forecast the closing

price of this stock on the next trading day.
b. You can be about 68% certain that the forecast

made in part a will be off by no more than how
many dollars?

18. The file P12_18.xlsx contains the daily closing prices
of Chevron stock for a one-year period.
a. Use the random walk model to forecast the closing

price of this stock on the next trading day.
b. You can be about 99.7% certain that the forecast

made in part a will be off by no more than how
many dollars?

19. The closing value of the Dow Jones Industrial Average
for each trading day for a one-year period is provided
in the file P12_19.xlsx.
a. Use the random walk model to forecast the closing

price of this index on the next trading day.

b. Would it be wise to use the random walk model to
forecast the closing price of this index for a trading
day approximately one month after the next trading
day? Explain why or why not.

20. Continuing the previous problem, consider the
differences between consecutive closing values of the
Dow Jones Industrial Average for the given set of
trading days. Do these differences form a random
series? Demonstrate why or why not.

21. The closing price of a share of J.P. Morgan’s stock for
each trading day during a one-year period is recorded
in the file P12_21.xlsx.
a. Use the random walk model to forecast the closing

price of this stock on the next trading day.
b. You can be about 68% certain that the forecast

made in part a will be off by no more than how
many dollars?

22. The purpose of this problem is to get you used to the
concept of autocorrelation in a time series. You could
do this with any time series, but here you should use
the series of Walmart daily stock prices in the file
P12_10.xlsx.
a. First, do it the quick way. Use the Autocorrelation

procedure in StatTools to get a list of autocorrelations
and a corresponding correlogram of the closing
prices. You can choose the number of lags.

b. Now do it the more time-consuming way. Create
columns of lagged versions of the Close variable—3
or 4 lags will suffice. Next, look at scatterplots of

P R O B L E M S
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12.6 AUTOREGRESSION MODELS4

We now discuss a regression-based extrapolation method that regresses the current value
of the time series on past (lagged) values. This is called autoregression, where the auto-
means that the explanatory variables in the equation are lagged values of the dependent
variable, so that the dependent variable is regressed on lagged versions of itself. This pro-
cedure is fairly straightforward in Excel. You first create lags of the dependent variable and
then use a regression procedure to regress the original series on the lagged series. Some
trial and error is generally required to determine the appropriate number of lags in the
regression equation. The following example illustrates the procedure.

Close versus its first few lags. If the autocorrelations
are large, you should see fairly tight scatters—that’s
what autocorrelation is all about. Also, generate a
correlation matrix to see the correlations between
Close and its first few lags. These should be
approximately the same as the autocorrelations from
part a. (Autocorrelations are calculated slightly
differently than regular correlations, which accounts
for any slight discrepancies you might notice, but
these discrepancies should be minor.)

c. Create the first differences of Close in a new
column. (You can do this manually with formulas,
or you can use StatTools’s Difference procedure on
the Data Utilities menu.) Now repeat parts a and b
with the differences instead of the original closing
prices—that is, examine the autocorrelations of the
differences. They should be small, and the
scatterplots of the differences versus lags of the
differences should be shapeless swarms. This
illustrates what happens when the differences of a
time series variable have insignificant
autocorrelations.

d. Write a short report of your findings.

Level B

23. Consider a random walk model with the following
equation: Yt � Yt�1 � 500 � et, where et is a normally
distributed random series with mean 0 and standard
deviation 10.
a. Use Excel to simulate a time series that behaves

according to this random walk model.
b. Use the time series you constructed in part a to

forecast the next observation.

24. The file P12_24.xlsx contains the daily closing
prices of Procter & Gamble stock for a one-year
period. Use only the 2003 data to estimate the trend
component of the random walk model. Next, use the
estimated random walk model to forecast the
behavior of the time series for the 2004 dates in the
series. Comment on the accuracy of the generated
forecasts over this period. How could you improve
the forecasts as you progress through the 2004
trading days?

E X A M P L E 12.5 FORECASTING HAMMER SALES

Aretailer has recorded its weekly sales of hammers (units purchased) for the past
42 weeks. (See the file Hammer Sales.xlsx.) A graph of this time series appears in

Figure 12.30. It reveals a meandering pattern of behavior. The values begin high and stay
high awhile, then get lower and stay lower awhile, then get higher again. (This behavior
could be caused by any number of things, including the weather, increases and decreases in
building projects, and possibly others.) How useful is autoregression for modeling these
data and how can it be used for forecasting?

Objective To use autoregression, with an appropriate number of lagged terms, to 
forecast hammer sales.

4This section can be omitted without any loss of continuity.
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Solution

A good place to start is with the autocorrelations of the series. These indicate whether the
Sales variable is linearly related to any of its lags. The first six autocorrelations are shown
in Figure 12.31. The first three of them are significantly positive, and then they decrease.
Based on this information, create three lags of Sales and run a regression of Sales versus
these three lags. The output from this regression appears in Figure 12.32. You can see that
R2 is fairly high, about 57%, and that se is about 15.7. However, the p-values for lags 2 and
3 are both quite large. It appears that once the first lag is included in the regression equa-
tion, the other two are not really needed.

700 Chapter 12 Time Series Analysis and Forecasting
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Figure 12.30 Time Series Graph of Sales of Hammers

It is generally best to
begin with plenty of
lags and then delete
the higher numbered
lags that aren’t
necessary.

27
28

A B
Sales

Autocorrela�on Table Data Set #1

29
30
31
32
33
34
35
36

Number of Values 42
Standard Error 0.1543
Lag #1 0.7523
Lag #2 0.5780
Lag #3 0.4328
Lag #4 0.2042
Lag #5 0.1093
Lag #6 -0.050236 Lag #6 -0.0502

This suggests running another regression with only the first lag included. (Actually,
we first omitted only the third lag. But the resulting output showed that the second lag was
still insignificant, so we then deleted it.) The regression output with only the first lag

Figure 12.31

Autocorrelations for

Hammer Sales Data
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included appears in Figure 12.33. In addition, a graph of the dependent and fitted variables,
that is, the original Sales variable and its forecasts, appears in Figure 12.34. (This latter
graph was formed from the Week, Sales, and Fitted columns.) The estimated regression
equation is

Forecast Salest � 13.763 � 0.793Salest�1

The associated R2 and se values are approximately 65% and 15.4. The R2 value is a mea-
sure of the reasonably good fit evident in Figure 12.34, whereas se is a measure of the
likely forecast error for short-term forecasts.5 It implies that a short-term forecast could
easily be off by as much as two standard errors, or about 31 hammers.
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A B C D E F G

Squar Es�matee

0.7573 0.5736 0.5370 15.7202

of Sum of Mean
Freedom Squares Squares

3 11634.19978 3878.066594 15.6927 <
35 8649.38996 247.1254274
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Figure 12.32 Autoregression Output with Three Lagged Variables

The two curves in 
this figure look pretty
close to one another.
However, a compar-
ison of the vertical
distances between
pairs of points
indicates that they 
are not that close 
after all.
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A B C D E F G
rrEtSdetsujdAelpitluM  of

Summary RR -Square Es�mate
R-Square

9
10
11
12
13
14
15
16

0.8036 0.6458 0.6367 15.4476

Degrees of Sum of Mean of 
ANOVA  Table Freedom Squares Squares

Explained 1 16969.97657 16969.97657 71.1146 < 0.0001
Unexplained 39 9306.511237 238.6284932

Standard

F-Ra�o p-Value

17
18
19

Regression Table reppUrewoLrorrE

Constant 13.7634 6.7906 2.0268 0.0496 0.0281 27.4988
Lag1(Sales) 0.7932 0.0941 8.4329 < 0.0001 0.6029 0.9834

tCoefficient -Value p-Value
Confidence Interval 95%

Figure 12.33 Autoregression Output with a Single Lagged Variable

5If you are very observant, you may have noticed that R2 increased when the two lag variables were omitted from
the equation. Isn’t R2 always supposed to decrease when variables are omitted? Yes it is, but in this case the two
equations are based on different data. When the second and third lags were included, weeks 1�3 of the data set
were omitted because of missing data in the lag columns. But when these lags were omitted, only the week 1 row
had to be omitted because of missing data.
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To use the regression equation for forecasting future sales values, you can substitute
known or forecast sales values in the right-hand side of the equation. Specifically, the fore-
cast for week 43, the first week after the data period, is

Forecast Sales43 � 13.763 � 0.793Sales42 � 13.763 � 0.793(107) 98.6

Here the known value of sales in week 42 is used. However, the forecast for week 44
requires the forecast value of sales in week 43:

Forecast Sales44 � 13.763 � 0.793Forecast Sales43

� 13.763 � 0.793(98.6) 92.0

Perhaps these two forecasts of future sales values are on the mark, and perhaps they are not.
The only way to know for certain is to observe future sales values. However, it is interesting
that in spite of the upward movement in the series in the last three weeks, the forecasts for
weeks 43 and 44 are for downward movements. This is a combination of two properties of
the regression equation. First, the coefficient of Salest�1, 0.793, is positive. Therefore, the
equation forecasts that large sales will be followed by large sales, that is, positive autocorre-
lation. Second, however, this coefficient is less than 1, and this provides a dampening effect.
The equation forecasts that a large will follow a large, but not that large. ■

Sometimes an autoregression model is virtually equivalent to another forecasting model.
As an example, suppose you find that the following equation adequately models a time
series variable Y:

Yt � 75.65 � 0.976Yt�1

The coefficient of the lagged term, 0.976, is nearly equal to 1. If this coefficient were 1,
you could subtract the lagged term from both sides of the equation and write that the dif-
ference series is a constant—that is, a random walk model. As you can see, a random walk
model is a special case of an autoregression model. However, autoregression models are
much more general. Unfortunately, a more thorough study of them would take us into the
realm of econometrics, which is well beyond the level of this book.

M

M
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To forecast, substitute
known values of Y into
the regression equation
if they are available.
Otherwise, substitute
forecast values.
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Level A

25. Consider the Consumer Price Index (CPI), which
provides the annual percentage change in consumer
prices. The data are in the file P02_19.xlsx.
a. Find the first six autocorrelations of this time

series.
b. Use the results of part a to specify one or more

promising autoregression models. Estimate each
model with the available data. Which model
provides the best fit to the data?

c. Use the best autoregression model from part b to
produce a forecast of the CPI in the next year.
Also, provide a measure of the likely forecast error.

26. The Consumer Confidence Index (CCI) attempts to
measure people’s feelings about general business
conditions, employment opportunities, and their own
income prospects. The file P02_20.xlsx contains the
annual average values of the CCI.
a. Find the first six autocorrelations of this time

series.
b. Use the results of part a to specify one or more

promising autoregression models. Estimate each
model with the available data. Which model
provides the best fit to the data?

c. Use the best autoregression model from part b to
produce a forecast of the CCI in the next year.
Also, provide a measure of the likely forecast error.

27. Consider the proportion of Americans under the age of
18 living below the poverty level. The data are in the
file P02_44.xlsx.
a. Find the first six autocorrelations of this time series.
b. Use the results of part a to specify one or more

promising autoregression models. Estimate each
model with the available data. Which model
provides the best fit to the data?

c. Use the best autoregression model from part b to
produce a forecast of the proportion of American
children living below the poverty level in the next
year. Also, provide a measure of the likely forecast
error.

28. The file P02_25.xlsx contains monthly values of two
key interest rates, the federal funds rate and the prime
rate.
a. Specify one or more promising autoregression

models based on autocorrelations of the federal funds
rate series. Estimate each model with the available
data. Which model provides the best fit to data?

b. Use the best autoregression model from part a to
produce forecasts of the federal funds rate in the
next two years.

c. Repeat parts a and b for the prime rate series.

29. The file P02_24.xlsx contains time series data on the
percentage of the resident population in the United
States who completed four or more years of college.
a. Specify one or more promising autoregression

models based on autocorrelations of this time
series. Estimate each model with the available data.
Which model provides the best fit to the data?

b. Use the best autoregression model from part a to
produce forecasts of higher education attainment
(i.e., completion of four or more years of college)
in the United States in the next three years.

30. Consider the average annual interest rates on 30-year
fixed mortgages in the United States. The data are
recorded in the file P02_21.xlsx.
a. Specify one or more promising autoregression

models based on autocorrelations of this time
series. Estimate each model with the available data.
Which model provides the best fit to the data?

b. Use the best autoregression model from part a to
produce forecasts of the average annual interest
rates on 30-year fixed mortgages in the next three
years.

31. The file P12_31.xlsx lists the monthly unemployment
rates for several years. A common way to forecast time
series is by using regression with lagged variables.
a. Predict future monthly unemployment rates using

some combination of the unemployment rates for
the last four months. For example, you might use
last month’s unemployment rate and the
unemployment rate from three months ago as
explanatory variables. Make sure all variables that
you decide to keep in your final equation are
significant at the 15% significance level.

b. Do the residuals in your equation exhibit any
autocorrelation?

c. Predict the next month’s unemployment rate.
d. There is a 5% chance that the next month’s

unemployment rate will be less than what value?
e. What is the probability the next month’s

unemployment rate will be less than 6%, assuming
normally distributed residuals?

Level B

32. The unit sales of a new drug for the first 25 months
after its introduction to the marketplace are recorded in
the file P12_15.xlsx. Specify one or more promising
autoregression models based on autocorrelations of this
time series. Estimate each model with the available
data. Which model provides the best fit to the data?
Use the best autoregression model you found to
forecast the sales of this new drug in the 26th month.

P R O B L E M S
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12.7 MOVING AVERAGES

Perhaps the simplest and one of the most frequently used extrapolation methods is the
moving averages method. To implement this method, you first choose a span, the number
of terms in each moving average. Let’s say the data are monthly and you choose a span of
six months. Then the forecast of next month’s value is the average of the values of the last
six months. For example, you average January to June to forecast July, you average
February to July to forecast August, and so on. This procedure is the reason for the term
moving averages.
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33. The file P12_02.xlsx contains the weekly sales at a
local bookstore for each of the past 25 weeks.
a. Specify one or more promising autoregression

models based on autocorrelations of this time
series. Estimate each model with the available data.
Which model provides the best fit to the data?

b. What general result emerges from your analysis in
part a? In other words, what is the most appropriate
autoregression model for any given random time
series?

c. Use the best autoregression model from part a to
forecast weekly sales at this bookstore for the next
three weeks.

34. The file P12_24.xlsx contains the daily closing prices
of Procter & Gamble stock for a one-year period.
a. Use only the 2003 data to estimate an appropriate

autoregression model.
b. Next, use the estimated autoregression model from

part a to forecast the behavior of this time series
for the 2004 dates of the series. Comment on the
accuracy of the forecasts over this period.

c. How well does the autoregression model perform
in comparison to the random walk model with
respect to the accuracy of these forecasts? Explain
any observed differences between the forecasting
abilities of the two models.

A moving average is the average of the observations in the past few periods, where
the number of terms in the average is the span.

The role of the span is important. If the span is large—say, 12 months—then many
observations go into each average, and extreme values have relatively little effect on the
forecasts. The resulting series of forecasts will be much smoother than the original
series. (For this reason, the moving average method is called a smoothing method.) In
contrast, if the span is small—say, three months—then extreme observations have a
larger effect on the forecasts, and the forecast series will be much less smooth. In the
extreme, if the span is 1, there is no smoothing effect at all. The method simply forecasts
next month’s value to be the same as the current month’s value. This is often called the
naive forecasting model. It is a special case of the random walk model with the mean
difference equal to 0.

What span should you use? This requires some judgment. If you believe the ups and
downs in the series are random noise, then you don’t want future forecasts to react too
quickly to these ups and downs, and you should use a relatively large span. But if you want
to track every little zigzag—under the belief that each up or down is predictable—then you
should use a smaller span. You shouldn’t be fooled, however, by a plot of the (smoothed)
forecast series superimposed on the original series. This graph will almost always look bet-
ter when a small span is used, because the forecast series will appear to track the original
series better. Does this mean it will always provide better future forecasts? Not necessarily.
There is little point in tracking random ups and downs closely if they represent unpre-
dictable noise.

The following example illustrates the use of moving averages.

A moving averages
model with a span
of 1 is a random
walk model with a
mean trend of 0.
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Objective To see whether a moving averages model with an appropriate span fits the
housing sales data and to see how StatTools implements this method.

Solution

Although the moving averages method is quite easy to implement in Excel—you just form
an average of the appropriate span and copy it down—it can be tedious. It is much easier to
implement with StatTools. Actually, the StatTools forecasting procedure is fairly general in
that it allows you to forecast with several methods, either with or without taking seasonal-
ity into account. Because this is your first exposure to this procedure, we will go through it
in some detail in this example. In later examples, we will mention some of its other capa-
bilities.

To use the StatTools Forecasting procedure, select Forecast from the StatTools Time
Series and Forecasting dropdown list. This brings up the dialog box in Figure 12.36, which
has three tabs in its bottom section. The Time Scale tab, shown in Figure 12.36, allows you
to select the time period. The Forecast Settings tab, shown in Figure 12.37, allows you to
select a forecasting method. Finally, the Graphs to Display tab, not shown here, allows you
to select several optional time series graphs. For now, fill out the dialog box sections as

E X A M P L E 12.6 HOUSES SOLD IN THE UNITED STATES

The file House Sales.xlsx contains monthly data on the number of new one-family
houses sold in the U.S. (in thousands) from January 1991 through September 2009.

(These data, available from the U.S. Census Bureau Web site, are listed as SAAR, season-
ally adjusted at an annual rate.)6 A time series graph of the data appears in Figure 12.35.
Housing sales were steadily trending upward until about the beginning of 2006, but then
the bottom fell out of the housing market. Does a moving averages model fit this series
well? What span should be used?
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Figure 12.35 Time Series Plot of Monthly House Sales

6We discuss seasonal adjustment in section 12.9. Government data are often reported in seasonally adjusted form,
with the seasonality removed, to make any trends more apparent.
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shown and select the Forecast Overlay option in the Graphs to Display tab. In particular,
note from Figure 12.37 that the moving averages method is being used with a span of 3,
and it will generate forecasts for the next 12 months.
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Figure 12.36

Forecast Dialog Box

with Time Scale Tab

Visible

Figure 12.37

Forecast Dialog Box

with Forecast

Settings Tab Visible
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Another option in Figure 12.37 is that you can elect to “hold out” a subset of the series
for validation purposes. If you hold out several periods at the end of the series for valida-
tion, any model that is built is estimated only for the non-holdout observations, and sum-
mary measures are reported for the non-holdout and holdout subsets separately. For now,
don't use a holdout period.

The output consists of several parts, as shown in Figures 12.38 through 12.41. We
actually ran the analysis twice, once for a span of 3 and once for a span of 12. These fig-
ures show the comparison. (We also obtained output for a span of 6, with results fairly sim-
ilar to those for a span of 3.) First, the summary measures MAE, RMSE, and MAPE of the
forecast errors are shown in Figure 12.38. As you can see, the forecasts using a span of 3
are considerably more accurate. For example, they are off by about 5.4% on average,
whereas the similar measure with a span of 12 is 8.88%.

8
9

10
11
12
13
14
15

A B C D E F G H
Forecas�ng Constant Forecas�ng Constant

Span 3 Span 12

Moving Averages Moving Averages

Mean Abs Err 41.88 Mean Abs Err 66.29
Root Mean Sq Err 53.64 Root Mean Sq Err 85.45
Mean Abs Per% Err 5.37% Mean Abs Per% Err 8.88%

Forecas�ng Forecas�ng40
41
42
43
44
45
46
47
48
49

A B C D E F G H I J
 Data Houses Sold Forecast Error  Data Houses Sold Forecast Error

Jan-1991 401.00 Jan-1991 401.00
Feb-1991 482.00 Feb-1991 482.00
Mar-1991 507.00 Mar-1991 507.00
Apr-1991 508.00 463.33 44.67 Apr-1991 508.00
May-1991 517.00 499.00 18.00 May-1991 517.00
Jun-1991 516.00 510.67 5.33 Jun-1991 516.00
Jul-1991 511.00 513.67 -2.67 Jul-1991 511.00
Aug-1991 526.00 514.67 11.33 Aug-1991 526.00
Sep-1991 487.00 517.67 -30.67 Sep-1991 487.00

50
51
52
53
54
55

265
266
267
268
269

Oct-1991 524.00 508.00 16.00 Oct-1991 524.00
Nov-1991 575.00 512.33 62.67 Nov-1991 575.00
Dec-1991 558.00 528.67 29.33 Dec-1991 558.00
Jan-1992 676.00 552.33 123.67 Jan-1992 676.00 509.33 166.67
Feb-1992 639.00 603.00 36.00 Feb-1992 639.00 532.25 106.75
Mar-1992 554.00 624.33 -70.33 Mar-1992 554.00 545.33 8.67
Sep-2009 402.00 409.67 -7.67 Sep-2009 402.00 380.75 21.25
Oct-2009 410.67 Oct-2009 377.92
Nov-2009 409.89 Nov-2009 375.33
Dec-2009 407.52 Dec-2009 374.10
Jan-2010 409.36 Jan-2010 374.11
Feb Feb270

271
272
273
274
275
276
277

-2010 408.92 -2010 377.87
Mar-2010 408.60 Mar-2010 379.86
Apr-2010 408.96 Apr-2010 383.85
May-2010 408.83 May-2010 387.09
Jun-2010 408.80 Jun-2010 388.43
Jul-2010 408.86 Jul-2010 387.55
Aug-2010 408.83 Aug-2010 385.43
Sep-2010 408.83 Sep-2010 382.79

Figure 12.38 Moving Averages Summary Output

Figure 12.39 Moving Averages Detailed Output

The essence of the forecasting method is very simple and is captured in column C of
Figure 12.39 for a span of 3 (with many hidden rows). Each value in the historical period
in this column is an average of the three preceding values in column B. The forecast errors
are then just the differences between columns B and C. For the future periods, the forecast
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formulas in column C use observations when they are available. If they are not available,
previous forecasts are used. For example, the value in cell C267, the forecast for November
2009, is the average of the observed values in August and September and the forecast value
in October.

The graphs in Figures 12.40 and 12.41 show the behavior of the forecasts. The fore-
cast series with span 3 follows the ups and downs of the actual series fairly closely, and
when the series starts going down, the moving averages track the turnaround fairly well. In
contrast, the 12-month moving average series is much smoother. This is probably a good
feature when the series is trending upward—there is no sense in tracking the noise—but
when the series suddenly starts downward, the moving averages consistently lag behind.
That is, the forecasts in this latter period are consistently too high. (This same behavior
occurs for a span of 6, but the forecasts are not as biased in the latter part of the series as
with a span of 12.)
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One interesting feature of the moving average method is that future forecasts tend to
be quite flat. This is apparent in the last two figures, but you can check that if we had used
only the data through 2008, where the series was still trending downward, the forecasts for
2009 would still be fairly constant; they would not continue to decrease. This is a basic
property of moving average forecasts: future forecasts tend to be close to the last few val-
ues of the series. ■

The moving average method we have presented is the simplest of a group of moving aver-
age methods used by professional forecasters. We smoothed exactly once; that is, we took
moving averages of several observations at a time and used these as forecasts. More com-
plex methods smooth more than once, basically to get rid of random noise. They take mov-
ing averages, then moving averages of these moving averages, and so on for several stages.
This can become quite complex, but the objective is quite simple—to smooth the data so
that underlying patterns are easier to see.

P R O B L E M S

Level A

35. The file P12_16.xlsx contains the daily closing prices
of American Express stock for a one-year period.
a. Using a span of 3, forecast the price of this stock

for the next trading day with the moving average
method. How well does this method with span 3
forecast the known observations in this series?

b. Repeat part a with a span of 10.
c. Which of these two spans appears to be more

appropriate? Justify your choice.

36. The closing value of the AMEX Airline Index for each
trading day during a one-year period is given in the
file P12_17.xlsx.
a. How well does the moving average method track

this series when the span is 4; when the span is 12?
b. Using the more appropriate span, forecast the

closing value of this index on the next trading day
with the moving average method.

37. The closing value of the Dow Jones Industrial Average
for each trading day during a one-year period is
provided in the file P12_19.xlsx.
a. Using a span of 2, forecast the price of this index

on the next trading day with the moving average
method. How well does the moving average
method with span 2 forecast the known
observations in this series?

b. Repeat part a with a span of 5; with a span of 15.
c. Which of these three spans appears to be most

appropriate? Justify your choice.

38. The file P12_10.xlsx contains the daily closing prices
of Walmart stock during a one-year period. Use the
moving average method with a carefully chosen span
to forecast this time series for the next three trading
days. Defend your choice of the span used.

39. The Consumer Confidence Index (CCI) attempts to
measure people’s feelings about general business
conditions, employment opportunities, and their own
income prospects. The file P02_20.xlsx contains the
annual average values of the CCI. Use the moving
average method with a carefully chosen span to
forecast this time series in the next two years. Defend
your choice of the span used.

Level B

40. The file P02_28.xlsx contains total monthly U.S. retail
sales data. While holding out the final six months of
observations for validation purposes, use the method
of moving averages with a carefully chosen span to
forecast U.S. retail sales in the next year. Comment on
the performance of your model. What makes this time
series more challenging to forecast?

41. Consider a random walk model with the following
equation: Yt � Yt�1 � et, where et is a random series
with mean 0 and standard deviation 1. Specify a
moving average model that is equivalent to this
random walk model. In particular, what is the
appropriate span in the equivalent moving average
model? What is the smoothing effect of this span?
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12.8 EXPONENTIAL SMOOTHING

There are two possible criticisms of the moving averages method. First, it puts equal
weight on each value in a typical moving average. Many analysts would argue that if next
month’s forecast is to be based on the previous 12 months’ observations, more weight
should be placed on the more recent observations. The second criticism is that the moving
averages method requires a lot of data storage. This is particularly true for companies that
routinely make forecasts of hundreds or even thousands of items. If 12-month moving
averages are used for 1000 items, then 12,000 values are needed for next month’s fore-
casts. This may or may not be a concern, given today’s inexpensive computer storage.

Exponential smoothing is a method that addresses both of these criticisms. It bases
its forecasts on a weighted average of past observations, with more weight on the more
recent observations, and it requires very little data storage. In addition, it is not difficult for
most business people to understand, at least conceptually. Therefore, this method is used
widely in the business world, particularly when frequent and automatic forecasts of many
items are required.

There are many variations of exponential smoothing. The simplest is appropriately
called simple exponential smoothing. It is relevant when there is no pronounced trend or
seasonality in the series. If there is a trend but no seasonality, Holt’s method is applicable.
If, in addition, there is seasonality, Winters’ method can be used. This does not exhaust the
types of exponential smoothing models—researchers have invented many other varia-
tions—but these three models will suffice for us.

710 Chapter 12 Time Series Analysis and Forecasting

Exponential Smoothing Models

Simple exponential smoothing is appropriate for a series with no pronounced trend or
seasonality. Holt’s method is appropriate for a series with trend but no seasonality.
Winters’ method is appropriate for a series with seasonality (and possibly trend).

In this section we examine simple exponential smoothing and Holt’s model for trend.
Then in the next section we examine Winters’ model for seasonal models.

12.8.1 Simple Exponential Smoothing

We now examine simple exponential smoothing in some detail. We first introduce two new
terms. Every exponential model has at least one smoothing constant, which is always a
number between 0 and 1. Simple exponential smoothing has a single smoothing constant
denoted by �. (Its role is discussed shortly.) The second new term is Lt, called the level of
the series at time t. This value is not observable but can only be estimated. Essentially, it is
an estimate of where the series would be at time t if there were no random noise. Then the
simple exponential smoothing method is defined by the following two equations, where
Ft�k is the forecast of Yt�k made at time t:

The level is an
estimate of where the
series would be if it
were not for random
noise.

Simple Exponential Smoothing Formulas

Lt � �Yt � (1 � �)Lt�1 (12.12)

Ft�k � Lt (12.13)
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Even though you usually don’t have to substitute into these equations manually, you
should understand what they say. Equation (12.12) shows how to update the estimate of the
level. It is a weighted average of the current observation, Yt, and the previous level, Lt�1,
with respective weights � and 1 � �. Equation (12.13) shows how forecasts are made. It
says that the k-period-ahead forecast, Ft�k, made of Yt�k in period t is the most recently
estimated level, Lt. This is the same for any value of . The idea is that in simple
exponential smoothing, you believe that the series is not really going anywhere. So as soon
as you estimate where the series ought to be in period t (if it weren’t for random noise), you
forecast that this is where it will be in any future period.

The smoothing constant � is analogous to the span in moving averages. There are two
ways to see this. The first way is to rewrite Equation (12.12), using the fact that the fore-
cast error, Et, made in forecasting Yt at time t � 1 is Yt � Ft � Yt � Lt�1. Using algebra,
Equation (12.12) can be rewritten as Equation (12.14).

k Ú 1

Equivalent Formula for Simple Exponential Smoothing

Lt � Lt�1 � �Et (12.14)

Another Equivalent Formula for Simple Exponential Smoothing

Lt � �Yt � �(1 � �)Yt�1 � �(1 � �)2Yt�2 � �(1 � �)3Yt�3 � (12.15)Á

This equation says that the next estimate of the level is adjusted from the previous estimate
by adding a multiple of the most recent forecast error. This makes sense. If the previous
forecast was too high, then Et is negative, and the estimate of the level is adjusted down-
ward. The opposite is true if the previous forecast was too low. However, Equation (12.14)
says that the method does not adjust by the entire magnitude of Et, but only by a fraction of
it. If � is small, say, � � 0.1, the adjustment is minor; if � is close to 1, the adjustment is
large. So if you want the method to react quickly to movements in the series, you should
choose a large �; otherwise, you should choose a small �.

Another way to see the effect of � is to substitute recursively into the equation for Lt.
By performing some algebra, you can verify that Lt satisfies Equation (12.15), where the
sum extends back to the first observation at time t � 1.

Equation (12.15) shows how the exponentially smoothed forecast is a weighted average of
previous observations. Furthermore, because 1 � � is less than 1, the weights on the Ys
decrease from time t backward. Therefore, if � is close to 0, then 1 � � is close to 1 and
the weights decrease very slowly. In other words, observations from the distant past con-
tinue to have a large influence on the next forecast. This means that the graph of the fore-
casts will be relatively smooth, just as with a large span in the moving averages method.
But when � is close to 1, the weights decrease rapidly, and only very recent observations
have much influence on the next forecast. In this case forecasts react quickly to sudden
changes in the series. This is equivalent to a small span in moving averages.

What value of � should you use? There is no universally accepted answer to this ques-
tion. Some practitioners recommend always using a value around 0.1 or 0.2. Others rec-
ommend experimenting with different values of � until a measure such as RMSE or
MAPE is minimized. Some packages even have an optimization feature to find this opti-
mal value of �. (This is the case with StatTools.) But just as we discussed in the moving
averages section, the value of � that tracks the historical series most closely does not 
necessarily guarantee the most accurate future forecasts.

Small smoothing
constants provide
forecasts that respond
slowly to changes in
the series. Large
smoothing constants do
the opposite.
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FUNDAMENTAL INSIGHT

Smoothing Constants in Exponential 
Smoothing
All versions of exponential smoothing—and there

are more than are discussed here—use one or more

smoothing constants between 0 and 1. To make any

such method produce smoother forecasts, and hence

react less quickly to noise, use smaller smoothing

constants, such as 0.1 or 0.2.When larger smoothing

constants are used, the historical forecasts might

appear to track the actual series fairly closely, but

they might just be tracking random noise.

Previously, we used the moving averages method to forecast monthly housing sales in
the U.S. (See the House Sales.xlsx file.) How well does simple exponential smoothing

work with this data set? What smoothing constant should be used?

Objective To see how well a simple exponential smoothing model, with an appropriate
smoothing constant, fits the housing sales data, and to see how StatTools implements this
method.

Solution

You can use StatTools to implement the simple exponential smoothing model, specifically
equations (12.12) and (12.13). You do this again with the Forecast item from the StatTools
Time Series and Forecasting dropdown list. Specifically, you fill in the forecast dialog box
essentially as with moving averages, except that you select the simple exponential smooth-
ing option in the Forecast Settings tab (see Figure 12.42). You should also choose a

E X A M P L E 12.6 HOUSES SOLD IN THE UNITED STATES (CONTINUED)

Figure 12.42

Forecast Settings 

for Exponential

Smoothing
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smoothing constant (0.2 was chosen here, but any other value could be chosen) or you can
elect to find an optimal smoothing constant (we didn’t optimize for this example, at least
not yet).

The results appear in Figures 12.43 (with many hidden rows) and 12.44. The heart of
the method takes place in columns C, D, and E of Figure 12.43. Column C calculates the
smoothed levels (Lt) from Equation (12.12), column D calculates the forecasts (Ft) from
Equation (12.13), and column E calculates the forecast errors (Et) as the observed values
minus the forecasts. Although the Excel formulas do not appear in the figure, you can
examine them in the StatTools output.

Forecas�ng

Exponen�a

Forecas�ng

8
9

10
11
12
13
14
15
38
39
40
41
42
43
44
45
46
47
48

263
264
265
266
267
268
269
270
271
272

A B C D E
 Constant

Level (Alpha) 0.200

Simple l

Mean Abs Err 54.81
Root Mean Sq Err 69.91
Mean Abs Per% Err 7.45%

 Data Houses Sold Level Forecast Error

Jan-1991 401.00 401.00
Feb-1991 482.00 417.20 401.00 81.00
Mar-1991 507.00 435.16 417.20 89.80
Apr-1991 508.00 449.73 435.16 72.84
May-1991 517.00 463.18 449.73 67.27
Jun-1991 516.00 473.75 463.18 52.82
Jul-1991 511.00 481.20 473.75 37.25
Aug-1991 526.00 490.16 481.20 44.80
Jul-2009 413.00 392.29 387.12 25.88
Aug-2009 417.00 397.24 392.29 24.71
Sep-2009 402.00 398.19 397.24 4.76
Oct-2009 398.19
Nov-2009 398.19
Dec-2009 398.19
Jan-2010 398.19
Feb-2010 398.19
Mar-2010 398.19
Apr-2010 398.19

273
274
275
276
277

May-2010 398.19
Jun-2010 398.19
Jul-2010 398.19
Aug-2010 398.19
Sep-2010 398.19

Figure 12.43

Simple Exponential

Smoothing Output

Every exponential smoothing method requires initial values, in this case the initial
smoothed level in cell C41. There is no way to calculate this value, L1, from Equation
(12.12) because the previous value, L0, is unknown. Different implementations of expo-
nential smoothing initialize in different ways. StatTools initializes by setting L1 equal
to Y1 (in cell B41). The effect of initializing in different ways is usually minimal
because any effect of early data is usually washed out as forecast are made into the
future. In the present example, values from 1991 have little effect on forecasts for 2009
and beyond.

Note that the 12 future forecasts (rows 266 down) are all equal to the last calculated
smoothed level, the one for September 2009 in cell C265. The fact that these remain con-
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stant is a consequence of the assumption behind simple exponential smoothing, namely,
that the series is not really going anywhere. Therefore, the last smoothed level is the best
available indication of future values of the series.

Figure 12.44 shows the forecast series superimposed on the original series. You can
see the obvious smoothing effect of a relatively small � level. The forecasts don’t track
the series very well, but if the various zigzags in the original series are really random
noise, then perhaps the forecasts shouldn’t try to track these random ups and downs too
closely. That is, perhaps a forecast series that emphasizes the basic underlying pattern
is preferred. However, notice that once the series starts going downhill, the forecasts
never quite catch up. This is the same behavior you saw with a span of 12 for moving
averages.

You can see several summary measures of the forecast errors in Figure 12.43. The
RMSE and MAE indicate that the forecasts from this model are typically off by a magni-
tude of about 55 to 70 thousand, and the MAPE indicates that they are off by about 7.5%.
(These are similar to the errors obtained earlier with moving averages with span 12.)
These are fairly sizable errors. One way to reduce the errors is to use a different smooth-
ing method. We will try this in the next subsection with Holt’s method. Another way to
reduce the errors is to use a different smoothing constant. There are two methods you can
use. First, you can simply enter different values in the smoothing constant cell in the
Forecast sheet. All formulas, including those for MAE, RMSE, and MAPE, will update
automatically.

Second, you can check the Optimize Parameters option in the Forecast dialog box
shown in Figure 12.42. This automatically runs an optimization algorithm (not Solver,
by the way) to find the smoothing constant that minimizes RMSE. (StatTools is pro-
grammed to minimize RMSE. However, you could try minimizing MAPE, say, by using
Excel’s Solver add-in.) When this optimization option is used for the housing data, the
results in Figure 12.45 are obtained (from a smoothing constant of 0.691). The corre-
sponding MAE, RMSE, and MAPE are 39.6, 50.1, and 5.01%, respectively—better than
before. This larger smoothing constant produces a less smooth forecast curve and
slightly better error measures. However, there is no guarantee that future forecasts made
with this optimal smoothing constant will be any better than with a smoothing constant
of 0.2.
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Figure 12.44

Graph of Forecasts

from Simple

Exponential

Smoothing

In the next subsection,
Holt’s method is used
on this series to see
whether it captures 
the trend better than
simple exponential
smoothing.
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12.8.2 Holt’s Model for Trend

The simple exponential smoothing model generally works well if there is no obvious trend
in the series. But if there is a trend, this method consistently lags behind it. For example, if
the series is constantly increasing, simple exponential smoothing forecasts will be consis-
tently low. Holt’s method rectifies this by dealing with trend explicitly. In addition to the
level of the series, Lt, Holt’s method includes a trend term, Tt, and a corresponding smooth-
ing constant �. The interpretation of Lt is exactly as before. The interpretation of Tt is that
it represents an estimate of the change in the series from one period to the next. The 
equations for Holt’s model are as follows.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

Ja
n-

19
91

N
ov

-1
99

1
Se

p-
19

92
Ju

l-1
99

3
M

ay
-1

99
4

M
ar

-1
99

5
Ja

n-
19

96
N

ov
-1

99
6

Se
p-

19
97

Ju
l-1

99
8

M
ay

-1
99

9
M

ar
-2

00
0

Ja
n-

20
01

N
ov

-2
00

1
Se

p-
20

02
Ju

l-2
00

3
M

ay
-2

00
4

M
ar

-2
00

5
Ja

n-
20

06
N

ov
-2

00
6

Se
p-

20
07

Ju
l-2

00
8

M
ay

-2
00

9
M

ar
-2

01
0

Forecast and Original Observa�ons

Houses Sold

Forecast

Figure 12.45

Graph of Forecasts

with an Optimal

Smoothing Constant

The trend term in
Holt’s method
estimates the change
from one period to the
next.

■

Formulas for Holt’s Exponential Smoothing Method

Lt � �Yt � (1 � �)(Lt�1 � Tt�1) (12.16)

Tt � �(Lt � Lt�1) � (1 � �)Tt�1 (12.17)

Ft�k � Lt � kTt (12.18)

These equations are not as bad as they look. (And don’t forget that the software does all of
the calculations for you.) Equation (12.16) says that the updated level is a weighted aver-
age of the current observation and the previous level plus the estimated change. Equation
(12.17) says that the updated trend is a weighted average of the difference between two
consecutive levels and the previous trend. Finally, Equation (12.18) says that the k-period-
ahead forecast made in period t is the estimated level plus k times the estimated change per
period.

Everything we said about � for simple exponential smoothing applies to both � and �
in Holt’s model. The new smoothing constant � controls how quickly the method reacts to
observed changes in the trend. If � is small, the method reacts slowly. If it is large, the
method reacts more quickly. Of course, there are now two smoothing constants to select.
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Some practitioners suggest using a small value of � (0.1 to 0.2, say) and setting � equal to
�. Others suggest using an optimization option (available in StatTools) to select the opti-
mal smoothing constants. We illustrate the possibilities in the following continuation of the
housing sales example.
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E X A M P L E 12.6 HOUSES SOLD IN THE UNITED STATES (CONTINUED)

We again examine the monthly data on housing sales in the U.S. In the previous sub-
section, we saw that simple exponential smoothing, even with an optimal smoothing

constant, does only a fair job of forecasting housing sales. Given that there is an upward
trend and then a downward trend in housing sales over this period, Holt’s method might be
expected to perform better. Does it? What smoothing constants are appropriate?

Objective To see whether Holt’s method, with appropriate smoothing constants, captures
the trends in the housing sales data better than simple exponential smoothing (or moving
averages).

Solution

You implement Holt’s method in StatTools almost exactly as you did for simple exponen-
tial smoothing. The only difference is that you can now choose two smoothing constants,
as shown in Figure 12.46. They can have different values, but they have both been chosen
to be 0.2 for this example.

Figure 12.46

Dialog Box for

Holt’s Method
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The StatTools outputs in Figures 12.47 and 12.48 are also very similar to the simple
exponential smoothing outputs. The only difference is that there is now a trend column,
column D, in the numerical output. You can check that the formulas in columns C, D, and
E implement equations (12.16), (12.17), and (12.18). As before, an initialization is
required in row 42. These require values of L1 and T1 to get the method started. Different
implementations of Holt’s method obtain these initial values in slightly different ways, but
the effect is fairly minimal in most cases. (You can check cells C42 and D42 to see how
StatTools does it.7)

Forecas�ng

Exponen�a

Forecas�ng

8
9

10
11
12
13
14
15
16
40
41
42
43
44
45
46
47
48
49
50

264
265
266
267
268
269
270
271
272

A B C D E F
 Constants

Level (Alpha) 0.200
Trend (Beta) 0.200

Holt's l

Mean Abs Err 42.59
Root Mean Sq Err 54.85
Mean Abs Per% Err 5.57%

 Data Houses Sold Level Trend Forecast Error

Jan-1991 401.00 401.00 0.00
Feb-1991 482.00 417.20 3.24 401.00 81.00
Mar-1991 507.00 437.76 6.71 420.45 86.55
Apr-1991 508.00 457.17 9.25 444.46 63.54
May-1991 517.00 476.54 11.27 466.42 50.58
Jun-1991 516.00 493.45 12.40 487.81 28.19
Jul-1991 511.00 506.88 12.60 505.84 5.16
Aug-1991 526.00 520.78 12.87 519.48 6.52
Sep-1991 487.00 524.32 11.00 533.65 -46.65
Jul-2009 413.00 325.12 -4.21 303.15 109.85
Aug-2009 417.00 340.12 -0.37 320.91 96.09
Sep-2009 402.00 352.20 2.12 339.75 62.25
Oct-2009 354.32
Nov-2009 356.44
Dec-2009 358.56
Jan-2010 360.68
Feb-2010 362.80
Mar-2010 364.92

273
274
275
276
277
278

Apr-2010 367.03
May-2010 369.15
Jun-2010 371.27
Jul-2010 373.39
Aug-2010 375.51
Sep-2010 377.63

Figure 12.47

Output from Holt’s

Method

7The initial trend in cell D42 (the first period) is the final observation minus the initial observation, all divided by
the number of observations. This is the average change over the entire time period. This is probably not the best
way to initialize, as suggested by the literature, and StatTools will probably be rewritten in a future version to ini-
tialize with the average change over the first two years. This will give it a better chance to learn how a trend
changes over time.

The error measures for this implementation of Holt’s method are slightly better than
for simple exponential smoothing, but these measures are fairly sensitive to the smoothing
constants. Therefore, a second run of Holt’s method was performed, using the Optimize
Parameters option. This resulted in somewhat better results and the forecasts shown in
Figure 12.49. The optimal smoothing constants are � � 0.691 and � � 0.000, and the
MAE, RMSE, and MAPE values are identical to those from simple exponential smoothing
with an optimal smoothing constant. Note that the zero smoothing constant for trend 
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doesn’t mean that there is no trend. It just means that the initial estimate of trend, the aver-
age change from the first time period to the last, is kept throughout. For this particular time
series, despite the upward trend and the downward trend, the series ends very close to
where it started. Therefore, the initial trend estimate is about zero, and future forecasts
with the optimal smoothing constants are essentially flat. However, you can check that if a
larger smoothing constant for trend is used, say 0.4, future forecasts will exhibit the same
upward trend evident in the first nine months of 2009. Based on a look at the graph and
common sense, we would suggest smoothing constants of about 0.2 for this series.
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Figure 12.48

Forecasts from

Holt’s Method with

Nonoptimal

Smoothing

Constants
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You should not conclude from this example that Holt’s method is never superior to
simple exponential smoothing. Holt’s method is often able to react quickly to a sudden
upswing or downswing in the data, whereas simple exponential smoothing typically has a
delayed reaction to such a change. ■

Figure 12.49

Forecasts from

Holt’s Method with

Optimal Smoothing

Constants
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P R O B L E M S

Level A

42. Consider the airline ticket data in the file P12_01.xlsx.
a. Create a time series chart of the data. Based on

what you see, which of the exponential smoothing
models do you think should be used for
forecasting? Why?

b. Use simple exponential smoothing to forecast these
data, using no holdout period and requesting 12
months of future forecasts. Use the default
smoothing constant of 0.1.

c. Repeat part b, optimizing the smoothing constant.
Does it make much of an improvement?

d. Write a short report to summarize your results.

43. Consider the applications for home mortgages data in
the file P12_04.xlsx.
a. Create a time series chart of the data. Based on

what you see, which of the exponential smoothing
models do you think should be used for
forecasting? Why?

b. Use simple exponential smoothing to forecast these
data, using no holdout period and requesting four
quarters of future forecasts. Use the default
smoothing constant of 0.1.

c. Repeat part b, optimizing the smoothing constant.
Does it make much of an improvement?

d. Write a short report to summarize your results.

44. Consider the American Express closing price data in
the file P12_16.xlsx. Focus only on the closing prices.
a. Create a time series chart of the data. Based on

what you see, which of the exponential smoothing
models do you think should be used for
forecasting? Why?

b. Use Holt’s exponential smoothing to forecast these
data, using no holdout period and requesting 20
days of future forecasts. Use the default smoothing
constants of 0.1.

c. Repeat part b, optimizing the smoothing constants.
Does it make much of an improvement?

d. Repeat parts a and b, this time using a holdout
period of 50 days.

e. Write a short report to summarize your results.

45. Consider the poverty level data in the file
P02_44.xlsx.
a. Create a time series chart of the data. Based on

what you see, which of the exponential smoothing
models do you think should be used for
forecasting? Why?

b. Use simple exponential smoothing to forecast these
data, using no holdout period and requesting three
years of future forecasts. Use the default smoothing
constant of 0.1.

c. Repeat part b, optimizing the smoothing constant.
Make sure you request a chart of the series with 
the forecasts superimposed. Does the Optimize
Parameters option make much of an improvement?

d. Write a short report to summarize your results.
Considering the chart in part c, would you say the
forecasts are adequate?

Problems 46 through 48 ask you to apply the exponential
smoothing formulas. These do not require StatTools. In fact, they
do not even require Excel. You can do them with a calculator (or
with Excel).

46. An automobile dealer is using Holt’s method to
forecast weekly car sales. Currently, the level is
estimated to be 50 cars per week, and the trend is
estimated to be six cars per week. During the current
week, 30 cars are sold. After observing the current
week’s sales, forecast the number of cars three weeks
from now. Use � � � � 0.3.

47. You have been assigned to forecast the number of
aircraft engines ordered each month from an engine
manufacturing company. At the end of February, the
forecast is that 100 engines will be ordered during
April. Then during March, 120 engines are actually
ordered.
a. Using � � 0.3, determine a forecast (at the end of

March) for the number of orders placed during April
and during May. Use simple exponential smoothing.

b. Suppose that MAE � 16 at the end of March. At
the end of March, the company can be 68% sure
that April orders will be between what two values,
assuming normally distributed forecast errors?
(Hint: It can be shown that the standard deviation of
forecast errors is approximately 1.25 times MAE.)

48. Simple exponential smoothing with � � 0.3 is being
used to forecast sales of SLR (single lens reflex)
cameras at an appliance store. Forecasts are made on a
monthly basis. After August camera sales are
observed, the forecast for September is 100 cameras.
a. During September, 120 cameras are sold. After

observing September sales, what is the forecast for
October camera sales? What is the forecast for
November camera sales?

b. It turns out that June sales were recorded as 10
cameras. Actually, however, 100 cameras were sold
in June. After correcting for this error, what is the
forecast for October camera sales?

Level B

49. Holt’s method assumes an additive trend. For example,
a trend of five means that the level will increase by
five units per period. Suppose that there is actually a
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12.9 SEASONAL MODELS

So far we have said practically nothing about seasonality. Seasonality is the consistent month-
to-month (or quarter-to-quarter) differences that occur each year. (It could also be the day-to-
day differences that occur each week.) For example, there is seasonality in beer sales—high in
the summer months, lower in other months. Toy sales are also seasonal, with a huge peak in
the months preceding Christmas. In fact, if you start thinking about time series variables that
you are familiar with, the majority of them probably have some degree of seasonality.

How can you tell whether there is seasonality in a time series? The easiest way is to
check whether a graph of the time series has a regular pattern of ups and/or downs in par-
ticular months or quarters. Although random noise can sometimes mask such a pattern, the
seasonal pattern is usually fairly obvious.

There are basically three methods for dealing with seasonality. First, you can use
Winters’ exponential smoothing model. It is similar to simple exponential smoothing and
Holt’s method, except that it includes another component (and smoothing constant) to cap-
ture seasonality. Second, you can deseasonalize the data, then use any forecasting method
to model the deseasonalized data, and finally “reseasonalize” these forecasts. Finally, you
can use multiple regression with dummy variables for the seasons. We discuss all three of
these methods in this section.

Seasonal models are usually classified as additive or multiplicative. Suppose that the
series contains monthly data, and that the average of the 12 monthly values for a typical
year is 150. An additive model finds seasonal indexes, one for each month, that are added
to the monthly average, 150, to get a particular month’s value. For example, if the index
for March is 22, then a typical March value is 150 � 22 � 172. If the seasonal index for
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multiplicative trend. For example, if the current
estimate of the level is 50 and the current estimate of
the trend is 1.2, the forecast of demand increases by
20% per period. So the forecast demand for next
period is 50(1.2) and forecast demand for two periods
in the future is 50(1.2)2. If you want to use a
multiplicative trend in Holt’s method, you should use
equations of the form:

Lt � �Yt � (1 � �)(I)

Tt � �(II) � (1 � �)Tt�1

a. What should (I) and (II) be?
b. Suppose you are working with monthly data and

month 12 is December, month 13 is January, and so
on. Also suppose that L12 � 100 and T12 � 1.2,
and you observe Y13 � 200. At the end of month
13, what is the forecast for Y15? Assume � � � �
0.5 and a multiplicative trend.

50. A version of simple exponential smoothing can be used
to predict the outcome of sporting events. To illustrate,
consider pro football. Assume for simplicity that all
games are played on a neutral field. Before each day of
play, assume that each team has a rating. For example,
if the rating for the Bears is �10 and the rating for the
Bengals is �6, the Bears are predicted to beat the
Bengals by 10 � 6 � 4 points. Suppose that the Bears

play the Bengals and win by 20 points. For this game,
the model underpredicted the Bears’ performance by 20
� 4 � 16 points. Assuming that the best � for pro
football is 0.10, the Bears’ rating will increase by
16(0.1) � 1.6 points and the Bengals’ rating will
decrease by 1.6 points. In a rematch, the Bears will then
be favored by (10 � 1.6) � (6 � 1.6) � 7.2 points.
a. How does this approach relate to the equation 

Lt � Lt�1 � �Et?
b. Suppose that the home field advantage in pro

football is three points; that is, home teams tend to
outscore equally rated visiting teams by an average
of three points a game. How could the home field
advantage be incorporated into this system?

c. How might you determine the best � for pro
football?

d. How could the ratings for each team at the
beginning of the season be chosen?

e. Suppose this method is used to predict pro football
(16-game schedule), college football (11-game
schedule), college basketball (30-game schedule),
and pro basketball (82-game schedule). Which
sport do you think will have the smallest optimal
�? Which will have the largest optimal �? Why?

f. Why might this approach yield poor forecasts for
major league baseball?

Some time series
software packages
have special types of
graphs for spotting
seasonality, but we
won’t discuss these
here.

As you saw with the
housing sales data,
government agencies
often perform part of
the second method for
us—that is, they
deseasonalize the
data.
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September is �12, then a typical September value is 150 � 12 � 138. A multiplicative
model also finds seasonal indexes, but they are multiplied by the monthly average to get a
particular month’s value. Now if the index for March is 1.3, a typical March value 
is 150(1.3) � 195. If the index for September is 0.9, then a typical September value is
150(0.9) � 135.

In a multiplicative seasonal model, a base forecast is multiplied by an appropriate
seasonal index. These indexes, one for each season, typically average to 1.

In an additive seasonal model, an appropriate seasonal index is added to a base
forecast. These indexes, one for each season, typically average to 0.

Formulas for Winters’ Exponential Smoothing Model

(13.19)

(13.20)

(13.21)

(13.22)Ft+k = (Lt + kTt)St+k-M

St = g
Yt

Lt

+ (1 - g)St-M

Tt = b(Lt - Lt-1) + (1 - b)Tt-1

Lt = a
Yt

St-M

+ (1 - a)(Lt-1 + Tt-1)

Either an additive or a multiplicative model can be used to forecast seasonal data.
However, because multiplicative models are somewhat easier to interpret (and have
worked well in applications), we focus on them. Note that the seasonal index in a multi-
plicative model can be interpreted as a percentage. Using the figures in the previous para-
graph as an example, March tends to be 30% above the monthly average, whereas
September tends to be 10% below it. Also, the seasonal indexes in a multiplicative model
typically average to 1. Software packages usually ensure that this happens.

12.9.1 Winters’ Exponential Smoothing Model

We now turn to Winters’ exponential smoothing model. It is very similar to Holt’s model—
it again has level and trend terms and corresponding smoothing constants � and �—but it
also has seasonal indexes and a corresponding smoothing constant 	 (gamma). This new
smoothing constant controls how quickly the method reacts to observed changes in the sea-
sonality pattern. If 	 is small, the method reacts slowly. If it is large, the method reacts
more quickly. As with Holt’s model, there are equations for updating the level and trend
terms, and there is one extra equation for updating the seasonal indexes. For completeness,
we list these equations, but they are clearly too complex for hand calculation and are best
left to the software. In Equation (12.21), St refers to the multiplicative seasonal index for
period t. In equations (12.19), (12.21), and (12.22), M refers to the number of seasons 
(M � 4 for quarterly data, M � 12 for monthly data).
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To see how the forecasting in Equation (12.22) works, suppose you have observed data
through June and you want a forecast for the coming September, that is, a three-month-ahead
forecast. (In this case t refers to June and t � k � t � 3 refers to September.) The method first
adds 3 times the current trend term to the current level. This gives a forecast for September
that would be appropriate if there were no seasonality. Next, it multiplies this forecast by the
most recent estimate of September’s seasonal index (the one from the previous September) to
get the forecast for September. Of course, the software does all of the arithmetic, but this is
basically what it is doing. We illustrate the method in the following example.

722 Chapter 12 Time Series Analysis and Forecasting

E X A M P L E 12.7 QUARTERLY SOFT DRINK SALES

The data in the Soft Drink Sales.xlsx file represent quarterly sales (in millions of dol-
lars) for a large soft drink company from quarter 1 of 1994 through quarter 4 of 2009.

There has been an upward trend in sales during this period, and there is also a fairly regu-
lar seasonal pattern, as shown in Figure 12.50. Sales in the warmer quarters, 2 and 3, are
consistently higher than in the colder quarters, 1 and 4. How well can Winters’ method
track this upward trend and seasonal pattern?
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Figure 12.50

Time Series Graph

of Soft Drink Sales

Objective To see how well Winters’ method, with appropriate smoothing constants, can
forecast the company’s seasonal soft drink sales.

Solution

To use Winters’ method with StatTools, you proceed exactly as with any of the other expo-
nential smoothing methods. However, for a change (and because there are so many years
of data), you can use StatTools’s option of holding out some of the data for validation.
Specifically, fill out the Time Scale tab in the Forecast dialog box as shown in Figure
12.51. Then fill in the Forecast Settings tab of this dialog box as shown in Figure 12.52,
selecting Winters’ method, basing the model on the data through Q4-2007, holding out
eight quarters of data (Q1-2008 through Q4-2009), and forecasting four quarters into the
future (all of 2010). Note that when you choose Winters’ method in Figure 12.52, the
Deseasonalize option in Figure 12.51 is automatically disabled. It wouldn’t make sense to
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deseasonalize and use Winters’ method; you do one or the other. Also, you can optimize
the smoothing constants as is done here, but this is optional.

Figure 12.51

Time Scale Settings

for Soft Drink Sales

Figure 12.52

Forecast Settings for

Soft Drink Sales
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Parts of the output are shown in Figure 12.53. The following points are worth noting: (1)
The optimal smoothing constants (those that minimize RMSE) are � � 1.0, � � 0.0, and 	
� 0.0. Intuitively, these mean that the method reacts immediately to changes in level, but it
never reacts to changes in the trend or the seasonal pattern. (2) Aside from seasonality, the
series is trending upward at a rate of 56.65 per quarter (see column D). This is the initial esti-
mate of trend and, because � is 0, it never changes. (3) The seasonal pattern stays constant
throughout this 14-year period. The seasonal indexes, shown in column E, are 0.88, 1.10,
1.05, and 0.96. For example, quarter 1 is 12% below the yearly average, and quarter 2 is 10%
above the yearly average. (4) The forecast series tracks the actual series quite well during the
non-holdout period. For example, MAPE is 3.86%, meaning that the forecasts are off by
about 4% on average. Surprisingly, MAPE for the holdout period is even lower, at 2.48%.
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You can check that if
three years of data 
are held out, the 
MAPE for the holdout
period increases quite
a lot. It is common 
for the fit to be
considerably better 
in the estim-ation
period than in the
holdout period.

Forecas�ng (Op�mized

Es�ma�on
Exponen�a

Forecas�ng

8
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10
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A B C D E F G
 Constants )

Level (Alpha) 1.000
Trend (Beta) 0.000
Season (Gamma) 0.000

Winters' l Period Period

15
16
17
41
42
43
44
45
46
47

Mean Abs Err 123.23 123.65
Root Mean Sq Err 166.71 158.65
Mean Abs Per% Err 3.86% 2.48%

 Data Sales Level Trend Season Forecast Error

Q1-1994 1807.37 2052.06 56.65 0.88
Q2-1994 2355.32 2136.61 56.65 1.10 2324.57 30.75
Q3-1994 2591.83 2461.52 56.65 1.05 2309.37 282.46
Q4-1994 2236.39 2320.05 56.65 0.96 2427.36 -190.97

154 56 65
48
49
50
92
93
94
95
96

Q1-1995 9.14 1758.87 . 0.88 2093.30 -544.16
Q2-1995 2105.79 1910.25 56.65 1.10 2001.37 104.42
Q3-1995 2041.32 1938.69 56.65 1.05 2071.03 -29.71
Q4-1995 2021.01 2096.62 56.65 0.96 1923.38 97.63
Q2-2006 5284.71 4793.98 56.65 1.10 5748.01 -463.30
Q3-2006 4817.43 4575.22 56.65 1.05 5107.42 -289.99
Q4-2006 4634.50 4807.88 56.65 0.96 4464.83 169.67
Q1-2007 4431.36 5031.31 56.65 0.88 4284.47 146.89
Q2-2007 5602.21 5082.00 56.65 1.10 5608.78 -6.57
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Q3-2007 5349.85 5080.87 56.65 1.05 5410.69 -60.84
Q4-2007 5036.00 5224.40 56.65 0.96 4952.25 83.75
Q1-2008 23.156416.4354 -116.71
Q2-2008 90.488571.6385 -47.92
Q3-2008 53.83139.976582.8185
Q4-2008 24.452524.0705 -184.00
Q1-2009 09.058474.7944 -353.43
Q2-2009 88.331625.5706 -58.36
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Q3-2009 5868.67 5918.52 49.85
Q4-2009 58.274542.2345 -40.61
Q1-2010 5050.47
Q2-2010 6383.67
Q3-2010 6157.11
Q4-2010 5691.27

Holdouts

Figure 12.53 Output from Winters’ Method for Soft Drink Sales

The plot of the forecasts superimposed on the original series, shown in Figure 12.54,
indicates that Winters’ method clearly picks up the seasonal pattern and the upward trend
and projects both of these into the future. In later examples, we will investigate whether
other seasonal forecasting methods can do this well.
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One final comment is that you are not obligated to find the optimal smoothing con-
stants. Some analysts suggest using more “typical” values such as � � � � 0.2 and 
	 � 0.5. (It is customary to choose 	 larger than � and � because each season’s seasonal
index gets updated only once per year.) To see how these smoothing constants affect the
results, you can substitute their values in the range B9:B11 of Figure 12.53. As expected,
MAE, RMSE, and MAPE all get somewhat worse (they increase to 185, 236, and 5.78%,
respectively, for the estimation period), but a plot of the forecasts superimposed on the
original sales data still indicates a very good fit. ■
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Figure 12.54

Graph of Forecasts

from Winters’

Method

The three exponential smoothing methods we have examined are not the only ones avail-
able. For example, there are linear and quadratic models available in some software pack-
ages. These are somewhat similar to Holt’s model except that they use only a single
smoothing constant. There are also adaptive exponential smoothing models, where the
smoothing constants themselves are allowed to change over time. Although these more
complex models have been studied thoroughly in the academic literature and are used by
some practitioners, they typically offer only marginal gains in forecast accuracy over the
models we have examined.

12.9.2 Deseasonalizing: The Ratio-to-Moving-Averages Method

You have probably seen references to time series data that have been deseasonalized.
(Web sites often use the abbreviations SA and NSA for seasonally adjusted and nonsea-
sonally adjusted.) The reason why data are often published in deseasonalized form is that
readers can then spot trends more easily. For example, if you see a time series of sales that
has not been deseasonalized, and it shows a large increase from November to December,
you might not be sure whether this represents a real increase in sales or a seasonal phe-
nomenon (Christmas sales). However, if this increase is really just a seasonal effect, the
deseasonalized version of the series will show no such increase in sales.

Government economists and statisticians have a variety of sophisticated methods for
deseasonalizing time series data, but they are typically variations of the ratio-to-moving-
averages method described here. This method is applicable when seasonality is multi-
plicative, as described in the previous section. The goal is to find the seasonal indexes,
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which can then be used to deseasonalize the data. For example, if the estimated index for
June is 1.3, this means that June’s values are typically about 30% larger than the average
for all months. Therefore, June’s value is divided by 1.3 to obtain the (smaller) deseasonal-
ized value. Similarly, if February’s index is 0.85, then February’s values are 15% below the
average for all months, so February’s value is divided by 0.85 to obtain the (larger) desea-
sonalized value.
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To deseasonalize an observation (assuming a multiplicative model of seasonality),
divide it by the appropriate seasonal index.

To find the seasonal index for June 2009 (or any other month) in the first place, you
essentially divide June’s observation by the average of the 12 observations surrounding
June. (This is the reason for the term ratio in the name of the method.) There is one
minor problem with this approach. June 2009 is not exactly in the middle of any 12-
month sequence. If you use the 12 months from January 2009 to December 2009, June
2009 is in the first half of the sequence; if you use the 12 months from December 2008
to November 2009, June 2009 is in the last half of the sequence. Therefore, you can
compromise by averaging the January-to-December and December-to-November aver-
ages. This is called a centered average. Then the seasonal index for June is June’s
observation divided by this centered average. The following equation shows more
specifically how it works.

The only remaining question is how to combine all of the indexes for any specific month
such as June. After all, if the series covers several years, the procedure produces several
June indexes, one for each year. The usual way to combine them is to average them. This
single average index for June is then used to deseasonalize all of the June observations.

Once the seasonal indexes are obtained, each observation is divided by its seasonal
index to deseasonalize the data. The deseasonalized data can then be forecast by any of the
methods we have described (other than Winters’ method, which wouldn’t make much
sense). For example, Holt’s method or the moving averages method could be used to fore-
cast the deseasonalized data. Finally, the forecasts are “reseasonalized” by multiplying
them by the seasonal indexes.

As this description suggests, the method is not meant for hand calculations. However,
it is straightforward to implement in StatTools, as we illustrate in the following 
example.

Jun2009 index =

June2009

¢Dec2010 +
Á

+ Nov2009

12
+

Jan2009 +
Á

+ Dec2009

12
≤>2

E X A M P L E 12.7 QUARTERLY SOFT DRINK SALES (CONTINUED)

We return to the soft drink sales data. (See the file Soft Drink Sales.xlsx.) Is it possi-
ble to obtain the same forecast accuracy with the ratio-to-moving-averages method

as with Winters’ method?

Objective To use the ratio-to-moving-averages method to deseasonalize the soft drink
data and then forecast the deseasonalized data.
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Solution

The answer to this question depends on which forecasting method is used to forecast the
deseasonalized data. The ratio-to-moving-averages method only provides a means for
deseasonalizing the data and providing seasonal indexes. Beyond this, any method can be
used to forecast the deseasonalized data, and some methods typically work better than oth-
ers. For this example, we actually compared two possibilities: the moving averages method
with a span of four quarters, and Holt’s exponential smoothing method optimized, but the
results are shown only for the latter. Because the deseasonalized series still has a clear
upward trend, Holt’s method should do well, and the moving averages forecasts should
tend to lag behind the trend. This is exactly what occurred. For example, the values of
MAPE for the two methods are 6.11% (moving averages) and 3.86% (Holt’s). (To make a
fair comparison with the Winters’ method output for these data, an eight-quarter holdout
period was again used). The MAPE values reported are for the non-holdout period.)

To implement this latter method in StatTools, proceed exactly as before, but this time
check the Deseasonalize option in the Time Scale tab of the Forecast dialog box. (See
Figure 12.55.) Note that when the Holt’s option is checked, this Deseasonalize option is
enabled. When you check this option, you get a larger selection of optional charts in the
Graphs to Display tab. You can ask to see charts of the deseasonalized data and/or the 
original “reseasonalized” data.

Figure 12.55

Checking the

Deseasonalizing

Option

Selected outputs are shown in Figures 12.56 through 12.59. Figures 12.56 and 12.57
show the numerical output. In particular, Figure 12.57 shows the seasonal indexes from the
ratio-to-moving averages method in column C. These are virtually identical to the seasonal
indexes found with Winters’ method, although the methods are mathematically different.
Column D contains the deseasonalized sales (column B divided by column C), columns E
through H implement Holt’s method on the deseasonalized data, and columns I and J are
the “reseasonalized” forecasts and errors.
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Forecas�ng (Op�mized)

Exponen�a

14

8
9

10
11
12
13

A B C D E
 Constants 

Level (Alpha) 1.000
Trend (Beta) 0.000

Es�ma�on Holdouts Deseason Deseason
Holt's l Period Period Es�mate Holdouts

15
16

Mean Abs Err 123.23 123.65 124.26 130.24
Root Mean Sq Err 166.71 158.65 169.38 173.56
Mean Abs Per% Err 3.86% 2.48% 3.86% 2.48%

Forecas�ng
61
62
63
64
65
66
67
68
69
70

112

A B C D E F G H I J
Season Deseason Deseason Deseason Deseason Deseason Season Season

 Data Sales Index Sales Level Trend Forecast Errors Forecast Errors

Q1-1994 1807.37 0.88 2052.06 2052.06 56.65
Q2-1994 2355.32 1.10 2136.61 2136.61 56.65 2108.71 27.89 2324.57 30.75
Q3-1994 2591.83 1.05 2461.52 2461.52 56.65 2193.26 268.26 2309.37 282.46
Q4-1994 2236.39 0.96 2320.05 2320.05 56.65 2518.17 -198.11 2427.36 -190.97
Q1-1995 1549.14 0.88 1758.87 1758.87 56.65 2376.70 -617.83 2093.30 -544.16
Q2-1995 2105.79 1.10 1910.25 1910.25 56.65 1815.52 94.73 2001.37 104.42
Q3-1995 2041.32 1.05 1938.69 1938.69 56.65 1966.90 -28.21 2071.03 -29.71
Q4-1995 2021.01 0.96 2096.62 2096.62 56.65 1995.33 101.28 1923.38 97.63
Q2-2006 5284.71 1.10 4793.98 4793.98 56.65 5214.26 -420.28 5748.01 -463.30

113
114
115
116
117
118
119
120
121
122
123
124

Q3-2006 4817.43 1.05 4575.22 4575.22 56.65 4850.63 -275.41 5107.42 -289.99
Q4-2006 4634.50 0.96 4807.88 4807.88 56.65 4631.86 176.01 4464.83 169.67
Q1-2007 4431.36 0.88 5031.31 5031.31 56.65 4864.53 166.78 4284.47 146.89
Q2-2007 5602.21 1.10 5082.00 5082.00 56.65 5087.96 -5.96 5608.78 -6.57
Q3-2007 5349.85 1.05 5080.87 5080.87 56.65 5138.64 -57.78 5410.69 -60.84
Q4-2007 5036.00 0.96 5224.40 5224.40 56.65 5137.52 86.88 4952.25 83.75
Q1-2008 50.182545.841588.016.4354 -132.51 4651.32 -116.71
Q2-2008 07.733532.492501.171.6385 -43.47 5884.09 -47.92
Q3-2008 53.83139.976504.13153.493547.525550.182.8185
Q4-2008 00.154511.062569.024.0705 -190.89 5254.42 -184.00
Q1-2009 46.705573.601588.074.7944 -401.27 4850.90 -353.43

-2009 92.465553.115501.125.5706 -52.94 6133.88 -58.36
125
126
127
128
129
130

Q3

Q2

-2009 49.026506.375550.176.8685 -47.34 5918.52 -49.85
Q4-2009 95.776564.536569.042.2345 -42.13 5472.85 -40.61
Q1-2010 74.050542.437588.0
Q2-2010 76.383698.097501.1
Q3-2010 11.751645.748550.1
Q4-2010 72.196591.409569.0
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Figure 12.57 Ratio-to-Moving-Averages Output
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The deseasonalized data, with forecasts superimposed, appear in Figure 12.58. Here
you see only the smooth upward trend with no seasonality, which Holt’s method is able to
track very well. Then Figure 12.59 shows the results of reseasonalizing. Again, the fore-
casts track the actual sales data very well. In fact, you can see that the summary measures
of forecast errors (in Figure 12.56, range B14:B16) are quite comparable to those from
Winters’ method. The reason is that both arrive at virtually the same seasonal pattern. ■
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12.9.3 Estimating Seasonality with Regression

We now examine a regression approach to forecasting seasonal data that uses dummy vari-
ables for the seasons. Depending on how you write the regression equation, you can create
either an additive or a multiplicative seasonal model.

As an example, suppose that the data are quarterly data with a possible linear trend.
Then you can create dummy variables Q1, Q2, and Q3 for the first three quarters (using
quarter 4 as the reference quarter) and estimate the additive equation

Forecast Yt � a � bt � b1Q1 � b2Q2 � b3Q3

Then the coefficients of the dummy variables, b1, b2 and b3, indicate how much each quar-
ter differs from the reference quarter, quarter 4, and the coefficient b represents the trend.

For example, if the estimated equation is

Forecast Yt � 130 � 25t � 15Q1 � 5Q2 � 20Q3

the average increase from one quarter to the next is 25 (the coefficient of t). This is the
trend effect. However, quarter 1 averages 15 units higher than quarter 4, quarter 2 averages
5 units higher than quarter 4, and quarter 3 averages 20 units lower than quarter 4. These
coefficients indicate the seasonality effect.

As discussed in Chapter 10, it is also possible to estimate a multiplicative model using
dummy variables for seasonality (and possibly time for trend). Then you would estimate
the equation

Forecast Yt �

or, after taking logs,

Forecast LN Yt = LN a + bt + b1Q1 + b2Q2 + b3Q3

aebteb1Q1eb2Q2eb3Q3

12.9 Seasonal Models 729

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



One advantage of this approach is that it provides a model with multiplicative seasonal fac-
tors. It is also fairly easy to interpret the regression output, as illustrated in the following
continuation of the soft drink sales example.

730 Chapter 12 Time Series Analysis and Forecasting

E X A M P L E 12.7 QUARTERLY SOFT DRINK SALES (CONTINUED)

Returning to the soft drink sales data (see the file Soft Drink Sales.xlsx), does a regres-
sion approach provide forecasts that are as accurate as those provided by the other sea-

sonal methods in this chapter?

Objective To use a multiplicative regression equation, with dummy variables for seasons
and a time variable for trend, to forecast soft drink sales.

Solution

We illustrate the multiplicative approach, although an additive approach is also possible.
Figure 12.60 illustrates the data setup. Besides the Sales and Time variables, you need to
create dummy variables for three of the four quarters and a Log(Sales) variable. You can
then use multiple regression, with Log(Sales) as the dependent variable, and Time, Q1, Q2,
and Q3 as the explanatory variables.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A B C D E F G
Quarter Sales Time Q1 Q2 Q3 Log(Sales)
Q1-94 1807.37 1 1 0 0 7.499628
Q2-94 2355.32 2 0 1 0 7.7644319
Q3-94 2591.83 3 0 0 1 7.8601195
Q4-94 2236.39 4 0 0 0 7.7126182
Q1-95 1549.14 5 1 0 0 7.3454552
Q2-95 2105.79 6 0 1 0 7.652446
Q3-95 2041.32 7 0 0 1 7.6213519
Q4-95 2021.01 8 0 0 0 7.6113527
Q1-96 1870.46 9 1 0 0 7.5339397
Q2-96 2390.56 10 0 1 0 7.7792829
Q3-96 2198.03 11 0 0 1 7.6953168
Q4-96 2046.83 12 0 0 0 7.6240475
Q1-97 1934.19 13 1 0 0 7.5674439
Q2-97 2406.41 14 0 1 0 7.7858913

Figure 12.60

Data Setup for

Multiplicative Model

with Dummies

The regression output appears in Figure 12.61. (Again, to make a fair comparison with
previous methods, the regression is based only on the data through quarter 4 of 2007. That
is, the last eight quarters are again held out. This means that the StatTools data set should
extend only through row 57.) Of particular interest are the coefficients of the explanatory
variables. Recall that for a log-dependent variable, these coefficients can be interpreted as
percentage changes in the original sales variable. Specifically, the coefficient of Time
means that deseasonalized sales increase by about 1.9% per quarter. Also, the coefficients
of Q1, Q2, and Q3 mean that sales in quarters 1, 2, and 3 are, respectively, about 9.0%
below, 14.0% above, and 9.1% above sales in the reference quarter, quarter 4. This pattern
is quite comparable to the pattern of seasonal indexes you saw in previous models for these
data.
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To compare the forecast accuracy of this method to earlier models, you must perform
several steps manually. (See Figure 12.62 for reference.) First, calculate the forecasts in
column H by entering the formula

=EXP(Regression!$B$18+MMULT(Data!C2:F2,Regression!$B$19:$B$22))

in cell H2 and copying it down. (This formula assumes the regression output is in a sheet
named Regression. It uses Excel’s MMULT function to sum the products of explanatory
values and regression coefficients. You can replace this by “writing out” the sum of prod-
ucts if you like. The formula then takes EXP of the resulting sum to convert the log sales
value back to the original sales units.) Next, calculate the absolute errors, squared errors,
and absolute percentage errors in columns I, J, and K, and summarize them in the usual
way, both for the estimation period and the holdout period, in columns N and O.

7
8
9

10
11
12
13

A B C D E F G
rrEtSdetsujdAelpitluM  of

Summary RR -Square Es�mate

0.9628 0.9270 0.9218 0.102

Degrees of Sum of Mean of 
ANOVA Table Freedom Squares Squares

Explained 4 7.465 1.866 177.8172 < 0.0001

R-Square

F-Ra�o p-Value

14
15
16
17
18
19
20
21

. . .  .
Unexplained 56 0.588 0.010

Standard
Regression Table reppUrewoLrorrE

Constant 7.510 0.036 210.8236 < 0.0001 7.439 7.581
Time 0.019 0.001 25.9232 < 0.0001 0.018 0.021
Q1 -0.090 0.037 -2.4548 0.0172 -0.164 -0.017
Q2 0 140 0 037 3 7289 0 0005 0 065 0 215

ttneiciffeoC -Value p-Value
Confidence Interval 95%

22
. . . . . .

Q3 0.091 0.037 2.4449 0.0177 0.017 0.166

Figure 12.61 Regression Output for Multiplicative Model

1
2
3
4
5
6
7
8
9

10

A B C D E F G H I J K L M N O
Quarter Sales Time Q1 Q2 Q3 Log(Sales) Forecast SqError AbsError PctAbsError Error measures
Q1- tuodloHnoitamitsE64777850.06232.60173.58211731.1071826994.7001173.708149
Q2-94 2355.32 2 0 1 0 7.7644319 2182.866 29740.49 172.4543 0.07321906 RMSE 337.09 754.57
Q3-94 2591.83 3 0 0 1 7.8601195 2120.895 221779.5 470.9347 0.18169969 MAE 276.40 732.28
Q4-94 2236.39 4 0 0 0 7.7126182 1973.262 69236.44 263.1282 0.11765755 MAPE 8.05% 13.74%
Q1-95 1549.14 5 1 0 0 7.3454552 1837.876 83368.58 288.7362 0.18638482
Q2-95 2105.79 6 0 1 0 7.652446 2358.326 63774.52 252.5362 0.11992467
Q3-95 2041.32 7 0 0 1 7.6213519 2291.375 62527.28 250.0545 0.1224965
Q4-95 2021.01 8 0 0 0 7.6113527 2131.874 12290.87 110.8642 0.05485584
Q1 96 1870 46 9 1 0 0 7 5339397 1985 606 13258 63 115 1461 0 06156034

11
- . . . . . .

Q2-96 2390.56 10 0 1 0 7.7792829 2547.89 24752.83 157.3303 0.06581317

Figure 12.62 Forecast Errors and Summary Measures

Note that these summary measures are considerably larger for this regression model
than for the previous seasonality models, especially in the holdout period. You can get
some idea why the holdout period does so poorly by looking at the plot of observations
versus forecasts in Figure 12.63. The multiplicative regression model with Time included
really implies exponential growth (as in section 12.4.2), with seasonality superimposed.
However, this company’s sales growth tapered off in the last couple of years and did not
keep up with the exponential growth curve. In short, the dummy variables do a good job of
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tracking seasonality, but the underlying exponential trend curve outpaces actual sales. It is
reasonable to conclude that this regression model is not as good for forecasting this com-
pany’s sales as Winters’ method or Holt’s method on the deseasonalized data.
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Graph of Forecasts

for Multiplicative

Model

This method of detecting seasonality by using dummy variables in a regression equa-
tion is always an option. The other variables included in the regression equation could be
time t, lagged versions of Yt, and/or current or lagged versions of other explanatory vari-
ables. These variables would capture any time series behavior other than seasonality. Just
remember that there is always one less dummy variable than the number of seasons. If the
data are quarterly, then three dummies are needed; if the data are monthly, then 11 dummies
are needed. If the coefficients of any of these dummies turn out to be statistically insignifi-
cant, they can be omitted from the equation. Then the omitted terms are effectively com-
bined with the reference season. For example, if the Q1 term were omitted, then quarters 1
and 4 would essentially be combined and treated as the reference season, and the other two
seasons would be compared to them through their dummy variable coefficients. ■

P R O B L E M S

Level A

51. The University Credit Union is open Monday through
Saturday. Winters’ method is being used (with 
� � � � 	 � 0.5) to predict the number of customers
entering the bank each day. After incorporating the
arrivals on Monday, October 16, the seasonal indexes
are: Monday, 0.90; Tuesday, 0.70; Wednesday, 0.80;
Thursday, 1.1; Friday, 1.2; Saturday, 1.3. Also, the
current estimates of level and trend are 200 and 1. On
Tuesday, October 17, 182 customers enter the bank. 
At the close of business on October 17, forecast the
number of customers who will enter the bank on each
of the next six business days.

52. A local bank is using Winters’ method with � � 0.2, 
� � 0.1, and 	 � 0.5 to forecast the number of cus-
tomers served each day. The bank is open Monday
through Friday. At the end of the previous week, the
following seasonal indexes have been estimated:
Monday, 0.80; Tuesday, 0.90; Wednesday, 0.95;
Thursday, 1.10; Friday, 1.25. Also, the current esti-
mates of level and trend are 20 and 1. After observing
that 30 customers are served by the bank on this
Monday, forecast the number of customers who will
be served on each of the next five business days.

53. Suppose that Winters’ method is used to forecast
quarterly U.S. retail sales (in billions of dollars). At
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the end of the first quarter of 2010, the seasonal
indexes are: quarter 1, 0.90; quarter 2, 0.95; quarter 3,
0.95; quarter 4, 1.20. Also, the current estimates of
level and trend are 300 and 30. During the second
quarter of 2010, retail sales are $360 billion. Assume
� � 0.2, � � 0.4, and 	 � 0.5.
a. At the end of the second quarter of 2010, develop a

forecast for retail sales during the third and fourth
quarters of 2010.

b. At the end of the second quarter of 2010, develop 
a forecast for the first and second quarter of 
2011.

54. The file P02_55.xlsx contains monthly retail sales of
beer, wine, and liquor at U.S. liquor stores.
a. Is seasonality present in these data? If so,

characterize the seasonality pattern and then
deseasonalize this time series using the ratio-to-
moving-average method.

b. If you decided to deseasonalize this time series in
part a, forecast the deseasonalized data for each
month of the next year using the moving average
method with an appropriate span.

c. Does Holt’s exponential smoothing method, with
optimal smoothing constants, outperform the
moving average method employed in part b?
Demonstrate why or why not.

55. Continuing the previous problem, how do your
responses to the questions change if you employ
Winters’ method to handle seasonality in this time
series? Explain. Which forecasting method do you
prefer, Winters’ method or one of the methods used in
the previous problem? Defend your choice.

56. The file P12_56.xlsx contains monthly time series
data for total U.S. retail sales of building materials
(which includes retail sales of building materials,
hardware and garden supply stores, and mobile home
dealers).
a. Is seasonality present in these data? If so,

characterize the seasonality pattern and then
deseasonalize this time series using the ratio-to-
moving-average method.

b. If you decided to deseasonalize this time series in
part a, forecast the deseasonalized data for each
month of the next year using the moving average
method with an appropriate span.

c. Does Holt’s exponential smoothing method, with
optimal smoothing constants, outperform the
moving average method employed in part b?
Demonstrate why or why not.

57. The file P12_57.xlsx consists of the monthly retail
sales levels of U.S. gasoline service stations.
a. Is there a seasonal pattern in these data? If so, 

how do you explain this seasonal pattern? Also, if
necessary, deseasonalize these data using the 
ratio-to-moving-average method.

b. Forecast this time series for the first four months of
the next year using the most appropriate method
for these data. Defend your choice of forecasting
method.

58. The number of employees on the payroll at a food
processing plant is recorded at the start of each month.
These data are provided in the file P12_03.xlsx.
a. Is there a seasonal pattern in these data? If so, how

do you explain this seasonal pattern? Also, if
necessary, deseasonalize these data using the ratio-
to-moving-average method.

b. Forecast this time series for the first four months of
the next year using the most appropriate method.
Defend your choice of forecasting method.

59. The file P12_59.xlsx contains total monthly U.S. retail
sales data. Compare the effectiveness of Winters’
method with that of the ratio-to-moving-average
method in deseasonalizing this time series. Using the
deseasonalized time series generated by each of these
two methods, forecast U.S. retail sales with the most
appropriate method. Defend your choice of forecasting
method.

60. Suppose that a time series consisting of six years
(2005�2010) of quarterly data exhibits obvious
seasonality. In fact, assume that the seasonal indexes
turn out to be 0.75, 1.45, 1.25, and 0.55.
a. If the last four observations of the series (the four

quarters of 2010) are 2502, 4872, 4269, and 1924,
calculate the deseasonalized values for the four
quarters of 2010.

b. Suppose that a plot of the deseasonalized series
shows an upward linear trend, except for some
random noise. Therefore, you estimate a linear
regression equation for this series versus time and
obtain the following equation:

Predicted deseasonalized value � 2250 � 51Quarter

Here the time variable Quarter is coded so that 
Quarter � 1 corresponds to first quarter 2005, 
Quarter � 24 corresponds to fourth quarter 2010, and
the others fall in between. Forecast the actual (not
deseasonalized) values for the four quarters of 2011.

61. The file P12_61.xlsx contains monthly data on the
number of nonfarm hires in the U.S. since 2000.
a. What evidence is there that seasonality is important

in this series? Find seasonal indexes (by any
method you like) and state briefly what they mean.

b. Forecast the next 12 months by using a linear trend
on the seasonally adjusted data. State briefly the
steps you use to obtain this type of forecast. Then
give the final RMSE, MAPE, and forecast for the
next month. Show numerically how you could
replicate this forecast (i.e., explain in words how
the package uses its estimated model to get the
next month’s forecast).

12.9 Seasonal Models 733

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



734 Chapter 12 Time Series Analysis and Forecasting

62. Quarterly sales for a department store over a six-year
period are given in the file P12_62.xlsx.
a. Use multiple regression to develop an equation that

can be used to predict future quarterly sales. (Hint:
Use dummy variables for the quarters and a time
variable for the quarter number, 1 to 24.)

b. Letting Yt be the sales during quarter t, discuss how
to estimate the following equation for this series.

Here X1 is a dummy for first quarters, X2 is a dummy
for second quarters, and X3 is a dummy for third
quarters.
c. Interpret the results from part b.
d. Which model appears to yield better predictions for

sales, the one in part a or the one in part b?

63. A shipping company is attempting to determine how
its shipping costs for a month depend on the number
of units shipped during a month. The number of units
shipped and total shipping cost for the last 15 months
are given in the file P12_63.xlsx.
a. Determine a relationship between units shipped

and monthly shipping cost.
b. Plot the errors for the predictions in order of time

sequence. Is there any unusual pattern?
c. It turns out that there was a trucking strike during

months 11 through 15, and you believe that this
might have influenced shipping costs. How can the
answer to part a be modified to account for the
effect of the strike? After accounting for this effect,
does the unusual pattern in part b disappear?

Level B

64. Consider a monthly series of air conditioner (AC)
sales. In the discussion of Winters’ method, a monthly
seasonality of 0.80 for January, for example, means
that during January, AC sales are expected to be 80%
of the sales during an average month. An alternative
approach to modeling seasonality, called an additive
model, is to let the seasonality factor for each month
represent how far above average AC sales are during
the current month. For instance, if SJan � �50, then
AC sales during January are expected to be 50 fewer
than AC sales during an average month. (This is 50
ACs, not 50%.) Similarly, if SJuly � 90, then AC sales
during July are expected to be 90 more than AC sales
during an average month. Let

St � Seasonality for month t after observing month t
demand

Lt � Estimate of level after observing month t
demand

Tt � Estimate of trend after observing month t
demand

Then the Winters’ method equations given in the text
should be modified as follows:

Lt � �(I) � (1 � �)(Lt�1 � Tt�1)

Tt � �(Lt � Lt�1) � (1 � �)Tt�1

St � 	(II) � (1 � 	)St�12

a. What should (I) and (II) be?
b. Suppose that month 13 is January, L12 � 30, 

T12 � �3, S1 � �50, and S2 � �20. Let 
� � 	 � � � 0.5. Suppose 12 ACs are sold during
month 13. At the end of month 13, what is the
forecast for AC sales during month 14 using this
additive model?

65. Winters’ method assumes a multiplicative seasonality
but an additive trend. For example, a trend of 5 means
that the level will increase by five units per period.
Suppose that there is actually a multiplicative trend.
Then (ignoring seasonality) if the current estimate of
the level is 50 and the current estimate of the trend is
1.2, the forecast of demand increases by 20% per
period. So the forecast demand for the next period is
50(1.2) and forecast demand for two periods in the
future is 50(1.2)2. If you want to use a multiplicative
trend in Winters’ method, you should use the
following equations (assuming a period is a month):

a. What should (I) and (II) be?
b. Suppose that you are working with monthly data

and month 12 is December, month 13 is January,
and so on. Also, suppose that L12 � 100, T12 � 1.2,
S1 � 0.90, S2 � 0.70, and S3 � 0.95. If you have
just observed Y13 � 200, what is the forecast for Y15
using � � � � 	 � 0.5 and a multiplicative trend?

66. Consider the file P12_59.xlsx, which contains total
monthly U.S. retail sales data. Does a regression
approach for estimating seasonality provide forecasts
that are as accurate as those provided by (a) Winters’
method and (b) the ratio-to-moving-average method?
Compare the summary measures of forecast errors
associated with each method for deseasonalizing this
time series. Summarize the results of these comparisons.

67. The file P12_56.xlsx contains monthly time series
data for total U.S. retail sales of building materials
(which includes retail sales of building materials,
hardware and garden supply stores, and mobile home
dealers). Does a regression approach for estimating
seasonality provide forecasts that are as accurate as
those provided by (a) Winters’ method and (b) the
ratio-to-moving-average method? Compare the
summary measures of forecast errors associated with
each method for deseasonalizing the given time series.
Summarize the results of these comparisons.

St = g¢Yt

Lt
≤ + (1 - g)St-12

Tt = b(II) + (I - b)Tt-1

Lt = a¢ Yt

St-12
≤ + (1 - a)(I)

Yt = abt
1b2

X1b3
X2b4

X3
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12.10 CONCLUSION

We have covered a lot of ground in this chapter. Because forecasting is such an important
activity in business, it has received a tremendous amount of attention by both academics
and practitioners. All of the methods discussed in this chapter—and more—are actually
used, often on a day-to-day basis. There is really no point in arguing which of these meth-
ods is best. All of them have their strengths and weaknesses. The most important point is
that when they are applied properly, they have all been found to be useful in real business
situations.

Summary of Key Terms

Term Explanation Excel Page Equation
Extrapolation Forecasting methods where only past 672
methods values of a variable (and possibly time 

itself) are used to forecast future values

Causal (or Forecasting methods based on regression, 672
econometric) where other time series variables are 
methods used as explanatory variables

Trend A systematic increase or decrease of 674
a time series variable through time

Seasonality A regular pattern of ups and downs based 675
onthe season of the year, typically months 
or quarters

Cyclic variation An irregular pattern of ups and downs 675
caused by business cycles

Noise (or random The unpredictable ups and downs of a time 676
variation) series variable

Forecast error The difference between the actual value 677
and the forecast

Mean absolute The average of the absolute forecast errors StatTools/ Time 677 12.2
error (MAE) Series & Forecasting/

Forecast

Root mean square The square root of the average of the StatTools/ Time 677 12.3
error (RMSE) squared forecast errors Series & Forecasting/

Forecast

Mean absolute The average of the absolute percentage StatTools/ Time 677 12.4
percentage error forecast errors Series& Forecasting/
(MAPE) Forecast

Runs test A test of whether the forecast errors are StatTools/ Time 681
random noise Series& Forecasting/ 

Runs Test for 
Randomness

Autocorrelations Correlations of a time series variable with StatTools/ Time 683
lagged versions of itself Series & Forecasting/

Autocorrelation

Correlogram A bar chart of autocorrelations at different StatTools/ Time 684
lags Series & Forecasting/

Autocorrelation

(continued)
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Summary of Key Terms (Continued)

Term Explanation Excel Page Equation
Linear trend  A regression model where a time series StatTools/Regression 687 12.6
model variable changes by a constant amount & Classification/

each time period Regression

Exponential trend A regression model where a time series StatTools/ Regression 690 12.7
model variable changes by a constant percentage & Classification/ 

each time period Regression

Random walk  A model indicating that the differences 695 2.9�12.11
model between adjacent observations of a time 

series variable are constant except for 
random noise

Autoregression  A regression model where the only StatTools/ Regression 699
model explanatory variables are lagged values & Classification/

of the dependent variable (and possibly Regression
other time series variables or their lags)

Moving averages A forecasting model where the average of StatTools/ Time 704
model several past observations is used to forecast Series & Forecasting/

the next observation Forecast

Span The number of observations in each average StatTools/ Time 704
of a moving averages model Series & Forecasting/

Forecast

Exponential A class of forecasting models where StatTools/ Time 710
smoothing forecasts are based on weighted averages Series & Forecasting/ 
models of previous observations, giving more  Forecast

weight to more recent observations

Smoothing  Constants between 0 and 1 that prescribe StatTools/ Time  710
constants the weight attached to previous observations Series & Forecasting/ 

and hence the smoothness of the series of Forecast
forecasts

Simple  An exponential smoothing model useful for StatTools/ Time  711 12.12�12.15
exponential time series with no prominent trend or Series & Forecasting/ 
smoothing seasonality Forecast

Holt’s method An exponential smoothing model useful for StatTools/ Time  715 12.16�12.18
time series with trend but no seasonality Series & Forecasting/

Forecast

Winters’ method An exponential smoothing model useful for StatTools/ Time Series 721 12.19�12.22
time series with seasonality (and possibly & Forecasting/ Forecast
trend)

Deseasonalizing A method for removing the seasonal StatTools/ Time  725
component from a time series Series& Forecasting/ 

Forecast

Ratio-to-moving- A method for deseasonalizing a time series, so StatTools/ Time 725
averages method that some other method can then be used to Series & Forecasting/

forecast the deseasonalized series Forecast

Dummy variables A regression-based method for forecasting StatTools/ Regression 729
for seasonality seasonality, where dummy variables are & Classification/ 

used for the seasons Regression
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P R O B L E M S

Conceptual Questions

C.1. “A truly random series will likely have a very small
number of runs.” Is this statement true or false?
Explain your choice.

C.2. Distinguish between a correlation and an
autocorrelation. How are these measures similar?
How are they different?

C.3. What is the relationship between the random walk
model and an autoregression model, if any?

C.4. Under what conditions would you prefer a simple
exponential smoothing model to the moving
averages method for forecasting a time series?

C.5. Is it more appropriate to use an additive or a
multiplicative model to forecast seasonal data?
Summarize the difference(s) between these two
types of seasonal models.

C.6. Explain why autocorrelations are so important in
time series analysis. (Note that more advanced books
on time series analysis investigate autocorrelations
much more than we have done here.)

C.7. Suppose that monthly data on some time series
variable exhibits a clear upward trend but no
seasonality. You decide to use moving averages, with
any appropriate span. Will there tend to be a
systematic bias in your forecasts? Explain why or
why not.

C.8. Suppose that monthly data on some time series
variable exhibits obvious seasonality. Can you use
moving averages, with any appropriate span, to track
the seasonality well? Explain why or why not.

C.9. Suppose that quarterly data on some time series
variable exhibits obvious seasonality, although the
seasonal pattern varies somewhat from year to year.
Which method do you believe will work best: Winters’
method or regression with dummy variables for quarter
(and possibly a time variable for trend)? Why?

C.10. Suppose you have three times series variables and
you want to forecast the third one with an
appropriate regression equation. You think that
lagged values of all three variables might be useful
explanatory variables in the regression equation.
Explain how you could check the plausibility of this
with appropriate correlations. If you find any fairly
large correlations, explain how you would perform
the appropriate regression with StatTools.

C.11. Most companies that use (any version of) exponen-
tial smoothing use fairly small smoothing constants
such as 0.1 or 0.2. Explain why they don’t tend to
use larger values.

Level A

68. The file P12_68.xlsx contains monthly data on
consumer revolving credit (in millions of dollars)
through credit unions.
a. Use these data to forecast consumer revolving

credit through credit unions for the next 12 months.
Do it in two ways. First, fit an exponential trend to
the series. Second, use Holt’s method with
optimized smoothing constants.

b. Which of these two methods appears to provide
the best forecasts? Answer by comparing their
MAPE values.

69. The file P12_69.xlsx contains net sales (in millions of
dollars) for Procter & Gamble.
a. Use these data to predict Procter & Gamble net

sales for each of the next two years. You need
consider only a linear and exponential trend, but
you should justify the equation you choose.

b. Use your answer from part a to explain how your
predictions of Procter & Gamble net sales increase
from year to year.

c. Are there any outliers?
d. You can be approximately 95% sure that Procter &

Gamble net sales in the year following next year
will be between what two values?

70. The file P12_70.xlsx lists annual revenues (in millions
of dollars) for Nike. Forecast the company’s revenue
in each of the next two years with a linear or
exponential trend. Are there any outliers in your
predictions for the observed period?

71. The file P11_44.xlsx contains data on pork sales. Price is
in dollars per hundred pounds sold, quantity sold is in 
billions of pounds, per capita income is in dollars, U.S.
population is in millions, and GDP is in billions of dollars.
a. Use these data to develop a regression equation that

can be used to predict the quantity of pork sold
during future periods. Is autocorrelation of
residuals a problem?

b. Suppose that during each of the next two quarters,
price is $45, U.S. population is 240, GDP is 2620,
and per capita income is $10,000. (All of these are
expressed in the units described above.) Predict the
quantity of pork sold during each of the next two
quarters.

c. Use Winters’ method to develop a forecast of pork
sales during the next two quarters. Does it appear
to provide better (or different) predictions than the
multiple regression in part a?

72. The file P12_72.xlsx contains data on a motel chain’s
revenue and advertising.
a. Use these data and multiple regression to make

predictions of the motel chain’s revenues during
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738 Chapter 12 Time Series Analysis and Forecasting

the next four quarters. Assume that advertising
during each of the next four quarters is $50,000.
(Hint: Try using advertising, lagged by one quarter,
as an explanatory variable.)

b. Use simple exponential smoothing to make
predictions for the motel chain’s revenues during
the next four quarters.

c. Use Holt’s method to make forecasts for the motel
chain’s revenues during the next four quarters.

d. Use Winters’ method to determine predictions for
the motel chain’s revenues during the next four
quarters.

e. Which of these forecasting methods would you
expect to be the most accurate for these data?

73. The file P12_73.xlsx contains data on monthly U.S.
permits for new housing units (in thousands of houses).
a. Using Winters’ method, find values of �, �, and 	

that yield an RMSE as small as possible. Does this
method track the housing crash in recent years?

b. Although we have not discussed autocorrelation for
smoothing methods, good forecasts derived from
smoothing methods should exhibit no substantial
autocorrelation in their forecast errors. Is this true
for the forecasts in part a?

c. At the end of the observed period, what is the
forecast of housing sales during the next few
months?

74. Let Yt be the sales during month t (in thousands of
dollars) for a photography studio, and let Pt be the
price charged for portraits during month t. The data
are in the file P11_45.xlsx. Use regression to fit the
following model to these data:

Yt � a � b1Yt�1 � b2Pt � et

This equation indicates that last month’s sales and the
current month’s price are explanatory variables. The
last term, et, is an error term.
a. If the price of a portrait during month 21 is $10,

what would you predict for sales in month 21?
b. Does there appear to be a problem with

autocorrelation of the residuals?

Level B

75. The file P12_75.xlsx contains five years of monthly
data for a particular company. The first variable is Time
(1 to 60). The second variable, Sales1, contains data on
sales of a product. Note that Sales1 increases linearly
throughout the period, with only a minor amount of
noise. (The third variable, Sales2, is discussed and used
in the next problem.) For this problem use the Sales1
variable to see how the following forecasting methods
are able to track a linear trend.
a. Forecast this series with the moving average

method with various spans such as 3, 6, and 12.
What can you conclude?

b. Forecast this series with simple exponential
smoothing with various smoothing constants such
as 0.1, 0.3, 0.5, and 0.7. What can you conclude?

c. Now repeat part b with Holt’s exponential
smoothing method, again for various smoothing
constants. Can you do significantly better than in
parts a and b?

d. What can you conclude from your findings in parts
a, b, and c about forecasting this type of series?

76. The Sales2 variable in the file from the previous
problem was created from the Sales1 variable by
multiplying by monthly seasonal factors. Basically, the
summer months are high and the winter months are
low. This might represent the sales of a product that
has a linear trend and seasonality.
a. Repeat parts a, b, and c from the previous problem

to see how well these forecasting methods can deal
with trend and seasonality.

b. Now use Winters’ method, with various values of
the three smoothing constants, to forecast the
series. Can you do much better? Which smoothing
constants work well?

c. Use the ratio-to-moving-average method, where
you first deseasonalize the series and then forecast
(by any appropriate method) the deseasonalized
series. Does this perform as well as, or better than,
Winters’ method?

d. What can you conclude from your findings in parts
a, b, and c about forecasting this type of series?

77. The file P12_77.xlsx contains monthly time series
data on corporate bond yields. These are averages of
daily figures, and each is expressed as an annual rate.
The variables are:
■ Yield AAA: average yield on AAA bonds
■ Yield BAA: average yield on BAA bonds

If you examine either Yield variable, you will notice
that the autocorrelations of the series are not only large
for many lags, but that the lag 1 autocorrelation of the
differences is significant. This is very common. It
means that the series is not a random walk and that it
is probably possible to provide a better forecast than
the naive forecast from the random walk model. Here
is the idea. The large lag 1 autocorrelation of the
differences means that the differences are related to
the first lag of the differences. This relationship can be
estimated by creating the difference variable and a lag
of it, then regressing the former on the latter, and
finally using this information to forecast the original
Yield variable.
a. Verify that the autocorrelations are as described,

and form the difference variable and the first lag of
it. Call these DYield and L1DYield (where D
means difference and L1 means first lag).

b. Run a regression with DYield as the dependent
variable and L1DYield as the single explanatory
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variable. In terms of the original variable Yield,
this equation can be written as

Yieldt � Yieldt�1 � a � b(Yieldt�1 � Yieldt�2)

Solving for Yieldt is equivalent to the following
equation that can be used for forecasting:

Yieldt � a � (1 � b)Yieldt�1 � bYieldt�2

Try it—that is, try forecasting the next month from the
known last two months’ values. How might you
forecast values two or three months from the last
observed month? (Hint: If you do not have an
observed value to use in the right side of the equation,
use a forecast value.)
c. The autocorrelation structure led us to the equation

in part b. That is, the autocorrelations of the
original series took a long time to die down, so we
looked at the autocorrelations of the differences,
and the large spike at lag 1 led to regressing DYield
on L1DYield. In turn, this ultimately led to an
equation for Yieldt in terms of its first two lags.
Now see what you would have obtained if you had
tried regressing Yieldt on its first two lags in the
first place—that is, if you had used regression to
estimate the equation

Yieldt � a � b1Yieldt�1 � b2Yieldt�2

When you use multiple regression to estimate this
equation, do you get the same equation as in part b?

78. The file P12_78.xlsx lists monthly and annual values
of the average surface air temperature of the earth (in
degrees Celsius). (Actually, the data are indexes,
relative to the period 1951�1980 where the average
temperature was about 14 degrees Celsius. So if you
want the actual temperatures, you can add 14 to all
values.) A look at the time series shows a gradual
upward trend, starting with negative values and ending

with (mostly) positive values. This might be used to
support the claim of global warming. For this problem,
use only the annual averages in column N.
a. Is this series a random walk? Explain.
b. Regardless of your answer in part a, use a random

walk model to forecast the next value (2010) of the
series. What is your forecast, and what is an
approximate 95% forecast interval, assuming
normally distributed forecast errors?

c. Forecast the series in three ways: (i) simple
exponential smoothing (� � 0.35), (ii) Holt’s
method (� � 0.5, � � 0.1), and (iii) simple
exponential smoothing (� � 0.3) on trend-
adjusted data, that is, the residuals from regressing
linearly versus time. (These smoothing constants
are close to optimal.) For each of these, list the
MAPE, the RMSE, and the forecast for next year.
Also, comment on any “problems” with forecast
errors from any of these three approaches. Finally,
compare the qualitative features of the three
forecasting methods. For example, how do their
short-run or longer-run forecasts differ? Is any one
of the methods clearly superior to the others?

d. Does your analysis predict convincingly that global
warming has been occurring? Explain.

79. The file P12_79.xlsx contains data on mass layoff
events in all industries in the U.S. (See the file for an
explanation of how mass layoff events are counted.)
There are two versions of the data: nonseasonally
adjusted and seasonally adjusted. Presumably,
seasonal factors can be found by dividing the
nonseasonally adjusted values by the seasonally
adjusted values. For example, the seasonal factor for
April 1995 is 1431/1492�0.959. How well can you
replicate these seasonal factors with appropriate
StatTools analyses?
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C A S E

The Eastland Plaza Branch of the Indiana

University Credit Union was having trouble

getting the correct staffing levels to match

customer arrival patterns. On some days, the

number of tellers was too high relative to the

customer traffic, so that tellers were often idle. On

other days, the opposite occurred. Long customer

waiting lines formed because the relatively few

tellers could not keep up with the number of

customers.The credit union manager, James

Chilton, knew that there was a problem, but he had

little of the quantitative training he believed would

be necessary to find a better staffing solution. James

figured that the problem could be broken down

into three parts. First, he needed a reliable forecast

of each day’s number of customer arrivals. Second,

he needed to translate these forecasts into staffing

levels that would make an adequate trade-off

between teller idleness and customer waiting.Third,

he needed to translate these staffing levels into

individual teller work assignments—who should

come to work when.

The last two parts of the problem require

analysis tools (queueing and scheduling) that we 

have not covered. However, you can help James with

the first part—forecasting.The file Credit Union

Arrivals.xlsx lists the number of customers

entering this credit union branch each day of the past

year. It also lists other information: the day of the

week, whether the day was a staff or faculty payday,

and whether the day was the day before or after a

holiday. Use this data set to develop one or more

forecasting models that James could use to help

solve his problem. Based on your model(s), make any

recommendations about staffing that appear

reasonable. ■

12.1 ARRIVALS AT THE CREDIT UNION
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C A S E 12.2 FORECASTING WEEKLY SALES AT AMANTA

Amanta Appliances sells two styles of

refrigerators at more than 50 locations in the

Midwest.The first style is a relatively expensive

model, whereas the second is a standard, less

expensive model.Although weekly demand for these

two products is fairly stable from week to week,

there is enough variation to concern management at

Amanta.There have been relatively unsophisticated

attempts to forecast weekly demand, but they haven’t

been very successful. Sometimes demand (and the

corresponding sales) are lower than forecast, so that

inventory costs are high. Other times the forecasts

are too low.When this happens and on-hand

inventory is not sufficient to meet customer demand,

Amanta requires expedited shipments to keep

customers happy—and this nearly wipes out

Amanta’s profit margin on the expedited units.8

Profits at Amanta would almost certainly increase if

demand could be forecast more accurately.

Data on weekly sales of both products appear in

the file Amanta Sales.xlsx. A time series chart of

the two sales variables indicates what Amanta

management expected—namely, there is no evidence

of any upward or downward trends or of any

seasonality. In fact, it might appear that each series is an

unpredictable sequence of random ups and downs. But

is this really true? Is it possible to forecast either series,

with some degree of accuracy, with an extrapolation

method (where only past values of that series are used

to forecast current and future values)? Which method

appears to be best? How accurate is it? Also, is it

possible, when trying to forecast sales of one product,

to somehow incorporate current or past sales of the

other product in the forecast model? After all, these

products might be “substitute” products, where high

sales of one go with low sales of the other, or they

might be complementary products, where sales of the

two products tend to move in the same direction. ■

8Because Amanta uses expediting when necessary, its sales each
week are equal to its customer demands. Therefore, the terms
“demand” and “sales” are used interchangeably.
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Introduction to Optimization
Modeling

C H A P T E R

OPTIMIZING MANUFACTURING OPERATIONS AT
GE PLASTICS

The General Electric Company (GE) is a global organization that must

deliver products to its customers anywhere in the world in the right

quantity, at the right time, and at a reasonable cost. One arm of GE is GE

Plastics (GEP), a $5 billion business that supplies plastics and raw materials to

such industries as automotive, appliance, computer, and medical equipment.

(GEP has now been reorganized into GE Advanced Materials [GEAM].) As

described in Tyagi et al. (2004), GEP practiced a “pole-centric” manufacturing

approach, making each product in the geographic area (Americas, Europe, or

Pacific) where it was to be delivered. However, it became apparent in the early

2000s that this approach was leading to higher distribution costs and mismat-

ches in capacity as more of GEP’s demand was originating in the Pacific region.

Therefore, the authors of the article were asked to develop a global optimi-

zation model to aid GEP’s manufacturing planning. Actually, GEP consists of

seven major divisions, distinguished primarily by the capability of their products

to withstand heat.The fastest growing of these divisions, the high performance

polymer (HPP) division, was chosen as the pilot for the new global approach.

©
 K

e
ith

 D
a
n
n
e
m

ill
e
r/

C
o
rb

is

13

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



All GEP divisions operate as two-echelon manufacturing systems.The first echelon

consists of resin plants, which convert raw material stocks into resins and ship them to the

second echelon, the finishing plants.These latter plants combine the resins with additives to

produce various grades of the end products. Each physical plant consists of several “plant

lines” that operate independently, and each of these plant lines is capable of producing

multiple products. All end products are then shipped to GE Polymerland warehouses

throughout the world. GE Polymerland is a wholly owned subsidiary that acts as the

commercial front for GEP. It handles all customer sales and deliveries from its network of

distribution centers and warehouses in more than 20 countries. Because of its experience

with customers, GE Polymerland is able to aid the GEP divisions in their planning processes

by supplying forecasts of demands and prices for the various products in the various global

markets.These forecasts are key inputs to the optimization model.

The optimization model itself attempts to maximize the total contribution margin

over a planning horizon, where the contribution margin equals revenues minus the sum

of manufacturing, material, and distribution costs.There are demand constraints,

manufacturing capacity constraints, and network flow constraints.The decision variables

include (1) the amount of resin produced at each resin plant line that will be used at

each finishing plant line, and (2) the amount of each end product produced at each

finishing plant line that will be shipped to each geographic region.The completed model

has approximately 3100 decision variables and 1100 constraints and is completely linear.

It was developed and solved in Excel (using LINGO, a commercial optimization solver,

not Excel’s Solver add-in), and execution time is very fast—about 10 seconds.

The demand constraints are handled in an interesting way.The authors of the study

constrain manufacturing to produce no more than the forecasted demands, but they do

not force manufacturing to meet these demands. Ideally, manufacturing would meet

demands exactly. However, because of its rapid growth, capacity at HPP in 2002 appeared

(at the time of the study) to be insufficient to meet the demand in 2005 and later years.

The authors faced this challenge in two ways. First, in cases where demand exceeds

capacity, they let their model of maximizing total contribution margin determine which

demands to satisfy.The least profitable demands are simply not met. Second, the authors

added a new resin plant to their model that would come on line in the year 2005 and

provide much needed capacity.They ran the model several times for the year 2005 (and

later years), experimenting with the location of the new plant.Although some of the

details are withheld in the article for confidentiality reasons, the authors indicate that

senior management approved the investment of a Europe-based plant that would cost

more than $200 million in plant and equipment.This plant was planned to begin

operations in 2005 and ramp up to full production capacity by 2007.

The decision support system developed in the study has been a success at the HPP

division since its introduction in 2002. Although the article provides no specific dollar

gains from the use of the model, it is noteworthy that the other GEP divisions are

adopting similar models for their production planning. ■
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13.1 INTRODUCTION

In this chapter, we introduce spreadsheet optimization, one of the most powerful and flexible
methods of quantitative analysis. The specific type of optimization we will discuss here is
linear programming (LP). LP is used in all types of organizations, often on a daily basis, to
solve a wide variety of problems. These include problems in labor scheduling, inventory
management, selection of advertising media, bond trading, management of cash flows, oper-
ation of an electrical utility’s hydroelectric system, routing of delivery vehicles, blending in
oil refineries, hospital staffing, and many others. The goal of this chapter is to introduce the
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basic elements of LP: the types of problems it can solve, how LP problems can be modeled
in Excel, and how Excel’s powerful Solver add-in can be used to find optimal solutions. Then
in the next chapter we will examine a variety of LP applications, and we will also look at
applications of integer and nonlinear programming, two important extensions of LP.

13.2 INTRODUCTION TO OPTIMIZATION

Before we discuss the details of LP modeling, it is useful to discuss optimization in general. All
optimization problems have several common elements. They all have decision variables, the
variables whose values the decision maker is allowed to choose. Either directly or indirectly, the
values of these variables determine such outputs as total cost, revenue, and profit. Essentially,
they are the variables a company or organization must know to function properly; they deter-
mine everything else. All optimization problems have an objective function (objective, for
short) to be optimized—maximized or minimized.1 Finally, most optimization problems have
constraints that must be satisfied. These are usually physical, logical, or economic restrictions,
depending on the nature of the problem. In searching for the values of the decision variables
that optimize the objective, only those values that satisfy all of the constraints are allowed.

Excel uses its own terminology for optimization, and we will use it as well. Excel refers
to the decision variables as the changing cells. These cells must contain numbers that are
allowed to change freely; they are not allowed to contain formulas. Excel refers to the objec-
tive as the objective cell. There can be only one objective cell, which could contain profit, total
cost, total distance traveled, or others, and it must be related through formulas to the changing
cells. When the changing cells change, the objective cell should change accordingly.

The changing cells contain the values of the decision variables.

The objective cell contains the objective to be minimized or maximized.

The constraints impose restrictions on the values in the changing cells.

Finally, there must be appropriate cells and cell formulas that operationalize the con-
straints. For example, one constraint might indicate that the amount of labor used can be no
more than the amount of labor available. In this case there must be cells for each of these two
quantities, and typically at least one of them (probably the amount of labor used) will be related
through formulas to the changing cells. Constraints can come in a variety of forms. One very
common form is nonnegativity. This type of constraint states that changing cells must have
nonnegative (zero or positive) values. Nonnegativity constraints are usually included for physi-
cal reasons. For example, it is impossible to produce a negative number of automobiles.

Nonnegativity constraints imply that changing cells must contain nonnegative values.

There are basically two steps in solving an optimization problem. The first step is the
model development step. Here you decide what the decision variables are, what the objec-
tive is, which constraints are required, and how everything fits together. If you are devel-
oping an algebraic model, you must derive the correct algebraic expressions. If you are
developing a spreadsheet model, the main focus of this book, you must relate all variables
with appropriate cell formulas. In particular, you must ensure that your model contains for-
mulas that relate the changing cells to the objective cell and formulas that operationalize
the constraints. This model development step is where most of your effort goes.

1Actually, some optimization models are multicriteria models that try to optimize several objectives simultane-
ously. However, we will not discuss multicriteria models in this book.

Typically, most of your
effort goes into the
model development
step.

13.2 Introduction to Optimization 747
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The second step in any optimization model is to optimize. This means that you must sys-
tematically choose the values of the decision variables that make the objective as large (for
maximization) or small (for minimization) as possible and cause all of the constraints to be
satisfied. Some terminology is useful here. Any set of values of the decision variables that
satisfies all of the constraints is called a feasible solution. The set of all feasible solutions is
called the feasible region. In contrast, an infeasible solution is a solution that violates at
least one constraint. Infeasible solutions are disallowed. The desired feasible solution is the
one that provides the best value—minimum for a minimization problem, maximum for a
maximization problem—for the objective. This solution is called the optimal solution.
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Although most of your effort typically goes into the model development step, much of
the published research in optimization has been about the optimization step. Algorithms
have been devised for searching through the feasible region to find the optimal solution.
One such algorithm is called the simplex method. It is used for linear models. There are
other more complex algorithms used for other types of models (those with integer decision
variables and/or nonlinearities).

We will not discuss the details of these algorithms. They have been programmed into
the Excel’s Solver add-in. All you need to do is develop the model and then tell Solver
what the objective cell is, what the changing cells are, what the constraints are, and what
type of model (linear, integer, or nonlinear) you have. Solver then goes to work, finding the
best feasible solution with the appropriate algorithm. You should appreciate that if you
used a trial-and-error procedure, even a clever and fast one, it could take hours, weeks, or
even years to complete. However, by using the appropriate algorithm, Solver typically
finds the optimal solution in a matter of seconds.

Before concluding this discussion, we mention that there is really a third step in the
optimization process: sensitivity analysis. You typically choose the most likely values of
input variables, such as unit costs, forecasted demands, and resource availabilities, and
then find the optimal solution for these particular input values. This provides a single
“answer.” However, in any realistic situation, it is wishful thinking to believe that all of the
input values you use are exactly correct. Therefore, it is useful—indeed, mandatory in
most applied studies—to follow up the optimization step with what-if questions. What if
the unit costs increased by 5%? What if forecasted demands were 10% lower? What if
resource availabilities could be increased by 20%? What effects would such changes have
on the optimal solution? This type of sensitivity analysis can be done in an informal man-
ner or it can be highly structured. Fortunately, as with the optimization step itself, good
software allows you to obtain answers to various what-if questions quickly and easily.

13.3 A TWO-VARIABLE PRODUCT MIX MODEL

We begin with a very simple two-variable example of a product mix problem. This is a type
of problem frequently encountered in business where a company must decide its product
mix—how much of each of its potential products to produce—to maximize its net profit.
You will see how to model this problem algebraically and then how to model it in Excel.

A feasible solution is a solution that satisfies all of the constraints.

The feasible region is the set of all feasible solutions.

An infeasible solution violates at least one of the constraints.

The optimal solution is the feasible solution that optimizes the objective.

An algorithm is
basically a plan of
attack. It is a
prescription for
carrying out the steps
required to achieve
some goal, such as
finding an optimal
solution. An algorithm
is typically translated
into a computer
program that does the
work.
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You will also see how to find its optimal solution with Solver. Next, because it contains
only two decision variables, you will see how it can be solved graphically. Although this
graphical solution is not practical for most realistic problems, it provides useful insights
into general LP models. The final step is then to ask a number of what-if questions about
the completed model.

E X A M P L E 13.1 ASSEMBLING AND TESTING COMPUTERS

The PC Tech company assembles and then tests two models of computers, Basic and
XP. For the coming month, the company wants to decide how many of each model to

assembly and then test. No computers are in inventory from the previous month, and
because these models are going to be changed after this month, the company doesn’t want
to hold any inventory after this month. It believes the most it can sell this month are 600
Basics and 1200 XPs. Each Basic sells for $300 and each XP sells for $450. The cost of
component parts for a Basic is $150; for an XP it is $225. Labor is required for assembly
and testing. There are at most 10,000 assembly hours and 3000 testing hours available.
Each labor hour for assembling costs $11 and each labor hour for testing costs $15. Each
Basic requires five hours for assembling and one hour for testing, and each XP requires six
hours for assembling and two hours for testing. PC Tech wants to know how many of each
model it should produce (assemble and test) to maximize its net profit, but it cannot use
more labor hours than are available, and it does not want to produce more than it can sell.

Objective To use LP to find the best mix of computer models that stays within the com-
pany’s labor availability and maximum sales constraints.

Solution

In all optimization models, you are given a variety of numbers—the inputs—and you are
asked to make some decisions that optimize an objective, while satisfying all constraints.
We summarize this information in a table such as Table 13.1. We believe it is a good idea
to create such a table before diving into the modeling details. In particular, you always
need to identify the appropriate decision variables, the appropriate objective, and the con-
straints, and you should always think about the relationships between them. Without a
clear idea of these elements, it is almost impossible to develop a correct algebraic or
spreadsheet model.

Tables such as this 
one serve as a bridge
between the problem
statement and the
ultimate spreadsheet
(or algebraic) model.

Table 13.1 Variables and Constraints for Two-Variable Product Mix Model

Input variables Hourly labor costs, labor availabilities, labor required 
for each computer, costs of component parts, unit 
selling prices, and maximum sales

Decision variables (changing cells) Number of each computer model to produce 
(assemble and test)

Objective cell Total net profit
Other calculated variables Labor of each type used
Constraints Labor used Labor available,

Number produced Maximum sales…

…

The decision variables in this product mix model are fairly obvious. The company
must decide two numbers: how many Basics to produce and how many XPs to produce.
Once these are known, they can be used, along with the problem inputs, to calculate the
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number of computers sold, the labor used, and the revenue and cost. However, as you will
see with other models in this chapter and the next chapter, determining the decision vari-
ables is not always this obvious.

An Algebraic Model

In the traditional algebraic solution method, you first identify the decision variables.2 In
this small problem they are the numbers of computers to produce. We label these x1 and x2,
although any other labels would do. The next step is to write expressions for the total net
profit and the constraints in terms of the xs. Finally, because only nonnegative amounts can
be produced, explicit constraints are added to ensure that the xs are nonnegative. The
resulting algebraic model is

Maximize 80x1 � 129x2

subject to:

To understand this model, consider the objective first. Each Basic produced sells for $300, and
the total cost of producing it, including component parts and labor, is 150 � 5(11) � 1(15) 
� $220, so the profit margin is $80. Similarly, the profit margin for an XP is $129. Each profit
margin is multiplied by the number of computers produced and these products are then
summed over the two computer models to obtain the total net profit.

The first two constraints are similar. For example, each Basic requires five hours for
assembling and each XP requires six hours for assembling, so the first constraint says that the
total hours required for assembling is no more than the number available, 10,000. The third
and fourth constraints are the maximum sales constraints for Basics and XPs. Finally, nega-
tive amounts cannot be produced, so nonnegativity constraints on x1 and x2 are included.

For many years all LP problems were modeled this way in textbooks. In fact, many
commercial LP computer packages are still written to accept LP problems in essentially
this format. Since around 1990, however, a more intuitive method of expressing LP prob-
lems has emerged. This method takes advantage of the power and flexibility of spread-
sheets. Actually, LP problems could always be modeled in spreadsheets, but now with the
addition of Solver, spreadsheets have the ability to solve—that is, optimize—LP problems
as well. We use Excel’s Solver for all examples in this book.3

A Graphical Solution

When there are only two decision variables in an LP model, as there are in this product mix
model, you can solve the problem graphically. Although this graphical solution approach
is not practical in most realistic optimization models—where there are many more than
two decision variables—the graphical procedure illustrated here still yields important
insights for general LP models.

x1, x2 Ú 0

x2 … 1200

x1 … 600

x1 + 2x2 … 3000

5x1 + 6x2 … 10000

750 Chapter 13 Introduction to Optimization Modeling

Many commercial
optimization packages
require, as input, an
algebraic model of a
problem. If you ever
use one of these
packages, you will be
required to think
algebraically.

This graphical
approach works only
for problems with two
decision variables.

2This is not a book about algebraic models; the main focus is on spreadsheet modeling. However, we present
algebraic models of the examples in this chapter for comparison with the corresponding spreadsheet models.
3The Solver add-in built into Microsoft Excel was developed by a third-party software company, Frontline
Systems. This company develops much more powerful versions of Solver for commercial sales, but its standard
version built into Office suffices for us. More information about Solver software offered by Frontline is given in
a brief appendix to this chapter.
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In general, if the two decision variables are labeled x1 and x2, then the steps of the
method are to express the constraints and the objective in terms of x1 and x2, graph the
constraints to find the feasible region [the set of all pairs (x1, x2) satisfying the constraints,
where x1 is on the horizontal axis and x2 is on the vertical axis], and then move the objec-
tive through the feasible region until it is optimized.

Recall from algebra
that any line of the
form ax1 � bx2 � c
has slope �a/b. This 
is because it can be 
put into the slope�
intercept form
x2 � c/b � (a/b)x1.
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To see which feasible point maximizes the objective, it is useful to draw a sequence of lines
where, for each, the objective is a constant. A typical line is of the form 80x1 � 129x2 � c,
where c is a constant. Any such line has slope �80/129 � �0.620, regardless of the value of c.
This line is steeper than the testing hour constraint line (slope �0.5), but not as steep as the
assembling hour constraint line (slope �0.83). The idea now is to move a line with this slope up
and to the right, making c larger, until it just barely touches the feasible region. The last feasible
point that it touches is the optimal point.

Several lines with slope �0.620 are shown in Figure 13.1. The middle dotted line is
the one with the largest net profit that still touches the feasible region. The associated opti-
mal point is clearly the point where the assembling hour and XP maximum sales lines
intersect. You will eventually find (from Solver) that this point is (560,1200), but even if
you didn’t have the Solver add-in, you could find the coordinates of this point by solving
two equations (the ones for assembling hours and XP maximum sales) in two unknowns.

Again, the graphical procedure illustrated here can be used only for the simplest of LP
models, those with two decision variables. However, the type of behavior pictured in Figure 13.1
generalizes to all LP problems. In general, all feasible regions are (the multidimensional

Although limited in 
use, the graphical
approach yields the
important insight that
the optimal solution 
to any LP model is a
corner point of a
polygon.This limits the
search for the optimal
solution and makes 
the simplex method
possible.
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To do this for the product mix problem, note that the constraint on assembling labor hours
can be expressed as 5x1 � 6x2 � 10000. To graph this, consider the associated equality
(replacing � with �) and find where the associated line crosses the axes. Specifically, when 
x1 � 0, then x2 � 10000/6 � 1666.7, and when x2 � 0, then x1 � 10000/5 � 2000. This pro-
vides the line labeled “assembling hour constraint” in Figure 13.1. It has slope �5/6 � �0.83.
The set of all points that satisfy the assembling hour constraint includes the points on this line
plus the points below it, as indicated by the arrow drawn from the line. (The feasible points are
below the line because the point (0, 0) is obviously below the line, and (0, 0) clearly satisfies
the assembly hour constraint.) Similarly, the testing hour and maximum sales constraints can
be graphed as shown in the figure. The points that satisfy all three of these constraints and are
nonnegative comprise the feasible region, which is below the dark lines in the figure.
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versions of) polygons. That is, they are bounded by straight lines (actually hyperplanes) that
intersect at several corner points. There are five corner points in Figure 13.1, three of which
are on the axes. (One of them is (0,0).) When the dotted objective line is moved as far as pos-
sible toward better values, the last feasible point it touches is one of the corner points. The
actual corner point it last touches is determined by the slopes of the objective and constraint
lines. Because there are only a finite number of corner points, it suffices to search among this
finite set, not the infinite number of points in the entire feasible region.4 This insight is
largely responsible for the efficiency of the simplex method for solving LP problems.
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FUNDAMENTAL INSIGHT

Geometry of LP Models and the Simplex
Method

The feasible region in any LP model is always a multi-

dimensional version of a polygon, and the objective is

always a hyperplane, the multidimensional version of a

straight line.The objective should always be moved as

far as possible in the maximizing or minimizing direc-

tion until it just touches the edge of the feasible region.

Because of this geometry, the optimal solution is always

a corner point of the polygon.The simplex method for

LP works so well because it can search through the

finite number of corner points extremely efficiently and

recognize when it has found the best corner point.This

rather simple insight, plus its clever implementation in

software packages, has saved companies many, many

millions of dollars in the past 50 years.

A Spreadsheet Model

We now turn our focus to spreadsheet modeling. There are many ways to develop an LP
spreadsheet model. Everyone has his or her own preferences for arranging the data in the
various cells. We do not provide exact prescriptions, but we do present enough examples to
help you develop good habits. The common elements in all LP spreadsheet models are the
inputs, changing cells, objective cell, and constraints.

■ Inputs. All numerical inputs—that is, all numeric data given in the statement of the
problem—should appear somewhere in the spreadsheet. Our convention is to color
all of the input cells blue. We also try to put most of the inputs in the upper left sec-
tion of the spreadsheet. However, we sometimes violate this latter convention when
certain inputs fit more naturally somewhere else.

■ Changing cells. Instead of using variable names, such as xs, spreadsheet models use
a set of designated cells for the decision variables. The values in these changing cells
can be changed to optimize the objective. The values in these cells must be allowed
to vary freely, so there should not be any formulas in the changing cells. To designate
them clearly, our convention is to color them red.

■ Objective cell. One cell, called the objective cell, contains the value of the objective.
Solver systematically varies the values in the changing cells to optimize the value in
the objective cell. This cell must be linked, either directly or indirectly, to the chang-
ing cells by formulas. Our convention is to color the objective cell gray.5

4This is not entirely true. If the objective line is exactly parallel to one of the constraint lines, there can be multi-
ple optimal solutions—a whole line segment of optimal solutions. Even in this case, however, at least one of the
optimal solutions is a corner point.
5Our blue/red/gray color scheme shows up very effectively on a color monitor. For users of previous editions who
are used to colored borders, we find that it is easier in Excel 2007 and Excel 2010 to color the cells rather than put
borders around them.
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■ Constraints. Excel does not show the constraints directly on the spreadsheet. Instead,
they are specified in a Solver dialog box, to be discussed shortly. For example, a set
of related constraints might be specified by

B16:C16���B18:C18

This implies two separate constraints. The value in B16 must be less than or equal to the
value in B18, and the value in C16 must be less than or equal to the value in C18. We will
always assign range names to the ranges that appear in the constraints. Then a typical con-
straint might be specified as

Number_to_produce���Maximum_sales

This is much easier to read and understand. (If you find that range names take too long to cre-
ate, you certainly do not have to use them. Solver models work fine with cell addresses only.)

■ Nonnegativity. Normally, the decision variables—that is, the values in the changing
cells—must be nonnegative. These constraints do not need to be written explicitly;
you simply check an option in the Solver dialog box to indicate that the changing
cells should be nonnegative. Note, however, that if you want to constrain any other
cells to be nonnegative, you must specify these constraints explicitly.

Overview of the Solution Process

As mentioned previously, the complete solution of a problem involves three stages. In the
model development stage you enter all of the inputs, trial values for the changing cells, and
formulas relating these in a spreadsheet. This stage is the most crucial because it is here that
all of the ingredients of the model are included and related appropriately. In particular, the
spreadsheet must include a formula that relates the objective to the changing cells, either
directly or indirectly, so that if the values in the changing cells vary, the objective value
varies accordingly. Similarly, the spreadsheet must include formulas for the various con-
straints (usually their left sides) that are related directly or indirectly to the changing cells.

After the model is developed, you can proceed to the second stage—invoking Solver.
At this point, you formally designate the objective cell, the changing cells, the constraints,
and selected options, and you tell Solver to find the optimal solution. If the first stage has
been done correctly, the second stage is usually very straightforward.

The third stage is sensitivity analysis. Here you see how the optimal solution changes
(if at all) as selected inputs are varied. This often provides important insights about the
behavior of the model.

We now illustrate this procedure for the product mix problem in Example 13.1.

WHERE DO THE NUMBERS COME FROM?

Textbooks typically state a problem, including a number of input values, and proceed
directly to a solution—without saying where these input values might come from. However,
finding the correct input values can sometimes be the most difficult step in a real-world sit-
uation. (Recall that finding the necessary data is step 2 of the overall modeling process, as
discussed in Chapter 1.) There are a variety of inputs in PC Tech’s problem, some easy to
find and others more difficult. Here are some ideas on how they might be obtained.

Our coloring conventions

Color all input cells blue (appears light blue on the printed page).

Color all of the changing cells red (appears deep blue on the printed page).

Color the objective cell gray.
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■ The resource usages in rows 8 and 9, often called technological coefficients, should
be available from the production department. These people know how much labor it
takes to assemble and test these computer models.

■ The unit selling prices in row 11 have actually been chosen by PC Tech’s manage-
ment, probably in response to market pressures and the company’s own costs.

■ The maximum sales values in row 18 are probably forecasts from the marketing and
sales department. These people have some sense of how much they can sell, based on
current outstanding orders, historical data, and the prices they plan to charge.

■ The labor hour availabilities in rows 21 and 22 are probably based on the current
workforce size and possibly on new workers who could be hired in the short run.
Again, if these are regular-time hours and overtime is possible, the model would have
to be modified to include overtime.

DEVELOPING THE SPREADSHEET MODEL

The spreadsheet model appears in Figure 13.2. (See the file Product Mix 1.xlsx.) To
develop this model, use the following steps.

■ The unit costs in rows 3, 4, and 10 should be easy to obtain. (See Figure 13.2.) These
are the going rates for labor and the component parts. Note, however, that the labor
costs are probably regular-time rates. If the company wants to consider overtime
hours, then the overtime rate (and labor hours availability during overtime) would be
necessary, and the model would need to be modified.
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GFEDCBA
Assembling and tes�ng egnaRsretupmoc names used:

Hours_available =Model!$D$21:$D$22
Cost per labor hour assembling $11 Hours_used =Model!$B$21:$B$22
Cost per labor hour $15 Maximum_sales =Model!$B$18:$C$18

Number_to_produce =Model!$B$16:$C$16
Inputs for assembling and tes�ng a 52$D$!ledoM=tiforp_latoTretupmoc

Basic XP
Labor hours for 65ylbmessa
Labor hours for 21gnitset
Cost of component parts $150 $225
Selling 054$003$ecirp
Unit 921$08$nigram

Assembling, tes�ng plan (# of computers)
Basic XP

Number to 0021006ecudorp
<= <=

Maximum 0021006selas

Constraints (hours per month) Hours used Hours available
Labor availability for assembling 10200 <= 10000
Labor availability for 3000 <= 3000tes�ng

tes�ng

Net profit ($ this month) Basic XP Total
$48,000 $154,800 $202,800

Figure 13.2 Two-Variable Product Mix Model with an Infeasible Solution
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1 Inputs. Enter all of the inputs from the statement of the problem in the shaded cells as
shown.

2 Range names. Create the range names shown in columns E and F. Our convention is
to enter enough range names, but not to go overboard. Specifically, we enter enough range
names so that the setup in the Solver dialog box, to be explained shortly, is entirely in
terms of range names. Of course, you can add more range names if you like (or you can
omit them altogether). The following tip indicates a quick way to create range names.

Excel Tip Shortcut for Creating Range Names
Select a range such as A16:C16 that includes nice labels in column A and the range you
want to name in columns B and C. Then, from the Formulas ribbon, select Create from
Selection and accept the default. You automatically get the labels in cells A16 as the range
name for the range B16:C16. This shortcut illustrates the usefulness of adding concise but
informative labels next to ranges you want to name.

3 Unit margins. Enter the formula

�B11�B8*$B$3�B9*$B$4�B10

in cell B12 and copy it to cell C12 to calculate the unit profit margins for the two models.
( Enter relative/absolute addresses that allow you to copy whenever possible.)

4 Changing cells. Enter any two values for the changing cells in the Number_to_produce
range. Any trial values can be used initially; Solver eventually finds the optimal values. Note
that the two values shown in Figure 13.2 cannot be optimal because they use more assem-
bling hours than are available. However, you do not need to worry about satisfying 
constraints at this point; Solver takes care of this later on.

5 Labor hours used. To operationalize the labor availability constraints, you must cal-
culate the amounts used by the production plan. To do this, enter the formula

��SUMPRODUCT(B8:C8,Number_to_produce)

in cell B21 for assembling and copy it to cell B22 for testing. This formula is a shortcut for
the following fully written out formula:

��B8*B16��C8*C16

The SUMPRODUCT function is very useful in spreadsheet models, especially LP mod-
els, and you will see it often. Here, it multiplies the number of hours per computer by the
number of computers for each model and then sums these products over the two models.
When there are only two products in the sum, as in this example, the SUMPRODUCT
formula is not really any simpler than the written-out formula. However, imagine that
there are 50 models. Then the SUMPRODUCT formula is much simpler to enter (and
read). For this reason, use it whenever possible. Note that each range in this function,
B8:C8 and Number_to_produce, is a one-row, two-column range. It is important in the
SUMPRODUCT function that the two ranges be exactly the same size and shape.

6 Net profits. Enter the formula

��B12*B16

in cell B25, copy it to cell C25, and sum these to get the total net profit in cell D25. This
latter cell is the objective to maximize. Note that if you didn’t care about the net profits
for the two individual models, you could calculate the total net profit with the formula

��SUMPRODUCT(B12:C12,Number_to_produce)

As you see, the SUMPRODUCT function appears once again. It and the SUM function are
the most used functions in LP models.

At this stage, it is
pointless to try to
outguess the optimal
solution. Any values in
the changing cells will
suffice.

The “linear” in linear
programming is all
about sums of
products.Therefore,
the SUMPRODUCT
function is natural 
and should be used
whenever possible.
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Experimenting with Possible Solutions

The next step is to specify the changing cells, the objective cell, and the constraints in a
Solver dialog box and then instruct Solver to find the optimal solution. However, before
you do this, it is instructive to try a few guesses in the changing cells. There are two rea-
sons for doing so. First, by entering different sets of values in the changing cells, you can
confirm that the formulas in the other cells are working correctly. Second, this experimen-
tation can help you to develop a better understanding of the model.

For example, the profit margin for XPs is much larger than for Basics, so you might
suspect that the company will produce only XPs. The most it can produce is 1200 (maxi-
mum sales), and this uses fewer labor hours than are available. This solution appears in
Figure 13.3. However, you can probably guess that it is far from optimal. There are still
many labor hours available, so the company could use them to produce some Basics and
make more profit.

You can continue to try different values in the changing cells, attempting to get as
large a total net profit as possible while staying within the constraints. Even for this small
model with only two changing cells, the optimal solution is not totally obvious. You can
only imagine how much more difficult it is when there are hundreds or even thousands of
changing cells and many constraints. This is why software such as Excel’s Solver is
required. Solver uses a quick and efficient algorithm to search through all feasible solu-
tions (or more specifically, all corner points) and eventually find the optimal solution.
Fortunately, it is quite easy to use, as we now explain.

756 Chapter 13 Introduction to Optimization Modeling

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

GFEDCBA
Assembling and tes�ng computers Range names used:

Hours_available =Model!$D$21:$D$22
Cost per labor hour assembling $11 Hours_used =Model!$B$21:$B$22
Cost per labor hour $15 Maximum_sales =Model!$B$18:$C$18

Number_to_produce =Model!$B$16:$C$16
Inputs for assembling and tes�ng a 52$D$!ledoM=tiforp_latoTretupmoc

Basic XP
Labor hours for 65ylbmessa
Labor hours for 21gnitset
Cost of component parts $150 $225
Selling 054$003$ecirp
Unit 921$08$nigram

Assembling, tes�ng plan (# of computers)
Basic XP

Number to 00210ecudorp
<= <=

Maximum 0021006selas

Constraints (hours per month) Hours used Hours available
Labor availability for assembling 7200 <= 10000
Labor availability for 2400 <= 3000tes�ng

tes�ng

Net profit ($ this month) Basic XP Total
$0 $154,800 $154,800

Figure 13.3 Two-Variable Product Mix Model with a Suboptimal Solution
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USING SOLVER

To invoke Excel’s Solver, select Solver from the Data ribbon. (If there is no such item on
your PC, you need to load Solver. To do so, click on the Office button, then Excel Options,
then Add-Ins, and then Go at the bottom of the dialog box. This shows you the list of avail-
able add-ins. If there is a Solver Add-in item in the list, check it to load Solver. If there is no
such item, you need to rerun the Microsoft Office installer and elect to install Solver. It
should be included in a typical install, but some people elect not to install it the first time
around.) The dialog box in Figure 13.4 appears.6 It has three important sections that you
must fill in: the objective cell, the changing cells, and the constraints. For the product mix
problem, you can fill these in by typing cell references or you can point, click, and drag the
appropriate ranges in the usual way. Better yet, if there are any named ranges, these range
names appear instead of cell addresses when you drag the ranges. In fact, for reasons of
readability, our convention is to use only range names, not cell addresses, in this dialog box.

Figure 13.4

Solver Dialog Box

(in Excel 2010)

6 This is the new Solver dialog box for Excel 2010. It is more convenient than similar dialog boxes in previous
versions because the typical settings now all appear in a single dialog box. In previous versions you have to click
on Options to complete the typical settings.
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1 Objective. Select the Total_profit cell as the objective cell, and click on the Max
option. (Actually, the default option is Max.)

2 Changing cells. Select the Number_to_produce range as the changing cells.

3 Constraints. Click on the Add button to bring up the dialog box in Figure 13.5. Here
you specify a typical constraint by entering a cell reference or range name on the left, the
type of constraint from the dropdown list in the middle, and a cell reference, range name,
or numeric value on the right. Use this dialog box to enter the constraint

Number_to_produce���Maximum_sales

(Note: You can type these range names into the dialog box, or you can drag them in the
usual way. If you drag them, the cell addresses shown in the figure eventually change into
range names if range names exist.) Then click on the Add button and enter the constraint

Hours_used Hours_available

Then click on OK to get back to the Solver dialog box. The first constraint says to produce
no more than can be sold. The second constraint says to use no more labor hours than are
available.

…
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Figure 13.5

Add Constraint

Dialog Box

Excel Tip Inequality and Equality Labels in Spreadsheet Models
The �� signs in cells B17:C17 and C21:C22 (see Figure 13.2 or Figure 13.3) are not a
necessary part of the Excel model. They are entered simply as labels in the spreadsheet
and do not substitute for entering the constraints in the Add Constraint dialog box.
However, they help to document the model, so we include them in all of the examples. In
fact, you should try to plan your spreadsheet models so that the two sides of a constraint
are in nearby cells, with “gutter” cells in between where you can attach labels like ��,
��, or �. This convention tends to make the resulting spreadsheet models much more
readable.

Solver Tip Entering Constraints in Groups
Constraints typically come in groups. Beginners often enter these one at a time, such as
B16 B18 and C16 C18, in the Solver dialog box. This can lead to a long list of con-
straints, and it is time-consuming. It is better to enter them as a group, as in B16:C16
B18:C18. This is not only quicker, but it also takes advantage of range names you have cre-
ated. For example, this group ends up as Number_to_produce Maximum_Sales.…

…

……

Excel Tip Range Names in Solver Dialog Box
Our usual procedure is to use the mouse to select the relevant ranges for the Solver dialog
box. Fortunately, if these ranges have already been named, then the range names will auto-
matically replace the cell addresses.
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4 Nonnegativity. Because negative production quantities make no sense, you must tell
Solver explicitly to make the changing cells nonnegative. To do this, check the Make
Unconstrained Variables Non-Negative option shown in Figure 13.4. This automatically
ensures that all changing cells are nonnegative. (In previous versions of Solver, you have to
click on the Options button and then check the Assume Non-Negative option in the result-
ing dialog box.)

5 Linear model. There is one last step before clicking on the Solve button. As stated
previously, Solver uses one of several numerical algorithms to solve various types of mod-
els. The models discussed in this chapter are all linear models. (We will discuss the prop-
erties that distinguish linear models shortly.) Linear models can be solved most efficiently
with the simplex method. To instruct Solver to use this method, make sure Simplex LP is
selected in the Select a Solving Method dropdown list in Figure 13.4. (In previous versions
of Solver, you have to click on the Options button and then check the Assume Linear
Model option in the resulting dialog box. In fact, from now on, if you are using a pre-2010
version of Excel and we instruct you to use the simplex method, you should check the
Assume Linear Model option. In contrast, if we instruct you to use a nonlinear algorithm,
you should uncheck the Assume Linear Model option.)

6 Optimize. Click on the Solve button in the dialog box in Figure 13.4. At this point,
Solver does its work. It searches through a number of possible solutions until it finds the
optimal solution. (You can watch the progress on the lower left of the screen, although for
small models the process is virtually instantaneous.) When it finishes, it displays the mes-
sage shown in Figure 13.6. You can then instruct it to return the values in the changing
cells to their original (probably nonoptimal) values or retain the optimal values found by
Solver. In most cases you should choose the latter. For now, click on the OK button to keep
the Solver solution. You should see the solution shown in Figure 13.7.

Figure 13.6

Solver Results

Message

Solver Tip Messages from Solver
Actually, the message in Figure 13.6 is the one you hope for. However, in some cases Solver
is not able to find an optimal solution, in which case one of several other messages
appears. We discuss some of these later in the chapter.
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Checking the Non-
Negative option
ensures only that the
changing cells, not any
other cells, will be
nonnegative.
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Discussion of the Solution

This solution says that PC Tech should produce 560 Basics and 1200 XPs. This plan uses
all available labor hours for assembling, has a few leftover labor hours for testing, pro-
duces as many XPs as can be sold, and produces a few less Basics than could be sold. No
plan can provide a net profit larger than this one—that is, without violating at least one of
the constraints.

The solution in Figure 13.7 is typical of solutions to optimization models in the fol-
lowing sense. Of all the inequality constraints, some are satisfied exactly and others are
not. In this solution the XP maximum sales and assembling labor constraints are met
exactly. We say that they are binding. However, the Basic maximum sales and testing
labor constraints are nonbinding. For these nonbinding constraints, the differences
between the two sides of the inequalities are called slack.7 You can think of the binding
constraints as bottlenecks. They are the constraints that prevent the objective from being
improved. If it were not for the binding constraints on maximum sales and labor, PC Tech
could obtain an even larger net profit.

760 Chapter 13 Introduction to Optimization Modeling

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

GFEDCBA
Assembling and tes�ng egnaRsretupmoc names used:

Hours_available =Model!$D$21:$D$22
Cost per labor hour assembling $11 Hours_used =Model!$B$21:$B$22
Cost per labor hour tes�ng $15 Maximum_sales =Model!$B$18:$C$18

Number_to_produce =Model!$B$16:$C$16
Inputs for assembling and tes�ng a 52$D$!ledoM=tiforp_latoTretupmoc

BasicXP
Labor hours for 65ylbmessa
Labor hours for 21gnitset
Cost of component parts $150 $225
Selling 054$003$ecirp
Unit 921$08$nigram

Assembling, tes�ng plan (# of computers)
Basic XP

Number to 0021065ecudorp
<= <=

Maximum 0021006selas

Constraints (hours per month) Hours used Hours available
Labor availability for assembling 10000 <= 10000
Labor availability for 2960 <= 3000

Net profit ($ this month) Basic XP Total
$44,800 $154,800 $199,600

tes�ng

Figure 13.7

Two-Variable Product Mix Model with the Optimal Solution

An inequality constraint is binding if the solution makes it an equality. Otherwise, it is
nonbinding, and the positive difference between the two sides of the constraint is
called the slack.

7Some analysts use the term slack only for constraints and the term surplus for � constraints. We refer to
both of these as slack—the absolute difference between the two sides of the constraint.

…
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FUNDAMENTAL INSIGHT

Binding and Nonbinding Constraints

Most optimization models contain constraints

expressed as inequalities. In an optimal solution, each

such constraint is either binding (holds as an equal-

ity) or nonbinding. It is extremely important to iden-

tify the binding constraints because they are the

constraints that prevent the objective from improving.

A typical constraint is on the availability of a

resource. If such a constraint is binding, the objective

could typically improve by having more of that

resource. But if such a resource constraint is non-

binding, more of that resource would not improve

the objective at all.

Indeed, many analysts
view the “finished”
model as a starting
point for all sorts of
what-if questions.We
agree.

13.4 SENSITIVITY ANALYSIS

Having found the optimal solution, it might appear that the analysis is complete. But in real
LP applications the solution to a single model is hardly ever the end of the analysis. It is
almost always useful to perform a sensitivity analysis to see how (or if) the optimal solu-
tion changes as one or more inputs vary. We illustrate systematic ways of doing so in this
section. Actually, we discuss two approaches. The first uses an optional sensitivity report
that Solver offers. The second uses an add-in called SolverTable that one of the authors
(Albright) developed.

13.4.1 Solver’s Sensitivity Report

When you run Solver, the dialog box in Figure 13.6 offers you the option to obtain a sensi-
tivity report.8 This report is based on a well-established theory of sensitivity analysis in opti-
mization models, especially LP models. This theory was developed around algebraic
models that are arranged in a “standardized” format. Essentially, all such algebraic models
look alike, so the same type of sensitivity report applies to all of them. Specifically, they
have an objective function of the form c1x1 � · · · � cnxn, where n is the number of decision
variables, the cs are constants, and the xs are the decision variables, and each constraint can
be expressed as a1x1 � · · · � anxn b, a1x1 � · · · � anxn b, or a1x1 � · · · � anxn � b,
where the as and bs are constants. Solver’s sensitivity report performs two types of sensi-
tivity analysis: (1) on the coefficients of the objective, the cs, and (2) on the right sides of the
constraints, the bs.

Ú…

8It also offers Answer and Limits reports. We don’t find these particularly useful, so we will not discuss them
here.

In a typical optimal solution, you should usually pay particular attention to two aspects of
the solution. First, you should check which of the changing cells are positive (as opposed
to 0). Generically, these are the “activities” that are done at a positive level. In a product
mix model, they are the products included in the optimal mix. Second, you should check
which of the constraints are binding. Again, these represent the bottlenecks that keep the
objective from improving. ■
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We illustrate the typical analysis by looking at the sensitivity report for PC Tech’s product
mix model in Example 13.1. For convenience, the algebraic model is repeated here.

Maximize 80x1 � 129x2

subject to:

On this Solver run, a sensitivity report is requested in Solver’s final dialog box. (See Figure
13.6.) The sensitivity report appears on a new worksheet, as shown in Figure 13.8.9 It con-
tains two sections. The top section is for sensitivity to changes in the two coefficients, 80
and 129, of the decision variables in the objective. Each row in this section indicates how
the optimal solution changes if one of these coefficients changes. The bottom section is for
the sensitivity to changes in the right sides, 10000 and 3000, of the labor constraints. Each
row of this section indicates how the optimal solution changes if one of these availabilities
changes. (The maximum sales constraints represent a special kind of constraint—upper
bounds on the changing cells. Upper bound constraints are handled in a special way in the
Solver sensitivity report, as described shortly.)

x1, x2 Ú 0

x2 … 1200

x1 … 600

x1 + 2x2 … 3000

5x1 + 6x2 … 10000
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Final Reduced Objec�ve Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease

Figure 13.8

Solver Sensitivity Results

Now let’s look at the specific numbers and their interpretation. In the first row of the
top section, the allowable increase and allowable decrease indicate how much the coeffi-
cient of profit margin for Basics in the objective, currently 80, could change before the
optimal product mix would change. If the coefficient of Basics stays within this allowable
range, from 0 (decrease of 80) to 107.5 (increase of 27.5), the optimal product mix—the
set of values in the changing cells—does not change at all. However, outside of these lim-
its, the optimal mix between Basics and XPs might change.

9If your table looks different from ours, make sure you chose the simplex method (or checked Assume Linear
Model in pre-2010 versions of Solver). Otherwise, Solver uses a nonlinear algorithm and produces a different
type of sensitivity report.
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To see what this implies, change the selling price in cell B11 from 300 to 299, so that
the profit margin for Basics decreases to $79. This change is well within the allowable
decrease of 80. If you rerun Solver, you will obtain the same values in the changing cells,
although the objective value will decrease. Next, change the value in cell B11 to 330. This
time, the profit margin for Basics increases by 30 from its original value of $300. This
change is outside the allowable increase, so the solution might change. If you rerun Solver,
you will indeed see a change—the company now produces 600 Basics and fewer than 
1200 XPs.

The reduced costs in the second column indicate, in general, how much the objective
coefficient of a decision variable that is currently 0 or at its upper bound must change
before that variable changes (becomes positive or decreases from its upper bound). The
interesting variable in this case is the number of XPs, currently at its upper bound of 1200.
The reduced cost for this variable is 33, meaning that the number of XPs will stay at 1200
unless the profit margin for XPs decreases by at least $33. Try it. Starting with the original
inputs, change the selling price for XPs to $420, a change of less than $33. If you rerun
Solver, you will find that the optimal plan still calls for 1200 XPs. Then change the selling
price to $410, a change of more than $33 from the original value. After rerunning Solver,
you will find that fewer than 1200 XPs are in the optimal mix.

The reduced cost for any decision variable with value 0 in the optimal solution
indicates how much better that coefficient must be before that variable enters at a
positive level. The reduced cost for any decision variable at its upper bound in the
optimal solution indicates how much worse its coefficient must be before it will
decrease from its upper bound. The reduced cost for any variable between 0 and its
upper bound in the optimal solution is irrelevant.

The term shadow price is an economic term. It indicates the change in the optimal
value of the objective when the right side of some constraint changes by one unit.

Now turn to the bottom section of the report in Figure 13.8. Each row in this section
corresponds to a constraint, although upper bound constraints on changing cells are omit-
ted in this section. To have this part of the report make economic sense, the model should
be developed as has been done here, where the right side of each constraint is a numeric
constant (not a formula). Then the report indicates how much these right-side constants
can change before the optimal solution changes. To understand this more fully, the concept
of a shadow price is required. A shadow price indicates the change in the objective when
a right-side constant changes.

A shadow price is reported for each constraint. For example, the shadow price for the
assembling labor constraint is 16. This means that if the right side of this constraint
increases by one hour, from 10000 to 10001, the optimal value of the objective will
increase by $16. It works in the other direction as well. If the right side of this constraint
decreases by one hour, from 10000 to 9999, the optimal value of the objective will
decrease by $16. However, as the right side continues to increase or decrease, this $16
change in the objective might not continue. This is where the reported allowable increase
and allowable decrease are relevant. As long as the right side increases or decreases within
its allowable limits, the same shadow price of 16 still applies. Beyond these limits, how-
ever, a different shadow price might apply.
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You can prove this for yourself. First, increase the right side of the assembling labor
constraint by 200 (exactly the allowable increase), from 10000 to 10200, and rerun Solver.
(Don’t forget to reset other inputs to their original values.) You will see that the objective
indeed increases by 16(200)�$3200, from $199,600 to $202,800. Now increase this right
side by one more hour, from 10200 to 10201 and rerun Solver. You will observe that the
objective doesn’t increase at all. This means that the shadow price beyond 10200 is less
than 16; in fact, it is zero. This is typical. When a right side increases beyond its allowable
increase, the new shadow price is typically less than the original shadow price (although it
doesn’t always fall to zero, as in this example).

764 Chapter 13 Introduction to Optimization Modeling

FUNDAMENTAL INSIGHT

Resource Availability and Shadow Prices

If a resource constraint is binding in the optimal

solution, the company is willing to pay up to some

amount, the shadow price, to obtain more of the

resource.This is because the objective improves by

having more of the resource. However, there is typ-

ically a decreasing marginal effect: As the company

owns more and more of the resource, the shadow

price tends to decrease. This is usually because

other constraints become binding, which causes

extra units of this resource to be less useful (or not

useful at all).

FUNDAMENTAL INSIGHT

The Effect of Constraints on the
Objective

If a constraint is added or an existing constraint

becomes more constraining (for example, less of

some resource is available), the objective can only get

worse; it can never improve. The easiest way to

understand this is to think of the feasible region.

When a constraint is added or an existing constraint

becomes more constraining, the feasible region

shrinks, so some solutions that were feasible before,

maybe even the optimal solution, are no longer feasi-

ble.The opposite is true if a constraint is deleted or

an existing constraint becomes less constraining. In

this case, the objective can only improve; it can never

get worse. Again, the idea is that when a constraint 

is deleted or an existing constraint becomes less 

constraining, the feasible region expands. In this 

case, all solutions that were feasible before are still

feasible, and there are some additional feasible solu-

tions available.

The idea is that a constraint “costs” the company by keeping the objective from being better
than it would be. A shadow price indicates how much the company would be willing to pay (in
units of the objective) to “relax” a constraint. In this example, the company would be willing to
pay $16 for each extra assembling hour. This is because such a change would increase the net
profit by $16. But beyond a certain point—200 hours in this example—further relaxation of the
constraint does no good, and the company is not willing to pay for any further increases.

The constraint on testing hours is slightly different. It has a shadow price of zero. In
fact, the shadow price for a nonbinding constraint is always zero, which makes sense. If the
right side of this constraint is changed from 3000 to 3001, nothing at all happens to the
optimal product mix or the objective value; there is just one more unneeded testing hour.
However, the allowable decrease of 40 indicates that something does change when the
right side reaches 2960. At this point, the constraint becomes binding—the testing hours
used equal the testing hours available—and beyond this, the optimal product mix starts to
change. By the way, the allowable increase for this constraint, shown as 1�E30, means
that it is essentially infinite. The right side of this constraint can be increased above 3000
indefinitely and absolutely nothing will change in the optimal solution
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13.4.2 SolverTable Add-In

The reason Solver’s sensitivity report makes sense for the product mix model is that the
spreadsheet model is virtually a direct translation of a standard algebraic model.
Unfortunately, given the flexibility of spreadsheets, this is not always the case. We have
seen many perfectly good spreadsheet models—and have developed many ourselves—that
are structured quite differently from their standard algebraic-model counterparts. In these
cases, we have found Solver’s sensitivity report to be more confusing than useful.
Therefore, Albright developed an Excel add-in called SolverTable. SolverTable allows
you to ask sensitivity questions about any of the input variables, not just coefficients of the
objective and right sides of constraints, and it provides straightforward answers.

The SolverTable add-in is on this textbook’s Web site.10 To install it, simply copy 
the SolverTable files to a folder on your hard drive. These files include the add-in itself 
(the .xlam file) and the online help files. To load SolverTable, you can proceed in one of
two ways:

1. Open the SolverTable.xlam file just as you open any other Excel file.

2. Go to the add-ins list in Excel (click on the Office button, then Excel Options, then
Add-Ins, then Go) and check the SolverTable item. If it isn’t in the list, Browse for
the SolverTable.xlam file.

The advantage of the second option is that if SolverTable is checked in the add-ins list, it
will automatically open every time you open Excel, at least until you uncheck its item in
the list.

The SolverTable add-in was developed to mimic Excel’s built-in data table tool.
Recall that data tables allow you to vary one or two inputs in a spreadsheet model and see
instantaneously how selected outputs change. SolverTable is similar except that it runs
Solver for every new input (or pair of inputs), and the newest version also provides auto-
matic charts of the results. There are two ways it can be used.

1. One-way table. A one-way table means that there is a single input cell and any num-
ber of output cells. That is, there can be a single output cell or multiple output cells.

2. Two-way table. A two-way table means that there are two input cells and one or
more output cells. (You might recall that an Excel two-way data table allows only
one output. SolverTable allows more than one. It creates a separate table for each
output as a function of the two inputs.)

We illustrate some of the possibilities for the product mix example. Specifically, we check
how sensitive the optimal production plan and net profit are to (1) changes in the selling
price of XPs, (2) the number of labor hours of both types available, and (3) the maximum
sales of the two models.

We assume that the model has been formulated and optimized, as shown in
Figure 13.7, and that the SolverTable add-in has been loaded. To run SolverTable, click on
the Run SolverTable button on the SolverTable ribbon. You will be asked whether there is
a Solver model on the active sheet. (Note that the active sheet at this point should be the
sheet containing the model. If it isn’t, click on Cancel and then activate this sheet.) You are
then given the choice between a one-way or a two-way table. For the first sensitivity
question, choose the one-way option. You will see the dialog box in Figure 13.9. For the
sensitivity analysis on the XP selling price, fill it in as shown. Note that ranges can be
entered as cell addresses or range names. Also, multiple ranges in the Outputs box should
be separated by commas.

Solver’s sensitivity
report is almost
impossible to unravel
for some models. In
these cases SolverTable
is preferable because
of its easily interpreted
results.

We chose the input
range from 350 to 550
in increments of 25
fairly arbitrarily.You
can choose any desired
range of input values.

10It is also available from the Free Downloads link on the authors’ Web site at www.kelley.iu.edu/albrightbooks.
Actually, there are several versions of SolverTable available, each for a particular version of Solver. The one
described in the text is for Solver in Excel 2007 or 2010. This Web site contains more information about these
versions, as well as possible updates to SolverTable.
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Figure 13.9

SolverTable One-

Way Dialog Box
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$350 600 1166.667 $81,833
$375 600 1166.667 $111,00
$400 600 1166.667 $140,16
$425 560 1200 $169,60
$450 560 1200 $199,60
$475 560 1200 $229,60
$500 560 1200 $259,600

0$525 560 1200 $289,60
$550 560 1200 $319,600

Figure 13.10

SolverTable Results

for Varying XP Price
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Excel Tip Selecting Multiple Ranges
If you need to select multiple output ranges, the trick is to keep your finger on the Ctrl key as
you drag the ranges. This automatically enters the separating comma(s) for you. Actually,
the same trick works for selecting multiple changing cell ranges in Solver’s dialog box.

When you click on OK, Solver solves a separate optimization problem for each of the
nine rows of the table and then reports the requested outputs (number produced and net
profit) in the table, as shown in Figure 13.10. It can take a while, depending on the speed
of your computer and the complexity of the model, but everything is automatic. However,
if you want to update this table—by using different XP selling prices in column A, 
for example—you must repeat the procedure. Note that if the requested outputs are
included in named ranges, the range names are used in the SolverTable headings. For
example, the label Number_to_produce_1 indicates that this output is the first cell in the
Number_to_produce range. The label Total_profit indicates that this output is the only cell
in the Total_profit range. (If a requested output is not part of a named range, its cell address
is used as the label in the SolverTable results.)
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When you select an output address from
the dropdown list in cell $K$4, the chart
will adapt to that output.

Figure 13.11

Associated

SolverTable Chart

for Net Profit
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The outputs in this table show that when the selling price of XPs is relatively low, the
company should make as many Basics as it can sell and a few less XPs, but when the sell-
ing price is relatively high, the company should do the opposite. Also, the net profit
increases steadily through this range. You can calculate these changes (which are not part
of the SolverTable output) in column E. The increase in net profit per every extra $25 in
XP selling price is close to, but not always exactly equal to, $30,000.

SolverTable also produces the chart in Figure 13.11. There is a dropdown list in cell
K4 where you can choose any of the SolverTable outputs. (We selected the net profit, cell
D25.) The chart then shows the data for that column from the table in Figure 13.10. Here
there is a steady increase (slope about $30,000) in net profit as the XP selling price
increases.

The second sensitivity question asks you to vary two inputs, the two labor availabili-
ties, simultaneously. This requires a two-way SolverTable, so fill in the SolverTable dialog
box as shown in Figure 13.12. Here two inputs and two input ranges are specified, and
multiple output cells are again allowed. An output table is generated for each of the output
cells, as shown in Figure 13.13. For example, the top table shows how the optimal number
of Basics varies as the two labor availabilities vary. Comparing the columns of this top
table, it is apparent that the optimal number of Basics becomes increasingly sensitive to the
available assembling hours as the number of available testing hours increases. The
SolverTable output also includes two charts (not shown here) that let you graph any row or
any column of any of these tables.

The third sensitivity question, involving maximum sales of the two models, reveals the
flexibility of SolverTable. Instead of letting these two inputs vary independently in a two-
way SolverTable, it is possible to let both of them vary according to a single percentage
change. For example, if this percentage change is 10%, both maximum sales increase by
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Figure 13.12

SolverTable Two-

Way Dialog Box
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A B C D E F G H I
Assembling hours (cell $D$21) values along side, Tes�ng hours (cell $D$22) values along top, output cell in corner

Number_to_produce_1 2000 2500 3000 3500 4000 4500 5000
8000 600 250 160 160 160 160 160
8500 600 500 260 260 260 260 260
9000 600 600 360 360 360 360 360
9500 600 600 460 460 460 460 460

10000 600 600 560 560 560 560 560
10500 600 600 600 600 600 600 600
11000 600 600 600 600 600 600 600
11500 600 600 600 600 600 600 600
12000 600 600 600 600 600 600 600

8000 700 1125 1200 1200 1200 1200 1200
8500 700 1000 1200 1200 1200 1200 1200
9000 700 950 1200 1200 1200 1200 1200
9500 700 950 1200 1200 1200 1200 1200

10000 700 950 1200 1200 1200 1200 1200
10500 700 950 1200 1200 1200 1200 1200
11000 700 950 1200 1200 1200 1200 1200
11500 700 950 1200 1200 1200 1200 1200
12000 700 950 1200 1200 1200 1200 1200

Number_to_produce_2 2000 2500 3000 3500 4000 4500 5000

Total_profi t 2000 2500 3000 3500 4000 4500 5000
8000 $138,300 $165,125 $167,600 $167,600 $167,600 $167,600 $167,600
8500 $138,300 $169,000 $175,600 $175,600 $175,600 $175,600 $175,600
9000 $138,300 $170,550 $183,600 $183,600 $183,600 $183,600 $183,600
9500 $138,300 $170,550 $191,600 $191,600 $191,600 $191,600 $191,600

10000 $138,300 $170,550 $199,600 $199,600 $199,600 $199,600 $199,600
10500 $138,300 $170,550 $202,800 $202,800 $202,800 $202,800 $202,800
11000 $138,300 $170,550 $202,800 $202,800 $202,800 $202,800 $202,800
11500 $138,300 $170,550 $202,800 $202,800 $202,800 $202,800 $202,800
12000 $138,300 $170,550 $202,800 $202,800 $202,800 $202,800 $202,800

Figure 13.13

Two-Way SolverTable Results

10%. The trick is to modify the model so that one percentage-change cell drives changes in
both maximum sales. The modified model appears in Figure 13.14. Starting with the orig-
inal model, enter the original values, 600 and 1200, in new cells, E18 and F18. (Do not
copy the range B18:C18 to E18:F18. This would make the right side of the constraint
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HGFEDCBA
Assembling and tes�ng computers

Cost per labor hour assembling $11
Cost per labor hour tes�ng $15

Inputs for assembling and tes�ng a computer
Basic XP

Labor hours for 65ylbmessa
Labor hours for 21gnitset
Cost of component parts $150 $225
Selling 054$003$ecirp
Unit 921$08$nigram

Assembling, tes�ng plan (# of computers)
Basic XP

Number to 0021065ecudorp
<= <= Original values % change in both

Maximum %000210060021006selas

Constraints (hours per month) Hours used Hours available
Labor availability for assembling 10000 <= 10000
Labor availability for tes�ng 2960 <= 3000

Net profit ($ this month) Basic XP Total
$44,800 $154,800 $199,600

Figure 13.14

Modified Model for Simultaneous Changes

E18:F18, which is not the desired behavior.) Then enter any percentage change in cell G18.
Finally, enter the formula

��E18*(1��$G$18)

in cell B18 and copy it to cell C18. Now a one-way SolverTable can be used with the per-
centage change in cell G18 to drive two different inputs simultaneously. Specifically, the
SolverTable dialog box should be set up as in Figure 13.15, with the corresponding results
in Figure 13.16.

You should always scan these sensitivity results to see if they make sense. For exam-
ple, if the company can sell 20% or 30% more of both models, it makes no more profit than
if it can sell only 10% more. The reason is labor availability. By this point, there isn’t
enough labor to produce the increased demand.

It is always possible to run a sensitivity analysis by changing inputs manually in the
spreadsheet model and rerunning Solver. The advantages of SolverTable, however, are that
it enables you to perform a systematic sensitivity analysis for any selected inputs and out-
puts, and it keeps track of the results in a table and associated chart(s). You will see other
applications of this useful add-in later in this chapter and in the next chapter.

13.4.3 Comparison of Solver’s Sensitivity Report and SolverTable

Sensitivity analysis in optimization models is extremely important, so it is important that
you understand the pros and cons of the two tools in this section. Here are some points to
keep in mind.
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Figure 13.15

SolverTable One-

Way Dialog Box
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30% 420 840 $141,960 $80
20% 480 960 $162,240 $80
10% 540 1080 $182,520 $80

0% 560 1200 $199,600 $80
10% 500 1250 $201,250 $80
20% 500 1250 $201,250 $80
30% 500 1250 $201,250 $80

Figure 13.16

Sensitivity to 

Percentage Change

in Maximum Sales
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■ Solver’s sensitivity report focuses only on the coefficients of the objective and 
the right sides of the constraints. SolverTable allows you to vary any of the 
inputs.

■ Solver’s sensitivity report provides very useful information through its reduced costs,
shadow prices, and allowable increases and decreases. This same information can be
obtained with SolverTable, but it requires a bit more work and some experimentation
with the appropriate input ranges.

■ Solver’s sensitivity report is based on changing only one objective coefficient or one
right side at a time. This one-at-a-time restriction prevents you from answering
certain questions directly. SolverTable is much more flexible in this respect.

■ Solver’s sensitivity report is based on a well-established mathematical theory of
sensitivity analysis in linear programming. If you lack this mathematical
background—as many users do—the outputs can be difficult to understand,
especially for somewhat “nonstandard” spreadsheet formulations. In contrast,
SolverTable’s outputs are straightforward. You can vary one or two inputs and see
directly how the optimal solution changes.

■ Solver’s sensitivity report is not even available for integer-constrained models, and
its interpretation for nonlinear models is more difficult than for linear models.
SolverTable’s outputs have the same interpretation for any type of optimization
model.

■ Solver’s sensitivity report comes with Excel. SolverTable is a separate add-in that is
not included with Excel—but it is included with this book and is freely available from
the Free Downloads link at the authors’ Web site, www.kelley.iu.edu/albrightbooks.
Because the SolverTable software essentially automates Solver, which has a number
of its own idiosyncrasies, some users have had problems with SolverTable on their
PCs. We have tried to document these on our Web site, and we are hoping that the
revised Solver in Excel 2010 helps to alleviate these problems.

In summary, each of these tools can be used to answer certain questions. We tend to favor
SolverTable because of its flexibility, but in the optimization examples in this chapter 
and the next chapter we will illustrate both tools to show how each can provide useful
information.

13.5 PROPERTIES OF LINEAR MODELS

Linear programming is an important subset of a larger class of models called mathemati-
cal programming models.11 All such models select the levels of various activities that can
be performed, subject to a set of constraints, to maximize or minimize an objective such as
total profit or total cost. In PC Tech’s product mix example, the activities are the numbers
of PCs to produce, and the purpose of the model is to find the levels of these activities that
maximize the total net profit subject to specified constraints.

In terms of this general setup—selecting the optimal levels of activities—there are
three important properties that LP models possess that distinguish them from general
mathematical programming models: proportionality, additivity, and divisibility. We dis-
cuss these properties briefly in this section.

11The word programming in linear programming or mathematical programming has nothing to do with com-
puter programming. It originated with the British term programme, which is essentially a plan or a schedule
of operations.
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13.5.1 Proportionality

Proportionality means that if the level of any activity is multiplied by a constant factor,
the contribution of this activity to the objective, or to any of the constraints in which the
activity is involved, is multiplied by the same factor. For example, suppose that the pro-
duction of Basics is cut from its optimal value of 560 to 280—that is, it is multiplied by
0.5. Then the amounts of labor hours from assembling and from testing Basics are both cut
in half, and the net profit contributed by Basics is also cut in half.

Proportionality is a perfectly valid assumption in the product mix model, but it is often
violated in certain types of models. For example, in various blending models used by
petroleum companies, chemical outputs vary in a nonlinear manner as chemical inputs are
varied. If a chemical input is doubled, say, the resulting chemical output is not necessarily
doubled. This type of behavior violates the proportionality property, and it takes us into the
realm of nonlinear optimization, which we discuss briefly in the next chapter.

13.5.2 Additivity

The additivity property implies that the sum of the contributions from the various activi-
ties to a particular constraint equals the total contribution to that constraint. For example, if
the two PC models use, respectively, 560 and 2400 testing hours (as in Figure 13.7), then
the total number used in the plan is the sum of these amounts, 2960 hours. Similarly, the
additivity property applies to the objective. That is, the value of the objective is the sum of
the contributions from the various activities. In the product mix model, the net profits from
the two PC models add up to the total net profit. The additivity property implies that the
contribution of any decision variable to the objective or to any constraint is independent of
the levels of the other decision variables.

13.5.3 Divisibility

The divisibility property simply means that both integer and noninteger levels of the activ-
ities are allowed. In the product mix model, we got integer values in the optimal solution,
560 and 1200, just by luck. For slightly different inputs, they could easily have been frac-
tional values. In general, if you want the levels of some activities to be integer values, there
are two possible approaches: (1) You can solve the LP model without integer constraints,
and if the solution turns out to have fractional values, you can attempt to round them to
integer values; or (2) you can explicitly constrain certain changing cells to contain integer
values. The latter approach, however, takes you into the realm of integer programming,
which we study briefly in the next chapter. At this point, we simply state that integer prob-
lems are much more difficult to solve than problems without integer constraints.

13.5.4 Discussion of Linear Properties

The previous discussion of these three properties, especially proportionality and additivity, is
fairly abstract. How can you recognize whether a model satisfies proportionality and additivity?
This is easy if the model is described algebraically. In this case the objective must be of the form

a1x1 � a2x2 � · · · � anxn

where n is the number of decision variables, the as are constants, and the xs are decision
variables. This expression is called a linear combination of the xs. Also, each constraint
must be equivalent to a form where the left side is a linear combination of the xs and the
right side is a constant. For example, the following is a typical linear constraint:

3x1 � 7x2 � 2x3 50…
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It is not quite so easy to recognize proportionality and additivity—or the lack of them—in
a spreadsheet model, because the logic of the model is typically embedded in a series of
cell formulas. However, the ideas are the same. First, the objective cell must ultimately
(possibly through a series of formulas in intervening cells) be a sum of products of con-
stants and changing cells, where a “constant” means that it does not depend on changing
cells. Second, each side of each constraint must ultimately be either a constant or a sum of
products of constants and changing cells. This explains why linear models contain so many
SUM and SUMPRODUCT functions.

It is usually easier to recognize when a model is not linear. Two particular situations
that lead to nonlinear models are when (1) there are products or quotients of expressions
involving changing cells or (2) there are nonlinear functions, such as squares, square roots,
or logarithms, that involve changing cells. These are typically easy to spot, and they guar-
antee that the model is nonlinear.

Whenever you model a real problem, you usually make some simplifying assumptions.
This is certainly the case with LP models. The world is frequently not linear, which means
that an entirely realistic model typically violates some or all of the three properties in this
section. However, numerous successful applications of LP have demonstrated the useful-
ness of linear models, even if they are only approximations of reality. If you suspect that the
violations are serious enough to invalidate a linear model, you should use an integer or non-
linear model, as we illustrate in the next chapter.

In terms of Excel’s Solver, if the model is linear—that is, if it satisfies the propor-
tionality, additivity, and divisibility properties—you should check the Simplex option
(or the Assume Linear Model option in pre-2010 versions of Excel). Then Solver uses
the simplex method, a very efficient method for a linear model, to solve the problem.
Actually, you can check the Simplex option even if the divisibility property is vio-
lated—that is, for linear models with integer-constrained variables—but Solver then
embeds the simplex method in a more complex algorithm (branch and bound) in its
solution procedure.

13.5.5 Linear Models and Scaling12

In some cases you might be sure that a model is linear, but when you check the Simplex
option (or the Assume Linear Model option) and then solve, you get a Solver message to
the effect that the conditions for linearity are not satisfied. This can indicate a logical error
in your formulation, so that the proportionality and additivity conditions are indeed not sat-
isfied. However, it can also indicate that Solver erroneously thinks the linearity conditions
are not satisfied, which is typically due to roundoff error in its calculations—not any error
on your part. If the latter occurs and you are convinced that the model is correct, you can
try not using the simplex method to see whether that works. If it does not, you should con-
sult your instructor. It is possible that the non-simplex algorithm employed by Solver sim-
ply cannot find the solution to your problem.

In any case, it always helps to have a well-scaled model. In a well-scaled model, all
of the numbers are roughly the same magnitude. If the model contains some very large
numbers—100,000 or more, say—and some very small numbers—0.001 or less, say—
it is poorly scaled for the methods used by Solver, and roundoff error is far more likely
to be an issue, not only in Solver’s test for linearity conditions but in all of its
algorithms.
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Real-life problems are
almost never exactly
linear. However, linear
approximations often
yield very useful
results.

12This section might seem overly technical. However, when you develop a model that you are sure is linear and
Solver then tells you it doesn’t satisfy the linear conditions, you will appreciate this section.
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If you believe your model is poorly scaled, there are three possible remedies. The first
is to check the Use Automatic Scaling option in Solver. (It is found by clicking on the
Options button in the main Solver dialog box.) This might help and it might not; we have
had mixed success. (Frontline Systems, the company that develops Solver, has told us that
the only drawback to checking this box is that the solution procedure can be slower.) The
second option is to redefine the units in which the various quantities are defined. Finally,
you can change the Precision setting in Solver’s Options dialog box to a larger number,
such 0.00001 or 0.0001. (The default has five zeros.)

Excel Tip Rescaling a Model
Suppose you have a whole range of input values expressed, say, in dollars, and you would
like to reexpress them in thousands of dollars, that is, you would like to divide each value
by 1000. There is a simple copy/paste way to do this. Enter the value 1000 in some unused
cell and copy it. Then highlight the range you want to rescale, and from the Paste drop-
down menu, select Paste Special and then the Divide option. No formulas are required;
your original values are automatically rescaled (and you can then delete the 1000 cell).
You can use this same method to add, subtract, or multiply by a constant.

13.6 INFEASIBILITY AND UNBOUNDEDNESS

In this section we discuss two of the things that can go wrong when you invoke Solver. Both
of these might indicate that there is a mistake in the model. Therefore, because mistakes are
common in LP models, you should be aware of the error messages you might encounter.

13.6.1 Infeasibility

The first problem is infeasibility. Recall that a solution is feasible if it satisfies all of the
constraints. Among all of the feasible solutions, you are looking for the one that optimizes
the objective. However, it is possible that there are no feasible solutions to the model.
There are generally two reasons for this: (1) there is a mistake in the model (an input was
entered incorrectly, such as a � symbol instead of a �) or (2) the problem has been so con-
strained that there are no solutions left. In the former case, a careful check of the model
should find the error. In the latter case, you might need to change, or even eliminate, some
of the constraints.

To show how an infeasible problem could occur, suppose in PC Tech’s product mix
problem you change the maximum sales constraints to minimum sales constraints (and
leave everything else unchanged). That is, you change these constraints from � to �. If
Solver is then used, the message in Figure 13.17 appears, indicating that Solver cannot find
a feasible solution. The reason is clear: There is no way, given the constraints on labor
hours, that the company can produce these minimum sales values. The company’s only
choice is to set at least one of the minimum sales values lower. In general, there is no fool-
proof way to remedy the problem when a “no feasible solution” message appears. Careful
checking and rethinking are required.

13.6.2 Unboundedness

A second type of problem is unboundedness. In this case, the model has been formulated in
such a way that the objective is unbounded—that is, it can be made as large (or as small, for
minimization problems) as you like. If this occurs, you have probably entered a wrong input
or forgotten some constraints. To see how this could occur in the product mix problem,

You can decrease the
chance of getting an
incorrect “Conditions
for Assume Linear
Model are not
satisfied” message by
changing Solver’s
Precision setting.

A perfectly reasonable
model can have no
feasible solutions
because of too many
constraints.
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suppose that you change all constraints to be � instead of �. Now there is no upper bound on
how much labor is available or how many PCs the company can sell. If you make this change
in the model and then use Solver, the message in Figure 13.18 appears, stating that the objec-
tive cell does not converge. In other words, the total net profit can grow without bound.

13.6.3 Comparison of Infeasibility and Unboundedness

Infeasibility and unboundedness are quite different in a practical sense. It is quite possible
for a reasonable model to have no feasible solutions. For example, the marketing depart-
ment might impose several constraints, the production department might add some more,
the engineering department might add even more, and so on. Together, they might
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Figure 13.17

No Feasible Solution

Message

Figure 13.18

Unbounded

Solution Message

Except in very rare
situations, if Solver
informs you that your
model is unbounded, you
have made an error.
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constrain the problem so much that there are no feasible solutions left. The only way out is
to change or eliminate some of the constraints. An unboundedness problem is quite differ-
ent. There is no way a realistic model can have an unbounded solution. If you get the mes-
sage shown in Figure 13.18, then you must have made a mistake: You entered an input
incorrectly, you omitted one or more constraints, or there is a logical error in your model.

P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. Other sensitivity analyses besides those discussed
could be performed on the product mix model. Use
SolverTable to perform each of the following. In each
case keep track of the values in the changing cells and
the objective cell, and discuss your findings.
a. Let the selling price for Basics vary from $220 to

$350 in increments of $10.
b. Let the labor cost per hour for assembling vary

from $5 to $20 in increments of $1.
c. Let the labor hours for testing a Basic vary from

0.5 to 3.0 in increments of 0.5.
d. Let the labor hours for assembling and testing an

XP vary independently, the first from 4.5 to 8.0
and the second from 1.5 to 3.0, both in increments
of 0.5.

2. In PC Tech’s product mix problem, assume there is
another PC model, the VXP, that the company can
produce in addition to Basics and XPs. Each VXP
requires eight hours for assembling, three hours for
testing, $275 for component parts, and sells for $560.
At most 50 VXPs can be sold.
a. Modify the spreadsheet model to include this new

product, and use Solver to find the optimal product
mix.

b. You should find that the optimal solution is not
integer-valued. If you round the values in the
changing cells to the nearest integers, is the
resulting solution still feasible? If not, how might
you obtain a feasible solution that is at least close
to optimal?

3. Continuing the previous problem, perform a sensitivity
analysis on the selling price of VXPs. Let this price
vary from $500 to $650 in increments of $10, and
keep track of the values in the changing cells and the
objective cell. Discuss your findings.

4. Again continuing problem 2, suppose that you want to
force the optimal solution to be integers. Do this in
Solver by adding a new constraint. Select the changing
cells for the left side of the constraint, and in the middle
dropdown list, select the “int” option. How does the
optimal integer solution compare to the optimal
noninteger solution in problem 2? Are the changing cell

values rounded versions of those in problem 2? Is the
objective value more or less than in problem 2?

5. If all of the inputs in PC Tech’s product mix problem
are nonnegative (as they should be for any realistic
version of the problem), are there any input values
such that the resulting model has no feasible
solutions? (Refer to the graphical solution.)

6. There are five corner points in the feasible region for
the product mix problem. We identified the
coordinates of one of them: (560, 1200). Identify the
coordinates of the others.
a. Only one of these other corner points has positive

values for both changing cells. Discuss the changes
in the selling prices of either or both models that
would be necessary to make this corner point
optimal.

b. Two of the other corner points have one changing
cell value positive and the other zero. Discuss the
changes in the selling prices of either or both
models that would be necessary to make either of
these corner points optimal.

Level B

7. Using the graphical solution of the product mix model
as a guide, suppose there are only 2800 testing hours
available. How do the answers to the previous problem
change? (Is the previous solution still optimal? Is it
still feasible?)

8. Again continuing problem 2, perform a sensitivity
analysis where the selling prices of Basics and XPs
simultaneously change by the same percentage, but the
selling price of VXPs remains at its original value. Let
the percentage change vary from �25% to 50% in
increments of 5%, and keep track of the values in the
changing cells and the total profit. Discuss your findings.

9. Consider the graphical solution to the product mix
problem. Now imagine that another constraint—any
constraint—is added. Which of the following three
things are possible: (1) the feasible region shrinks;
(2) the feasible region stays the same; (3) the feasible
region expands? Which of the following three things
are possible: (1) the optimal value in objective cell
decreases; (2) the optimal value in objective cell stays
the same; (3) the optimal value in objective cell
increases? Explain your answers. Do they hold just for
this particular model, or do they hold in general?
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13.7 A LARGER PRODUCT MIX MODEL

The problem we examine in this section is a direct extension of the product mix model in
the previous section. There are two modifications. First, the company makes eight com-
puter models, not just two. Second, testing can be done on either of two lines, and these
two lines have different characteristics.
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E X A M P L E 13.2 PRODUCING COMPUTERS AT PC TECH

As in the previous example, PC Tech must decide how many of each of its computer
models to assemble and test, but there are now eight available models, not just two.

Each computer must be assembled and then tested, but there are now two lines for testing.
The first line tends to test faster, but its labor costs are slightly higher, and each line has a
certain number of hours available for testing. Any computer can be tested on either line.
The inputs for the model are same as before: (1) the hourly labor costs for assembling and
testing, (2) the required labor hours for assembling and testing any computer model,
(3) the cost of component parts for each model, (4) the selling prices for each model,
(5) the maximum sales for each model, and (6) labor availabilities. These input values are
listed in the file Product Mix 2.xlsx. As before, the company wants to determine the prod-
uct mix that maximizes its total net profit.

Objective To use LP to find the mix of computer models that maximizes total net profit
and stays within the labor hour availability and maximum sales constraints.

WHERE DO THE NUMBERS COME FROM?

The same comments as in Example 13.1 apply here.

Solution

Table 13.2 lists the variables and constraints for this model. You must choose the number of
computers of each model to produce on each line, the sum of which cannot be larger than the
maximum that can be sold. This choice determines the labor hours of each type used and all
revenues and costs. No more labor hours can be used than are available.

Table 13.2 Variables and Constraints for Larger Product Mix Model

Input variables Hourly labor costs, labor availabilities, labor required for 
each computer, costs of component parts, unit selling 
prices, and maximum sales

Decision variables (changing cells) Numbers of computer of each model to test on each line
Objective cell Total net profit
Other calculated variables Number of each computer model produced, hours of labor 

used for assembling and for each line of testing
Constraints Computers produced Maximum sales

Labor hours used Labor hours available…

…

It is probably not immediately obvious what the changing cells should be for this model (at
least not before you look at Table 13.2). You might think that the company simply needs to
decide how many computers of each model to produce. However, because of the two
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testing lines, this is not enough information. The company must also decide how many of
each model to test on each line. For example, suppose they decide to test 100 model 4s on
line 1 and 300 model 4s on line 2. This means they will need to assemble (and ultimately
sell) 400 model 4s. In other words, given the detailed plan of how many to test on each
line, everything else is determined. But without the detailed plan, there is not enough infor-
mation to complete the model. This is the type of reasoning you must go through to deter-
mine the appropriate changing cells for any LP model.

An Algebraic Model

We will not spell out the algebraic model for this expanded version of the product mix
model because it is so similar to the two-variable product mix model. However, we will say
that it is larger, and hence probably more intimidating. Now we need decision variables of
the form , the number of model j computers to test on line i, and the total net profit and
each labor availability constraint will include a long SUMPRODUCT formula involving
these variables. Instead of focusing on these algebraic expressions, we turn directly to the
spreadsheet model.

DEVELOPING THE SPREADSHEET MODEL

The spreadsheet in Figure 13.19 illustrates the solution procedure for PC Tech’s product
mix problem. (See the file Product Mix 2.xlsx.) The first stage is to develop the spread-
sheet model step by step.

1 Inputs. Enter the various inputs in the blue ranges. Again, remember that our conven-
tion is to color all input cells blue. Enter only numbers, not formulas, in input cells. They
should always be numbers directly from the problem statement. (In this case, we supplied
them in the spreadsheet template.)

2 Range names. Name the ranges indicated. According to our convention, there are
enough named ranges so that the Solver dialog box contains only range names, no cell
addresses. Of course, you can name additional ranges if you like. (Note that you can again
use the range-naming shortcut explained in the Excel tip for the previous example. That is,
you can take advantage of labels in adjacent cells, except for the Profit cell.)

3 Unit margins. Note that two rows of these are required, one for each testing line,
because the costs of testing on the two lines are not equal. To calculate them, enter the
formula

��B$13-$B$3*B$9-$B4*B10-B$12

in cell B14 and copy it to the range B14:I15.

4 Changing cells. As discussed above, the changing cells are the red cells in rows 19
and 20. You do not have to enter the values shown in Figure 13.19. You can use any trial
values initially; Solver will eventually find the optimal values. Note that the four values
shown in Figure 13.19 cannot be optimal because they do not satisfy all of the constraints.
Specifically, this plan uses more labor hours for assembling than are available. However,
you do not need to worry about satisfying constraints at this point; Solver will take care of
this later.

5 Labor used. Enter the formula

��SUMPRODUCT(B9:E9,Total_computers_produced)

in cell B26 to calculate the number of assembling hours used. Similarly, enter the formulas

��SUMPRODUCT(B10:I10,Number_tested_on_line_1)

xij
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and

��SUMPRODUCT(B11:I11,Number_tested_on_line_2)

in cells B27 and B28 for the labor hours used on each testing line.

Excel Tip Copying formulas with range names
When you enter a range name in an Excel formula and then copy the formula, the range
name reference acts like an absolute reference. Therefore, it wouldn’t work to copy the for-
mula in cell B27 to cell B28. However, this would work if range names hadn’t been used.
This is one potential disadvantage of range names that you should be aware of.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

JIHGFEDCBA
Assembling and tes�ng computers

Cost per labor hour assembling $11
Cost per labor hour tes�ng, line 1 $19
Cost per labor hour tes�ng, line 2 $17

Inputs for assembling and tes�ng a computer
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Labor hours for assembly
Labor hours for tes�ng, line
Labor hours for tes�ng, line

5 5.5 5.5 5.5 6
1 1.5

4 5 5
2 2 2 2.5 2.5 2.5 3

2 2 2.5 2.5 2.5 3 3 3.5 3.5
Cost of component parts $150 $225 $225 $225 $250 $250 $250 $300
Selling 006$035$525$005$074$064$054$053$ecirp
Unit margin, tested on line
Unit margin, tested on line

1 $128 $132 $142 $152 $142 $167 $172 $177
2 $122 $128 $138 $148 $139 $164 $160 $175

Assembling, tes�ng plan (# of computers)
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Number tested on line 005000001 1000 800
Number tested on line 05210002 0 0 0 0
Total computers produced 0 0 0 1250 0 500 1000 800

<= <= <= <= <= <= <= <=
Maximum 0080001000100010521052105210051selas

Constraints (hours per month) Hours used Hours available
Labor availability for
Labor availability for tes�ng, line
Labor availability for tes�ng, line

assembling 19300 <= 20000
1 6150 <= 5000
2 3125 <= 6000

Net profit ($ per month) Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Totals
Tested on line 05,38$0$0$0$0$0$1 0 $172,000 $141,600 $397,100
Tested on line 573,481$0$0$0$0$573,481$0$0$0$2

$581,475

Range names used:
82$D$:62$D$!ledoM=elbaliava_sruoH
82$B$:62$B$!ledoM=desu_sruoH

32$I$:32$B$!ledoM=selas_mumixaM
Number_tested_on_line_1 =Model!$B$19:$I$19
Number_tested_on_line_2 =Model!$B$20:$I$20
Total_computers_produce d =Model!$B$21:$I$21

33$J$!ledoM=tiforp_latoT

Figure 13.19 Larger Product Mix Model with Infeasible Solution
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6 Revenues, costs, and profits. The area from row 30 down shows the summary of
monetary values. Actually, only the total profit in cell J33 is needed, but it is also useful to
calculate the net profit from each computer model on each testing line. To obtain these,
enter the formula

��B14*B19

in cell B31 and copy it to the range B31:I32. Then sum these to obtain the totals in column
J. The total in cell J33 is the objective to maximize.

Experimenting with Other Solutions

Before going any further, you might want to experiment with other values in the changing
cells. However, it is a real challenge to guess the optimal solution. It is tempting to fill up
the changing cells corresponding to the largest unit margins. However, this totally ignores
their use of the scarce labor hours. If you can guess the optimal solution to this model, you
are better than we are!

USING SOLVER

The Solver dialog box should be filled out as shown in Figure 13.20. (Again, note that there
are enough named ranges so that only range names appear in this dialog box.) Except that this
model has two rows of changing cells, the Solver setup is identical to the one in Example 13.1.

Figure 13.20

Solver Dialog Box
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Discussion of the Solution

When you click on Solve, you obtain the optimal solution shown in Figure 13.21. The opti-
mal plan is to produce computer models 1, 4, 6, and 7 only, some on testing line 1 and oth-
ers on testing line 2. This plan uses all of the available labor hours for assembling and
testing on line 1, but about 1800 of the testing line 2 hours are not used. Also, maximum
sales are achieved only for computer models 1, 6, and 7. This is typical of an LP solution.
Some of the constraints are met exactly—they are binding—whereas others contain a cer-
tain amount of slack. The binding constraints prevent PC Tech from earning an even higher
profit.
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You typically gain
insights into a solution
by checking which
constraints are binding
and which contain
slack.
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31
32
33

JIHGFEDCBA
Assembling and tes�ng computers

Cost per labor hour
Cost per labor hour tes�ng, line
Cost per labor hour tes�ng, line

assembling $11
1 $19
2 $17

Inputs for assembling and tes�ng a computer
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Labor hours for assembly
Labor hours for tes�ng, line
Labor hours for tes�ng, line
Cost of component

5 5.5 5.5 5.5 6
1 1.5

4 5 5
2 2 2 2.5 2.5 2.5 3

2 2 2.5 2.5 2.5 3 3 3.5 3.5
parts $150 $225 $225 $225 $250 $250 $250 $300

Selling 006$035$525$005$074$064$054$053$ecirp
Unit margin, tested on line
Unit margin, tested on line

1 $128 $132 $142 $152 $142 $167 $172 $177
2 $122 $128 $138 $148 $139 $164 $160 $175

Assembling, tes�ng plan (# of computers)
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Number tested on line 1 1500 0 0 125 0 0 1000 0
Number tested on line 00000105740002
Total computers produced 1500 0 0 600 0 1000 1000 0

<= <= <= <= <= <= <= <=
Maximum 0080001000100010521052105210051selas

Constraints (hours per month) Hours used Hours available
Labor availability for assembling 20000 <= 20000
Labor availability for tes�ng, line
Labor availability for tes�ng, line

1 5000 <= 5000
2 4187.5 <= 6000

Net profit ($ per month) Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Totals
Tested on line 52,191$1 0 $0 $0 $19,000 $0 $0 $172,000 $0 $382,250
Tested on line 05,361$0$360,07$0$0$0$2 0 $0 $0 $233,563

$615,813

Figure 13.21 Optimal Solution to Larger Product Mix Model

Excel Tip Roundoff Error
Because of the way numbers are stored and calculated on a computer, the optimal values in
the changing cells and elsewhere can contain small roundoff errors. For example, the value
that really appears in cell E20 on one of our Excel 2007 PCs is 475.000002015897, not
exactly 475. For all practical purposes, this number can be treated as 475, and we have
formatted it as such in the spreadsheet. (We have been told that roundoff in Solver results
should be less of a problem in Excel 2010.)
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Sensitivity Analysis

If you want to experiment with different inputs to this problem, you can simply change the
inputs and then rerun Solver. The second time you use Solver, you do not have to specify
the objective and changing cells or the constraints. Excel remembers all of these settings
and saves them when you save the file.

You can also use SolverTable to perform a more systematic sensitivity analysis on one
or more input variables. One possibility appears in Figure 13.22, where the number of
available assembling labor hours is allowed to vary from 18,000 to 25,000 in increments
of 1000, and the numbers of computers produced and profit are designated as outputs.
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18000 1500 0 0 200 0 1000 1000 0 $556,813
19000 1500 0 0 400 0 1000 1000 0 $586,313
20000 1500 0 0 600 0 1000 1000 0 $615,813
21000 1500 0 0 800 0 1000 1000 0 $645,313
22000 1500 0 0 1000 0 1000 1000 0 $674,813
23000 1500 0 0 1200 0 1000 1000 0 $704,313
24000 1500 0 700 1250 0 1000 500 0 $724,750
25000 1500 0 1250 1250 0 1000 60 0 $727,170
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Figure 13.22 Sensitivity to Assembling Labor Hours
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There are several ways to interpret the output from this sensitivity analysis. First, you can
look at columns B through I to see how the product mix changes as more assembling labor
hours become available. For assembling labor hours from 18,000 to 23,000, the only thing
that changes is that more model 4s are produced. Beyond 23,000, however, the company
starts to produce model 3s and produces fewer model 7s. Second, you can see how extra
labor hours add to the total profit. Note exactly what this increased profit means. For exam-
ple, when labor hours increase from 20,000 to 21,000, the model requires that the company
must pay $11 apiece for these extra hours (if it uses them). But the net effect is that profit
increases by $29,500, or $29.50 per extra hour. In other words, the labor cost increases by
$11,000 [�$11(1000)], but this is more than offset by the increase in revenue that comes
from having the extra labor hours.

As column J illustrates, it is worthwhile for the company to obtain extra assembling
labor hours, even though it has to to pay for them, because its profit increases. However,
the increase in profit per extra labor hour—the shadow price of assembling labor hours—
is not constant. In the top part of the table, it is $29.50 (per extra hour), but it then
decreases to $20.44 and then $2.42. The accompanying SolverTable chart of column J
illustrates this decreasing shadow price through its decreasing slope.

SolverTable Technical Tip Charts and Roundoff
As SolverTable makes all of its Solver runs, it reports and then charts the values found by
Solver. These can include small roundoff errors and slightly misleading charts. For exam-
ple, the chart in Figure 13.23 shows one possibility, where we varied the cost of testing on
line 2 and charted the assembling hours used. Throughout the range, this output value was
20,000, but because of slight roundoff (19999.9999999292 and 20000.0000003259) in two
of the cells, the chart doesn’t appear to be flat. If you see this behavior, you can change it
manually.
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SolverTable Chart

Finally, you can gain additional insight from Solver’s sensitivity report, shown in
Figure 13.24. However, you have to be very careful in interpreting this report. Unlike
Example 13.1, there are no upper bound (maximum sales) constraints on the changing
cells. The maximum sales constraints are on the total computers produced (row 21 of
the model), not the changing cells. Therefore, the only nonzero reduced costs in the top
part of the table are for changing cells currently at zero (not those at their upper bounds
as in the previous example). Each nonzero reduced cost indicates how much the profit
margin for this activity would have to change before this activity would be profitable.
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Also, there is a row in the bottom part of the table for each constraint, including the
maximum sales constraints. The interesting values are again the shadow prices. The
first two indicate the amount the company would pay for an extra assembling or line 1
testing labor hour. (Does the 29.5 value look familiar? Compare it to the SolverTable
results above.) The shadow prices for all binding maximum sales constraints indicate
how much more profit the company could make if it could increase its demand by one
computer of that model.

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

HGFEDCBA
Variable Cells

Final Reduced Allowable Allowable
esaerceDesaercnItneiciffeoCtsoCeulaVemaNlleC

tested on line 1 Model 1 1500 0 127.5 1E+30 2.125
tested on line 1 Model 02 -
tested on line 1 Model 03 -

20 132 20 1E+30
10 142 10 1E+30

tested on line 1 Model 4 125 0 152 2.833 1.7
tested on line 1 Model 05 -25.875 142 25.875 1E+30
tested on line 1 Model 06 -
tested on line 1 Model
tested on line 1 Model 08 -
tested on line 2 Model 01 -
tested on line 2 Model 02 -
tested on line 2 Model 03 -
tested on line 2 Model
tested on line 2 Model 05 -
tested on line 2 Model
tested on line 2 Model 07 -

$B$19 Number
$C$19 Number
$D$19 Number
$E$19 Number
$F$19 Number
$G$19 Number
$H$19 Number
$I$19 Number
$B$20 Number
$C$20 Number
$D$20 Number
$E$20 Number
$F$20 Number
$G$20 Number
$H$20 Number
$I$20 Number tested on line 2 Model 08 -

2.125 167 2.125 1E+30
7 1000 0 172 1E+30 4.125

6.75 177 6.75 1E+30
2.125 122 2.125 1E+30

20 127.5 20 1E+30
10 137.5 10 1E+30

4 475 0 147.5 1.136 2.083
23.75 138.5 23.75 1E+30

6 1000 0 163.5 1E+30 1.25
6.375 160 6.375 1E+30

2.5 174.5 2.5 1E+30

Constraints
Final Shadow Constraint Allowable Allowable

.H.RecirPeulaVemaNlleC Side Increase Decrease
availability for assembling Hours used 20000 29.5 20000 3250 2375
availability for tes�ng, line 1 Hours
availability for tes�ng, line 2 Hours used 4187.5 0 6000 1E+30 1812.5

computers produced Model

used 5000 2.25 5000 950 250

1 1500 6.125 1500 166.667 812.5
computers produced Model 052103+E10521002
computers produced Model 052103+E10521003
computers produced Model 4 600 0 1250 1E+30 650
computers produced Model 000103+E10001005
computers produced Model
computers produced Model

6 1000 1.25 1000 431.818 590.909
7 1000 4.125 1000 100 590.909

$B$26 Labor
$B$27 Labor
$B$28 Labor
$B$21 Total
$C$21 Total
$D$21 Total
$E$21 Total
$F$21 Total
$G$21 Total
$H$21 Total
$I$21 Total computers produced Model 00803+E1008008

Objec�ve

Figure 13.24 Solver’s Sensitivity Report

13.7 A Larger Product Mix Model 785

The information in this sensitivity report is all relevant and definitely provides some
insights if studied carefully. However, this really requires you to know the exact rules
Solver uses to create this report. That is, it requires a fairly in-depth knowledge of the the-
ory behind LP sensitivity analysis, more than we have provided here. Fortunately, we
believe the same basic information—and more—can be obtained in a more intuitive way
by creating several carefully chosen SolverTable reports. ■
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P R O B L E M S

Level A

Note: All references to the product mix model in the following
problems are to the larger product mix model in this section.

10. Modify PC Tech’s product mix model so that there is
no maximum sales constraint. (This is easy to do in
the Solver dialog box. Just highlight the constraint and
click on the Delete button.) Does this make the
problem unbounded? Does it change the optimal
solution at all? Explain its effect.

11. In the product mix model it makes sense to change the
maximum sales constraint to a “minimum sales”
constraint, simply by changing the direction of the
inequality. Then the input values in row 23 can be
considered customer demands that must be met. Make
this change and rerun Solver. What do you find? What
do you find if you run Solver again, this time making
the values in row 23 one-quarter of their current
values?

12. Use SolverTable to run a sensitivity analysis on the
cost per assembling labor hour, letting it vary from $5
to $20 in increments of $1. Keep track of the
computers produced in row 21, the hours used in the
range B26:B28, and the total profit. Discuss your
findings. Are they intuitively what you expected?

13. Create a two-way SolverTable for the product mix
model, where total profit is the only output and the
two inputs are the testing line 1 hours and testing line
2 hours available. Let the former vary from 4000 to
6000 in increments of 500, and let the latter vary from
3000 to 5000 in increments of 500. Discuss the
changes in profit you see as you look across the
various rows of the table. Discuss the changes in profit
you see as you look down the various columns of the
table.

14. Model 8 has fairly high profit margins, but it isn’t
included at all in the optimal mix. Use SolverTable,

along with some experimentation on the correct range,
to find the (approximate) selling price required for
model 8 before it enters the optimal product mix.

Level B

15. Suppose that you want to increase all three of the
resource availabilities in the product mix model
simultaneously by the same percentage. You want this
percentage to vary from -25% to 50% in increments of
5%. Modify the spreadsheet model slightly so that this
sensitivity analysis can be performed with a one-way
SolverTable, using the percentage change as the single
input. Keep track of the computers produced in row
21, the hours used in the range B26:B28, and the total
profit. Discuss the results.

16. Some analysts complain that spreadsheet models are
difficult to resize. You can be the judge of this.
Suppose the current product mix problem is changed
so that there is an extra resource, packaging labor
hours, and two additional PC models, 9 and 10.
What additional input data are required? What
modifications are necessary in the spreadsheet
model (including range name changes)? Make up
values for any extra required input data and
incorporate these into a modified spreadsheet model.
Then optimize with Solver. Do you conclude that it
is easy to resize a spreadsheet model? (By the way,
it turns out that algebraic models are typically much
easier to resize.)

17. In Solver’s sensitivity report for the product mix
model, the allowable decrease for available assembling
hours is 2375. This means that something happens
when assembling hours fall to 20,000 � 2375 �
17,625. See what this means by first running Solver
with 17,626 available hours and then again with
17,624 available hours. Explain how the two solutions
compare to the original solution and to each other.

13.8 A MULTIPERIOD PRODUCTION MODEL

The product mix examples illustrate a very important type of LP model. However, LP
models come in many forms. For variety, we now present a quite different type of model
that can also be solved with LP. (In the next chapter we provide other examples, linear and
otherwise.) The distinguishing feature of the following model is that it relates decisions
made during several time periods. This type of problem occurs when a company must
make a decision now that will have ramifications in the future. The company does not want
to focus completely on the short run and forget about the long run.
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E X A M P L E 13.3 PRODUCING FOOTBALLS AT PIGSKIN

The Pigskin Company produces footballs. Pigskin must decide how many footballs to pro-
duce each month. The company has decided to use a six-month planning horizon. The

forecasted monthly demands for the next six months are 10,000, 15,000, 30,000, 35,000,
25,000, and 10,000. Pigskin wants to meet these demands on time, knowing that it currently
has 5000 footballs in inventory and that it can use a given month’s production to help meet the
demand for that month. (For simplicity, we assume that production occurs during the month,
and demand occurs at the end of the month.) During each month there is enough production
capacity to produce up to 30,000 footballs, and there is enough storage capacity to store up to
10,000 footballs at the end of the month, after demand has occurred. The forecasted produc-
tion costs per football for the next six months are $12.50, $12.55, $12.70, $12.80, $12.85, and
$12.95, respectively. The holding cost per football held in inventory at the end of any month is
figured at 5% of the production cost for that month. (This cost includes the cost of storage and
also the cost of money tied up in inventory.) The selling price for footballs is not considered
relevant to the production decision because Pigskin will satisfy all customer demand exactly
when it occurs—at whatever the selling price is. Therefore, Pigskin wants to determine the
production schedule that minimizes the total production and holding costs.

Objective To use LP to find the production schedule that meets demand on time and
minimizes total production and inventory holding costs.

WHERE DO THE NUMBERS COME FROM?

The input values for this problem are not all easy to find. Here are some thoughts on where
they might be obtained. (See Figure 13.25.)

■ The initial inventory in cell B4 should be available from the company’s database sys-
tem or from a physical count.

■ The unit production costs in row 8 would probably be estimated in two steps. First,
the company might ask its cost accountants to estimate the current unit production
cost. Then it could examine historical trends in costs to estimate inflation factors for
future months.

■ The holding cost percentage in cell B5 is typically difficult to determine. Depending
on the type of inventory being held, this cost can include storage and handling, rent,
property taxes, insurance, spoilage, and obsolescence. It can also include capital
costs—the cost of money that could be used for other investments.

■ The demands in row 18 are probably forecasts made by the marketing and sales
department. They might be “seat-of-the-pants” forecasts, or they might be the result
of a formal quantitative forecasting procedure as discussed in Chapter 12. Of course,
if there are already some orders on the books for future months, these are included in
the demand figures.

■ The production and storage capacities in rows 14 and 22 are probably supplied by the
production department. They are based on the size of the workforce, the available
machinery, availability of raw materials, and physical space.

Solution

The variables and constraints for this model are listed in Table 13.3. There are two keys to
relating these variables. First, the months cannot be treated independently. This is because

13.8 A Multiperiod Production Model 787
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the ending inventory in one month is the beginning inventory for the next month. Second,
to ensure that demand is satisfied on time, the amount on hand after production in each
month must be at least as large as the demand for that month. This constraint must be
included explicitly in the model.
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Table 13.3 Variables and Constraints for Production/Inventory Planning Model

Input variables Initial inventory, unit holding cost percentage, unit 
production costs, forecasted demands, production and 
storage capacities

Decision variables (changing cells) Monthly production quantities
Objective cell Total cost
Other calculated variables Units on hand after production, ending inventories, 

monthly production and inventory holding costs
Constraints Units on hand after production Demand (each month)

Units produced Production capacity (each month)
Ending inventory Storage capacity (each month)…

…

Ú

When you model this type of problem, you must be very specific about the timing of
events. In fact, depending on the assumptions you make, there can be a variety of potential
models. For example, when does the demand for footballs in a given month occur: at the
beginning of the month, at the end of the month, or continually throughout the month? The
same question can be asked about production in a given month. The answers to these two
questions indicate how much of the production in a given month can be used to help satisfy
the demand in that month. Also, are the maximum storage constraint and the holding cost
based on the ending inventory in a month, the average amount of inventory in a month, or
the maximum inventory in a month? Each of these possibilities is reasonable and could be
implemented.

To simplify the model, we assume that (1) all production occurs at the beginning of
the month, (2) all demand occurs after production, so that all units produced in a month
can be used to satisfy that month’s demand, and (3) the storage constraint and the holding
cost are based on ending inventory in a given month. (You are asked to modify these
assumptions in the problems.)

An Algebraic Model

In the traditional algebraic model, the decision variables are the production quantities for the
six months, labeled P1 through P6. It is also convenient to let I1 through I6 be the correspond-
ing end-of-month inventories (after demand has occurred).13 For example, I3 is the number of
footballs left over at the end of month 3. Therefore, the obvious constraints are on production
and inventory storage capacities: Pj 30000 and Ij 10000 for 1 j 6.

In addition to these constraints, balance constraints that relate the Ps and Is are
necessary. In any month the inventory from the previous month plus the current production
equals the current demand plus leftover inventory. If Dj is the forecasted demand for 
month j, the balance equation for month j is

Ij�1 � Pj � Dj � Ij

…………

By modifying the 
timing assumptions in
this type of model,
alternative—and
equally realistic—
models with very
different solutions 
can be obtained.

13This example illustrates a subtle difference between algebraic and spreadsheet models. It is often convenient
in algebraic models to define “decision variables,” in this case the Is, that are really determined by other
decision variables, in this case the Ps. In spreadsheet models, however, we typically define the changing cells
as the smallest set of variables that must be chosen—in this case the production quantities. Then values that are
determined by these changing cells, such as the ending inventory levels, can be calculated with spreadsheet
formulas.
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The balance equation for month 1 uses the known beginning inventory, 5000, for the previ-
ous inventory (the Ij�1 term). By putting all variables (Ps and Is) on the left and all known
values on the right (a standard LP convention), these balance constraints can be written as

P1 � I1 � 10000 � 5000

I1 � P2 � I2 � 15000

I2 � P3 � I3 � 30000

I3 � P4 � I4 � 35000

I4 � P5 � I5 � 25000

I5 � P6 � I6 � 10000 (13.1)

As usual, there are nonnegativity constraints: all Ps and Is must be nonnegative.
What about meeting demand on time? This requires that in each month the inventory

from the preceding month plus the current production must be at least as large as the cur-
rent demand. But take a look, for example, at the balance equation for month 3. By rear-
ranging it slightly, it becomes

I3 � I2 � P3 � 30000

Now, the nonnegativity constraint on I3 implies that the right side of this equation, 
I2 � P3 � 30000, is also nonnegative. But this implies that demand in month 3 is
covered—the beginning inventory in month 3 plus month 3 production is at least 30000.
Therefore, the nonnegativity constraints on the Is automatically guarantee that all demands
will be met on time, and no other constraints are needed. Alternatively, the constraint can
be written directly as I2 � P3 30000. In words, the amount on hand after production in
month 3 must be at least as large as the demand in month 3. The spreadsheet model takes
advantage of this interpretation.

Finally, the objective to minimize is the sum of production and holding costs. It is the
sum of unit production costs multiplied by Ps, plus unit holding costs multiplied by Is.

DEVELOPING THE SPREADSHEET MODEL

The spreadsheet model of Pigskin’s production problem is shown in Figure 13.25. (See the
file Production Scheduling.xlsx.) The main feature that distinguishes this model from the
product mix model is that some of the constraints, namely, the balance equations (13.1),
are built into the spreadsheet itself by means of formulas. This means that the only chang-
ing cells are the production quantities. The ending inventories shown in row 20 are deter-
mined by the production quantities and equations (13.1). As you see, the decision variables
in an algebraic model (the Ps and Is) are not necessarily the same as the changing cells in
an equivalent spreadsheet model. (The only changing cells in the spreadsheet model corre-
spond to the Ps.)

To develop the spreadsheet model in Figure 13.25, proceed as follows.

1 Inputs. Enter the inputs in the blue cells. Again, these are all entered as numbers
directly from the problem statement. (Unlike some spreadsheet modelers who prefer to put
all inputs in the upper left corner of the spreadsheet, we enter the inputs wherever they fit
most naturally. Of course, this takes some planning before diving in.)

2 Name ranges. Name the ranges indicated. Note that all but one of these (Total_cost)
can be named easily with the range-naming shortcut, using the labels in column A.

Ú

13.8 A Multiperiod Production Model 789

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3 Production quantities. Enter any values in the range Units_produced as production
quantities. As always, you can enter values that you believe are good, maybe even optimal.
This is not crucial, however, because Solver eventually finds the optimal production
quantities.

4 On-hand inventory. Enter the formula

��B4��B12

in cell B16. This calculates the first month’s on-hand inventory after production (but
before demand). Then enter the typical formula

��B20��C12

for on-hand inventory after production in month 2 in cell C16 and copy it across row 16.

5 Ending inventories. Enter the formula

��B16-B18
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

A B C D E F G H
Mul�period produc�on model

Input data
Ini�al inventory (100s) 5000
Holding cost as % of prod cost 5%

Month 1 2 3 4 5 6
Produc�on cost/unit $12.50 $12.55 $12.70 $12.80 $12.85 $12.95

Produc�on plan (all quan��es are in 100s of footballs)
Month
Units 000010005200003000030005100051decudorp

Produc�on capacity 30000 30000 30000 30000 30000 30000

On hand a�er n 20000 25000 40000 40000 30000 15000

000010005200053000030005100001dnameD

Ending 000500050005000010000100001yrotnevni

<= <= <= <= <= <=

>= >= >= >= >= >=

<= <= <= <= <= <=
Storage 000010000100001000010000100001yticapac

Summary of costs (all costs are in hundreds of dollars)
Month 1 2 3 4 5 6 Totals
Produc�on costs $187,500.00 $188,250.00 $381,000.00 $384,000.00 $321,250.00 $129,500.00 $1,591,500.00
Holding 00.525,82$05.732,3$05.212,3$00.002,3$00.053,6$00.572,6$00.052,6$stsoc

00.520,026,1$05.737,231$05.264,423$00.002,783$00.053,783$00.525,491$00.057,391$slatoT

Range names used
81$G$:81$B$!ledoM=dnameD

Ending_inventory =Model!$B$20:$G$20
n =Model!$B$16:$G$16

y =Model!$B$14:$G$14
Storage_capacity =Model!$B$22:$G$22

82$H$!ledoM=tsoC_latoT
Units_produced =Model!$B$12:$G$12

1 2 3 4 5 6

Figure 13.25 Production Planning Model with a Suboptimal Solution

In multiperiod
problems, there is
often one formula for
the first period and a
slightly different
(copyable) formula for
all other periods.
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for ending inventory in cell B20 and copy it across row 20. This formula calculates ending
inventory in the current month as on-hand inventory before demand minus the demand in
that month.

6 Production and holding costs. Enter the formula

��B8*B12

in cell B26 and copy it across to cell G26 to calculate the monthly production costs. Then
enter the formula

��$B$5*B8*B20

in cell B27 and copy it across to cell G27 to calculate the monthly holding costs. Note that
these are based on monthly ending inventories. Finally, calculate the cost totals in column
H with the SUM function.

USING SOLVER

To use Solver, fill out the main dialog box as shown in Figure 13.26. The logic behind the
constraints is straightforward. The constraints are that (1) the production quantities cannot
exceed the production capacities, (2) the on-hand inventories after production must be at
least as large as demands, and (3) ending inventories cannot exceed storage capacities.
Check the Non-Negative option, and then click on Solve.

Discussion of the Solution

The optimal solution from Solver appears in Figure 13.27. The solution can be interpreted
best by comparing production quantities to demands. In month 1, Pigskin should produce
just enough to meet month 1 demand (taking into account the initial inventory of 5000). In

Figure 13.26

Solver Dialog Box

for Production

Planning Model
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month 2, it should produce 5000 more footballs than month 2 demand, and then in month
3 it should produce just enough to meet month 3 demand, while still carrying the extra
5000 footballs in inventory from month 2 production. In month 4, Pigskin should finally
use these 5000 footballs, along with the maximum production amount, 30,000, to meet
month 4 demand. Then in months 5 and 6 it should produce exactly enough to meet these
months’ demands. The total cost is $1,535,563, most of which is production cost.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

A B C D E F G H
Mul�period produc�on model

Input data
Ini�al inventory (100s) 5000
Holding cost as % of prod cost 5%

Month 1 2 3 4 5 6
Produc�on cost/unit $12.50 $12.55 $12.70 $12.80 $12.85 $12.95

Produc�on plan (all quan��es are in 100s of footballs)
Month 1 2 3 4 5 6
Units 00001000520000300003000020005decudorp

<= <= <= <= <= <=
Produc�on capacity 30000 30000 30000 30000 30000 30000

On hand a�er produc�on 10000 20000 35000 35000 25000 10000
>= >= >= >= >= >=

000010005200053000030005100001dnameD

Ending 000000500050yrotnevni
<= <= <= <= <= <=

Storage 000010000100001000010000100001yticapac

Summary of costs (all costs are in hundreds of dollars)
Month 1 2 3 4 5 6 Totals
Produc�on costs $62,500.00 $251,000.00 $381,000.00 $384,000.00 $321,250.00 $129,500.00 $1,529,250.00
Holding 05.213,6$00.0$00.0$00.0$00.571,3$05.731,3$00.0$stsoc

05.265,535,1$00.005,921$00.052,123$00.000,483$00.571,483$05.731,452$00.005,26$slatoT

Range names used
81$G$:81$B$!ledoM=dname

On_hand_a�er_produc�on
Ending_inventory =Model!$B$20:$G$20

=Model!$B$16:$G$16
=Model!$B$14:$G$14

Storage_capacity =Model!$B$22:$G$22
82$H$!ledoM=tsoC_latoT

Units_produced =Model!$B$12:$G$12

D

Produc�on_capacity

Figure 13.27 Optimal Solution for Production Planning Model

Could you have guessed this optimal solution? Upon reflection, it makes perfect
sense. Because the monthly holding costs are large relative to the differences in monthly
production costs, there is little incentive to produce footballs before they are needed to take
advantage of a “cheap” production month. Therefore, the Pigskin Company produces foot-
balls in the month when they are needed—when possible. The only exception to this rule is
the 20,000 footballs produced during month 2 when only 15,000 are needed. The extra
5000 footballs produced in month 2 are needed, however, to meet the month 4 demand of
35,000, because month 3 production capacity is used entirely to meet the month 3 demand.

You can often improve
your intuition by trying
to reason why Solver’s
solution is indeed
optimal.
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Thus month 3 capacity is not available to meet the month 4 demand, and 5000 units of
month 2 capacity are used to meet the month 4 demand.

FUNDAMENTAL INSIGHT

Multiperiod Optimization Problems and
Myopic Solutions

Many optimization problems are of a multiperiod

nature, where a sequence of decisions must be made

over time.When making the first of these decisions,

the one for this week or this month, say, it is usually

best to include future decisions in the model, as has

been done here. If you ignore future periods and

make the initial decision based only on the first

period, the resulting decision is called myopic (short-

sighted). Myopic decisions are occasionally optimal,

but not very often.The idea is that if you act now in

a way that looks best in the short run, it might lead

you down a strategically unattractive path for the

long run.

Sensitivity Analysis

SolverTable can now be used to perform a number of interesting sensitivity analyses. We
illustrate two possibilities. First, note that the most inventory ever carried at the end of a
month is 5000, although the storage capacity each month is 10,000. Perhaps this is because
the holding cost percentage, 5%, is fairly large. Would more ending inventory be carried if
this holding cost percentage were lower? Or would even less be carried if it were higher?
You can check this with the SolverTable output shown in Figure 13.28. Now the single
input cell is cell B5, and the single output is the maximum ending inventory ever held,
which you can calculate in cell B31 with the formula

��MAX(Ending_inventory)

As the SolverTable results indicate, the storage capacity limit is reached only when the
holding cost percentage falls to 1%. (This output doesn’t indicate which month or how

If you want Solver
Table to keep track 
of a quantity that is
not in your model,
you need to create it
with an appropriate
formula in a new cell.

3
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10
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13
14

A B C D E F G
Holding cost % (cell $B$5) values along side, output cell(s) along top

M
ax

_i
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ry

1% 10000
2% 5000
3% 5000
4% 5000
5% 5000
6% 5000
7% 5000
8% 5000
9% 5000

10% 5000

Figure 13.28

Sensitivity of

Maximum Inventory

to Holding Cost
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many months the ending inventory is at the upper limit.) On the other hand, even when the
holding cost percentage reaches 10%, the company still continues to hold a maximum end-
ing inventory of 5000.

A second possible sensitivity analysis is suggested by the way the optimal production
schedule would probably be implemented. The optimal solution to Pigskin’s model speci-
fies the production level for each of the next six months. In reality, however, the company
would probably implement the model’s recommendation only for the first month. Then at
the beginning of the second month, it would gather new forecasts for the next six months,
months 2 through 7, solve a new six-month model, and again implement the model’s rec-
ommendation for the first of these months, month 2. If the company continues in this man-
ner, we say that it is following a six-month rolling planning horizon.

The question, then, is whether the assumed demands (really, forecasts) toward the end
of the planning horizon have much effect on the optimal production quantity in month 1.
You would hope not, because these forecasts could be quite inaccurate. The two-way
Solver table in Figure 13.29 shows how the optimal month 1 production quantity varies
with the forecasted demands in months 5 and 6. As you can see, if the forecasted demands
for months 5 and 6 remain fairly small, the optimal month 1 production quantity remains at
5000. This is good news. It means that the optimal production quantity in month 1 is fairly
insensitive to the possibly inaccurate forecasts for months 5 and 6.
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3

4
5
6
7

A B C D E F G H I J
Month 5 demand (cell $F$18) values along side, Month 6 demand (cell $G$18) values along top, output cell in corner

Units_produced_1 10000 20000 30000
10000 5000 5000 5000
20000 5000 5000 5000
30000 5000 5000 5000

Figure 13.29 Sensitivity of Month 1 Production to Demand in Months 5 and 6

Solver’s sensitivity report for this model appears in Figure 13.30. The bottom part of
this report is fairly straightforward to interpret. The first six rows are for sensitivity to
changes in the storage capacity, whereas the last six are for sensitivity to changes in the
demand. (There are no rows for the production capacity constraints, because these are sim-
ple upper-bound constraints on the decision variables. Recall that Solver’s sensitivity
report handles this type of constraint differently from “normal” constraints.) In contrast,
the top part of the report is virtually impossible to unravel. This is because the objective
coefficients of the decision variables are each based on multiple inputs. (Each is a combi-
nation of unit production costs and the holding cost percentage.) Therefore, if you want to
know how the solution will change if you change a single unit production cost or the hold-
ing cost percentage, this report does not answer your question. This is one case where a
sensitivity analysis with SolverTable is much more straightforward and intuitive. It allows
you to change any of the model’s inputs and directly see the effects on the solution.

Modeling Issues

We assume that Pigskin uses a six-month planning horizon. Why six months? In multi-
period models such as this, the company has to make forecasts about the future, such as the
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level of customer demand. Therefore, the length of the planning horizon is usually the
length of time for which the company can make reasonably accurate forecasts. Here,
Pigskin evidently believes that it can forecast up to six months from now, so it uses a six-
month planning horizon. ■

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A B C D E F G H
Variable Cells

Final Reduced Allowable Allowable
Cell Name Value Cost Coefficien

Objec�ve
t Increase Decrease

$B$12 Units produced 5000 0 16.318 1E+30 0.575
$C$12 Units produced 20000 0 15.743 0.575 0.478
$D$12 Units produced 30000 -0.478 15.265 0.478 1E+30
$E$12 Units produced 30000 -1.013 14.730 1.013 1E+30
$F$12 Units produced 25000 0 14.140 1.603 0.543
$G$12 Units produced 10000 0 13.598 0.543 13.598

Constraints
Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
$B$16 On hand a�er produc�on

a�er produc�on
a�er produc�on
a�er produc�on
a�er produc�on
a�er produc�on

   <= 10000 0.575 10000 10000 5000
$C$16 On hand   <= 20000 0 15000 5000 1E+30
$D$16 On hand   <= 35000 0 30000 5000 1E+30
$E$16 On hand   <= 35000 1.603 35000 5000 5000
$F$16 On hand   <= 25000 0.543 25000 5000 20000
$G$16 On hand   <= 10000 13.598 10000 10000 10000
$B$20 Ending inventory >= 0 0 10000 1E+30 10000
$C$20 Ending inventory >= 5000 0 10000 1E+30 5000
$D$20 Ending inventory >= 5000 0 10000 1E+30 5000
$E$20 Ending inventory >= 0 0 10000 1E+30 10000
$F$20 Ending inventory >= 0 0 10000 1E+30 10000
$G$20 Ending inventory >= 0 0 10000 1E+30 10000

Figure 13.30 Solver Sensitivity Report for Production Planning Model

P R O B L E M S

Level A

18. Can you guess the results of a sensitivity analysis on
the initial inventory in the Pigskin model? See if your
guess is correct by using SolverTable and allowing the
initial inventory to vary from 0 to 10,000 in
increments of 1000. Keep track of the values in the
changing cells and the objective cell.

19. Modify the Pigskin model so that there are eight
months in the planning horizon. You can make up
reasonable values for any extra required data. Don’t
forget to modify range names. Then modify the model

again so that there are only four months in the
planning horizon. Do either of these modifications
change the optimal production quantity in month 1?

20. As indicated by the algebraic formulation of the
Pigskin model, there is no real need to calculate
inventory on hand after production and constrain it to
be greater than or equal to demand. An alternative is to
calculate ending inventory directly and constrain it to
be nonnegative. Modify the current spreadsheet model
to do this. (Delete rows 16 and 17, and calculate
ending inventory appropriately. Then add an explicit
nonnegativity constraint on ending inventory.)
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13.9 A COMPARISON OF ALGEBRAIC AND SPREADSHEET MODELS

To this point you have seen three algebraic optimization models and three corresponding
spreadsheet models. How do they differ? If you review the two product mix examples in this
chapter, we believe you will agree that (1) the algebraic models are quite straightforward and
(2) the spreadsheet models are almost direct translations into Excel of the algebraic models.
In particular, each algebraic model has a set of xs that corresponds to the changing cell range
in the spreadsheet model. In addition, each objective and each left side of each constraint in
the spreadsheet model corresponds to a linear expression involving xs in the algebraic model.

However, the Pigskin production planning model is quite different. The spreadsheet
model includes one set of changing cells, the production quantities, and everything else is
related to these through spreadsheet formulas. In contrast, the algebraic model has two sets
of variables, the Ps for the production quantities and the Is for the ending inventories, and
together these constitute the decision variables. These two sets of variables must then be
related algebraically, and this is done through a series of balance equations.

This is a typical situation in algebraic models, where one set of variables (the produc-
tion quantities) corresponds to the real decision variables, and other sets of variables, along
with extra equations or inequalities, are introduced to capture the logic. We believe—and
this belief is reinforced by many years of teaching experience—that this extra level of
abstraction makes algebraic models much more difficult for typical users to develop and
comprehend. It is the primary reason we have decided to focus almost exclusively on
spreadsheet models in this book.

13.10 A DECISION SUPPORT SYSTEM

If your job is to develop an LP spreadsheet model to solve a problem such as Pigskin’s pro-
duction problem, then you will be considered the “expert” in LP. Many people who need to
use such models, however, are not experts. They might understand the basic ideas behind
LP and the types of problems it is intended to solve, but they will not know the details. In
this case it is useful to provide these users with a decision support system (DSS) that can
help them solve problems without having to worry about technical details.
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21. In one modification of the Pigskin problem, the
maximum storage constraint and the holding cost are
based on the average inventory (not ending inventory)
for a given month, where the average inventory is
defined as the sum of beginning inventory and ending
inventory, divided by 2, and beginning inventory is
before production or demand. Modify the Pigskin
model with this new assumption, and use Solver to
find the optimal solution. How does this change the
optimal production schedule? How does it change the
optimal total cost?

Level B

22. Modify the Pigskin spreadsheet model so that except
for month 6, demand need not be met on time. The
only requirement is that all demand be met eventually
by the end of month 6. How does this change the
optimal production schedule? How does it change the
optimal total cost?

23. Modify the Pigskin spreadsheet model so that demand
in any of the first five months must be met no later
than a month late, whereas demand in month 6 must
be met on time. For example, the demand in month 3
can be met partly in month 3 and partly in month 4.
How does this change the optimal production
schedule? How does it change the optimal total cost?

24. Modify the Pigskin spreadsheet model in the following
way. Assume that the timing of demand and
production are such that only 70% of the production in
a given month can be used to satisfy the demand in
that month. The other 30% occurs too late in that
month and must be carried as inventory to help satisfy
demand in later months. How does this change the
optimal production schedule? How does it change the
optimal total cost? Then use SolverTable to see how
the optimal production schedule and optimal cost vary
as the percentage of production usable for this month’s
demand (now 70%) is allowed to vary from 20% to
100% in increments of 10%.
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We will not teach you in this book how to build a full-scale DSS, but we will show you
what a typical DSS looks like and what it can do.14 (We consider only DSSs built around
spreadsheets. There are many other platforms for developing DSSs that we will not con-
sider.) Basically, a spreadsheet-based DSS contains a spreadsheet model of a problem,
such as the one in Figure 13.27. However, as a user, you will probably never even see this
model. Instead, you will see a front end and a back end. The front end allows you to select
input values for your particular problem. The user interface for this front end can include
several features, such as buttons, dialog boxes, toolbars, and menus—the things you are
used to seeing in Windows applications. The back end will then produce a report that
explains the solution in nontechnical terms.

We illustrate a DSS for a slight variation of the Pigskin problem in the file Decision
Support.xlsm. This file has three sheets. When you open the file, you see the Explanation
sheet shown in Figure 13.31. It contains two buttons, one for setting up the problem (get-
ting the user’s inputs) and one for solving the problem (running Solver). When you click
on the Set Up Problem button, you are asked for the inputs: the initial inventory, the fore-
casted demands for each month, and others. An example appears in Figure 13.32. These
input boxes should be self-explanatory, so that all you need to do is enter the values you

Figure 13.31

Explanation Sheet

for DSS

Figure 13.32

Dialog Box for

Obtaining User

Inputs

14For readers interested in learning more about this DSS, this textbook’s Web site includes notes about its devel-
opment in the file Developing the Decision Support Application.docx under Chapter 13 Example Files. If you
are interested in learning more about spreadsheet DSSs in general, Albright has written the book VBA for
Modelers, now in its third edition. It contains a primer on the VBA language and presents many applications and
instructions for creating DSSs with VBA.
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want to try. (To speed up the process, the inputs from the previous run are shown by
default.) After you have entered all of these inputs, you can take a look at the Model sheet.
This sheet contains a spreadsheet model similar to the one in Figure 13.27 but with the
inputs you just entered.

Now go back to the Explanation sheet and click on the Find Optimal Solution button.
This automatically sets up the Solver dialog box and runs Solver. There are two possibili-
ties. First, it is possible that there is no feasible solution to the problem with the inputs you
entered. In this case you see a message to this effect, as in Figure 13.33. In most cases,
however, the problem has a feasible solution. In this case you see the Report sheet, which
summarizes the optimal solution in nontechnical terms. Part of one sample output appears
in Figure 13.34.
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Figure 13.33

Indication of No

Feasible Solutions

Figure 13.34

Optimal Solution

Report

After studying this report, you can then click on the Solve Another Problem button,
which takes you back to the Explanation sheet so that you can solve a new problem. All of
this is done automatically with Excel macros. These macros use Microsoft’s Visual Basic
for Applications (VBA) programming language to automate various tasks. In most
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professional applications, nontechnical people need only to enter inputs and look at
reports. Therefore, the Model sheet and VBA code will most likely be hidden and pro-
tected from end users.

13.11 CONCLUSION

This chapter has provided a good start to LP modeling—and to optimization modeling in
general. You have learned how to develop three basic LP spreadsheet models, how to use
Solver to find their optimal solutions, and how to perform sensitivity analyses with
Solver’s sensitivity reports or with the SolverTable add-in. You have also learned how to
recognize whether a mathematical programming model satisfies the linear assumptions. In
the next chapter you will see a variety of other optimization models, but the three basic
steps of model development, Solver optimization, and sensitivity analysis remain the same.

Summary of Key Terms

Term Explanation Excel Page
Linear programming An optimization model with a linear 746
model objective and linear constraints

Objective The value, such as profit, to be optimized 747
in an optimization model

Constraints Conditions that must be satisfied in 747
an optimization model

Changing cells Cells that contain the values of the Specify in Solver 747
decision variables dialog box

Objective cell Cell that contains the value Specify in 747
of the objective Solver dialog box

Nonnegativity constraints Constraints that require the decision 747
variables to be nonnegative,
usually for physical reasons

Feasible solution A solution that satisfies all of the constraints 748

Feasible region The set of all feasible solutions 748

Optimal solution The feasible solution that has 748
the best value of the objective

Solver Add-in that ships with Excel for Solver on 748
performing optimization Data ribbon

Simplex method An efficient algorithm for finding the 748
optimal solution in a linear programming model

Sensitivity analysis Seeing how the optimal solution changes 748
as various input values change

Algebraic model A model that expresses the constraints 750
and the objective algebraically

Graphical solution Shows the constraints and objective 750
graphically so that the optimal solution
can be identified; useful only when
there are two decision variables

Spreadsheet model A model that uses spreadsheet formulas 752
to express the logic of the model

Binding constraint A constraint that holds as an equality 760

(continued)
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Summary of Key Terms (Continued)

Term Explanation Excel Page
Nonbinding constraint, A constraint where there is a difference, the 760
slack slack, between the two sides of

the inequality

Solver’s sensitivity Report available from Solver that shows Available in Solver 761
report sensitivity to objective coefficients and dialog box

right sides of constraints after Solver runs

Reduced cost Amount the objective coefficient of a 763
variable currently equal to zero must change
before it is optimal for that variable to be positive
(or the amount the objective of a variable currently 
at its upper bound must change before that variable 
decreases from its upper bound)

Shadow price The change in the objective for a change in 763
the right side of a constraint; indicates amount  
a company would pay for more of a scarce 
resource

SolverTable Add-in that performs sensitivity analysis SolverTable ribbon 765
to any inputs and reports results in
tabular and graphical form

Selecting multiple ranges Useful when changing cells, e.g., are in Pressing Ctrl key, 767
noncontiguous ranges drag ranges, one

after the other

Mathematical Any optimization model, whether linear, integer, 772
programming model or nonlinear

Proportionality, Properties of optimization model that result 773
additivity, divisibility in a linear programming model

Infeasibility Condition where a model has no feasible solutions 775

Unboundedness Condition where there is no limit to the objective; 775
almost always a sign of an error in the model

Rolling planning horizon Multiperiod model where only the decision in the
first period is implemented, and then a new multiperiod 
model is solved in succeeding periods

Decision support system User-friendly system where an end user can 796
enter inputs to a model and see outputs, but need
not be concerned with technical details

P R O B L E M S

Conceptual Questions

C1. Suppose you use Solver to find the optimal solution
to a maximization model. Then you remember that
you omitted an important constraint. After adding the
constraint and running Solver again, is the optimal
value of the objective guaranteed to decrease? Why
or why not?

C2. Consider an optimization model with a number of
resource constraints. Each indicates that the amount
of the resource used cannot exceed the amount
available. Why is the shadow price of such a resource
constraint always zero when the amount used in the
optimal solution is less than the amount available?
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C3. If you add a constraint to an optimization model, and
the previously optimal solution satisfies the new
constraint, will this solution still be optimal with the
new constraint added? Why or why not?

C4. Why is it generally necessary to add nonnegativity
constraints to an optimization model? Wouldn’t
Solver automatically choose nonnegative values for
the changing cells?

C5. Suppose you have a linear optimization model where
you are trying to decide which products to produce to
maximize profit. What does the additive assumption
imply about the profit objective? What does the
proportionality assumption imply about the profit
objective? Be as specific as possible. Can you think
of any reasonable profit functions that would not be
linear in the amounts of the products produced?

C6. In a typical product mix model, where a company
must decide how much of each product to produce to
maximize profit, discuss possible situations where
there might not be any feasible solutions. Could these
be realistic? If you had such a situation in your
company, how might you proceed?

C7. In a typical product mix model, where a company
must decide how much of each product to produce to
maximize profit, there are sometimes customer
demands for the products. We used upper-bound
constraints for these: Don’t produce more than you
can sell. Would it be realistic to have lower-bound
constraints instead: Produce at least as much as is
demanded? Would it be realistic to have both (where
the upper bounds are greater than the lower bounds)?
Would it be realistic to have equality constraints:
Produce exactly what is demanded?

C8. In a typical production scheduling model like
Pigskin’s, if there are no production capacity
constraints—the company can produce as much as it
needs in any time period—but there are storage
capacity constraints and demand must be met on
time, is it possible that there will be no feasible
solutions? Why or why not?

C9. In a production scheduling problem like Pigskin’s,
suppose the company must produce several products
to meet customer demands. Would it suffice to solve
a separate model for each product, as we did for
Pigskin, or would one big model for all products be
necessary? If the latter, discuss what this big model
might look like.

C10. In any optimization model such as those in this
chapter, we say that the model is unbounded (and
Solver will indicate as such) if there is no limit to the
value of the objective. For example, if the objective is
profit, then for any dollar value, no matter how large,
there is a feasible solution with profit at least this
large. In the real world, why are there never any

unbounded models? If you run Solver on a model and
get an “unbounded” message, what should you do?

Level A

25. A chemical company manufactures three chemicals:
A, B, and C. These chemicals are produced via two
production processes: 1 and 2. Running process 1 for
an hour costs $400 and yields 300 units of A, 100
units of B, and 100 units of C. Running process 2 for
an hour costs $100 and yields 100 units of A and 100
units of B. To meet customer demands, at least 1000
units of A, 500 units of B, and 300 units of C must be
produced daily.
a. Use Solver to determine a daily production plan

that minimizes the cost of meeting the company’s
daily demands.

b. Confirm graphically that the daily production plan
from part a minimizes the cost of meeting the
company’s daily demands.

c. Use SolverTable to see what happens to the
decision variables and the total cost when the
hourly processing cost for process 2 increases in
increments of $0.50. How large must this cost
increase be before the decision variables change?
What happens when it continues to increase
beyond this point?

26. A furniture company manufactures desks and chairs.
Each desk uses four units of wood, and each chair uses
three units of wood. A desk contributes $400 to profit,
and a chair contributes $250. Marketing restrictions
require that the number of chairs produced be at least
twice the number of desks produced. There are 2000
units of wood available.
a. Use Solver to maximize the company’s profit.
b. Confirm graphically that the solution in part a

maximizes the company’s profit.
c. Use SolverTable to see what happens to the

decision variables and the total profit when the
availability of wood varies from 1000 to 3000 in
100-unit increments. Based on your findings, how
much would the company be willing to pay for
each extra unit of wood over its current 2000 units?
How much profit would the company lose if it lost
any of its current 2000 units?

27. A farmer in Iowa owns 450 acres of land. He is going to
plant each acre with wheat or corn. Each acre planted
with wheat yields $2000 profit, requires three workers,
and requires two tons of fertilizer. Each acre planted
with corn yields $3000 profit, requires two workers, and
requires four tons of fertilizer. There are currently 1000
workers and 1200 tons of fertilizer available.
a. Use Solver to help the farmer maximize the profit

from his land.
b. Confirm graphically that the solution from part a

maximizes the farmer’s profit from his land.
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c. Use SolverTable to see what happens to the
decision variables and the total profit when the
availability of fertilizer varies from 200 tons to
2200 tons in 100-ton increments. When does the
farmer discontinue producing wheat? When does
he discontinue producing corn? How does the
profit change for each 10-ton increment?

28. During the next four months, a customer requires,
respectively, 500, 650, 1000, and 700 units of a
commodity, and no backlogging is allowed (that is, the
customer’s requirements must be met on time).
Production costs are $50, $80, $40, and $70 per unit
during these months. The storage cost from one month
to the next is $20 per unit (assessed on ending
inventory). It is estimated that each unit on hand at the
end of month 4 can be sold for $60. Assume there is
no beginning inventory.
a. Determine how to minimize the net cost incurred in

meeting the demands for the next four months.
b. Use SolverTable to see what happens to the decision

variables and the total cost when the initial inventory
varies from 0 to 1000 in 100-unit increments. How
much lower would the total cost be if the company
started with 100 units in inventory, rather than none?
Would this same cost decrease occur for every 
100-unit increase in initial inventory?

29. A company faces the following demands during the
next three weeks: week 1, 2000 units; week 2, 1000
units; week 3, 1500 units. The unit production costs
during each week are as follows: week 1, $130; week
2, $140; week 3, $150. A holding cost of $20 per unit
is assessed against each week’s ending inventory. At
the beginning of week 1, the company has 500 units
on hand. In reality, not all goods produced during a
month can be used to meet the current month’s
demand. To model this fact, assume that only half of
the goods produced during a week can be used to meet
the current week’s demands.
a. Determine how to minimize the cost of meeting the

demand for the next three weeks.
b. Revise the model so that the demands are of the form

Dt � k	t, where Dt is the original demand (from
above) in month t, k is a given factor, and 	t is an
amount of change in month t demand. (The Greek
symbol delta is typically used to indicate change.)
Develop the model in such a way that you can use
SolverTable to analyze changes in the amounts
produced and the total cost when k varies from 0 to
10 in 1-unit increments, for any fixed values of the
	ts. For example, try this when 	1 � 200, 	2 � 500,
and 	3 � 300. Describe the behavior you observe in
the table. Can you find any reasonable 	ts that
induce positive production levels in week 3?

30. Maggie Stewart loves desserts, but due to weight and
cholesterol concerns, she has decided that she must

plan her desserts carefully. There are two possible
desserts she is considering: snack bars and ice cream.
After reading the nutrition labels on the snack bar and
ice cream packages, she learns that each serving of a
snack bar weighs 37 grams and contains 120 calories
and 5 grams of fat. Each serving of ice cream weighs
65 grams and contains 160 calories and 10 grams of
fat. Maggie will allow herself no more than 450
calories and 25 grams of fat in her daily desserts, but
because she loves desserts so much, she requires at
least 120 grams of dessert per day. Also, she assigns a
“taste index” to each gram of each dessert, where 0 is
the lowest and 100 is the highest. She assigns a taste
index of 95 to ice cream and 85 to snack bars (because
she prefers ice cream to snack bars).
a. Use Solver to find the daily dessert plan that stays

within her constraints and maximizes the total taste
index of her dessert.

b. Confirm graphically that the solution from part a
maximizes Maggie’s total taste index.

c. Use a two-way Solver table to see how the optimal
dessert plan varies when the calories per snack bar
and per ice cream vary. Let the former vary from
80 to 200 in increments of 10, and let the latter
vary from 120 to 300 in increments of 10.

31. For a telephone survey, a marketing research group
needs to contact at least 600 wives, 480 husbands, 400
single adult males, and 440 single adult females. It
costs $3 to make a daytime call and (because of higher
labor costs) $5 to make an evening call. The file
P13_31.xlsx lists the results that can be expected. For
example, 30% of all daytime calls are answered by a
wife, 15% of all evening calls are answered by a single
male, and 40% of all daytime calls are not answered at
all. Due to limited staff, at most 40% of all phone calls
can be evening calls.
a. Determine how to minimize the cost of completing

the survey.
b. Use SolverTable to investigate changes in the unit

cost of either type of call. Specifically, investigate
changes in the cost of a daytime call, with the cost
of an evening call fixed, to see when (if ever) only
daytime calls or only evening calls will be made.
Then repeat the analysis by changing the cost of an
evening call and keeping the cost of a daytime call
fixed.

32. A furniture company manufactures tables and chairs.
Each table and chair must be made entirely out of oak
or entirely out of pine. A total of 15,000 board feet of
oak and 21,000 board feet of pine are available. A
table requires either 17 board feet of oak or 30 board
feet of pine, and a chair requires either 5 board feet of
oak or 13 board feet of pine. Each table can be sold for
$800, and each chair for $300.
a. Determine how the company can maximize its

revenue.
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b. Use SolverTable to investigate the effects of
simultaneous changes in the selling prices of the
products. Specifically, see what happens to the total
revenue when the selling prices of oak products
change by a factor 1 � k1 and the selling prices of
pine products change by a factor 1 � k2. Revise
your model from the previous problem so that you
can use SolverTable to investigate changes in total
revenue as k1 and k2 both vary from �0.3 to 0.3 in
increments of 0.1. Can you conclude that total
revenue changes linearly within this range?

33. A manufacturing company makes two products. Each
product can be made on either of two machines. The
time (in hours) required to make each product on each
machine is listed in the file P13_33.xlsx. Each month,
500 hours of time are available on each machine. Each
month, customers are willing to buy up to the
quantities of each product at the prices also given in
the same file. The company’s goal is to maximize the
revenue obtained from selling units during the next
two months.
a. Determine how the company can meet this goal.

Assume that it will not produce any units in a
month that it cannot sell in that month.

b. Use SolverTable to see what happens if customer
demands for each product in each month
simultaneously change by a factor 1 � k. Revise
the model so that you can use SolverTable to
investigate the effect of this change on total
revenue as k varies from �0.3 to 0.3 in increments
of 0.1. Does revenue change in a linear manner
over this range? Can you explain intuitively why it
changes in the way it does?

34. There are three factories on the Momiss River. Each
emits two types of pollutants, labeled P1 and P2, into
the river. If the waste from each factory is processed,
the pollution in the river can be reduced. It costs
$1500 to process a ton of factory 1 waste, and each ton
processed reduces the amount of P1 by 0.10 ton and
the amount of P2 by 0.45 ton. It costs $1000 to process
a ton of factory 2 waste, and each ton processed
reduces the amount of P1 by 0.20 ton and the amount
of P2 by 0.25 ton. It costs $2000 to process a ton of
factory 3 waste, and each ton processed reduces the
amount of P1 by 0.40 ton and the amount of P2 by
0.30 ton. The state wants to reduce the amount of P1 in
the river by at least 30 tons and the amount of P2 by at
least 40 tons.
a. Use Solver to determine how to minimize the cost

of reducing pollution by the desired amounts. Are
the LP assumptions (proportionality, additivity,
divisibility) reasonable in this problem?

b. Use SolverTable to investigate the effects of
increases in the minimal reductions required by the
state. Specifically, see what happens to the amounts
of waste processed at the three factories and the

total cost if both requirements (currently 30 and 40
tons, respectively) are increased by the same
percentage. Revise your model so that you can use
SolverTable to investigate these changes when the
percentage increase varies from 10% to 100% in
increments of 10%. Do the amounts processed at
the three factories and the total cost change in a
linear manner?

Level B

35. A company manufactures two types of trucks. Each
truck must go through the painting shop and the
assembly shop. If the painting shop were completely
devoted to painting type 1 trucks, 800 per day could
be painted, whereas if the painting shop were
completely devoted to painting type 2 trucks, 700 per
day could be painted. If the assembly shop were
completely devoted to assembling truck 1 engines,
1500 per day could be assembled, whereas if the
assembly shop were completely devoted to
assembling truck 2 engines, 1200 per day could be
assembled. It is possible, however, to paint both
types of trucks in the painting shop. Similarly, it is
possible to assemble both types in the assembly shop.
Each type 1 truck contributes $1000 to profit; each
type 2 truck contributes $1500. Use Solver to
maximize the company’s profit. (Hint: One approach,
but not the only approach, is to try a graphical
procedure first and then deduce the constraints from
the graph.)

36. A company manufactures mechanical heart valves
from the heart valves of pigs. Different heart
operations require valves of different sizes. The
company purchases pig valves from three different
suppliers. The cost and size mix of the valves
purchased from each supplier are given in the file
P13_36.xlsx. Each month, the company places an
order with each supplier. At least 500 large, 300
medium, and 300 small valves must be purchased each
month. Because of the limited availability of pig
valves, at most 500 valves per month can be purchased
from each supplier.
a. Use Solver to determine how the company can

minimize the cost of acquiring the needed valves.
b. Use SolverTable to investigate the effect on total

cost of increasing its minimal purchase
requirements each month. Specifically, see how the
total cost changes as the minimal purchase
requirements of large, medium, and small valves
all increase from their original values by the same
percentage. Revise your model so that SolverTable
can be used to investigate these changes when the
percentage increase varies from 2% to 20% in
increments of 2%. Explain intuitively what
happens when this percentage is at least 16%.

13.11 Conclusion 803
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37. A company that builds sailboats wants to determine
how many sailboats to build during each of the next
four quarters. The demand during each of the next four
quarters is as follows: first quarter, 160 sailboats;
second quarter, 240 sailboats; third quarter, 300
sailboats; fourth quarter, 100 sailboats. The company
must meet demands on time. At the beginning of the
first quarter, the company has an inventory of 40
sailboats. At the beginning of each quarter, the
company must decide how many sailboats to build
during that quarter. For simplicity, assume that
sailboats built during a quarter can be used to meet
demand for that quarter. During each quarter, the
company can build up to 160 sailboats with regular-
time labor at a total cost of $1600 per sailboat. By
having employees work overtime during a quarter, the
company can build additional sailboats with overtime
labor at a total cost of $1800 per sailboat. At the end
of each quarter (after production has occurred and the
current quarter’s demand has been satisfied), a holding
cost of $80 per sailboat is incurred.
a. Determine a production schedule to minimize the

sum of production and inventory holding costs
during the next four quarters.

b. Use SolverTable to see whether any changes in the
$80 holding cost per sailboat could induce the
company to carry more or less inventory. Revise
your model so that SolverTable can be used to
investigate the effects on ending inventory during
the four-quarter period of systematic changes in the
unit holding cost. (Assume that even though the
unit holding cost changes, it is still constant over
the four-quarter period.) Are there any
(nonnegative) unit holding costs that would induce
the company to hold more inventory than it holds
when the holding cost is $80? Are there any unit
holding costs that would induce the company to
hold less inventory than it holds when the holding
cost is $80?

38. During the next two months an automobile
manufacturer must meet (on time) the following
demands for trucks and cars: month 1, 400 trucks and
800 cars; month 2, 300 trucks and 300 cars. During
each month at most 1000 vehicles can be produced.
Each truck uses two tons of steel, and each car uses
one ton of steel. During month 1, steel costs $700 per
ton; during month 2, steel is projected to cost $800 per
ton. At most 2500 tons of steel can be purchased each
month. (Steel can be used only during the month in
which it is purchased.) At the beginning of month 1,
100 trucks and 200 cars are in the inventory. At the
end of each month, a holding cost of $200 per vehicle
is assessed. Each car gets 20 miles per gallon (mpg),
and each truck gets 10 mpg. During each month, the
vehicles produced by the company must average at
least 16 mpg.

a. Determine how to meet the demand and mileage
requirements at minimum total cost.

b. Use SolverTable to see how sensitive the total cost
is to the 16 mpg requirement. Specifically, let this
requirement vary from 14 mpg to 18 mpg in
increments of 0.25 mpg. Explain intuitively what
happens when the requirement is greater than 
17 mpg.

39. A textile company produces shirts and pants. Each
shirt requires two square yards of cloth, and each pair
of pants requires three square yards of cloth. During
the next two months the following demands for shirts
and pants must be met (on time): month 1, 1000 shirts
and 1500 pairs of pants; month 2, 1200 shirts and
1400 pairs of pants. During each month the following
resources are available: month 1, 9000 square yards of
cloth; month 2, 6000 square yards of cloth. In
addition, cloth that is available during month 1 and is
not used can be used during month 2. During each
month it costs $8 to produce an article of clothing with
regular-time labor and $12 with overtime labor.
During each month a total of at most 2500 articles of
clothing can be produced with regular-time labor, and
an unlimited number of articles of clothing can be
produced with overtime labor. At the end of each
month, a holding cost of $3 per article of clothing is
incurred.
a. Determine how to meet demands for the next two

months (on time) at minimum cost. Assume that
100 shirts and 200 pairs of pants are already in
inventory at the beginning of month 1.

b. Use a two-way SolverTable to investigate the effect
on total cost of two simultaneous changes. The first
change is to allow the ratio of overtime to regular-
time production cost (currently $16/$8 � 2) to
decrease from 20% to 80% in increments of 20%,
while keeping the regular time cost at $8. The
second change is to allow the production capacity
each month (currently 2500) to decrease by 10% to
50% in increments of 10%. The idea here is that
less regular-time capacity is available, but overtime
becomes relatively cheaper. Is the net effect on
total cost positive or negative?

40. Each year, a shoe manufacturing company faces
demands (which must be met on time) for pairs of
shoes as shown in the file P13_40.xlsx. Employees
work three consecutive quarters and then receive one
quarter off. For example, a worker might work during
quarters 3 and 4 of one year and quarter 1 of the next
year. During a quarter in which an employee works, he
or she can produce up to 500 pairs of shoes. Each
worker is paid $5000 per quarter. At the end of each
quarter, a holding cost of $10 per pair of shoes is
incurred.
a. Determine how to minimize the cost per year

(labor plus holding) of meeting the demands for
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APPENDIX INFORMATION ON SOLVERS

Microsoft Office (or Excel) ships with a built-in version of Solver. This version and all
other versions of Solver have been developed by Frontline Systems, not Microsoft. When
you install Office (or Excel), you have the option of installing or not installing Solver. In
most cases, a typical install should install Solver. To check whether Solver is installed on
your system, open Excel, select the Office Button (or the File tab in Excel 2010), select
Excel Options, select Add-Ins, and click on Go. If there is a Solver item in the list, Solver
has been installed. (To actually add it in, make sure this item is checked.) Otherwise, you
need to run the Office Setup program with the Add/Remove feature to install Solver. Users

shoes. To simplify the model, assume that at the
end of each year, the ending inventory is 0. (You
can assume that a given worker gets the same
quarter off during each year.)

b. Suppose the company can pay a flat fee for a
training program that increases the productivity of
all of its workers. Use SolverTable to see how
much the company would be willing to pay for a
training program that increases worker productivity
from 500 pairs of shoes per quarter to P pairs of
shoes per quarter, where P varies from 525 to 700
in increments of 25.

41. A small appliance manufacturer must meet (on time)
the following demands: quarter 1, 3000 units; quarter
2, 2000 units; quarter 3, 4000 units. Each quarter, up
to 2700 units can be produced with regular-time labor,
at a cost of $40 per unit. During each quarter, an
unlimited number of units can be produced with
overtime labor, at a cost of $60 per unit. Of all units
produced, 20% are unsuitable and cannot be used to
meet demand. Also, at the end of each quarter, 10% of
all units on hand spoil and cannot be used to meet any
future demands. After each quarter’s demand is
satisfied and spoilage is accounted for, a cost of $15
per unit in ending inventory is incurred.
a. Determine how to minimize the total cost of

meeting the demands of the next three quarters.
Assume that 1000 usable units are available at the
beginning of quarter 1.

b. The company wants to know how much money it
would be worth to decrease the percentage of
unsuitable items and/or the percentage of items that
spoil. Write a short report that provides relevant
information. Base your report on three uses of
SolverTable: (1) where the percentage of unsuitable
items decreases and the percentage of items that
spoil stays at 10%, (2) where the percentage of
unsuitable items stays at 20% and the percentage of
items that spoil decreases, and (3) where both
percentages decrease. Does the sum of the separate
effects on total cost from the first two tables equal

the combined effect from the third table? Include an
answer to this question in your report.

42. A pharmaceutical company manufactures two drugs 
at Los Angeles and Indianapolis. The cost of
manufacturing a pound of each drug depends on 
the location, as indicated in the file P13_42.xlsx. The
machine time (in hours) required to produce a pound
of each drug at each city is also shown in this table.
The company must produce at least 1000 pounds per
week of drug 1 and at least 2000 pounds per week of
drug 2. It has 500 hours per week of machine time at
Indianapolis and 400 hours per week at Los Angeles.
a. Determine how the company can minimize the cost

of producing the required drugs.
b. Use SolverTable to determine how much the

company would be willing to pay to purchase a
combination of A extra hours of machine time at
Indianapolis and B extra hours of machine time at
Los Angeles, where A and B can be any positive
multiples of 10 up to 50.

43. A company manufactures two products on two
machines. The number of hours of machine time and
labor depends on the machine and product as shown in
the file P13_43.xlsx. The cost of producing a unit of
each product depends on which machine produces it.
These unit costs also appear in the same file. There are
200 hours available on each of the two machines, and
there are 400 labor hours available total. This month at
least 200 units of product 1 and at least 240 units of
product 2 must be produced. Also, at least half of the
product 1 requirement must be produced on machine
1, and at least half of the product 2 requirement must
be produced on machine 2.
a. Determine how the company can minimize the cost

of meeting this month’s requirements.
b. Use SolverTable to see how much the “at least

half” requirements are costing the company. Do
this by changing both of these requirements from
“at least half” to “at least x percent,” where x can
be any multiple of 5% from 0% to 50%.

Appendix 805
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of previous versions of Excel (2003 or earlier) should note that the actual Solver add-in file
is a different one in Excel 2007 or Excel 2010. In previous versions, it was Solver.xla; now
it is Solver.xlam. However, the basic functionality is the same.

The built-in version of Solver is able to solve most problems you are likely to
encounter. However, it does have one important limitation you should be aware of: it
allows only 200 changing cells. This might sound like plenty, but many real-world prob-
lems go well beyond 200 changing cells. If you want to solve larger problems, you will
need to purchase one of Frontline’s commercial versions of Solver. For more information,
check Frontline Systems’ Web site at www.solver.com.
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C A S E

Shelby Shelving is a small company that

manufactures two types of shelves for grocery

stores. Model S is the standard model; model LX is a

heavy-duty version. Shelves are manufactured in

three major steps: stamping, forming, and assembly. In

the stamping stage, a large machine is used to stamp

(i.e., cut) standard sheets of metal into appropriate

sizes. In the forming stage, another machine bends

the metal into shape.Assembly involves joining the

parts with a combination of soldering and riveting.

Shelby’s stamping and forming machines work on

both models of shelves. Separate assembly

departments are used for the final stage of

production.

The file Shelby Shelving.xlsx contains relevant

data for Shelby. (See Figure 13.35.) The hours

required on each machine for each unit of product

are shown in the range B5:C6 of the Accounting

Data sheet. For example, the production of one

model S shelf requires 0.25 hour on the forming

machine. Both the stamping and forming machines

can operate for 800 hours each month.The model S

assembly department has a monthly capacity of 1900

units.The model LX assembly department has a

monthly capacity of only 1400 units. Currently Shelby

is producing and selling 400 units of model S and

1400 units of model LX per month.

Model S shelves are sold for $1800, and model

LX shelves are sold for $2100. Shelby’s operation is

fairly small in the industry, and management at Shelby

believes it cannot raise prices beyond these levels

because of the competition. However, the marketing

department believes that Shelby can sell as much as it

can produce at these prices.The costs of production

are summarized in the Accounting Data sheet.

As usual, values in blue cells are given, whereas other

values are calculated from these.

Management at Shelby just met to discuss next

month’s operating plan.Although the shelves are

selling well, the overall profitability of the company is

a concern.The plant’s engineer suggested that the

current production of model S shelves be cut back.

According to him,“Model S shelves are sold for

13.1 SHELBY SHELVING
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A B C D E F G H I
Shelby Shelving Data for Current Schedule

Machine requirements (hours per neviG)tinu monthly overhead cost data
Model S Model LX Available Fixed Variable S Variable LX

09$08$000,521$gnipmatS0083.03.0gnipmatS
071$021$000,59$gnimroF0085.052.0gnimroF

Model S Assembly $80,000 $165 $0
Model S Model LX Model LX Assembly $85,000 $0 $185

Current monthly 400 1400
Standard costs of the shelves -- based on the current levels

Hours spent in departments Model S Model LX
Model S Model LX Totals Direct materials $1,000 $1,200

tceriD045024021gnipmatS labor:
008007001gnimroF Stamping $35 $35

Forming $60 $90
Percentages of spent in departments Assembly $80 $85

Model S Model LX Total direct labor $175 $210
daehrevO%8.77%2.22gnipmatS

%5.78%5.21gnimroF Stamping $149 $159
Forming $150 $229

Unit selling price $1,800 $2,100 Assembly $365 $246
Total overhead $664 $635

Assembly capacity 1900 1400 Total cost $1,839 $2,045

Produc�on

produc�on

�me

alloca�on

produc�on

Figure 13.35 Data for Shelby Case

Case 13.1 Shelby Shelving 807
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$1800 per unit, but our costs are $1839. Even

though we’re selling only 400 units a month, we’re

losing money on each one.We should decrease

production of model S.” The controller disagreed. He

said that the problem was the model S assembly

department trying to absorb a large overhead with a

small production volume.“The model S units are

making a contribution to overhead. Even though

production doesn’t cover all of the fixed costs, we’d

be worse off with lower production.”

Your job is to develop an LP model of Shelby’s

problem, then run Solver, and finally make a

recommendation to Shelby management, with a

short verbal argument supporting the engineer or

the controller.

Notes on Accounting Data Calculations

The fixed overhead is distributed using activity-based

costing principles. For example, at current production

levels, the forming machine spends 100 hours on

model S shelves and 700 hours on model LX shelves.

The forming machine is used 800 hours of the month,

of which 12.5% of the time is spent on model S

shelves and 87.5% is spent on model LX shelves.The

$95,000 of fixed overhead in the forming department

is distributed as $11,875 (� 95,000 
 0.125) to

model S shelves and $83,125 (� 95,000 
 0.875) to

model LX shelves.The fixed overhead per unit of

output is allocated as $29.69 (� 11,875/400) for

model S and $59.38 (� 83,125/1400) for model LX.

In the calculation of the standard overhead cost, the

fixed and variable costs are added together, so that

the overhead cost for the forming department

allocated to a model S shelf is $149.69 (� 29.69 � 120,

shown in cell G20 rounded up to $150). Similarly, the

overhead cost for the forming department allocated

to a model LX shelf is $229.38 (� 59.38 � 170,

shown in cell H20 rounded down to $229).

808 Chapter 13 Introduction to Optimization Modeling

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C A S E

After graduating from business school, George

Clark went to work for a Big Six accounting firm

in San Francisco. Because his hobby has always been

wine making, when he had the opportunity a few

years later he purchased five acres plus an option to

buy 35 additional acres of land in Sonoma Valley in

Northern California. He plans eventually to grow

grapes on that land and make wine with them.

George knows that this is a big undertaking and that

it will require more capital than he has at the

present. However, he figures that if he persists, he

will be able to leave accounting and live full time

from his winery earnings by the time he is 40.

Because wine making is capital-intensive and

because growing commercial-quality grapes with a

full yield of five tons per acre takes at least eight

years, George is planning to start small.This is

necessitated by both his lack of capital and his

inexperience in wine making on a large scale,

although he has long made wine at home. His plan is

first to plant the grapes on his land to get the vines

started.Then he needs to set up a small trailer

where he can live on weekends while he installs the

irrigation system and does the required work to the

vines, such as pruning and fertilizing.To help maintain

a positive cash flow during the first few years, he also

plans to buy grapes from other nearby growers so

he can make his own label wine. He proposes to

market it through a small tasting room that he will

build on his land and keep open on weekends during

the spring–summer season.

To begin, George is going to use $10,000 in

savings to finance the initial purchase of grapes from

which he will make his first batch of wine. He is also

thinking about going to the Bank of Sonoma and

asking for a loan. He knows that if he goes to the

bank, the loan officer will ask for a business plan; so

he is trying to pull together some numbers for

himself first.This way he will have a rough notion of

the profitability and cash flows associated with his

ideas before he develops a formal plan with a pro

forma income statement and balance sheet. He has

decided to make the preliminary planning horizon

two years and would like to estimate the profit over

that period. His most immediate task is to decide

how much of the $10,000 should be allocated to

purchasing grapes for the first year and how much to

purchasing grapes for the second year. In addition,

each year he must decide how much he should

allocate to purchasing grapes to make his favorite

Petite Sirah and how much to purchasing grapes to

make the more popular Sauvignon Blanc that seems

to have been capturing the attention of a wider

market during the last few years in California.

In the first year, each bottle of Petite Sirah

requires $0.80 worth of grapes and each bottle of

Sauvignon Blanc uses $0.70 worth of grapes. For the

second year, the costs of the grapes per bottle are

$0.75 and $0.85, respectively.

George anticipates that his Petite Sirah will sell

for $8.00 a bottle in the first year and for $8.25 in

the second year, while his Sauvignon Blanc’s price

remains the same in both years at $7.00 a bottle.

Besides the decisions about the amounts of

grapes purchased in the two years, George must

make estimates of the sales levels for the two wines

during the two years.The local wine-making

association has told him that marketing is the key to

success in any wine business; generally, demand is

directly proportional to the amount of effort spent

on marketing.Thus, since George cannot afford to do

any market research about sales levels due to his lack

of capital, he is pondering how much money he

should spend to promote each wine each year.The

wine-making association has given him a rule of

thumb that relates estimated demand to the amount

of money spent on advertising. For instance, they

estimate that for each dollar spent in the first year

promoting the Petite Sirah, a demand for five bottles

will be created; and for each dollar spent in the

second year, a demand for six bottles will result.

Similarly, for each dollar spent on advertising for the

Sauvignon Blanc in the first year, up to eight bottles

can be sold; and for each dollar spent in the second

year, up to ten bottles can be sold.

13.2 SONOMA VALLEY WINES15

Case 13.2 Sonoma Valley Wines 809

15This case was written by William D. Whisler, California State
University, Hayward.
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The initial funds for the advertising will come

from the $10,000 savings.Assume that the cash

earned from wine sales in the first year is available in

the second year.

A personal concern George has is that he

maintain a proper balance of wine products so that

he will be well positioned to expand his marketing

capabilities when he moves to the winery and makes

it his full-time job.Thus, in his mind it is important to

ensure that the number of bottles of Petite Sirah

sold each year falls in the range between 40% and

70% of the overall number of bottles sold.

Questions

1. George needs help to decide how many grapes

to buy, how much money to spend on

advertising, how many bottles of wine to sell,

and how much profit he can expect to earn over

the two-year period. Develop a spreadsheet LP

model to help him.

2. Solve the linear programming model formulated

in Question 1.

The following questions should be attempted only

after Questions 1 and 2 have been answered correctly.

3. After showing the business plan to the Bank of

Sonoma, George learns that the loan officer is

concerned about the market prices used in

estimating the profits—recently it has been

forecasted that Chile and Australia will be

flooding the market with high-quality, low-priced

white wines over the next couple of years. In

particular, the loan officer estimates that the price

used for the Sauvignon Blanc in the second year is

highly speculative and realistically might be only

half the price George calculated.Thus, the bank is

nervous about lending the money because of the

big effect such a decrease in price might have on

estimated profits.What do you think?

4. Another comment the loan officer of the Bank

of Sonoma has after reviewing the business plan

is:“I see that you do have an allowance in your

calculations for the carryover of inventory of

unsold wine from the first year to the second

year, but you do not have any cost associated

with this.All companies must charge something

for holding inventory, so you should redo your

plans to allow for this.” If the holding charges are

$0.10 per bottle per year, how much, if any, does

George’s plan change?

5. The president of the local grape growers’

association mentions to George that there is

likely to be a strike soon over the unionization

of the grape workers. (Currently they are not

represented by any union.) This means that the

costs of the grapes might go up by anywhere

from 50% to 100%. How might this affect

George’s plan?

6. Before taking his business plan to the bank,

George had it reviewed by a colleague at the

accounting firm where he works.Although his

friend was excited about the plan and its

prospects, he was dismayed to learn that George

had not used present value in determining his

profit.“George, you are an accountant and must

know that money has a time value; and although

you are only doing a two-year planning problem,

it still is important to calculate the present value

profit.” George replies,“Yes, I know all about

present value. For big investments over long

time periods, it is important to consider. But in

this case, for a small investment and only a 

two-year time period, it really doesn’t matter.”

Who is correct, George or his colleague? Why?

Use an 8% discount factor in answering this

question. Does the answer change if a 6% or

10% discount rate is used? Use a spreadsheet to

determine the coefficients of the objective

function for the different discount rates.

7. Suppose that the Bank of Sonoma is so excited

about the prospects of George’s wine-growing

business that they offer to lend him an extra

$10,000 at their best small business rate—28%

plus a 10% compensating balance.16 Should he

accept the bank’s offer? Why or why not?

8. Suppose that the rule of thumb George was

given by the local wine-making association is

incorrect.Assume that the number of bottles 

of Petite Sirah sold in the first and second 

years is at most four for each dollar spent on

advertising.And likewise for the Sauvignon Blanc,

assume that it can be at most only five in years

1 and 2.

9. How much could profits be increased if

George’s personal concerns (that Petite Sirah

sales should account for between 40% and 70%

of overall sales) are ignored?

16The compensating balance requirement means that only $9,000
of the $10,000 loan is available to George; the remaining $1,000
remains with the bank.

810 Chapter 13 Introduction to Optimization Modeling
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811

Optimization Models

C H A P T E R

PRODUCTION, INVENTORY, AND DISTRIBUTION
AT KELLOGG

The Kellogg Company is the largest cereal producer in the world and is a

leading producer of convenience foods. Its worldwide sales in 1999 were

nearly $7 billion. Kellogg’s first product in 1906 was Corn Flakes, and it

developed a variety of ready-to-eat cereals over the years, including Raisin

Bran, Rice Krispies, Corn Pops, and others. Although the company continues

to develop and market new cereals, it has recently gone into convenience

foods, such as Pop-Tarts and Nutri-Grain cereal bars, and has also entered

the health-food market. Kellogg produces hundreds of products and sells

thousands of stock-keeping units (SKUs). Managing production, inventory,

and distribution of these—that is, the daily operations—in a cost-effective

manner is a challenge.

By the late 1980s, Kellogg realized that the increasing scale and

complexity of its operations required optimization methods to coordinate

its daily operations in a centralized manner. As described in Brown et al.

(2001), a team of management scientists developed an optimization software
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system called KPS (Kellogg Planning System).This system was originally intended for

operational (daily and weekly) decisions, but it expanded into a system for making

tactical (longer-range) decisions about issues such as plant budgets, capacity expansion,

and consolidation. By the turn of the century, KPS had been in use for about a decade.

Operational decisions made by KPS reduced production, inventory, and distribution

costs by approximately $4.5 million per year. Better yet, the tactical side of KPS recently

suggested a consolidation of production capacity that saved the company approximately

$35–40 million annually.

Kellogg operates five plants in the United States and Canada, has seven

distribution centers (DCs) in such areas as Los Angeles and Chicago, and has about

15 co-packers, companies that contract to produce or pack some of Kellogg’s

products. Customer demands are seen at the DCs and the plants. In the cereal

business alone, Kellogg has to coordinate the packaging, inventorying, and distributing

of 600 SKUs at about 27 locations with a total of about 90 production lines and

180 packaging lines.This requires a tremendous amount of day-to-day coordination

to meet customer demand at a low cost.The KPS operational system that guides

operational decisions is essentially a large linear programming (LP) model that takes as

its inputs the forecasted customer demands for the various products and specifies

what should be produced, held, and shipped on a daily basis.The resulting model is

similar to the Pigskin model of football production discussed in the previous chapter,

except that it is much larger.

Specifically, for each week of its 30-week planning horizon, the model specifies 

(1) how much of each product to make on each production line at each facility; (2) how

much of each SKU to pack on each packaging line at each facility; (3) how much

inventory of each SKU to hold at each facility; and (4) how much of each SKU to ship

from each location to other locations. In addition, the model has to take constraints into

account. For example, the production within a given plant in a week cannot exceed the

processing line capacity in that plant. LP models such as Kellogg’s tend to be very large—

thousands of decision variables and hundreds or thousands of constraints—but the

algorithms Kellogg uses are capable of optimizing such models very quickly. Kellogg runs

its KPS model each Sunday morning and uses its recommendations in the ensuing week.

The KPS system illustrates a common occurrence when companies turn to

management science for help. As stated earlier, the system was originally developed for

making daily operational decisions. Soon, however, the company developed a tactical

version of KPS for long-range planning on the order of 12 to 24 months.The tactical

model is similar to the operational model except that time periods are now months, not

days or weeks, and other considerations must be handled, such as limited product shelf

lives.The point is, however, that when companies such as Kellogg become comfortable

with management science methods in one part of their operations, they often look for

other areas to apply similar methods. As with Kellogg, such methods can save the

company millions of dollars. ■

812 Chapter 14 Optimization Models

14.1 INTRODUCTION

In a survey of Fortune 500 firms, 85% of those responding said that they use LP. In this
chapter we discuss some of the LP models that are most often applied to real-world appli-
cations. Some typical examples include:

■ scheduling bank clerks for check encoding
■ optimizing the operation of an oil refinery
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■ planning dairy production at a creamery
■ scheduling production of fiberglass products at Owens-Corning 

Fiberglass
■ optimizing a Wall Street firm’s bond portfolio.

Actually, these problems are just a sampling of the types of problems we will model in
this chapter. There are two basic goals in this chapter. The first is to illustrate some of
the many real applications that can take advantage of LP. You will see that these appli-
cations cover a wide range, from oil production to worker scheduling to cash manage-
ment. The second goal is to increase your facility in modeling LP problems on a
spreadsheet. We present a few principles that will help you model a wide variety of
problems. The best way to learn, however, is to see many examples and work through
numerous problems. In short, mastering the art of LP spreadsheet modeling takes hard
work and practice. You will have plenty of opportunity to do both with the material in
this chapter.

Although a wide variety of problems can be formulated as linear programming mod-
els, there are some that cannot. Either they require integer variables or they are nonlinear
in the decision variables. We include examples of integer programming and nonlinear pro-
gramming models in this chapter, just to give you a taste of what is involved.1 You will see
that the modeling process for these types of problems is not much different than for LP
problems. Once the models are formulated, Excel’s Solver can be used to solve them. Then
SolverTable can be used to perform sensitivity analysis. However, we point out that these
integer and nonlinear models are inherently more difficult to solve. Solver must use more
complex algorithms and is not always guaranteed to find the optimal solution. As long as
you are aware of this, you will see that Solver provides the power to solve a great variety
of realistic business problems.

Although there is a tremendous amount of theory behind the algorithms that solve
these problems, the modeling process itself is fairly straightforward and is learned best by
seeing a variety of examples. Therefore, we proceed in this chapter by modeling (and then
solving) a diverse class of problems that arise in business. The exercises scattered through-
out the chapter provide even more examples of how LP and its integer and nonlinear exten-
sions can be applied.

All of these models can benefit from sensitivity analysis, either done formally with
the SolverTable add-in or informally by changing one or more inputs and rerunning
Solver. To keep the chapter from getting too long, we present only a few of the many pos-
sible sensitivity analyses. However, we stress that in real applications, model develop-
ment is just the beginning of the overall analysis. It is then usually followed by extensive
sensitivity analysis.

14.2 WORKER SCHEDULING MODELS

Many organizations must determine how to schedule employees to provide adequate ser-
vice. The following example illustrates how to use LP, possibly with integer constraints, to
schedule employees on a daily basis.

14.2 Worker Scheduling Models 813

1Besides the nonlinear models discussed in this chapter, which can be solved with Solver’s GRG nonlinear algo-
rithm, there is an even more difficult class of nonlinear models called nonsmooth models. Although we will not
discuss nonsmooth models, we can recommend Solver’s Evolutionary algorithm for these difficult models. (This
is available only in Excel 2010’s version of Solver.)
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Objective To develop an LP spreadsheet model that relates five-day shift schedules to
daily numbers of employees available, and to use Solver on this model to find a schedule
that uses the fewest number of employees and meets all daily workforce requirements.

WHERE DO THE NUMBERS COME FROM?

The only inputs needed for this problem are the minimum employee requirements in
Table 14.1, but these are not easy to obtain. They would probably be obtained through a
combination of two quantitative techniques: forecasting (Chapter 12) and queueing analy-
sis (not covered in this book). The post office would first use historical data to forecast
customer and mail arrival patterns throughout a typical week. It would then use queueing
analysis to translate these arrival patterns into worker requirements on a daily basis.
Actually, we have kept the problem relatively simple by considering only daily require-
ments. In a realistic setting, the organization might forecast worker requirements on an
hourly or even a 15-minute basis.

Solution

The variables and constraints for this problem appear in Table 14.2. The trickiest part is iden-
tifying the appropriate decision variables. Many students believe the decision variables
should be the numbers of employees working on the various days of the week. Clearly, these
values must eventually be determined. However, it is not enough to specify, say, that
18 employees are working on Monday. The problem is that this doesn’t indicate when these
18 employees start their five-day shifts. Without this knowledge, it is impossible to implement
the five-consecutive-day, two-day-off requirement. (If you don’t believe this, try developing
your own model with the wrong decision variables. You will eventually reach a dead end.)

814 Chapter 14 Optimization Models

E X A M P L E 14.1 POSTAL EMPLOYEE SCHEDULING

Apost office requires different numbers of full-time employees on different days of the
week. The number of full-time employees required each day is given in Table 14.1.

Union rules state that each full-time employee must work five consecutive days and then
receive two days off. For example, an employee who works Monday to Friday must be off
on Saturday and Sunday. The post office wants to meet its daily requirements using only
full-time employees. Its objective is to minimize the number of full-time employees on its
payroll.

Table 14.1 Employee Requirements for Post Office

Day of Week Minimum Number of Employees Required

Monday 17
Tuesday 13
Wednesday 15
Thursday 19
Friday 14
Saturday 16
Sunday 11

In real employee-
scheduling problems,
much of the work
involves forecasting
and queueing analysis
to obtain worker
requirements.This 
must be done before
an optimal schedule
can be found.
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The trick is to define the decision variables as the numbers of employees working each
of the seven possible five-day shifts. By knowing the values of these decision variables, the
other output variables can be calculated. For example, the number working on Thursday is
the sum of those who begin their five-day shifts on Sunday, Monday, Tuesday, Wednesday,
and Thursday.

14.2 Worker Scheduling Models 815

Table 14.2 Variables and Constraints for Postal Scheduling Problem

Input variables Minimum required number of workers each day
Decision variables (changing cells) Number of employees working each of the five-day shifts

(defined by their first day of work)
Objective cell Total number of employees on the payroll
Other calculated variables Number of employees working each day
Constraints Employees working Employees requiredÚ

The key to this model
is choosing the correct
changing cells.

Note that this is a “wraparound” problem. We assume that the daily requirements in
Table 14.1 and the worker schedules continue week after week. So, for example, if eight
employees are assigned to the Thursday through Monday shift, these employees always
wrap around from one week to the next on their five-day shift.

DEVELOPING THE SPREADSHEET MODEL

The spreadsheet model for this problem is shown in Figure 14.1. (See the file Worker
Scheduling.xlsx.) To form this spreadsheet, proceed as follows.

1 Inputs and range names. Enter the number of employees needed on each day of the
week (from Table 14.1) in the blue cells, and create the range names shown.

2 Employees beginning each day. Enter any trial values for the number of employees
beginning work on each day of the week in the Employees_starting range. These begin-
ning days determine the possible five-day shifts. For example, the employees in cell B4
work Monday through Friday.

3 Employees on hand each day. The key to this solution is to realize that the numbers
in the Employees_starting range—the changing cells—do not represent the number of
workers who will show up each day. As an example, the number in cell B4 represent those
who start on Monday work Monday through Friday. Therefore, enter the formula

�$B$4

FUNDAMENTAL INSIGHT

Choosing the Changing Cells

The changing cells, which are really just the decision

variables, should always be chosen so that their values

determine all required outputs in the model. In other

words, their values should tell the company exactly

how to run its business. Sometimes the choice of

changing cells is obvious, but in many cases (as in this

worker scheduling model), the proper choice of

changing cells takes some deeper thinking about the

problem. An improper choice of changing cells typi-

cally leads to a dead end, where their values do not

supply enough information to calculate required out-

puts or implement certain constraints.
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in cell B14 and copy it across to cell F14. Proceed similarly for rows 15–20, being careful
to take “wraparounds” into account. For example, the workers starting on Thursday work
Thursday through Sunday, plus Monday. Then calculate the total number who are available
on each day by entering the formula

�SUM(B14:B20)

in cell B23 and copying it across to cell H23.

Excel Tip CTRL-Enter Shortcut
You often enter a typical formula in a cell and then copy it. One way to do this efficiently is
to highlight the entire range, here B23:H23. Then enter the typical formula, here
�SUM(B14:B20), and press Ctrl-Enter. This has the same effect as copying, but it is
slightly quicker.

4 Total employees. Calculate the total number of employees in cell B28 with the
formula

�SUM(Employees_starting)

Note that there is no double-counting in this sum. For example, the employees in cells B4
and B5 are not the same people.

At this point, you might want to experiment with the numbers in the changing cell
range to see whether you can guess an optimal solution (without looking at Figure 14.1). It
is not that easy. Each worker who starts on a given day works the next four days as well, so
when you find a solution that meets the minimal requirements for the various days, you
usually have a few more workers available on some days than are needed.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K
Worker scheduling egnaRledom  names used

Employees_available =Model!$B$23:$H$23
Decision variables: number of employees star�ng their five-day shi� on various days Employees_required =Model!$B$25:$H$25

01$B$:4$B$!ledoM=gnitratS_seeyolpmE33.6noM
82$B$!ledoM=seeyolpme_latoT00.5euT

33.0deW
33.7uhT
00.0irF
33.3taS
00.0nuS

Result of decisions: number of employees working on various days (along top) who started their shi� on various days (along side)
Mon Tue Wed Thu Fri Sat Sun

33.633.633.633.633.6noM
00.500.500.500.500.5euT

33.033.033.033.033.0deW
33.733.733.733.733.7uhT
00.000.000.000.000.0irF
33.333.333.333.333.3taS
00.000.000.000.000.0nuS

Constraint on worker availabili�es
Employees available 17.00 14.67 15.00 19.00 19.00 16.00 11.00

>= >= >= >= >= >= >=
Employees required 17 13 15 19 14 16 11

Objec�ve to maximize
Total  employees 22.33

Figure 14.1 Worker Scheduling Model with Optimal Solution
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USING SOLVER

Invoke Solver and fill out its main dialog box as shown in Figure 14.2. (You don’t need to
include the integer constraints yet. We will discuss them shortly.) Make sure you check the
Non-Negative option and use the simplex method.

14.2 Worker Scheduling Models 817

Figure 14.2

Solver Dialog Box

for Worker

Scheduling Model

Discussion of the Solution

The optimal solution shown in Figure 14.1 has one drawback: It requires the number of
employees starting work on some days to be a fraction. Because part-time employees are
not allowed, this solution is unrealistic. However, it is simple to add an integer constraint
on the changing cells. This integer constraint appears in Figure 14.2. (To create this integer
constraint in Solver’s Add Constraint dialog box, select the Employees_starting for the left
side, and select Int in the middle dropdown list. The word “Integer” will automatically
appear in the right side of the constraint.) With this integer constraint, the optimal solution
appears in Figure 14.3.

The changing cells in the optimal solution indicate the numbers of workers who start
their five-day shifts on the various days. You can then look at the columns of the B14:H20
range to see which employees are working on any given day. This optimal solution is typi-
cal in scheduling problems. Due to a labor constraint—each employee must work five
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consecutive days and then have two days off—it is typically impossible to meet the mini-
mum employee requirements exactly. To ensure that there are enough employees available
on busy days, it is necessary to have more than enough on hand on light days.

Another interesting aspect of this problem is that if you solve this problem on your
own PC, you might get a different schedule that is still optimal—that is, a solution that still
uses a total of 23 employees and meets all constraints. This is a case of multiple optimal
solutions, not at all uncommon in LP problems. In fact, it is typically good news for a
manager, who can then choose among the optimal solutions using other, possibly non-
quantitative criteria.2

Technical Tip Solver Tolerance Setting
When working with integer constraints, you should be aware of Solver’s Tolerance setting.
The idea is as follows. As Solver searches for the best integer solution, it is often able to
find a “good” solution fairly quickly, but it often has to spend a lot of time finding slightly
better solutions. A nonzero tolerance setting allows it to quit early. The default tolerance
setting is 5 (percent). This means that if Solver finds a feasible solution that is guaranteed
to have an objective value no more than 5% from the optimal value, it will quit and report
this good solution (which might even be the optimal solution). Therefore, if you keep this
default tolerance value, your integer solutions will sometimes not be optimal, but they will
be close. If you want to ensure that you get an optimal solution, you can change the Solver
tolerance value to zero. (In Excel 2010, this setting is directly under the Solver Options on
the All Methods tab.)
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A B C D E F G H I J K
Worker scheduling egnaRledom names used

Employees_available =Model!$B$23:$H$23
Decision variables: number of employees star�ng their five-day shi� on various days Employees_required =Model!$B$25:$H$25

01$B$:4$B$!ledoM=gnitratS_seeyolpmE6Mon
82$B$!ledoM=seeyolpme_latoT6euT

0deW
7uhT
0irF
4taS
0nuS

Result of decisions: number of employees working on various days (along top) who started their shi� on various days (along side)
Mon Tue Wed Thu Fri Sat Sun

66666noM
66666euT

00000deW
77777uhT
00000irF
44444taS
00000nuS

Constraint on worker availabili�es
Employees available 17 16 16 19 19 17 11

>= >= >= >= >= >= >=
Employees required 17 13 15 19 14 16 11

Objec�ve to maximize
Total employees 23

Figure 14.3 Optimal Integer Solution to Worker Scheduling Model

Set Solver’s Tolerance
to zero to ensure that 
you get the optimal
integer solution. Be
aware, however, that
this can incur
significant extra
computing time for
larger models.

Multiple optimal
solutions have
different values in 
the changing cells,
but they all have the 
same objective value.

2 It is usually difficult to tell whether there are multiple optimal solutions. You typically discover this by rerun-
ning Solver from different starting solutions.
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Sensitivity Analysis

The most obvious type of sensitivity analysis in this example is to analyze the effect of
worker requirements on the optimal solution. Specifically, let’s suppose the number of
employees needed on each day of the week increases by two, four, or six. How does this
change the total number of employees needed? You can answer this with SolverTable, but
you must first modify the model slightly, as shown in Figure 14.4. The problem is that we
want to increase each of the daily minimal required values by the same amount. The trick
is to enter the original requirements in row 12, enter a trial value for the extra number
required per day in cell K12, enter the formula �B12+$K$12 in cell B27, and then copy
this formula across to cell H27. Now you can use the one-way SolverTable option, using
the Extra cell as the single input, letting it vary from 0 to 6 in increments of 2, and specify-
ing the Total_employees cell as the single output cell.

14.2 Worker Scheduling Models 819

To run some 
sensitivity analyses 
with SolverTable, you
need to modify the
original model slightly
to incorporate the
effect of the input
being varied.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

KJIHGFEDCBA
Worker scheduling model Range names used

Decision variables: number of employees star�ng their five-day shi� on various days
Employees_available =Model!$B$23:$H$23
Employees_required =Model!$B$25:$H$25

01$B$:4$B$!ledoM=gnitratS_seeyolpmE2noM
82$B$!ledoM=seeyolpme_latoT3euT

3deW
7uhT
0irF
4taS
4nuS

Employees required (original artxE11614191513171)seulav required each day 0

Result of decisions: number of employees working on various days (along top) who started their shi� on various days (along side)
Mon Tue Wed Thu Fri Sat Sun

22222noM
33333euT

33333deW
77777uhT
00000irF
44444taS
44444nuS

Constraint on worker availabili�es
Employees 81715191613171elbaliava

>= >= >= >= >= >= >=
Employees 11614191513171deriuqer

Objec�ve to maximize
Total 32seeyolpme

Figure 14.4 Modified Worker Scheduling Model

The results appear in Figure 14.5. When the requirement increases by two each day,
only two extra employees are necessary (scheduled appropriately). However, when the
requirement increases by four each day, more than four extra employees are necessary.
The same is true when the requirement increases by six each day. This might surprise
you at first, but there is an intuitive reason: Each extra worker works only five days of
the week.

Note that we did not use Solver’s sensitivity report here for two reasons. First, Solver
does not offer a sensitivity report for models with integer constraints. Second, even if the
integer constraints are deleted, Solver’s sensitivity report does not answer questions about
multiple input changes, as we have asked here. It is used primarily for questions about one-
at-a-time changes to inputs, such as a change to a specific day’s worker requirement. In this
sense, SolverTable is a more flexible tool.
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1. The postal employee scheduling example is called a static scheduling model because
we assume that the post office faces the same situation each week. In reality,
demands change over time, workers take vacations in the summer, and so on, so the
post office does not face the same situation each week. A dynamic scheduling model
(not covered here) is necessary for such problems.

2. In a weekly scheduling model for a supermarket or a fast-food restaurant, the number
of decision variables can grow quickly and optimization software such as Solver will
have difficulty finding an optimal solution. In such cases, heuristic methods (essen-
tially clever trial-and-error algorithms) have been used to find good solutions to the
problem. Love and Hoey (1990) indicate how this was done for a particular staff
scheduling problem.

3. Our model can easily be expanded to handle part-time employees, the use of overtime,
and alternative objectives such as maximizing the number of weekend days off
received by employees. You are asked to explore such extensions in the problems. ■
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Figure 14.5 Sensitivity to Number of Extra Workers Required per Day

Heuristic solutions are
often close to optimal,
but they are never
guaranteed to be
optimal.

P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. Modify the post office model so that employees are
paid $10 per hour on weekdays and $15 per hour on
weekends. Change the objective so that you now

minimize the weekly payroll. (You can assume that
each employee works eight hours per day.) Is the
previous optimal solution still optimal?

2. How much influence can the worker requirements for
one, two, or three days have on the weekly schedule in
the post office example? You are asked to explore this
in the following questions.

MODELING ISSUES
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14.3 BLENDING MODELS

In many situations, various inputs must be blended to produce desired outputs. In many of
these situations, LP can find the optimal combination of outputs as well as the mix of
inputs that are used to produce the desired outputs. The following are some typical exam-
ples of blending problems.

Inputs Outputs
Meat, filler, water Different types of sausage
Various types of oil Heating oil, gasolines, aviation fuels
Carbon, iron, molybdenum Different types of steels
Different types of pulp Different kinds of recycled paper

The next example illustrates how to model a typical blending problem in Excel. Although this
example is small relative to blending problems in real applications, it is probably too complex
for you to guess the optimal solution.

14.3 Blending Models 821

a. Let Monday’s requirements change from 17 to 25
in increments of 1. Use SolverTable to see how the
total number of employees changes.

b. Suppose the Monday and Tuesday requirements
can each, independently of one another, increase
from 1 to 8 in increments of 1. Use a two-way
SolverTable to see how the total number of
employees changes.

c. Suppose the Monday, Tuesday, and Wednesday
requirements each increase by the same amount,
where this increase can be from 1 to 8 in increments
of 1. Use a one-way SolverTable to investigate how
the total number of employees changes.

3. In the post office example, suppose that each full-time
employee works eight hours per day. Thus, Monday’s
requirement of 17 workers can be viewed as a
requirement of 8(17) � 136 hours. The post office can
meet its daily labor requirements by using both full-
time and part-time employees. During each week a
full-time employee works eight hours a day for five
consecutive days, and a part-time employee works
four hours a day for five consecutive days. A full-time
employee costs the post office $15 per hour, whereas a
part-time employee (with reduced fringe benefits)
costs the post office only $10 per hour. Union
requirements limit part-time labor to 25% of weekly
labor requirements.
a. Modify the model as necessary, and then use Solver

to minimize the post office’s weekly labor costs.

b. Use SolverTable to determine how a change in the
part-time labor limitation (currently 25%)
influences the optimal solution.

Level B

4. In the post office example, suppose the employees
want more flexibility in their schedules. They want to
be allowed to work five consecutive days followed by
two days off or to work three consecutive days
followed by a day off followed by two consecutive
days followed by another day off. Modify the original
model (with integer constraints) to allow this
flexibility. Might this be a good deal for management
as well as labor? Explain.

5. In the post office example, suppose that the post office
can force employees to work one day of overtime each
week on the day immediately following this five-day
shift. For example, an employee whose regular shift is
Monday to Friday can also be required to work on
Saturday. Each employee is paid $100 a day for each
of the first five days worked during a week and $124
for the overtime day (if any). Determine how the post
office can minimize the cost of meeting its weekly
work requirements.

6. Suppose the post office has 25 full-time employees
and is not allowed to fire any of them or hire more.
Determine a schedule that maximizes the number of
weekend days off received by these employees.

E X A M P L E 14.2 BLENDING AT CHANDLER OIL

Chandler Oil has 5000 barrels of crude oil 1 and 10,000 barrels of crude oil 2 available.
Chandler sells gasoline and heating oil. These products are produced by blending the

two crude oils together. Each barrel of crude oil 1 has a “quality level” of 10 and each
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barrel of crude oil 2 has a quality level of 5.3 Gasoline must have an average quality level
of at least 8, whereas heating oil must have an average quality level of at least 6. Gasoline
sells for $75 per barrel, and heating oil sells for $60 per barrel. We assume that demand for
heating oil and gasoline is unlimited, so that all of Chandler’s production can be sold.
Chandler wants to maximize its revenue from selling gasoline and heating oil.

Objective To develop an LP spreadsheet model for finding the revenue-maximizing plan
that meets quality constraints and stays within limits on crude oil availabilities.

WHERE DO THE NUMBERS COME FROM?

Most of the inputs for this problem should be easy to obtain.

■ The selling prices for outputs are dictated by market pressures.
■ The availabilities of inputs are based on crude supplies from the suppliers.
■ The quality levels of crude oils are known from chemical analysis, whereas the

required quality levels for outputs are specified by Chandler, probably in response to
competitive or regulatory pressures.

Solution

The variables and constraints required for this blending model are listed in Table 14.3. The
key is the selection of the appropriate decision variables. Many students, when asked what
decision variables should be used, specify the amounts of the two crude oils used and the
amounts of the two products produced. However, this is not enough. The problem is that
this information doesn’t tell Chandler how to make the outputs from the inputs. The com-
pany instead requires a blending plan: how much of each input to use in the production of
a barrel of each output. Once you understand that this blending plan is the basic decision,
all other output variables follow in a straightforward manner.

822 Chapter 14 Optimization Models

In typical blending
problems, the correct
decision variables are
the amounts of each
input blended into
each output.

Table 14.3 Variables and Constraints for Blending Model

Input variables Unit selling prices, availabilities of inputs, quality levels 
of inputs, required quality levels of outputs

Decision variables (changing cells) Barrels of each input used to produce each output
Objective cell Revenue from selling gasoline and heating oil
Other calculated variables Barrels of inputs used, barrels of outputs produced (and 

sold), quality obtained and quality required for outputs
Constraints Barrels of inputs used Barrels available

Quality of outputs obtained Quality requiredÚ

…

A secondary, but very important, issue in typical blending models is how to implement
the quality constraints. (The constraints here are in terms of quality. In other blending
problems they are often expressed in terms of percentages of some ingredient(s). For
example, a typical quality constraint might be that some output can contain no more than
2% sulfur.) When we explain how to develop the spreadsheet model, we will discuss the
preferred way to implement quality constraints.

3To avoid being overly technical, we use the generic term quality level. In real oil blending, qualities of interest
might be octane rating, viscosity, and others.
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DEVELOPING THE SPREADSHEET MODEL

The spreadsheet model for this problem appears in Figure 14.6. (See the file Blending
Oil.xlsx.) To set it up, proceed as follows.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

A B C D E F G H
Chandler oil blending model Range names used

Barrels_available =Model!$F$16:$F$17
Monetary inputs Gasolin Hea�ng

Hea�ng

Hea�ng

Hea�ng

e  81$C$:81$B$!ledoM=dlos_slerraBlio
Selling 71$D$:61$D$!ledoM=desu_slerraB06$57$lerrab/ecirp

Blending_plan =Model!$B$16:$C$17
Quality level per barrel of crudes Quality_points_obtained =Model!$B$22:$C$22
Crude oil 2$C$:42$B$!ledoM=deriuqer_stniop_ytilauQ011 4
Crude oil 72$B$!ledoM=euneveR52

Required quality level per barrel of product
Gasoline  oil

8 6

Blending plan (barrels of crudes in each product)
Gasoline  oil Barrels slerraBdesu  available

Crude oil 0005=<0005000200031
Crude oil 00001=<00001000800022
Barrels 000010005dlos

Constraints on quality
Gasoline  oil

Quality points obtained 40000 60000
>= >=

Quality points required 40000 60000

 to maximizeObjec�ve
00,579$euneveR 0

Figure 14.6 Oil Blending Model

1 Inputs and range names. Enter the unit selling prices, quality levels for inputs,
required quality levels for outputs, and availabilities of inputs in the blue cells. Then name
the ranges as indicated.

2 Inputs blended into each output. As discussed, the quantities Chandler must specify
are the barrels of each input used to produce each output. Enter any trial values for these
quantities in the Blending_plan range. For example, the value in cell B16 is the amount of
crude oil 1 used to make gasoline and the value in cell C16 is the amount of crude oil 1
used to make heating oil. The Blending_plan range contains the changing cells.

3 Inputs used and outputs sold. Calculate the row sums (in column D) and column
sums (in row 18) of the Blending_plan range. There is a quick way to do this. Highlight
both the row and column where the sums will go (highlight one, then hold down the Ctrl
key and highlight the other), and click on the Summation (�) button on the Home ribbon.
This creates SUM formulas in each highlighted cell.

4 Quality achieved. Keep track of the quality level of gasoline and heating oil in the
Quality_points_obtained range as follows. Begin by calculating for each output the num-
ber of quality points (QP) in the inputs used to produce this output:

QP in gasoline � 10 * Oil 1 in gasoline � 5 * Oil 2 in gasoline
QP in heating oil � 10 * Oil 1 in heating oil � 5 * Oil 2 in heating oil

From here on, the
solutions shown are
optimal. However,
remember that you 
can start with any
solution. It doesn’t 
even have to be
feasible.
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The gasoline quality constraint is then

QP in gasoline 8 * Gasoline sold (14.1)

Similarly, the heating oil quality constraint is

QP in heating oil 6 * Heating oil sold (14.2)

To implement inequalities (14.1) and (14.2), calculate the QP for gasoline in cell B22 with
the formula

�SUMPRODUCT(B16:B17, $B$7:$B$8)

and copy this formula to cell C22 to generate the QP for heating oil.

5 Quality required. Calculate the required quality points for gasoline and heating oil
in cells B24 and C24. Specifically, determine the required quality points for gasoline in
cell B24 with the formula

�B12*B18

and copy this formula to cell C24 for heating oil.

6 Revenue. Calculate the total revenue in cell B27 with the formula

�SUMPRODUCT(B4:C4,B18:C18)

USING SOLVER

To solve Chandler’s problem with Solver, fill out the main Solver dialog box as shown in
Figure 14.7. As usual, check the Non-Negative option and specify the simplex algorithm
before optimizing. You should obtain the optimal solution shown in Figure 14.6.

Discussion of the Solution

The optimal solution implies that Chandler should make 5000 barrels of gasoline with
3000 barrels of crude oil 1 and 2000 barrels of crude oil 2. The company should also make
10,000 barrels of heating oil with 2000 barrels of crude oil 1 and 8000 barrels of crude oil
2. With this blend, Chandler will obtain a revenue of $975,000. As stated previously, this
problem is sufficiently complex to defy intuition. Clearly, gasoline is more profitable per
barrel than heating oil, but given the crude availability and the quality constraints, it turns
out that Chandler should sell twice as much heating oil as gasoline. This would have been
very difficult to guess ahead of time.

Sensitivity Analysis

We perform two typical sensitivity analyses on this blending model. In each, we see how
revenue and the amounts of the outputs produced (and sold) vary. In the first analysis, we
use the unit selling price of gasoline as the input and let it vary from $50 to $90 in incre-
ments of $5. The SolverTable results appear in Figure 14.8. Two things are of interest.
First, as the price of gasoline increases from $55 to $65, Chandler starts producing gaso-
line and less heating oil, exactly as you would expect. Second, the revenue can only
increase or stay the same, as the changes in column E (calculated manually) indicate.

In the second sensitivity analysis, we vary the availability of crude 1 from 2000 bar-
rels to 20,000 barrels in increments of 1000 barrels. The resulting SolverTable output
appears in Figure 14.9. These results make sense if you analyze them carefully. First, the
revenue increases, but at a decreasing rate, as more crude 1 is available. This is a common

Ú

Ú
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Oneway analysis for Solver model in Model worksheet

Selling price gasoline (cell $B$4) values along side, output cell(s) along top
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$50 0 15000 $900,000
$55 0 15000 $900,000 $0
$60 5000 10000 $900,000 $0
$65 5000 10000 $925,000 $25,000

9
10
11
12
13

$70 5000 10000 $950,000 $25,000
$75 5000 10000 $975,000 $25,000
$80 5000 10000 $1,000,000 $25,000
$85 5000 10000 $1,025,000 $25,000
$90 5000 10000 $1,050,000 $25,000

Figure 14.7

Solver Dialog Box

for Blending Model

Figure 14.8

Sensitivity to the

Selling Price of

Gasoline
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occurrence in LP models. As more of a resource is made available, revenue can only
increase or remain the same, but each extra unit of the resource produces less (or at least
no more) revenue than the previous unit. Second, the amount of gasoline produced
increases, whereas the amount of heating oil produced decreases. Here’s why: Crude 1
has a higher quality than crude 2, and gasoline requires higher quality. Gasoline also sells
for a higher price. Therefore, as more crude 1 is available, Chandler can produce more
gasoline, receive more revenue, and still meet quality standards.

Could these sensitivity questions also be answered with Solver’s sensitivity report,
shown in Figure 14.10? Consider the sensitivity to the change in the price of gasoline. The
first and third rows of the top table in this report are for sensitivity to the objective coeffi-
cients of decision variables involving gasoline. The problem is that when the price of gaso-
line changes, both of these coefficients change. The reason is that the objective includes
the sum of these two decision variables, multiplied by the unit price of gasoline. However,
Solver’s sensitivity report is valid only for one-at-a-time coefficient changes. Therefore, it
cannot answer our question.

In contrast, the first row of the bottom table in Figure 14.10 complements the
SolverTable sensitivity analysis on the availability of crude 1. It shows that if the availabil-
ity increases by no more than 10,000 barrels or decreases by no more than 2500 barrels, the
shadow price remains $90 per barrel—that is, the same $90,000 increase in profit per 1000
barrels in Figure 14.9. Beyond that range, the sensitivity report indicates only that the
shadow price will change. The SolverTable results indicate how it changes. For example,
when crude 1 availability increases beyond 15,000 barrels, the SolverTable results indicate
that the shadow price decreases to $75 per barrel.
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Oneway analysis for Solver model in Model worksheet

Barrels available crude 1 (cell $F$16) values along side, output cell(s) along top
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15 12000 19000 3000 $1 605 000 $90 00015
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12000 19000 3000 $1,605,000 $90,000

22
23

2000 0 10000 $600,000
3000 1000 12000 $795,000 $195,000
4000 3000 11000 $885,000 $90,000
5000 5000 10000 $975,000 $90,000
6000 7000 9000 $1,065,000 $90,000
7000 9000 8000 $1,155,000 $90,000
8000 11000 7000 $1,245,000 $90,000
9000 13000 6000 $1,335,000 $90,000

10000 15000 5000 $1,425,000 $90,000
11000 17000 4000 $1,515,000 $90,000

13000 21000 2000 $1,695,000 $90,000
14000 23000 1000 $1,785,000 $90,000
15000 25000 0 $1,875,000 $90,000
16000 26000 0 $1,950,000 $75,000
17000 27000 0 $2,025,000 $75,000
18000 28000 0 $2,100,000 $75,000
19000 29000 0 $2,175,000 $75,000
20000 30000 0 $2,250,000 $75,000

Figure 14.9

Sensitivity to the

Availability of

Crude 1
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A Caution About Blending Constraints

Before concluding this example, we discuss why the model is linear. The key is the imple-
mentation of the quality constraints, shown in inequalities (14.1) and (14.2). To keep a
model linear, each side of an inequality constraint must be a constant, the product of a con-
stant and a variable, or a sum of such products. If the quality constraints are implemented
as in inequalities (14.1) and (14.2), the constraints are indeed linear. However, it is
arguably more natural to rewrite this type of constraint by dividing through by the amount
sold. For example, the modified gasoline constraint becomes

(14.3)

Although this form of the constraint is perfectly valid—and is possibly more natural to
many people—it suffers from two drawbacks. First, it makes the model nonlinear. This is
because the left side is no longer a sum of products; it involves a quotient. We prefer linear
models whenever possible. Second, suppose it turns out that Chandler’s optimal solution
calls for no gasoline at all. Then inequality (14.3) includes division by zero, and this causes
an error in Excel. Because of these two drawbacks, it is best to “clear denominators” in all
such blending constraints.

QP in gasoline

Gasoline sold
Ú 8
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A B C D E F G H
Adjustable Cells

Final Reduce Objec�ved Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

$B$16 Crude oil 1 Gasoline 3000 0 75 175 25
$C$16 Crude oil 1  oil 2000 0 60 25 175
$B$17 Crude oil 2 Gasoline 2000 0 75 262.5 18.75
$C$17 Crude oil 2  oil 8000 0 60 18.75 43.75

Constraints
Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
$D$16 Crude oil 1 Barrels used 5000 90 5000 10000 2500
$D$17 Crude oil 2 Barrels used 10000 53 10000 10000 6666.666667
$B$22 Quality points obtained Gasoline 40000 -7 0 5000 20000
$C$22 Quality points obtained  oil 60000 -7 0 10000 6666.666667

Figure 14.10 Sensitivity Report for Blending Model

Blending models
usually have various
quality constraints,
often expressed as
required percentages
of various ingredients.
To keep these models
linear (and avoid
dividing by zero), it is
important to clear
denominators.

FUNDAMENTAL INSIGHT

Clearing Denominators

Some constraints, particularly those that arise in

blending models, are most naturally expressed in

terms of ratios. For example, the percentage of sulfur

in a product is a ratio: (amount of sulfur in prod-

uct)/(total amount of product).This ratio could then

be constrained to be less than or equal to 6%, say.

This is a perfectly valid way to express the constraint,

but it has the undesirable effect of making the model

nonlinear.The fix is simple.To make the model linear,

multiply through by the denominator of the ratio.This

has the added benefit of ensuring that division by

zero will not occur.
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In reality, a company using a blending model would run the model periodically (each day,
say) and set production on the basis of the current inventory of inputs and the current fore-
casts of demands and prices. Then the forecasts and the input levels would be updated, and
the model would be run again to determine the next day’s production. ■
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P R O B L E M S

Level A

7. Use SolverTable in Chandler’s blending model to see
whether, by increasing the selling price of gasoline,
you can get an optimal solution that produces only
gasoline, no heating oil. Then use SolverTable again to
see whether, by increasing the selling price of heating
oil, you can get an optimal solution that produces only
heating oil, no gasoline.

8. Use SolverTable in Chandler’s blending model to find
the shadow price of crude oil 1—that is, the amount
Chandler would be willing to spend to acquire more
crude oil 1. Does this shadow price change as
Chandler keeps getting more of crude oil 1? Answer
the same questions for crude oil 2.

9. How sensitive is the optimal solution (barrels of each
output sold and profit) to the required quality points?
Answer this by running a two-way SolverTable with
these three outputs. You can choose the values of the
two inputs to vary.

10. In Chandler’s blending model suppose there is a
chemical ingredient called C1 that both gasoline and
heating oil need. At least 3% of every barrel of
gasoline must be C1, and at least 5% of every barrel of
heating oil must be C1. Suppose that 4% of all crude

oil 1 is C1 and 6% of all crude oil 2 is C1. Modify the
model to incorporate the constraints on C1, and then
optimize. Don’t forget to clear denominators.

11. In the current version of Chandler’s blending model,
a barrel of any input results in a barrel of output.
However, in a real blending problem there can be
losses. Suppose a barrel of input results in only a
fraction of a barrel of output. Specifically, each
barrel of either crude oil used for gasoline results 
in only 0.95 barrel of gasoline, and each barrel of
either crude used for heating oil results in only 
0.97 barrel of heating oil. Modify the model to
incorporate these losses and then find the optimal
solution.

Level B

12. We warned you about clearing denominators in the
quality constraints. This problem indicates what
happens if you don’t do so.
a. Implement the quality constraints as indicated in

inequality (14.3). Then run Solver with the simplex
algorithm. What happens? What if you run Solver
with the GRG nonlinear algorithm?

b. Repeat part a, but increase the selling price of
heating oil to $120 per barrel. What happens now?

14.4 LOGISTICS MODELS

In many situations a company produces products at locations called origins and ships these
products to customer locations called destinations. Typically, each origin has a limited
capacity that it can ship, and each destination must receive a required quantity of the prod-
uct. Logistics models can be used to determine the minimum-cost shipping method for
satisfying customer demands.

14.4.1 Transportation Models

We begin by assuming that the only possible shipments are those directly from an origin to
a destination. That is, no shipments between origins or between destinations are allowed.
Such a problem has traditionally been called a transportation problem.

MODELING ISSUES
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Objective To develop a spreadsheet optimization model that finds the least-cost way of
shipping the automobiles from plants to regions, staying within plant capacities and meet-
ing regional demands.

WHERE DO THE NUMBERS COME FROM?

A typical transportation problem requires three sets of numbers: capacities (or supplies),
demands (or requirements), and unit shipping (and possibly production) costs. We discuss
each of these next.

■ The capacities indicate the most each plant can supply in a given amount of time—a
month, say—under current operating conditions. In some cases it might be possible to
increase the “base” capacities, by using overtime, for example. In such cases the model
could be modified to determine the amounts of additional capacity to use (and pay for).

■ The customer demands are typically estimated from some type of forecasting model
(as discussed in Chapter 12). The forecasts are often based on historical customer
demand data.

■ The unit shipping costs come from a transportation cost analysis—what does it really
cost to send a single automobile from any plant to any region? This is not an easy
question to answer, and it requires an analysis of the best mode of transportation
(such as railroad, ship, or truck). However, companies typically have the required
data. Actually, the unit “shipping” cost can also include the unit production cost at each
plant. However, if this cost is the same across all plants, as we are tacitly assuming
here, it can be omitted from the model.

Solution

The variables and constraints required for this model are listed in Table 14.5. The company
must decide exactly the number of autos to send from each plant to each region—a ship-
ping plan. Then it can calculate the total number of autos sent out of each plant and the
total number received by each region.
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E X A M P L E 14.3 SHIPPING CARS FROM PLANTS TO REGIONS OF THE COUNTRY

The Grand Prix Automobile Company manufactures automobiles in three plants and
then ships them to four regions of the country. The plants can supply the amounts

listed in the right column of Table 14.4. The customer demands by region are listed in the
bottom row of this table, and the unit costs of shipping an automobile from each plant to
each region are listed in the middle of the table. Grand Prix wants to find the lowest-cost
shipping plan for meeting the demands of the four regions without exceeding the capacities
of the plants.

Table 14.4 Input Data for Grand Prix Example

Region 1 Region 2 Region 3 Region 4 Capacity

Plant 1 131 218 266 120 450
Plant 2 250 116 263 278 600
Plant 3 178 132 122 180 500
Demand 450 200 300 300
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Representing Transportation in a Network Model

A network diagram of this model appears in Figure 14.11. This diagram is typical of net-
work models. It consists of nodes and arcs. A node, indicated by a circle, generally repre-
sents a geographical location. In this case the nodes on the left correspond to plants, and
the nodes on the right correspond to regions. An arc, indicated by an arrow, generally rep-
resents a route for getting a product from one node to another. Here, the arcs all go from a
plant node to a region node—from left to right.
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Table 14.5 Variables and Constraints for Transportation Model

Input variables Plant capacities, regional demands, unit shipping costs
Decision variables (changing cells) Number of autos sent from each plant to each region
Objective cell Total shipping cost
Other calculated variables Number sent out of each plant, number sent to each 

region
Constraints Number sent out of each plant Plant capacity

Number sent to each region Region demandÚ

…

In a transportation
problem all flows go
from left to right—
from origins to
destinations.You will
see more complex
network structures in
the next subsection.

Figure 14.11

Network

Representation of

Transportation

Model

The problem data fit nicely on such a diagram. The capacities are placed next to the
plant nodes, the demands are placed next to the region nodes, and the unit shipping costs
are placed on the arcs. The decision variables are usually called flows. They represent the
amounts shipped on the various arcs. Sometimes (although not in this problem), there are
upper limits on the flows on some or all of the arcs. These upper limits, called arc capaci-
ties, can also be shown on the diagram.4

DEVELOPING THE SPREADSHEET MODEL

The spreadsheet model appears in Figure 14.12. (See the file Transportation 1.xlsx.) To
develop this model, perform the following steps.

1 Inputs.5 Enter the unit shipping costs, plant capacities, and region demands in the
blue cells.

4There can even be lower limits, other than zero, on certain flows, but we don’t consider any such models here.
5From here on, we might not remind you about creating range names, but we will continue to list our suggested
range names on the spreadsheets.
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2 Shipping plan. Enter any trial values for the shipments from plants to regions in the
Shipping_plan range. These are the changing cells. Note that this rectangular range is
exactly the same shape as the range where the unit shipping costs are entered. This is a nat-
ural model design, and it simplifies the formulas in the following steps.

3 Numbers shipped from plants. To calculate the amount shipped out of each plant in
the range G13:G15, highlight this range and click on the summation (�) toolbar button.

4 Amounts received by regions. Similarly, calculate the amount shipped to each region
in the range C16:F16 by highlighting the range and clicking on the summation button.

5 Total shipping cost. Calculate the total cost of shipping power from the plants to the
regions in the Total_cost cell with the formula

�SUMPRODUCT(C6:F8,Shipping_plan)

This formula sums all products of unit shipping costs and amounts shipped. You now see
the benefit of placing unit shipping costs and amounts shipped in similar-size rectangular
ranges—you can then use the SUMPRODUCT function.

USING SOLVER

Invoke Solver with the settings shown in Figure 14.13. As usual, check the Non-Negative
option and specify the simplex method before optimizing.

Discussion of the Solution

The Solver solution appears in Figure 14.12 and is illustrated graphically in Figure 14.14.
The company incurs a total shipping cost of $176,050 by using the shipments listed in
Figure 14.14. Except for the six routes shown, no other routes are used. Most of the ship-
ments occur on the low-cost routes, but this is not always the case. For example, the route
from plant 2 to region 1 is relatively expensive, and it is used. On the other hand, the route
from plant 3 to region 2 is relatively cheap, but it is not used. A good shipping plan tries to
use cheap routes, but it is constrained by capacities and demands.
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A B C D E F G H I J K
Grand Prix egnaRledom names used:

Capacity =Model!$I$13:$I$15
Unit shipping costs Demand =Model!$C$18:$F$18

51$F$:31$C$!ledoM=nalP_gnippihSoT
Region 1 Region 2 Region 3 Region 12$B$!ledoM=tsoc_latoT4

From Plant 61$F$:61$C$!ledoM=deviecer_latoT$120$266$218$1311
Plant 1$G$:31$G$!ledoM=deppihs_latoT$278$263$116$2502 5
Plant 3 $178 $132 $122 $180

Shipping plan, and constraints on supply and demand
To

Region 1 Region 2 Region 3 Region 4 Total shipped Capacity
From Plant 1 150 0 0 300 450 <= 450

Plant 2 100 200 0 0 300 <= 600
Plant 3 200 0 300 0 500 <= 500
Total received 450 200 300 300

>= >= >= >=
Demand 450 200 300 300

to minimize
Total cost $176,050

Figure 14.12 Transportation Model

It is typical in
transportation 
models, especially 
large models, that 
only a relatively few 
of the possible routes
are used.
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Note that the available capacity is not all used. The reason is that total capacity is
1550, whereas total demand is only 1250. Even though the demand constraints are of the
“ ” type, there is clearly no reason to send the regions more than they request because it
only increases shipping costs. Therefore, the optimal plan sends them the minimal
amounts they request and no more. In fact, the demand constraints could have been mod-
eled as “�” constraints, and Solver would have reached exactly the same solution.

Ú
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Figure 14.13

Solver Dialog Box

for Transportation

Model

Figure 14.14

Graphical

Representation of

Optimal Solution
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Sensitivity Analysis

There are many sensitivity analyses you could perform on the basic transportation model.
For example, you could vary any one of the unit shipping costs, capacities, or demands.
The effect of any such change in a single input is captured nicely in Solver’s sensitivity
report, shown in Figure 14.15. The top part indicates the effects of changes in the unit ship-
ping costs. The results here are typical. For all routes with positive flows, the correspond-
ing reduced cost is zero, whereas for all routes not currently being used, the reduced cost
indicates how much less the unit shipping cost would have to be before the company would
start shipping along that route. For example, if the unit shipping cost from plant 2 to region
3 decreased by more than $69, this route would become attractive.
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Final Reduced Allowable Allowable
Cell Name Value Cost Coefficien

Objec�ve
t Increase Decrease

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A B C D E F G H
Adjustable Cells

$C$13 Plant 1 Region 1 150 0 131 119 13
$D$13 Plant 1 Region 2 0 221 218 1E+30 221
$E$13 Plant 1 Region 3 0 191 266 1E+30 191
$F$13 Plant 1 Region 4 300 0 120 13 239
$C$14 Plant 2 Region 1 100 0 250 39 72
$D$14 Plant 2 Region 2 200 0 116 88 116
$E$14 Plant 2 Region 3 0 69 263 1E+30 69
$F$14 Plant 2 Region 4 0 39 278 1E+30 39
$C$15 Plant 3 Region 1 200 0 178 13 69
$D$15 Plant 3 Region 2 0 88 132 1E+30 88
$E$15 Plant 3 Region 3 300 0 122 69 194
$F$15 Plant 3 Region 4 0 13 180 1E+30 13

Constraints
Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
$G$13 Plant 1 Total shipped 450 -119 450 100 150
$G$14 Plant 2 Total shipped 300 0 600 1E+30 300
$G$15 Plant 3 Total shipped 500 -72 500 100 200
$C$16 Total received Region 1 450 250 450 300 100
$D$16 Total received Region 2 200 116 200 300 200
$E$16 Total received Region 3 300 194 300 200 100
$F$16 Total received Region 4 300 239 300 150 100

Figure 14.15

Solver’s Sensitivity

Report for

Transportation

Model

The bottom part of this report is useful because of its shadow prices. For example,
plants 1 and 3 are currently shipping all of their capacity, so the company would benefit
from having more capacity at these plants. In particular, the report indicates that each extra
unit of capacity at plant 1 is worth $119, and each extra unit of capacity at plant 3 is worth
$72. However, because the allowable increase for each of these is 100, you know that after
an increase in capacity of 100 at either plant, further increases will probably be worth less
than the current shadow prices.

One interesting analysis that cannot be performed with Solver’s sensitivity report is to 
keep shipping costs and capacities constant and allow all of the demands to change by a
certain percentage (positive or negative). To perform this analysis, use SolverTable, with
the varying percentage as the single input. Then keep track of the total cost and any partic-
ular amounts shipped of interest. The key to doing this correctly is to modify the model
slightly, as illustrated in the previous chapter and Example 14.1, before running
SolverTable. The appropriate modifications appear in the third sheet of the finished

The key to this
sensitivity analysis is 
to modify the model
slightly before running
SolverTable.
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Transportation 1.xlsx file. Then run SolverTable, allowing the percentage change in all
demands to vary from �20% to 30% in increments of 5%, and keep track of total cost. As
the table in Figure 14.16 shows, the total shipping cost increases at an increasing rate as the
demands increase. However, at some point the problem becomes infeasible. As soon as the
total demand is greater than the total capacity, it is impossible to meet all demand.
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% change in demands (cell $I$10) values along side, output cell(s) along top

To
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-20% $130,850
-15% $140,350 $9,500
-10% $149,850 $9,500

-5% $162,770 $12,920
0% $176,050 $13,280
5% $189,330 $13,280

10% $202,610 $13,280
15% $215,890 $13,280
20% $229,170 $13,280
25% Not feasible
30% Not feasible

Figure 14.16

Sensitivity Analysis

to Percentage

Changes in All

Demands

An Alternative Model

The transportation model in Figure 14.12 is a very natural one. In the graphical representa-
tion in Figure 14.11, note that all arcs go from left to right, that is, from plants to regions.
Therefore, the rectangular range of shipments allows you to calculate shipments out of
plants as row sums and shipments into regions as column sums. In anticipation of later mod-
els in this chapter, however, where the graphical network can be more complex, we present
an alternative model of the transportation problem. (See the file Transportation 2.xlsx.)

First, it is useful to introduce some additional network terminology. Recall that flows
are the amounts shipped on the various arcs. The direction of the arcs indicates which way
the flows are allowed to travel. An arc pointed into a node is called an inflow, whereas an
arrow pointed out of a node is called an outflow. In the basic transportation model, all out-
flows originate from suppliers, and all inflows go toward demanders. However, general
networks can have both inflows and outflows for any given node.

With this general structure in mind, the typical network model has one changing cell
per arc. It indicates how much (if any) to send along that arc in the direction of the arrow.
Therefore, it is often useful to model network problems by listing all of the arcs and their
corresponding flows in one long list. Then constraints can be indicated in a separate sec-
tion of the spreadsheet. Specifically, for each node in the network, there is a flow balance
constraint. These flow balance constraints for the basic transportation model are simply
the supply and demand constraints already discussed, but they can be more general for
other network models, as will be discussed in the next subsection.

The alternative model of the Grand Prix problem appears in Figure 14.17. The plant
and region indexes and the associated unit shipping costs are entered manually in the range
A5:C16. Each row in this range corresponds to an arc in the network. For example, row 12
corresponds to the arc from plant 2 to region 4, with unit shipping cost $278. Then the
changing cells for the flows are in column D. (If there were arc capacities, they could be
placed to the right of the flows.)

Although this model 
is possibly less natural
than the original
model, it generalizes
better to other logis-
tics models in this
chapter.
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The flow balance constraints are conceptually straightforward. Each cell in the
Outflow and Inflow ranges in column G contains the appropriate sum of flows. For exam-
ple, cell G6, the outflow from plant 1, represents the sum of cells D5 through D8, whereas
cell G12, the inflow to plant 1, represents the sum of cells D5, D9, and D13. Fortunately,
there is an easy way to enter these summation formulas.6 The trick is to use Excel’s built-
in SUMIF function, in the form �SUMIF(CompareRange,Criteria,SumRange). For exam-
ple, the formula in cell G6 is

�SUMIF(Origin,F6,Flow)

This formula compares the plant number in cell F6 to the Origin range in column A and
sums all flows where they are equal—that is, it sums all flows out of plant 1. This formula
can be copied down to cell G8 to obtain the flows out of the other plants. For flows into
regions, the similar formula in cell G12 for the flow into region 1 is

�SUMIF(Destination,F12,Flow)

and this can be copied down to cell G15 for flows into the other regions. In general, the
SUMIF function finds all cells in the first argument that satisfy the criterion in the second
argument and then sums the corresponding cells in the third argument. It is a very handy
function—and not just for network modeling.

Excel Function SUMIF
The SUMIF function is useful for summing values in a certain range if cells in a related
range satisfy a given condition. It has the syntax �SUMIF (compareRange,criterion,
sumRange), where compareRange and sumRange are similar-size ranges. This formula
checks each cell in compareRange to see whether it satisfies the criterion. If it does, it adds
the corresponding value in sumRange to the overall sum. For example, �SUMIF(A12:
A23,1,D12:D23) sums all values in the range D12:D23 where the corresponding cell in the
range A12:A23 has the value 1.

This use of the SUMIF function, along with the list of origins, destinations, unit costs,
and flows in columns A through D, is the key to the model. The rest is straightforward. The
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Grand Prix transporta on model: a more general network egnaRnoitalumrof names used:

Capacity =Model!$I$6:$I$8
Network structure and wolFswolf balance constraints Demand =Model!$I$12:$I$15

Origin Des na on Unit cost Flow Capacity 61$B$:5$B$!ledoM=noitanitseDstniartsnoc
1 1 131 150 Plant Ou low Capacity Flow =Model!$D$5:$D$16
1 2 218 0 1 450 <= 450 Inflow =Model!$G$12:$G$15
1 3 266 0 2 300 <= 600 Origin =Model!$A$5:$A$16
1 4 120 300 3 500 <= 500 Ou low =Model!$G$6:$G$8

91$B$!ledoM=tsoC_latoT00105212
2 2 116 200 Demand constraints
2 3 263 0 Region Inflow Demand
2 4 278 0 1 450 >= 450
3 1 178 200 2 200 >= 200
3 2 132 0 3 300 >= 300
3 3 122 300 4 300 >= 300
3 4 180 0

Objec ve to minimize
Total Cost $176,050

Figure 14.17 Alternative Form of Transportation Model

6Try entering these formulas manually, even for a 3 � 4 transportation model, and you will see why the SUMIF
function is so handy.
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total cost is a SUMPRODUCT of unit costs and flows, and the Solver dialog box is set up
as shown in Figure 14.18.
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This alternative model generalizes nicely to other network problems. Essentially, it
shows that all network models look alike. There is an additional benefit from this alter-
native model. Suppose that flows from certain plants to certain regions are not allowed.
(Maybe no roads exist.) It is not easy to disallow such routes in the original model. The
usual trick is to allow the “disallowed” routes but to impose extremely large unit ship-
ping costs on them. This works, but it is wasteful because it adds changing cells that do
not really belong in the model. However, the alternative network model simply omits
arcs that are not allowed. For example, if the route from plant 2 to region 4 is not
allowed, you simply omit the data in the range A12:D12. This creates a model with
exactly as many changing cells as allowable arcs. This additional benefit can be very
valuable when the number of potential arcs in the network is huge—even though the
vast majority of them are disallowed—which is exactly the situation in many large
network models.

We do not necessarily recommend this more general network model for simple
transportation problems. In fact, it is probably less natural than the original model in
Figure 14.12. However, it paves the way for the more complex network problems 
discussed next. ■

Figure 14.18

Solver Dialog Box

for Alternative

Transportation

Model

The alternative
network model not
only accommodates
more general net-
works, but it is more
efficient in that it 
has the fewest num-
ber of changing cells.
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Depending on how you
treat the demand
constraints, you can get
several varieties of the
basic transportation
model.

1. The customer demands in typical transportation problems can be handled in one of
two ways. First, you can think of these forecasted demands as minimal requirements
that must be sent to the customers. This is how regional demands were treated here.
Alternatively, you could consider the demands as maximal sales quantities, the most
each region can sell. Then you would constrain the amounts sent to the regions to be
less than or equal to the forecasted demands. Whether the demand constraints are
expressed as “ ” or “ ” (or even “�”) constraints depends on the context of the
problem—do the dealers need at least this many, do they need exactly this many, or
can they sell only this many?

2. If all the supplies and demands for a transportation problem are integers, the optimal
Solver solution automatically has integer-valued shipments. Explicit integer con-
straints are not required. This is a very important benefit. It means that the “fast”
simplex method can be used rather than much slower integer algorithms.

3. Shipping costs are often nonlinear (and “nonsmooth”) due to quantity discounts.
For example, if it costs $3 per item to ship up to 100 items between locations and
$2 per item for each additional item, the proportionality assumption of LP is violated
and the resulting transportation model is nonlinear. Shipping problems that involve
quantity discounts are generally quite difficult to solve.

4. Excel’s Solver uses the simplex method to solve transportation problems. There is a
streamlined version of the simplex method, called the transportation simplex method,
that is much more efficient than the ordinary simplex method for transportation
problems. Large transportation problems are usually solved with the transportation
simplex method. See Winston (2003) for a discussion of the transportation simplex
method. ■

14.4.2 Other Logistics Models

The objective of many real-world network models is to ship goods from one set of
locations to another at minimum cost, subject to various constraints. There are many vari-
ations of these models. The simplest models include a single product that must be shipped
via one mode of transportation (truck, for example) in a particular period of time.
More complex models—and much larger ones—can include multiple products, multiple
modes of transportation, and/or multiple time periods. We discuss one such problem in
this section.

Basically, the general logistics problem is like the transportation problem except
for two possible differences. First, arc capacities are often imposed on some or all of the
arcs. These become simple upper-bound constraints in the model. Second and more signif-
icant, there can be inflows and outflows associated with any node. Nodes are generally
categorized as origins, destinations, and transshipment points. An origin is a location that
starts with a certain supply (or possibly a capacity for supplying). A destination is the
opposite; it requires a certain amount to end up there. A transshipment point is a location
where goods simply pass through.

The best way to think of these categories is in terms of net inflow and net outflow. The
net inflow for any node is defined as total inflow minus total outflow for that node. The net
outflow is the negative of this, total outflow minus total inflow. Then an origin is a node
with positive net outflow, a destination is a node with positive net inflow, and a transship-
ment point is a node with net outflow (and net inflow) equal to 0. It is important to realize
that inflows are sometimes allowed to origins, but their net outflows are positive. Similarly,

…Ú

MODELING ISSUES
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outflows from destinations are sometimes allowed, but their net inflows are positive.
For example, if Cincinnati and Memphis are manufacturers (origins) and Dallas and
Phoenix are retail locations (destinations), then it is possible that flow could go from

Cincinnati to Memphis to Dallas to Phoenix.
There are typically two types of constraints in

logistics models (besides nonnegativity of flows).
The first type represents the arc capacity constraints,
which are simple upper bounds on the arc flows. The
second type represents the flow balance constraints,
one for each node. For an origin, this constraint is
typically of the form Net Outflow � Capacity or
possibly Net Outflow � Capacity. For a destina-
tion, it is typically of the form Net Inflow ��
Demand or possibly Net Inflow � Demand. For a
transshipment point, it is of the form Net Inflow � 0
(which is equivalent to Net Outflow � 0, whichever
you prefer).

It is easy to visualize these constraints in a
graphical representation of the network by simply

examining the flows on the arrows leading into and out of the various nodes. We illustrate
a typical logistics model in the following example.
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Flow Balance Constraints

All network optimization models have some form of

flow balance constraints at the various nodes of the

network. This flow balance relates the amount that

enters the node to the amount that leaves the node.

In many network models, the simple structure of

these flow balance constraints guarantees that the

optimal solutions have integer values. It also enables

specialized network versions of the simplex method

to solve the huge network models typically encoun-

tered in real logistics applications.

FUNDAMENTAL INSIGHT

E X A M P L E 14.4 PRODUCING AND SHIPPING TOMATO PRODUCTS AT REDBRAND

The RedBrand Company produces a tomato product at three plants. This product
can be shipped directly to the company’s two customers or it can first be shipped to

the company’s two warehouses and then to the customers. Figure 14.19 is a network
representation of RedBrand’s problem. Nodes 1, 2, and 3 represent the plants (these are
the origins, denoted by S for supplier), nodes 4 and 5 represent the warehouses (these
are the transshipment points, denoted by T), and nodes 6 and 7 represent the customers
(these are the destinations, denoted by D). Note that some shipments are allowed among
plants, among warehouses, and among customers. Also, some arcs have arrows on both
ends. This means that flow is allowed in either direction.

The cost of producing the product is the same at each plant, so RedBrand is concerned
with minimizing the total shipping cost incurred in meeting customer demands. The pro-
duction capacity of each plant (in tons per year) and the demand of each customer are

Figure 14.19

Graphical

Representation of

Logistics Model
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shown in Figure 14.19. For example, plant 1 (node 1) has a capacity of 200, and customer
1 (node 6) has a demand of 400. In addition, the cost (in thousands of dollars) of shipping
a ton of the product between each pair of locations is listed in Table 14.6, where a blank
indicates that RedBrand cannot ship along that arc. We also assume that at most 200 tons
of the product can be shipped between any two nodes. This is the common arc capacity.
RedBrand wants to determine a minimum-cost shipping schedule.
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Table 14.6 Shipping Costs for RedBrand Example (in $1000s)

To node

From node 1 2 3 4 5 6 7

1 5.0 3.0 5.0 5.0 20.0 20.0
2 9.0 9.0 1.0 1.0 8.0 15.0
3 0.4 8.0 1.0 0.5 10.0 12.0
4 1.2 2.0 12.0
5 0.8 2.0 12.0
6 1.0
7 7.0 

Table 14.7 Variables and Constraints for RedBrand Model

Input variables Plant capacities, customer demands, unit shipping costs
on allowable arcs, common arc capacity

Decision variables (changing cells) Shipments on allowed arcs
Objective cell Total cost
Other calculated variables Flows into and out of nodes
Constraints Flow on each arc � Common arc capacity

Flow balance at each node 

Objective To find the minimum-cost way to ship the tomato product from suppliers to
customers, possibly through warehouses, so that customer demands are met and supplier
capacities are not exceeded.

WHERE DO THE NUMBERS COME FROM?

The network configuration itself would come from geographical considerations—which
routes are physically possible (or sensible) and which are not. The numbers would
be derived as in the Grand Prix automobile example. (See Example 14.3 for further
discussion.)

Solution

The variables and constraints for RedBrand’s model are listed in Table 14.7. The key to the
model is handling the flow balance constraints. You will see exactly how to implement
these when we give step-by-step instructions for developing the spreadsheet model.
However, it is not enough, say, to specify that the flow out of plant 2 is less than or equal to
the capacity of plant 2. The reason is that there might also be flow into plant 2 (from
another plant). Therefore, the correct flow balance constraint for plant 2 is that the flow out
of it must be less than or equal to its capacity plus any flow into it. Equivalently, the net
outflow from plant 2 must be less than or equal to its capacity.

Other than arc 
capacity constraints,
the only constraints 
are flow balance 
constraints.
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DEVELOPING THE SPREADSHEET MODEL

To set up the spreadsheet model, proceed as follows. (See Figure 14.20 and the file
RedBrand Logistics 1.xlsx. Also, refer to the network in Figure 14.19.)
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KJIHGFEDCBA
RedBrand shipping model

Inputs
Common arc capacity 200

Network structure, flows, and arc capacity edoNstniartsnoc balance constraints
Origin n Unit Cost Flow Arc Capacity Plant constraints

tnalPedoN002=<0521 net w Plant capacity
002=<0811002=<081331
003=<0032002=<0541
001=<0013002=<0551

1 6 20 0 <= 200
1 7 20 0 <= 200 Warehouse constraints

esuoheraWedoN002=<0912 net w Required
0=04002=<0932
0=05002=<021142

2 5 1 0 <= 200
2 6 8 180 <= 200 Customer constraints

remotsuCedoN002=<05172 net inflow Customer demand
004=>0046002=<04.013
081=>0817002=<0823

3 4 1 80 <= 200
3 5 0.5 200 <= 200 Range names used
3 6 10 0 <= 200 Arc_Capacity =Model!$F$8:$F$33
3 7 12 0 <= 200 Customer_demand =Model!$K$20:$K$21
4 5 1.2 0 <= 200 Customer_net_inflow =Model!$I$20:$I$21
4 6 2 200 <= 200 n =Model!$B$8:$B$33

33$D$:8$D$!ledoM=wolF002=<02174
5 4 0.8 0 <= 200 Origin =Model!$A$8:$A$33
5 6 2 200 <= 200 Plant_capacity =Model!$K$9:$K$11
5 7 12 0 <= 200 w =Model!$I$9:$I$11
6 7 1 180 <= 200 Total_cost =Model!$B$36
7 6 7 0 <= 200 Unit_Cost =Model!$C$8:$C$33

w =Model!$I$15:$I$16
to minimize

Total 062,3$tsoc

Figure 14.20 Logistics Model

1 Origins and destinations. Enter the node numbers (1 to 7) for the origins and desti-
nations of the various arcs in the range A8:B33. Note that the disallowed arcs are not
entered in this list.

2 Input data. Enter the unit shipping costs (in thousands of dollars), the common arc
capacity, the plant capacities, and the customer demands in the blue cells. Again, only the
nonblank entries in Table 14.6 are used to fill the column of unit shipping costs.

3 Flows on arcs. Enter any initial values for the flows in the range D8:D33. These are
the changing cells.

4 Arc capacities. To indicate a common arc capacity for all arcs, enter the formula

�$B$4

in cell F8 and copy it down column F.

5 Flow balance constraints. Nodes 1, 2, and 3 are supply nodes, nodes 4 and 5 are
transshipment points, and nodes 6 and 7 are demand nodes. Therefore, set up the left sides
of the flow balance constraints appropriately for these three cases. Specifically, enter the
net outflow for node 1 in cell I9 with the formula

�SUMIF(Origin,H9,Flow)-SUMIF(Destination,H9,Flow)

and copy it down to cell I11. This formula subtracts flows into node 1 from flows out of
node 1 to obtain net outflow for node 1. Next, copy this same formula to cells I15 and I16

We generally prefer
positive numbers on
the right sides of 
constraints.This is 
why we calculate net
outflows for origins 
and net inflows for 
destinations.
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for the warehouses. (Remember that, for transshipment nodes, the left side of the constraint
can be net outflow or net inflow, whichever you prefer. The reason is that if net outflow is
zero, net inflow must also be zero.) Finally, enter the net inflow for node 6 in cell I20 with
the formula

�SUMIF(Destination,H20,Flow)-SUMIF(Origin,H20,Flow)

and copy it to cell I21. This formula subtracts flows out of node 6 from flows into node 6
to obtain the net inflow for node 6.

6 Total shipping cost. Calculate the total shipping cost (in thousands of dollars) in cell
B36 with the formula

�SUMPRODUCT(Unit_cost,Flow)

USING SOLVER

The Solver dialog box should be set up as in Figure 14.21. The objective is to minimize
total shipping costs, subject to the three types of flow balance constraints and the arc
capacity constraints.
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Figure 14.21

Solver Dialog Box

for Logistics Model

Discussion of the Solution

The optimal solution in Figure 14.20 indicates that RedBrand’s customer demand can be sat-
isfied with a shipping cost of $3,260,000. This solution appears graphically in Figure 14.22.
Note in particular that plant 1 produces 180 tons (under capacity) and ships it all to plant 3,
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not directly to warehouses or customers. Also, note that all shipments from the warehouses
go directly to customer 1. Then customer 1 ships 180 tons to customer 2. We purposely chose
unit shipping costs (probably unrealistic ones) to produce this type of behavior, just to show
that it can occur. As you can see, the costs of shipping from plant 1 directly to warehouses or
customers are relatively large compared to the cost of shipping directly to plant 3. Similarly,
the costs of shipping from plants or warehouses directly to customer 2 are prohibitive.
Therefore, RedBrand ships to customer 1 and lets customer 1 forward some of its shipment
to customer 2.

Sensitivity Analysis

How much effect does the arc capacity have on the optimal solution? Currently, three of the
arcs with positive flow are at the arc capacity of 200. You can use SolverTable to see how sen-
sitive this number and the total cost are to the arc capacity.7 In this case the single input cell for
SolverTable is cell B4, which is varied from 150 to 300 in increments of 25. Two quantities are
designated as outputs: total cost and the number of arcs at arc capacity. As before, if you want
to keep track of an output that does not already exist, you can create it with an appropriate for-
mula in a new cell before running SolverTable. Specifically, you can enter the formula
�COUNTIF(Flow,B4) in an unused cell. This formula counts the arcs with flow equal to arc
capacity. (See the finished version of the file for a note about this formula.)

Excel Function COUNTIF
The COUNTIF function counts the number of values in a given range that satisfy some
criterion. The syntax is �COUNTIF(range,criterion). For example, the formula 
�COUNTIF(D8:D33,150) counts the number of cells in the range D8:D33 that contain
the value 150. This formula could also be entered as �COUNTIF(D8:D33,“�150”).
Similarly, the formula �COUNTIF(D8:D33,“��100”) counts the number of cells in this
range with values greater than or equal to 100.8

The SolverTable output in Figure 14.23 is what you would expect. As the arc capacity
decreases, more flows bump up against it, and the total cost increases. But even when the
arc capacity is increased to 300, two flows are constrained by it. In this sense, even this
large an arc capacity costs RedBrand money.
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Figure 14.22

Optimal Flows for

Logistics Model

7Note that Solver’s sensitivity report would not answer our question. This report is useful only for one-at-a-time
changes in inputs, and here we are simultaneously changing the upper limit for each flow. However, this report
(its bottom section) can be used to assess the effects of changes in plant capacities or customer demands.
8The COUNTIF and SUMIF functions are limited in that they allow only one condition, such as “��10”. For
this reason, Microsoft added two new functions in Excel 2007, COUNTIFS and SUMIFS, that allow multiple
conditions. You can learn about them in online help.
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Variations of the Model

There are many variations of the RedBrand shipping problem that can be handled by a
network model. We briefly consider two possible variations. First, suppose that RedBrand
ships two products along the given network. We assume that the unit shipping costs are the
same for both products (although this assumption could easily be relaxed), but the arc
capacity, which has been changed to 300, represents the maximum flow of both products
that can flow on any arc. In this sense, the two products are competing for arc capacity.
Each plant has a separate production capacity for each product, and each customer has a
separate demand for each product.

The spreadsheet model for this variation appears in Figure 14.24. (See the file
RedBrand Logistics 2.xlsx.) Very little in the original model needs to be changed. You need
to (1) have two columns of changing cells (columns D and E), (2) apply the previous logic to
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150 $4,120 5
175 $3,643 6
200 $3,260 3
225 $2,998 3
250 $2,735 3
275 $2,473 3
300 $2,320 2

Figure 14.23

Sensitivity to Arc

Capacity
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ONMLKJIHGFEDCBA
RedBrand shipping model with two products compe�ng for arc capacity

Inputs
Common arc capacity 300

Network structure, flows, and arc capacity constraints Node balance constraints
Origin Des�na�on Unit Cost Flow product 1 Flow product 2 Total flow Arc Capacity Plant constraints

1 2 0 0 <= 300 Node Net ou�low product 1 Net ou�low product 2 Capacity product 1 Capacity product 2
002002=<0411801003=<003140160331
001003=<0013002003=<02002541
001001=<0011003003=<000551

1 6 20 0 0 0 <= 300
1 7 20 0 0 0 <= 300 Warehouse constraints
2 1

5 0

9 0 0 0 <= 300 Node Net ou�low product 1 Net ou�low product 2 Required product 1 Required product 2
00=004003=<000932
00=005003=<0010100142

2 5 1 0 0 0 <= 300
2 6 8 200 100 300 <= 300 Customer constraints
2 7 15 0 0 0 <= 300 Node Net inflow product 1 Net inflow product 2 Demand product 1 Demand product 2

002004=>2004006003=<0000.413
041081=>1401807003=<000823

3 4 1 0 180 180 <= 300
3 5 0.5 240 60 300 <= 300
3 6 10 0 0 0 <= 300
3 7 12 20 0 20 <= 300
4 5 1.2 0 0 0 <= 300
4 6 2 120 180 300 <= 300
4 7 12 0 0 0 <= 300
5 4 0.8 0 0 0 <= 300
5 6 2 240 60 300 <= 300
5 7 12 0 0 0 <= 300
6 7 1 160 140 300 <= 300
7 6 7 0 0 0 <= 300

Objec�ve to minimize
Total cost $5,570

Figure 14.24 Logistics Model with Two Products

There are endless
variations of this 
basic minimum cost
network flow model,
corresponding to 
the many types of 
real-world logistics
problems.
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both products separately in the flow balance constraints, and (3) apply the arc capacities
to the total flows in column F (which are the sums of flows in columns D and E). The
modified Solver dialog box is shown in Figure 14.25. Note that we have range-named blocks
of cells for the flow balance constraints. For example, the ranges K9:L11 and N9:O11
are named Plant_net_outflow and Plant_capacity. These entire blocks can then be used to
specify the capacity constraints for both products with the single entry Plant_net_outflow
�� Plant_capacity in the Solver dialog box. This is another example of planning the
spreadsheet layout so that the resulting model is as efficient and readable as possible.
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Figure 14.25

Solver Dialog Box

for Two-Product

Logistics Model

A second variation of the model is appropriate for perishable goods, such as fruit.
(See the file RedBrand Logistics 3.xlsx.) We again assume that there is a single product,
but some percentage of the product that is shipped to warehouses perishes and cannot be
sent to customers. This means that the total inflow to a warehouse is greater than the total
outflow from the warehouse. This behavior can be modeled as shown in Figure 14.26. (The
corresponding Solver dialog box, not shown here, is the same as in the original RedBrand
model.) The shrinkage factor in cell B5, the percentage that does not spoil in the ware-
houses, becomes a new input. It is then incorporated into the warehouse flow balance
constraints by entering the formula

�SUMIF(Origin,H16,Flow)-$B$5*SUMIF(Destination,H16,Flow)

in cell I16 and copying to cell I17. This formula says that what goes out (the first term) is
90% of what goes in. The other 10% perishes. Of course, shrinkage results in a larger total
cost—about 20% larger—than in the original RedBrand model.
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Interestingly, however, some units are still sent to both warehouses, and the entire
capacity of all plants is now used. Finally, you can check that a feasible solution exists
even for a shrinkage factor of 0% (where everything sent to warehouses disappears).
As you might guess, the solution then is to send everything directly from plants to
customers—at a steep cost.
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KJIHGFEDCBA
RedBrand shipping model with shrinkage at warehouses

Inputs
Common arc capacity 200
Shrinkage factor 90%

Network formula�on Node balance constraints
Origin Des�na�on Unit Cost Flow Arc Capacity Plant constraints

1 2 5 0 <= 200 Node Plant net ou�low Plant capacity
1 3 3 200 <= 200 1 200 <= 200
1 4 5 0 <= 200 2 300 <= 300
1 5 5 0 <= 200 3 100 <= 100
1 6 20 0 <= 200
1 7 20 0 <= 200 Warehouse constraints
2 1 9 0 <= 200 Node Warehouse net ou�low Required

0=04002=<0932
0=05002=<0142

2 5 1 100 <= 200
2 6 8 200 <= 200 Customer constraints
2 7 15 0 <= 200 Node Customer net inflow Customer demand
3 1 0.4 0 <= 200 6 400 >= 400
3 2 8 0 <= 200 7 180 >= 180
3 4 1 0 <= 200
3 5 0.5 100 <= 200
3 6 10 200 <= 200
3 7 12 0 <= 200
4 5 1.2 0 <= 200
4 6 2 0 <= 200
4 7 12 0 <= 200
5 4 0.8 0 <= 200
5 6 2 180 <= 200
5 7 12 0 <= 200
6 7 1 180 <= 200
7 6 7 0 <= 200

Objec�ve to minimize
Total cost $4,890

Figure 14.26 Logistics Model with Shrinkage

1. Excel’s Solver uses the simplex method to solve logistics models. However, the
simplex method can be simplified dramatically for these types of models. The
simplified version of the simplex method, called the network simplex method, is
much more efficient than the ordinary simplex method. Specialized computer codes
have been written to implement the network simplex method, and all large logistics
problems are solved by using the network simplex method. This is fortunate because
real logistics models tend to be extremely large. See Winston (2003) for a discussion
of this method.

2. If the given supplies and demands for the nodes are integers and all arc capacities
are integers, the logistics model always has an optimal solution with all integer

MODELING ISSUES
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flows. Again, this is very fortunate for large problems—you get integer solutions “for
free” without having to use an integer programming algorithm. Note, however, that
this “integers for free” benefit is guaranteed only for the basic logistics model, as in
the original RedBrand model. When the model is modified in certain ways, such as
by adding a shrinkage factor, the optimal solution is no longer guaranteed to be
integer-valued. ■
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Distribution in Nu-kote International’s Network

LeBlanc et al. (2002) used an LP transportation model similar to the one in section 14.3
to analyze distribution in Nu-kote International’s network of vendors, manufacturing
plants, warehouses, and customers. Nu-kote, a manufacturer of inkjet, laser, and toner
cartridges, saves approximately $1 million annually as a result of this model. The LP
model has nearly 6,000 variables and 2,500 constraints. The total time available for data
collection and model development and verification was limited to only six weeks. It is a
tribute to the efficiency and user-friendliness of Excel that everything was completed
within this time frame. ■

ADDITIONAL APPLICATIONS

P R O B L E M S

Level A

13. In the original Grand Prix example, the total capacity
of the three plants is 1550, well above the total cus-
tomer demand. Would it help to have 100 more units of
capacity at plant 1? What is the most Grand Prix would
be willing to pay for this extra capacity? Answer the
same questions for plant 2 and for plant 3. Explain why
extra capacity can be valuable even though the company
already has more total capacity than it requires.

14. The optimal solution to the original Grand Prix
problem indicates that with a unit shipping cost of
$132, the route from plant 3 to region 2 is evidently
too expensive—no autos are shipped along this route.
Use SolverTable to see how much this unit shipping
cost would have to be reduced before some autos
would be shipped along this route.

15. In the original RedBrand problem, suppose the plants
cannot ship to each other and the customers cannot
ship to each other. Modify the model appropriately,
and rerun Solver. How much does the total cost
increase because of these disallowed routes?

16. Modify the original RedBrand problem so that all
flows must be from plants to warehouses and from

warehouses to customers. Disallow all other arcs. How
much does this restriction cost RedBrand, relative to
the original optimal shipping cost?

17. In the original RedBrand problem, the costs for
shipping from plants or warehouses to customer 2
were purposely made high so that it would be optimal
to ship to customer 1 and then let customer 1 ship to
customer 2. Use SolverTable appropriately to do the
following. Decrease the unit shipping costs from
plants and warehouses to customer 1, all by the same
amount, until it is no longer optimal for customer 1 to
ship to customer 2. Describe what happens to the
optimal shipping plan at this point.

18. In the original RedBrand problem the arc capacity is
the same for all allowable arcs. Modify the model so
that each arc has its own arc capacity. You can make
up the arc capacities.

19. Continuing the previous problem, make the problem
even more general by allowing upper bounds (arc
capacities) and lower bounds for the flows on the
allowable arcs. Some of the upper bounds can be very
large numbers, effectively indicating that there is no
arc capacity for these arcs, and the lower bounds can
be zero or positive. If they are positive, they indicate
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that some positive flow must occur on these arcs.
Modify the model appropriately to handle these upper
and lower bounds. You can make up the upper and
lower bounds.

20. Suppose in the original Grand Prix example that
the routes from plant 2 to region 1 and from plant 3
to region 3 are not allowed. (Perhaps there are no
railroad lines for these routes.) How would you
modify the original model (Figure 14.12) to rule out
these routes? How would you modify the alternative
model (Figure 14.17) to do so? Discuss the pros and
cons of these two approaches.

21. In the RedBrand two-product problem, we assumed
that the unit shipping costs are the same for both
products. Modify the spreadsheet model so that each
product has its own unit shipping costs. You can
assume that the original unit shipping costs apply to
product 1, and you can make up new unit shipping
costs for product 2.

Level B

22. Here is a problem to challenge your intuition. In the
original Grand Prix example, reduce the capacity of
plant 2 to 300. Then the total capacity is equal to the
total demand. Rerun Solver on the modified model.
You should find that the optimal solution uses all
capacity and exactly meets all demands with a total
cost of $176,050. Now increase the capacity of plant 1
and the demand at region 2 by one automobile each,
and optimize again. What happens to the optimal total
cost? How can you explain this “more for less”
paradox?

23. Continuing the previous problem (with capacity 300
at plant 2), suppose you want to see how much extra
capacity and extra demand you can add to plant 1 and
region 2 (the same amount to each) before the total
shipping cost stops decreasing and starts increasing.
Use SolverTable appropriately to find out. (You will
probably need to use some trial and error on the range
of input values.) Can you explain intuitively what
causes the total cost to stop decreasing and start
increasing?

24. Modify the original Grand Prix example by increasing
the demand at each regions by 200, so that total
demand is well above total plant capacity. However,
now interpret these “demands” as “maximum sales,”
the most each region can accommodate, and change
the “demand” constraints to become “ ” constraints,
not “ ” constraints. How does the optimal solution
change? Does it make realistic sense? If not, how
might you change the model to obtain a realistic
solution?

25. Modify the original Grand Prix example by increasing
the demand at each region by 200, so that total demand
is well above total plant capacity. This means that some
demands cannot be supplied. Suppose there is a unit
“penalty” cost at each region for not supplying an auto-
mobile. Let these unit penalty costs be $600, $750,
$625, and $550 for the four regions. Develop a model
to minimize the sum of shipping costs and penalty
costs for unsatisfied demands. (Hint: This requires a
trick. Introduce a fourth plant with plenty of capacity,
and set its unit shipping costs to the regions equal to
the unit penalty costs. Then interpret an auto shipped
from this fictitious plant to a region as a unit of demand
not satisfied.)

26. How difficult is it to expand the original RedBrand
model? Answer this by adding a new plant, two
new warehouses, and three new customers, and
modify the spreadsheet model appropriately. You
can make up the required input data. Would you
conclude that these types of spreadsheet models
scale easily?

27. In the RedBrand problem with shrinkage, change
the assumptions. Now instead of assuming that there
is some shrinkage at the warehouses, assume that
there is shrinkage in delivery along each route.
Specifically, assume that a certain percentage of the
units sent along each arc perish in transit—from
faulty refrigeration, for example—and this percent-
age can differ from one arc to another. Modify the
model appropriately to take this type of behavior
into account. You can make up the shrinkage factors,
and you can assume that arc capacities apply to
the amounts originally shipped, not to the amounts
after shrinkage. (Make sure your input data permit a
feasible solution. After all, if there is too much
shrinkage, it will be impossible to meet demands
with available plant capacity. Increase the plant
capacities if necessary.)

28. Consider a modification of the original RedBrand
problem where there are N plants, M warehouses, and
L customers. Assume that the only allowable arcs are
from plants to warehouses and from warehouses to
customers. If all such arcs are allowable—all plants
can ship to all warehouses and all warehouses can ship
to all customers—how many changing cells are in the
spreadsheet model? Keeping in mind that Excel’s
Solver can handle at most 200 changing cells, provide
some combinations of N, M, and L that barely stay
within Solver’s limit.

29. Continuing the previous problem, develop a sample
model with your own choices of N, M, and L that
barely stay within Solver’s limit. You can make up
any input data. The important point here is the layout
and formulas of the spreadsheet model.

Ú

…
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14.5 AGGREGATE PLANNING MODELS

In this section, we extend the production planning model discussed in Example 13.3 of the
previous chapter to include a situation where the number of workers available influences
the possible production levels. We allow the workforce level to be modified each period
through the hiring and firing of workers. Such models, where we determine workforce lev-
els and production schedules for a multiperiod time horizon, are called aggregate plan-
ning models. There are many variations of aggregate planning models, depending on the
detailed assumptions made. We consider a fairly simple version and then ask you to mod-
ify it in the problems.
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E X A M P L E 14.5 WORKER AND PRODUCTION PLANNING AT SURESTEP

During the next four months the SureStep Company must meet (on time) the following
demands for pairs of shoes: 3000 in month 1; 5000 in month 2; 2000 in month 3; and

1000 in month 4. At the beginning of month 1, 500 pairs of shoes are on hand, and
SureStep has 100 workers. A worker is paid $1500 per month. Each worker can work up to
160 hours a month before he or she receives overtime. A worker can work up to 20 hours
of overtime per month and is paid $13 per hour for overtime labor. It takes four hours of
labor and $15 of raw material to produce a pair of shoes. At the beginning of each month,
workers can be hired or fired. Each hired worker costs $1600, and each fired worker costs
$2000. At the end of each month, a holding cost of $3 per pair of shoes left in inventory is
incurred. Production in a given month can be used to meet that month’s demand. SureStep
wants to use LP to determine its optimal production schedule and labor policy.

Objective To develop an LP spreadsheet model that relates workforce and production
decisions to monthly costs, and to find the minimum-cost solution that meets forecasted
demands on time and stays within limits on overtime hours and production capacity.

WHERE DO THE NUMBERS COME FROM?

There are a number of required inputs for this type of problem. Some, including initial inven-
tory, holding costs, and demands, are similar to requirements for Example 13.3 in the
previous chapter, so we won’t discuss them again here. Others might be obtained as follows:

■ The data on the current number of workers, the regular hours per worker per month,
the regular hourly wage rates, and the overtime hourly rate, should be well known.
The maximum number of overtime hours per worker per month is probably either the
result of a policy decision by management or a clause in the workers’ contracts.

■ The costs for hiring and firing a worker are not trivial. The hiring cost includes train-
ing costs and the cost of decreased productivity due to the fact that a new worker
must learn the job. The firing cost includes severance costs and costs due to loss of
morale. Neither the hiring nor the firing cost would be simple to estimate accurately,
but the human resources department should be able to estimate their values.

■ The unit production cost is a combination of two inputs: the raw material cost
per pair of shoes and the labor hours per pair of shoes. The raw material cost is the
going rate from the supplier(s). The labor per pair of shoes represents the “produc-
tion function”—the average labor required to produce a unit of the product. The
operations managers should be able to supply this number.
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Solution

The variables and constraints for this aggregate planning model are listed in Table 14.8. As
you see, there are a lot of variables to keep track of. In fact, the most difficult aspect of
modeling this problem is knowing which variables the company gets to choose—the
decision variables—and which variables are determined by these decisions. It should be
clear that the company gets to choose the number of workers to hire and fire and the num-
ber of shoes to produce. Also, because management sets only an upper limit on overtime
hours, it gets to decide how many overtime hours to use within this limit. But once it
decides the values of these variables, everything else is determined. We will show how
these are determined through detailed cell formulas, but you should mentally go through
the list of “Other calculated variables” in the table and deduce how they are determined by
the decision variables. Also, you should convince yourself that the three constraints listed
are the ones, and the only ones, that are required.
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The key to this model
is choosing the correct
changing cells—the
decision variables that
determine all outputs.

Table 14.8 Variables and Constraints for Aggregate Planning Model

Input variables Initial inventory of shoes, initial number of workers,
number and wage rate of regular hours, maximum
number and wage rate of overtime hours, hiring and
firing costs, data for unit production and holding costs,
forecasted demands

Decision variables (changing cells) Monthly values for number of workers hired and fired,
number of shoes produced, and overtime hours used

Objective cell Total cost
Other calculated variables Monthly values for workers on hand before and after

hiring/firing, regular hours available, maximum overtime
hours available, total production hours available,
production capacity, inventory on hand after production,
ending inventory, and various costs

Constraints Overtime labor hours used � Maximum overtime hours
allowed 
Production � Capacity 
Inventory on hand after production 	 Demand 

DEVELOPING THE SPREADSHEET MODEL

The spreadsheet model appears in Figure 14.27. (See the file Aggregate Planning 1.xlsx.)
It can be developed as follows.

1 Inputs and range names. Enter the input data and create the range names listed.

2 Production, hiring and firing plan. Enter any trial values for the number of pairs of
shoes produced each month, the overtime hours used each month, the workers hired each
month, and the workers fired each month. These four ranges, in rows 18, 19, 23, and 30,
comprise the changing cells.

3 Workers available each month. In cell B17 enter the initial number of workers
available with the formula

�B5

Because the number of workers available at the beginning of any other month (before
hiring and firing) is equal to the number of workers from the previous month, enter the
formula

�B20

This is common in
multiperiod problems.
You usually have to
relate a beginning
value in one period to
an ending value from
the previous period.
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in cell C17 and copy it to the range D17:E17. Then in cell B20 calculate the number of
workers available in month 1 (after hiring and firing) with the formula

�B17+B18-B19

and copy this formula to the range C20:E20 for the other months.

4 Overtime capacity. Because each available worker can work up to 20 hours of over-
time in a month, enter the formula

�$B$7*B20

in cell B25 and copy it to the range C25:E25.

5 Production capacity. Because each worker can work 160 regular-time hours per month,
calculate the regular-time hours available in month 1 in cell B22 with the formula

�$B$6*B20

and copy it to the range C22:E22 for the other months. Then calculate the total hours avail-
able for production in cell B27 with the formula

�SUM(B22:B23)
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IHGFEDCBA
SureStep aggregate planning model

Input data Range names used:
Ini�al inventory of 63$E$:63$B$!ledoM=dnamed_detsaceroF005seohs
Ini�al number of 43$E$:43$B$!ledoM=noitcudorp_retfa_yrotnevnI001srekrow
Regular 52$E$:52$B$!ledoM=elbaliava_sruoh_robal_emitrevo_mumixaM061htnom/rekrow/sruoh
Maximum over�me 32$E$:32$B$!ledoM=desu_sruoh_robal_emitrevO02htnom/rekrow/sruoh
Hiring 23$E$:23$B$!ledoM=yticapac_noitcudorP006,1$rekrow/tsoc
Firing 03$E$:03$B$!ledoM=decudorp_seohS000,2$rekrow/tsoc
Regular 64$F$!ledoM=tsoc_latoT005,1$htnom/rekrow/segaw
Over�me wage 91$E$:91$B$!ledoM=derif_srekroW31$ruoh/etar
Labor hours/pair of 81$E$:81$B$!ledoM=derih_srekroW4seohs
Raw material cost/pair of 51$seohs
Holding cost/pair of shoes in inventory/month $3

Worker plan Month 1 Month 2 Month 3 Month 4
Workers from previous 053949001htnom
Workers hired 0 0 0 0
Workers 03416derif
Workers available a�er hiring and firing 94 93 50 50

Regular-�me hours 000800080884104051elbaliava
Over�me labor hours 00080desu

<= <= <= <=
Maximum over�me labor hours available 1880 1860 1000 1000

Total hours for 000800080694104051noitcudorp

Produc�on plan Month 1 Month 2 Month 3 Month 4
Shoes 0001000204730673decudorp

Produc�on 0002000204730673yticapac

Inventory a�er 0001000200050624noitcudorp

<= <= <= <=

>= >= >= >=
Forecasted 0001000200050003dnamed
Ending 0000621yrotnevni

Monetary outputs Month 1 Month 2 Month 3 Month 4 Totals
Hiring 0$0$0$0$0$tsoc
Firing 000,001$0$000,68$000,2$000,21$tsoc
Regular-�me 005,034$000,57$000,57$005,931$000,141$segaw
Over�me 040,1$0$0$040,1$0$segaw
Raw material 005,751$000,51$000,03$001,65$004,65$tsoc
Holding 087,3$0$0$0$087,3$tsoc

028,296$000,09$000,191$046,891$081,312$slatoT Objec�ve to minimize

Figure 14.27 Aggregate Planning Model

In Example 13.3 from
the previous chapter,
production capacities
were given inputs.
Now they are based 
on the size of the
workforce, which itself
is a decision variable.
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and copy it to the range C27:E27 for the other months. Finally, because it takes four hours
of labor to make a pair of shoes, calculate the production capacity in month 1 with the
formula

�B27/$B$12

in cell B32 and copy it to the range C32:E32.

6 Inventory each month. Calculate the inventory after production in month 1 (which
is available to meet month 1 demand) with the formula

�B4+B30

in cell B34. For any other month, the inventory after production is the previous month’s
ending inventory plus that month’s production, so enter the formula

�B37+C30

in cell C34 and copy it to the range D34:E34. Then calculate the month 1 ending inventory
in cell B37 with the formula

�B34-B36

and copy it to the range C37:E37.

7 Monthly costs. Calculate the various costs shown in rows 40 through 45 for month 1
by entering the formulas

�$B$8*B18

�$B$9*B19

�$B$10*B20

�$B$11*B23

�$B$13*B30

�$B$14*B37

in cells B40 through B45. Then copy the range B40:B45 to the range C40:E45 to calculate
these costs for the other months.

8 Totals. In row 46 and column F, use the SUM function to calculate cost totals, with
the value in F46 being the overall total cost to minimize.

Excel Tip Calculating Row and Column Sums Quickly
A common operation in spreadsheet models is to calculate row and column sums for a
rectangular range, as we did for costs in step 8. There is a very quick way to do this.
Highlight the row and column where the sums will go (remember to press the Ctrl key to
highlight nonadjacent ranges) and click on the summation (�) toolbar button. This enters
all of the sums automatically. It even calculates the “grand sum” in the corner (cell F46 in
the example) if you highlight this cell.

USING SOLVER

The Solver dialog box should be filled in as shown in Figure 14.28. Note that the changing
cells include four separate named ranges. To enter these in the dialog box, drag the four
ranges, keeping your finger on the Ctrl key. (Alternatively, you can drag a range, type a
comma, drag a second range, type another comma, and so on.) As usual, you should also
check the Non-Negative option and select the simplex method before optimizing.
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Note that there are integer constraints on the numbers hired and fired. You could also
constrain the numbers of shoes produced to be integers. However, integer constraints typi-
cally require longer solution times. Therefore, it is often best to omit such constraints,
especially when the optimal values are fairly large, such as the production quantities in this
model. If the solution then has noninteger values, you can usually round them to integers
for a solution that is at least close to the optimal integer solution.

Discussion of the Solution

The optimal solution is given in Figure 14.27. Observe that SureStep should never hire any
workers, and it should fire six workers in month 1, one worker in month 2, and 43 workers
in month 3. Eighty hours of overtime are used, but only in month 2. The company produces
over 3700 pairs of shoes during each of the first 2 months, 2000 pairs in month 3, and 1000
pairs in month 4. A total cost of $692,820 is incurred. The model will recommend over-
time hours only when regular-time production capacity is exhausted. This is because over-
time labor is more expensive.

Again, you would probably not force the number of pairs of shoes produced
each month to be an integer. It makes little difference whether the company produces
3760 or 3761 pairs of shoes during a month, and forcing each month’s shoe produc-
tion to be an integer can greatly increase the time Solver needs to find an optimal
solution. On the other hand, it is somewhat more important to ensure that the number of
workers hired and fired each month is an integer, given the relatively small numbers
of workers involved.
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Figure 14.28

Solver Dialog Box

for Aggregate

Planning Model

Because integer con-
straints make a model
more difficult to solve,
use them sparingly—
only when they are
really needed.
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Finally, if you want to ensure that Solver finds the optimal solution in a problem
where some or all of the changing cells must be integers, you should go into Options 
(in the Solver dialog box) and set the tolerance to zero. Otherwise, Solver might stop when
it finds a solution that is only close to optimal.

Sensitivity Analysis

There are many possible sensitivity analyses for this SureStep model. We illustrate one of
them with SolverTable, where we see how the overtime hours used and the total cost vary
with the overtime wage rate.9 The results appear in Figure 14.29. As you can see, when the
wage rate is really low, the company uses considerably more overtime hours, whereas
when it is sufficiently large, the company uses no overtime hours. It is not surprising that
the company uses much more overtime when the overtime rate is $7 or $9 per hour. The
regular-time wage rate is $9.375 per hour (� 1500/160). Of course, the company would
never pay less per hour for overtime than for regular time.
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9Solver’s sensitivity report isn’t even available here because of the integer constraints.

3

4
5
6
7
8
9

10
11
12

A B C D E F G
rate (cell $B$11) values along side, output cell(s) along top

To
ta

l_
co

st

$7 1620 1660 0 0 $684,755
$9 80 1760 0 0 $691,180

$11 0 80 0 0 $692,660
$13 0 80 0 0 $692,820
$15 0 80 0 0 $692,980
$17 0 80 0 0 $693,140
$19 0 0 0 0 $693,220
$21 0 0 0 0 $693,220

Figure 14.29

Sensitivity to

Overtime Wage Rate

The Rolling Planning Horizon Approach

In reality, an aggregate planning model is usually implemented via a rolling planning hori-
zon. To illustrate, we assume that SureStep works with a four-month planning horizon. To
implement the SureStep model in the rolling planning horizon context, we view the
demands as forecasts and solve a four-month model with these forecasts. However, the
company would implement only the month 1 production and work scheduling recommen-
dation. Thus (assuming that the numbers of workers hired and fired in a month must
be integers) the company would hire no workers, fire six workers, and produce 3760 pairs
of shoes with regular-time labor in month 1. Next, the company would observe month 1’s
actual demand. Suppose it is 2950. Then SureStep would begin month 2 with 1310 
(� 4260 � 2950) pairs of shoes and 94 workers. It would now enter 1310 in cell B4 and
94 in cell B5 (referring to Figure 14.27). Then it would replace the demands in the Demand
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range with the updated forecasts for the next four months. Finally, SureStep would rerun
Solver and use the production levels and hiring and firing recommendations in column B
as the production level and workforce policy for month 2.

Model with Backlogging Allowed

In many situations, backlogging of demand is allowed—that is, customer demand can be
met at a later date. We now show how to modify the SureStep model to include the option
of backlogging demand. We assume that at the end of each month a cost of $20 is incurred
for each unit of demand that remains unsatisfied at the end of the month. This is easily
modeled by allowing a month’s ending inventory to be negative. For example, if month 1’s
ending inventory is �10, a shortage cost of $200 (and no inventory holding cost) is
incurred. To ensure that SureStep produces any shoes at all, we constrain the ending
inventory in month 4 to be nonnegative. This implies that all demand is eventually satisfied
by the end of the four-month planning horizon. We now need to modify the monthly cost
calculations to incorporate costs due to backlogging.

There are actually several modeling approaches to this backlogging problem. We
show the most natural approach in Figure 14.30. (See the file Aggregate Planning 2.xlsx.)
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The term “backlogging”
means that the cus-
tomer’s demand is 
met at a later date.
The term “back-
ordering” means the
same thing.
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SureStep aggregate planning model with backlogging: a nonsmooth model Solver might not handle correctly

Input data Range names used:
Ini�al inventory of 73$E$!ledoM=4_dnamed_detsaceroF005seohs
Ini�al number of 53$E$!ledoM=4_noitcudorp_retfa_yrotnevnI001srekrow
Regular 62$E$:62$B$!ledoM=elbaliava_sruoh_robal_emitrevo_mumixaM061htnom/rekrow/sruoh
Maximum over�me 42$E$:42$B$!ledoM=desu_sruoh_robal_emitrevO02htnom/rekrow/sruoh
Hiring 33$E$:33$B$!ledoM=yticapac_noitcudorP006,1$rekrow/tsoc
Firing 13$E$:13$B$!ledoM=decudorp_seohS000,2$rekrow/tsoc
Regular 84$F$!ledoM=tsoc_latoT005,1$htnom/rekrow/segaw
Over�me wage 02$E$:02$B$!ledoM=derif_srekroW31$ruoh/etar
Labor hours/pair of 91$E$:91$B$!ledoM=derih_srekroW4seohs
Raw material cost/pair of 51$seohs
Holding cost/pair of shoes in inventory/month $3
Shortage cost/pair of 02$htnom/seohs

Worker plan Month 1 Month 2 Month 3 Month 4
Workers from previous 833949001htnom
Workers hired 0 0 0 0
Workers 05516derif
Workers available a�er hiring and 83833949gnirif

Regular-�me hours 080608060884104051elbaliava
Over�me labor hours used 0 0 0 0

<= <= <= <=
Maximum over�me labor hours available 1880 1860 760 760

Total hours for 080608060884104051noitcudorp

Produc�on plan Month 1 Month 2 Month 3 Month 4
Shoes 0051025102730673decudorp

<= <= <= <=
Produc�on 0251025102730673yticapac

Inventory a�er 0001005108940624noitcudorp
>=

Forecasted 0001000200050003dnamed
Ending 0621yrotnevni -20 -500 0

Monetary outputs Month 1 Month 2 Month 3 Month 4 Totals
Hiring 0$0$0$0$0$tsoc
Firing 000,421$0$000,011$000,2$000,21$tsoc
Regular-�me 005,493$000,75$000,75$005,931$000,141$segaw
Over�me 0$0$0$0$0$segaw
Raw material 005,751$005,22$008,22$008,55$004,65$tsoc
Holding 087,3$0$0$0$087,3$tsoc
Shortage 004,01$0$000,01$004$0$tsoc

081,096$005,97$008,991$007,791$081,312$slatoT Objec�ve to minimize

Note that we use IF func�ons in rows 46 and 47 to capture the
holding and shortage costs. These IF func�ons make the model
nonlinear (and "nonsmooth"), and Solver can't handle these
func�ons in a predictable manner. We just got lucky here! Try
changing the unit shortage cost in cell B15 to $40 and rerun
Solver. Then you won't be so lucky -- Solver will converge to a
solu�on that is pre�y far from op�mal.

Figure 14.30 Nonlinear Aggregate Planning Model Using IF Functions
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To begin, enter the per-unit monthly shortage cost in cell B15. (A new row was inserted for
this cost input.) Note in row 38 how the ending inventory in months 1 through 3 can be
positive (leftovers) or negative (shortages). You can account correctly for the resulting
costs with IF functions in rows 46 and 47. For holding costs, enter the formula

�IF(B38�0,$B$14*B38,0)

in cell B46 and copy it across. For shortage costs, enter the formula

�IF(B38�0,�$B$15*B38,0)

in cell B47 and copy it across. (The minus sign makes this a positive cost.)
Although these formulas accurately compute holding and shortage costs, the IF func-

tions make the objective cell a nonlinear function of the changing cells, and Solver’s GRG
nonlinear algorithm must be used, as indicated in Figure 14.31.10 (How do you know the
model is nonlinear? Although there is a mathematical reason, it is easier to try running Solver
with the simplex algorithm. Solver will then inform you that the model is nonlinear.)

We ran Solver with this setup from a variety of initial solutions in the changing cells,
and it always found the solution shown in Figure 14.30. It turns out that this is indeed the
optimal solution, but we were lucky. When certain functions, including IF, MIN, MAX,
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10GRG stands for generalized reduced gradient. This is a technical term for the mathematical algorithm used. The
other algorithm available in Solver (starting with Excel 2010) is the Evolutionary algorithm. It can handle IF
functions, but we will not discuss this algorithm here.

Figure 14.31

Solver Dialog Box

for the GRG

Nonlinear

Algorithm
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and ABS, are used to relate the objective cell to the changing cells, the resulting model
becomes not only nonlinear but nonsmooth. Essentially, nonsmooth functions can have
sharp edges or discontinuities. Solver’s GRG nonlinear algorithm can handle “smooth”
nonlinearities, as you will see in section 14.8, but it has trouble with nonsmooth functions.
Sometimes it gets lucky, as it did here, and other times it finds a nonoptimal solution that
is not even close to the optimal solution. For example, we changed the unit shortage cost
from $20 to $40 and reran Solver. Starting from a solution where all changing cells contain
zero, Solver stopped at a solution with total cost $726,360, even though the optimal solu-
tion has total cost $692,820. In other words, we weren’t so lucky this time.

The moral is that you should avoid these nonsmooth functions in optimization models
if at all possible. If you do use them, as we have done here, you should run Solver several
times, starting from different initial solutions. There is still no guarantee that you will get
the optimal solution, but you will see more evidence of how Solver is progressing.
(Alternatively, you can use Frontline Systems’s Evolutionary Solver, which became avail-
able in Excel’s Solver in Excel 2010.)

Solver Tip Nonsmooth Functions
There is nothing inherently wrong with using IF, MIN, MAX, ABS, and other nonsmooth
functions in spreadsheet optimization models. The problem is that Solver’s GRG nonlinear
algorithm cannot handle these functions in a predictable manner.

There are sometimes alternatives to using IF, MIN, MAX, and ABS functions that
make a model linear. Unfortunately, these alternatives are often far from intuitive, and we
will not cover them here. (If you are interested, we have included the “linearized” version
of the backlogging model in the file Aggregate Planning 3.xlsx.) ■
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FUNDAMENTAL INSIGHT

Nonsmooth Functions and Solver

Excel’s Solver, as well as most other commercial

optimization software packages, has trouble with non-

smooth nonlinear functions. These nonsmooth func-

tions typically have sharp edges or discontinuities that

make them difficult to handle in optimization models,

and (in Excel) they are typically implemented with

functions such as IF, MAX, MIN, ABS, and a few oth-

ers.There is nothing wrong with using such functions

to implement complex logic in Excel optimization

models. The problem is that Solver cannot handle

models with these functions predictably. This is not

really the fault of Solver. Such problems are inher-

ently difficult.

P R O B L E M S

Level A

30. Extend SureStep’s original (no backlogging) aggregate
planning model from four to six months. Try several
different values for demands in months 5 and 6, and
run Solver for each. Is your optimal solution for the
first four months the same as the one in the example?

31. The current solution to SureStep’s no-backlogging
aggregate planning model does quite a lot of firing.

Run a one-way SolverTable with the firing cost as the
input variable and the numbers fired as the outputs.
Let the firing cost increase from its current value to
double that value in increments of $400. Do high
firing costs eventually induce the company to fire
fewer workers?

32. SureStep is currently getting 160 regular-time hours
from each worker per month. This is actually
calculated from 8 hours per day times 20 days per
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month. For this, they are paid $9.375 per hour
(�1500/160). Suppose workers can change their
contract so that they have to work only 7.5 hours per
day regular time—everything above this becomes
overtime—and their regular-time wage rate increases
to $10 per hour. They will still work 20 days per
month. Does this change the optimal no-backlogging
solution?

33. Suppose SureStep could begin a machinery upgrade
and training program to increase its worker productiv-
ity. This program would result in the following values
of labor hours per pair of shoes over the next four
months: 4, 3.9, 3.8, and 3.8. How much would this
new program be worth to SureStep, at least for this
four-month planning horizon with no backlogging?
How might you evaluate the program’s worth beyond
the next four months?

Level B

34. In the current no-backlogging problem, SureStep
doesn’t hire any workers, and it uses almost no
overtime. This is evidently because of low demand.
Change the demands to 6000, 8000, 5000, and 3000,
and rerun Solver. Is there now any hiring and/or
overtime? With this new demand pattern, explore the
trade-off between hiring and overtime by running a
two-way SolverTable. As inputs, use the hiring cost
per worker and the maximum overtime hours allowed
per worker per month, varied over reasonable ranges.
As outputs, use the total number of workers hired

over the four months and the total number of
overtime hours used over the four months. Discuss
the results.

35. In the SureStep no-backlogging problem, change the
demands so that they become 6000, 8000, 5000, and
3000. Also, change the problem slightly so that newly
hired workers take six hours to produce a pair of shoes
during their first month of employment. After that,
they take only four hours per pair of shoes. Modify
the model appropriately, and use Solver to find the
optimal solution.

36. You saw that the “natural” way to model SureStep’s
backlogging problem, with IF functions, leads to a
nonsmooth model that Solver has difficulty handling.
There is another version of the problem that is also
difficult for Solver. Suppose SureStep wants to meet
all demands on time (no backlogging), but it wants
to keep its employment level as constant over time
as possible. To induce this, it charges a cost of $1000
each month on the absolute difference between the
beginning number of workers and the number after
hiring and firing—that is, the absolute difference
between the values in rows 17 and 20 of the original
spreadsheet model. Implement this extra cost in
the model in the “natural” way, using the ABS
function. Using demands of 6000, 8000, 5000, and
3000, see how well Solver does in solving this non-
smooth model. Try several initial solutions, and see
whether Solver gets the same optimal solution from
each of them.
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14.6 FINANCIAL MODELS

The majority of optimization examples described in management science textbooks are in the
area of operations: scheduling, blending, logistics, aggregate planning, and others. This is prob-
ably warranted, because many of the most successful management science applications in the
real world have been in these areas. However, optimization and other management science meth-
ods have also been applied successfully in a number of financial areas, and they deserve recog-
nition. In this section we begin the discussion with two typical applications of LP in finance. The
first involves investment strategy. The second involves pension fund management.

E X A M P L E 14.6 FINDING AN OPTIMAL INVESTMENT STRATEGY AT BARNEY-JONES

At the present time, the beginning of year 1, the Barney-Jones Investment Corporation
has $100,000 to invest for the next four years. There are five possible investments,

labeled A through E. The timing of cash outflows and cash inflows for these investments is
somewhat irregular. For example, to take part in investment A, cash must be invested at the
beginning of year 1, and for every dollar invested, there are returns of $0.50 and $1.00 at
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the beginnings of years 2 and 3. Information for the other investments follows, where all
returns are per dollar invested:

■ Investment B: Invest at the beginning of year 2, receive returns of $0.50 and $1.00 at
the beginnings of years 3 and 4

■ Investment C: Invest at the beginning of year 1, receive return of $1.20 at the
beginning of year 2

■ Investment D: Invest at the beginning of year 4, receive return of $1.90 at the
beginning of year 5

■ Investment E: Invest at the beginning of year 3, receive return of $1.50 at the
beginning of year 4

We assume that any amounts can be invested in these strategies and that the returns are the
same for each dollar invested. However, to create a diversified portfolio, Barney-Jones
wants to limit the amount put into any investment to $75,000. The company wants an
investment strategy that maximizes the amount of cash on hand at the beginning of year 5.
At the beginning of any year, it can invest only cash on hand, which includes returns from
previous investments. Any cash not invested in any year can be put in a short-term money
market account that earns 3% annually.

Objective To develop an LP spreadsheet model that relates investment decisions to total
ending cash, and to use Solver to find the strategy that maximizes ending cash and invests
no more than a given amount in any one investment.

WHERE DO THE NUMBERS COME FROM?

There is no mystery here. We assume that the terms of each investment are spelled out, so
that Barney-Jones knows exactly when money must be invested and what the amounts and
timing of returns will be. Of course, this would not be the case for many real-world invest-
ments, such as money put into the stock market, where considerable uncertainty is
involved. We consider one such example of investing with uncertainty when we study port-
folio optimization in section 14.8.

Solution

The variables and constraints for this investment model are listed in Table 14.9. On the
surface, this problem appears to be very straightforward. You must decide how much to
invest in the available investments at the beginning of each year, using only the cash
available. If you try modeling this problem without our help, however, we suspect that you
will have some difficulty. It took us a few tries to get a model that is easy to read and
generalizes to other similar investment problems. Note that the second constraint in the
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There are often
multiple equivalent
ways to state a
constraint.You can
choose the one that is
most natural for you.

Table 14.9 Variables and Constraints for Investment Model

Input variables Timing of investments and returns, initial cash, maximum
amount allowed in any investment, money market rate on cash

Decision variables (changing cells) Amounts to invest in investments
Objective cell Ending cash at the beginning of year 5
Other calculated variables Cash available at the beginning of years 2–4
Constraints Amount in any investment � Max investment amount 

Cash on hand after investing each year 	 0 
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table can be expressed in two ways. It can be expressed as shown, where the cash on hand
after investing is nonnegative, or it can be expressed as “cash invested in any year must be
less than or equal to cash on hand at the beginning of that year.” These are equivalent. The
one you choose is a matter of taste.

DEVELOPING THE SPREADSHEET MODEL

The spreadsheet model for this investment problem appears in Figure 14.32. (See the file
Investing.xlsx.) To set up this spreadsheet, proceed as follows.

14.6 Financial Models 859

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38

Investments with irregular of returns Range names used

Inputs
amount to

Maximum per
invest $100,000

investment $75,000
Interest rate on %3hsac

Cash outlays on investments (all incurred at beginning of year)
Investment

EDCBAraeY
00.0$00.0$00.1$00.0$00.1$1
00.0$00.0$00.0$00.1$00.0$2
00.1$00.0$00.0$00.0$00.0$3
00.0$00.1$00.0$00.0$00.0$4

Cash returns from investments (all incurred at beginning of year)
Investment

EDCBAraeY
00.0$00.0$00.0$00.0$00.0$1
00.0$00.0$02.1$00.0$05.0$2
00.0$00.0$00.0$05.0$00.1$3
05.1$00.0$00.0$00.1$00.0$4
00.0$09.1$00.0$00.0$00.0$5

Investment decisions
Dollars 000,57$000,57$417,53$000,57$682,46$detsevni

<= <= <= <= <=
Maximum per

Constraints on cash

Year Beginning cash
Returns from
investments Cash invested

Cash

0=>0$000,001$0$000,001$1
0=>0$000,57$000,57$0$2
0=>687,62$000,57$687,101$0$3
0=>980,041$000,57$005,781$985,72$4

005,241$292,441$5

Final cash $286,792 to maximize: final cash at beginning of year 5

A B C D E F G H I J

g =Model!$E$32:$E$35
Dollars_invested =Model!$B$26:$F$26
Final_cash =Model!$B$38
Maximum_per_investment =Model!$B$28:$F$28

investment $75,000 $75,000 $75,000 $75,000 $75,000

balance

Figure 14.32 Investment Model

1 Inputs and range names. As usual, enter the given inputs in the blue cells and name
the ranges indicated. Pay particular attention to the two shaded tables. This is probably the
first model you have encountered where model development is affected significantly by
the way you enter the inputs, specifically, the information about the investments. We
suggest separating cash outflows from cash inflows, as shown in the two ranges B11:F14
and B19:F23. The top table indicates when investments can be made, where $0.00 indi-
cates no possible investment, and $1.00 indicates a dollar of investment. The bottom table
then indicates the amounts and timing of returns per dollar invested.

2 Investment amounts. Enter any trial values in the Dollars_invested range. This
range contains the changing cells. Also put a link to the maximum investment amount per
investment by entering the formula

�$B$5

in cell B28 and copying it across.

Note how the two
input tables allow you
to create copyable
SUMPRODUCT
formulas for cash
outflows and inflows.
Careful spreadsheet
planning can often
greatly simplify the
necessary formulas.
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3 Cash balances and flows. The key to the model is the section in rows 32 through 36.
For each year, you need to calculate the beginning cash held from the previous year,
the returns from investments that are due in that year, the investments made in that year,
and cash balance after investments. Begin by entering the initial cash in cell B32 with
the formula

�B4

Moving across, calculate the return due in year 1 in cell C32 with the formula

�SUMPRODUCT(B19:F19,Dollars_invested)

Admittedly, no returns come due in year 1, but this formula can be copied down column C for
other years. Next, calculate the total amount invested in year 1 in cell D32 with the formula

�SUMPRODUCT(B11:F11,Dollars_invested)

Now find the cash balance after investing in year 1 in cell E32 with the formula

�B32�C32-D32

The only other required formula is the formula for the cash available at the beginning of
year 2. Because any cash not invested earns 3% interest, enter the formula

�E32*(1�$B$6)

in cell B33. This formula, along with those in cells C32, D32, and E32, can now be copied
down. (The zeros in column G are entered manually as a reminder of the nonnegativity
constraint on cash after investing.)

4 Ending cash. The ending cash at the beginning of year 5 is the sum of the amount in the
money market and any returns that come due in year 5. Calculate this sum with the formula

�SUM(B36:C36)

in cell B38. (Note: Here is the type of error to watch out for. We originally failed to
calculate the return in cell C36 and mistakenly used the beginning cash in cell B36 as the
objective cell. We realized our error when the optimal solution called for no money in
investment D, which is clearly an attractive investment. The moral is that you can often
catch errors by looking at the plausibility of the outputs.)

Review of the Model

Take a careful look at this model and how it has been set up. There are undoubtedly many
alternative ways to model this problem, but the attractive feature of this model is the way
the tables of inflows and outflows in rows 11 through 14 and 19 through 23 create copy-
able formulas for returns and investment amounts in columns C and D of rows 32 through
35. In fact, this same model setup, with only minor modifications, will work for any set of
investments, regardless of the timing of investments and their returns. This is a quality you
should strive for in your spreadsheet models: generalizability.

USING SOLVER

To find the optimal investment strategy, fill in the main Solver dialog box as shown in
Figure 14.33. Note that the explicit nonnegativity constraint in Figure 14.33 is necessary,
even though the Non-Negative option is checked. Again, this is because the Non-Negative
option covers only the changing cells. If you want other output cells to be nonnegative, you
must add such constraints explicitly.
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Always look at the
Solver solution for 
signs of implausibility.
This can often lead 
you to an error in 
your model.
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Discussion of the Results

The optimal solution appears in Figure 14.32. Let’s follow the cash. The company spends
all of its cash in year 1 on the two available investments, A and C ($64,286 in A, $35,714 in
C). A total of $75,000 in returns from these investments is available in year 2, and all of this
is invested in investment B. At the beginning of year 3, a total of $101,786 is available from
investment A and B returns, and $75,000 of this is invested in investment E. This leaves
$26,786 for the money market, which grows to $27,589 at the beginning of year 4. In
addition, returns totaling $187,500 from investments B and E come due in year 4. Of this
total cash of $215,089, $75,000 is invested in investment D, and the rest, $140,089, is put in
the money market. The return from investment D, $142,500, plus the money available from
the money market, $144,292, equals the final cash in the objective cell, $286,792.

Sensitivity Analysis

A close look at the optimal solution in Figure 14.32 indicates that Barney-Jones is penal-
izing itself by imposing a maximum of $75,000 per investment. This upper limit is forc-
ing the company to put cash into the money market fund, despite this fund’s low rate of
return. Therefore, a natural sensitivity analysis is to see how the optimal solution changes
as this maximum value changes. You can perform this sensitivity analysis with a one-way
SolverTable, shown in Figure 14.34.11 The maximum in cell B5 is the input cell, varied
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Figure 14.33

Solver Dialog Box

for Investment

Model

11Because Solver’s sensitivity reports do not help answer our specific sensitivity questions in this example or the
next example, we discuss only SolverTable results.
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from $75,000 to $225,000 in increments of $25,000, and the optimal changing cells and
objective cell are outputs. As you can see, the final cash (column G) grows steadily as
the maximum allowable investment amount increases. This is because the company can
take greater advantage of the attractive investments and put less in the money market
account.

You can go one step further with the two-way SolverTable in Figure 14.35. Now both the
maximum investment amount and the money market rate are inputs, and the maximum
amount ever put in the money market fund is the single output. Because this latter amount is
not calculated in the spreadsheet model, you need to calculate it with the formula
�MAX(Cash_after_investing) in an unused cell before using it as the output cell for
SolverTable. In every case, even with a large maximum investment amount and a low money
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$75,000 $64,286 $75,000 $35,714 $75,000 $75,000 $286,792
$100,000 $61,538 $76,923 $38,462 $100,000 $100,000 $320,731
$125,000 $100,000 $50,000 $0 $125,000 $125,000 $353,375
$150,000 $100,000 $50,000 $0 $150,000 $125,000 $375,125
$175,000 $100,000 $50,000 $0 $175,000 $125,000 $396,875
$200,000 $100,000 $50,000 $0 $200,000 $125,000 $418,625
$225,000 $100,000 $50,000 $0 $225,000 $125,000 $440,375

Figure 14.34

Sensitivity of

Optimal Solution 

to Maximum

Investment 

Amount

To perform sensitivity
on an output variable
not calculated 
explicitly in your
spreadsheet model,
calculate it in some
unused portion of the
spreadsheet before
running SolverTable.

3
A B C D E F G H I

Interest on cash (cell $B$6) values along side, Max per investment (cell $B$5) values along top, output cell in corner

4
5
6
7

Maximum_in_money_market $75,000 $100,000 $125,000 $150,000 $175,000 $200,000 $225,000
0.5% $139,420 $126,923 $112,500 $87,500 $62,500 $37,500 $12,500
1.0% $139,554 $126,923 $112,500 $87,500 $62,500 $37,500 $12,500
1.5% $139,688 $126,923 $112,500 $87,500 $62,500 $37,500 $12,500

$ $ $ $ $ $ $8
9

10
11
12
13

2.0% $139,821 $126,923 $112,500 $87,500 $62,500 $37,500 $12,500
2.5% $139,955 $126,923 $112,500 $87,500 $62,500 $37,500 $12,500
3.0% $140,089 $126,923 $112,500 $87,500 $62,500 $37,500 $12,500
3.5% $140,223 $126,923 $112,500 $87,500 $62,500 $37,500 $12,500
4.0% $140,357 $126,923 $112,500 $87,500 $62,500 $37,500 $12,500
4.5% $140,491 $126,923 $112,500 $87,500 $62,500 $37,500 $12,500

Figure 14.35 Sensitivity of Maximum in Money Market to Two Inputs
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market rate, the company puts some money into the money market account. The reason is
simple. Even when the maximum investment amount is $225,000, the company evidently
has more cash than this to invest at some point (probably at the beginning of year 4).
Therefore, it will have to put some of it in the money market. ■
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The following example illustrates a common situation where fixed payments are due
in the future and current funds must be allocated and invested so that their returns are
sufficient to make the payments. We place this in a pension fund context.

E X A M P L E 14.7 MANAGING A PENSION FUND AT ARMCO

James Judson is the financial manager in charge of the company pension fund at Armco
Incorporated. James knows that the fund must be sufficient to make the payments listed

in Table 14.10. Each payment must be made on the first day of each year. James is going to
finance these payments by purchasing bonds. It is currently January 1, 2010, and three
bonds are available for immediate purchase. The prices and coupons for the bonds are as
follows. (All coupon payments are received on January 1 and arrive in time to meet cash
demands for the date on which they arrive.)

■ Bond 1 costs $980 and yields a $60 coupon in the years 2011 through 2014 and a
$1060 payment on maturity in the year 2015.

■ Bond 2 costs $970 and yields a $65 coupon in the years 2011 through 2020 and a
$1065 payment on maturity in the year 2021.

■ Bond 3 costs $1050 and yields a $75 coupon in the years 2011 through 2023 and a
$1075 payment on maturity in the year 2024.

James must decide how much cash to allocate (from company coffers) to meet the initial
$11,000 payment and buy enough bonds to make future payments. He knows that any
excess cash on hand can earn an annual rate of 4% in a fixed-rate account. How should
he proceed?

Table 14.10 Payments for Pension Example

Year Payment Year Payment Year Payment

2010 $11,000 2015 $18,000 2020 $25,000
2011 $12,000 2016 $20,000 2021 $30,000
2012 $14,000 2017 $21,000 2022 $31,000
2013 $15,000 2018 $22,000 2023 $31,000
2014 $16,000 2019 $24,000 2024 $31,000 

Objective To develop an LP model that relates initial allocation of money and bond pur-
chases to future cash availabilities, and to minimize the initialize allocation of money
required to meet all future pension fund payments.

WHERE DO THE NUMBERS COME FROM?

As in the previous financial example, the inputs are fairly easy to obtain. A pension fund
has known liabilities that must be met in future years, and information on bonds and fixed-
rate accounts is widely available.
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Solution

The variables and constraints required for this pension fund model are listed in
Table 14.11. When modeling this problem, there is a new twist that involves the money
James must allocate now for his funding problem. It is clear that he must decide how many
bonds of each type to purchase now (note that no bonds are purchased in the future), but he
must also decide how much money to allocate from company coffers. This allocated
money has to cover the initial pension payment this year and the bond purchases. In addi-
tion, James wants to find the minimum allocation that will suffice. Therefore, this initial
allocation serves two roles in the model. It is a decision variable and it is the objective to
minimize. In terms of spreadsheet modeling, it is perfectly acceptable to make the
objective cell one of the changing cells, and this is done here. You will not see this in many
models—because the objective typically involves a linear combination of several decision
variables—but it is occasionally the most natural way to proceed.
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Although it doesn’t
occur very often, it is
perfectly acceptable 
to make the objective
cell one of the
changing cells. In fact,
this is the key to the
current model.

Table 14.11 Variables and Constraints for Pension Model

Input variables Pension payments, information on bonds, fixed interest rate on cash
Decision variables Money to allocate now, numbers of bonds to purchase now
(changing cells)
Object cell Money to allocate in now (minimize)
Other calculated variables Cash available to meet pension payments each year
Constraints Cash available for payments 	 Payment amounts 

FUNDAMENTAL INSIGHT

The Objective as a Changing Cell

In all optimization models, the objective cell has to be

a function of the changing cells, that is, the objective

value should change as values in the changing cells

change. It is perfectly consistent with this require-

ment to have the objective cell be one of the changing

cells. This doesn’t occur in very many optimization

models, but it is sometimes useful, even necessary.

DEVELOPING THE SPREADSHEET MODEL

The completed spreadsheet model is shown in Figure 14.36. (See the file Pension Fund
Management.xlsx.) You can create it with the following steps.

1 Inputs and range names. Enter the given data and name the ranges as indicated.
Note that the bond costs in the range B5:B7 have been entered as positive quantities.
Some financial analysts might prefer that they be entered as negative numbers, indicating
outflows. It doesn’t really matter, however, as long as you are careful with the Excel
formulas later on.

2 Money allocated and bonds purchased. As discussed previously, the money
allocated in the current year and the numbers of bonds purchased now are both decision
variables, so enter any values for these in the Money_allocated and Bonds_purchased
ranges. Note that the color-coding convention for the Money_allocated cell have to be
modified. Because it is both a changing cell and the objective cell, we colored it red but
added a note to emphasize that it is the objective to minimize.

Always document your
spreadsheet conven-
tions as clearly as 
possible.
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3 Cash available to make payments. In the current year, the only cash available is the
money initially allocated minus cash used to purchase bonds. Calculate this quantity in cell
B20 with the formula

�Money_allocated-SUMPRODUCT(Bonds_purchased,B5:B7)

For all other years, the cash available comes from two sources: excess cash invested at the
fixed interest rate the year before and payments from bonds. Calculate this quantity for
2011 in cell C20 with the formula

�(B20-B22)*(1�$B$9)�SUMPRODUCT(Bonds_purchased,C5:C7)

and copy it across row 20 for the other years.
As you can see, this model is fairly straightforward to develop once you understand

the role of the amount allocated in cell B16. However, we have often given this problem as
an assignment to our students, and many fail to deal correctly with the amount allocated.
(They usually forget to make it a changing cell.) So make sure you understand what we
have done, and why we have done it this way.

USING SOLVER

The main Solver dialog box should be filled out as shown in Figure 14.37. Once again, notice
that the Money_allocated cell is both the objective cell and one of the changing cells.

Discussion of the Solution

The optimal solution appears in Figure 14.36. You might argue that the numbers of bonds
purchased should be constrained to integer values. We tried this and the optimal solution
changed very little: The optimal numbers of bonds to purchase changed to 74, 79, and 27,
and the optimal money to allocate increased to $197,887. With this integer solution, shown
in Figure 14.38, James sets aside $197,887 initially. Any less than this would not work—
he couldn’t make enough from bonds to meet future pension payments. All but $20,387 of
this (see cell B20) is spent on bonds, and of the $20,387, $11,000 is used to make the

14.6 Financial Models 865

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M N O P
Pension fund management

Costs (now) and income (in other years) from bonds
420232022202120202029102810271026102510241023102210211020102raeY

Bond 060,1$06$06$06$06$089$1
Bond 560,1$56$56$56$56$56$56$56$56$56$56$079$2
Bond 3 $1,050 $75 $75 $75 $75 $75 $75 $75 $75 $75 $75 $75 $75 $75 $1,075

Interest rate 4%

Number of bonds (allowing frac onal values) to purchase now
Bond 96.371
Bond 12.772
Bond 48.823

Money allocated $197,768 Objec ve to minimize, also a changing cell

Constraints to meet payments
420232022202120202029102810271026102510241023102210211020102raeY

Amount available $20,376 $21,354 $21,332 $19,228 $16,000 $85,298 $77,171 $66,639 $54,646 $41,133 $25,000 $84,390 $58,728 $31,000 $31,000
>= >= >= >= >= >= >= >= >= >= >= >= >= >= >=

Amount required $11,000 $12,000 $14,000 $15,000 $16,000 $18,000 $20,000 $21,000 $22,000 $24,000 $25,000 $30,000 $31,000 $31,000 $31,000

Range names used:
Amount_available =Model!$B$20:$P$20
Amount_required =Model!$B$22:$P$22
Bonds_purchased =Model!$B$12:$B$14
Money_allocated =Model!$B$16

The value in cell B16 is the money allocated to make the
current payment and buy bonds now. It is both a changing
cell and the target cell to minimize.

Figure 14.36 Pension Fund Management Model
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current pension payment. After this, the amounts in row 20, which are always sufficient to
make the payments in row 22, are composed of returns from bonds and cash, with interest,
from the previous year. Even more so than in previous examples, there is no way to guess
this optimal solution. The timing of bond returns and the irregular pension payments make
a spreadsheet optimization model absolute necessary.
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Figure 14.37

Solver Dialog Box

for Pension Fund
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Pension fund management

Costs (now) and income (in other years) from bonds
420232022202120202029102810271026102510241023102210211020102raeY

Bond 600,1$06$06$06$06$089$1
Bond 560,1$56$56$56$56$56$56$56$56$56$56$079$2
Bond 3 $1,050

Interest rate 4%

Number of bonds (allowing frac�onal values) to purchase no
Bond 00.471
Bond 00.972
Bond 00.723

Money allocated $197,88 Objec�ve to minimize, also a changing cell

Constraints to meet payments
420232022202120202029102810271026102510241023102210211020102raeY

Amount available $20,38 $21,363 $21,33 $19,23 $16,00 $85,60 $77,46 $66,923 $54,91 $41,39 $25,252 $86,422 $60,70 $32,91 $31,01
>= >= >= >= >= >= >= >= >= >= >= >= >= >= >=

Amount required $11,00 $12,00 $14,00 $15,00 $16,00 $18,00 $20,00 $21,00 $22,00 $24,00 $25,00 $30,00 $31,00 $31,00 $31,00

Figure 14.38 Optimal Integer Solution for Pension Fund Model

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sensitivity Analysis

Because the bond information and pension payments are evidently fixed, there is only one
obvious direction for sensitivity analysis: on the fixed interest rate in cell B9. We tried this,
allowing this rate to vary from 2% to 6% in increments of 0.5% and keeping track of the
optimal changing cells, including the objective cell. The results appear in Figure 14.39
(without the integer constraints). They indicate that as the interest rate increases, James can
get by with fewer bonds of types 1 and 2, and he can allocate less money for the problem.
The reason is that he is making more interest on excess cash.
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Constraints always
have the potential to
penalize the objective
to some extent.
SolverTable is a 
perfect tool for finding
the magnitude of 
this penalty.
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2.0% 77.12 78.71 28.84 $202,010
2.4% 76.41 78.40 28.84 $201,145
2.8% 75.72 78.10 28.84 $200,288
3.2% 75.03 77.80 28.84 $199,439
3.6% 74.36 77.50 28.84 $198,600
4.0% 73.69 77.21 28.84 $197,768
4.4% 73.04 76.92 28.84 $196,946
4.8% 72.40 76.63 28.84 $196,131
5.2% 71.77 76.34 28.84 $195,325
5.6% 71.15 76.06 28.84 $194,527
6.0% 70.54 75.78 28.84 $193,737

Figure 14.39

Sensitivity to Fixed

Interest Rate

■

P R O B L E M S

Level A

37. Modify the Barney-Jones investment problem so that
there is a minimum amount that must be put into
any investment, although this minimum can vary
by investment. For example, the minimum amount
for investment A might be $0, whereas the minimum
amount for investment D might be $50,000. These
minimum amounts should be inputs; you can make
up any values you like. Run Solver on your modified
model.

38. In the Barney-Jones investment problem, increase
the maximum amount allowed in any investment to
$150,000. Then run a one-way sensitivity analysis to
the money market rate on cash. Capture one output

variable: the maximum amount of cash ever put in the
money market account. You can choose any
reasonable range for varying the money market rate.

39. We claimed that our model for Barney-Jones is
generalizable. Try generalizing it to the case where
there are two more potential investments, F and G.
Investment F requires a cash outlay in year 2 and
returns $0.50 in each of the next four years.
Investment G requires a cash outlay in year 3 and
returns $0.75 in each of years 5, 6, and 7. Modify the
model as necessary, making the objective the final
cash after year 7.

40. In our Barney-Jones spreadsheet model, we ran
investments across columns and years down rows.
Many financial analysts prefer the opposite. Modify

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14.7 INTEGER PROGRAMMING MODELS

In this section you will learn how to model some problems by using 0–1 variables (and
possibly other integer variables) as changing cells. A 0–1 variable, or binary variable, is
a variable that must equal 0 or 1. Usually a 0–1 variable corresponds to an activity that is
or is not undertaken. If the 0–1 variable corresponding to the activity equals 0, the activity
is not undertaken; if it equals 1, the activity is undertaken.

Optimization models in which some or all of the variables must be integers are known
as integer programming (IP) models. You have already seen examples of integer

868 Chapter 14 Optimization Models

the spreadsheet model so that years go across
columns and investments go down rows. Run Solver
to ensure that your modified model is correct. (We
suggest three possible ways to do this, and you can
experiment to see which you prefer. First, you could
start over on a blank worksheet. Second, you could
use the Edit/Copy and then Edit/Paste Special with
the Transpose option. Third, you could use Excel’s
TRANSPOSE function.)

41. In the pension fund problem, suppose there is a fourth
bond, bond 4. Its unit cost in 2010 is $1020, it returns
coupons of $70 in years 2011 through 2016 and a
payment of $1070 in 2017. Modify the model to
incorporate this extra bond, and reoptimize. Does the
solution change—that is, should James purchase any
of bond 4?

42. In the pension fund problem, suppose there is an upper
limit of 60 on the number of bonds of any particular
type that can be purchased. Modify the model to
incorporate this extra constraint and then optimize.
How much more money does James need to allocate
initially?

43. In the pension fund problem, suppose James has
been asked to see how the optimal solution will
change if the required payments in years 2017
through 2024 all increase by the same percentage,
where this percentage could be anywhere from 5%
to 25%. Use an appropriate one-way SolverTable to
help him out, and write a memo describing the
results.

44. Our pension fund model is streamlined, perhaps too
much. It does all of the calculations concerning cash
flows in row 20. James decides he would like to break
these out into several rows of calculations: Beginning
cash (for 2010, this is the amount allocated; for other
years, it is the unused cash, plus interest, from the
previous year), Amount spent on bonds (positive in
2010 only), Amount received from bonds (positive for
years 2011 through 2024 only), Cash available for

making pension fund payments, and, below the
Amount required row, Cash left over (amount invested
in the fixed interest rate). Modify the model by
inserting these rows, enter the appropriate formulas,
and run Solver. You should obtain the same result, but
you get more detailed information.

Level B

45. Suppose the investments in the Barney-Jones problem
sometimes require cash outlays in more than one year.
For example, a $1 investment in investment B might
require $0.25 to be spent in year 1 and $0.75 to be
spent in year 2. Does the current model easily
accommodate such investments? Try it with some cash
outlay data you can make up, run Solver, and interpret
your results.

46. In the pension fund problem, you know that if the
amount of money allocated initially is less than the
amount found by Solver, James will not be able to
meet all of the pension fund payments. Use the
current model to demonstrate that this is true. To do
so, enter a value less than the optimal value in cell
B16. Then run Solver, but remove the Money_allocated
cell as a changing cell and as the objective cell.
(If there is no objective cell, Solver simply tries to
find a solution that satisfies all of the constraints.)
What do you find?

47. Continuing the previous problem in a slightly different
direction, continue to use the Money_allocated cell as
a changing cell, but add a constraint that it must be
less than or equal to any value, such as $195,000, that
is less than its current optimal value. With this
constraint, James will again not be able to meet all of
the pension fund payments. Create a new objective
cell to minimize the total amount of payments not met.
The easiest way to do this is with IF functions.
Unfortunately, this makes the model nonsmooth, and
Solver might have trouble finding the optimal solution.
Try it and see.
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constraints in the discussion of scheduling workers and aggregate planning. This section
illustrates some of the tricks of the trade that are needed to formulate IP models of complex
situations. You should be aware that Solver typically has a much harder time solving an IP
problem than an LP problem. In fact, Solver is unable to solve some IP problems, even
when they have an optimal solution. The reason is that these problems are inherently diffi-
cult, no matter what software package is used. However, as you will see in this section,
your ability to model complex problems increases tremendously when you are able to use
IP, particularly with 0–1 variables.

14.7.1 Capital Budgeting Models

Perhaps the simplest IP model is the following capital budgeting example. It perfectly
illustrates the go/no-go decisions inherent in many IP models.

FUNDAMENTAL INSIGHT

Difficulty of Integer Programming Models

You might suspect that IP models would be easier to

solve than LP models.After all, there are only a finite

number of feasible integer solutions in an IP model,

whereas there are infinitely many feasible (integer

and noninteger) solutions in an LP model. However,

exactly the opposite is true. As stated previously, IP

models are much more difficult than LP models.All IP

algorithms try to perform an efficient search through

the typically huge number of feasible integer solu-

tions. General-purpose algorithms such as branch and

bound can be very effective for modest-size prob-

lems, but they can fail (or require extremely long

computing times) on the large problems often faced

in real applications. In such cases, analysts must

develop special-purpose optimization algorithms, or

perhaps even heuristics, to find “good,” but not

necessarily optimal, solutions.

E X A M P L E 14.8 SELECTING INVESTMENTS AT TATHAM

The Tatham Company is considering seven investments. The cash required for each
investment and the net present value (NPV) each investment adds to the firm are listed

in Table 14.12. The cash available for investment is $15,000. Tatham wants to find the
investment policy that maximizes its NPV. The crucial assumption here is that if Tatham
wishes to take part in any of these investments, it must go all the way. It cannot, for
example, go halfway in investment 1 by investing $2500 and realizing an NPV of $8000.
In fact, if partial investments were allowed, LP could be used; IP wouldn’t be necessary.

Table 14.12 Data for Capital Budgeting Example

Investment Cash Required NPV

1 $5000 $16,000
2 $2500 $8000
3 $3500 $10,000
4 $6000 $19,500
5 $7000 $22,000
6 $4500 $12,000
7 $3,000 $7,500
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Objective To use a binary IP model to find the set of investments that stays within bud-
get and maximizes total NPV.

WHERE DO THE NUMBERS COME FROM?

The initial required cash and the available budget are easy to obtain. It is undoubtedly
harder to obtain the NPV for each investment. This requires a time sequence of anticipated
cash inflows from the investments and a discount factor. Simulation might even be used to
estimate these NPVs. In any case, this is exactly what many financial analysts do: estimate
the NPVs for potential investments.

Solution

The variables and constraints required for this model are listed in Table 14.13. The most
important part is that the decision variables must be binary, where a 1 means an investment
is undertaken and a 0 means it is not. These variables cannot have fractional values such as
0.5, because partial investments are not allowed—the company has to go all the way or not
at all. Note that the binary restriction is specified in the second row, not the last row. This
is done throughout the chapter. However, when you set up the Solver dialog box, you need
to add explicit binary constraints in the constraints section.

DEVELOPING THE SPREADSHEET MODEL

To form the spreadsheet model, which is shown in Figure 14.40, proceed as follows. (See
the file Capital Budgeting 1.xlsx.)

1 Inputs. Enter the initial cash requirements, the NPVs, and the budget in the input cells.

2 0–1 values for investments. Enter any trial 0–1 values for the investments in the
Investment_levels range. (Actually, you can even enter fractional values such as 0.5 in
these cells. The Solver constraints will eventually force them to be 0 or 1.)

3 Cash invested. Calculate the total cash invested in cell B14 with the formula

�SUMPRODUCT(B5:H5,Investment_levels)

Note that this formula sums the costs only for those investments with binary variables equal
to 1. To see this, think how the SUMPRODUCT function works when one of its ranges is a
range of 0s and 1s. It effectively sums the cells in the other range corresponding to the 1s.

4 NPV contribution. Calculate the NPV contributed by the investments in cell B17
with the formula

�SUMPRODUCT(B6:H6,Investment_levels)

Again, this sums only the NPVs of the investments with binary variables equal to 1.
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A SUMPRODUCT
formula, where one 
of the ranges consists
of 0s and 1s, really 
just sums the values 
in the other range 
that “match up” with
the 1s.

Table 14.13 Variables and Constraints for Capital Budgeting Model

Input variables Initial cash required for investments, NPVs from 
investments, budget

Decision variables (changing cells) Whether to invest (binary variables)
Objective cell Total NPV
Other calculated variables Total initial cash invested
Constraints Total initial cash invested Budget…
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USING SOLVER

The Solver dialog box appears in Figure 14.41. The goal is to maximize the total NPV,
subject to staying within the budget. However, the changing cells must be constrained to
be binary. Fortunately, Solver makes this simple, as shown in the dialog box in Figure
14.42. You add a constraint with Investments in the left box and choose the “bin” option
in the middle box. The “binary” in the right box is then added automatically. Note that if
all changing cells are binary, you do not need to check Solver’s Non-Negative option
(because 0 and 1 are certainly nonnegative), but you should still choose the simplex
algorithm.

Discussion of the Solution

The optimal solution in Figure 14.40 indicates that Tatham can obtain a maximum NPV of
$46,000 by selecting investments 1, 2, and 5. These three investments consume only
$14,500 of the available budget, with $500 left over. However, this $500 is not enough—
because of the “investing all the way” requirement—to invest in any of the remaining
investments.

If Tatham’s investments are ranked on the basis of NPV per dollar invested (see row 7
of Figure 14.40), the ranking from best to worst is 4, 1, 2, 5, 3, 6, 7. Using your economic
intuition, you might expect the investments to be chosen in this order—until the budget
runs out. However, the optimal solution does not do this. It selects the second-, third-, and
fourth-best investments, but it omits the best one. To understand why it does this, imagine
investing in the order from best to worst, according to row 7, until the budget allows no
more. By the time you have invested in investments 4, 1, and 2, you will have consumed
$13,500 of the budget, and the remainder, $1500, is not sufficient to invest in any of the
rest. This strategy provides an NPV of only $43,500. A smarter strategy, the optimal solu-
tion from Solver, gains you an extra $2500 in NPV.
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A B C D E F G H
Tatham capital budge�ng model

Range names used:

Input data on poten�al investments
321Investment 4 5 6 7

Amount_invested =Model!$B$14
Budget =Model!$D$14
Investment_levels =Model!$B$10:$H$10

Investment cost

1$B$!ledoM=Total_NPV

NPV
NPV per investment dollar

Decisions: whether to invest
Investment levels

Budget constraints
BudgetAmount invested

$14,500 <=

Objec�ve to maximize
Total NPV

$2,500 $3,500$5,000
$16,000

3.20 3.20 2.86 3.25 3.14 2.67 2.50
$8,000 $10,000

$6,500
$19,500

$7,000
$22,000

$4,500
$12,000

$3,000
$7,500

1 1 0 0 1 0 0

$15,000

$46,000

Figure 14.40 Capital Budgeting Model

Solver makes it easy 
to specify binary
constraints, just by
clicking on the “bin”
option.
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Sensitivity Analysis

SolverTable can be used on models with binary variables exactly as in previous models.
For example, to see how the total NPV varies as the budget increases, select the Budget
cell as the single input cell, allow it to vary from $15,000 to $25,000 in increments of
$1000, and designate the binary variables, the amount of the budget used, and the total
NPV as outputs. The results are given in Figure 14.43. Clearly, Tatham can achieve a larger
NPV with a larger budget, but as the numbers and the chart show, each extra $1000 of bud-
get does not have the same effect on total NPV. The first $1000 increase to the budget adds
$3500 to total NPV, the next two $1000 increases add $4000 each, the next two $1000
increases add $2000 each, and so on. Note also how the selected investments vary quite a
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Figure 14.41

Solver Dialog Box

for Capital

Budgeting Model

Figure 14.42

Specifying a Binary

Constraint
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lot as the budget increases. This somewhat strange behavior is due to the “lumpiness” of
the inputs and the all-or-nothing nature of the problem.
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Effect of Solver Tolerance Setting

To illustrate the effect of the Solver Tolerance setting, compare the SolverTable results in
Figure 14.44 with those in Figure 14.43. Each is for the Tatham capital budgeting model,
but Figure 14.44 uses Solver’s default tolerance of 5%, whereas Figure 14.43 uses a toler-
ance of 0%. The three shaded cells in Figure 14.44 indicate lower total NPVs than the cor-
responding cells in Figure 14.43. In these three cases, Solver stopped short of finding the
true optimal solutions because it found solutions within the 5% tolerance and then quit.
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$15,000 1 1 0 0 1 0 0 $14,500 $46,000
$16,000 0 1 0 1 1 0 0 $15,500 $49,500 $3,500
$17,000 1 1 1 1 0 0 0 $17,000 $53,500 $4,000
$18,000 1 0 0 1 1 0 0 $18,000 $57,500 $4,000
$19,000 0 1 1 1 1 0 0 $19,000 $59,500 $2,000
$20,000 0 1 0 1 1 1 0 $20,000 $61,500 $2,000
$21,000 1 1 0 1 1 0 0 $20,500 $65,500 $4,000
$22,000 1 0 1 1 1 0 0 $21,500 $67,500 $2,000
$23,000 1 0 0 1 1 1 0 $22,500 $69,500 $2,000
$24,000 1 1 1 1 1 0 0 $24,000 $75,500 $6,000
$25,000 1 1 0 1 1 1 0 $25,000 $77,500 $2,000

Figure 14.43 Sensitivity to Budget
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$18,000 1 0 0 1 1 0 0 $18,000 $57,500
$19,000 0 1 1 1 1 0 0 $19,000 $59,500
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When the Tolerance
setting is 5% instead 
of 0%, Solver’s solution
might not be optimal,
but it will be close.

Figure 14.44

Results with

Tolerance at 5%
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FUNDAMENTAL INSIGHT

Recognizing the Optimal Integer
Solution

IP algorithms such as brand and bound often find a

very good integer solution very quickly. So why do

they sometimes run so long? This is due to the implicit

enumeration aspect of the algorithms.They have diffi-

culty ruling out large numbers of potential solutions

until they have searched all regions of the solution

space. In other words, they have difficulty recognizing

that they might have found the optimal solution

because there are many potential solutions they

haven’t yet explored.When you run Solver on a rea-

sonably large IP model, watch the status bar. Often a

very good incumbent solution, the best solution found

so far, is found within seconds, but then Solver spins

its wheels for minutes or even hours trying to verify

that this solution is optimal. This is why the default

tolerance setting in Solver is 5%, not 0%.

1. The following modifications of the capital budgeting example can be handled fairly
easily. You are asked to explore similar modifications in the problems.

■ Suppose that at most two projects can be selected. In this case you can add a con-
straint that the sum of the binary variables for the investments is less than or equal to
2. This constraint is satisfied if 0, 1, or 2 investments are chosen, but it is violated if 3
or more investments are chosen.

■ Suppose that if investment 2 is selected, then investment 1 must also be selected. In
this case you can add a constraint saying that the binary variable for investment 1 is
greater than or equal to the binary variable for investment 2. This constraint rules out
the one possibility that is not allowed—where investment 2 is selected but investment
1 is not.

■ Suppose that either investment 1 or investment 3 (or both) must be selected. In this
case you can add a constraint that the sum of the binary variables for investments 1
and 3 must be greater than or equal to 1. This rules out the one possibility that is not
allowed—where both of these binary variables are 0, so that neither investment is
selected.

2. Capital budgeting models with multiple periods can also be handled. Figure 14.45
shows one possibility. (See the Capital Budgeting 2.xlsx file.) The costs in rows 5
and 6 are both incurred if any given investment is selected. Now there are two bud-
get constraints, one in each year, but otherwise the model is exactly as before. Note
that some investments could have a cost of 0 in year 1 and a positive cost in year 2.
This would mean that these investments are undertaken in year 2 rather than year
1. Also, it would be easy to modify the model to incorporate costs in years 3, 4,
and so on.

3. If Tatham could choose a fractional amount of an investment, then you could maxi-
mize its NPV by deleting the binary constraint. The optimal solution to the resulting
LP model has a total NPV of $48,714. All of investments 1, 2, and 4, and 0.214 of
investment 5 are chosen. Note that there is no way to round the changing cell values
from this LP solution to obtain the optimal IP solution. Sometimes the solution to an
IP model without the integer constraints bears little resemblance to the optimal IP
solution.

MODELING ISSUES

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4. Any IP involving binary variables with only one constraint is called a knapsack prob-
lem. Think of the problem faced by a hiker going on an overnight hike. For example,
imagine that the hiker’s knapsack can hold only 34 pounds, and she must choose
which of several available items to take on the hike. The benefit derived from each
item is analogous to the NPV of each project, and the weight of each item is analo-
gous to the cash required by each investment. The single constraint is analogous to
the budget constraint—that is, only 34 pounds can fit in the knapsack. In a knapsack
problem, the goal is to get the most value in the knapsack without overloading it. ■
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Amount_invested =Model!$B$14:$B$15
Budget =Model!$D$14:$D$15
Investment_levels =Model!$B$10:$H$10

Year 1 cost

81$B$!ledoM=Total_NPV

Year 2 cost
NPV

Decisions: whether to invest
Investment levels

Budget constraints
d BudgetAmount investe

$14,000 <=
$3,500 <=

Objec�ve to maximize
Total NPV

$2,500 $3,500$5,000
$2,000

$16,000
$1,500
$8,000

$2,000
$10,000

$6,500
$0

$20,000

$7,000
$500

$22,000

$4,500
$1,500

$12,000

$3,000
$0

$8,000

1 1 0 1 0 0 0

$14,000
$4,500

$44,000

Figure 14.45 A Two-Period Capital Budgeting Model

14.7.2 Fixed-Cost Models

In many situations a fixed cost is incurred if an activity is undertaken at any positive level.
This cost is independent of the level of the activity and is known as a fixed cost (or fixed
charge). Here are three examples of fixed costs:

■ Construction of a warehouse incurs a fixed cost that is the same whether the
warehouse is used at partial or full capacity.

■ A cash withdrawal from a bank incurs a fixed cost, independent of the size of the
withdrawal, due to the time spent at the bank.

■ A machine that is used to make several products must be set up for the production of
each product. Regardless of the number of units of a product the company produces,
the same fixed cost (lost production due to the setup time) is incurred.

In these examples a fixed cost is incurred if an activity is undertaken at any positive level,
and zero fixed cost is incurred if the activity is not undertaken at all. Although it might not
be obvious, this feature makes the problem inherently nonlinear, which means that a
straightforward application of LP is not possible. However, the following example illus-
trates how a clever use of binary variables results in a linear model.
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Objective To develop a linear model with binary variables that can be used to maximize
the company’s profit, correctly accounting for fixed costs and staying within resource
availabilities.

WHERE DO THE NUMBERS COME FROM?

Except for the fixed costs, this is the same basic problem as the product mix problem
(Examples 13.1 and 13.2) in Chapter 13. Therefore, the same discussion there about input
variables applies here. As for the fixed costs, they are the given rental rates for the machinery.

Solution

The variables and constraints required for this model are listed in Table 14.15. Note that
the cost of producing x shirts during a week is 0 if x � 0, but it is 1500 � 20x if x � 0. This
cost structure violates the proportionality assumption (discussed in the previous chapter)
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FUNDAMENTAL INSIGHT

Binary Variables for Modeling

Binary variables are often used to transform a non-

linear model into a linear (integer) model. For exam-

ple, a fixed cost is not a linear function of the level of

some activity; it is either incurred or it isn’t incurred.

This type of all-or-nothing behavior is difficult for

nonlinear algorithms to handle. However, this behav-

ior can often be handled easily when binary variables

are used to make the model linear. Still, large models

with many binary variables can be difficult to solve.

One approach is to solve the model without integer

constraints and then round fractional values to the

nearest integer (0 or 1). Unfortunately, this approach

is typically not very good because the rounded solu-

tion is often infeasible. Even if it is feasible, its objec-

tive value can be considerably worse than the optimal

objective value.

E X A M P L E 14.9 TEXTILE MANUFACTURING AT GREAT THREADS

The Great Threads Company is capable of manufacturing shirts, shorts, pants, skirts,
and jackets. Each type of clothing requires Great Threads to acquire the appropriate

type of machinery. The machinery needed to manufacture each type of clothing must be
rented at the weekly rates shown in Table 14.14. This table also lists the amounts of cloth
and labor required per unit of clothing, as well as the sales price and the unit variable cost
for each type of clothing. There are 4000 labor hours and 4500 square yards (sq yd) of
cloth available in a given week. The company wants to find a solution that maximizes its
weekly profit.

Table 14.14 Data for Great Threads Example

Rental Cost Labor Hours Cloth (sq yd) Sales Price Unit Variable Cost

Shirts $1500 2.0 3.0 $35 $20
Shorts $1200 1.0 2.5 $40 $10
Pants $1600 6.0 4.0 $65 $25
Skirts $1500 4.0 4.5 $70 $30
Jackets $1600 8.0 5.5 $110 $35
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that is needed for a linear model. If proportionality were satisfied, the cost of making, say,
10 shirts would be double the cost of making five shirts. However, because of the fixed
cost, the total cost of making five shirts is $1600, and the cost of making 10 shirts is only
$1700. This violation of proportionality requires you to resort to binary variables to obtain
a linear model. Specifically, these binary variables model the fixed costs correctly, as
explained in detail here.
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DEVELOPING THE SPREADSHEET MODEL

The spreadsheet model, shown in Figure 14.46, can now be developed as follows. (See the
file Fixed Cost Manufacturing.xlsx.)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

KJIHGFEDCBA
Great Threads fixed cost clothing model Range names used:

Logical_upper_limit =Model!$B$18:$F$18
Input data on products Produce_any? =Model!$B$14:$F$14

Shirts Shorts Pants Skirts Jackets Profit =Model!$B$29
Labor 32$D$:22$D$!ledoM=elbaliava_ecruoseR84612tinu/sruoh
Cloth (sq. 32$B$:22$B$!ledoM=desu_ecruoseR5.55.445.23tinu/).dy

Units_produced =Model!$B$16:$F$16
Selling 011$07$56$04$53$tinu/ecirp
Variable 53$03$52$01$02$tinu/tsoc
Fixed cost for equipment $1,500 $1,200 $1,600 $1,500 $1,600

Produc on plan, constraints on capacity
Shirts Shorts Pants Skirts Jackets

Produce 10010?yna

Units 13.9730025.5690decudorp
<= <= <= <= <=

Logical upper 00.00500.000.000.008100.0timil

Constraints on resources
Resource used Available

Labor 0004=<004000.sruoh
0054=<00.4500htolC

Monetary outputs

Variable
Fixed cost for

euneveR
tsoc

equipment
tiforP Objec ve

$80,345
$22,931

$2,800
$54,614 to maximize

Figure 14.46 Fixed-Cost Clothing Model

Table 14.15 Variables and Constraints for Fixed-Cost Model

Input variables Fixed rental costs, resource usages (labor hours, cloth) 
per unit of clothing, sales prices, unit variable costs, 
resource availabilities

Decision variables (changing cells) Whether to produce any of each clothing (binary), how 
much of each clothing to produce

Objective cell Profit
Other calculated variables Resources used, upper limits on amounts to produce, 

total revenue, total variable cost, total fixed cost
Constraints Amount produced Logical upper limit (capacity)

Resources used Resources available…

…
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1 Inputs. Enter the given inputs.

2 Binary values for clothing types. Enter any trial values for the binary variables for
the various clothing types in the Produce_any? range. For example, a 1 in cell C14 implies
that some shorts are produced. More importantly, it implies that the machinery for making
shorts is rented and its fixed cost is incurred.

3 Production quantities. Enter any trial values for the numbers of the various clothing
types produced in the Units_produced range. At this point you could enter “illegal” values,
such as 0 in cell B14 and a positive value in cell B16. This is illegal because it implies that
the company produces some shirts but avoids the fixed cost of the machinery for shirts.
However, Solver will eventually disallow such illegal combinations.

4 Labor and cloth used. In cell B22 enter the formula

�SUMPRODUCT(B5:F5,Units_produced)

to calculate total labor hours, and copy this to cell B23 for cloth.

5 Effective capacities. Here is the tricky part of the model. You need to ensure that if
any of a given type of clothing is produced, then its binary variable equals 1. This ensures
that the model incurs the fixed cost of renting the machine for this type of clothing. You
could easily implement these constraints with IF statements. For example, to implement
the constraint for shirts, you could enter the following formula in cell B14:

�IF(B16�0,1,0)

However, Solver is unable to deal with IF functions predictably. Therefore, the fixed-cost
constraints are modeled in a different way, as follows:

Shirts produced Maximum capacity � (0–1 variable for shirts) (14.4)

There are similar inequalities for the other types of clothing.
Here is the logic behind inequality (14.4). If the 0–1 variable for shirts is 0, then the

right side of the inequality is 0, which means that the left side must be 0—no shirts can be
produced. That is, if the binary variable for shirts is 0, so that no fixed cost for shirts is
incurred, then inequality (14.4) does not allow Great Threads to “cheat” and produce a
positive number of shirts. On the other hand, if the binary variable for shirts is 1, the
inequality is certainly true and is essentially redundant. It simply states that the number of
shirts produced must be no greater than the maximum number that could be produced.
Inequality (14.4) rules out the one case that needs to be ruled out—namely, that Great
Threads produces shirts but avoids the fixed cost.

To implement inequality (14.4), a maximum capacity is required. To obtain this, sup-
pose the company puts all of its resources into producing shirts. Then the number of shirts
that can be produced is limited by the smaller of

and

Therefore, the smaller of these—the most limiting—can be used as the maximum needed
in inequality (14.4).

To implement this logic, calculate the effective capacity for shirts in cell B18 with the
formula

�B14*MIN($D$22/B5,$D$23/B6)

Available square yards of cloth

Square yards of cloth per shirt

Available labor hours

Labor hours per shirt

…
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Then copy this formula to the range C16:F16 for the other types of clothing.12 By the way,
this MIN formula causes no problems for Solver because it does not involve changing
cells, only input cells.

6 Monetary values. Calculate the total sales revenue and the total variable cost by
entering the formula

�SUMPRODUCT(B8:F8,Units_produced)

in cell B26 and copying it to cell B27. Then calculate the total fixed cost in cell B28 with
the formula

�SUMPRODUCT(B10:F10,Produce_any?)

Note that this formula sums the fixed costs only for those products with binary variables
equal to 1. Finally, calculate the total profit in cell B29 with the formula

�B26-B27-B28

USING SOLVER

The Solver dialog box is shown in Figure 14.47. The goal is to maximize profit, subject to
using no more labor hours or cloth than are available, and ensure that production is less
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12Why not set the upper limit on shirts equal to a huge number like 1,000,000? The reason is that Solver works most
efficiently when the upper limit is as tight—that is, as low—as possible. A tighter upper limit means fewer potential
feasible solutions for Solver to search through. Here’s an analogy. If you were trying to locate a criminal, which would
be easier: (1) if you were told that he was somewhere in Texas, or (2) if you were told he was somewhere in Dallas?

Figure 14.47

Solver Dialog Box

for Fixed-Cost

Model
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than or equal to effective capacity. The key is that this effective capacity is zero if none of
a given type of clothing is produced. As usual, check the Non-Negative option, and set the
tolerance to zero (under the Options button). Importantly, note that by using binary chang-
ing cells, the resulting model is linear, which means that the simplex algorithm can be
used.

Although Solver finds the optimal solution automatically, you should understand the
effect of the logical upper-bound constraint on production. It rules out a solution such as
the one shown in Figure 14.48. This solution calls for a positive production level of pants
but does not incur the fixed cost of the pants equipment. The logical upper-bound con-
straint rules this out because it prevents a positive value in row 16 if the corresponding
binary value in row 14 is 0. In other words, if the company wants to produce some pants,
the constraint in inequality (14.4) forces the associated binary variable to be 1, thus incur-
ring the fixed cost for pants.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

KJIHGFEDCBA
Great Threads fixed cost clothing model Range names used:

Logical_upper_limit =Model!$B$18:$F$18
Input data on products Produce_any? =Model!$B$14:$F$14

Shirts Shorts Pants Skirts Jackets Profit =Model!$B$29
Labor 32$D$:22$D$!ledoM=elbaliava_ecruoseR84612tinu/sruoh
Cloth (sq. 32$B$:22$B$!ledoM=desu_ecruoseR5.55.445.23tinu/).dy

Units_produced =Model!$B$16:$F$16
Selling 011$07$56$04$53$tinu/ecirp
Variable 53$03$52$01$02$tinu/tsoc
Fixed cost for equipment $1,500 $1,200 $1,600 $1,500 $1,600

Produc on plan, constraints on capacity
Shirts Shorts Pants Skirts Jackets

Produce 11010?yna

Units 13.973005425.5690decudorp
<= <= <= <= <=

Logical upper 00.00500.000100.000.008100.0timil

Constraints on resources
Resource used Available

Labor 0004=<00.0076sruoh
0054=<00.0036htolC

Monetary outputs
595,901$euneveR

Variable 181,43$tsoc
Fixed cost for equipment $4,300

411,17$tiforP Objec ve to maximize

Figure 14.48 An Illegal (and Nonoptimal) Solution

Note that inequality (14.4) does not rule out the situation you see for skirts, where the
binary value is 1 and the production level is 0. However, Solver will never choose this type
of solution as optimal. Solver recognizes that the binary value in this case can be changed
to 0, so that the fixed cost for skirt equipment is not incurred.

Discussion of the Solution

The optimal solution appears in Figure 14.46. It indicates that Great Threads should pro-
duce about 966 shorts and 379 jackets, but no shirts, pants, or skirts. The total profit is
$54,614. Note that the binary variables for shirts, pants, and skirts are all 0, which forces
production of these products to be 0. However, the binary variables for shorts and jackets,
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the products that are produced, are 1. This ensures that the fixed cost of producing shorts
and jackets is included in the total cost.

It might be helpful to think of this solution as occurring in two stages. In the first stage
Solver determines which products to produce—in this case, shorts and jackets only. Then
in the second stage, Solver decides how many shorts and jackets to produce. If you knew
that the company plans to produce shorts and jackets only, you could then ignore the fixed
costs and determine the best production quantities with the same types of product mix
models discussed in the previous chapter. Of course, these two stages—deciding which
products to produce and how many of each to produce—are interrelated, and Solver con-
siders both of them in its solution process.

The Great Threads management might not be very excited about producing shorts and
jackets only. Suppose the company wants to ensure that at least three types of clothing are
produced at positive levels. One approach is to add another constraint—namely, that the
sum of the binary values in row 14 is greater than or equal to 3. You can check, however,
that when this constraint is added and Solver is rerun, the binary variable for skirts
becomes 1, but no skirts are produced. Shorts and jackets are more profitable than skirts, so
only shorts and jackets are produced. (See Figure 14.49.) The new constraint forces Great
Threads to rent an extra piece of machinery (for skirts), but it doesn’t force the company to
use it. To force the company to produce some skirts, you would also need to add a con-
straint on the value in E16, such as E16 �� 100. Any of these additional constraints will
cost Great Threads money, but if, as a matter of policy, the company wants to produce
more than two types of clothing, this is its only option.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

IHGFEDCBA
Great Threads fixed cost clothing model

Input data on products
Shirts Shorts Pants Skirts Jackets

Labor 84612tinu/sruoh
Cloth (sq. 5.55.445.23tinu/).dy

Selling 011$07$56$04$53$tinu/ecirp
Variable 53$03$52$01$02$tinu/tsoc
Fixed cost for equipment $1,500 $1,200 $1,600 $1,500 $1,600

Produc on plan, constraints on capacity
Shirts Shorts Pants Skirts Jackets

Produce 11010?yna

Units 13.9730025.5690decudorp
<= <= <= <= <=

Logical upper 00.0051000.0000.000.008100.0timil

Constraints on resources
Resource used Available

Labor 0004=<004000.sruoh
0054=<00.4500htolC

Monetary outputs

Variable
Fixed cost for

euneveR
tsoc

equipment
tiforP Objec ve

$80,345
$22,931

$4,300

Sum
3 3>=

Required

$53,114 to maximize

Figure 14.49

Fixed-Cost Model

with Extra

Constraint

As always, adding
constraints can only
make the objective
worse. In this case, it
means decreased
profit.

Sensitivity Analysis

Because the optimal solution currently calls for only shorts and jackets to be produced, an
interesting sensitivity analysis is to see how much incentive is required for other products
to be produced. One way to model this is to increase the selling price for a nonproduced
product such as skirts in a one-way SolverTable. The results of this, keeping track of all

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



binary variables and profit, are shown in Figure 14.50. When the selling price for skirts is
$85 or less, the company continues to produce only shorts and jackets. However, when
the selling price is $90 or greater, the company stops producing shorts and jackets and
produces only skirts. You can check that the optimal production quantity of skirts is 1000
when the selling price of skirts is any value $90 or above. The only reason that the profits
in Figure 14.50 increase from row 9 down is that the revenues from these 1000 skirts
increase.
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Skirt price (cell $E$8) values along side, output cell(s) along top
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$70 0 1 0 0 1 $54,614
$75 0 1 0 0 1 $54,614
$80 0 1 0 0 1 $54,614
$85 0 1 0 0 1 $54,614
$90 0 0 0 1 0 $58,500
$95 0 0 0 1 0 $63,500

$100 0 0 0 1 0 $68,500

Figure 14.50

Sensitivity of Binary

Variables to Selling

Price of Skirts

A Model with IF Functions

In case you are still not convinced that the binary variable approach is required, and you
think IF functions could be used instead, take a look at the last sheet in the finished version
of the file. The resulting model looks the same as in Figure 14.46, but it incorporates the
following changes:

■ The binary range is no longer part of the changing cells range. Instead, the formula
�IF(B16�0,1,0) is entered in cell B14 and copied across to cell F14. Logically, this
probably appears more natural. If a production quantity is positive, a 1 is entered in
row 14, which means that the fixed cost is incurred.

■ The effective capacities are calculated in row 18 with IF functions. Specifically, the
formula �IF(B16�0,MIN($D$22/B5,$D$23/B6),0) is entered in cell B18 and
copied across to cell F18.

■ The Solver dialog box is modified as shown in Figure 14.51. The Produce_any?
range is not part of the changing cells range, and there is no binary constraint. The
simplex method cannot be used because the IF functions make the model nonlinear.

When we ran Solver on this modified model, we found inconsistent results, depending
on the initial production quantities entered in row 16. For example, when we entered initial
values all equal to 0, the Solver solution was exactly that—all 0s. Of course, this solution
is terrible because it leads to a profit of $0. However, when we entered initial production
quantities all equal to 100, Solver found the correct optimal solution, the same as in Figure
14.46. Was this just lucky? To check, we tried another initial solution, where the produc-
tion quantities for shorts and jackets were 0, and the production quantities for shirts, pants,
and skirts were all 500. In this case Solver found a solution where only skirts are produced.
Of course, we know this is not optimal.
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The moral is that the IF-function approach is not the way to go. Its success depends
strongly on the initial values in the changing cells, and this requires very good guesses.
The binary approach ensures that Solver finds the correct solution. ■
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Figure 14.51

Solver Dialog Box

When IF Functions

Are Used

14.7.3 Set-Covering Models

In a set-covering model, each member of a given set (set 1) must be “covered” by an
acceptable member of another set (set 2). The objective in a set-covering problem is to
minimize the number of members in set 2 necessary to cover all the members in set 1.
For example, set 1 might consist of all the cities in a county and set 2 might consist of
the cities in which a fire station is located. A member of set 2 covers, or handles the
needs of, a city in set 1 if the fire station is located within, say, 10 minutes of the city.
The goal is to minimize the number of fire stations needed to cover all cities. Set-covering
models have been applied to areas as diverse as airline crew scheduling, truck dispatch-
ing, political redistricting, and capital investment. The following is a typical set-covering
model.
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Objective To develop a binary model to find the minimum number of hub locations that
can cover all cities.

WHERE DO THE NUMBERS COME FROM?

Western has evidently made a policy decision that its hubs will cover cities within a 1000-
mile radius. Then the cities covered by any hub location can be found from a map. (In a
later sensitivity analysis, we explore how the solution changes when the allowable cover-
age distance varies.)

Solution

The variables and constraints for this set-covering model are listed in Table 14.17. The model
is straightforward. There is a binary variable for each city to indicate whether a hub is located
there. Then the number of hubs that cover each city is constrained to be at least one. There are
no monetary costs in this version of the problem. The goal is to minimize the number of hubs.
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E X A M P L E 14.10 HUB LOCATION AT WESTERN AIRLINES

Western Airlines has decided that it wants to design a hub system in the United States.
Each hub is used for connecting flights to and from cities within 1000 miles of the

hub. Western runs flights among the following cities: Atlanta, Boston, Chicago, Denver,
Houston, Los Angeles, New Orleans, New York, Pittsburgh, Salt Lake City, San Francisco,
and Seattle. The company wants to determine the smallest number of hubs it will need to
cover all of these cities, where a city is “covered” if it is within 1000 miles of at least one
hub. Table 14.16 lists the cities that are within 1000 miles of other cities.

Table 14.16 Data for Western Airlines Set-Covering Example

Cities Within 1000 Miles

Atlanta (AT) AT, CH, HO, NO, NY, PI
Boston (BO) BO, NY, PI
Chicago (CH) AT, CH, NY, NO, PI
Denver (DE) DE, SL
Houston (HO) AT, HO, NO
Los Angeles (LA) LA, SL, SF
New Orleans (NO) AT, CH, HO, NO
New York (NY) AT, BO, CH, NY, PI
Pittsburgh (PI) AT, BO, CH, NY, PI
Salt Lake City (SL) DE, LA, SL, SF, SE
San Francisco (SF) LA, SL, SF, SE
Seattle (SE) SL, SF, SE

Table 14.17 Variables and Constraints for Set-Covering Model

Input variables Cities within 1000 miles of one another
Decision variables (changing cells) Locations of hubs (binary)
Objective cell Number of hubs
Other calculated variables Number of hubs covering each city
Constraints Number of hubs covering a city 1Ú
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DEVELOPING THE SPREADSHEET MODEL

The spreadsheet model for Western is shown in Figure 14.52. (See the file Locating 
Hubs1.xlsx.) It can be developed as follows.
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Western Airlines hub loca�on model

Input data: which ci�es are covered by which poten�al egnaRsbuh names used:
Poten�al hub

93$B$!ledo=sbuh_latoTESFSLSIPYNONALOHEDHCOBTAytiC
B$!ledo=?buh_sa_desU000111010101TA $21:$M$21

000110000010OB
000111000101HC
001000001000ED
000001010001OH
011000100000AL
000001010101ON
000110000111YN
000110000111IP
111000101000LS
111000100000FS
111000000000ES

Decisions: which ci�es to use as hubs

Used as
AT BO CH DE HO LA NO NY PI SL SF SE

hub? 0 0 0 0 1 0 0 1 0 1 0 0

Constraints that each city must be covered by at least one hub
City Hubs covered by Required

1=>2TA
1=>1OB
1=>1HC
1=>1ED
1=>1OH
1=>1AL
1=>1ON
1=>1YN
1=>1IP
1=>1LS
1=>1FS
1=>1ES

Objec�ve to minimize
Total 3sbuh

A B C D E F G H I J K L M N O P Q

Hubs_covered_by =Model!$B$25:$B$36
M
M

Note that there are mul�ple op�mal solu�ons to
this model, all of which require a total of 3 hubs.
You might get a different solu�on from the one
shown here.

Figure 14.52 Set-Covering Model

1 Inputs. Enter the information from Table 14.16 in the input cells. A 1 in a cell indi-
cates that the column city covers the row city, whereas a 0 indicates that the column city
does not cover the row city. For example, the three 1s in row 7 indicate that Boston, New
York, and Pittsburgh are the only cities within 1000 miles of Boston.

2 Binary values for hub locations. Enter any trial values of 0s or 1s in the
Used_as_hub? range to indicate which cities are used as hubs. These are the changing
cells.

3 Cities covered by hubs. Calculate the total number of hubs within 1000 miles of
Atlanta in cell B25 with the formula

�SUMPRODUCT(B6:M6,Used_as_hub?)

For any binary values in the changing-cells range, this formula sums the number of hubs
that cover Atlanta. Then copy this to the rest of the Hubs_covered_by range. Note that a
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value in the Hubs_covered_by range can be 2 or greater. This indicates that a city is within
1000 miles of multiple hubs.

4 Number of hubs. Calculate the total number of hubs used in cell B39 with the for-
mula

�SUM(Used_as_hub?)

USING SOLVER

The completed Solver dialog box is shown in Figure 14.53. The goal is to minimize the
total number of hubs, subject to covering each city by at least one hub and ensuring that the
changing cells are binary.

886 Chapter 14 Optimization Models

Figure 14.53

Solver Dialog Box

for Set-Covering

Model

Discussion of the Solution

Figure 14.54 is a graphical representation of the optimal solution, where the double ovals
indicate hub locations and the large circles indicate ranges covered by the hubs. (These
large circles are not drawn to scale. In reality, they should be circles of radius 1000 miles
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centered at the hubs.) Three hubs—in Houston, New York, and Salt Lake City—are
needed.13 Would you have guessed this? The Houston hub covers Houston, Atlanta, and
New Orleans. The New York hub covers Atlanta, Pittsburgh, Boston, New York, and
Chicago. The Salt Lake City hub covers Denver, Los Angeles, Salt Lake City, San
Francisco, and Seattle. Note that Atlanta is the only city covered by two hubs; it can be ser-
viced by New York or Houston.
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Figure 14.54

Graphical Solution

to Set-Covering

Model

Sensitivity Analysis

An interesting sensitivity analysis for Western’s problem is to see how the solution is
affected by the mile limit. Currently, a hub can service all cities within 1000 miles. What
if the limit were 800 or 1200 miles, say? To answer this question, you must first collect
data on actual distances among all of the cities. Once you have a table of these distances,
you can build the binary table, corresponding to the range B6:M17 in Figure 14.52, with
IF functions. The modified model appears in Figure 14.55. (See the file Locating Hubs
2.xlsx.) The typical formula in B24 is �IF(B8��$B$4,1,0), which is then copied to the
rest of the B24:M35 range.14 You can then run SolverTable, selecting cell B4 as the sin-
gle input cell, letting it vary from 800 to 1200 in increments of 100, and designating the
hub locations and the number of hubs as outputs. The SolverTable results in Figure 14.56
show the effect of the mile limit. When this limit is lowered to 800 miles, four hubs are
required, but when it is increased to 1100 or 1200, only two hubs are required. Note
that the solution shown for the 1000-mile limit is different from the previous solution
in Figure 14.52, but it still requires three hubs. (This is a case of multiple optimal
solutions.)

13There are multiple optimal solutions for this model, all requiring three hubs, so you might obtain a different
solution from ours.
14We have warned you about using IF functions in Solver models. However, the current use affects only the inputs
to the problem, not quantities that depend on the changing cells. Therefore, it causes no problems.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



888 Chapter 14 Optimization Models

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

A B C D E F G H I J K L M N O P Q
Western Airlines hub loca on model with egnaRsecnatsid names used:

Hubs_covered_by =Model!$B$43:$B$54
Input data Total_hubs =Model!$B$57
Mile limit 1000 Used_as_hub? =Model!$B$39:$M$39

Distance from each city to each other city
AT BO CH DE HO LA NO NY PI SL SF SE

8162694287817861489742812987893147673010TA
6792590334324752227051979240819491500107301OB
31022412093125420821945027601800105001476HC
70315321405114117713721950191010800194918931ED
4722219183413131806165383510910176014081987OH
1311973517624268723881083519501450297922812AL
475294228371070111310388165337212197051974ON
51824392281286301131687280611771208222148YN
56428752628108630701624231311141254475786IP
63825706281281283715178341405093134328781LS
808025787524392942297321915321241259036942FS
0808638564251824752131147227031310267928162ES

Which ci es are covered by which poten al hubs with this mile limit

ESFSLSIPYNONALOHEDHCOBTAytiC
000111010101TA
000110000010OB
000111000101HC
001000001000ED
000001010001OH
011000100000AL
000001010101ON
000110000111YN
000110000111IP
111000101000LS
111000100000FS
111000000000ES

Decisions: which ci es to use as hubs
AT BO CH DE HO LA NO NY PI SL SF SE

Used as hub? 0 0 0 0 1 0 0 1 0 1 0 0

Constraints that each city must be covered by at least one hub
City Hubs covered by Required

1=>2TA
1=>1OB
1=>1HC
1=>1ED
1=>1OH
1=>1AL
1=>1ON
1=>1YN
1=>1IP
1=>1LS
1=>1FS
1=>1ES

Objec ve to minimize
Total 3sbuh

Poten al hub

Note: There are mul�ple op�mal solu�ons to these
problems, so don’t be surprised if you don’t get exactly
the same hub loca�ons as shown here.

3

4
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8
9
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Mile limit (cell $B$4) values along side, output cell(s) along top
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800 1 1 0 0 0 0 0 0 0 1 0 1 4
900 1 1 0 0 0 0 0 0 0 1 0 0 3

1000 1 1 0 0 0 0 0 0 0 1 0 0 3
1100 0 0 1 0 0 0 0 0 0 1 0 0 2
1200 0 0 1 0 0 1 0 0 0 0 0 0 2

Figure 14.55 Modified Hub Location Model

Figure 14.56 Sensitivity to Mile Limit

■
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P R O B L E M S

Level A

48. Solve the following modifications of the capital
budgeting model in Figure 14.40. (Solve each part
independently of the others.)
a. Suppose that at most two of projects 1 through 5

can be selected.
b. Suppose that if investment 1 is selected, then

investment 3 must also be selected.
c. Suppose that at least one of investments 6 and 7

must be selected.
d. Suppose that investment 2 can be selected only if

both investments 1 and 3 are selected.

49. In the capital budgeting model in Figure 14.40, we
supplied the NPV for each investment. Suppose instead
that you are given only the streams of cash inflows
from each investment shown in the file P14_49.xlsx.
This file also shows the cash requirements and the
budget. You can assume that (1) all cash outflows
occur at the beginning of year 1; (2) all cash inflows
occur at the ends of their respective years; and (3) the
company uses a 10% discount rate for calculating its
NPVs. Which investments should the company make?

50. Solve the previous problem using the input data in the
file P14_50.xlsx.

51. Solve Problem 49 with the extra assumption that the
investments can be grouped naturally as follows: 1–4,
5–8, 9–12, 13–16, and 17–20.
a. Find the optimal investments when at most one

investment from each group can be selected.
b. Find the optimal investments when at least one

investment from each group must be selected. (If
the budget isn’t large enough to permit this,
increase the budget to a larger value.)

52. In the capital budgeting model in Figure 14.40,
investment 4 has the largest ratio of NPV to cash
requirement, but it is not selected in the optimal
solution. How much NPV is lost if Tatham is forced to
select investment 4? Answer by solving a suitably
modified model.

53. As it currently stands, investment 7 in the capital
budgeting model in Figure 14.40 has the lowest ratio
of NPV to cash requirement, 2.5. Keeping this same
ratio, can you change the cash requirement and NPV
for investment 7 in such a way that it is selected in the
optimal solution? Does this lead to any general
insights? Explain.

54. Expand the capital budgeting model in Figure 14.40 so
that there are now 20 possible investments. You can
make up the data on cash requirements, NPVs, and the
budget. However, use the following guidelines:

■ The cash requirements and NPVs for the various
investments can vary widely, but the ratio of NPV
to cash requirement should be between 2.5 and 3.5
for each investment.

■ The budget should allow somewhere between 5
and 10 of the investments to be selected.

55. Suppose in the capital budgeting model in Figure
14.40 that each investment requires $2000 during year
2 and only $5000 is available for investment during
year 2.
a. Assuming that available money uninvested at the

end of year 1 cannot be used during year 2, what
combination of investments maximizes NPV?

b. Suppose that any uninvested money at the end of
year 1 can be used for investment in year 2. Does
your answer to part a change?

56. How difficult is it to expand the Great Threads model
to accommodate another type of clothing? Answer by
assuming that the company can also produce
sweatshirts. The rental cost for sweatshirt equipment is
$1100, the variable cost per unit and the selling price
are $15 and $45, respectively, and each sweatshirt
requires one labor hour and 3.5 square yards of cloth.

57. Referring to the previous problem, if it is optimal for
the company to produce sweatshirts, use SolverTable
to see how much larger the fixed cost of sweatshirt
machinery would have to be before the company
would not produce any sweatshirts. However, if the
solution to the previous problem calls for no
sweatshirts to be produced, use SolverTable to see
how much lower the fixed cost of sweatshirt
machinery would have to be before the company
would start producing sweatshirts.

58. In the Great Threads model, the production quantities
in row 16 were not constrained to be integers.
Presumably, any fractional values could be safely
rounded to integers. See whether this is true. Constrain
these quantities to be integers and then run Solver. Are
the optimal integer values the same as the rounded
fractional values in Figure 14.46?

59. In the optimal solution to the Great Threads model, the
labor hour and cloth constraints are both binding—the
company is using all it has.
a. Use SolverTable to see what happens to the

optimal solution when the amount of available
cloth increases from its current value. (You can
choose the range of input values to use.) Capture
all of the changing cells, the labor hours and cloth
used, and the profit as outputs. The real issue here
is whether the company can profitably use more
cloth when it is already constrained by labor hours.
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b. Repeat part a, but reverse the roles of labor hours
and cloth. That is, use the available labor hours as
the input for SolverTable.

60. In the optimal solution to the Great Threads model,
no pants are produced. Suppose Great Threads has an
order for 300 pairs of pants that must be produced.
Modify the model appropriately and use Solver to
find the new optimal solution. (Is it enough to put a
lower bound of 300 on the production quantity in cell
D16? Will this automatically force the binary value
in cell D14 to be 1? Explain.) How much profit does
the company lose because of having to produce
pants?

61. In the original Western Airlines set-covering model in
Figure 14.52, we assumed that each city must be
covered by at least one hub. Suppose that for added
flexibility in flight routing, Western requires that each
city must be covered by at least two hubs. How do the
model and optimal solution change?

62. In the original Western Airlines set-covering model in
Figure 14.52, we used the number of hubs as the
objective to minimize. Suppose instead that there is a
fixed cost of locating a hub in any city, where these
fixed costs can vary across cities. Make up some
reasonable fixed costs, modify the model
appropriately, and use Solver to find the solution that
minimizes the sum of fixed costs.

63. Set-covering models such as the original Western
Airlines model in Figure 14.52 often have multiple
optimal solutions. See how many alternative optimal
solutions you can find. Of course, each must use three
hubs because we know this is optimal. (Hint: Use
various initial values in the changing cells and then
run Solver repeatedly.)15

64. How hard is it to expand a set-covering model to
accommodate new cities? Answer this by modifying
the model in Figure 14.55. (See the file Locating
Hubs 2.xlsx.) Add several cities that must be served:
Memphis, Dallas, Tucson, Philadelphia, Cleveland,
and Buffalo. You can look up the distances from these
cities to each other and to the other cities in a
reference book (or on the Web), or you can make up
approximate distances.
a. Modify the model appropriately, assuming that

these new cities must be covered and are
candidates for hub locations.

b. Modify the model appropriately, assuming that
these new cities must be covered but are not
candidates for hub locations.

Level B

65. The models in this section are often called
combinatorial models because each solution is a
combination of the various 0s and 1s, and there are
only a finite number of such combinations. For the
capital budgeting model in Figure 14.40, there are
seven investments, so there are 27 � 128 possible
solutions (some of which are infeasible). This is a
fairly large number, but not too large. Solve the model
without Solver by listing all 128 solutions. For each,
calculate the total cash requirement and total NPV for
the model. Then manually choose the one that stays
within the budget and has the largest NPV.

66. Make up an example, as described in Problem 54, with
20 possible investments. However, do it so that the
ratios of NPV to cash requirement are in a very tight
range, from 3.0 to 3.2. Then use Solver to find the
optimal solution when the Solver tolerance is set to its
default value of 5%, and record the solution. Next,
solve again with the tolerance set to zero. Do you get
the same solution? Try this on a few more instances of
the model, where you keep tinkering with the inputs.
The question is whether the tolerance matters in these
types of narrow-range problems.

67. In the Great Threads model, we found an upper bound
on production of any clothing type by calculating the
amount that could be produced if all of the resources
were devoted to this clothing type.
a. What if you instead use a very large value such as

1,000,000 for this upper bound? Try it and see
whether you get the same optimal solution.

b. Explain why any such upper bound is required.
Exactly what role does it play in the model?

68. In the last sheet of the finished version of the Fixed
Cost Manufacturing file, we illustrated one way to
model the Great Threads problem with IF functions,
but saw that this approach doesn’t work. Try a slightly
different approach here. Eliminate the binary variables
in row 14 altogether, and eliminate the upper bounds
in row 18 and the corresponding upper bound
constraints in the Solver dialog box. (The only
constraints are now on resource availability.) However,
use IF functions to calculate the total fixed cost of
renting equipment, so that if the amount of any
clothing type is positive, then its fixed cost is added to
the total fixed cost. Is Solver able to handle this
model? Does it depend on the initial values in the
changing cells? (Don’t forget to use Solver’s nonlinear
algorithm, not the simplex method.)

15One of our colleagues at Indiana University, Vic Cabot, now deceased, worked for years trying to develop a
general algorithm (not just trial and error) for finding all alternative optimal solutions to optimization models. It
turns out that this is a very difficult problem—and one that Vic never totally solved.
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14.8 NONLINEAR PROGRAMMING MODELS

In many optimization models the objective and/or the constraints are nonlinear functions
of the decision variables. Such an optimization model is called a nonlinear programming
(NLP) model. In this section we discuss how to use Excel’s Solver to find optimal solu-
tions to NLP models. We then discuss a couple of interesting applications, including the
important portfolio optimization model.

14.8.1 Basic Ideas of Nonlinear Optimization

When you solve an LP model with Solver, you are guaranteed that the solution obtained is
an optimal solution. When you solve an NLP model, however, it is very possible that
Solver will obtain a suboptimal solution. This is because a nonlinear function can have a
local optimal solution that is not the global optimal solution. A local optimal solution is
one that is better than all nearby points, whereas the global optimum is the one that beats
all points in the entire feasible region. If there are indeed one or more local optimal solu-
tions that are not globally optimal, then it is entirely possible that Solver will stop at one of
them. Unfortunately, this is not what you want; you want the global optimum.

There are mathematical conditions that guarantee the Solver solution is indeed the
global optimum. However, these conditions are difficult to understand, and they are often
difficult to check. A much simpler approach is to run Solver several times, each time with
different starting values in the changing cells. In general, if Solver obtains the same opti-
mal solution in all cases, you can be fairly confident—but still not absolutely sure—that
Solver has found the global optimal solution. On the other hand, if you try different start-
ing values for the changing cells and obtain several different solutions, you should keep the
best solution found so far. That is, you should keep the solution with the lowest objective
value (for a minimization problem) or the highest objective value (for a maximization
problem).
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FUNDAMENTAL INSIGHT

Local Optimal Solution Versus Global
Optimal Solution

Nonlinear objective functions can behave in many

ways that make them difficult to optimize. In particu-

lar, they can have local optimal solutions that are not

globally optimal, and nonlinear optimization algo-

rithms can stop at such local optimal solutions. The

important property of linear objectives that makes

the simplex method so successful—namely, that the

optimal solution is a corner point—doesn’t hold for

nonlinear objectives. Now any point in the feasible

region can conceivably be optimal. This not only

makes the search for the optimal solution more diffi-

cult, but it also makes it much more difficult to recog-

nize whether a promising solution (a local optimum)

is indeed the global optimum.This is why researchers

have spent so much effort trying to obtain conditions

that, when true, guarantee that a local optimum must

be a global optimum. Unfortunately, these conditions

are often difficult to check.

14.8.2 Managerial Economics Models

Many problems in economics are nonlinear but can be solved with Solver. We illustrate
one such peak-load pricing example in this section.
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E X A M P L E 14.11 PEAK-LOAD PRICING AT FLORIDA POWER AND LIGHT

Florida Power and Light (FPL) faces demands during both peak-load and off-peak
times. FPL must determine the price per kilowatt hour (kwh) to charge during both

peak-load and off-peak periods. The daily demand for power during each period (in kwh)
is related to price as follows:

Dp � 60 � 0.5Pp � 0.1Po (14.5)

Do � 40 � Po � 0.1Pp (14.6)

Here, Dp and Pp are demand and price during peak-load times, and Do and Po are demand and
price during off-peak times. Note that these demand functions are linear in the prices. Also,
note from the signs of the coefficients that an increase in the peak-load price decreases the
demand for power during the peak-load period but increases the demand for power during
the off-peak period. Similarly, an increase in the price for the off-peak period decreases the
demand for the off-peak period but increases the demand for the peak-load period. In economic
terms, this implies that peak-load power and off-peak power are substitutes for one another. In
addition, assume that it costs FPL $10 per day to maintain one kwh of capacity. The company
wants to determine a pricing strategy and a capacity level that maximize its daily profit.

Objective To use a nonlinear model to determine prices and capacity when there are two
different daily usage patterns, peak-load and off-peak.

WHERE DO THE NUMBERS COME FROM?

A cost accountant should be able to estimate the unit cost of capacity. The difficult task is
to estimate the demand functions in equations (14.5) and (14.6). This requires either suffi-
cient historical data on prices and demands (for both peak-load and off-peak periods) or
educated guesses from management.

Solution

The variables and constraints for this model are listed in Table 14.18. The company must
decide on two prices, and it must determine the amount of capacity to maintain. Because this
capacity level, once determined, is relevant for peak-load and off-peak periods, it must be
large enough to meet demands for both periods. This is the reasoning behind the constraint.

Table 14.18 Variables and Constraints for Peak-Load Pricing Model

Input variables Parameters of demand functions, unit cost of capacity
Decision variables (changing cells) Peak-load and off-peak prices, capacity
Objective cell Profit
Other calculated variables Peak-load and off-peak demands, revenue, cost of capacity
Constraints Demands Capacity…

Due to the relationships between the demand and price variables, it is not at all obvi-
ous what FPL should do. The pricing decisions determine demand, and larger demand
requires larger capacity, which costs money. In addition, revenue is price multiplied by
demand, so it is not clear whether price should be low or high to increase revenue.
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DEVELOPING THE SPREADSHEET MODEL

The spreadsheet model appears in Figure 14.57. (See the file Peak-Load Pricing.xlsx.) It
can be developed as follows.
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10
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13
14
15
16
17
18
19
20
21
22
23
24
25
26

A B C D E F G H
Florida Power & Light peak-load pricing egnaRledom names used:

Capacity =Model!$B$15
Input data Common_Capacity =Model!$B$21:$C$21
Coefficients of demand 91$C$:91$B$!ledoM=sdnameDsnoitcnuf

Constant Peak price Off-peak price Prices =Model!$B$13:$C$13
Peak-load -0.5 0.1 Profit =Model!$B$26
Off-peak

demand 60
demand 40 0.1 -1

Cost of capacity/kwh $10

Decisions
Peak-load Off-peak

35.62$13.07$secirP

05.72yticapaC

Constraints on demand
Peak-load Off-peak

05.0205.72dnameD
<= <=

05.7205.72yticapaC

Monetary summary
Revenue $2,477.30
Cost of capacity $275.00
Profit $2,202.30

Figure 14.57 Peak-Load Pricing Model

1 Inputs. Enter the parameters of the demand functions and the cost of capacity in the
input cells.

2 Prices and capacity level. Enter any trial prices (per kwh) for peak-load and off-peak
power in the Prices range, and enter any trial value for the capacity level in the Capacity
cell. These are the three values FPL has control over, so they are the changing cells.

3 Demands. Calculate the demand for the peak-load period by substituting into
Equation (14.5). That is, enter the formula

�B6�SUMPRODUCT(Prices,C6:D6)

in cell B19. Similarly, enter the formula

�B7�SUMPRODUCT(Prices,C7:D7)

in cell C19 for the off-peak demand.

4 Copy capacity. To indicate the capacity constraints, enter the formula

�Capacity
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in cells B21 and C21. The reason for creating these links is that the two demand cells in
row 19 must be paired with two capacity cells in row 21, so that the Solver constraints can
be specified appropriately. (Solver doesn’t allow you to have a “two versus one” constraint
like B19:C19 
� B15.)

5 Monetary values. Calculate the daily revenue, cost of capacity, and profit in the cor-
responding cells with the formulas

�SUMPRODUCT(Demands,Prices)

�Capacity*B9

and

�B24-B25

USING SOLVER

The complete Solver dialog box is shown in Figure 14.58. The goal is to maximize profit by
setting appropriate prices and capacity and ensuring that demand never exceeds capacity.
Most importantly, the simplex algorithm cannot be used; the GRG nonlinear algorithm must
be used instead. This is because prices are multiplied by demands to calculate revenues, and
demands are functions of prices. Therefore, profit is a nonlinear function of the prices.
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Figure 14.58

Solver Dialog Box

for Peak-Load

Pricing Model
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Discussion of the Solution

The Solver solution in Figure 14.57 indicates that FPL should charge $70.31 per kwh dur-
ing the peak-load period and $26.53 during the off-peak period. These prices generate
demands of 27.5 (peak-load) and 20.5 (off-peak), so that a capacity of 27.5 kwh is
required. The cost of this capacity is $275. When this is subtracted from the revenue of
$2477.30, the daily profit becomes $2202.30.

To gain some insight into this solution, consider what happens if FPL changes the
peak-load price slightly from its optimal value of $70.31. If FPL decreases the price to
$70, say, you can check that the peak-load demand increases to 27.65 kwh and the off-peak
demand decreases to 20.47 kwh. The net effect is that revenue increases slightly, to
$2478.78. However, the peak-load demand is now greater than capacity, so FPL must
increase its capacity from 27.50 to 27.65 kwh. This costs an extra $1.50, which more than
offsets the increase in revenue. A similar chain of effects occurs if FPL increases the peak
price to $71. In this case, peak-load demand decreases, off-peak demand increases, and
total revenue decreases. Although FPL can get by with lower capacity, the net effect is
slightly less profit. Fortunately, Solver evaluates all of these trade-offs when it finds the
optimal solution.

Is the Solver Solution Optimal?

It is not difficult to show that the constraints for this model are linear and the objective is
concave. This is enough to guarantee that there are no local maxima that are not globally
optimal. In short, this guarantees that the Solver solution is optimal.

Sensitivity Analysis

To gain even more insight, SolverTable can be used to see the effects of changing the unit
cost of capacity, which are allowed to vary from $5 to $15 in increments of $1. The results
appear in Figure 14.59. They indicate that as the cost of capacity increases, the peak-load
price increases, the off-peak price stays constant, the amount of capacity decreases, and
profit decreases. The latter two effects are probably intuitive, but we challenge you to
explain the effects on price. In particular, why does the peak-load price increase, and why
doesn’t the off-peak price increase as well?
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$5 $67.81 $26.53 28.75 $2,342.92
$6 $68.31 $26.53 28.50 $2,314.30
$7 $68.81 $26.53 28.25 $2,285.92
$8 $69.31 $26.53 28.00 $2,257.80
$9 $69.81 $26.53 27.75 $2,229.92

$10 $70.31 $26.53 27.50 $2,202.30
$11 $70.81 $26.53 27.25 $2,174.92
$12 $71.31 $26.53 27.00 $2,147.80
$13 $71.81 $26.53 26.75 $2,120.92
$14 $72.31 $26.53 26.50 $2,094.30
$15 $72.81 $26.53 26.25 $2,067.92 ■

Figure 14.59

Sensitivity to Cost of

Capacity
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14.8.3 Portfolio Optimization Models

Given a set of investments, how do financial analysts determine the portfolio that has the
lowest risk and yields a high expected return? This question was answered by Harry
Markowitz in the 1950s. For his work on this and other investment topics, he received the
Nobel Prize in economics in 1991. The ideas discussed in this section are the basis for
most methods of asset allocation used by Wall Street firms. Asset allocation models are
used, for example, to determine the percentage of assets to invest in stocks, gold, and
Treasury bills. Before proceeding, however, you need to learn about some important for-
mulas involving the expected value and variance of sums of random variables.

Weighted Sums of Random Variables16

Let Ri be the (random) return earned during a year on a dollar invested in investment i. For
example, if Ri � 0.10, a dollar invested at the beginning of the year grows to $1.10 by the
end of the year, whereas if Ri ��0.20, a dollar invested at the beginning of the year
decreases in value to $0.80 by the end of the year. We assume that n investments are avail-
able. Let xi be the fraction of our money invested in investment i. We assume that x1 � x2
� · · · � xn � 1, so that all of our money is invested. (To prevent shorting a stock—that is,
selling shares we don’t own—we assume that xi 0.) Then the annual return on our
investments is given by the random variable Rp, where

Rp � R1x1 � R2x2 � · · · � Rnxn

(The subscript p on Rp stands for “portfolio.”)
Let �i be the expected value (also called the mean) of Ri, let �i

2 be the variance of Ri
(so that �i is the standard deviation of Ri), and let ij be the correlation between Ri and Rj.
To do any work with investments, you must understand how to use the following formulas,
which relate the data for the individual investments to the expected return and the variance
of return for a portfolio of investments.

Expected value of Rp � �1x1 � �2x2 � · · · � �nxn (14.7)

Variance of Rp � �2
1x2

1 � �2
2x2

2 � · · · � �2
nx2

n � �ij ij�i�jxixj (14.8)

The latter summation in Equation (14.8) is over all pairs of investments. The quantities in
equations (14.7) and (14.8) are extremely important in portfolio selection because of the
risk–return trade-off investors need to make. All investors want to choose portfolios with
high return, measured by the expected value in Equation (14.7), but they also want portfo-
lios with low risk, usually measured by the variance in Equation (14.8).

Equation (14.8) can be rewritten slightly by using covariances instead of correlations.
The covariance between two stock returns is another measure of the relationship between
the two returns, but unlike a correlation, it is not scaled to be between �1 and +1. This is
because covariances are affected by the units in which the returns are measured. Although
a covariance is a somewhat less intuitive measure than a correlation, it is used so frequently
by financial analysts that we use it here as well. If cij is the estimated covariance between
stocks i and j, then cij � rijsisj. (Here, r is an estimated correlation, and s is an estimated
standard deviation.) Using this equation and the fact that the correlation between any stock
and itself is 1, we can also write cii � si

2 for each stock i. Therefore, an equivalent form of
Equation (14.8) is the following Equation (14.9):

Estimated variance of Rp � �i,j cijxixj (14.9)

This allows you to calculate the portfolio variance very easily with Excel’s matrix 
functions, as explained next.

Ú
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16The material was covered in Chapter 4, but it is included here for those who did not read Chapter 4.
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Matrix Functions in Excel

Equation (14.9) for the variance of portfolio return looks intimidating, particularly if there
are many potential investments. Fortunately, two built-in Excel matrix functions, MMULT
and TRANSPOSE, simplify the calculation. In this subsection we illustrate how to use these
two functions. Then in the next subsection we use them in the portfolio selection model.

A matrix is a rectangular array of numbers. The matrix is an i � j matrix if it consists
of i rows and j columns. For example,

is a 2 � 3 matrix, and

is a 3 � 2 matrix. If the matrix has only a single row, it is called a row vector. Similarly, if
it has only a single column, it is called a column vector.

If matrix A has the same number of columns as matrix B has rows, it is possible to
calculate the matrix product of A and B, denoted AB. The entry in row i, column j of the
product AB is obtained by summing the products of the values in row i of A with the cor-
responding values in column j of B. If A is an i � k matrix and B is a k � j matrix, the
product AB is an i � j matrix.

For example, if

and

then AB is the following 2 � 2 matrix:

The Excel MMULT function performs matrix multiplication in a single step. The spread-
sheet in Figure 14.60 indicates how to multiply matrices of different sizes. (See the file
Matrix Multiplication.xlsx.) For example, to multiply matrix 1 by matrix 2 (which is pos-
sible because matrix 1 has three columns and matrix 2 has three rows), select the range
B13:C14, type the formula

�MMULT(B4:D5,B7:C9)

AB = ¢1(1) + 2(3) + 3(5) 1(2) + 2(4) + 3(6)

2(1) + 4(3) + 5(5) 2(2) + 4(4) + 5(6)
≤ = ¢22 28

39 50
≤

B = £
1 2

3 4

5 6

≥

A = ¢1 2 3

2 4 5
≤

B = £
1 2

3 4

5 6

≥

A = ¢1 2 3

4 5 6
≤
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and press Ctrl-Shift-Enter (all three keys at once). Note that you should select a range with
two rows and two columns because matrix 1 has two rows and matrix 2 has two columns.
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Matrix mul�plica�on in Excel

Typical mul�plica�on of two matrices Mul�plica�on of a matrix and a column
Matrix 1 Column 1321

3542
4

Matrix 2
Matrix 1 �mes Column 1, with formula =MMULT(B4:D5,I4:I6)43
Select range with 2 rows, 1 column, enter formula, press Ctrl-Shi�-Enter65

20
Matrix 1 �mes Matrix 2, with formula 63)9C:7B,5D:4B(TLUMM=
Select range with 2 rows, 2 columns, enter formula, press Ctrl-Shi�-Enter.

Mul�plica�on of a row and a matrix
woR0593

Mul�plica�on of a quadra�c form (row �mes matrix �mes column) Row 1 �mes Matrix 1, with formula =MMULT(I14:J14,B4:D5)
Matrix tceleS3123 range with 1 row, 3 columns, enter formula, press Ctrl-Shi�-Enter

1 - 7382101

Mul�plica�on of a row and a column
Transpose of Column 1 �mes Matrix 3 �mes Column woR1

2

1 2

22 28
1 4 5

4
4

2

3 0

1 6 3
Formula is =MMULT(TRANSPOSE(I4:I6),MMULT(B17:D19,I4:I6))
Select range with 1 row, 1 column, enter formula, press Ctrl-Shi�-Enter Row 2 �mes Column 1, with formula =MMULT(I22:K22,I4:I6)

tceleS321 range with 1 row, 1 column, enter formula, press Ctrl-Shi�-Enter
32

Notes on quadra�c form example:
Two MMULT's are required because MMULT works on only two ranges at a �me.
TRANSPOSE is needed to change a column into a row.

A B C D E F G H I J K L M N

Figure 14.60 Examples of Matrix Multiplication in Excel

The matrix multiplication in cell B24 indicates that (1) it is possible to multiply three
matrices together by using MMULT twice, and (2) the TRANSPOSE function can be used
to convert a column vector to a row vector (or vice versa), if necessary. Here, you want to
multiply Column 1 by the product of Matrix 3 and Column 1. However, Column 1 is 3 �
1, and Matrix 3 is 3 � 3, so Column 1 multiplied by Matrix 3 doesn’t work. Instead, you
must transpose Column 1 to make it 1 � 3. Then the result of multiplying all three together
is a 1 � 1 matrix (a number). It can be calculated by selecting cell B24, typing the formula

�MMULT(TRANSPOSE(I4:I6),MMULT(B17:D19,I4:I6))

and pressing Ctrl-Shift-Enter. This formula uses MMULT twice because MMULT can
multiply only two matrices at a time.

Excel Function MMULT
The MMULT and TRANSPOSE functions are useful for matrix operations. They are called
array functions because they return results to an entire range, not just a single cell. The
MMULT function multiplies two matrices and has the syntax �MMULT(range1,range2),
where range1 must have as many columns as range2 has rows. To use this function, high-
light a range that has as many rows as range1 and as many columns as range2, type the
formula, and press Ctrl-Shift-Enter. The resulting formula will have curly brackets around
it in the Excel formula bar. You should not type these curly brackets. Excel enters them
automatically to remind you that this is an array formula.
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The Portfolio Selection Model

Most investors have two objectives in forming portfolios: to obtain a large expected return
and to obtain a small variance (to minimize risk). The problem is inherently nonlinear
because the portfolio variance is nonlinear in the investment amounts. The most common
way of handling this two-objective problem is to specify a minimal required expected
return and then minimize the variance subject to the constraint on the expected return. The
following example illustrates how to do this.
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Table 14.20 Estimated Correlations between Stock Return

Combination Correlation

Stocks 1 and 2 0.6
Stocks 1 and 3 0.4
Stocks 2 and 3 0.7

Table 14.19 Estimated Means and Standard Deviations of Stock Returns

Stock Mean Standard Deviation

1 0.14 0.20
2 0.11 0.15
3 0.10 0.08

E X A M P L E 14.12 PORTFOLIO OPTIMIZATION AT PERLMAN & BROTHERS

The investment company Perlman & Brothers intends to invest a given amount of
money in three stocks. From past data, the means and standard deviations of annual

returns have been estimated as shown in Table 14.19. The correlations between the annual
returns on the stocks are listed in Table 14.20. The company wants to find a minimum-vari-
ance portfolio that yields an expected annual return of at least 0.12 (that is, 12%).

Objective To use NLP to find the portfolio that minimizes the risk, measured by portfo-
lio variance, subject to achieving an expected return of at least 12%.

WHERE DO THE NUMBERS COME FROM?

Financial analysts typically estimate the required means, standard deviations, and correla-
tions for stock returns from historical data. However, you should be aware that there is no
guarantee that these estimates, based on historical return data, are relevant for future
returns. If analysts have new information about the stocks, they should incorporate this
new information into their estimates.

Solution

The variables and constraints for this model are listed in Table 14.21. One interesting
aspect of this model is that it is not necessary to specify the amount of money invested—it
could be $100, $1000, $1,000,000, or any other amount. The model determines the fractions
of this amount to invest in the various stocks, and these fractions are then relevant for any
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investment amount. The only requirement is that the fractions should sum to 1, so that all
of the money is invested. Besides this, the fractions are constrained to be nonnegative to
prevent shorting stocks.17 Finally, the expected portfolio return is constrained to be at least
as large as a specified expected return, such as 12%.
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25
26

A B C D E F G H I
Por�olio selec�on model Range names used:

Actual_return =Model!$B$23
Stock input data Frac�ons_to_invest =Model!$B$15:$D$15

Stock 1 Stock 2 Stock 3 Por�olio_variance =Model!$B$25
Mean return 32$D$!ledoM=nruter_deriuqeR1.011.041.0
StDev of return 91$B$!ledoM=detsevni_latoT80.051.02.0

kcotSCorrela�ons  1 Stock 2 Stock 3 Covariances Stock 1 Stock 2 Stock 3
Stock 1 kcotS4.06.01  1 0.04 0.018 0.0064
Stock 2 kcotS7.016.0  2 0.018 0.0225 0.0084
Stock 3 kcotS17.04.0  3 0.0064 0.0084 0.0064

Investment decisions
Stock 1 Stock 2 Stock 3

Frac�ons to invest 0.500 0.000 0.500

Constraint on inves�ng everything
Total deriuqeRdetsevni  value

1=00.1

Constraint on expected por�olio return
Actual return Required return

0.12 >= 0.12

Por�olio variance 0.0148
Por�olio stdev 0.1217

Figure 14.61 Portfolio Optimization Model

Table 14.21 Variables and Constraints for Portfolio Optimization Model

Input variables Means, standard deviations, and correlations for stock 
returns, minimum required expected portfolio return

Decision variables (changing cells) Fractions invested in the various stocks
Objective cell Portfolio variance (minimize)
Other calculated variables Covariances between stock returns, total fraction of 

money invested, expected portfolio return
Constraints Total fraction invested � 1

Expected portfolio return Minimum required 
expected portfolio return

Ú

DEVELOPING THE SPREADSHEET MODEL

The individual steps are now listed. (See Figure 14.61 and the file Portfolio Selection.xlsx.)

1 Inputs. Enter the inputs in the input cells. These include the estimates of means,
standard deviations, and correlations, as well as the required expected return.

17If you want to allow shorting, do not check the Non-Negative option in the Solver dialog box.
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2 Fractions invested. Enter any trial values in the Fractions_to_invest range for the
fractions of Perlman’s money placed in the three investments. Then sum these with the
SUM function in cell B19.

3 Expected annual return. Use Equation (14.7) to calculate the expected annual
return in cell B23 with the formula

�SUMPRODUCT(B5:D5,Fractions_to_invest)

4 Covariance matrix. Equation (14.9) is used to calculate the portfolio variance. To do
this, you must first calculate a matrix of covariances. Using the general formula for covari-
ance, cij � rijsisj (which holds even when i � j, because rii � 1), these can be calculated
from the inputs by using lookups. Specifically, enter the formula

�HLOOKUP($F9,$B$4:$D$6,3)*B9*HLOOKUP(G$8,$B$4:$D$6,3)

in cell G9, and copy it to the range G9:I11. (This formula is a bit tricky, so take a close look
at it. The term B9 captures the relevant correlation. The two HLOOKUP terms capture the
appropriate standard deviations.)

5 Portfolio variance. Although the mathematical details are not presented here, it can
be shown that the summation in Equation (14.9) is the product of three matrices: a row of
fractions invested multiplied by the covariance matrix multiplied by a column of fractions
invested. To calculate it, enter the formula

�MMULT(Fractions_to_invest,MMULT(G9:I11,TRANSPOSE(Fractions_to_invest)))

in cell B25 and press Ctrl-Shift-Enter. (Remember that Excel puts curly brackets around this
formula. You should not type these curly brackets.) Note that this formula uses two MMULT
functions. Again, this is because MMULT can multiply only two matrices at a time. The for-
mula first multiplies the last two matrices and then multiplies this product by the first matrix.

6 Portfolio standard deviation. Most financial analysts talk in terms of portfolio vari-
ance. However, it is probably more intuitive to talk about portfolio standard deviation
because it is in the same units as the returns. Calculate the standard deviation in cell B26
with the formula

�SQRT(Portfolio_variance)

Actually, either cell B25 or B26 can be used as the objective cell to minimize. Minimizing
the square root of a function is equivalent to minimizing the function itself.

USING SOLVER

The completed Solver dialog box is shown in Figure 14.62. The constraints specify that the
expected return must be at least as large as the minimal required return, and all of the com-
pany’s money must be invested. The changing cells are constrained to be nonnegative (to
avoid short selling), but because of the squared terms in the variance formula, the GRG
nonlinear algorithm must be used.

Discussion of the Solution

The solution in Figure 14.61 indicates that the company should put half of its money in
each of stocks 1 and 3, and it should not invest in stock 2 at all. This might be somewhat
surprising, given that the ranking of riskiness of the stocks is 1, 2, 3, with stock 1 being the
most risky but also having the highest expected return. However, the correlations play an
important role in portfolio selection, so you can usually not guess the optimal portfolio on
the basis of the means and standard deviations of stock returns alone.
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The portfolio standard deviation of 0.1217 can be interpreted in a probabilistic sense.
Specifically, if stock returns are approximately normally distributed, the actual portfolio
return will be within one standard deviation of the expected return with probability about
0.68, and the actual portfolio return will be within two standard deviations of the expected
return with probability about 0.95. Given that the expected return is 0.12, this implies a lot
of risk—two standard deviations below this mean is a negative return (or loss) of slightly
more than 12%.

Is the Solver Solution Optimal?

The constraints for this model are linear, and it can be shown that the portfolio variance is
a convex function of the investment fractions. This is sufficient to guarantee that the Solver
solution is indeed optimal.

Sensitivity Analysis

This model begs for a sensitivity analysis on the minimum required return. When the com-
pany requires a larger expected return, it must assume a larger risk. This behavior is illus-
trated in Figure 14.63, where SolverTable has been used with cell D23 as the single input
cell, varied from 0.10 to 0.14 in increments of 0.005. Note that values outside this range
are of little interest. Stock 3 has the minimum expected return, 0.10, and stock 1 has the
highest expected return, 0.14, so no portfolio can have an expected return outside of
this range.
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Figure 14.62

Solver Dialog Box

for Portfolio Model
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The results indicate that the company should put more and more into risky stock 1 as
the required return increases—and stock 2 continues to be unused. The accompanying
scatter chart (with the option to “connect the dots”) shows the risk–return trade-off. As the
company assumes more risk, as measured by portfolio standard deviation, the expected
return increases, but at a decreasing rate.

The curve in this chart is called the efficient frontier. Points on the efficient frontier can be
achieved by appropriate portfolios. Points below the efficient frontier can be achieved, but they
are not as good as points on the efficient frontier because they have a lower expected return for
a given level of risk. In contrast, points above the efficient frontier are unachievable—the 
company cannot achieve this high an expected return for a given level of risk.
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The Efficient
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MODELING ISSUES

1. Typical real-world portfolio selection problems involve a large number of potential
investments, certainly many more than three. This admittedly requires more input
data, particularly for the correlation matrix, but the basic model does not change at
all. In particular, the matrix formula for portfolio variance is exactly the same. This
shows the power of using Excel’s matrix functions. Without them, the formula for
portfolio variance would be a long, involved sum.
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2. If Perlman is allowed to short a stock, the fraction invested in that stock is allowed to
be negative. To implement this, you can eliminate the nonnegativity constraints on
the changing cells.

3. An alternative objective might be to minimize the probability that the portfolio loses
money. This possibility is illustrated in one of the problems. ■
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P R O B L E M S

Level A

69. In the peak-load pricing model, the demand functions
have positive and negative coefficients of prices. The
negative coefficients indicate that as the price of a
product increases, demand for that product decreases.
The positive coefficients indicate that as the price of a
product increases, demand for the other product
increases.
a. Increase the magnitudes of the negative coefficients

from �0.5 and �1 to �0.7 and �1.2, and rerun
Solver. Are the changes in the optimal solution
intuitive? Explain.

b. Increase the magnitudes of the positive coefficients
from 0.1 and 0.1 to 0.3 and 0.3, and rerun Solver.
Are the changes in the optimal solution intuitive?
Explain.

c. Make the changes in parts a and b simultaneously
and rerun Solver. What happens now?

70. In the peak-load pricing model, we assumed that the
capacity level is a decision variable. Assume now that
capacity has already been set at 30 kwh. (Note that the
cost of capacity is now a sunk cost, so it is irrelevant
to the decision problem.) Change the model
appropriately and run Solver. Then use SolverTable to
see how sensitive the optimal solution is to the
capacity level, letting it vary over some relevant range.
Does it appear that the optimal prices will be set so
that demand is always equal to capacity for at least
one of the two periods of the day?

71. For each of the following, answer whether it makes
sense to multiply the matrices of the given sizes. In
each case where it makes sense, demonstrate an
example in Excel, where you make up the numbers.
a. AB, where A is 3 � 4 and B is 4 � 1
b. AB, where A is 1 � 4 and B is 4 � 1
c. AB, where A is 4 � 1 and B is 1 � 4
d. AB, where A is 1 � 4 and B is 1 � 4
e. ABC, where A is 1 � 4, B is 4 � 4, and C is 4 � 1
f. ABC, where A is 3 � 3, B is 3 � 3, and C is 3 � 1
g. ATB, where A is 4 � 3 and B is 4 � 3, and AT

denotes the transpose of A

72. Add a new stock, stock 4, to the portfolio optimization
model. Assume that the estimated mean and standard
deviation of return for stock 4 are 0.125 and 0.175,
respectively. Also, assume the correlations between
stock 4 and the original three stocks are 0.3, 0.5, and
0.8. Run Solver on the modified model, where the
required expected portfolio return is again 0.12. Is
stock 4 in the optimal portfolio? Then run SolverTable
as in the example. Is stock 4 in any of the optimal
portfolios on the efficient frontier?

73. In the portfolio optimization model, stock 2 is not in
the optimal portfolio. Use SolverTable to see whether
it ever enters the optimal portfolio as its correlations
with stocks 1 and 3 vary. Specifically, use a two-way
SolverTable with two inputs, the correlations between
stock 2 and stocks 1 and 3, each allowed to vary from
0.1 to 0.9 in increments of 0.1. Capture as outputs the
three changing cells. Discuss the results. (Note: You
will have to change the model slightly. For example, if
you use cells B10 and C11 as the two SolverTable
input cells, you will have to ensure that cells C9 and
D10 change accordingly. This is easy. Just put
formulas in these latter two cells.)

74. The stocks in the portfolio optimization model are all
positively correlated. What happens when they are
negatively correlated? Answer for each of the
following scenarios. In each case, two of the three
correlations are the negatives of their original values.
Discuss the differences between the optimal portfolios
in these three scenarios.
a. Change the signs of the correlations between

stocks 1 and 2 and between stocks 1 and 3. (Here,
stock 1 tends to go in a different direction from
stocks 2 and 3.)

b. Change the signs of the correlations between
stocks 1 and 2 and between stocks 2 and 3. (Here,
stock 2 tends to go in a different direction from
stocks 1 and 3.)

c. Change the signs of the correlations between
stocks 1 and 3 and between stocks 2 and 3. (Here,
stock 3 tends to go in a different direction from
stocks 1 and 2.)
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14.9 CONCLUSION

This chapter has led you through spreadsheet optimization models of many diverse prob-
lems. No standard procedure can be used to model all problems. However, there are several
keys to most models.

1. First, determine the changing cells. For example, in blending problems it is important
to realize that the changing cells are the amounts of inputs used to produce outputs,
and in worker scheduling problems such as the post office example, it is important to
realize that the changing cells are the number of people who start their five-day shift
each day of the week.

2. Set up the model so that you can easily calculate what you wish to maximize or min-
imize (usually profit or cost). For example, in the aggregate planning model it is a
good idea to calculate total cost by calculating the monthly cost of the various activi-
ties in separate rows and then summing the subtotals.

3. Set up the model so that the relationships between the cells in the spreadsheet and the
constraints of the problem are readily apparent. For example, in the post office
scheduling model it is convenient to calculate the number of people working each
day of the week adjacent to the minimum required number of people for each day of
the week.

4. Optimization models do not always fall into ready-made categories. A model might
involve a combination of the ideas discussed in the production scheduling, blending,
and aggregate planning examples. In fact, many real applications are not strictly
analogous to any of the models we have discussed. However, exposure to the models
in this chapter should give you the insights you need to solve a wide variety of inter-
esting problems.
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75. The file P14_75.xlsx contains historical monthly
returns for 28 companies. For each company, calculate
the estimated mean return and the estimated variance
of return. Then calculate the estimated correlations
between the companies’ returns. Note that “return”
here means monthly return. (Hint: Use StatTools’s
Summary Statistics capabilities.)

76. This problem continues using the data from the
previous problem. The file P14_76.xlsx includes all of
the previous data. It also contains fractions in row 3
for creating a portfolio. These fractions are currently
all equal to 1/28, but they can be changed to any
values you like, so long as they continue to sum to 1.
For any such fractions, find the estimated mean,
variance, and standard deviation of the resulting
portfolio return.

Level B

77. Continuing the previous problem, find the portfolio
that achieves an expected monthly return of at least
0.01 (1%) and minimizes portfolio variance. Then use
SolverTable to sweep out the efficient frontier. Create

a chart of this efficient frontier from your SolverTable
results. What are the relevant lower and upper limits
on the required expected monthly return?

78. In many cases you can assume that the portfolio return
is at least approximately normally distributed. Then
you can use Excel’s NORMDIST function as in
Chapter 5 to calculate the probability that the portfolio
return is negative. The relevant formula is
�NORMDIST(0,mean,stdev,1), where mean and
stdev are the expected portfolio return and standard
deviation of portfolio return, respectively.
a. Modify the portfolio optimization model slightly,

and then run Solver to find the portfolio that
achieves at least a 0.12 (12%) expected return and
minimizes the probability of a negative return. Do
you get the same optimal portfolio as before? What
is the probability that the return from this portfolio
will be negative?

b. Using the model in part a, create a chart of the
efficient frontier. However, this time put the
probability of a negative return on the horizontal
axis.
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Summary of Key Terms

Term Explanation Page
Worker scheduling models Models for choosing the staffing levels 813

to meet workload requirements

Multiple optimal solutions Situation where several solutions obtain the same 818
optimal objective value

Blending models Models where inputs must be mixed in the right 821
proportions to produce outputs

Logistics models Models where goods must be shipped from one set 828
of locations to another at minimal cost

Flow balance constraint Constraint that relates the flow into a node 838
and the flow out of the node

Aggregate planning models Models where workforce levels and production levels 848
must be set to meet customer demand

Integer programming models Models where at least some of the decision variables 868
must be integers

Binary variables Integer variables that must be 0 or 1; used to indicate 868
whether an activity takes place

Capital budgeting models Models where a subset of investment activities is 869
chosen from a set of possible activities

Fixed-cost models Models where fixed costs are incurred for various 875
activities if they are done at any positive level

Set-covering models Models where members of one set must be 883
selected to cover services to members of another set

Nonlinear programming models Models where either the objective function or the 890
constraints (or both) are nonlinear functions of the decision variables

Global optimum Solution that is the best in the entire feasible region 891

Local optimum Solution that is better than all nearby solutions 891
(but might not be optimal globally)

Portfolio optimization models Models that attempt to find the portfolio of securities 896
that achieves the best balance between risk and return

906 Chapter 14 Optimization Models

P R O B L E M S

Conceptual Exercises

C1. The worker scheduling model in this chapter was
purposely made small (only seven changing cells).
What would make a similar problem for a company
like McDonald’s much harder? What types of
constraints would be required? How many changing
cells (approximately) might there be?

C2. Explain why it is problematic to include a constraint
such as the following in an LP model for a blending
problem:

C3. “It is essential to constrain all shipments in a
transportation problem to have integer values to

ensure that the optimal LP solution consists entirely
of integer-valued shipments.” Is this statement true
or false? Why?

C4. What is the relationship between transportation
models and more general logistics models? Explain
how these two types of linear optimization models
are similar and how they are different.

C5. Unlike the small logistics models presented here, real-
world logistics problems can be huge. Imagine the
global problem a company like FedEx faces each day.
Describe as well as you can the types of decisions and
constraints it has. How large (number of changing
cells, number of constraints) might such a problem be?

C6. Suppose that you formulate and solve an integer
programming model with a cost-minimization

Total octane in gasoline 1 blend

Barrels of gasoline 1 blended daily
Ú 10
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14.9 Conclusion 907

objective. Assume that the optimal solution yields an
objective cell value of $500,000. Now, consider the
same linear optimization model without the integer
restrictions. That is, suppose that you drop the
requirement that the changing cells be integer-valued
and re-optimize with Solver. How does the optimal
objective cell value for this modified model (called
the LP relaxation of the IP model) compare to the
original total cost value of $500,000? Explain your
answer.

C7. The portfolio optimization model presented here is
the standard model: minimize the variance (or
standard deviation) of the portolio, as a measure of
risk, for a given required level of expected return. In
general, the goal is to keep risk low and expected
return high. Can you think of other ways to model
the problem to achieve these basic goals? Is high
variability all bad risk?

Level A

79. A bus company believes that it will need the following
numbers of bus drivers during each of the next five
years: 60 drivers in year 1; 70 drivers in year 2; 50
drivers in year 3; 65 drivers in year 4; 75 drivers in
year 5. At the beginning of each year, the bus
company must decide how many drivers to hire or fire.
It costs $4000 to hire a driver and $2000 to fire a
driver. A driver’s salary is $30,000 per year. At the
beginning of year 1 the company has 50 drivers. A
driver hired at the beginning of a year can be used to
meet the current year’s requirements and is paid full
salary for the current year.
a. Determine how to minimize the bus company’s

salary, hiring, and firing costs over the next five
years.

b. Use SolverTable to determine how the total number
hired, total number fired, and total cost change as
the unit hiring and firing costs each increase by the
same percentage.

80. A pharmaceutical company produces the drug
NasaMist from four chemicals. Today, the company
must produce 1000 pounds of the drug. The three
active ingredients in NasaMist are A, B, and C. By
weight, at least 8% of NasaMist must consist of A, at
least 4% of B, and at least 2% of C. The cost per
pound of each chemical and the amount of each active
ingredient in one pound of each chemical are given in
the file P14_80.xlsx. It is necessary that at least 100
pounds of chemical 2 be used.
a. Determine the cheapest way of producing today’s

batch of NasaMist.
b. Use SolverTable to see how much the percentage

of requirement of A is really costing the company.
Let the percentage required vary from 6% to 12%.

81. A bank is attempting to determine where to invest
its assets during the current year. At present,
$500,000 is available for investment in bonds,
home loans, auto loans, and personal loans. The
annual rates of return on each type of investment
are known to be the following: bonds, 6%; home
loans, 8%; auto loans, 5%; personal loans, 10%. To
ensure that the bank’s portfolio is not too risky, the
bank’s investment manager has placed the
following three restrictions on the bank’s portfolio:

■ The amount invested in personal loans cannot
exceed the amount invested in bonds.

■ The amount invested in home loans cannot exceed
the amount invested in auto loans.

■ No more than 25% of the total amount invested can
be in personal loans.

Help the bank maximize the annual return on its
investment portfolio.

82. A fertilizer company blends silicon and nitrogen to
produce two types of fertilizers. Fertilizer 1 must be at
least 40% nitrogen and sells for $70 per pound.
Fertilizer 2 must be at least 70% silicon and sells for
$40 per pound. The company can purchase up to 8000
pounds of nitrogen at $15 per pound and up to 10,000
pounds of silicon at $10 per pound.
a. Assuming that all fertilizer produced can be sold,

determine how the company can maximize its profit.
b. Use SolverTable to explore the effect on profit of

changing the minimum percentage of nitrogen
required in fertilizer 1.

c. Suppose the availabilities of nitrogen and silicon
both increase by the same percentage from their
current values. Use SolverTable to explore the
effect of this change on profit.

83. LP models are used by many Wall Street firms to
select a desirable bond portfolio. The following is a
simplified version of such a model. A company is
considering investing in four bonds; $1 million is
available for investment. The expected annual return,
the worst-case annual return on each bond, and the
duration of each bond are given in the file
P14_83.xlsx. (The duration of a bond is a measure of
the bond’s sensitivity to interest rates.) The company
wants to maximize the expected return from its bond
investments, subject to three constraints:
■ The worst-case return of the bond portfolio must be

at least 8%.
■ The average duration of the portfolio must be at

most 6. For example, a portfolio that invests
$600,000 in bond 1 and $400,000 in bond 4 has an
average duration of [600,000(3) �
400,000(9)]/1,000,000 � 5.4

■ Because of diversification requirements, at most
40% of the total amount invested can be invested in
a single bond.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



908 Chapter 14 Optimization Models

Determine how the company can maximize the
expected return on its investment.

84. At the beginning of year 1, you have $10,000.
Investments A and B are available; their cash flows are
shown in the file P14_84.xlsx. Assume that any
money not invested in A or B earns interest at an
annual rate of 8%.
a. Determine how to maximize your cash on hand at

the beginning of year 4.
b. Use SolverTable to determine how a change in the

year 2 return for investment A changes the optimal
solution to the problem.

c. Use SolverTable to determine how a change in the
year 3 return of investment B changes the optimal
solution to the problem.

85. An oil company produces two types of gasoline, G1
and G2, from two types of crude oil, C1 and C2. G1 is
allowed to contain up to 4% impurities, and G2 is
allowed to contain up to 3% impurities. G1 sells for
$48 per barrel, whereas G2 sells for $72 per barrel. Up
to 4200 barrels of G1 and up to 4300 barrels of G2 can
be sold. The cost per barrel of each crude, their
availability, and the level of impurities in each crude
are listed in the file P14_85.xlsx. Before blending the
crude oil into gas, any amount of each crude can be
“purified” for a cost of $3.00 per barrel. Purification
eliminates half of the impurities in the crude oil.
a. Determine how to maximize profit.
b. Use SolverTable to determine how an increase in

the availability of C1 affects the optimal profit.
c. Use SolverTable to determine how an increase in

the availability of C2 affects the optimal profit.
d. Use SolverTable to determine how a change in the

profitability of G2 changes profitability and the
types of gas produced.

86. The government is auctioning off oil leases at two
sites: 1 and 2. At each site 10,000 acres of land are to
be auctioned. Cliff Ewing, Blake Barnes, and Alexis
Pickens are bidding for the oil. Government rules state
that no bidder can receive more than 40% of the land
being auctioned. Cliff has bid $10,000 per acre for site
1 land and $20,000 per acre for site 2 land. Blake has
bid $9000 per acre for site 1 land and $22,000 per acre
for site 2 land. Alexis has bid $11,000 per acre for site
1 land and $19,000 per acre for site 2 land.
a. Determine how to maximize the government’s

revenue.
b. Use SolverTable to see how changes in the

government’s rule on 40% of all land being
auctioned affect the optimal revenue. Why can the
optimal revenue not decrease if this percentage
required increases? Why can the optimal revenue
not increase if this percentage required decreases?

87. An automobile company produces cars in Los Angeles
and Detroit and has a warehouse in Atlanta. The

company supplies cars to customers in Houston and
Tampa. The costs of shipping a car between various
points are listed in the file P14_87.xlsx, where a blank
means that a shipment is not allowed. Los Angeles can
produce up to 1100 cars, and Detroit can produce up
to 2900 cars. Houston must receive 2400 cars, and
Tampa must receive 1500 cars.
a. Determine how to minimize the cost of meeting

demands in Houston and Tampa.
b. Modify the answer to part a if shipments between

Los Angeles and Detroit are not allowed.
c. Modify the answer to part a if shipments between

Houston and Tampa are allowed at a cost of $5
per car.

88. An oil company produces oil from two wells. Well 1
can produce up to 150,000 barrels per day, and well 2
can produce up to 200,000 barrels per day. It is
possible to ship oil directly from the wells to the
company’s customers in Los Angeles and New York.
Alternatively, the company could transport oil to the
ports of Mobile and Galveston and then ship it by
tanker to New York or Los Angeles, respectively. Los
Angeles requires 160,000 barrels per day, and New
York requires 140,000 barrels per day. The costs of
shipping 1000 barrels between various locations are
shown in the file P14_88.xlsx, where a blank indicates
shipments that are not allowed. Determine how to
minimize the transport costs in meeting the oil
demands of Los Angeles and New York.

89. Based on Bean et al. (1987). Boris Milkem’s firm
owns six assets. The expected selling price (in millions
of dollars) for each asset is given in the file
P14_89.xlsx. For example, if asset 1 is sold in year 2,
the firm receives $20 million. To maintain a regular
cash flow, Milkem must sell at least $20 million of
assets during year 1, at least $30 million worth during
year 2, and at least $35 million worth during year 3.
Determine how Milkem can maximize his total
revenue from assets sold during the next three years.

90. Based on Sonderman and Abrahamson (1985). In
treating a brain tumor with radiation, physicians want
the maximum amount of radiation possible to
bombard the tissue containing the tumors. The
constraint is, however, that there is a maximum
amount of radiation that normal tissue can handle
without suffering tissue damage. Physicians must
therefore decide how to aim the radiation so as to
maximize the radiation that hits the tumor tissue
subject to the constraint of not damaging the normal
tissue. As a simple example of this situation, suppose
there are six types of radiation beams (beams differ in
where they are aimed and their intensity) that can be
aimed at a tumor. The region containing the tumor has
been divided into six regions: three regions contain
tumors and three contain normal tissue. The amount of
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radiation delivered to each region by each type of
beam is shown in the file P14_90.xlsx. If each region
of normal tissue can handle at most 60 units of
radiation, which beams should be used to maximize
the total amount of radiation received by the tumors?

91. A leading hardware company produces three types of
computers: Pear computers, Apricot computers, and
Orange computers. The relevant data are given in the
file P14_91.xlsx. The equipment cost is a fixed cost; it
is incurred if any of this type of computer is produced.
A total of 30,000 chips and 12,000 hours of labor are
available. The company wants to produce at least two
types of computers.
a. Determine how the company can maximize its

profit.
b. For any computer type not in the optimal product

mix, use SolverTable to find how much larger its
unit margin would have to be before it would enter
the optimal product mix.

92. A food company produces tomato sauce at five
different plants. The tomato sauce is then shipped to
one of three warehouses, where it is stored until it is
shipped to one of the company’s four customers. All
of the inputs for the problem are given in the file
P14_92.xlsx, as follows:
■ The plant capacities (in tons)
■ The cost per ton of producing tomato sauce at each

plant and shipping it to each warehouse
■ The cost of shipping a ton of sauce from each

warehouse to each customer
■ The customer requirements (in tons) of sauce
■ The fixed annual cost of operating each plant and

warehouse.

The company must decide which plants and
warehouses to open, and which routes from plants to
warehouses and from warehouses to customers to use.
All customer demand must be met. A given customer’s
demand can be met from more than one warehouse,
and a given plant can ship to more than one
warehouse.
a. Determine the minimum-cost method for meeting

customer demands.
b. Use SolverTable to see how a change in the

capacity of plant 1 affects the total cost.
c. Use SolverTable to see how a change in the

customer 2 demand affects the total cost.

93. You are given the following means, standard
deviations, and correlations for the annual return on
three potential investments. The means are 0.12, 0.15,
and 0.20. The standard deviations are 0.20, 0.30, and
0.40. The correlation between stocks 1 and 2 is 0.65,
between stocks 1 and 3 is 0.75, and between stocks 2
and 3 is 0.41. You have $100,000 to invest and can
invest no more than half of your money in any single
investment. Determine the minimum-variance

portfolio that yields an expected annual return of at
least 0.14.

94. You have $50,000 to invest in three stocks. Let Ri be
the random variable representing the annual return on
$1 invested in stock i. For example, if Ri � 0.12, then
$1 invested in stock i at the beginning of a year is
worth $1.12 at the end of the year. The means are
E(R1) � 0.14, E(R2) � 0.11, and E(R3) � 0.10. The
variances are Var R1 � 0.20, Var R2 � 0.08, and Var
R3 � 0.18. The correlations are r12 � 0.8, r13 � 0.7,
and r23 � 0.9. Determine the minimum-variance
portfolio that attains an expected annual return of at
least 0.12.

Level B

95. The risk index of an investment can be obtained by
taking the absolute values of percentage changes in the
value of the investment for each year and averaging
them. Suppose you are trying to determine the
percentages of your money to invest in T-bills, gold,
and stocks. The file P14_95.xlsx lists the annual
returns (percentage changes in value) for these
investments for the years 1968 through 1988. Let the
risk index of a portfolio be the weighted average of the
risk indices of these investments, where the weights
are the fractions of the portfolio assigned to the
investments. Suppose that the amount of each
investment must be between 20% and 50% of the total
invested. You would like the risk index of your
portfolio to equal 0.15, and your goal is to maximize
the expected return on your portfolio. Determine the
maximum expected return on your portfolio, subject to
the stated constraints. Use the average return earned
by each investment during the years 1968 through
1988 as your estimate of expected return. (If you like,
you can try this problem with more recent data, but the
model will be exactly the same.)

96. Broker Sonya Wong is currently trying to maximize
her profit in the bond market. Four bonds are available
for purchase and sale at the bid and ask prices shown
in the file P14_96.xlsx. Sonya can buy up to 1000
units of each bond at the ask price or sell up to 1000
units of each bond at the bid price. During each of the
next three years, the person who sells a bond will pay
the owner of the bond the cash payments listed in the
same file. Sonya’s goal is to maximize her revenue
from selling bonds minus her payment for buying
bonds, subject to the constraint that after each year’s
payments are received, her current cash position (due
only to cash payments from bonds and not purchases
or sales of bonds) is nonnegative. Note that her current
cash position can depend on past coupons and that
cash accumulated at the end of each year earns 2.5%
annual interest. Determine how to maximize net profit
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from buying and selling bonds, subject to the
constraints previously described. Why do you think
we limit the number of units of each bond that can be
bought or sold?

97. A financial company is considering investing in three
projects. If it fully invests in a project, the realized
cash flows (in millions of dollars) will be as listed in
the file P14_97.xlsx. For example, project 1 requires a
cash outflow of $3 million today and returns $5.5
million three years from now. The company currently
has $2 million in cash. At each time point (0, 6, 12,
18, 24, and 30 months from now), the company can, if
desired, borrow up to $2 million at 3.5% interest (per
six months). Leftover cash earns 3% interest (per six
months). For example, if after borrowing and investing
at the current time, the company has $1 million, it will
receive $30,000 in interest six months from now. The
company’s goal is to maximize cash on hand after
cash flows three years from now are accounted for.
What investment and borrowing strategy should it use?
Assume that the company can invest in a fraction of a
project. For example, if it invests in one-half of project
3, it has cash outflows of �$1 million now and six
months from now.

98. You are a CFA (chartered financial analyst). An
overextended client has come to you because she
needs help paying off her credit card bills. She owes
the amounts on her credit cards listed in the file
P14_98.xlsx. The client is willing to allocate up to
$5000 per month to pay off these credit cards. All
cards must be paid off within 36 months. The client’s
goal is to minimize the total of all her payments. To
solve this problem, you must understand how interest
on a loan works. To illustrate, suppose the client pays
$5000 on Saks during month 1. Then her Saks balance
at the beginning of month 2 is 20,000 � [5000 �
0.005(20,000)]. This follows because she incurs
0.005(20,000) in interest charges on her Saks card
during month 1. Help the client solve her problem.
Once you have solved this problem, give an intuitive
explanation of the solution found by Solver.

99. A food company produces two types of turkey cutlets
for sale to fast-food restaurants. Each type of cutlet
consists of white meat and dark meat. Cutlet 1 sells for
$4 per pound and must consist of at least 70% white
meat. Cutlet 2 sells for $3 per pound and must consist
of at least 60% white meat. At most 500 pounds of
cutlet 1 and 300 pounds of cutlet 2 can be sold. The
two types of turkey used to manufacture the cutlets are
purchased from a turkey farm. Each type 1 turkey
costs $10 and yields five pounds of white meat and
two pounds of dark meat. Each type 2 turkey costs $8
and yields three pounds of white meat and three
pounds of dark meat. Determine how the company can
maximize its profit.

100. Each hour from 10 A.M. to 7 P.M., a bank receives
checks and must process them. Its goal is to process
all checks the same day they are received. The bank
has 13 check processing machines, each of which can
process up to 500 checks per hour. It takes one worker
to operate each machine. The bank hires both full-time
and part-time workers. Full-time workers work 10 A.M.
to 6 P.M., 11 A.M. to 7 P.M., or noon to 8 P.M. and are
paid $160 per day. Part-time workers work either 2
P.M. to 7 P.M. or 3 P.M. to 8 P.M. and are paid $75 per
day. The numbers of checks received each hour are
listed in the file P14_100.xlsx. In the interest of
maintaining continuity, the bank believes that it must
have at least three full-time workers under contract.
Develop a work schedule that processes all checks by
8 P.M. and minimizes daily labor costs.

101. An oil company has oil fields in San Diego and Los
Angeles. The San Diego field can produce up to
500,000 barrels per day, and the Los Angeles field can
produce up to 400,000 barrels per day. Oil is sent from
the fields to a refinery, either in Dallas or in Houston.
(Assume that each refinery has unlimited capacity.) To
refine 100,000 barrels costs $700 at Dallas and $900 at
Houston. Refined oil is shipped to customers in
Chicago and New York. Chicago customers require
400,000 barrels per day, and New York customers
require 300,000 barrels per day. The costs of shipping
100,000 barrels of oil (refined or unrefined) between
cities are shown in the file P14_101.xlsx.
a. Determine how to minimize the total cost of

meeting all demands.
b. If each refinery had a capacity of 380,000 barrels per

day, how would you modify the model in part a?

102. An electrical components company produces
capacitors at three locations: Los Angeles, Chicago,
and New York. Capacitors are shipped from these
locations to public utilities in five regions of the
country: northeast (NE), northwest (NW), midwest
(MW), southeast (SE), and southwest (SW). The cost
of producing and shipping a capacitor from each plant
to each region of the country is given in the file
P14_102.xlsx. Each plant has an annual production
capacity of 100,000 capacitors. Each year, each region
of the country must receive the following number of
capacitors: NE, 55,000; NW, 50,000; MW, 60,000; SE,
60,000; SW, 45,000. The company believes that
shipping costs are too high, and it is therefore
considering building one or two more production
plants. Possible sites are Atlanta and Houston. The
costs of producing a capacitor and shipping it to each
region of the country are given in the same file. It
costs $3 million (in current dollars) to build a new
plant, and operating each plant incurs a fixed cost (in
addition to variable shipping and production costs) of
$50,000 per year. A plant at Atlanta or Houston will
have the capacity to produce 100,000 capacitors per
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year. Assume that future demand patterns and
production costs will remain unchanged. If costs are
discounted at a rate of 12% per year, how can the
company minimize the net present value (NPV) of all
costs associated with meeting current and future
demands?

103. Based on Bean et al. (1988). The owner of a shopping
mall has 10,000 square feet of space to rent and wants
to determine the types of stores that should occupy the
mall. The minimum number and maximum number of
each type of store and the square footage of each type
are given in the file P14_103.xlsx. The annual profit
made by each type of store depends on the number of
stores of that type in the mall. This dependence is
given in the same file, where all profits are in units of
$10,000. For example, if there are two department
stores in the mall, each department store will earn
$210,000 profit per year. Each store pays 5% of its
annual profit as rent to the owner of the mall.
Determine how the owner of the mall can maximize its
rental income.

104. It is currently the beginning of 2010. A city (labeled C
for convenience) is trying to sell municipal bonds to
support improvements in recreational facilities and
highways. The face values (in thousands of dollars) of
the bonds and the due dates at which principal comes
due are listed in the file P14_104.xlsx. (The due dates

are the beginnings of the years listed.) An
underwriting company (U) wants to underwrite C’s
bonds. A proposal to C for underwriting this issue
consists of the following: (1) an interest rate, 3%, 4%,
5%, 6%, or 7%, for each bond, where coupons are
paid annually, and (2) an up-front premium paid by U
to C. U has determined the set of fair prices (in
thousands of dollars) for the bonds listed in the same
file. For example, if U underwrites bond 2 maturing in
2013 at 5%, it will charge C $444,000 for that bond.
U is constrained to use at most three different interest
rates. U wants to make a profit of at least $46,000,
where its profit is equal to the sale price of the bonds
minus the face value of the bonds minus the premium
U pays to C. To maximize the chance that U will get
C’s business, U wants to minimize the total cost of the
bond issue to C, which is equal to the total interest on
the bonds minus the premium paid by U. For example,
if the year 2012 bond (bond 1) is issued at a 4% rate,
then C must pay two years of coupon interest:
2(0.04)($700,000) � $56,000. What assignment of
interest rates to each bond and up-front premiums
ensure that U will make the desired profit (assuming it
gets the contract) and maximize the chance of U
getting C’s business? To maximize this chance, you
can assume that U minimizes the net cost to C, that is,
the cost of its coupon payments minus the premium
from U to C.
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C A S E

This problem deals with strategic planning issues

for a large company.18 The main issue is planning

the company’s production capacity for the coming

year. At issue is the overall level of capacity and the

type of capacity—for example, the degree of flexibility

in the manufacturing system.The main tool used to

aid the company’s planning process is a mixed integer

programming model. A mixed integer program has

both integer and continuous variables.

Problem Statement

The Giant Motor Company (GMC) produces three

lines of cars for the domestic (U.S.) market: Lyras,

Libras, and Hydras.The Lyra is a relatively

inexpensive subcompact car that appeals mainly to

first-time car owners and to households using it as

a second car for commuting.The Libra is a sporty

compact car that is sleeker, faster, and roomier than

the Lyra.Without any options, the Libra costs slightly

more than the Lyra; additional options increase

the price further.The Hydra is the luxury car of the

GMC line. It is significantly more expensive than

the Lyra and Libra, and it has the highest profit

margin of the three cars.

Retooling Options for Capacity Expansion

Currently GMC has three manufacturing plants in the

United States. Each plant is dedicated to producing a

single line of cars. In its planning for the coming year,

GMC is considering the retooling of its Lyra and/or

Libra plants. Retooling either plant would represent a

major expense for the company.The retooled plants

would have significantly increased production capaci-

ties. Although having greater fixed costs, the retooled

plants would be more efficient and have lower mar-

ginal production costs—that is, higher marginal profit

contributions. In addition, the retooled plants would

be flexible:They would have the capability of producing

more than one line of cars.

The characteristics of the current plants and the

retooled plants are given in Table 14.22.The retooled

Lyra and Libra plants are prefaced by the word new.

The fixed costs and capacities in Table 14.22 are

given on an annual basis. A dash in the profit margin

section indicates that the plant cannot manufacture

that line of car. For example, the new Lyra plant

would be capable of producing both Lyras and Libras

but not Hydras.The new Libra plant would be

capable of producing any of the three lines of cars.

Note, however, that the new Libra plant has a slightly

lower profit margin for producing Hydras than the

Hydra plant does.The flexible new Libra plant is

capable of producing the luxury Hydra model but is

not quite as efficient as the current Hydra plant that

is dedicated to Hydra production.

The fixed costs are annual costs that are

incurred by GMC independent of the number of cars

that are produced by the plant. For the current plant

configurations, the fixed costs include property

taxes, insurance, payments on the loan that was taken

out to construct the plant, and so on. If a plant is

retooled, the fixed costs will include the previous

fixed costs plus the additional cost of the renovation.

14.1 GIANT MOTOR COMPANY

912 Chapter 14 Optimization Models

Table 14.22 Plant Characteristics
Lyra Libra Hydra New Lyra New Libra

Capacity (in 1000s) 1000 800 900 1600 1800
Fixed cost (in $millions) 2000 2000 2600 3400 3700

Profit Margin by Car Line (in $1000s)

Lyra 2 — — 2.5 2.3
Libra — 3 — 3.0 3.5
Hydra — — 5 — 4.8 

18The idea for this case came from Eppen, Martin, and Schrage, “A
Scenario Approach to Capacity Planning.” Operations Research 37,
no. 4 (July–August 1989): 517–527.
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The additional renovation cost will be an annual cost

representing the cost of the renovation amortized

over a long period.

Demand for GMC Cars

Short-term demand forecasts have been very reliable

in the past and are expected to be reliable in the

future. (Longer-term forecasts are not so accurate.)

The demand for GMC cars for the coming year is

given in Table 14.23.

Table 14.23 Demand for GMC Cars 

Demand (in 1000s)

Lyra 1400
Libra 1100
Hydra 800

Table 14.24 Demand Diversion Matrix

Lyra Libra Hydra

Lyra NA 0.3 0.05
Libra 0 NA 0.10
Hydra 0 0.0 NA

A quick comparison of plant capacities and

demands in Tables 14.22 and 14.23 indicates that

GMC is faced with insufficient capacity. Partially

offsetting the lack of capacity is the phenomenon of

demand diversion. If a potential car buyer walks into

a GMC dealer showroom wanting to buy a Lyra but

the dealer is out of stock, frequently the salesperson

can convince the customer to purchase the better

Libra car, which is in stock. Unsatisfied demand for

the Lyra is said to be diverted to the Libra. Only

rarely in this situation can the salesperson convince

the customer to switch to the luxury Hydra model.

From past experience GMC estimates that 30%

of unsatisfied demand for Lyras is diverted to demand

for Libras and 5% to demand for Hydras. Similarly, 10%

of unsatisfied demand for Libras is diverted to demand

for Hydras. For example, if the demand for Lyras is

1,400,000 cars, then the unsatisfied demand will be

400,000 if no capacity is added. Out of this unsatisfied

demand, 120,000 (� 400,000 � 0.3) will materialize as

demand for Libras, and 20,000 (� 400,000 � 0.05)

will materialize as demand for Hydras. Similarly, if the

demand for Libras is 1,220,000 cars (1,100,000

original demand plus 120,000 demand diverted from

Lyras), then the unsatisfied demand for Lyras would be

420,000 if no capacity is added. Out of this unsatisfied

demand, 42,000 (� 420,000 � 0.1) will materialize as

demand for Hydras.All other unsatisfied demand is

lost to competitors.The pattern of demand diversion

is summarized in Table 14.24.

Question

GMC wants to decide whether to retool the Lyra

and Libra plants. In addition, GMC wants to deter-

mine its production plan at each plant in the coming

year. Based on the previous data, develop a mixed

integer programming model (some variables integer-

constrained, some not) for solving GMC’s production

planning–capacity expansion problem for the coming

year.According to the optimal solution, what should

GMC do? How sensitive is the optimal solution to

key inputs? The file GMC Retooling.xlsx gets you

started. ■
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C A S E

Kate Torelli, a security analyst for LionFund, has iden-

tified a gold-mining stock (ticker symbol GMS) as a

particularly attractive investment.Torelli believes that

the company has invested wisely in new mining equip-

ment. Furthermore, the company has recently pur-

chased mining rights on land that has high potential for

successful gold extraction.Torelli notes that gold has

underperformed the stock market in the last decade

and believes that the time is ripe for a large increase in

gold prices. In addition, she reasons that conditions in

the global monetary system make it likely that investors

may once again turn to gold as a safe haven in which to

park assets. Finally, supply and demand conditions have

improved to the point where there could be significant

upward pressure on gold prices.

GMS is a highly leveraged company, so it is

quite a risky investment by itself.Torelli is mindful of

a passage from the annual report of a competitor,

Baupost, which has an extraordinarily successful

investment record: “Baupost has managed a decade of

consistently profitable results despite, and perhaps in

some respect due to, consistent emphasis on the

avoidance of downside risk.We have frequently car-

ried both high cash balances and costly market hedges.

Our results are particularly satisfying when considered

in the light of this sustained risk aversion.” She would

therefore like to hedge the stock purchase—that is,

reduce the risk of an investment in GMS stock.

Currently GMS is trading at $100 per share.

Torelli has constructed seven scenarios for the

price of GMS stock one month from now.These

scenarios and corresponding probabilities are shown

in Table 14.25.

To hedge an investment in GMS stock,Torelli can

invest in other securities whose prices tend to move

in the direction opposite to that of GMS stock. In

particular, she is considering over-the-counter put

options on GMS stock as potential hedging

instruments.The value of a put option increases as the

price of the underlying stock decreases. For example,

consider a put option with a strike price of $100 and

a time to expiration of one month.This means that

the owner of the put has the right to sell GMS stock

at $100 per share one month in the future. Suppose

that the price of GMS falls to $80 at that time.Then

the holder of the put option can exercise the option

and receive $20 (� 100 � 80). If the price of GMS

falls to $70, the option would be worth $30 

(� 100 � 70). However, if the price of GMS rises

to $100 or more, the option expires worthless.

Torelli called an options trader at a large

investment bank for quotes.The prices for three

European-style put options are shown in Table 14.26.

(A European put can be exercised only at the

expiration date, not before.) Torelli wishes to invest

$10 million in GMS stock and put options.

14.2 GMS STOCK HEDGING

914 Chapter 14 Optimization Models

Table 14.25 Scenarios and Probabilities for GMS Stock in 1 Month

Scenario Scenario Scenario Scenario Scenario Scenario Scenario

1 2 3 4 5 6 7

Probability 0.05 0.10 0.20 0.30 0.20 0.10 0.05
GMS stock price($) 150 130 110 100 90 80 70 

Table 14.26 Put Option Prices (Today) for GMS Case Study

Put Option A Put Option B Put Option C

Strike Price($) 90 100 110
Option Price($) 2.20 6.40 12.50 
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Questions

1. Based on Torelli’s scenarios, what is the expected

return of GMS stock? What is the standard

deviation of the return of GMS stock?

2. After a cursory examination of the put option

prices,Torelli suspects that a good strategy is to

buy one put option A for each share of GMS

stock purchased.What are the mean and

standard deviation of return for this strategy?

3. Assuming that Torelli’s goal is to minimize the

standard deviation of the portfolio return, what

is the optimal portfolio that invests all

$10 million? (For simplicity, assume that fractional

numbers of stock shares and put options can be

purchased.Assume that the amounts invested in

each security must be nonnegative. However, the

number of options purchased need not equal the

number of shares of stock purchased.) What are

the expected return and standard deviation of

return of this portfolio? How many shares of

GMS stock and how many of each put option

does this portfolio correspond to?

4. Suppose that short selling is permitted—that is,

the nonnegativity restrictions on the portfolio

weights are removed. Now what portfolio

minimizes the standard deviation of return?

(Hint: A good way to attack this problem is to

create a table of security returns, as indicated in

Table 14.27, where only a few of the table entries are

shown.To correctly calculate the standard deviation

of portfolio return, you will need to incorporate the

scenario probabilities. If ri is the portfolio return in

scenario i, and pi is the probability of scenario i, then

the standard deviation of portfolio return is

��
7

i�1
pi(ri � �)2

where � � �7
i�1piri is the expected portfolio return.)

Table 14.27 Table of Security Returns

GMS Stock Put Option A Put Option B Put Option C

Scenario 1 �100%
2 30%
�
7 220% 

■
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DEVELOPING BOARDING STRATEGIES 
AT AMERICA WEST

Management science often attempts to solve problems that we all

experience. One such problem is the boarding process for airline flights.

As customers, we all hate to wait while travelers boarding ahead of us store

their luggage and block the aisles. But this is also a big problem for the airlines.

Airlines lose money when their airplanes are on the ground, so they have a

real incentive to reduce the turnaround time from when a plane lands until it

departs on its next flight. Of course, the turnaround time is influenced by

several factors, including passenger deplaning, baggage unloading, fueling, cargo

unloading, airplane maintenance, cargo loading, baggage loading, and passenger

boarding. Airlines try to perform all of these tasks as efficiently as possible, but

passenger boarding is particularly difficult to shorten. Although the airlines

want passengers to board as quickly as possible, they don’t want to use

measures that might antagonize their passengers.

One study by van den Briel et al. (2005) indicates how a combination

of management science methods, including simulation, was used to make
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passenger boarding more efficient at America West Airlines. America West (which

merged with US Airways in 2006) was a major U.S. carrier based in Phoenix, Arizona. It

served more destinations nonstop than any other airline.The airline’s fleet consisted of

Airbus A320s, Airbus A319s, Boeing 757s, Boeing 737s, and Airbus A318s.

At the time of the study, airlines used a variety of boarding strategies, but the

predominant strategy was the back-to-front (BF) strategy where, after boarding first-

class passengers and passengers with special needs, the rest of the passengers are

boarded in groups, starting with rows in the back of the plane. As the authors suspected

(and most of us have experienced), this strategy still results in significant congestion.

Within a given section of the plane (the back, say), passengers storing luggage in over-

head compartments can block an aisle. Also, people in the aisle or middle seat often

need to get back into the aisle to let window-seat passengers be seated.The authors

developed an integer programming (IP) model to minimize the number of such aisle

blockages.The decision variables determined which groups of seats should be boarded

in which order. Of course, the BF strategy was one possible feasible solution, but it

turned out to be a suboptimal solution.The IP model suggested that the best solution

was an outside-in (OI) strategy, where groups of passengers in window seats board first,

then groups in the middle seats, and finally groups in aisle seats, with all of these groups

going essentially in a back-to-front order.

The authors recognized that their IP model was at best an idealized model of how

passengers actually behave. Its biggest drawback is that it ignores the inherent random-

ness in passenger behavior.Therefore, they followed up their optimization model with

a simulation model. As they state, “We used simulation to validate the analytical model

and to obtain a finer level of detail.” This validation of an approximate or idealized

analytical model is a common use for simulation.To make the simulation as realistic as

possible, they used two cameras, one inside the plane and one inside the bridge leading

to the plane, to tape customer behavior. By analyzing the tapes, they were able to

estimate the required inputs to their simulation model, such as the time between

passengers, walking speed, blocking time, and time to store luggage in overhead com-

partments. After the basic simulation model was developed, it was used as a tool to

evaluate various boarding strategies suggested by the IP model. It also allowed the

authors to experiment with changes to the overall boarding process that might be

beneficial. For example, reducing congestion inside the airplane is not very helpful if the

gate agent at the entrance to the bridge processes passengers too slowly.Their final

recommendation, based on a series of simulation experiments, was to add a second

gate agent (there had been only one before) and to board passengers in six groups

using an OI strategy.The simulation model suggested that this could reduce the board-

ing time by about 37%.

The authors’ recommendations were implemented first as a pilot project and then

systemwide.The pilot results were impressive, with a 39% reduction in boarding times.

By September 2003, the new boarding strategies had been implemented in 80% of

America West’s airports, with a decrease in departure delays as much as 60.1%. Besides

this obvious benefit to the airline, customers also appear to be happier. Now they can

easily understand when to queue up for boarding, and they experience less blocking after

they get inside the plane. ■

918 Chapter 15 Introduction to Simulation Modeling

15.1 INTRODUCTION

A simulation model is a computer model that imitates a real-life situation. It is like other
mathematical models, but it explicitly incorporates uncertainty in one or more input vari-
ables. When you run a simulation, you allow these random input variables to take on
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various values, and you keep track of any resulting output variables of interest. In this way,
you are able to see how the outputs vary as a function of the varying inputs.

The fundamental advantage of a simulation model is that it provides an entire distrib-
ution of results, not simply a single bottom-line result. As an example, suppose an
automobile manufacturer is planning to develop and market a new model car. The com-
pany is ultimately interested in the net present value (NPV) of the profits from this car over
the next 10 years. However, there are many uncertainties surrounding this car, including
the yearly customer demands for it, the cost of developing it, and others. The company
could develop a spreadsheet model for the 10-year NPV, using its best guesses for these
uncertain quantities. It could then report the NPV based on these best guesses. However,
this analysis would be incomplete and probably misleading—there is no guarantee that the
NPV based on best-guess inputs is representative of the NPV that will actually occur. It is
much better to treat the uncertainty explicitly with a simulation model. This involves enter-
ing probability distributions for the uncertain quantities and seeing how the NPV varies as
the uncertain quantities vary.

Each different set of values for the uncertain quantities can be considered a scenario.
Simulation allows the company to generate many scenarios, each leading to a particular NPV.
In the end, it sees a whole distribution of NPVs, not a single best guess. The company can see
what the NPV will be on average, and it can also see worst-case and best-case results.

These approaches are summarized in Figures 15.1 and 15.2. Figure 15.1 indicates that
the deterministic (non-simulation) approach, using best guesses for the uncertain inputs, is
generally not the appropriate method. It leads to the “flaw of averages,” as we will discuss
later in the chapter. The problem is that the outputs from the deterministic model are often
not representative of the true outputs. The appropriate method is shown in Figure 15.2.
Here the uncertainty is modeled explicitly with random inputs, and the end result is a prob-
ability distribution for each of the important outputs.

15.1 Introduction 919

Figure 15.1

Inappropriate

Deterministic Model

Figure 15.2

Appropriate

Simulation Model

Simulation models are also useful for determining how sensitive a system is to
changes in operating conditions. For example, the operations of a supermarket could be
simulated. Once the simulation model has been developed, it could then be run (with suit-
able modifications) to ask a number of what-if questions. For example, if the supermarket
experiences a 20% increase in business, what will happen to the average time customers
must wait for service?

A huge benefit of computer simulation is that it enables managers to answer these
types of what-if questions without actually changing (or building) a physical system. For
example, the supermarket might want to experiment with the number of open registers to
see the effect on customer waiting times. The only way it can physically experiment with
more registers than it currently owns is to purchase more equipment. Then if it determines
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that this equipment is not a good investment—customer waiting times do not decrease
appreciably—the company is stuck with expensive equipment it doesn’t need. Computer
simulation is a much less expensive alternative. It provides the company with an electronic
replica of what would happen if the new equipment were purchased. Then, if the simula-
tion indicates that the new equipment is worth the cost, the company can be confident that
purchasing it is the right decision. Otherwise, it can abandon the idea of the new equipment
before the equipment has been purchased.

Spreadsheet simulation modeling is quite similar to the other modeling applications in
this book. You begin with input variables and then relate these with appropriate Excel
formulas to produce output variables of interest. The main difference is that simulation
uses random numbers to drive the whole process. These random numbers are generated
with special functions that we will discuss in detail. Each time the spreadsheet recalcu-
lates, all of the random numbers change. This provides the ability to model the logical
process once and then use Excel’s recalculation ability to generate many different scenar-
ios. By collecting the data from these scenarios, you can see the most likely values of the
outputs and the best-case and worst-case values of the outputs.

In this chapter we begin by illustrating spreadsheet models that can be developed with
built-in Excel functionality. However, because simulation is becoming such an important tool
for analyzing real problems, add-ins to Excel have been developed to streamline the process of
developing and analyzing simulation models. Therefore, we then introduce @RISK, one of
the most popular simulation add-ins. This add-in not only augments the simulation capabili-
ties of Excel, but it also enables you to analyze models much more quickly and easily.

The purpose of this chapter is to introduce basic simulation concepts, show how sim-
ulation models can be developed in Excel, and demonstrate the capabilities of the @RISK
add-in. Then in the next chapter, armed with the necessary simulation tools, we will
explore a number of interesting and useful simulation models.

Before proceeding, you might ask whether simulation is really used in the business
world. The answer is a resounding “yes.” The chapter opener described an airline
example, and many other examples can be found online. For example, if you visit
www.palisade.com, you will see descriptions of interesting @RISK applications from
companies that regularly use this add-in. Simulation has always been a powerful tool, but
it had limited use for several reasons. It typically required specialized software that was
either expensive or difficult to learn, or it required a lot of tedious computer program-
ming. Fortunately, in the past two decades, spreadsheet simulation, together with Excel
add-ins such as @RISK, has put this powerful methodology in the hands of the masses—
people like you and the companies you are likely to work for. Many businesses now
understand that there is no longer any reason to ignore uncertainty; they can model it
directly with spreadsheet simulation. 

15.2 PROBABILITY DISTRIBUTIONS FOR INPUT VARIABLES

In this section we discuss the building blocks of spreadsheet simulation models. All
spreadsheet simulation models are similar to the spreadsheet models from previous
chapters. They have a number of cells that contain values of input variables. The other cells
then contain formulas that embed the logic of the model and eventually lead to the output
variable(s) of interest. The primary difference between the spreadsheet models you have
developed so far and simulation models is that at least one of the input variable cells in a
simulation model contains random numbers. Each time the spreadsheet recalculates, the
random numbers change, and the new random values of the inputs produce new values of
the outputs. This is the essence of simulation—it enables you to see how outputs vary as
random inputs change.
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In spreadsheet
simulation models,
input cells can contain
random numbers. Any
output cells then vary
as these random inputs
change.
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Excel Tip: Recalculation Key
The easiest way to make a spreadsheet recalculate is to press the F9 key. This is often
called the “recalc” key. 

Technically speaking, input cells do not contain random numbers; they contain
probability distributions. In general, a probability distribution indicates the possible values
of a variable and the probabilities of these values. As a very simple example, you might
indicate by an appropriate formula (to be described later) that you want a probability dis-
tribution with possible values 50 and 100, and corresponding probabilities 0.7 and 0.3. If
you force the sheet to recalculate repeatedly and watch this input cell, you will see the
value 50 about 70% of the time and the value 100 about 30% of the time. No other values
besides 50 and 100 will appear.

When you enter a given probability distribution in a random input cell, you are describ-
ing the possible values and the probabilities of these values that you believe mirror reality.
There are many probability distributions to choose from, and you should always attempt to
choose an appropriate distribution for each specific problem. This is not necessarily an easy
task. Therefore, we address it in this section by answering several key questions:

■ What types of probability distributions are available, and why do you choose one
probability distribution rather than another in an actual simulation model?

■ Which probability distributions can you use in simulation models, and how do you
invoke them with Excel formulas?

In later sections we address one additional question: Does the choice of input probability
distribution really matter—that is, are the outputs from the simulation sensitive to this
choice?
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FUNDAMENTAL INSIGHT

Basic Elements of Spreadsheet
Simulation

A spreadsheet simulation model requires three

elements: (1) a method for entering random quantities

from specified probability distributions in input cells,

(2) the usual types of Excel formulas for relating

outputs to inputs, and (3) the ability to make the

spreadsheet recalculate many times and capture

the resulting outputs for statistical analysis. Excel has

some capabilities for performing these steps, but Excel

add-ins such as @RISK provide much better tools for

automating the process.

15.2.1 Types of Probability Distributions

Imagine a toolbox that contains the probability distributions you know and understand. As
you obtain more experience in simulation modeling, you will naturally add probability distri-
butions to your toolbox that you can then use in future simulation models. We begin by
adding a few useful probability distributions to this toolbox. However, before adding any spe-
cific distributions, it is useful to provide a brief review of some important general character-
istics of probability distributions.1 These include the following distinctions:

■ Discrete versus continuous
■ Symmetric versus skewed

1This review is brief because the material was covered in Chapters 2, 4, and 5.
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■ Bounded versus unbounded
■ Nonnegative versus unrestricted.

Discrete Versus Continuous

A probability distribution is discrete if it has a finite number of possible values.2 For
example, if you throw two dice and look at the sum of the faces showing, there are only 11
discrete possibilities: the integers 2 through 12. In contrast, a probability distribution
is continuous if its possible values are essentially some continuum. An example is the
amount of rain that falls during a month in Indiana. It could be any decimal value from 0
to, say, 15 inches.

The graph of a discrete distribution is a series of spikes, as shown in Figure 15.3.3 The
height of each spike is the probability of the corresponding value. 
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FUNDAMENTAL INSIGHT

Choosing Probability Distributions
for Uncertain Inputs

In simulation models, it is important to choose

appropriate probability distributions for all uncertain

inputs.These choices can strongly affect the results.

Unfortunately, there are no “right answers.” You need

to choose the probability distributions that best

encode your uncertainty, and this is not necessarily

easy. However, the properties discussed in this sec-

tion provide you with useful guidelines for making

reasonable choices.

2Actually, it is possible for a discrete variable to have a countably infinite number of possible values, such as all
the nonnegative integers 0, 1, 2, and so on. However, this is not an important distinction for practical applications.
3This figure and several later figures have been captured from Palisade’s @RISK add-in.

Figure 15.3

A Typical Discrete

Probability

Distribution
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In contrast, a continuous distribution is characterized by a density function, a smooth
curve as shown in Figure 15.4. There are two important properties of density functions.
Recall from Chapter 5 that the height of the density function above any value indicates the
relative likelihood of that value, and probabilities can be calculated as areas under
the curve.
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Figure 15.4

A Typical

Continuous

Probability

Distribution

The heights above a
density function are
not probabilities, but
they still indicate
relative likelihoods of
the possible values.

Sometimes it is convenient to treat a discrete probability distribution as continuous,
and vice versa. For example, consider a student’s random score on an exam that has 1000
possible points. If the grader scores each exam to the nearest integer, then even though the
score is really discrete with many possible integer values, it is probably more convenient to
model its distribution as a continuum. Continuous probability distributions are typically
more intuitive and easier to work with than discrete distributions in cases such as this,
where there are many possible values. In contrast, continuous distributions are sometimes
discretized for simplicity.

Symmetric Versus Skewed

A probability distribution can either be symmetric or skewed to the left or right. Figures 15.4,
15.5, 15.6 provide examples of each of these. You typically choose between a symmetric and
skewed distribution on the basis of realism. For example, if you want to model a student’s
score on a 100-point exam, you will probably choose a left-skewed distribution. This is
because a few poorly prepared students typically “pull down the curve.” On the other hand,
if you want to model the time it takes to serve a customer at a bank, you will probably choose
a right-skewed distribution. This is because most customers take only a minute or two, but
a few customers take a long time. Finally, if you want to model the monthly return on a
stock, you might choose a distribution symmetric around zero, reasoning that the stock return
is just as likely to be positive as negative and there is no obvious reason for skewness in either
direction.
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Bounded Versus Unbounded

A probability distribution is bounded if there are values A and B such that no possible value
can be less than A or greater than B. The value A is then the minimum possible value, and
the value B is the maximum possible value. The distribution is unbounded if there are no
such bounds. Actually, it is possible for a distribution to be bounded in one direction but
not the other. As an example, the distribution of scores on a 100-point exam is bounded
between 0 and 100. In contrast, the distribution of the amount of damages Mr. Jones
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Figure 15.5

A Positively Skewed

Probability

Distribution

Figure 15.6

A Negatively Skewed

Probability

Distribution
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submits to his insurance company in a year is bounded on the left by 0, but there is no
natural upper bound. Therefore, you might model this amount with a distribution that is
bounded by 0 on the left but is unbounded on the right. Alternatively, if you believe that no
damage amount larger than $20,000 can occur, you could model this amount with a
distribution that is bounded in both directions.

Nonnegative Versus Unrestricted

One important special case of bounded distributions is when the only possible values are
nonnegative. For example, if you want to model the random cost of manufacturing a new
product, you know for sure that this cost must be nonnegative. There are many other
such examples. In such cases, you should model the randomness with a probability
distribution that is bounded below by 0. This rules out negative values that make no
practical sense. 

15.2.2 Common Probability Distributions

Now that you know the types of probability distributions available, you can add some
common probability distributions to your toolbox. The file Probability Distributions.xlsx
was developed to help you learn and explore these. Each sheet in this file illustrates a
particular probability distribution. It describes the general characteristics of the distribu-
tion, indicates how you can generate random numbers from the distribution either with
Excel’s built-in functions or with @RISK functions, and it includes histograms of these
distributions from simulated data to illustrate their shapes.4

It is important to realize that each of the following distributions is really a family of
distributions. Each member of the family is specified by one or more parameters. For
example, there is not a single normal distribution; there is a normal distribution for each
possible mean and standard deviation you specify. Therefore, when you try to find an
appropriate input probability distribution in a simulation model, you first have to choose an
appropriate family, and then you have to select the appropriate parameters for that family.

Uniform Distribution

The uniform distribution is the “flat” distribution illustrated in Figure 15.7. It is bounded
by a minimum and a maximum, and all values between these two extremes are equally
likely. You can think of this as the “I have no idea” distribution. For example, a manager
might realize that a building cost is uncertain. If she can state only that, “I know the cost
will be between $20,000 and $30,000, but other than this, I have no idea what the cost
will be,” then a uniform distribution from $20,000 to $30,000 is a natural choice. However,
even though some people do use the uniform distribution in such cases, these situations are
arguably not very common or realistic. If the manager really thinks about it, she can prob-
ably provide more information about the uncertain cost, such as, “The cost is more likely
to be close to $25,000 than to either of the extremes.” Then some distribution other than
the uniform is more appropriate.

Regardless of whether the uniform distribution is an appropriate candidate as an input
distribution, it is important for another reason. All simulation software packages, including
Excel, are capable of generating random numbers uniformly distributed between 0 and 1.
These are the building blocks of most simulated random numbers, in that random numbers
from other probability distributions are generated from them.
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Think of the
Probability
Distributions.xlsx
file as a “dictionary”
of the most commonly
used distributions.
Keep it handy for
reference.

4In later sections of this chapter, and all through the next chapter, we discuss much of @RISK’s functionality. For
this section, the only functionality we use is @RISK’s collection of functions, such as RISKNORMAL and
RISKTRIANG, for generating random numbers from various probability distributions. You can skim the details
of these functions for now and refer back to them as necessary in later sections.

A family of distribu-
tions has a common
name, such as “nor-
mal.” Each member of
the family is specified
by one or more numer-
ical parameters.
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In Excel, you can generate a random number between 0 and 1 by entering the formula

�RAND()

in any cell. (The parentheses to the right of RAND indicate that this is an Excel function
with no arguments. These parentheses must be included.)

Excel Function: RAND
To generate a random number equally likely to be anywhere between 0 and 1, enter the
formula �RAND() into any cell. Press the F9 key, or recalculate in any other way, to make
it change randomly.

In addition to being between 0 and 1, the numbers created by this function have two
properties that you would expect “random” numbers to have.

1. Uniform property. Each time you enter the RAND function in a cell, all numbers
between 0 and 1 have the same chance of occurring. This means that approximately
10% of the numbers generated by the RAND function will be between 0.0 and 0.1;
10% of the numbers will be between 0.65 and 0.75; 60% of the numbers will be
between 0.20 and 0.80; and so on. This property explains why the random numbers
are said to be uniformly distributed between 0 and 1.

2. Independence property. Different random numbers generated by =RAND() formu-
las are probabilistically independent. This implies that when you generate a random
number in cell A5, say, it has no effect on the values of any other random numbers
generated in the spreadsheet. For example, if one call to the RAND function yields a
large random number such as 0.98, there is no reason to suspect that the next call to
RAND will yield an abnormally small (or large) random number; it is unaffected by
the value of the first random number.

Excel Tip Besides the RAND function, there is one other function built into Excel
that generates random numbers, the RANDBETWEEN function. It takes two integer argu-
ments, as in =RANDBETWEEN(1,6), and returns a random integer between these values
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Figure 15.7

The Uniform

Distribution

The RAND function is
Excel’s “building block”
function for generating
random numbers.
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(including the endpoints) so that all such integers are equally likely. The function was
introduced in Excel 2007. (It was actually available in previous versions of Excel, but only
if the Analysis Toolpak add-in was loaded.)

To illustrate the RAND function, open a new workbook, enter the formula =RAND() in cell
A4, and copy it to the range A4:A503. This generates 500 random numbers. Figure 15.8
displays a possible set of values. However, when you try this on your PC, you will undoubt-
edly obtain different random numbers. This is an inherent characteristic of simulation—no
two answers are ever exactly alike. Now press the recalc (F9) key. All of the random
numbers will change. In fact, each time you press the F9 key or do anything to make your
spreadsheet recalculate, all of the cells containing the RAND function will change.
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A histogram of the 500 random numbers appears in Figure 15.9. (Again, if you try
this on your PC, the shape of your histogram will not be identical to the one shown in
Figure 15.9, because it will be based on different random numbers.) From property 1, you
would expect equal numbers of observations in the 10 categories. Obviously, the heights of
the bars are not exactly equal, but the differences are due to chance—not to a faulty
random number generator.
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Technical Note: Pseudo-random Numbers
The “random” numbers generated by the RAND function (or by the random number gener-
ator in any simulation software package) are not really random. They are sometimes called
pseudo-random numbers. Each successive random number follows the previous random
number by a complex arithmetic operation. If you happen to know the details of this
arithmetic operation, you can predict ahead of time exactly which random numbers will be
generated by the RAND function. This is quite different from using a “true” random mech-
anism, such as spinning a wheel, to get the next random number—a mechanism that would
be impractical to implement on a computer. Mathematicians and computer scientists have
studied many ways to produce random numbers that have the two properties we just
discussed, and they have developed many competing random number generators such as
the RAND function in Excel. The technical details need not concern you. The important
point is that these random number generators produce numbers that appear to be random
and are useful for simulation modeling.

It is simple to generate a uniformly distributed random number with a minimum and
maximum other than 0 and 1. For example, the formula

�200�100*RAND()

generates a number uniformly distributed between 200 and 300. (Make sure you see why.)
Alternatively, you can use the @RISK formula5

�RISKUNIFORM(200,300)

You can take a look at this and other properties of the uniform distribution on the Uniform
sheet in the Probability Distributions.xlsx file. (See Figure 15.10.)
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5As we have done with other Excel functions, we capitalize the @RISK functions, such as RISKUNIFORM, in
the text. However, this is not necessary when you enter the formulas in Excel.
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A B C D E F G H
Uniform distribu�on

Characteris�cs
Con�nuous
Symmetric
Bounded in both direc�ons
Not necessarily posi�ve (depends on bounds)

Parameters
05laVniM
001laVxaM

elpmaxElecxE
=MinVal + (MaxVal-MinVal)*RAND() 96.105704

@RISK
=RISKUNIFORM(MinVal,MaxVal) 96.880610

This is a flat distribu�on between two values, 
labeled here MinVal and MaxVal. Note that if 
MinVal=0 and MaxVal=1, then you can just use 
Excel's RAND func�on.

Figure 15.10 Properties of Uniform Distribution
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FREEZING RANDOM NUMBERS

The automatic recalculation of random numbers can be useful sometimes and annoying at
other times. There are situations when you want the random numbers to stay fixed—that is,
you want to freeze them at their current values. The following three-step method does this.

1. Select the range that you want to freeze, such as A4:A503 in Figure 15.8.

2. Press Ctrl-c to copy this range.

3. With the same range still selected, select the Paste Values option from the Paste
dropdown menu on the Home ribbon. This procedure pastes a copy of the range
onto itself, except that the entries are now numbers, not formulas. Therefore, when-
ever the spreadsheet recalculates, these numbers do not change.

Each sheet in the Probability Distributions.xlsx file has a list of 500 random numbers that
have been frozen. The histograms in the sheets are based on the frozen random numbers.
However, we encourage you to enter “live” random numbers in column B over the frozen
ones and see how the histogram changes when you press F9.

15.2.3 Using @RISK to Explore Probability Distributions6

The Probability Distributions.xlsx file illustrates a few frequently used probability distribu-
tions, and it shows the formulas required to generate random numbers from these distribu-
tions. Another option is to use Palisade’s @RISK add-in, which allows you to experiment with
probability distributions. Essentially, it allows you to see the shapes of various distributions
and to calculate probabilities for them, all in a user-friendly graphical interface.

To run @RISK, click on the Windows Start button, go to the Programs tab, locate the
Palisades DecisionTools suite, and select @RISK. After a few seconds, you will see the
welcome screen, which you can close. At this point, you should have an @RISK tab and
corresponding ribbon. Select a blank cell in your worksheet, and then click on Define
Distributions on left of the @RISK ribbon (see Figure 15.11). You will see one of several
galleries of distributions, depending on the tab you select. For example, Figure 15.12
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Figure 15.11 @RISK Ribbon

@RISK Function: RISKUNIFORM
To generate a random number from any uniform distribution, enter the formula
=RISKUNIFORM(MinVal,MaxVal) in any cell. Here, MinVal and MaxVal are the
minimum and maximum possible values. Note that if MinVal is 0 and MaxVal is 1, this
function is equivalent to Excel’s RAND function.

Random numbers that
have been frozen do
not change when you
press the F9 key.

6Palisade previously offered a stand-alone program called RISKview for exploring probability distributions, and
we discussed it in the previous edition. However, Palisade discontinued RISKview and instead incorporates its
functionality in @RISK.
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shows the gallery of continuous distributions. Highlight one of the distributions and click
on Select Distribution. For example, choose the uniform distribution with minimum 75 and
maximum 150. You will see the shape of the distribution and a few summary measures to
the right, as shown in Figure 15.13. For example, it indicates that the mean and standard
deviation of this uniform distribution are 112.5 and 21.65.

Everything in this window is interactive. Suppose you want to find the probability that a
value from this distribution is less than 95. You can drag the left-hand “slider” in the diagram
(the vertical line with the triangle at the top) to the position 95, as shown in Figure 15.13.
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You see immediately that the left-hand probability is 0.267. Similarly, if you want the proba-
bility that a value from this distribution is greater than 125, you can drag the right-hand slider
to the position 125 to see that the required probability is 0.3333. (Rather than sliding, you can
enter the numbers, such as 95 and 125, directly into the areas above the sliders.)

You can also enter probabilities instead of values. For example, if you want the value
such that there is probability 0.10 to the left of it—the 10th percentile—enter 10% in the
left space above the chart. You will see that the corresponding value is 82.5. Similarly, if
you want the value such that there is probability 0.10 to the right of it, enter 10% in the
right space above the chart, and you will see that the corresponding value is 142.5.

The Define Distributions window in @RISK is quick and easy. We urge you to use it
and experiment with some of its options. By the way, you can click on the third button
from the left at the bottom of the window to copy the chart into an Excel worksheet.
However, you then lose the interactive capabilities, such as moving the sliders.

Discrete Distribution

A discrete distribution is useful for many situations, either when the uncertain quantity is
not really continuous (the number of televisions demanded, for example) or when you
want a discrete approximation to a continuous variable. All you need to specify are the
possible values and their probabilities, making sure that the probabilities sum to 1.
Because of this flexibility in specifying values and probabilities, discrete distributions can
have practically any shape.

As an example, suppose a manager estimates that the demand for a particular brand of
television during the coming month will be 10, 15, 20, or 25, with respective probabilities
0.1, 0.3, 0.4, and 0.2. This typical discrete distribution is illustrated in Figure 15.14.
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Figure 15.14

Discrete

Distribution (from

@RISK)

The interactive
capabilities of @RISK’s
Define Distributions
window, with its sliders,
make it perfect for
finding probabilities or
percentiles for any
given distribution.

The Discrete sheet of the Probability Distributions.xlsx file indicates how to work
with a discrete distribution. (See Figure 15.15.) As you can see, there are two quite differ-
ent ways to generate a random number from this distribution. We discuss the Excel way in
detail in section 15.4. For now, we simply mention that this is one case (of many) where it
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is much easier to generate random numbers with @RISK functions than with built-in
Excel functions. Assuming that @RISK is loaded, all you need to do is enter the function
RISKDISCRETE with two arguments, a list of possible values and a list of their probabil-
ities, as in

�RISKDISCRETE(B11:B14,C11:C14)

The Excel way, which requires cumulative probabilities and a lookup table, takes more
work and is harder to remember.
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@RISK’s way of
generating a discrete
random number is
much simpler and
more intuitive than
Excel’s method, which
requires cumulative
probabilities and a
lookup function.
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General discrete distribu�on

Characteris�cs
Discrete
Can be symmetric or skewed (or bumpy, i.e., basically any shape)
Bounded in both direc�ons
Not necessarily posi�ve (depends on possible values)

Parameters Lookup table required for Excel method
Values Probabili�es CumProb Value

0101.001
15 0.3 0.1 15
20 0.4 0.4 20
25 0.2 0.8 25

elpmaxElecxE
=VLOOKUP(RAND(),LookupTable,2) 10

@RISK
02)sborP,seulaV(ETERCSIDKSIR=

This can have any shape, depending 
on the list of possible values and their 
probabili�es.

Figure 15.15 Properties of a Discrete Distribution

@RISK Function: RISKDISCRETE
To generate a random number from any discrete probability distribution, enter the
formula =RISKDISCRETE(valRange,probRange) into any cell. Here valRange is the
range where the possible values are stored, and probRange is the range where their
probabilities are stored.

At this point, a relevant question is why a manager would choose this particular
discrete distribution. First, it is clearly an approximation. After all, if it is possible to have
demands of 20 and 25, it should also be possible to have demands between these values.
Here, the manager approximates a discrete distribution with many possible values—all
integers from 0 to 50, say—with a discrete distribution with a few well-chosen values. This
is common in simulation modeling. Second, where do the probabilities come from? They
are probably a blend of historical data (perhaps demand was near 15 in 30% of previous
months) and the manager’s subjective feelings about demand next month.

Normal Distribution

The normal distribution is the familiar bell-shaped curve that was discussed in detail in
Chapter 5. (See Figure 15.16.) It is useful in simulation modeling as a continuous input

The selected input
distributions for any
simulation model
reflect historical data
and an analyst’s best
judgment as to what
will happen in the
future.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



distribution. However, it is not always the most appropriate distribution. It is symmetric,
which can be a drawback when a skewed distribution is more realistic. Also, it allows
negative values, which are not appropriate in many situations. For example, the demand for
televisions cannot be negative. Fortunately, this possibility of negative values is often not a
problem. Suppose you generate a normally distributed random number with mean 100 and
standard deviation 20. Then, as you should recall from Chapter 5, there is almost no
chance of having values more than three standard deviations to the left of the mean, and
this rules out negative values for all practical purposes.

A tip-off that a normal distribution might be an appropriate candidate for an input
variable is a statement such as, “We believe the most likely value of demand is 100, and the
chances are about 95% that demand will be no more than 40 units on either of side of this
most likely value.” Because a normally distributed value is within two standard deviations
of its mean with probability 0.95, this statement translates easily to a mean of 100 and a
standard deviation of 20. This does not imply that a normal distribution is the only candi-
date for the distribution of demand, but the statement naturally leads to this distribution.

The Normal sheet in the Probability Distributions.xlsx file indicates how you can
generate normally distributed random numbers in Excel, either with or without @RISK.
(See Figure 15.17.) This is one case where an add-in is not really necessary. The formula

�NORMINV(RAND(),Mean,Stdev)

always works. Still, this is not as easy to remember as @RISK’s formula

�RISKNORMAL(Mean,Stdev)
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Normally distributed
random numbers will
almost certainly be
within three standard
deviations of the mean.

Figure 15.16

Normal Distribution

(from @RISK)

@RISK Function: RISKNORMAL
To generate a normally distributed random number, enter the formula =RISKNOR-
MAL(Mean,Stdev) in any cell. Here, Mean and Stdev are the mean and standard
deviation of the normal distribution.
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Triangular Distribution

The triangular distribution is somewhat similar to the normal distribution in that its den-
sity function rises to some point and then falls, but it is more flexible and intuitive than the
normal distribution. Therefore, it is an excellent candidate for many continuous input
variables. The shape of a triangular density function is literally a triangle, as shown in
Figure 15.18. It is specified by three easy-to-understand parameters: the minimum possible
value, the most likely value, and the maximum possible value. The high point of the triangle
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Figure 15.18

Triangular

Distribution (from

@RISK)

A triangular distribu-
tion is a good choice in
many simulation mod-
els because it can have
a variety of shapes and
its parameters are
easy to understand.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

A B C D E F G H
Normal distribu�on

Characteris�cs
Con�nuous
Symmetric (bell-shaped)
Unbounded in both direc�ons
Is both posi�ve and nega�ve

Parameters
001naeM
01vedtS

elpmaxElecxE
=NORMINV(RAND(),Mean,Stdev) 96.41946055

@RISK
=RISKNORMAL(Mean,Stdev) 90.3093316

This is the familiar bell-shaped curve, defined by 
two parameters: the mean and the standard 
devia�on.

Figure 15.17 Properties of the Normal Distribution
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is above the most likely value. Therefore, if a manager states, “We believe the most likely
development cost is $1.5 million, and we don’t believe the development cost could possibly
be less than $1.2 million or greater than $2.1 million,” the triangular distribution with these
three parameters is a natural choice. As in this numerical example, note that the triangular
distribution can be skewed if the mostly likely value is closer to one extreme than another.
Of course, it can also be symmetric if the most likely value is right in the middle.

The Triangular sheet of the Probability Distributions.xlsx file indicates how to gen-
erate random values from this distribution. (See Figure 15.19.) As you can see, there is no
way to do it with native Excel (at least not without a macro). However, it is easy with
@RISK, using the RISKTRIANG function, as in

�RISKTRIANG(B10,B11,B12)

This function takes three arguments: the minimum value, the most likely value, and the
maximum value—in this order and separated by commas. You will see this function in
many of our examples. Just remember that it has an abbreviated spelling: RISKTRIANG,
not RISKTRIANGULAR.
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1
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3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A B C D E F G H I J
Triangular distribu�on

Characteris�cs
Con�nuous
Can be symmetric or skewed in either direc�on
Bounded in both direc�ons
Not necessarily posi�ve (depends on bounds)

Parameters
05niM
58ylekiLtsoM
001xaM

Excel
There is no easy way to do it except by wri�ng a macro.

elpmaxEKSIR@
=RISKTRIANG(Min,MostLikely,Max) 62.61066937

The density of this distribu�on is literally a triangle. The "top" of the 
triangle is above the most likely value, and the base of the triangle 
extends from the minimum value to the maximum value. It is 
intui�ve for nontechnical people because the three parameters are 
meaningful.

Figure 15.19 Properties of the Triangular Distribution

@RISK Function: RISKTRIANG
To generate a random number from a triangular distribution, enter the formula =RISK-
TRIANG (MinVal,MLVal,MaxVal) in any cell. Here, MinVal is the minimum possible
value, MLVal is the most likely value, and MaxVal is the maximum value.

Binomial Distribution

The binomial distribution is a discrete distribution that was discussed extensively in
Chapter 5. Recall that the binomial distribution applies to a very specific situation: when a
number of independent and identical trials occur, and each trial results in a success or fail-
ure. Then the binomial random number is the number of successes in these trials. The two
parameters of this distribution, n and p, are the number of trials and the probability of
success on each trial.
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As an example, suppose an airline company sells 170 tickets for a flight and estimates
that 80% of the people with tickets will actually show up for the flight. How many people
will actually show up? It is tempting to state that exactly 80% of 170, or 136 people, will
show up, but this neglects the inherent randomness. A more realistic way to model this
situation is to say that each of the 170 people, independently of one another, will show up
with probability 0.8. Then the number of people who actually show up is binomially
distributed with n � 170 and p � 0.8. (This assumes independent behavior across passen-
gers, which might not be the case, for example, if whole families either show up or don’t.)
This distribution is illustrated in Figure 15.20.
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A random number
from a binomial
distribution indicates
the number of
successes in a certain
number of identical
trials.

Figure 15.20

Binomial

Distribution (from

@RISK)

The Binomial sheet of the Probability Distributions.xlsx file indicates how to gener-
ate random numbers from this distribution. (See Figure 15.21.) Although it is possible to
do this with Excel using the built-in CRITBINOM function and the RAND function, it is
not very intuitive or easy to remember. Clearly, the @RISK way is preferable. In the airline
example, you would generate the number who show up with the formula

�RISKBINOMIAL(170,0.8)

Note that the histogram in this figure is approximately bell-shaped. This is no accident.
When the number of trials n is reasonably large and p isn’t too close to 0 or 1, the binomial
distribution can be well approximated by the normal distribution.

@RISK Function: RISKBINOMIAL
To generate a random number from a binomial distribution, enter the formula
=RISKBINOMIAL(NTrials,PSuccess) in any cell. Here, NTrials is the number of tri-
als, and PSuccess is the probability of a success on each trial.

A common question asked by students is which distribution to use for a given uncer-
tain quantity such as the price of oil, the demand for laptops, and so on. Admittedly, the
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choices we make in later examples are sometimes for convenience. However, in real busi-
ness situations the choice is not always clear-cut, and it can make a difference in the
results. Stanford professor Sam Savage and two of his colleages discuss this choice in a
series of two articles on “Probability Management.” (These articles are available online at
http://lionhrtpub.com/orms/orms-2-06/frprobability.html and http://lionhrtpub.com/orms/
orms-4-06/frprobability.html.) They argue that with the increasing importance of simula-
tion models in today’s business world, input distributions should not only be chosen care-
fully, but they should be kept and maintained as important corporate assets. They shouldn’t
just be chosen in some ad hoc fashion every time they are needed. For example, if the price
of oil is an important input in many of a company’s decisions, then experts within the
company should assess an appropriate distribution for the price of oil and modify it as
necessary when new information arises. The authors even suggest a new company posi-
tion, Chief Probability Officer, to control access to the company’s probability distributions.

So as you are reading these final two chapters, keep Savage’s ideas in mind. The
choice of probability distributions for inputs is not easy, yet neither is it arbitrary.
The choice can make a difference in the results. This is the reason why you want as many
families of probability distributions in your toolbox as possible. You then have more
flexibility to choose a distribution that is appropriate for your situation. 
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A B C D E F G H
Binomial distribu�on

Characteris�cs
Discrete
Can be symmetric or skewed
Bounded below by 0, bounded above by Ntrials
Nonnega�ve

This distribu�on is of the number of "successes" in a 
given number of iden�cal, independent trials, when the 
probability of success is constant on each trial.

7
8
9

10
11
12
13
14
15

Nonnega�ve

Parameters
071slairTN
8.0sseccuSP

elpmaxElecxE
=CRITBINOM(NTrials,PSuccess,RAND()) 139

15
16
17

@RISK
331)sseccuSP,slairTN(LAIMONIBKSIR=

This distribu�on is of the number of "successes" in a 
given number of iden�cal, independent trials, when the 
probability of success is constant on each trial.

Figure 15.21 Properties of the Binomial Distribution

P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. Use the RAND function and the Copy command to
generate a set of 100 random numbers.
a. What fraction of the random numbers are smaller

than 0.5?

b. What fraction of the time is a random number
less than 0.5 followed by a random number greater
than 0.5?

c. What fraction of the random numbers are larger
than 0.8?

d. Freeze these random numbers. However, instead of
pasting them over the original random numbers,
paste them onto a new range. Then press the F9
recalculate key. The original random numbers
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should change, but the pasted copy should remain
the same.

2. Use Excel’s functions (not @RISK) to generate 1000
random numbers from a normal distribution with
mean 100 and standard deviation 10. Then freeze these
random numbers.
a. Calculate the mean and standard deviation of these

random numbers. Are they approximately what
you would expect?

b. What fraction of these random numbers are within
k standard deviations of the mean? Answer for 
k � 1; for k � 2; for k � 3. Are the answers close
to what they should be (according to the empirical
rules you learned in Chapters 2 and 5)?

c. Create a histogram of the random numbers using
10 to 15 categories of your choice. Does this
histogram have approximately the shape you
would expect?

3. Use @RISK to draw a uniform distribution from 400
to 750. Then answer the following questions.
a. What are the mean and standard deviation of this

distribution?
b. What are the 5th and 95th percentiles of this

distribution?
c. What is the probability that a random number from

this distribution is less than 450?
d. What is the probability that a random number from

this distribution is greater than 650?
e. What is the probability that a random number from

this distribution is between 500 and 700?

4. Use @RISK to draw a normal distribution with mean
500 and standard deviation 100. Then answer the
following questions.
a. What is the probability that a random number from

this distribution is less than 450?
b. What is the probability that a random number from

this distribution is greater than 650?
c. What is the probability that a random number from

this distribution is between 500 and 700?

5. Use @RISK to draw a triangular distribution with
parameters 300, 500, and 900. Then answer the
following questions.
a. What are the mean and standard deviation of this

distribution?
b. What are the 5th and 95th percentiles of this

distribution?
c. What is the probability that a random number from

this distribution is less than 450?
d. What is the probability that a random number from

this distribution is greater than 650?
e. What is the probability that a random number from

this distribution is between 500 and 700?

6. Use @RISK to draw a binomial distribution that
results from 50 trials with probability of success 0.3

on each trial, and use it to answer the following
questions.
a. What are the mean and standard deviation of this

distribution?
b. You have to be more careful in interpreting @RISK

probabilities with a discrete distribution such as
this binomial. For example, if you move the left
slider to 11, you find a probability of 0.139 to the
left of it. But is this the probability of “less than
11” or “less than or equal to 11”? One way to
check is to use Excel’s BINOMDIST function. Use
this function to interpret the 0.139 value from
@RISK.

c. Using part b to guide you, use @RISK to find
the probability that a random number from this
distribution will be greater than 17. Check your
answer by using the BINOMDIST function
appropriately in Excel.

7. Use @RISK to draw a triangular distribution with
parameters 200, 300, and 600. Then superimpose a
normal distribution on this drawing, choosing the
mean and standard deviation to match those from the
triangular distribution. (Click on the Add Overlay
button and then choose the distribution to
superimpose.)
a. What are the 5th and 95th percentiles for these two

distributions?
b. What is the probability that a random number from

the triangular distribution is less than 400? What is
this probability for the normal distribution?

c. Experiment with the sliders to answer questions
similar to those in part b. Would you conclude that
these two distributions differ most in the extremes
(right or left) or in the middle? Explain.

8. We all hate to keep track of small change. By using
random numbers, it is possible to eliminate the
need for change and give the store and the customer
a fair deal. This problem indicates how it could
be done.
a. Suppose that you buy something for $0.20. How

could you use random numbers (built into the cash
register system) to decide whether you should pay
$1.00 or nothing? 

b. If you bought something for $9.60, how would
you use random numbers to eliminate the need for
change?

c. In the long run, why is this method fair to both the
store and the customers? Would you personally (as
a customer) be willing to abide by such a system?

Level B

9. A company is about to develop and then market a
new product. It wants to build a simulation model for
the entire process, and one key uncertain input is the
development cost. For each of the following scenarios,
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choose an appropriate distribution together with its
parameters, justify your choice in words, and use
@RISK to draw your chosen distribution.
a. Company experts have no idea what the

distribution of the development cost is. All they
can state is “we are 95% sure it will be at least
$450,000, and we are 95% sure it will be no more
than $650,000.”

b. Company experts can still make the same statement
as in part a, but now they can also state: “We
believe the distribution is symmetric, reasonably
bell-shaped, and its most likely value is about
$550,000.”

c. Company experts can still make the same statement
as in part a, but now they can also state: “We
believe the distribution is skewed to the right, and
its most likely value is about $500,000.”

10. Continuing the preceding problem, suppose that
another key uncertain input is the development time,

which is measured in an integer number of months.
For each of the following scenarios, choose an
appropriate distribution together with its parameters,
justify your choice in words, and use @RISK to draw
your chosen distribution.
a. Company experts believe the development time

will be from 6 to 10 months, but they have
absolutely no idea which of these will result.

b. Company experts believe the development time
will be from 6 to 10 months. They believe the
probabilities of these five possible values will
increase linearly to a most likely value at 8 months
and will then decrease linearly.

c. Company experts believe the development time
will be from 6 to 10 months. They believe that
8 months is twice as likely as either 7 months or
9 months and that either of these latter possibilities
is three times as likely as either 6 months or
10 months.
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15.3 SIMULATION AND THE FLAW OF AVERAGES

To help motivate simulation modeling in general, we present a simple example in this sec-
tion. It will clearly show the distinction between Figure 15.1 (a deterministic model with
best-guess inputs) and Figure 15.2 (an appropriate simulation model). In doing so, it will
illustrate a pitfall called the “flaw of averages” that you should always try to avoid.7

7As far as we know, the term “flaw of averages” was coined by Sam Savage, the same Stanford professor quoted
earlier.

E X A M P L E 15.1 ORDERING CALENDARS AT WALTON BOOKSTORE

In August, Walton Bookstore must decide how many of next year’s nature calendars to
order. Each calendar costs the bookstore $7.50 and sells for $10. After January 1, all

unsold calendars will be returned to the publisher for a refund of $2.50 per calendar.
Walton believes that the number of calendars it can sell by January 1 follows some proba-
bility distribution with mean 200. Walton believes that ordering to the average demand,
that is, ordering 200 calendars, is a good decision. Is it?

Objective To illustrate the difference between a deterministic model with a best guess
for uncertain inputs and a simulation model that incorporates uncertainty explicitly.

WHERE DO THE NUMBERS COME FROM?

The monetary values are straightforward. The mean demand is probably an estimate based
on historical demands for similar calendars. 

Solution

A deterministic model appears in Figure 15.22. (See the file Walton Bookstore 1.xlsx.
Assuming the best guess for demand, Walton orders to this average value, and it appears
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that the company’s best guess for profit is $500. (The formulas in cells B16:F16
are straightforward. Anticipating that the order quantity and demand will not always
be equal, they are �B9, �B5*MIN(B9,B12), �B4*B12, �B6*MAX(B12-B9,0), and
�C16-D16�E16.) Before reading further, do you believe that the average profit will be
$500 when uncertainty in demand is introduced explicitly (and the company still orders
200 calendars)? Think what happens to profit when demand is less than 200 and when it is
greater than 200. Are these two cases symmetric?

We now contrast this with a simulation model where the demand in cell B9 is replaced
by a random number. For this example, we assume that demand is normally distributed
with mean 200 and standard deviation 40, although these specific assumptions are not cru-
cial for the qualitative aspects of the example. All you need to do is enter the formula
�ROUND(RISKNORMAL(200,40),0) in cell B9, where the ROUND function has been
used to round to the nearest integer. Now the model appears as in Figure 15.23.

The random demand in cell B9 is now live, as are its dependents in row 16, so each
time you press the F9 key, you get a new demand and associated profit. Do you get about
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A B C D E F
Walton's bookstore - determinis�c model

Cost data
Unit 05.7$tsoc
Unit price $10.00
Unit refund $2.50

Uncertain quan�ty
Demand (average shown) 200

Decision variable
Order quan�ty 200

Profit model
Demand Revenue Cost Refund Profit

200 $2,000.00 $1,500.00 $0.00 $500.00

Figure 15.22

Deterministic Model

1
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A B C D E F
Walton's bookstore - simula�on model

Cost data
Unit 05.7$tsoc
Unit price $10.00
Unit refund $2.50

Uncertain quan�ty (assumed normal with mean 200, stdev 40)
Demand (random) 263

Decision variable
Order quan�ty 200

Profit model
Demand Revenue Cost Refund Profit

263 $2,000.00 $1,500.00 $0.00 $500.00

Figure 15.23

Simulation Model
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$500 in profit on average? Absolutely not! The situation isn’t symmetric. The largest profit
you can get is $500, which occurs about half the time, whenever demand is greater than
200. A typical such situation appears in the figure, where the excess demand of 63 is
simply lost. However, when demand is less than 200, the profit is less than $500, and it
keeps decreasing as demand decreases.

We ran @RISK with 1000 iterations (which will be explained in detail in section 15.5)
and found the resulting histogram of 1000 simulated profits shown in Figure 15.24. The
large spike on the right is due to the cases where demand is 200 or more and profit is $500.
All the little spikes to the left are where demand is less than 200 and profit is less than
$500, sometimes considerably less. You can see on the right that the mean profit, the
average of the 1000 simulated profits, is only about $380, well less than the $500
suggested by the deterministic model.
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Figure 15.24

Histogram of

Simulated Profits

The point of this simple example is that a deterministic model can be very misleading.
In particular, the output from a deterministic model that uses best guesses for uncertain
inputs is not necessarily equal to, or even close to, the average of the output from a simula-
tion. This is exactly what “the flaw of averages” means. ■

FUNDAMENTAL INSIGHT

The Flaw of Averages

If a model contains uncertain inputs, it can be very mis-

leading to build a deterministic model by using the

means of the inputs to predict an output. The resulting

output value can be considerably different—lower or

higher—than the mean of the output values obtained

from running a simulation with uncertainty incorpo-

rated explicitly.
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15.4 SIMULATION WITH BUILT-IN EXCEL TOOLS

In this section, we show how spreadsheet simulation models can be developed and ana-
lyzed with Excel’s built-in tools without using add-ins. As you will see, this is certainly
possible, but it presents two problems. First, the @RISK functions illustrated in the
Probability Distributions.xlsx file are not available. You are able to use only Excel’s
RAND function and transformations of it to generate random numbers from various prob-
ability distributions. Second, there is a bookkeeping problem. Once you build an Excel
model with output cells linked to appropriate random input cells, you can press the F9 key
as often as you like to see how the outputs vary. However, there is no quick way to keep
track of these output values and summarize them. This bookkeeping feature is the real
strength of a simulation add-in such as @RISK. It can be done with Excel, usually with
data tables, but the summarization of the resulting data is completely up to the user—you.
Therefore, we strongly recommend that you use the “Excel-only” method described in this
section only if you don’t have an add-in such as @RISK. 

To illustrate the Excel-only procedure, we continue analyzing the calendar problem from
Example 15.1. This general problem occurs when a company (such as a news vendor) must
make a one-time purchase of a product (such as a newspaper) to meet customer demands for a
certain period of time. If the company orders too few newspapers, it will lose potential profit
by not having enough on hand to satisfy its customers. If it orders too many, it will have news-
papers left over at the end of the day that, at best, can be sold at a loss. More generally, the
problem is to match supply to an uncertain demand, a very common problem in business. In
much of the rest of this chapter, we will discuss variations of this problem.
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E X A M P L E 15.2 SIMULATING WITH EXCEL ONLY AT WALTON BOOKSTORE

Recall that Walton Bookstore must decide how many of next year’s nature calendars to
order. Each calendar costs the bookstore $7.50 and sells for $10. After January 1, all

unsold calendars will be returned to the publisher for a refund of $2.50 per calendar. In this
version, we assume that demand for calendars (at the full price) is given by the probability
distribution shown in Table 15.1. Walton wants to develop a simulation model to help it
decide how many calendars to order.

Table 15.1 Probability Distribution of Demand for Walton Example

Demand Probability

100 0.30
150 0.20
200 0.30
250 0.15
300 0.05 

Objective To use built-in Excel tools—including the RAND function and data tables,
but no add-ins—to simulate profit for several order quantities and ultimately choose the
“best” order quantity.

WHERE DO THE NUMBERS COME FROM?

The numbers in Table 15.1 are the key to the simulation model. They are discussed in more
detail next.
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Solution

We first discuss the probability distribution in Table 15.1. It is a discrete distribution with
only five possible values: 100, 150, 200, 250, and 300. In reality, it is clear that other values
of demand are possible. For example, there could be demand for exactly 187 calendars. In
spite of its apparent lack of realism, we use this discrete distribution for two reasons. First,
its simplicity is a nice feature to get you started with simulation modeling. Second, discrete
distributions are often used in real business simulation models. Even though the discrete
distribution is only an approximation to reality, it can still provide important insights into
the actual problem.

As for the probabilities listed in Table 15.1, they are typically drawn from historical
data or (if historical data are lacking) educated guesses. In this case, the manager of Walton
Bookstore has presumably looked at demands for calendars in previous years, and he has
used any information he has about the market for next year’s calendars to estimate, for
example, that the probability of a demand for 200 calendars is 0.30. The five probabilities
in this table must sum to 1. Beyond this requirement, they should be as reasonable and
consistent with reality as possible.

It is important to realize that this is really a decision problem under uncertainty.
Walton must choose an order quantity before knowing the demand for calendars.
Unfortunately, Solver cannot be used because of the uncertainty.8 Therefore, we develop a
simulation model for any fixed order quantity. Then we run this simulation model with
various order quantities to see which one appears to be best.

DEVELOPING THE SIMULATION MODEL

Now we discuss the ordering model. For any fixed order quantity, we show how Excel can
be used to simulate 1000 replications (or any other number of replications). Each replica-
tion is an independent replay of the events that occur. To illustrate, suppose you want to
simulate profit if Walton orders 200 calendars. Figure 15.25 illustrates the results obtained
by simulating 1000 independent replications for this order quantity. (See the file Walton
Bookstore 2.xlsx.) Note that there are many hidden rows in Figure 15.25. To develop this
model, use the following steps.

1 Inputs. Enter the cost data in the range B4:B6, the probability distribution of demand
in the range E5:F9, and the proposed order quantity, 200, in cell B9. Pay particular atten-
tion to the way the probability distribution is entered (and compare to the Discrete sheet in
the Probability Distributions.xlsx file). Columns E and F contain the possible demand
values and the probabilities from Table 15.1. It is also necessary (see step 2 for the reason-
ing) to have the cumulative probabilities in column D. To obtain these, first enter the value
0 in cell D5. Then enter the formula

�F5+D5

in cell D6 and copy it to the range D7:D9.

2 Generate random demands. The key to the simulation is the generation of the
customer demands in the range B19:B1018 from the random numbers generated by
the RAND function and the probability distribution of demand. Here is how it works.
The interval from 0 to 1 is split into five segments: 0.0 to 0.3 (length 0.3), 0.3 to 0.5
(length 0.2), 0.5 to 0.8 (length 0.3), 0.8 to 0.95 (length 0.15), and 0.95 to 1.0 (length 0.05).
Note that these lengths are the probabilities of the various demands. Then a demand is
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associated with each random number, depending on which interval the random number
falls in. For example, if a random number is 0.5279, this falls in the third interval, so it is
associated with the third possible demand value, 200.

To implement this procedure, you use a VLOOKUP function based on the range
D5:F9 (named LookupTable). This table has the cumulative probabilities in column D and
the possible demand values in column E. In fact, the whole purpose of the cumulative
probabilities in column D is to allow the use of the VLOOKUP function. To generate the
simulated demands, enter the formula

�VLOOKUP(RAND(),LookupTable,2)

in cell B19 and copy it to the range B20:B1018. This formula compares any RAND value
to the values in D5:D9 and returns the appropriate demand from E5:E9. (In the file, you
will note that random cells are colored green. This coloring convention is not required, but
we use it consistently to identify the random cells.)

This step is the key to the simulation, so make sure you understand exactly what it
entails. The rest is bookkeeping, as indicated in the following steps.

3 Revenue. Once the demand is known, the number of calendars sold is the smaller of
the demand and the order quantity. For example, if 150 calendars are demanded, 150 will
be sold. But if 250 are demanded, only 200 can be sold (because Walton orders only 200).
Therefore, to calculate the revenue in cell C19, enter the formula

�Unit_price*MIN(B19,Order_quantity)

4 Ordering cost. The cost of ordering the calendars does not depend on the demand; it is
the unit cost multiplied by the number ordered. Calculate this cost in cell D19 with the formula

�Unit_cost*Order_quantity
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simula�on

Simula�on Distribu�on

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1016
1017
1018

A B C D E F G H I J
Cost dnameDatad  egnaRnoitubirtsid  names used:
Unit cost $7.50 Cum Prob Demand Probability LookupTable =Model!$D$5:$F$9
Unit price $10.00 0.00 100 0.30 Order_quan�ty =Model!$B$9
Unit refund $2.50 0.30 150 0.20 Unit_cost =Model!$B$4

0.50 200 0.30 Unit_price =Model!$B$5
Decision variable 0.80 250 0.15 Unit_refund =Model!$B$6
Order quan�ty 200 0.95 300 0.05

Summary measures for  below
Average profit $193.63 95% confidence interval for expected profit
Stdev of profit $331.68 Lower limit $173.07
Minimum profit -$250.00 Upper limit $214.18
Maximum profit $500.00

 of profit
ycneuqerFeulaVtiforPdnufeRtsoCeuneveRdnameDnoitacilpeR

1 100 $1,000 $1,500 $250 -$250 -250 316
581521521$521$005,1$005,1$0512
994005005$0$005,1$000,2$0023

4 100 $1,000 $1,500 $250 -$250
5 100 $1,000 $1,500 $250 -$250

998 200 $2,000 $1,500 $0 $500
999 200 $2,000 $1,500 $0 $500

1000 200 $2,000 $1,500 $0 $500

Figure 15.25 Walton Bookstore Simulation Model

This rather cumber-
some procedure for
generating a discrete
random number is not
necessary when you
use @RISK.
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5 Refund. If the order quantity is greater than the demand, there is a refund of $2.50
for each calendar left over; otherwise, there is no refund. Therefore, calculate the refund in
cell E19 with the formula

�Unit_refund*MAX(Order_quantity-B19,0)

For example, if demand is 150, then 50 calendars are left over, and this MAX is 50, the
larger of 50 and 0. However, if demand is 250, then no calendars are left over, and this
MAX is 0, the larger of –50 and 0. (This calculation could also be accomplished with an IF
function instead of a MAX function.)

6 Profit. Calculate the profit in cell F19 with the formula

�C19�E19-D19

7 Copy to other rows. This is a “one-line” simulation, where all of the logic is captured
in a single row, row 19. For one-line simulations, you can replicate the logic with new ran-
dom numbers very easily by copying down. Copy row 19 down to row 1018 to generate
1000 replications.

8 Summary measures. Each profit value in column F corresponds to one randomly
generated demand. You usually want to see how these vary from one replication to another.
First, calculate the average and standard deviation of the 1000 profits in cells B12 and B13
with the formulas

�AVERAGE(F19:F1018)

and

�STDEV(F19:F1018)

Similarly, calculate the smallest and largest of the 1000 profits in cells B14 and B15 with
the MIN and MAX functions.

9 Confidence interval for mean profit. Calculate a 95% confidence interval for the
mean profit in cells E13 and E14 with the formulas

�B12�1.96*B13/SQRT(1000)

and

�B12�1.96*B13/SQRT(1000)

(See the next section on confidence intervals for details.)

10 Distribution of simulated profits. There are only three possible profits, �$250,
$125, or $500 (depending on whether demand is 100, 150, or at least 200—see the follow-
ing discussion). You can use the COUNTIF function to count the number of times each of
these possible profits is obtained. To do so, enter the formula

�COUNTIF($F$19:$F$1018,H19)

in cell I19 and copy it down to cell I21.

Checking Logic with Deterministic Inputs

It can be difficult to check whether the logic in your model is correct, because of the random
numbers. The reason is that you usually get different output values, depending on the partic-
ular random numbers generated. Therefore, it is sometimes useful to enter well-chosen fixed
values for the random inputs, just to see whether your logic is correct. We call these deter-
ministic checks. In the present example, you might try several fixed demands, at least one of
which is less than the order quantity and at least one of which is greater than the order quan-
tity. For example, if you enter a fixed demand of 150, the revenue, cost, refund, and profit
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should be $1500, $1500, $125, and $125, respectively. Or if you enter a fixed demand of 250,
these outputs are $2000, $1500, $0, and $500. There is no randomness in these values; every
correct model should get these same values. If your model doesn’t get these values, there
must be a logic error in your model that has nothing to do with random numbers or simula-
tion. Of course, you should fix any such logical errors before reentering the random demand
and running the simulation.

You can make a similar check by keeping the random demand, repeatedly pressing the
F9 key, and watching the outputs for the different random demands. For example, if the
refund is not $0 every time demand exceeds the order quantity, you know you have a logi-
cal error in at least one formula. The advantage of deterministic checks is that you can
compare your results with those of other users, using agreed-upon test values of the ran-
dom quantities. You should all get exactly the same outputs. 

Discussion of the Simulation Results

At this point, it is a good idea to stand back and see what you have accomplished. First, in
the body of the simulation, rows 19 through 1018, you randomly generated 1000 possible
demands and the corresponding profits. Because there are only five possible demand
values (100, 150, 200, 250, and 300), there are only five possible profit values: �$250,
$125, $500, $500, and $500. Also, note that for the order quantity 200, the profit is $500
regardless of whether demand is 200, 250, or 300. (Make sure you understand why.)
A tally of the profit values in these rows, including the hidden rows, indicates that there are
316 rows with profit equal to �$250 (demand 100), 185 rows with profit equal to $125
(demand 150), and 499 rows with profit equal to $500 (demand 200, 250, or 300). The
average of these 1000 profits is $193.63, and their standard deviation is $331.68. (Again,
however, remember that your answers will probably differ from these because of different
random numbers.)

Typically, a simulation model should capture one or more output variables, such as
profit. These output variables depend on random inputs, such as demand. The goal is to
estimate the probability distributions of the outputs. In the Walton simulation the estimated
probability distribution of profit is

P(Profit � �$250) � 316/1000 � 0.316

P(Profit � $125) � 185/1000 � 0.185

P(Profit � $500) � 499/1000 � 0.499

The estimated mean of this distribution is $193.63 and the estimated standard deviation
is $331.68. It is important to realize that if the entire simulation is run again with dif-
ferent random numbers (such as the ones you might have generated on your PC), the
answers will probably be slightly different. This is the primary reason for the confi-
dence interval in cells E13 and E14. This interval expresses the remaining uncertainty
about the mean of the profit distribution. Your best guess for this mean is the average of
the 1000 profits you happened to observe. However, because the corresponding
confidence interval is somewhat wide, from $173.07 to $214.18, you are not at all sure
of the true mean of the profit distribution. You are only 95% confident that the true
mean is within this interval. If you run this simulation again with different random
numbers, the average profit might be somewhat different from the average profit you
observed, $193.63, and the other summary statistics will probably also be different.
(For illustration, we pressed the F9 key five times and got the following average profits:
$213.88, $206.00, $212.75, $219.50, and $189.50. So this is truly a case of “answers
will vary.”)
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For this particular
model, the output
distribution is also
discrete:There are 
only three possible
profits for an order
quantity of 200.
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Notes about Confidence Intervals

It is common in computer simulations to estimate the mean of some distribution by the
average of the simulated observations. The usual practice is then to accompany this esti-
mate with a confidence interval, which indicates the accuracy of the estimate. You should
recall from Chapter 8 that to obtain a confidence interval for the mean, you start with the
estimated mean and then add and subtract a multiple of the standard error of the estimated
mean. If the estimated mean (that is, the average) is , the confidence interval is given in
the following formula.

X
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The confidence 
interval provides a
measure of accuracy 
of the mean profit, as
estimated from the
simulation.

Confidence Interval for the Mean

X ; (Multiple * Standard Error of X)

Approximate 95% Confidence Interval for the Mean

X ; 2s/1n

Sample Size Determination

n =

4 * (Estimated standard deviation)2

B2

Standard Error of 

s/1n

X

The standard error of is the standard deviation of the observations divided by the
square root of n, the number of observations:

XWe repeat these 
basic facts about
confidence intervals
from Chapter 8 
here for your
convenience.

Here, s is the symbol for the standard deviation of the observations. You can obtain it
with the STDEV function in Excel.

The multiple in the confidence interval formula depends on the confidence level and
the number of observations. If the confidence level is 95%, for example, then the multiple
is usually very close to 2, so a good guideline is to go out two standard errors on either side
of the average to obtain an approximate 95% confidence interval for the mean.

To be more precise, if n is reasonably large, which is almost always the case in simula-
tions, the central limit theorem implies that the correct multiple is the number from the stan-
dard normal distribution that cuts off probability 0.025 in each tail. This is a famous number in
statistics: 1.96. Because 1.96 is very close to 2, it is acceptable for all practical purposes to use
2 instead of 1.96 in the confidence interval formula. (Note that you should use a different mul-
tiple if you want a 90% or a 99% confidence level rather than a 95% level.)

Analysts often plan a simulation so that the confidence interval for the mean of some
important output will be sufficiently narrow. The reasoning is that narrow confidence
intervals imply more precision about the estimated mean of the output variable. If the con-
fidence level is fixed at some value such as 95%, the only way to narrow the confidence
interval is to simulate more replications. Assuming that the confidence level is 95%, the
following value of n is required to ensure that the resulting confidence interval will have a
half-length approximately equal to some specified value B:

The idea is to choose
the number of itera-
tions large enough so
that the resulting 
confidence interval 
will be sufficiently 
narrow.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



This formula requires an estimate of the standard deviation of the output variable.
For example, in the Walton simulation the 95% confidence interval with n � 1000 has
half-length ($214.18 � $173.07)/2 � $20.56. Suppose that you want to reduce this half-
length to $12.50—that is, you want B � $12.50. You do not know the exact standard
deviation of the profit distribution, but you can estimate it from the simulation as $331.68.
Therefore, to obtain the required confidence interval half-length B, you need to simulate
n replications, where

(When this formula produces a noninteger, it is common to round upward.) The
claim, then, is that if you rerun the simulation with 2817 replications rather than 1000
replications, the half-length of the 95% confidence interval for the mean profit will be
close to $12.50.

Finding the Best Order Quantity

You are not yet finished with the Walton example. So far, the simulation has been run for
only a single order quantity, 200. Walton’s ultimate goal is to find the best order quantity.
Even this statement must be clarified. What does “best” mean? As in Chapter 6, one possi-
bility is to use the expected profit—that is, EMV—as the optimality criterion, but other
characteristics of the profit distribution could influence the decision. You can obtain
the required outputs with a data table. Specifically, you use a data table to rerun the simula-
tion for other order quantities. This data table and a corresponding chart are shown in Figure
15.26. (This is still part of the finished version of the Walton Bookstore 2.xlsx file.)

n =

4(328.04)2

12.502 L 2755
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17
18
19
20
21
22
23
24
25
26
27
28
29

K L M N O P Q R S T
Data table for average profit versus order quan�ty

Order quan�ty Average profit
$203.38

100 $250.00
125 $253.25
150 $263.25
175 $231.44
200 $192.50
225 $123.56
250 $49.00
275 -$60.63
300 -$206.25

-$300.00

-$200.00

-$100.00

$0.00

$100.00

$200.00

$300.00

100 125 150 175 200 225 250 275 300

Order Quan ty

Average profit

Figure 15.26 Data Table for Walton Bookstore Simulation

To create this table, enter the trial order quantities shown in the range K20:K28, enter
the link �B12 to the average profit in cell L19, and select the data table range K19:L28.
Then select Data Table from the What-If Analysis dropdown list, specifying that the
column input cell is B9. (See Figure 15.25.) Finally, construct a column chart of the aver-
age profits in the data table. Note that an order quantity of 150 appears to maximize the
average profit. Its average profit of $263.25 is slightly higher than the average profits from
nearby order quantities and much higher than the profit gained from an order of 200 or
more calendars. However, again keep in mind that this is a simulation, so that all of these

To optimize in
simulation models, try
various values of the
decision variable(s)
and run the simulation
for each of them.
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average profits depend on the particular random numbers generated. If you rerun the sim-
ulation with different random numbers, it is conceivable that some other order quantity
could be best. (Did you notice in the data table that the average profits in cells L19 and L24
are both based on an order quantity of 200? They are different because they are based on
different random numbers.)

Excel Tip: Calculation Settings with Data Tables
Sometimes you will create a data table and the values will be constant the whole way down.
This could mean you did something wrong, but more likely it is due to a calculation setting.
To check, go to the Formulas ribbon and click on the Calculation Options dropdown arrow.
If it isn’t Automatic (the default setting), you need to click on the Calculate Now (or
Calculate Sheet) button or press the F9 key to make the data table calculate correctly. (The
Calculate Now and F9 key recalculate everything in your workbook. The Calculate Sheet
option recalculates only the active sheet.) Note that the Automatic Except for Data Tables
setting is there for a reason. Data tables, especially those based on complex simulations,
can take a lot of time to recalculate, and with the default setting, this recalculation occurs
every time anything changes in your workbook. So the Automatic Except for Data Tables
setting is handy to prevent data tables from recalculating until you force them to by press-
ing the F9 key or clicking on one of the Calculate buttons.

Using a Data Table to Repeat Simulations

The Walton simulation is a particularly simple one-line simulation model. All of the
logic—generating a demand and calculating the corresponding profit—can be captured in
a single row. Then to replicate the simulation, you can simply copy this row down as far
as you like. Many simulation models are significantly more complex and require more
than one row to capture the logic. Nevertheless, they still result in one or more output
quantities (such as profit) that you want to replicate. We now illustrate another method of
replicating with Excel only that is more general (still using the Walton example). It uses a
data table to generate the replications. Refer to Figure 15.27 and the file Walton
Bookstore 3.xlsx.

Through row 19, this model is exactly like the previous model. That is, it uses the
given data at the top of the spreadsheet to construct a typical “prototype” of the simulation
in row 19. This time, however, do not copy row 19 down. Instead, form a data table in the
range A23:B1023 to replicate the basic simulation 1000 times. In column A, list the repli-
cation numbers, 1 to 1000. Next, enter the formula �F19 in cell B23. This forms a link to
the profit from the prototype row for use in the data table. Then create a data table and
enter any blank cell (such as C23) as the column input cell. (No row input cell is necessary,
so its box should be left empty.) This tricks Excel into repeating the row 19 calculations
1000 times, each time with a new random number, and reporting the profits in column B of
the data table. (If you wanted to see other simulated quantities, such as revenue, for each
replication, you could add extra output columns to the data table.)

Excel Tip: How Data Tables Work
To understand this procedure, you must understand exactly how data tables work. When
you create a data table, Excel takes each value in the left column of the data table (here,
column A), substitutes it into the cell designated as the column input cell, recalculates the
spreadsheet, and returns the output value (or values) you have requested in the top row of
the data table (such as profit). It might seem silly to substitute each replication number
from column A into a blank cell such as cell C23, but this part is really irrelevant. The
important part is the recalculation. Each recalculation leads to a new random demand and
corresponding profit, and these profits are the quantities you want to keep track of.
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The key to simulating
many replications in
Excel (without an add-
in) is to use a data
table with any blank
cell as the column
input cell.
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Of course, this means that you should not freeze the quantity in cell B19 before forming the
data table. The whole point of the data table is to use a different random number for each
replication, and this will occur only if the random demand in row 19 is “live.”

Using a Two-Way Data Table

You can carry this method one step further to see how the profit depends on the order
quantity. Here you use a two-way data table with the replication number along the side
and possible order quantities along the top. See Figure 15.28 and the file Walton
Bookstore 4.xlsx. Now the data table range is A23:J1023, and the driving formula in cell
A23 is again the link �F19. The column input cell should again be any blank cell, and the
row input cell should be B9 (the order quantity). Each cell in the body of the data table
shows a simulated profit for a particular replication and a particular order quantity, and
each is based on a different random demand.

By averaging the numbers in each column of the data table (see row 14), you can see
that 150 again appears to be the best order quantity. It is also helpful to construct a column
chart of these averages, as in Figure 15.29. Now, however, assuming you have not frozen
anything, the data table and the corresponding chart will change each time you press the F9
key. To see whether 150 is always the best order quantity, you can press the F9 key and see
whether the bar above 150 continues to be the highest.
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1021
1022
1023

A B C D E F G H I J
of Walton'sSimula�on bookstore

Cost dnameDatad egnaRnoitubirtsid names used:
Unit cost $7.50 CumProb Demand Probability LookupTable =Model!$D$5:$F$9
Unit 9$B$!ledoM=ytitnauq_redrO03.000100.000.01$ecirp
Unit 4$B$!ledoM=tsoc_tinU02.005103.005.2$dnufer

0.50 200 0.30 Unit_price =Model!$B$5
Decision variable 0.80 250 0.15 Unit_refund =Model!$B$6
Order 50.000359.0002ytitnauq

Summary measures from simula�on below
Average $189.13 95% confidence interval for expected profit
StDev $327.89 Lower limit $168.81
Minimum -$250.00 Upper limit $209.45
Maximum $500.00

Demand Revenue Cost Refund Profit
100 $1,000 $1,500 $250 -$250

Data

Simula�on

table for replica�ons, each shows profit from that replica�on
Replica�on Profit

-$250
1 -$250
2 $500
3 $500
4 -$250

998 $500
999 $500

1000 $500

Figure 15.27 Using a Data Table to Simulate Replications
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A B C D E F G H I J
Simula�on of Walton's bookstore

Cost Demanddata egnaRnoitubirtsid names used:
Unit cost $7.50 CumProb Demand Probability LookupTable =Model!$D$5:$F$9
Unit Order_quan�ty03.000100.000.01$ecirp =Model!$B$9
Unit 4$B$!ledoM=tsoc_tinU02.005103.005.2$dnufer

0.50 200 0.30 Unit_price =Model!$B$5
Decision variable 0.80 250 0.15 Unit_refund =Model!$B$6
Order 50.000359.0002ytitnauq

Summary measures of simulated profits for each order quan�ty
Order quan�ty

100 125 150 175 200 225 250 275 300
Average profit $250.00 $261.13 $267.75 $237.44 $206.38 $118.69 $16.75 -$99.81 -$209.63
Stdev profit $0.00 $83.67 $169.54 $243.62 $327.49 $361.44 $429.60 $432.34 $442.74

Simula�on
Demand Revenue Cost Refund Profit

100 $1,000 $1,500 $250 -$250

Data table showing profit for replica�ons with various order quan��es
redrOnoitacilpeR quan�ty

($250.00) 100 125 150 175 200 225 250 275 300
1 $250 $313 $0 $250 -$250 375 625 125 375
2 $250 $313 $375 -$125 $125 0 -500 -250 -375
3 $250 $125 $375 $438 $500 375 250 -250 0
4 $250 $313 $0 $438 $500 375 250 -625 -750

998 $250 $313 $375 $438 $125 375 625 -625 -375
999 $250 $313 $0 $438 $500 375 250 500 375

1000 $250 $313 $375 $438 $500 562.5 -500 500 375

Figure 15.28 Using a Two-Way Data Table for the Simulation Model
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By now you should appreciate the usefulness of data tables in spreadsheet simulations.
They allow you to take a prototype simulation and replicate its key results as often as you
like. This method makes summary statistics (over the entire group of replications) and
corresponding charts fairly easy to obtain. Nevertheless, it takes some work to create the
data tables and charts. In the next section you will see how the @RISK add-in does a lot of
this work for you.
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P R O B L E M S

Level A

11. Suppose you own an expensive car and purchase auto
insurance. This insurance has a $1000 deductible,
so that if you have an accident and the damage is
less than $1000, you pay for it out of your pocket.
However, if the damage is greater than $1000, you
pay the first $1000 and the insurance pays the rest.
In the current year there is probability 0.025 that you
will have an accident. If you have an accident, the
damage amount is normally distributed with mean
$3000 and standard deviation $750.
a. Use Excel to simulate the amount you have to

pay for damages to your car. This should be a
one-line simulation, so run 5000 iterations by
copying it down. Then find the average amount
you pay, the standard deviation of the amounts
you pay, and a 95% confidence interval for the
average amount you pay. (Note that many of the
amounts you pay will be 0 because you have no
accidents.)

b. Continue the simulation in part a by creating a
two-way data table, where the row input is the
deductible amount, varied from $500 to $2000
in multiples of $500. Now find the average amount
you pay, the standard deviation of the amounts
you pay, and a 95% confidence interval for the
average amount you pay for each deductible
amount.

c. Do you think it is reasonable to assume that
damage amounts are normally distributed? What
would you criticize about this assumption?
What might you suggest instead?

12. In August of the current year, a car dealer is trying
to determine how many cars of the next model year to
order. Each car ordered in August costs $20,000. The
demand for the dealer’s next year models has the
probability distribution shown in the file P15_12.xlsx.
Each car sells for $25,000. If demand for next year’s
cars exceeds the number of cars ordered in August,
the dealer must reorder at a cost of $22,000 per car.
Excess cars can be disposed of at $17,000 per car.

Use simulation to determine how many cars to order
in August. For your optimal order quantity, find a 95%
confidence interval for the expected profit.

13. In the Walton Bookstore example, suppose that Walton
receives no money for the first 50 excess calendars
returned but receives $2.50 for every calendar after
the first 50 returned. Does this change the optimal
order quantity?

14. A sweatshirt supplier is trying to decide how
many sweatshirts to print for the upcoming NCAA
basketball championships. The final four teams have
emerged from the quarterfinal round, and there is
now a week left until the semifinals, which are then
followed in a couple of days by the finals. Each
sweatshirt costs $10 to produce and sells for $25.
However, in three weeks, any leftover sweatshirts
will be put on sale for half price, $12.50. The supplier
assumes that the demand for his sweatshirts during the
next three weeks (when interest in the tournament is
at its highest) has the distribution shown in the file
P15_14.xlsx. The residual demand, after the sweat-
shirts have been put on sale, has the distribution also
shown in this file. The supplier, being a profit maxi-
mizer, realizes that every sweatshirt sold, even at the
sale price, yields a profit. However, he also realizes
that any sweatshirts produced but not sold (even at the
sale price) must be thrown away, resulting in a $10
loss per sweatshirt. Analyze the supplier’s problem
with a simulation model.

Level B

15. In the Walton Bookstore example with a discrete
demand distribution, explain why an order quantity
other than one of the possible demands cannot maxi-
mize the expected profit. (Hint: Consider an order of
190 calendars, for example. If this maximizes
expected profit, then it must yield a higher expected
profit than an order of 150 or 100. But then an order
of 200 calendars must also yield a larger expected
profit than 190 calendars. Why?)
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15.5 INTRODUCTION TO THE @RISK ADD-IN

Spreadsheet simulation modeling has become extremely popular in recent years, both in
the academic and corporate communities. Much of the reason for this popularity is due to
simulation add-ins such as @RISK. There are two primary advantages to using such an
add-in. First, an add-in gives you easy access to many probability distributions you might
want to use in your simulation models. You already saw in section 15.2 how the RISKDIS-
CRETE, RISKNORMAL, and RISKTRIANG functions, among others, are easy to use
and remember. Second, an add-in allows you to perform simulations much more easily
than is possible with Excel alone. To replicate a simulation in Excel, you typically need to
build a data table. Then you have to calculate summary statistics, such as averages, stan-
dard deviations, and percentiles, with built-in Excel functions. If you want graphs to
enhance the analysis, you have to create them. In short, you have to perform a number of
time-consuming steps for each simulation. Simulation add-ins such as @RISK perform
much of this work automatically.

Although we will focus only on @RISK in this book, it is not the only simulation add-
in available for Excel. Two worthy competitors are Crystal Ball, developed by
Decisioneering (www.decisioneering.com) and Risk Solver Platform, developed by
Frontline Systems, the developer of Solver (www.frontsys.com). Both Crystal Ball and
Risk Solver Platform have much of the same functionality as @RISK. However, the
authors have a natural bias for @RISK—we have been permitted by its developer, Palisade
Corporation (www.palisade.com), to provide the academic version free with this book. If it
were not included, you would have to purchase it from Palisade at a fairly steep price.
Indeed, Microsoft Office does not include @RISK, Crystal Ball, Risk Solver Platform, or
any other simulation add-in—you must purchase them separately.

15.5.1 @RISK Features

Here is an overview of some of @RISK’s features. We will discuss all of these in more
detail in this section.

1. @RISK contains a number of functions such as RISKNORMAL and RISKDIS-
CRETE that make it easy to generate observations from a wide variety of probability
distributions. You saw some of these in section 15.2.

2. You can designate any cell or range of cells in your simulation model as output
cells. When you run the simulation, @RISK automatically keeps summary measures
(averages, standard deviations, percentiles, and others) from the values generated in
these output cells across the replications. It also creates graphs such as histograms
based on these values. In other words, @RISK takes care of tedious bookkeeping
operations for you.

3. @RISK has a special function, RISKSIMTABLE, that allows you to run the
same simulation several times, using a different value of some key input variable
each time. This input variable is often a decision variable. For example, suppose
that you would like to simulate an inventory ordering policy (as in the Walton
Bookstore example). Your ultimate purpose is to compare simulation outputs
across a number of possible order quantities such as 100, 150, 200, 250, and 300.
If you use an appropriate formula involving the RISKSIMTABLE function, the
entire simulation is performed for each of these order quantities separately—with
one click of a button. You can then compare the outputs to choose the best order
quantity.
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@RISK provides a
number of functions
for simulating from
various distributions,
and it takes care of all
the bookkeeping in
spreadsheet simula-
tions. Excel simulations
without @RISK require
much more work for
the user.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.decisioneering.com
http://www.frontsys.com
http://www.palisade.com


15.5.2 Loading @RISK

To build simulation models with @RISK, you need to have Excel open with @RISK added
in. The first step, if you have not already done so, is to install the Palisade DecisionTools
suite with the Setup program. Then you can load @RISK by clicking on the Windows Start
button, selecting the Programs group, selecting the Palisade DecisionTools group, and
finally selecting the @RISK item. If Excel is already open, this loads @RISK inside Excel.
If Excel is not yet open, this launches Excel and @RISK simultaneously.9 After @RISK is
loaded, you see an @RISK tab and the corresponding @RISK ribbon in Figure 15.30.10
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9We have had the best luck when we (1) close other applications we are not currently using, and (2) launch Excel and
@RISK together by starting @RISK. However, it is also possible to start @RISK after Excel is already running.
10If you have been using version 5.0 of @RISK, you will see only minor changes in the version 5.5 we are using
here. However, if you have been using version 4.5, you will see major changes in the user interface.

Figure 15.30 @RISK Ribbon

15.5.3 @RISK Models with a Single Random Input Variable

In the remainder of this section we illustrate some of @RISK’s functionality by revisiting
the Walton Bookstore example. The next chapter demonstrates the use of @RISK in a
number of interesting simulation models. Throughout our discussion, you should keep one
very important idea in mind. The development of a simulation model is basically a two-
step procedure. The first step is to build the model itself. This step requires you to enter all
of the logic that transforms inputs (including @RISK functions such as RISKDISCRETE)
into outputs (such as profit). This is where most of the work and thinking go, exactly as in
models from previous chapters, and @RISK cannot do this for you. It is your job to enter
the formulas that link inputs to outputs appropriately. However, once this logic has been
incorporated, @RISK takes over in the second step. It automatically replicates your model,
with different random numbers on each replication, and it reports any summary measures
that you request in tabular or graphical form. Therefore, @RISK greatly decreases the
amount of busy work you need to do, but it is not a magic bullet.

We begin by analyzing an example with a single random input variable.

The majority of the
work (and thinking)
goes into developing
the model. Setting up
@RISK and then
running it are relatively
easy.

E X A M P L E 15.3 USING @RISK AT WALTON BOOKSTORE

Recall that Walton Bookstore buys calendars for $7.50, sells them at the regular price of
$10, and gets a refund of $2.50 for all calendars that cannot be sold. In contrast to

Example 15.2, assume now that Walton estimates a triangular probability distribution for
demand, where the minimum, most likely, and maximum values of demand are 100, 175,
and 300, respectively. The company wants to use this probability distribution, together
with @RISK, to simulate the profit for any particular order quantity, with the ultimate goal
of finding the best order quantity.

Objective To learn about @RISK’s basic functionality by revisiting the Walton
Bookstore problem.

This is the same
Walton Bookstore
model as before,
except that a
triangular distribution
for demand is used.
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WHERE DO THE NUMBERS COME FROM?

The monetary values are the same as before. The parameters of the triangular distribution of
demand are probably Walton’s best subjective estimates, possibly guided by its experience
with previous calendars. As in many simulation examples, the triangular distribution has been
chosen for simplicity. In this case, the manager would need to estimate only three quantities:
the minimum possible demand, the maximum possible demand, and the most likely demand.

Solution

We use this example to illustrate important features of @RISK. We first show how it helps
you to implement an appropriate input probability distribution for demand. Then we show
how it can be used to build a simulation model for a specific order quantity and generate
outputs from this model. Finally, we show how the RISKSIMTABLE function enables you
to simultaneously generate outputs from several order quantities so that you can choose the
optimal order quantity.

DEVELOPING THE SIMULATION MODEL

The spreadsheet model for profit is essentially the same model developed previously with-
out @RISK, as shown in Figure 15.31. (See the file Walton Bookstore 5.xlsx.) There are
only a few new things to be aware of.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A B C D E F G H I J
Simula�on of Walton's Bookstore using egnaRKSIR@ names used:

Order_quan�ty =Model!$B$9
Cost dnameDatad distribu�on - triangular Unit_cost =Model!$B$4
Unit 5$B$!ledoM=ecirp_tinU001muminiM05.7$tsoc
Unit price $10.00 Most 6$B$!ledoM=dnufer_tinU571ylekil
Unit refund $2.50 Maximum 300

Decision variable
Order quan�ty 200

Simula�on
Demand Revenue Cost Refund Profit

187 $1,870 $1,500 $33 $403

Summary measures of profit from @RISK - based on 1000 itera�ons
Minimum -$235.00
Maximum $500.00
Average $337.50
Standard devia�on $189.05
5th percen�le -$47.50
95th percen�le $500.00
P(profit <= 300) 0.360
P(profit > 400) 0.515

Figure 15.31 Simulation Model with a Fixed Order Quantity

1 Input distribution. To generate a random demand, enter the formula

�ROUND(RISKTRIANG(E4,E5,E6),0)

in cell B13 for the random demand. This uses the RISKTRIANG function to generate a
demand from the triangular distribution. (As before, our convention is to color random
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input cells green.) Excel’s ROUND function is used to round demand to the nearest inte-
ger. Recall from the discussion in section 15.3 that Excel has no built-in functions to gen-
erate random numbers from a triangular distribution, but this is easy with @RISK.

2 Output cell. When the simulation runs, you want @RISK to keep track of profit. In
@RISK’s terminology, you need to designate the Profit cell, F13, as an output cell. To do
this, select cell F13 and then click on the Add Output button on the @RISK ribbon. (See
Figure 15.30.) This adds RISKOUTPUT(“label”)� to the cell’s formula. (Here, “label”
is a label that @RISK uses for its reports. In this case it makes sense to use “Profit” as the
label.) The formula in cell F13 changes from

�C13�E13-D13

to

�RISKOUTPUT("Profit")�C13�E13-D13

The plus sign following RISKOUTPUT does not indicate addition. It is simply @RISK’s
way of indicating that you want to keep track of the value in this cell (for reporting
reasons) as the simulation progresses. Any number of cells can be designated in this way
as output cells. They are typically the “bottom line” values of primary interest. Our
convention is to color such cells gray for emphasis.

3 Summary functions. There are several places where you can store @RISK
results. One of these is to use @RISK statistical functions to place results in your
model worksheet. @RISK provides several functions for summarizing output values.
Some of these are illustrated in the range B16:B23 of Figure 15.31. They contain the
formulas

�RISKMIN(F13)

�RISKMAX(F3)

�RISKMEAN(F13)

�RISKSTDDEV(F13)

�RISKPERCENTILE(F13,0.05)

�RISKPERCENTILE(F13,0.95)

�RISKTARGET(F13,300)

and

�1-RISKTARGET(F13,400)

The values in these cells are not meaningful until you run the simulation (so do not be
alarmed if they contain error symbols when you open the file). However, once the simula-
tion runs, these formulas capture summary statistics of profit. For example, RISKMEAN
calculates the average of the 1000 simulated profits, RISKPERCENTILE finds the value
such that the specified percentage of simulated profits are less than or equal to this value,
and RISKTARGET finds the percentage of simulated profits less than or equal to the spec-
ified value. Although these same summary statistics also appear in other @RISK reports, it
is handy to have them in the same worksheet as the model.

Running the Simulation

After you develop the model, the rest is straightforward. The procedure is always the same:
(1) specify simulation settings, (2) run the simulation, and (3) examine the results.
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The RISKOUTPUT
function indicates 
that a cell is an 
output cell, so that
@RISK will keep 
track of its values
throughout the
simulation.

These @RISK
summary functions
allow you to show
simulation results on
the same sheet as the
model. However, they
are totally optional.
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1 Simulation settings. You must first choose some simulation settings. To do so, the
buttons on the left in the Simulation group (see Figure 15.32) are useful. We typically do
the following: 

■ Set Iterations to a number such as 1000. (@RISK calls “replications” iterations.) Any
number can be used, but because the academic version of @RISK allows only 1000
uninterrupted iterations, we typically choose 1000.

■ Set Simulations to 1. In a later section, we will explain why you might want to
request multiple simulations.

■ Click on the “dice” button so that it becomes orange. This button is actually a toggle
for what appears in your worksheet. If it is orange, the setting is called “Monte
Carlo” and all random cells appear random (they change when you press the F9 key).
If it is blue, only the means appear in random input cells and the F9 key has no
effect. We prefer the Monte Carlo setting, but both settings have exactly the same
effect when you run the simulation.

■ Many more settings are available by clicking on the button to the left of the “dice”
button, but the ones we mentioned should suffice. In addition, more permanent set-
tings can be chosen from Application Settings under Utilities on the @RISK ribbon.
You can experiment with these, but the only one we like to change is the Place
Reports In setting. The default is to place reports in a new workbook. If you like the
reports to be in the same workbook as your model, you can change this setting to
Active Workbook.
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Figure 15.32

Simulation Group

on @RISK Ribbon

@RISK TECHNICAL ISSUES: Latin Hypercube Sampling and Mersenne Twister
Generator
Two settings you shouldn’t change are the Sampling Type and Generator settings (avail-
able from the button to the left of the “dice” button and then the Sampling tab). They
should remain at the default Latin Hypercube and Mersenne Twister settings. The
Mersenne Twister is one algorithm, of many, for generating random numbers, and it has
been shown to have very good statistical properties. (Not all random number generators
do.) Latin Hypercube sampling is a more efficient way of sampling than the other option
(Monte Carlo) because it produces a more accurate estimate of the output distribution. In
fact, we were surprised how accurate it is. In repeated runs of this model, always using
different random numbers, we virtually always got a mean profit within a few pennies of
$337.50. It turns out that this is the true mean profit for this input distribution of demand.
Amazingly, simulation estimates it correctly—almost exactly—on virtually every run.
Unfortunately, this means that a confidence interval for the mean, based on @RISK’s
outputs and the usual confidence interval formula (which assumes Monte Carlo sampling),
is much wider (more pessimistic) than it should be. Therefore, we do not even calculate
such confidence intervals from here on. 

2 Run the simulation. To run the simulation, simply click on the Start Simulation on
the @RISK ribbon. When you do so, @RISK repeatedly generates a random number for

Leave Latin Hyper-
cube sampling on.
It produces more
accurate results.
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each random input cell, recalculates the worksheet, and keeps track of all output cell
values. You can watch the progress at the bottom left of the screen. 

3 Examine the results. The big questions are (1) which results you want and (2) where
you want them. @RISK provides a lot of possibilities, and we mention only our favorites.

■ You can ask for summary measures in your model worksheet by using the @RISK
statistical functions, such as RISKMEAN, discussed earlier.

■ The quickest way to get results is to select an input or output cell (we chose the
profit cell, F13) and then click on the Browse Results button on the @RISK ribbon.
(See Figure 15.33.) This provides an interactive histogram of the selected value, as
shown in Figure 15.34. You can move the sliders on this histogram to see probabili-
ties of various outcomes. Note that the window you see from Browse Results is
temporary—it goes away when you click on Close. You can make a permanent
copy of the chart by clicking on the third button from the left (see the bottom of
Figure 15.34) and choosing one of the copy options.
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For a quick histogram
of an output or input,
select the output or
input cell and click on
@RISK’s Browse
Results button.

Figure 15.33

Results and Tools

Groups on @RISK

Ribbon

Figure 15.34

Interactive

Histogram of Profit

Output

@RISK Tip: Percentiles Displayed on Charts
When we displayed the chart in Figure 15.34 the first time, it had the right slider on
500 but showed 5% to the right of it. By default, @RISK puts the sliders at the 5th and 95th
percentiles, so that 5% is on either side of them. For this example, 500 is indeed the 
95th percentile (why?), but the picture is a bit misleading because there is no chance of a
profit greater than 500. When we manually moved the right slider away from 500 and back
again, it displayed as in Figure 15.34, correctly indicating that there is no probability to
the right of 500.
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@RISK Tip: Saving Graphs and Tables
When you run a simulation with @RISK and then save your file, it asks whether you want
to save your graphs and tables. We suggest that you save them. This makes your file slightly
larger, but when you reopen it, the temporary graphs and tables, such as the histogram in
Figure 15.34, are still available. Otherwise, you will have to rerun the simulation.

■ You can click on the Summary button (again, see Figure 15.33) to see the temporary
window in Figure 15.35 with the summary measures for Profit. In general, this report
shows the summary for all designated inputs and outputs. By default, this Results
Summary window shows a mini histogram for each output and a number of numeri-
cal summary measures. However, it is easy to customize. If you right-click on this
table and choose Columns for Table, you can check or uncheck any of the options.
For most of the later screenshots in this book, we elected not to show the Graph and
Errors columns, but instead to show median and standard deviation columns.
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For a quick (and cus-
tomizable) report of
the results, click on
@RISK’s Summary
button.

Figure 15.35 Summary Table of Profit Output

■ You can click on the Excel Reports button (again, see Figure 15.33) to choose from
a number of reports that are placed on new worksheets. This is a good option if you
want permanent (but non-interactive) copies of reports in your workbook. As an
example, Figure 15.36 shows (part of) the Detailed Statistics report you can request.
It has the same information as the summary report in Figure 15.35, plus a lot more.

Discussion of the Simulation Results

The strength of @RISK is that it keeps track of any outputs you designate and then allows
you to show the corresponding results as graphs or tables, in temporary windows or in
permanent worksheets. As you have seen, @RISK provides several options for displaying
results, and we encourage you to explore the possibilities. However, don’t lose sight of the
overall goal: to see how outputs vary as random inputs vary, and to generate reports that
tell the story most effectively. For this particular example, the results in Figures 15.31,
15.34, 15.35, and 15.36 allow you to conclude the following:

■ The smallest simulated profit (out of 1000) was �$235, the largest was $500, the aver-
age was $337.50, and the standard deviation of the 1000 profits was $189.05. Of all
simulated profits, 5% were �$47.50 or below, 95% were $500 or above, 36% were
less than or equal to $300, and 51.5% were larger than $400. (See Figure 15.31. These
results are also available from the summary table in Figure 15.35 or the detailed statis-
tics report in Figure 15.36. In particular, the bottom of the detailed statistics report, not
shown in the figure, allows you to ask for any percentiles or target values.)

If you want perma-
nent copies of the
simulation results,
click on @RISK’s 
Excel Reports 
buttons and check 
the reports you want.
They will be placed in
new worksheets.
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■ The profit distribution for this particular order quantity is extremely skewed to the
left, with a large bar at $500. (See Figure 15.34.) Do you see why? It is because
profit is exactly $500 if demand is greater than or equal to the order quantity, 200. In
other words, the probability that profit is $500 equals the probability that demand is
at least 200. (This probability is 0.4.) Lower demands result in decreasing profits,
which explains the gradual decline in the histogram from right to left.

USING RISKSIMTABLE

Walton’s ultimate goal is to choose an order quantity that provides a large average profit.
You could rerun the simulation model several times, each time with a different order quan-
tity in the order quantity cell, and compare the results. However, this has two drawbacks.
First, it takes a lot of time and work. The second drawback is more subtle. Each time you
run the simulation, you get a different set of random demands. Therefore, one of the order
quantities could win the contest just by luck. For a fairer comparison, it is better to test
each order quantity on the same set of random demands.

The RISKSIMTABLE function in @RISK enables you to obtain a fair comparison
quickly and easily. This function is illustrated in Figure 15.37. (See the file Walton
Bookstore 6.xlsx.) There are two modifications to the previous model. First, the order
quantities to test are listed in row 9. (We chose these as representative order quantities. You
could change, or add to, this list.) Second, instead of entering a number in cell B9, you
enter the formula

�RISKSIMTABLE(D9:H9)

Note that the list does not need to be entered in the spreadsheet (although it is a good idea
to do so). You could instead enter the formula

�RISKSIMTABLE({150,175,200,225,250})
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

B C D

@RISK Detailed Sta�s�cs
Performed By:  Chris Albright
Date: Tuesday, September 29, 2009 11:54:02 AM

Name Profit Demand
Descrip�on Output RiskTriang(E4,E5,E6)
Cell Model!F13 Model!B13
Minimum -$235 102
Maximum $500 295
Mean $337 192
Std Devia�on $189 41
Variance 35741.22 1702.818
Skewness -0.9485486 0.2346369
Kurtosis 2.796431 2.401627
Errors 0 0
Mode $500 175
5% Perc -$48 127
10% Perc $43 139
15% Perc $103 147
20% Perc $163 155
25% Perc $208 161
30% Perc $253 167
35% Perc $290 172

Figure 15.36

@RISK Detailed

Statistics Report

The RISKSIMTABLE
function allows you 
to run several
simulations at 
once—one for each
value of some 
variable (often 
a decision variable).
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where the list of numbers must be enclosed in curly brackets. In either case, the worksheet
displays the first member of the list, 150, and the corresponding calculations for this first
order quantity. However, the model is now set up to run the simulation for all order
quantities in the list.

To implement this, only one setting needs to be changed. As before, enter 1000 for
the number of iterations, but also enter 5 for the number of simulations. @RISK then runs
five simulations of 1000 iterations each, one simulation for each order quantity in the
list, and it uses the same 1000 random demands for each simulation. This provides a fair
comparison.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A B C D E F G H I J K
Simula�on of Walton's Bookstore using egnaRKSIR@  names used:

Order_quan�ty =Model!$B$9
Cost dnameDatad  distribu�on - triangular Unit_cost =Model!$B$4
Unit 5$B$!ledoM=ecirp_tinU001muminiM05.7$tsoc
Unit price $10.00 Most 6$B$!ledoM=dnufer_tinU571ylekil
Unit refund $2.50 Maximum 300

Decision variable Order quan��es to try
Order quan�ty 150 150 175 200 225 250

Simulated quan��es
Demand Revenue Cost Refund Profit

253 $1,500 $1,125 $0 $375

Summary measures of profit from @RISK - based on 1000 itera�ons for each simula�on
54321noitalumiS

Order quan�ty 150 175 200 225 250
Minimum -$235.00 -$110.00 -$235.00 -$360.00 -$485.00
Maximum $500.00 $437.50 $500.00 $562.50 $625.00
Average $337.50 $367.20 $337.51 $270.32 $175.00
Standard devia�on $189.05 $121.86 $189.05 $247.05 $286.96
5th percen�le -$47.50 $77.50 -$47.50 -$172.50 -$297.50
95th percen�le $500.00 $437.50 $500.00 $562.50 $625.00

Figure 15.37 Model with a RISKSIMTABLE Function

@RISK Function: RISKSIMTABLE
To run several simulations all at once, enter the formula �RISKSIMTABLE
(InputRange) in any cell. Here, InputRange refers to a list of the values to be simu-
lated, such as various order quantities. Before running the simulation, make sure the
number of simulations is set to the number of values in the InputRange list.

You can again get results from the simulation in various ways. Here are some possibilities. 

■ You can enter the same @RISK statistical functions in cells in the model worksheet,
as shown in rows 18–23 of Figure 15.37. The trick is to realize that each such func-
tion has an optional last argument that specifies the simulation number. For example,
the formulas in cells C20 and C22 are

�RISKMEAN($F$13,C16)

and

�RISKPERCENTILE($F$13,0.05,C16)
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Remember that the results in these cells are meaningless (or show up as errors) until
you run the simulation.

■ You can select the profit cell and click on Browse Results to see a histogram of
profits, as shown in Figure 15.38. By default, the histogram shown is for the first
simulation, where the order quantity is 150. However, if you click on the red his-
togram button with the pound sign, you can select any of the simulations. As an
example, Figure 15.39 shows the histogram of profits for the fifth simulation,
where the order quantity is 250. (Do you see why these two histograms are so
different? When the order quantity is 150, there is a high probability of selling 
out; hence the spike on the right is large. But the probability of selling out with 
an order quantity of 250 is much lower; hence its spike on the right is much less
dominant.)
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Figure 15.38

Histogram of

Profit with Order

Quantity 150

Figure 15.39

Histogram of

Profit with Order

Quantity 250
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■ You can click on the Summary button to get the results from all simulations shown in
Figure 15.40. (These results match those in Figure 15.37.)

■ You can click on Excel Reports to get any of a number of reports on permanent
worksheets. Specifically, Quick Reports is a good choice. This produces several
graphs and summary measures for each simulation, each on a different worksheet.
This provides a lot of information with almost no work!

For this particular example, the results in Figures 15.37–15.40 are illuminating. You can
see that an order quantity of 175 provides the largest mean profit. However, is this neces-
sarily the optimal order quantity? This depends on the company’s attitude toward risk.
Certainly, larger order quantities incur more risk (their histograms are more spread out,
their 5th and 95th percentiles are more extreme), but they also have more upside potential.
On the other hand, a smaller order quantity, while having a somewhat smaller mean, might
be preferable because of less variability. It is not an easy choice, but at least the simulation
results provide plenty of information for making the decision. ■
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Figure 15.40 Summary Report for All Five Simulations

15.5.4 Some Limitations of @RISK

The academic version of @RISK included with the book has some limitations you should
be aware of. (The commercial version of @RISK doesn’t have these limitations. Also, the
exact limitations could change as newer academic versions become available.)

■ The simulation model must be contained in a single workbook with at most four
worksheets, and each worksheet is limited to 300 rows and 100 columns.

■ The number of @RISK input probability distribution functions, such as RISKNORMAL,
is limited to 100.

■ The number of unattended iterations is limited to 1000. You can request more than
1000, but you have to click a button after each 1000 iterations.

■ All @RISK graphs contain a watermark.
■ The Distribution Fitting tool can handle only 150 observations.

The first limitation shouldn’t cause problems, at least not for the fairly small models
discussed in this book. However, we strongly urge you to close all other workbooks when
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you are running an @RISK simulation model, especially if they also contain @RISK
functions. @RISK does a lot of recalculation, both in your active worksheet and in all
other worksheets or workbooks that are open. So if you are experiencing extremely slow
simulations, this is probably the reason.

The second limitation can be a problem, especially in multiperiod problems. For exam-
ple, if you are simulating 52 weeks of a year, and each week requires two random inputs, you
are already over the 100-function limit. One way to get around this is to use built-in Excel
functions for random inputs rather than @RISK functions whenever possible. For example, if
you want to simulate the flip of a fair coin, the formula �IF(RAND()�0.5,"Heads","Tails")
works just as well as the formula �IF(RISKUNIFORM(0,1)�0.5,"Heads","Tails"), but
the former doesn’t count against the 100-function limit.

15.5.5 @RISK Models with Several Random Input Variables

We conclude this section with another modification of the Walton Bookstore example. To
this point, there has been a single random variable, demand. Often there are several
random variables, each reflecting some uncertainty, and you want to include each of these
in the simulation model. The following example illustrates how this can be done, and it
also illustrates a very useful feature of @RISK, its sensitivity analysis.
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To avoid potential
problems, close all
other workbooks when
running an @RISK
model.

E X A M P L E 15.4 ADDITIONAL UNCERTAINTY AT WALTON BOOKSTORE

As in the previous Walton Bookstore example, Walton needs to place an order for next
year’s calendar. We continue to assume that the calendars sell for $10 and customer

demand for the calendars at this price is triangularly distributed with minimum value, most
likely value, and maximum value equal to 100, 175, and 300. However, there are now two
other sources of uncertainty. First, the maximum number of calendars Walton’s supplier
can supply is uncertain and is modeled with a triangular distribution. Its parameters are
125 (minimum), 200 (most likely), and 250 (maximum). Once Walton places an order, the
supplier will charge $7.50 per calendar if he can supply the entire Walton order. Otherwise,
he will charge only $7.25 per calendar. Second, unsold calendars can no longer be returned
to the supplier for a refund. Instead, Walton will put them on sale for $5 apiece after
January 1. At that price, Walton believes the demand for leftover calendars is triangularly
distributed with parameters 0, 50, and 75. Any calendars still left over, say, after March 1,
will be thrown away. Walton again wants to use simulation to analyze the resulting profit
for various order quantities.

Objective To develop and analyze a simulation model with multiple sources of uncer-
tainty using @RISK, and to introduce @RISK’s sensitivity analysis features.

WHERE DO THE NUMBERS COME FROM?

As in Example 15.3, the monetary values are straightforward, and the parameters of the tri-
angular distributions are probably educated guesses, possibly based on experience with
previous calendars.

Solution

As always, the first step is to develop the model. Then you can run the simulation with
@RISK and examine the results.
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DEVELOPING THE SIMULATION MODEL

The completed model is shown in Figure 15.41. (See the file Walton Bookstore 7.xlsx.)
The model itself requires a bit more logic than the previous Walton model. It can be devel-
oped with the following steps.
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10
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12
13
14
15
16
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20
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A B C D E F G H I J K L M
Simula�on of Walton's Bookstore using @RISK Range names used:

Order_quan�ty =Model!$B$10
Cost dnameDatad  distribu�on: triangular Regular_price =Model!$B$6
Unit cost ralugeR05.7$1  price Sale price Supply distribu�on: triangular Sale_price =Model!$B$7
Unit cost 4$B$!ledoM=1_tsoc_tinU521muminiM0001muminiM52.7$2
Regular price $10.00 Most likely 175 50 Most likely 200 Unit_cost_2 =Model!$B$5
Sale 052mumixaM57003mumixaM00.5$ecirp

Decision variable Order quan��es to try
Order 052522002571051051ytitnauq

Simulated quan��es
Maximum supply Actual supply Cost Demand Revenue Le� over Demand Revenue Profit

179 150 $1,125 164 $1,500 0 45 $0 $375

Summary measures of profit from @RISK - based on 1000 itera�ons for each simula�on
54321noitalumiS

Order 052522002571051ytitnauq
00.05$muminiM -$137.50 -$325.00 -$421.75 -$421.75

57.266$00.616$52.745$05.874$57.904$mumixaM
69.893$92.693$49.593$28.093$73.163$egarevA

Standard devia�on $43.84 $92.83 $145.33 $176.12 $178.16
5th percen�le $265.00 $178.00 $57.25 $13.00 $15.75
95th percen�le $375.00 $459.25 $525.25 $577.50 $588.50

At regular price At sale price

Figure 15.41 @RISK Simulation Model with Three Random Inputs

1 Random inputs. There are three random inputs in this model: the maximum supply
the supplier can provide Walton, the customer demand when the selling price is $10, and
the customer demand for sale-price calendars. Generate these in cells B14, E14, and H14
(using the ROUND function to obtain integers) with the RISKTRIANG function.
Specifically, the formulas in cells B14, E14, and H14 are

�ROUND(RISKTRIANG(I5,I6,I7),0)

�ROUND(RISKTRIANG (E5,E6,E7),0)

and

�ROUND(RISKTRIANG (F5,F6,F7),0)

Note that the formula in cell H14 generates the random potential demand for calendars at
the sale price, even though there might not be any calendars left to put on sale.

2 Actual supply. The number of calendars supplied to Walton is the smaller of the
number ordered and the maximum the supplier is able to supply. Calculate this value in
cell C14 with the formula

�MIN(B14,Order_quantity)

3 Order cost. Walton gets the reduced price, $7.25, if the supplier cannot supply the
entire order. Otherwise, Walton must pay $7.50 per calendar. Therefore, calculate the total
order cost in cell D14 with the formula (using the obvious range names)

�IF(B14��Order_quantity,Unit_cost_1,Unit_cost_2)*C14
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4 Other quantities. The rest of the model is straightforward. Calculate the revenue
from regular-price sales in cell F14 with the formula

�Regular_price*MIN(C14,E14)

Calculate the number left over after regular-price sales in cell G14 with the formula

�MAX(C14-E14,0)

Calculate the revenue from sale-price sales in cell I14 with the formula

�Sale_price*MIN(G14,H14)

Finally, calculate profit and designate it as an output cell for @RISK in cell J14 with the
formula

�RISKOUTPUT("Profit")�F14�I14-D14

You could also designate other cells (the revenue cells, for example) as output cells.

5 Order quantities. As before, enter a RISKSIMTABLE function in cell B10 so that
Walton can try different order quantities. Specifically, enter the formula

�RISKSIMTABLE(D10:H10)

in cell B10.

Running the Simulation

As usual, the next steps are to specify the simulation settings (we chose 1000 iterations and
5 simulations), and run the simulation. It is important to realize what @RISK does when it
runs a simulation when there are several random input cells. In each iteration, @RISK gen-
erates a random value for each input variable independently. In this example, it generates a
maximum supply in cell B14 from one triangular distribution, it generates a regular-price
demand in cell E14 from another triangular distribution, and it generates a sale-price
demand in cell H14 from a third triangular distribution. With these input values, it then cal-
culates profit. For each order quantity, it then iterates this procedure 1000 times and keeps
track of the corresponding profits.11

Discussion of the Simulation Results

Selected results are listed in Figure 15.41 (at the bottom), and the profit histogram for an
order quantity of 200 is shown in Figure 15.42. (The histograms for the other order quanti-
ties are similar to what you have seen before, with more skewness to the left and a larger
spike to the right as the order quantity decreases.) For this particular order quantity, the
results indicate an average profit of about $396, a 5th percentile of $57, a 95th percentile of
$525, and a distribution of profits that is again skewed to the left.

Sensitivity Analysis

We now demonstrate a feature of @RISK that is particularly useful when there are several
random input cells. This feature lets you see which of these inputs is most related to, or
correlated with, an output cell. To perform this analysis, select the profit cell, J14, and
click on the Browse Results button. You will see a histogram of profit in a temporary
window, as we have already discussed, with a number of buttons at the bottom of the win-
dow. Click on the red button with the pound sign to select a simulation. We chose #3,
where the order quantity is 200. Then click on the “tornado” button (the fifth button from
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On each iteration,
@RISK generates a
new set of random
inputs and calculates
the corresponding
output(s).

11It is also possible to correlate the inputs, as we demonstrate in the next section.
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the left) and choose Correlation Coefficients. This produces the chart in Figure 15.43.
(The Regression option produces similar results, but we believe the Correlation option is
easier to understand.)

This figure shows graphically and numerically how each of the random inputs
correlates with profit: the higher the magnitude of the correlation, the stronger the rela-
tionship between that input and profit. In this sense, you can see that the regular-price
demand has by far the largest effect on profit. The other two inputs, maximum supply
and sale-price demand, are nearly uncorrelated with profit, so they are much less impor-
tant. Identifying important input variables is important for real applications. If a random
input is highly correlated with an important output, then it is probably worth the time
and money to learn more about this input and possibly reduce the amount of uncertainty
involving it. ■
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Figure 15.42

Histogram of

Simulated Profits for

Order Quantity 200

Figure 15.43

Tornado Graph for

Sensitivity Analysis

A tornado chart
indicates which of the
random inputs have
large effects on an
output.
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P R O B L E M S

Level A

16. If you add several normally distributed random
numbers, the result is normally distributed, where
the mean of the sum is the sum of the individual
means, and the variance of the sum is the sum of the
individual variances. (Remember that variance is the
square of standard deviation.) This is a difficult result
to prove mathematically, but it is easy to demonstrate
with simulation. To do so, run a simulation where
you add three normally distributed random numbers,
each with mean 100 and standard deviation 10. Your
single output variable should be the sum of these three
numbers. Verify with @RISK that the distribution
of this output is approximately normal with mean
300 and variance 300 (hence, standard deviation

).

17. In Problem 11 from the previous section, we stated
that the damage amount is normally distributed.
Suppose instead that the damage amount is
triangularly distributed with parameters 500, 1500,
and 7000. That is, the damage in an accident can
be as low as $500 or as high as $7000, the most
likely value is $1500, and there is definite skewness
to the right. (It turns out, as you can verify in
@RISK, that the mean of this distribution is $3000,
the same as in Problem 11.) Use @RISK to simulate
the amount you pay for damage. Run 5000 itera-
tions. Then answer the following questions. In
each case, explain how the indicated event would
occur.
a. What is the probability that you pay a positive

amount but less than $750?
b. What is the probability that you pay more than

$600?
c. What is the probability that you pay exactly $1000

(the deductible)?

18. Continuing the previous problem, assume, as in
Problem 11, that the damage amount is normally
distributed with mean $3000 and standard deviation
$750. Run @RISK with 5000 iterations to simulate
the amount you pay for damage. Compare your results
with those in the previous problem. Does it appear to
matter whether you assume a triangular distribution or
a normal distribution for damage amounts? Why isn’t
this a totally fair comparison? (Hint: Use @RISK’s
Define Distributions tool to find the standard deviation
for the triangular distribution.)

19. In Problem 12 of the previous section, suppose that
the demand for cars is normally distributed with
mean 100 and standard deviation 15. Use @RISK
to determine the “best” order quantity—in this case,

the one with the largest mean profit. Using the
statistics and/or graphs from @RISK, discuss
whether this order quantity would be considered
best by the car dealer. (The point is that a decision
maker can use more than just mean profit in making
a decision.)

20. Use @RISK to analyze the sweatshirt situation in
Problem 14 of the previous section. Do this for the
discrete distributions given in the problem. Then do
it for normal distributions. For the normal case,
assume that the regular demand is normally
distributed with mean 9800 and standard deviation
1300 and that the demand at the reduced price is
normally distributed with mean 3800 and standard
deviation 1400.

Level B

21. Although the normal distribution is a reasonable input
distribution in many situations, it does have two
potential drawbacks: (1) it allows negative values,
even though they may be extremely improbable, and
(2) it is a symmetric distribution. Many situations are
modeled better with a distribution that allows only
positive values and is skewed to the right. Two of these
that have been used in many real applications are the
gamma and lognormal distributions. @RISK enables
you to generate observations from each of these distri-
butions. The @RISK function for the gamma distribu-
tion is RISKGAMMA, and it takes two arguments, as
in �RISKGAMMA(3,10). The first argument, which
must be positive, determines the shape. The smaller it
is, the more skewed the distribution is to the right; the
larger it is, the more symmetric the distribution is.
The second argument determines the scale, in the
sense that the product of it and the first argument
equals the mean of the distribution. (The mean in this
example is 30.) Also, the product of the second argu-
ment and the square root of the first argument is the
standard deviation of the distribution. (In this example,
it is .) The @RISK function for the
lognormal distribution is RISKLOGNORM. It has
two arguments, as in �RISKLOGNORM(40,10).
These arguments are the mean and standard deviation
of the distribution. Rework Example 15.2 for the fol-
lowing demand distributions. Do the simulated outputs
have any different qualitative properties with these
skewed distributions than with the triangular distribu-
tion used in the example?
a. Gamma distribution with parameters 2 and 85
b. Gamma distribution with parameters 5 and 35
c. Lognormal distribution with mean 170 and

standard deviation 60

13(10) = 17.32

1300 = 17.32
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15.6 THE EFFECTS OF INPUT DISTRIBUTIONS ON RESULTS

In section 15.2, we discussed input distributions. The randomness in input variables causes
the variability in the output variables. We now briefly explore whether the choice of input
distribution(s) makes much difference in the distribution of an output variable such as
profit. This is an important question. If the choice of input distributions doesn’t matter
much, then you do not need to agonize over this choice. However, if it does make a
difference, then you have to be more careful about choosing the most appropriate input
distribution for any particular situation. Unfortunately, it is impossible to answer the ques-
tion definitively. The best we can say in general is, “It depends.” Some models are more
sensitive to changes in the shape or parameters of input distributions than others. Still, the
issue is worth exploring.

We discuss two types of sensitivity analysis in this section. First, we check whether
the shape of the input distribution matters. In the Walton Bookstore example, we assumed
a triangularly distributed demand with some skewness. Are the results basically the same if
a symmetric distribution such as the normal distribution is used instead? Second, we check
whether the independence of input variables that have been assumed implicitly to this
point is crucial to the output results. Many random quantities in real situations are not inde-
pendent; they are positively or negatively correlated. Fortunately, @RISK enables you to
build correlation into a model. We analyze the effect of this correlation.

15.6.1 Effect of the Shape of the Input Distribution(s)

We first explore the effect of the shape of the input distribution(s). As the following exam-
ple indicates, if parameters that allow for a fair comparison are used, the shape can have a
relatively minor effect.
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E X A M P L E 15.5 EFFECT OF DEMAND DISTRIBUTION AT WALTON’S

We continue to explore the demand for calendars at Walton Bookstore. We keep the
same unit cost, unit price, and unit refund for leftovers as in Example 15.3.

However, in that example we assumed a triangular distribution for demand with parame-
ters 100, 175, and 300. Assuming that Walton orders 200 calendars, is the distribution of
profit affected if a normal distribution of demand is used instead?

Objective To see whether a triangular distribution with some skewness gives the same
profit distribution as a normal distribution for demand.

WHERE DO THE NUMBERS COME FROM?

The numbers here are the same as in Example 15.3. However, as discussed next, the
parameters of the normal distribution are chosen to provide a fair comparison with the
triangular distribution used earlier.

Solution

It is important in this type of analysis to make a fair comparison. When you select a normal
distribution for demand, you must choose a mean and standard deviation for this distribu-
tion. Which values should you choose? It seems only fair to choose the same mean and

For a fair comparison
of alternative input
distributions, the
distributions should
have (at least
approximately) equal
means and standard
deviations.
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standard deviation that the triangular distribution has. To find the mean and standard devi-
ation for a triangular distribution with given minimum, most likely, and maximum values,
you can take advantage of @RISK’s Define Distributions tool. Select any blank cell, click
on the Define Distributions button, select the triangular distribution, and enter the parame-
ters 100, 175, and 300. You will see that the mean and standard deviation are 191.67 and
41.248, respectively. Therefore, for a fair comparison you should use a normal distribution
with mean 191.67 and standard deviation 41.248. In fact, @RISK allows you to see a com-
parison of these two distributions, as in Figure 15.44. To get this chart, click on the Add
Overlay button, select the normal distribution from the gallery, and enter 191.67 and
41.248 as its mean and standard deviation.

970 Chapter 15 Introduction to Simulation Modeling

Figure 15.44

Triangular and

Normal

Distributions for

Demand

DEVELOPING THE SIMULATION MODEL

The logic in this model is almost exactly the same as before. (See Figure 15.45 and the file
Walton Bookstore 8.xlsx.) However, a clever use of the RISKSIMTABLE function allows
you to run two simulations at once, one for the triangular distribution and one for the
corresponding normal distribution. The following two steps are required.

1 RISKSIMTABLE function. It is useful to index the two distributions as 1 and 2. To
indicate that you want to run the simulation with both of them, enter the formula

�RISKSIMTABLE({1,2})

in cell B11. Note that when you enter actual numbers in this function, rather than cell
references, you must put curly brackets around the list.

2 Demand. When the value in cell B11 is 1, the demand distribution is triangular.
When it is 2, the distribution is normal. Therefore, enter the formula

�ROUND(IF(B11�1,RISKTRIANG(E4,E5,E6),RISKNORMAL(H4,H5)),0)

in cell B15. The effect is that the first simulation will use the triangular distribution, and
the second will use the normal distribution.

Look for ways to use
the RISKSIMTABLE
function. It can really
improve efficiency
because it runs several
simulations at once.
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Running the Simulation

The only @RISK setting to change is the number of simulations. It should now be set to 2,
the number of values in the RISKSIMTABLE formula. Other than this, you run the simu-
lation exactly as before.

Discussion of the Simulation Results

The comparison is shown numerically in Figure 15.46 and graphically in Figure 15.47. As
you can see, there is more chance of really low profits when the demand distribution is
normal, but each simulation results in the same maximum profit. Both of these statements
make sense. The normal distribution, being unbounded on the left, allows for very low
demands, and these occasional low demands result in very low profits. On the other side,
Walton’s maximum profit is $500 regardless of the input distribution (provided that it
allows demands greater than the order quantity). This occurs when Walton’s sells all it
orders, in which case excess demand has no effect on profit. Note that the mean profits for
the two distributions differ by only about $5.

15.6 The Effects of Input Distributions on Results 971

Simula�on of Walton's Bookstore using @RISK - two possible demand egnaRsnoitubirtsid  names used:
Order_quan�ty =Model!$B$9

Cost dnameDatad  distribu�on 1 - triangular Demand distribu�on 2 - normal Unit_cost =Model!$B$4
Unit naeM001muminiM05.7$tsoc 5$B$!ledoM=ecirp_tinU76.191
Unit tsoM00.01$ecirp  6$B$!ledoM=dnufer_tinU842.14vedtS571ylekil
Unit 003mumixaM05.2$dnufer

Decision variable
Order 002ytitnauq

Demand distribu�on to use 1 Formula is =RiskSimtable({1,2})

Simulated quan��es
Demand Revenue Cost Refund Profit

179 $1,790 $1,500 $53 $343

Summary measures of profit from @RISK - based on 1000 itera�ons for each simula�on
21noitalumiS

Minimum -$235.00 -$595.00
00.005$00.005$mumixaM
28.243$84.733$egarevA

Standard 

Distribu�on Triangular Normal

devia on $189.10 $201.77
5th percen�le -$47.50 -$70.00
95th percen�le $500.00 $500.00

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
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Figure 15.45 @RISK Model for Comparing Two Input Distributions

Figure 15.46 Summary Results for Comparison Model
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It is probably safe to conclude that the profit distribution in this model is not greatly
affected by the choice of demand distribution, at least not when (1) the candidate input
distributions have the same mean and standard deviation, and (2) their shapes are not too
dissimilar. We would venture to guess that this general conclusion about insensitivity of
output distributions to shapes of input distributions can be made in many simulation
models. However, it is always worth checking, as we have done here, especially when
there is a lot of money at stake. ■
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Figure 15.47 Graphical Results for Comparison Model

FUNDAMENTAL INSIGHT

Shape of the Output Distribution

Predicting the shape of the output distribution from

the shape(s) of the input distribution(s) is difficult. For

example, normally distributed inputs don’t necessarily

produce normally distributed outputs. It is also difficult

to predict how sensitive the shape of the output distri-

bution is to the shape(s) of the input distribution(s).

For example, normally and triangularly distributed

inputs (with the same means and standard deviations)

are likely to lead to similar output distributions, but

there could be differences, say, in the tails of the output

distributions. In any case, you should examine the entire

output distribution carefully, not just a few of its sum-

mary measures.

15.6.2 Effect of Correlated Input Variables

Until now, all of the random numbers generated with @RISK functions have been proba-
bilistically independent. This means, for example, that if a random value in one cell is
much larger than its mean, the random values in other cells are completely unaffected.
They are no more likely to be abnormally large or small than if the first value had been
average or below average. Sometimes, however, independence is unrealistic. In such cases,
the random numbers should be correlated in some way. If they are positively correlated,
then large numbers will tend to go with large numbers, and small with small. If they are
negatively correlated, then large will tend to go with small and small with large. As an
example, you might expect daily stock price changes for two companies in the same
industry to be positively correlated. If the price of one oil company increases, you might
expect the price of another oil company to increase as well. @RISK enables you to build in
this correlated behavior with the RISKCORRMAT function, as we illustrate in the follow-
ing continuation of the Walton example.

Input variables in real-
world problems are
often correlated, which
makes the material in
this section particularly
important.
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E X A M P L E 15.6 CORRELATED DEMANDS FOR TWO CALENDARS AT WALTON’S

Suppose that Walton Bookstore must order two different calendars. To simplify the
example, we assume that the calendars each have the same unit cost, unit selling price,

and unit refund value as in previous examples. Also, we assume that each has a triangularly
distributed demand with parameters 100, 175, and 300. However, we now assume they are
“substitute” products, so that their demands are negatively correlated. This simply means
that if a customer buys one, the customer is not likely to buy the other. Specifically, we
assume a correlation of �0.9 between the two demands. How do these correlated inputs
affect the distribution of profit, as compared to the situation where the demands are uncor-
related (correlation 0) or very positively correlated (correlation 0.9)?

Objective To see how @RISK enables us to simulate correlated demands, and to see the
effect of correlated demands on profit.

WHERE DO THE NUMBERS COME FROM?

The only new input here is the correlation. It is probably negative because the calendars are
substitute products, but it is a difficult number to estimate accurately. This is a good candi-
date for a sensitivity analysis.

Solution

The key to building in correlation is @RISK’s RISKCORRMAT (correlation matrix)
function. To use this function, you must include a correlation matrix in the model,
as shown in the range J5:K6 of Figure 15.48. (See the file Walton Bookstore 9.xlsx.) 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

KJIHGFEDCBA
Simula�on of Walton's Bookstore using @RISK - correlated demands

Cost data - same for each product Demand distribu�on for each product- triangular Correla�on matrix between demands
Unit tcudorP001muminiM05.7$tsoc  1 Product 2
Unit tsoM00.01$ecirp  tcudorP571ylekil  1 1 -0.9
Unit tcudorP003mumixaM05.2$dnufer  2 -0.9 1

Decision variables Possible correla�ons to try
Order quan�ty 0021 -0.9 0 0.9
Order quan�ty 0022

Range names used:
Simulated quan��es Order_quan�ty_1 =Model!$B$9

01$B$!ledoM=2_ytitnauq_redrOtiforPdnufeRtsoCeuneveRdnameD
Product 4$B$!ledoM=tsoc_tinU524$52$005,1$009,1$0911
Product 5$B$!ledoM=ecirp_tinU823$85$005,1$077,1$7712

6$B$!ledoM=dnufer_tinU357$38$000,3$076,3$763slatoT

Summary measures of profit from @RISK - based on 1000 itera�ons
Simula�on 1 2 3
Correla�on -0.9 0 0.9

05.272$muminiM -$245.00 -$425.00
00.000,1$00.000,1$00.000,1$mumixaM
40.576$40.576$40.576$egarevA

Standard devia�on $157.59 $262.33 $365.23
5th percen�le $392.50 $205.00 -$80.00
95th percen�le $925.00 $1,000.00 $1,000.00

Note RISKSIMTABLE 
func�on in cell J6.

Figure 15.48 Simulation Model with Correlations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A correlation matrix must always have 1s along its diagonal (because a variable is always
perfectly correlated with itself) and the correlations between variables elsewhere. Also, the
matrix must be symmetric, so that the correlations above the diagonal are a mirror image
of those below it. (You can enforce this by entering the formula �J6 in cell K5.
Alternatively, @RISK allows you to enter the correlations only below the diagonal, or only
above the diagonal, and it then infers the mirror images.)

To enter random values in any cells that are correlated, you start with a typical @RISK
formula, such as

�RISKTRIANG(E4,E5,E6)

Then you add an extra argument, the RISKCORRMAT function, as follows:

�RISKTRIANG(E4,E5,E6,RISKCORRMAT(J5:K6,1))

The first argument of the RISKCORRMAT function is the correlation matrix range. The
second is an index of the variable. In this example, the first calendar demand has index 1
and the second has index 2.

@RISK Function: RISKCORRMAT
This function enables you to correlate two or more input variables in an @RISK model.
The function has the form RISKCORRMAT(CorrMat,Index), where CorrMat is a matrix
of correlations and Index is an index of the variable being correlated to others. For exam-
ple, if there are three correlated variables, Index is 1 for the first variable, 2 for the second,
and 3 for the third. The RISKCORRMAT function is not entered by itself. Rather, it is
entered as the last argument of a random @RISK function, such as �RISKTRI-
ANG(10,15,30,RISKCORRMAT(CorrMat,2)).

DEVELOPING THE SIMULATION MODEL

Armed with this knowledge, the simulation model in Figure 15.48 is straightforward and
can be developed as follows.

1 Inputs. Enter the inputs in the blue ranges in columns B and E.

2 Correlation matrix. For the correlation matrix in the range J5:H6, enter 1s on the
diagonal, and enter the formula

�J6

in cell K5 (or leave cell K5 blank). Then enter the formula

�RISKSIMTABLE(I9:K9)

in cell J6. This allows you to simultaneously simulate negatively correlated demands,
uncorrelated demands, and positively correlated demands.

3 Order quantities. Assume for now that the company orders the same number of each
calendar, 200, so enter this value in cells B9 and B10. However, the simulation is set up so
that you can experiment with any order quantities in these cells, including unequal values.

4 Correlated demands. Generate correlated demands by entering the formula

�ROUND(RISKTRIANG(E4,E5,E6,RISKCORRMAT(J5:K6,1)),0)

in cell B14 for demand 1 and the formula

�ROUND(RISKTRIANG(E4,E5,E6, RISKCORRMAT(J5:K6,2)),0)

in cell B15 for demand 2. The only difference between these is the index of the variable
being generated. The first has index 1; the second has index 2.
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The RISKCORRMAT
function is “tacked 
on” as an extra
argument to a typical
random @RISK
function.
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5 Other formulas. The other formulas in rows 14 and 15 are identical to ones devel-
oped in previous examples, so they aren’t presented again here. The quantities in row 16
are simply sums of rows 14 and 15. Also, the only @RISK output we designated is the
total profit in cell F16, but you can designate others as output cells if you like.

Running the Simulation

You should set up and run @RISK exactly as before. For this example, set the number of
iterations to 1000 and the number of simulations to 3 (because three different correlations
are being tested).

Discussion of the Simulation Results

Selected numerical and graphical results are shown in Figures 15.49 and 15.50. You will
probably be surprised to see that the mean total profit is the same, regardless of the corre-
lation. This is no coincidence. In each of the three simulations, @RISK uses the same ran-
dom numbers but “shuffles” them in different orders to get the correct correlations. This
means that averages are unaffected. (The idea is that the average of the numbers 30, 26,
and 48 is the same as the average of the numbers 48, 30, and 26.)
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Figure 15.49 Summary Results for Correlated Model

Figure 15.50 Graphical Results for Correlated Model

However, the correlation has a definite effect on the distribution of total profit. You
can see this in Figure 15.49, for example, where the standard deviation of total profit
increases as the correlation goes from negative to zero to positive. This same increase in
variability is apparent in the histograms in Figure 15.50. Do you see intuitively why this
increase in variability occurs? It is basically the “Don’t put all of your eggs in one basket”
effect. When the correlation is negative, high demands for one product tend to cancel low
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demands for the other product, so extremes in profit are rare. However, when the correla-
tion is positive, high demands for the two products tend to go together, as do low demands.
These make extreme profits on either end much more likely.

This same phenomenon would occur if you simulated an investment portfolio contain-
ing two stocks. When the stocks are positively correlated, the portfolio is much riskier
(more variability) than when they are negatively correlated. Of course, this is the reason for
diversifying a portfolio. ■
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We illustrated the RISKCORRMAT function for triangularly distributed values. However,
it can be used with any of @RISK’s distributions by tacking on RISKCORRMAT as a last
argument. You can even mix them. For example, assuming CMat is the range name for a 
2 � 2 correlation matrix, you could enter the formulas

�RISKNORMAL(10,2,RISKCORRMAT(CMat,1))

and

�RISKUNIFORM(100,200,RISKCORRMAT(CMat,2))

into any two cells. When you run the simulation, @RISK generates a sequence of nor-
mally distributed random numbers based on the first formula and another sequence of
uniformly distributed random numbers based on the second formula. Then it shuffles
them in some complex way until their correlation is approximately equal to the specified
correlation in the correlation matrix. ■

MODELING ISSUES

With the
RISKCORRMAT
function, you can
correlate random
numbers from any
distributions.

FUNDAMENTAL INSIGHT

Correlated Inputs

When you enter random inputs in an @RISK simula-

tion model and then run the simulation, each iteration

generates independent values for the random inputs. If

you know or suspect that some of the inputs are 

positively or negatively correlated, you should build this

correlation structure into the model explicitly with the

RISKCORRMAT function.This function might not change

the mean of an output, but it can definitely affect the

variability and shape of the output distribution.

P R O B L E M S

Level A

22. The Fizzy Company produces six-packs of soda cans.
Each can is supposed to contain at least 12 ounces
of soda. If the total weight in a six-pack is less than
72 ounces, Fizzy is fined $100 and receives no sales
revenue for the six-pack. Each six-pack sells for
$3.00. It costs Fizzy $0.02 per ounce of soda put in
the cans. Fizzy can control the mean fill rate of its
soda-filling machines. The amount put in each can

by a machine is normally distributed with standard
deviation 0.10 ounce.
a. Assume that the weight of each can in a six-pack

has a 0.8 correlation with the weight of the other
cans in the six-pack. What mean fill quantity
maximizes expected profit per six-pack? Try
mean fill rates from 12.00 to 12.35 in increments
of 0.05.

b. If the weights of the cans in the six-pack are
probabilistically independent, what mean fill
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quantity maximizes expected profit per six-pack?
Try the same mean fill rates as in part a.

c. How can you explain the difference in the answers
to parts a and b?

23. When you use @RISK’s correlation feature to
generate correlated random numbers, how can you
verify that they are correlated? Try the following.
Use the RISKCORRMAT function to generate two
normally distributed random numbers, each with mean
100 and standard deviation 10, and with correlation
0.7. To run a simulation, you need an output variable,
so sum these two numbers and designate the sum as
an output variable. Now run @RISK with 500
iterations. Click on @RISK’s Excel Reports button
and check the Simulation Data option to see the actual
simulated data.
a. Use Excel’s CORREL function to calculate the

correlation between the two input variables. It
should be close to 0.7. Then create a scatterplot of
these two input variables. The plot should indicate
a definite positive relationship.

b. Are the two input variables correlated with the
output? Use Excel’s CORREL function to find
out. Interpret your results intuitively.

24. Repeat the previous problem, but make the correlation
between the two inputs equal to –0.7. Explain how the
results change.

25. Repeat Problem 23, but now make the second input
variable triangularly distributed with parameters 50,
100, and 500. This time, verify not only that the
correlation between the two inputs is approximately
0.7, but also that the shapes of the two input distribu-
tions are approximately what they should be: normal
for the first and triangular for the second. Do this
by creating histograms in Excel. The point is that
you can use @RISK’s RISKCORRMAT function
to correlate random numbers from different
distributions.

26. Suppose you are going to invest equal amounts in
three stocks. The annual return from each stock is nor-
mally distributed with mean 0.01 (1%) and standard
deviation 0.06. The annual return on your portfolio,
the output variable of interest, is the average of the
three stock returns. Run @RISK, using 1000 itera-
tions, on each of the following scenarios.
a. The three stock returns are highly correlated. The

correlation between each pair is 0.9.
b. The three stock returns are practically independent.

The correlation between each pair is 0.1.
c. The first two stocks are moderately correlated. The

correlation between their returns is 0.4. The third
stock’s return is negatively correlated with the
other two. The correlation between its return and
each of the first two is �0.8.

d. Compare the portfolio distributions from @RISK
for these three scenarios. What do you conclude?

e. You might think of a fourth scenario, where the
correlation between each pair of returns is a large
negative number such as �0.8. But explain
intuitively why this makes no sense. Try to run the
simulation with these negative correlations and see
what happens.

27. The effect of the shapes of input distributions on the
distribution of an output can depend on the output
function. For this problem, assume there are 10 input
variables. The goal is to compare the case where these
10 inputs each have a normal distribution with mean
1000 and standard deviation 250 to the case where
they each have a triangular distribution with
parameters 600, 700, and 1700. (You can check with
@RISK’s Define Distributions window that even
though this triangular distribution is very skewed, it
has the same mean and approximately the same
standard deviation as the normal distribution.) For
each of the following outputs, run two @RISK
simulations, one with the normally distributed inputs
and one with the triangularly distributed inputs, and
comment on the differences between the resulting
output distributions. For each simulation run 10,000
iterations.
a. Let the output be the average of the inputs.
b. Let the output be the maximum of the inputs.
c. Calculate the average of the inputs. Then the output

is the minimum of the inputs if this average is less
than 1000; otherwise, the output is the maximum
of the inputs.

Level B

28. The Business School at State University currently has
three parking lots, each containing 155 spaces. Two
hundred faculty members have been assigned to each
lot. On a peak day, an average of 70% of all lot 1
parking sticker holders show up, an average of 72%
of all lot 2 parking sticker holders show up, and an
average of 74% of all lot 3 parking sticker holders
show up.
a. Given the current situation, estimate the probability

that on a peak day, at least one faculty member
with a sticker will be unable to find a spot. Assume
that the number who show up at each lot is indepen-
dent of the number who show up at the other two
lots. Compare two situations: (1) each person can
park only in the lot assigned to him or her, and (2)
each person can park in any of the lots (pooling).
(Hint: Use the RISKBINOMIAL function.)

b. Now suppose the numbers of people who show
up at the three lots are highly correlated (correla-
tion 0.9). How are the results different from those
in part a?
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15.7 CONCLUSION

Simulation has traditionally not received the attention it deserves in management science
courses. The primary reason for this has been the lack of easy-to-use simulation software.
Now, with Excel’s built-in simulation capabilities, plus powerful and affordable add-ins such
as @RISK, simulation is receiving its rightful emphasis. The world is full of uncertainty,
which is what makes simulation so valuable. Simulation models provide important insights
that are missing in models that do not incorporate uncertainty explicitly. In addition, simula-
tion models are relatively easy to understand and develop. Therefore, we suspect that
simulation models (together with optimization models) will soon be the primary emphasis of
many management science courses—if they are not already. In this chapter we have illustrated
the basic ideas of simulation, how to perform simulation with Excel built-in tools, and how
@RISK greatly enhances Excel’s basic capabilities. In the next chapter we will build on this
knowledge to develop and analyze simulation models in a variety of business areas.
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Summary of Key Terms

Term Explanation Excel Pages
Simulation model Model with random inputs that affect one or 918

more outputs, where the randomness is modeled 
explicitly

F9 key The “recalc” key, used to make a spreadsheet 
recalculate Press the F9 key 921

Probability Specification of the possible values and their proba- 921
distributions for bilities for random input variables; these distributions
input variables must be specified in any simulation model

Uniform distribution The flat distribution, where all values in a bounded 925
continuum are equally likely

RAND function Excel’s built-in random number generator; generates �RAND() 926
uniformly distributed random numbers between 0 and 1

RANDBETWEEN Excel’s built-in function for generating equally �RANDBETWEEN 926
function likely random integers over an indicated range (min,max)

Freezing random Changing “volatile” random numbers into Copy range, 929
numbers “fixed” numbers paste it onto itself 

with the Paste 
Values option

@RISK random A set of functions, including RISKNORMAL �RISKNORMAL 929–936
functions and RISKTRIANG, for generating random (mean,stdev)

numbers from various distributions or =RISKTRIANG 
(min,mostlikely,max),
for example

Discrete A general distribution where a discrete number of 931
distribution possible values and their probabilities are specified

Triangular Literally a triangle-shaped distribution, specified by 934
distribution a minimum value, a most likely value, and a 

maximum value

Replicating with Useful when an add-in such as @RISK is not available Develop simulation 949
Excel only model, use a data table

with any blank column
input cell to replicate
one or more outputs

(continued)
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15.7 Conclusion 979

Term Explanation Excel Pages
@RISK A useful simulation add-in developed by Palisade @RISK ribbon 953

RISKSIMTABLE Used to run an @RISK simulation model for several �RISKSIMTABLE 953
function values of some variable, often a decision variable (list)

RISKOUTPUT Used to indicate that a cell contains an output that �RISKOUTPUT 956
function will be tracked by @RISK ("Profit")

�Revenue-Cost,
for example

Latin hypercube An efficient way of simulating random numbers for a 957
sampling simulation model, where the results are more

accurate than with other sampling methods

Correlated inputs Random quantities, such as returns from stocks in the 976
same industry, that tend to go together (or
possibly go in opposite directions from one another)

RISKCORRMAT Used to correlate two or more random input �RISKNORMAL 976
function variables (100,10, 

RISKCORRMAT
(CorrMat,2)), 
for example 

P R O B L E M S

Conceptual Questions

C.1. You are making several runs of a simulation model,
each with a different value of some decision variable
(such as the order quantity in the Walton calendar
model), to see which decision value achieves the
largest mean profit. Is it possible that one value beats
another simply by random luck? What can you do to
minimize the chance of a “better” value losing out to
a “poorer” value? 

C.2. If you want to replicate the results of a simulation
model with Excel functions only, not @RISK, you
can build a data table and let the column input cell
be any blank cell. Explain why this works.

C.3. Suppose you simulate a gambling situation where
you place many bets. On each bet, the distribution of
your net winnings (loss if negative) is highly skewed
to the left because there are some possibilities of
really large losses but not much upside potential.
Your only simulation output is the average of the
results of all the bets. If you run @RISK with many
iterations and look at the resulting histogram of this
output, what will it look like? Why?

C.4. You plan to simulate a portfolio of investments over
a multiyear period, so for each investment (which
could be a particular stock or bond, for example),
you need to simulate the change in its value for each
of the years. How would you simulate these changes
in a realistic way? Would you base it on historical

data? What about correlations? Do you think the
changes for different investments in a particular year
would be correlated? Do you think changes for a
particular investment in different years would be
correlated? Do you think correlations would play a
significant role in your simulation in terms of
realism? 

C.5. Big Hit Video must determine how many copies of
a new video to purchase. Assume that the company’s
goal is to purchase a number of copies that maxi-
mizes its expected profit from the video during the
next year. Describe how you would use simulation to
shed light on this problem. Assume that each time a
video is rented, it is rented for one day.

C.6. Many people who are involved in a small auto
accident do not file a claim because they are afraid
their insurance premiums will be raised. Suppose
that City Farm Insurance has three rates. If you file
a claim, you are moved to the next higher rate. How
might you use simulation to determine whether a
particular claim should be filed?

C.7. A building contains 1000 lightbulbs. Each bulb lasts
at most five months. The company maintaining the
building is trying to decide whether it is worthwhile
to practice a “group replacement” policy. Under a
group replacement policy, all bulbs are replaced
every T months (where T is to be determined). Also,
bulbs are replaced when they burn out. Assume that
it costs $0.05 to replace each bulb during a group
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replacement and $0.20 to replace each burned-out
bulb if it is replaced individually. How would
you use simulation to determine whether a group
replacement policy is worthwhile?

C.8. Why is the RISKCORRMAT function necessary?
How does @RISK generate random inputs by
default, that is, when RISKCORRMAT is not used?

C.9. Consider the claim that normally distributed inputs
in a simulation model are bound to lead to normally
distributed outputs. Do you agree or disagree with
this claim? Defend your answer.

C.10. It is very possible that when you use a correlation
matrix as input to the RISKCORRMAT function in
an @RISK model, the program will inform you that
this is an invalid correlation matrix. Provide an
example of an obviously invalid correlation matrix
involving at least three variables, and explain why it
is invalid.

C.11. When you use a RISKSIMTABLE function for a
decision variable, such as the order quantity in the
Walton model, explain how this provides a “fair”
comparison across the different values tested.

C.12. Consider a situation where there is a cost that is
either incurred or not. It is incurred only if the value
of some random input is less than a specified cutoff
value. Why might a simulation of this situation give
a very different average value of the cost incurred
than a deterministic model that treats the random
input as fixed at its mean? What does this have to
do with the “flaw of averages”?

Level A

29. Six months before its annual convention, the American
Medical Association must determine how many rooms
to reserve. At this time, the AMA can reserve rooms
at a cost of $150 per room. The AMA believes the
number of doctors attending the convention will be
normally distributed with a mean of 5000 and a
standard deviation of 1000. If the number of people
attending the convention exceeds the number of rooms
reserved, extra rooms must be reserved at a cost of
$250 per room.
a. Use simulation with @RISK to determine the num-

ber of rooms that should be reserved to minimize
the expected cost to the AMA. Try possible values
from 4100 to 4900 in increments of 100.

b. Redo part a for the case where the number attend-
ing has a triangular distribution with minimum
value 2000, maximum value 7000, and most likely
value 5000. Does this change the substantive
results from part a?

30. You have made it to the final round of the show Let’s
Make a Deal. You know that there is a $1 million prize

behind either door 1, door 2, or door 3. It is equally
likely that the prize is behind any of the three doors.
The two doors without a prize have nothing behind
them. You randomly choose door 2. Before you see
whether the prize is behind door 2, host Monty Hall
opens a door that has no prize behind it. Specifically,
suppose that before door 2 is opened, Monty reveals
that there is no prize behind door 3. You now have the
opportunity to switch and choose door 1. Should you
switch? Simulate this situation 1000 times. For each
replication use an @RISK function to generate the
door that leads to the prize. Then use another @RISK
function to generate the door that Monty will open.
Assume that Monty plays as follows: Monty knows
where the prize is and will open an empty door, but he
cannot open door 2. If the prize is really behind door
2, Monty is equally likely to open door 1 or door 3. If
the prize is really behind door 1, Monty must open
door 3. If the prize is really behind door 3, Monty
must open door 1.

31. A new edition of a very popular textbook will be pub-
lished a year from now. The publisher currently has
2000 copies on hand and is deciding whether to do
another printing before the new edition comes out. The
publisher estimates that demand for the book during
the next year is governed by the probability distribu-
tion in the file P15_31.xlsx. A production run incurs a
fixed cost of $10,000 plus a variable cost of $15 per
book printed. Books are sold for $130 per book. Any
demand that cannot be met incurs a penalty cost of
$20 per book, due to loss of goodwill. Up to 500 of
any leftover books can be sold to Barnes and Noble
for $35 per book. The publisher is interested in maxi-
mizing expected profit. The following print-run sizes
are under consideration: 0 (no production run) to
16,000 in increments of 2000. What decision would
you recommend? Use simulation with 1000 replica-
tions. For your optimal decision, the publisher can be
90% certain that the actual profit associated with
remaining sales of the current edition will be between
what two values?

32. A hardware company sells a lot of low-cost, high-
volume products. For one such product, it is equally
likely that annual unit sales will be low or high. If
sales are low (60,000), the company can sell the
product for $10 per unit. If sales are high (100,000),
a competitor will enter and the company will be able
to sell the product for only $8 per unit. The variable
cost per unit has a 25% chance of being $6, a 50%
chance of being $7.50, and a 25% chance of being $9.
Annual fixed costs are $30,000.
a. Use simulation to estimate the company’s expected

annual profit.
b. Find a 95% interval for the company’s annual

profit, that is, an interval such that about 95% of
the actual profits are inside it.
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c. Now suppose that annual unit sales, variable cost,
and unit price are equal to their respective expected
values—that is, there is no uncertainty. Determine
the company’s annual profit for this scenario.

d. Can you conclude from the results in parts a and c
that the expected profit from a simulation is equal
to the profit from the scenario where each input
assumes its expected value? Explain.

33. W. L. Brown, a direct marketer of women’s clothing,
must determine how many telephone operators to
schedule during each part of the day. W. L. Brown
estimates that the number of phone calls received each
hour of a typical eight-hour shift can be described by
the probability distribution in the file P15_33.xlsx.
Each operator can handle 15 calls per hour and costs
the company $20 per hour. Each phone call that is not
handled is assumed to cost the company $6 in lost
profit. Considering the options of employing 6, 8, 10,
12, 14, or 16 operators, use simulation to determine
the number of operators that minimizes the expected
hourly cost (labor costs plus lost profits).

34. Assume that all of a company’s job applicants must
take a test, and that the scores on this test are normally
distributed. The selection ratio is the cutoff point used
by the company in its hiring process. For example, a
selection ratio of 20% means that the company will
accept applicants for jobs who rank in the top 20% of
all applicants. If the company chooses a selection ratio
of 20%, the average test score of those selected will be
1.40 standard deviations above average. Use
simulation to verify this fact, proceeding as follows.
a. Show that if the company wants to accept only the

top 20% of all applicants, it should accept
applicants whose test scores are at least 0.842
standard deviation above average. (No simulation
is required here. Just use the appropriate Excel
normal function.)

b. Now generate 1000 test scores from a normal
distribution with mean 0 and standard deviation 1.
The average test score of those selected is the aver-
age of the scores that are at least 0.842. To deter-
mine this, use Excel’s DAVERAGE function. To do
so, put the heading Score in cell A3, generate the
1000 test scores in the range A4:A1003, and name
the range A3:A1003 Data. In cells C3 and C4,
enter the labels Score and �0.842. (The range
C3:C4 is called the criterion range.) Then calculate
the average of all applicants who will be hired
by entering the formula =DAVERAGE(Data,
"Score", C3:C4) in any cell. This average should
be close to the theoretical average, 1.40. This
formula works as follows. Excel finds all observa-
tions in the Data range that satisfy the criterion
described in the range C3:C4 (Score�0.842). Then
it averages the values in the Score column (the
second argument of DAVERAGE) corresponding

to these entries. See online help for more about
Excel’s database “D” functions.

c. What information would the company need to
determine an optimal selection ratio? How could it
determine the optimal selection ratio?

35. Lemington’s is trying to determine how many Jean
Hudson dresses to order for the spring season.
Demand for the dresses is assumed to follow a normal
distribution with mean 400 and standard deviation
100. The contract between Jean Hudson and
Lemington’s works as follows. At the beginning of the
season, Lemington’s reserves x units of capacity.
Lemington’s must take delivery for at least 0.8x
dresses and can, if desired, take delivery on up to x
dresses. Each dress sells for $160 and Hudson charges
$50 per dress. If Lemington’s does not take delivery
on all x dresses, it owes Hudson a $5 penalty for each
unit of reserved capacity that is unused. For example,
if Lemington’s orders 450 dresses and demand is for
400 dresses, Lemington’s will receive 400 dresses and
owe Jean 400($50) � 50($5). How many units of
capacity should Lemington’s reserve to maximize its
expected profit?

36. Dilbert’s Department Store is trying to determine how
many Hanson T-shirts to order. Currently the shirts
are sold for $21, but at later dates the shirts will be
offered at a 10% discount, then a 20% discount, then
a 40% discount, then a 50% discount, and finally a
60% discount. Demand at the full price of $21 is
believed to be normally distributed with mean 1800
and standard deviation 360. Demand at various
discounts is assumed to be a multiple of full-price
demand. These multiples, for discounts of 10%, 20%,
40%, 50%, and 60% are, respectively, 0.4, 0.7, 1.1, 2,
and 50. For example, if full-price demand is 2500,
then at a 10% discount customers would be willing to
buy 1000 T-shirts. The unit cost of purchasing T-shirts
depends on the number of T-shirts ordered, as shown
in the file P15_36.xlsx. Use simulation to determine
how many T-shirts the company should order. Model
the problem so that the company first orders some
quantity of T-shirts, then discounts deeper and deeper,
as necessary, to sell all of the shirts.

Level B

37. The annual return on each of four stocks for each of
the next five years is assumed to follow a normal
distribution, with the mean and standard deviation for
each stock, as well as the correlations between stocks,
listed in the file P15_37.xlsx. You believe that the
stock returns for these stocks in a given year are
correlated, according to the correlation matrix given,
but you believe the returns in different years are
uncorrelated. For example, the returns for stocks 1 and
2 in year 1 have correlation 0.55, but the correlation
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between the return of stock 1 in year 1 and the return
of stock 1 in year 2 is 0, and the correlation between
the return of stock 1 in year 1 and the return of stock 2
in year 2 is also 0. The file has the formulas you might
expect for this situation in the range C20:G23. You
can check how the RISKCORRMAT function has
been used in these formulas. Just so that there is an
@RISK output cell, calculate the average of all returns
in cell B25 and designate it as an @RISK output.
(This cell is not really important for the problem, but
it is included because @RISK requires at least one
output cell.)
a. Using the model exactly as it stands, run @RISK

with 1000 iterations. The question is whether
the correlations in the simulated data are close
to what they should be. To check this, go to
@RISK’s Report Settings and check the Input
Data option before you run the simulation. This
gives you all of the simulated returns on a new
sheet. Then calculate correlations for all pairs of
columns in the resulting Inputs Data Report sheet.
(StatTools can be used to create a matrix of all
correlations for the simulated data.) Comment on
whether the correlations are different from what
they should be.

b. Recognizing that this is a common situation
(correlation within years, no correlation across
years), @RISK allows you to model it by adding
a third argument to the RISKCORRMAT function:
the year index in row 19 of the P15_37.xlsx
file. For example, the RISKCORRMAT part of the
formula in cell C20 becomes �RISKNORMAL
($B5,$C5, RISKCORRMAT($B$12:$E$15,
$B20,C$19)). Make this change to the formulas in
the range C20:G23, rerun the simulation, and redo
the correlation analysis in part a. Verify that the
correlations between inputs are now more in line
with what they should be.

38. It is surprising (but true) that if 23 people are in the
same room, there is about a 50% chance that at least
two people will have the same birthday. Suppose you
want to estimate the probability that if 30 people are
in the same room, at least two of them will have the
same birthday. You can proceed as follows.
a. Generate random birthdays for 30 different people.

Ignoring the possibility of a leap year, each person
has a 1/365 chance of having a given birthday
(label the days of the year 1 to 365). You can use
the RANDBETWEEN function to generate
birthdays.

b. Once you have generated 30 people’s birthdays,
how can you tell whether at least two people have
the same birthday? One way is to use Excel’s
RANK function. (You can learn how to use this
function in Excel’s online help.) This function
returns the rank of a number relative to a given

group of numbers. In the case of a tie, two numbers
are given the same rank. For example, if the set of
numbers is 4, 3, 2, 5, the RANK function returns
2, 3, 4, 1. (By default, RANK gives 1 to the largest
number.) If the set of numbers is 4, 3, 2, 4, the
RANK function returns 1, 3, 4, 1.

c. After using the RANK function, you should be
able to determine whether at least two of the 30
people have the same birthday. What is the
(estimated) probability that this occurs?

39. United Electric (UE) sells refrigerators for $400 with
a one-year warranty. The warranty works as follows.
If any part of the refrigerator fails during the first year
after purchase, UE replaces the refrigerator for an
average cost of $100. As soon as a replacement is
made, another one-year warranty period begins for the
customer. If a refrigerator fails outside the warranty
period, we assume that the customer immediately
purchases another UE refrigerator. Suppose that the
amount of time a refrigerator lasts follows a normal
distribution with a mean of 1.8 years and a standard
deviation of 0.3 year.
a. Estimate the average profit per year UE earns from

a customer.
b. How could the approach of this problem be used to

determine the optimal warranty period?

40. A Flexible Savings Account (FSA) plan allows you to
put money into an account at the beginning of the
calendar year that can be used for medical expenses.
This amount is not subject to federal tax. As you pay
medical expenses during the year, you are reimbursed
by the administrator of the FSA until the money is
exhausted. From that point on, you must pay your
medical expenses out of your own pocket. On the
other hand, if you put more money into your FSA than
the medical expenses you incur, this extra money is
lost to you. Your annual salary is $80,000 and your
federal income tax rate is 30%.
a. Assume that your medical expenses in a year are

normally distributed with mean $2000 and standard
deviation $500. Build an @RISK model in which
the output is the amount of money left to you after
paying taxes, putting money in an FSA, and paying
any extra medical expenses. Experiment with the
amount of money put in the FSA, using a
RISKSIMTABLE function.

b. Rework part a, but this time assume a gamma
distribution for your annual medical expenses. Use
16 and 125 as the two parameters of this
distribution. These imply the same mean and
standard deviation as in part a, but the distribution
of medical expenses is now skewed to the right,
which is probably more realistic. Using simulation,
see whether you should now put more or less
money in an FSA than in the symmetric case in
part a.
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41. At the beginning of each week, a machine is in 
one of four conditions: 1 � excellent; 2 � good; 
3 � average; 4 � bad. The weekly revenue earned by
a machine in state 1, 2, 3, or 4 is $100, $90, $50, or
$10, respectively. After observing the condition of the
machine at the beginning of the week, the company
has the option, for a cost of $200, of instantaneously
replacing the machine with an excellent machine. The
quality of the machine deteriorates over time, as
shown in the file P15_41.xlsx. Four maintenance
policies are under consideration:
■ Policy 1: Never replace a machine.
■ Policy 2: Immediately replace a bad machine.
■ Policy 3: Immediately replace a bad or average

machine.
■ Policy 4: Immediately replace a bad, average, or

good machine.

Simulate each of these policies for 50 weeks (using at
least 250 iterations each) to determine the policy that
maximizes expected weekly profit. Assume that the
machine at the beginning of week 1 is excellent.

42. Simulation can be used to illustrate a number of
results from statistics that are difficult to understand
with nonsimulation arguments. One is the famous
central limit theorem, which says that if you sample
enough values from any population distribution and
then average these values, the resulting average will
be approximately normally distributed. Confirm this
by using @RISK with the following population
distributions (run a separate simulation for each):
(a) discrete with possible values 1 and 2 and
probabilities 0.2 and 0.8; (b) exponential with mean
1 (use the RISKEXPON function with the single
argument 1); (c) triangular with minimum, most likely,
and maximum values equal to 1, 9, and 10. (Note that
each of these distributions is very skewed.) Run each
simulation with 10 values in each average, and run
1000 iterations to simulate 1000 averages. Create a
histogram of the averages to see whether it is indeed
bell-shaped. Then repeat, using 30 values in each
average. Are the histograms based on 10 values
qualitatively different from those based on 30?

43. In statistics we often use observed data to test a
hypothesis about a population or populations. The
basic method uses the observed data to calculate a test
statistic (a single number), as discussed in Chapter 9. If
the magnitude of this test statistic is sufficiently large,
the null hypothesis is rejected in favor of the research
hypothesis. As an example, consider a researcher who
believes teenage girls sleep longer than teenage boys
on average. She collects observations on n � 40
randomly selected girls and n � 40 randomly selected
boys. (Each observation is the average sleep time over
several nights for a given person.) The averages are

hours for the girls and hours for

the boys. The standard deviation of the 40 observations
for girls is s1 � 0.5 hour; for the boys it is s2 � 0.7
hour. The researcher, consulting Chapter 9, then
calculates the test statistic

Based on the fact that 2.206 is “large,” she claims that
her research hypothesis is confirmed—girls do sleep
longer than boys.

You are skeptical of this claim, so you check it out
by running a simulation. In your simulation you assume
that girls and boys have the same mean and standard
deviation of sleep times in the entire population, say, 7.7
and 0.6. You also assume that the distribution of sleep
times is normal. Then you repeatedly simulate observa-
tions of 40 girls and 40 boys from this distribution and
calculate the test statistic. The question is whether the
observed test statistic, 2.206, is “extreme.” If it is larger
than most or all of the test statistics you simulate, then the
researcher is justified in her claim; otherwise, this large a
statistic could have happened easily by chance, even if
the girls and boys have identical population means. Use
@RISK to see which of these possibilities occurs.

44. A technical note in the discussion of @RISK indicated
that Latin Hypercube sampling is more efficient
than Monte Carlo sampling. This problem allows you
to see what this means. The file P15_44.xlsx gets
you started. There is a single output cell, B5. You
can enter any random value in this cell, such as
RISKNORMAL(500,100). There are already @RISK
statistical formulas in rows 9–12 to calculate summary
measures of the output for each of 10 simulations. On
the @RISK ribbon, click on the button to the left of
the “dice” button to bring up the Simulation Settings
dialog box, click on the Sampling tab, and make
sure the Sampling Type is Latin Hypercube. Run 10
simulations with at least 1000 iterations each, and then
paste the results in rows 9–12 as values in rows 17–20.
Next, get back in Simulations Settings and change the
Sampling Type to Monte Carlo, run the 10 simulations
again, and paste the results in rows 9–12 as values into
rows 23–26. For each row, 17–20 and 23–26, summa-
rize the 10 numbers in that row with AVERAGE and
STDEV. What do you find? Why do we say that Latin
Hypercube sampling is more efficient? (Thanks to
Harvey Wagner at University of North Carolina for
suggesting this problem.)

45. We are continually hearing reports on the nightly news
about natural disasters—droughts in Texas, hurricanes
in Florida, floods in California, and so on. We often
hear that one of these was the “worst in over 30 years,”
or some such statement. Are natural disasters getting
worse these days, or does it just appear so? How might
you use simulation to answer this question? Here is

X1 - X2

2s2
1/40 + s2

2/40
=

7.9 - 7.6

10.25/40 + 0.49/40
= 2.206

X2 = 7.6X1 = 7.9
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one possible approach. Imagine that there are N areas
of the country (or the world) that tend to have, to some
extent, various types of weather phenomena each year.
For example, hurricanes are always a potential
problem for Florida, and fires are always a potential
problem in southern California. You might model the
severity of the problem for any area in any year by a
normally distributed random number with mean 0 and
standard deviation 1, where negative values are
interpreted as good years and positive values are

interpreted as bad years. (We suggest the normal
distribution, but there is no reason other distributions
couldn’t be used instead.) Then you could simulate
such values for all areas over a period of several years
and keep track, say, of whether any of the areas have
worse conditions in the current year than they have
had in the past several years, where “several” could be
10, 20, 30, or any other number of years you want to
test. What might you keep track of? How might you
interpret your results?
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C A S E

Egress, Inc., is a small company that designs,

produces, and sells ski jackets and other coats.

The creative design team has labored for weeks over

its new design for the coming winter season. It is

now time to decide how many ski jackets to produce

in this production run. Because of the lead times

involved, no other production runs will be possible

during the season. Predicting ski jacket sales months

in advance of the selling season can be quite tricky.

Egress has been in operation for only three years,

and its ski jacket designs were quite successful in two

of those years. Based on realized sales from the last

three years, current economic conditions, and

professional judgment, 12 Egress employees have

independently estimated demand for their new

design for the upcoming season.Their estimates are

listed in Table 15.2.

15.1 SKI JACKET PRODUCTION

Case 15.1 Ski Jacket Production 985

Table 15.2 Estimated Demands

14,000 16,000
13,000 8000
14,000 5000
14,000 11,000
15,500 8000
10,500 15,000 

Table 15.3 Monetary Values

Variable production cost per unit (C): $80
Selling price per unit (S): $100
Salvage value per unit (V): $30
Fixed production cost (F): $100,000

To assist in the decision on the number of units

for the production run, management has gathered

the data in Table 15.3. Note that S is the price Egress

charges retailers.Any ski jackets that do not sell

during the season can be sold by Egress to discoun-

ters for V per jacket.The fixed cost of plant and

equipment is F. This cost is incurred regardless of

the size of the production run.

Questions

1. Egress management believes that a normal

distribution is a reasonable model for the

unknown demand in the coming year. What

mean and standard deviation should Egress use

for the demand distribution?

2. Use a spreadsheet model to simulate 1000

possible outcomes for demand in the coming

year. Based on these scenarios, what is the

expected profit if Egress produces Q � 7800 ski

jackets? What is the expected profit if Egress

produces Q � 12,000 ski jackets? What is the

standard deviation of profit in these two cases?

3. Based on the same 1000 scenarios, how many

ski jackets should Egress produce to maximize

expected profit? Call this quantity Q.

4. Should Q equal mean demand or not? Explain.

5. Create a histogram of profit at the production

level Q. Create a histogram of profit when the

production level Q equals mean demand.What is

the probability of a loss greater than $100,000

in each case? ■
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C A S E

Management of Ebony, a leading manufacturer of

bath soap, is trying to control its inventory

costs.The weekly cost of holding one unit of soap in

inventory is $30 (one unit is 1000 cases of soap).The

marketing department estimates that weekly demand

averages 120 units, with a standard deviation of 15

units, and is reasonably well modeled by a normal

distribution. If demand exceeds the amount of soap

on hand, those sales are lost—that is, there is no

backlogging of demand.The production department

can produce at one of three levels: 110, 120, or 130

units per week.The cost of changing the production

level from one week to the next is $3000.

Management would like to evaluate the following

production policy. If the current inventory is less

than L � 30 units, they will produce 130 units in the

next week. If the current inventory is greater than 

U � 80 units, they will produce 110 units in the next

week. Otherwise, Ebony will continue at the previous

week’s production level.

Ebony currently has 60 units of inventory on

hand. Last week’s production level was 120.

Questions

1. Develop a simulation model for 52 weeks of

operation at Ebony. Graph the inventory of

soap over time.What is the total cost (inventory

cost plus production change cost) for the

52 weeks?

2. Run the simulation for 500 iterations to

estimate the average 52-week cost with values

of U ranging from 30 to 80 in increments of 10.

Keep L � 30 throughout.

3. Report the sample mean and standard deviation

of the 52-week cost under each policy. Using the

simulated results, is it possible to construct 

valid 95% confidence intervals for the average

52-week cost for each value of U? In any case,

graph the average 52-week cost versus U.What

is the best value of U for L � 30?

4. What other production policies might be useful

to investigate? ■

15.2 EBONY BATH SOAP
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C H A P T E R

MERRILL LYNCH IMPROVES LIQUIDITY RISK
MANAGEMENT FOR REVOLVING CREDIT LINES

The Merrill Lynch banking group comprises several Merrill Lynch affiliates,

including Merrill Lynch Bank USA (ML Bank USA). (Its parent company is

Bank of America.) ML Bank USA has assets of more than $60 billion (as of

June 30, 2005 when the following article was written, closer to $70 billion by

2010). The bank acts as an intermediary, accepting deposits from Merrill

Lynch retail customers and using the deposits to fund loans and make

investments. One way ML Bank USA uses these assets is to provide revolving

credit lines to institutional and large corporate borrowers. Currently, it has a

portfolio of about $13 billion in credit-line commitments with more than

100 companies.When it makes these commitments, it must be aware of the

liquidity risk, defined as the ability to meet all cash obligations when due. In

other words, if a borrower asks for funds as part of its revolving credit-line

agreement, the bank must have the funds available to honor the request,

typically on the same day the request is made. This liquidity requirement
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poses a huge risk to the bank. The bank must keep enough cash or liquid investments

(i.e., investments that can be converted to cash quickly) in reserve to honor its

customers’ requests whenever they occur. If the bank knew when, and in what quantities,

these requests would occur, it could manage its cash reserves more prudently, essentially

holding a smaller amount in liquid investments for credit requests and investing the rest

in other more illiquid and profitable investments.

Duffy et al. (2005) discuss their role as members of Merrill Lynch’s Banking Group

and Management Science Group in developing a model to manage the liquidity risk for

ML Bank USA’s revolving credit lines. The revolving credit lines give borrowers access to

a specified amount of cash on demand for short-term funding needs in return for a fee

paid to the bank.The bank also earns an interest rate on advances that compensates it

for the liquidity and other risks it takes. These credit lines are therefore profitable for

the bank, but they are not the borrowers’ primary sources of funding. Customers

typically use these credit lines to retire maturing commercial paper (available at cheaper

interest rates) during the process of rolling it over (i.e., attempting to reissue new

commercial paper notes), and/or when their credit rating falls. The essence of the

problem is that when a customer’s credit ratings (measured by the Moody rating scale,

for example) fall, the customers are less likely to obtain funds from cheaper sources such

as commercial paper, so they then tend to rely on their credit lines from ML Bank USA

and other banks. This poses problems for ML Bank USA. It must honor its commitments

to the borrowers, as spelled out in the credit-line agreements, but customers with low

credit ratings are the ones most likely to default on their loans.

Two other aspects of the problem are important. First, the credit-line agreements

often have a “term-out” option, which allows the borrower to use funds for an additional

period after expiration, typically for one year. A customer that is experiencing financial

difficulties and has seen its credit rating fall is the type most likely to use its term-out

option. Second, movements in credit ratings for customers in the same industry or even

in different industries tend to be positively correlated because they can all be affected by

movements in their industry or the overall economy. This increases the liquidity risk for

ML Bank USA because it increases the chance that poor economic conditions will lead

many customers to request additional credit.

The authors built a rather complex simulation model to track the demand for usage

of these credit facilities. The model simulates monthly credit-line usage for each

customer over a five-year period. During this period, some credit lines are renewed,

some expire and are not renewed, and some customers exercise their term-out options.

The model has several significant features: (1) It models the probabilistic changes in

credit ratings for its customers, where a customer’s credit rating can move from one

level to another level in a given month with specified probabilities; (2) these probabilities

are chosen in such a way that movements in credit ratings are positively correlated

across customers; and (3) expert-system business rules are used to determine whether

the company will renew or terminate expiring lines of credit and whether customers will

exercise their term-out options. For example, a typical rule is that the bank does not

renew a credit line if the borrower’s credit rating is below a certain threshold.

The authors developed a user-friendly Excel-based system to run their model.

It actually invokes and executes the simulation behind the scenes in a simulation package

called Arena. Users of the system can change many of the parameters of the model, such

as the business-rule cutoffs, to customize the simulation.

The model has helped ML Bank USA manage its revolving credit lines.The output of

the model provides a scientific and robust measure of liquidity risk that the bank has

confidence in—and therefore uses.The model has led to two tangible financial benefits.

First, the model reduced the bank’s liquidity requirement from 50% to 20% of

outstanding commitments, thus freeing up about $4 billion of liquidity for other
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16.1 INTRODUCTION

In the previous chapter we introduced most of the important concepts for developing and
analyzing spreadsheet simulation models. We also discussed many of the features available
in the powerful simulation add-in, @RISK, that you receive with this book. Now we apply
the tools to a wide variety of problems that can be analyzed with simulation. For conve-
nience, we group the applications into four general areas: (1) operations models, (2) finan-
cial models, (3) marketing models, and (4) games of chance. The only overriding theme in
this chapter is that simulation models can yield important insights in all of these areas. You
do not need to cover all of the models in this chapter or cover them in any particular order.
You can cover the ones of most interest to you in practically any order.

16.2 OPERATIONS MODELS

Whether we are discussing the operations of a manufacturing or a service company, there
is likely to be uncertainty that can be modeled with simulation. In this section we look at
examples of bidding for a government contract (uncertainty in the bids by competitors),
warranty costs (uncertainty in the time until failure of an appliance), and drug production
(uncertainty in the yield and timing).

16.2.1 Bidding for Contracts

In situations where a company must bid against competitors, simulation can often be used
to determine the company’s optimal bid. Usually the company does not know what its
competitors will bid, but it might have an idea about the range of the bids its competitors
will choose. In this section we show how to use simulation to determine a bid that maxi-
mizes the company’s expected profit.

profitable illiquid investments. Second, during the first 21 months after the system

was implemented, the bank’s portfolio expanded from $8 billion in commitments and

80 customers to $13 billion and more than 100 customers.The bank continues to

use the model for its long-range planning. ■

E X A M P L E 16.1 BIDDING FOR A GOVERNMENT CONTRACT

The Miller Construction Company must decide whether to make a bid on a construction
project. Miller believes it will cost the company $10,000 to complete the project (if it

wins the contract), and it will cost $350 to prepare a bid. However, there is uncertainty
about each of these. Upon further reflection, Miller assesses that the cost to complete the
project has a triangular distribution with minimum, most likely, and maximum values
$9000, $10,000, and $15,000. Similarly, Miller assesses that the cost to prepare a bid has a
triangular distribution with parameters $300, $350, and $500. (Note the skewness in these
distributions. Miller recognizes that cost overruns are much more likely than cost under-
runs.) Four potential competitors are going to bid against Miller. The lowest bid wins the
contract, and the winner is then given the winning bid amount to complete the project.
Based on past history, Miller believes that each potential competitor will bid, indepen-
dently of the others, with probability 0.5. Miller also believes that each competitor’s bid

16.2 Operations Models 989

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



will be a multiple of its (Miller’s) most likely cost to complete the project, where this mul-
tiple has a triangular distribution with minimum, most likely, and maximum values 0.9,
1.3, and 1.8, respectively. If Miller decides to prepare a bid, its bid amount will be a multi-
ple of $500 in the range $10,500 to $15,000. The company wants to use simulation to
determine which strategy to use to maximize its expected profit.

Objective To simulate the profit to Miller from any particular bid, and to see which bid
amount is best.

WHERE DO THE NUMBERS COME FROM?

We already discussed this type of bidding problem in Chapter 6. The new data required
here are the parameters of the distributions of Miller’s costs, those of the competitors’
bids, and the probability that a given competitor will place a bid. Triangular distributions
are chosen for simplicity, although Miller could try other types of distributions. The para-
meters of these distributions are probably educated guesses, possibly based on previous
contracts and bidding experience against these same competitors. The probability that a
given competitor will place a bid can be estimated from these same competitors’ bidding
history.

Solution

The logic is straightforward. You first simulate the number of competitors who will bid
and then simulate their bids. Then for any bid Miller makes, you see whether Miller wins
the contract, and if so, what its profit is.

DEVELOPING THE SIMULATION MODEL

The simulation model appears in Figure 16.1. (See the file Contract Bidding.xlsx.) It can
be developed with the following steps. (Note that this model does not check the possibil-
ity of Miller not bidding at all. But this case is easy. If Miller opts not to bid, the profit is
a certain $0.)

1 Inputs. Enter the inputs in the blue cells.

2 Miller’s bid. You can test all of Miller’s possible bids simultaneously with the
RISKSIMTABLE function. To set up for this, enter the formula

�RISKSIMTABLE(D16:M16)

in cell B16. As with all uses of this function, the spreadsheet shows the simulated values
for the first bid, $10,500. However, when you run the simulation, you see outputs for all of
the bids.

3 Miller’s costs. Generate Miller’s cost to prepare a bid in cell B19 with the formula

�RISKTRIANG(B5,C5,D5)

Then copy this to cell B20 to generate Miller’s cost to complete the project.

4 Competitors and their bids. First, generate the random number of competitors who
bid. This has a binomial distribution with four trials and probability of “success” equal to
0.5 for each trial, so enter the formula

�RISKBINOMIAL(B8,B9)

in cell B21. Then generate random bids for the competitors who bid in row 23 by entering
the formula
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�IF(B22��$B$21,RISKTRIANG($B$12,$B$13,$B$14)*$C$6,"")

in cell B23 and copying across. This generates a random bid for all competitors who bid,
and it enters a blank for those who don’t. (Remember that the random value is the multiple
of Miller’s most likely cost to complete the project.) Calculate the smallest of these 
(if there are any) in cell B24 with the formula

�IF(B21��1,MIN(B23:E23),"")

Of course, Miller will not see these other bids until it has submitted its own bid.

5 Win contract? See whether Miller wins the bid by entering the formula

�IF(OR(B16�B24,B21�0),1,0)

in cell B26. Here, 1 means that Miller wins the bid, and 0 means a competitor wins the bid.
Of course, if there are no competing bids, Miller wins for sure. Then designate this cell as
an @RISK output cell. Recall that to designate a cell as an @RISK output cell, you select
the cell and then click on the Add Output button on @RISK’s ribbon. You can then label
this output appropriately. We used the label Wins Bid.

6 Miller’s profit. If Miller submits a bid, the bid cost is lost for sure. Beyond that, the
profit to Miller is the bid amount minus the cost of completing the project if the bid is won.
Otherwise, Miller makes nothing. So enter the formula

�IF(B26�1,B16-B20,0)–B19

in cell B27. Then designate this cell as an additional @RISK output cell. (We named it
Profit.)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

MLKJIHGFEDCBA
Bidding for a contract

Inputs
Miller's costs, triangular distributed Min Most likely Max
Cost to prepare a 005$053$003$dib
Cost to complete project $9,000 $10,000 $15,000

Number of poten�al compe�tors 4
Probability a given compe�tor bids 0.5

Parameters of triangular distribu�ons for each compe�tor's bid (expressed as mul�ple of Miller's most likely cost to complete project)
9.0niM

Most 3.1ylekil
8.1xaM

Possible bids for Miller
Miller's 000,51$005,41$000,41$005,31$000,31$005,21$000,21$005,11$000,11$005,01$005,01$dib

Simula�on
Miller's cost to prepare a bid $365
Miller's cost to complete project $10,332
Number of compe�ng bids 2
Compe�tor 4321xedni
Compe�tors' 453,31$031,31$sdib
Minimum compe�tor bid $13,354

Miller wins bid? (1 if yes, 0 if no) 1
Miller's profit -$197

Figure 16.1 Bidding Simulation Model
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Running the Simulation

Set the number of iterations to 1000, and set the number of simulations to 10 because there
are 10 bid amounts Miller wants to test.

Discussion of the Simulation Results

The summary results appear in Figure 16.2. For each simulation—that is, each bid
amount—there are two outputs: 1 or 0 to indicate whether Miller wins the contract and
Miller’s profit. The only interesting results for the 0–1 output are in the Mean column,
which shows the fraction of iterations that resulted in 1s. So you can see, for example, that
if Miller bids $12,000 (simulation #4), the probability of winning the bid is estimated to be
0.581. This probability clearly decreases as Miller’s bid increases.
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Figure 16.2 Summary Results for Bidding Simulation

In terms of net profit, if you concentrate only on the Mean column, a bid amount of
$13,000 (simulation #6) is the best. But as the other numbers in this figure indicate, the
mean doesn’t tell the whole story. For example, if Miller bids $13,000, it could win the bid
but still lose a considerable amount of money because of cost overruns. The histogram of
profit in Figure 16.3 indicates this more clearly. It shows that in spite of the positive mean,
most outcomes are negative.

So what should Miller do? If it doesn’t bid at all, its profit is a certain $0. If Miller is
an expected profit maximizer, then the fact that several of the means in Figure 16.2 are pos-
itive indicates that bidding is better than not bidding, with a bid of $13,000 being the best
bid. However, potential cost overruns and the corresponding losses are certainly a concern.
Depending on Miller’s degree of risk aversion, the company might decide to (1) not bid at
all, or (2) bid higher than $13,000 to minimize its worse loss. Still, we would caution
Miller not to be too conservative. Rather than focusing on the Min (worst case) column in
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Figure 16.2, we would suggest focusing on the 5% column. This shows nearly how bad
things could get (5% of the time it would be worse than this), and this 5th percentile
remains fairly constant for higher bids. ■

Figure 16.3

Histogram of Profit

with $13,000 Bid

16.2.2 Warranty Costs

When you buy a new product, it usually carries a warranty. A typical warranty might
state that if the product fails within a certain period such as one year, you will receive a
new product at no cost, and it will carry the same warranty. However, if the product fails
after the warranty period, you have to bear the cost of replacing the product. Due to
random lifetimes of products, we need a way to estimate the warranty costs (to the
manufacturer) of a product. The next example illustrates how this can be accomplished
with simulation.

E X A M P L E 16.2 WARRANTY COSTS FOR A CAMERA

The Yakkon Company sells a popular camera for $400. This camera carries a warranty
such that if the camera fails within 1.5 years, the company gives the customer a new

camera for free. If the camera fails after 1.5 years, the warranty is no longer in effect.
Every replacement camera carries exactly the same warranty as the original camera, and
the cost to the company of supplying a new camera is always $225. Use simulation to esti-
mate, for a given sale, the number of replacements under warranty and the NPV of profit
from the sale, using a discount rate of 8%.

Objective To use simulation to estimate the number of replacements under warranty and
the total NPV of profit from a given sale.

WHERE DO THE NUMBERS COME FROM?

The warranty information is a policy decision made by the company. The hardest input to
estimate is the probability distribution of the lifetime of the product. We discuss this next.
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Solution

The only randomness in this problem concerns the time until failure of a new camera.
Yakkon could estimate the distribution of time until failure from historical data. This
would probably indicate a right-skewed distribution, as shown in Figure 16.4. If you look
through the list of distributions available in @RISK under Define Distributions, you will
see several with this same basic shape. The one shown in Figure 16.4 is a commonly used
distribution called the gamma distribution. We will use a gamma distribution in this exam-
ple, although other choices such as the triangular are certainly possible.
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The gamma
distribution is a
popular distribution,
especially when you
want a right-skewed
distribution of a
nonnegative quantity.

You can learn about
distributions from
@RISK’s Define
Distribution window.

Figure 16.4

Right-Skewed

Gamma

Distribution

Selecting a Gamma Distribution

The gamma distribution is characterized by two parameters, � and �. These determine its
shape and location. It can be shown that the mean and standard deviation are � � �� and
� . Alternatively, for any desired values of the mean and standard deviation, these = 1ab

equations can be solved for � and �, which leads to � � �2/�2 and � � �2/�. So, for
example, if you want a gamma distribution with mean 2.5 and standard deviation 1 (which
in this example would be based on camera lifetime data from the past), you should choose
� � 2.52/12 � 6.25 and � � 12/2.5 � 0.4. These are the values shown in Figure 16.4 and
the ones used for this example. The values in the figure (from @RISK) imply that the prob-
ability of failure before 1.5 years is about 0.15, so that the probability of failure out of war-
ranty is about 0.85.

DEVELOPING THE SIMULATION MODEL

The simulation model appears in Figure 16.5. (See the file Warranty Costs.xlsx.) The
particular random numbers in this figure indicate an example (a rather unusual one)
where there are two failures within warranty. However, because the lifetime of the second
replacement (cell D17) is greater than 1.5, the company incurs only two replacement
costs, as shown in cells B19 and C19. The model can be developed with the following
steps.
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1 Inputs. Enter the inputs in the blue cells.

2 Parameters of gamma distribution. As discussed previously, if you enter a desired
mean and standard deviation (in cells B5 and B6), you have to calculate the parameters of
the gamma distribution. Do this by entering the formulas

�B5^2/B6^2

and

�B6^2/B5

in cells B7 and B8.

3 Lifetimes and times of failures. Generate at most five lifetimes and corresponding
times of failures. (Why only five? You could generate more, but it is extremely unlikely
that this same customer would experience more than five failures within warranty, so
five suffices.) As soon as a lifetime is greater than 1.5, the warranty period, no further
lifetimes are required; instead, “NA” can be recorded in row 17. With this in mind, enter
the formulas

�RISKGAMMA(B7,B8)

�IF(B17�B10,RISKGAMMA(B7,B8),"NA")

and

�IF(C17�"NA","NA",IF(C17�$B$10,RISKGAMMA($B$7,$B$8), "NA"))

in cells B17, C17, and D17, and copy the latter formula to cells E17 and F17. These for-
mulas guarantee that once “NA” is recorded in a cell, all cells to its right will also contain
“NA.” To get the actual times of failures, relative to time 0 when the customer originally
purchases the camera, enter the formulas

�B17

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

FEDCBA
Warranty costs for camera

Inputs
Parameters of �me to failure distribu�on of any new camera (Gamma)
Desired 5.2naem
Desired 1vedts
Implied 052.6ahpla
Implied 004.0ateb

Warranty 5.1doirep
Cost of new camera (to customer) $400
Replacement cost (to company) $225
Discount %8etar

Simula�on of new camera and its replacements (if any)
54321aremaC
ANAN476.2058.0033.1emitefiL

Time of ANAN458.4081.2033.1eruliaf
Cost to 000522522ynapmoc
Discounted 00.000.000.052.09111.302tsoc

Failures within 2ytnarraw
NPV of profit from customer ($218.35)

Figure 16.5

Warranty

Simulation Model
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and

�IF(C17�"NA","NA",B18	C17)

in cells B18 and C18, and copy the latter across row 18. These values will be used for the
NPV calculation because this requires the exact timing of cash flows.

@RISK Function: RISKGAMMA
To generate a random number from the gamma distribution, use the RISKGAMMA function
in the form �RISKGAMMA(alpha,beta). The mean and standard deviation of this distrib-
ution are � � �� and . Equivalently, � � �2/�2 and � � �2/�.

4 Costs and discounted costs. In row 19, enter the replacement cost ($185) or 0,
depending on whether a failure occurs within warranty, and in row 20 discount these costs
back to time 0, using the failure times in row 18. To do this, enter the formulas

�IF(B17�B10,B12,0)

and

�IF(C17�"NA",0,IF(C17�$B$10,$B$12,0))

in cells B19 and C19, and copy this latter formula across row 19. Then enter the formula

�IF(B19�0,B19/(1	$B$13)^B18,0)

in cell B20 and copy it across row 20. This formula uses the well-known fact that the
present value of a cash flow at time t is the cash flow multiplied by 1/(1 	 r)t, where r is
the discount rate.

5 Outputs. Calculate two outputs, the number of failures within warranty and the NPV
of profit, with the formulas

�COUNTIF(B19:F19,"�0")

and

�B11–B12–SUM(B20:F20)

in cells B22 and B23. Then designate these two cells as @RISK output cells. Note that the
NPV is the margin from the sale (undiscounted) minus the sum of the discounted costs
from replacements under warranty.

Running the Simulation

The @RISK setup is typical. Run 1000 iterations of a single simulation (because there is
no RISKSIMTABLE function).

Discussion of the Simulation Results

The @RISK summary statistics and histograms for the two outputs appear in Figures 16.6,
16.7, and 16.8. They show a fairly clear picture. About 85% of the time, there are no fail-
ures under warranty and the company makes a profit of $175, the margin from the camera
sale. However, there is about a 12.9% chance of exactly one failure under warranty, in
which case the company’s NPV of profit will be an approximate $50 loss (before dis-
counting). Additionally, there is about a 2.1% chance that there will be even more failures
under warranty, in which case the loss will be even greater. Note that in our 1000 iterations,
the maximum number of failures under warranty was three, and the maximum net loss was
$416.44. On average, the NPV of profit was $138.43.

These results indicate that Yakkon is not suffering terribly from warranty costs. However,
there are several ways the company could decrease the effects of warranty costs. First, it could
increase the price of the camera. Second, it could decrease the warranty period, say, from 1.5
years to 1 year. Third, it could change the terms of the warranty. For example, it could stipulate

s = 1ab
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Figure 16.8

Histogram of

NPV of Profit

Figure 16.7

Histogram of

Number of Failures

Figure 16.6 Summary Statistics for Warranty Model
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that if the camera fails within a year, the customer gets a new camera for free, whereas if the
time to failure is between 1 and 1.5 years, the customer pays some pro rata share of the
replacement cost. Finally, it could try to sell the customer an extended warranty—at a hefty
price. We ask you to explore these possibilities in the problems. ■

16.2.3 Drug Production with Uncertain Yield

In many manufacturing settings, products are produced in batches, and the usable yields
from these batches are uncertain. This is particularly true in the drug industry. The follow-
ing example illustrates how a drug manufacturer can take this uncertainty into account
when planning production.
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E X A M P L E 16.3 TRYING TO MEET AN ORDER DUE DATE AT WOZAC

The Wozac Company is a drug manufacturer. Wozac has recently accepted an order from
its best customer for 8000 ounces of a new miracle drug, and Wozac wants to plan its

production schedule to meet the customer’s promised delivery date of December 1, 2010.
There are three sources of uncertainty that make planning difficult. First, the drug must be
produced in batches, and there is uncertainty in the time required to produce a batch, which
could be anywhere from 5 to 11 days. This uncertainty is described by the discrete distribu-
tion in Table 16.1. Second, the yield (usable quantity) from any batch is uncertain. Based on
historical data, Wozac believes the yield can be modeled by a triangular distribution with
minimum, most likely, and maximum values equal to 600, 1000, and 1100 ounces, respec-
tively. Third, all batches must go through a rigorous inspection once they are completed.
The probability that a typical batch passes inspection is only 0.8. With probability 0.2, the
batch fails inspection, and none of it can be used to help fill the order. Wozac wants to use
simulation to help decide how many days prior to the due date it should begin production.

Table 16.1 Distribution of Days to Complete a Batch

Days Probability

5 0.05
6 0.10
7 0.20
8 0.30
9 0.20

10 0.10
11 0.05

Objective To use simulation to determine when Wozac should begin production for this
order so that there is a high probability of completing it by the due date.

WHERE DO THE NUMBERS COME FROM?

The important inputs here are the probability distributions of the time to produce a batch,
the yield from a batch, and the inspection result. The probabilities we have assumed would
undoubtedly be based on previous production data. For example, the company might have
observed that about 80% of all batches in the past passed inspection. Of course, a discrete
distribution is natural for the number of days to produce a batch, and a continuous distrib-
ution is appropriate for the yield from a batch.
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Solution

The idea is to simulate successive batches—their days to complete, their yields, and
whether they pass inspection—and keep a running total of the usable ounces obtained so
far. IF functions can then be used to check whether the order is complete or another batch
is required. You need to simulate only as many as batches as are required to meet the order,
and you should keep track of the days required to produce all of these batches. In this way
you can “back up” to see when production must begin to meet the due date. For example,
if the simulation indicates that the order takes 96 days to complete, then production must
begin on August 27, 2010, 96 days before the due date. (For simplicity, you can assume
that production occurs seven days a week.)

DEVELOPING THE SIMULATION MODEL

The completed model appears in Figure 16.9. (See the file Drug Production.xlsx.) It can
be developed as follows.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

LKJIHGFEDCBA
Planning produc�on of a drug

Input sec�on
Amount required (ounces) 8000
Promised delivery date 12/01/10

Distribu�on of days needed to produce a batch (discrete)
Days Probability

5 0.05
6 0.10
7 0.20
8 0.30
9 0.20

10 0.10
11 0.05

Distribu�on of yield (ounces) from each batch (triangular)
Min Most likely Max
600 1000 1100

Probability of passing 0.8inspec�on

Simula�on model Summary measures
Batch Days Yield Pass? CumYield Enough? Batches required 12

toN7.508seY7.50871  yet Days to complete 92
toN3.9171seY6.31962  yet Day to start 8/31/10
toN1.8562seY9.83963  yet
toN4.1063seY3.34994  yet @Risk summary outputs
toN5.4434seY1.34785  yet Max batches reqd 20
toN5.4434oN7.27986  yet
toN5.4405seY0.00787  yet Avg days reqd 94 8/29/10
toN8.8006seY4.46988  yet Min days reqd 59 10/3/10

9 10 942.5 Yes 6951.3 Not yet Max days reqd 160 6/24/10
10 6 1030.5 No 6951.3 Not yet 5th perc days reqd 72 9/20/10
11 9 766.9 Yes 7718.2 Not yet 95th perc days reqd 121 8/2/10
12 7 882.0 Yes 8600.3 Yes
13 Probability of mee�ng due date for several star�ng dates
14
15
16 8/15/10 0.845

Assump�ons:
The drug is produced in similar-sized batches, although the yield in each 
batch is random. Also, the number of days to produce a batch is   
random. Each batch is inspected, and if it doesn't pass inspec�on, none 
of that batch can be used.

41
42
43
44
45
46
47
48
49

.
17
18

7/15/10 0.991
8/1/10 0.954

9/1/10 0.469
9/15/10 0.120

19
20
21
22
23
24
25

Figure 16.9 Drug Production Simulation Model
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1 Inputs. Enter all of the inputs in the blue cells.

2 Batch indexes. You do not know ahead of time how many batches will be required to
fill the order. There should be enough rows in the simulation to cover the worst case that is
likely to occur. After some experimentation it is apparent that 25 batches are almost surely
enough. Therefore, enter the batch indexes 1 through 25 in column A of the simulation sec-
tion. (If 25 were not enough, you could always add more rows.) The idea, then, is to fill the
entire range B25:F49 with formulas. However, you can use appropriate IF functions in
these formulas so that if enough has already been produced to fill the order, blanks are
inserted in the remaining cells. For example, the scenario shown in Figure 16.9 is one
where 12 batches were required, so blanks appear below row 36.

3 Days for batches. Simulate the days required for batches in column B. To do this,
enter the formulas

�RISKDISCRETE(B9:B15,C9:C15)

and

�IF(OR(F25�"Yes",F25�""),"",RISKDISCRETE($B$9:$B$15,$C$9:$C$15))

in cell B25 and B26, and copy the latter formula down to cell B49. Note how the IF func-
tion enters a blank in this cell if either of two conditions is true: the order was just com-
pleted in the previous batch or it has been completed for some time. Similar logic appears
in later formulas.

4 Batch yields. Simulate the batch yields in column C. To do this, enter the formulas

�RISKTRIANG(B19,C19,D19)

and

�IF(OR(F25�"Yes",F25�""),"",RISKTRIANG($B$19,$C$19,$D$19))’

in cells C25 and C26, and copy the latter formula down to cell C49.

5 Pass inspection? Check whether each batch passes inspection with the formulas

�IF(RAND()�B21,"Yes","No")

and

�IF(OR(F25�"Yes",F25�""),"",IF(RAND()�$B$21,"Yes","No"))

in cells D25 and D26, and copy the latter formula down to cell D49. Note that you could
use @RISK’s RISKUNIFORM(0,1) function instead of RAND(), but there is no real
advantage to doing so. They are essentially equivalent. (Besides, the academic version of
@RISK imposes an upper limit of 100 @RISK input functions per model, so it is often a
good idea to substitute built-in Excel functions when possible.)

6 Order filled? To keep track of the cumulative usable production and whether the
order has been filled in columns E and F, first enter the formulas

�IF(D25�"Yes",C25,0)

and

�IF(E25��B4,"Yes","Not yet ")

in cells E25 and F25 for batch 1. Then enter the general formulas

�IF(OR(F25�"Yes",F25�""),"",IF(D26�"Yes",C26	E25,E25))

and
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You can use Excel’s
RAND function inside
an IF function to
simulate whether 
some event occurs.
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�IF(OR(F25�"Yes",F25�""),"",IF(E26��$B$4, "Yes","Not yet "))

in cells E26 and F26, and copy them down to row 49. Note that the entry in column F is
“Not enough” if the order is not yet complete. In the row that completes the order, it
changes to “Yes,” and then it is blank in succeeding rows.

7 Summary measures. Calculate the batches and days required in cells I24 and I25
with the formulas

�COUNT(B25:B49)

and

�SUM(B25:B49)

These are the two cells used as output cells for @RISK, so designate them as such. Also,
calculate the day the order should be started to just meet the due date in cell I26 with the
formula

�B5–I25

This formula uses date subtraction to find an elapsed time. (Again, the assumption is that
production occurs every day of the week.)

This completes the simulation model development. The other entries in columns H
through J are explained shortly.

Date subtraction in
Excel allows you to
calculate the number
of days between two
given dates.

FUNDAMENTAL INSIGHT

Dealing with Uncertain Timing

Many simulations that model a process over multiple

time periods must deal with uncertain timing of

events, such as when the manufacturing of an order

will finish,which year sales of a new product will begin,

and many others. Essentially, the spreadsheet model

must generate random numbers that determine the

timing and then play out the events.This can require

tricky IF functions and possibly other functions.

However, the hard work often involves getting the

logic correct for the first period or two. Then this

logic can be copied down for the other periods. In

other words, some time spent on developing the first

row or two can result in a very powerful model.

Running the Simulation

Set the number of iterations to 1000 and the number of simulations to 1, and then run the
simulation as usual.

Discussion of the Simulation Results

After running the simulation, you can obtain the histograms of the number of batches
required and the number of days required in Figures 16.10 and 16.11.

How should Wozac use this information? The key questions are (1) how many batches
will be required and (2) when production should start. To answer these questions, it is help-
ful to use several of @RISK’s statistical functions. Recall that these functions can be
entered directly into the Excel model worksheet. (Also, recall that they provide useful
information only after the simulation has been run.) These functions provide no new infor-
mation you don’t already have from other @RISK windows, but they allow you to see (and
manipulate) this information directly in the spreadsheet.
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For the first question, enter the formula

�RISKMAX(I24)

in cell I29. (Refer to Figure 16.9.) It shows that the worst case from the 1000 iterations, in
terms of batches required, is 20 batches. (If this maximum were 25, you would add more
rows to the simulation model and run the simulation again.)

You can answer the second question in two ways. First, you can calculate summary
measures for days required and then back up from the due date. This is done in the range
I31:J35. The formulas in column I are
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Figure 16.10

Histogram of

Batches Required

Figure 16.11

Histogram of

Days Required
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�INT(RISKMEAN(I25))

�RISKMIN(I25)

�RISKMAX(I25)

�RISKPERCENTILE(I25,0.05)

and

�RISKPERCENTILE(I25,0.95)

(The first uses the INT function to produce an integer.) You can then subtract each of
these from the due date to obtain the potential starting dates in column J. Wozac should
realize the pros and cons of these starting dates. For example, if the company wants to
be 95% sure of meeting the due date, it should start production on August 2. In contrast,
if Wozac starts production on September 20, there is only a 5% chance of meeting the
due date.

Alternatively, you can get a more direct answer to the question by using @RISK’s
RISKTARGET function. This allows you to find the probability of meeting the due date
for any starting date, such as the trial dates in the range H38:H42. To do it, enter the
formula

�RISKTARGET(I25,$B$4–H38)

in cell I38 and copy it down. This function returns the fraction of iterations where the (ran-
dom) value in the first argument is less than or equal to the (fixed) value in the second
argument. For example, you can see that 84.5% of the iterations have a value of days
required less than or equal to 108, the number of days from August 15 to the due date.

What is our recommendation to Wozac? We suggest going with the 95th percentile—
begin production on August 2. Then there is only a 5% chance of failing to meet the due
date. But the table in the range H38:I42 also provides useful information. For each poten-
tial starting date, Wozac can see the probability of meeting the due date. ■

Using @RISK
summary functions
such as RISKMEAN,
RISKPERCENTILE,
and others enables 
you to capture
simulation results 
in the same work-
sheet as the simu-
lation model.These
functions do not
provide relevant 
results until the
simulation is run.

P R O B L E M S

Note: Student solutions for problems whose numbers appear within
a colored box are available for purchase at www.cengagebrain.com.

Level A

1. In Example 16.1, the possible profits vary from
negative to positive for each of the 10 possible bids
examined.
a. For each of these, use @RISK’s RISKTARGET

function to find the probability that Miller’s profit
is positive. Do you believe these results should
have any bearing on Miller’s choice of bid?

b. Use @RISK’s RISKPERCENTILE function to find
the 10th percentile for each of these bids. Can you

explain why the percentiles have the values you
obtain?

2. If the number of competitors in Example 16.1 doubles,
how does the optimal bid change?

3. Referring to Example 16.1, if the average bid for each
competitor stays the same, but their bids exhibit less
variability, does Miller’s optimal bid increase or
decrease? To study this question, assume that each
competitor’s bid, expressed as a multiple of Miller’s
cost to complete the project, follows each of the
following distributions.
a. Triangular with parameters 1.0, 1.3, and 2.4
b. Triangular with parameters 1.2, 1.3, and 2.2
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16.3 FINANCIAL MODELS

There are many financial applications where simulation can be applied. Future cash flows,
future stock prices, and future interest rates are some of the many uncertain variables finan-
cial analysts must deal with. In every direction they turn, they see uncertainty. In this section
we analyze a few typical financial applications that can benefit from simulation modeling.

16.3.1 Financial Planning Models

Many companies, such as GM, Eli Lilly, Procter & Gamble, and Pfizer, use simulation in
their capital budgeting and financial planning processes. Simulation can be used to model
the uncertainty associated with future cash flows. In particular, simulation can be used to
answer questions such as the following:

■ What are the mean and variance of a project’s net present value (NPV)?
■ What is the probability that a project will have a negative NPV?

1004 Chapter 16 Simulation Models

c. Use @RISK’s Define Distributions window to
check that the distributions in parts a and b have
the same mean as the original triangular
distribution in the example, but smaller standard
deviations. What is the common mean? Why is it
not the same as the most likely value, 1.3?

4. In Example 16.2, the gamma distribution was used
to model the skewness to the right of the lifetime
distribution. Experiment to see whether the
triangular distribution could have been used instead.
Let its minimum value be 0, and choose its most
likely and maximum values so that this triangular
distribution has approximately the same mean and
standard deviation as the gamma distribution in the
example. (Use @RISK’s Define Distributions
window and trial and error to do this.) Then run 
the simulation and comment on similarities or
differences between your outputs and the outputs 
in the example.

5. See how sensitive the results in Example 16.2 are to
the following changes. For each part, make the change
indicated, run the simulation, and comment on any
differences between your outputs and the outputs in
the example.
a. The cost of a new camera is increased to $300.
b. The warranty period is decreased to one year.
c. The terms of the warranty are changed. If the

camera fails within one year, the customer gets 
a new camera for free. However, if the camera 
fails between 1 year and 1.5 years, the customer
pays a pro rata share of the new camera, increasing
linearly from 0 to full price. For example, if it 
fails at 1.2 years, which is 40% of the way from 

1 to 1.5, the customer pays 40% of the full 
price.

d. The customer pays $50 up front for an extended
warranty. This extends the warranty to three years.
This extended warranty is just like the original, so
that if the camera fails within three years, the
customer gets a new camera for free.

6. In Example 16.3, we commented on the 95th
percentile on days required in cell I35 and the
corresponding date in cell J35. If the company 
begins production on this date, then it is 95% sure 
to complete the order by the due date. We found 
this date to be August 2. Do you always get this
answer? Find out by (1) running the simulation 10
more times, each with 1000 iterations, and finding 
the 95th percentile and corresponding date in each,
and (2) running the simulation once more, but with
10,000 iterations. Comment on the difference 
between simulations (1) and (2) in terms of 
accuracy. Given these results, when would you
recommend that production should begin?

7. In Example 16.3, suppose you want to run five
simulations, where the probability of passing
inspection is varied from 0.6 to 1.0 in increments 
of 0.1. Use the RISKSIMTABLE function
appropriately to do this. Comment on the effect of
this parameter on the key outputs. In particular, does
the probability of passing inspection have a large
effect on when production should start? (Note: When
this probability is low, it might be necessary to
produce more than 25 batches, the maximum built
into the model. Check whether this maximum should
be increased.)
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■ What are the mean and variance of a company’s profit during the next fiscal year?
■ What is the probability that a company will have to borrow more than $2 million

during the next year?
The following example illustrates how simulation can be used to evaluate an investment
opportunity.

E X A M P L E 16.4 DEVELOPING A NEW CAR AT GF AUTO

General Ford (GF) Auto Corporation is developing a new model of compact car. This
car is assumed to generate sales for the next five years. GF has gathered information

about the following quantities through focus groups with the marketing and engineering
departments.

■ Fixed cost of developing car. This cost is assumed to $700 million. The fixed cost
is incurred at the beginning of year 1, before any sales are recorded.

■ Margin per car. This is the unit selling price minus the variable cost of producing a
car. GF assumes that in year 1, the margin will be $4000. Every other year, GF
assumes the margin will decrease by 4%.1

■ Sales. The demand for the car is the uncertain quantity. In its first year, GF assumes
sales—number of cars sold—will be triangularly distributed with parameters 50,000,
75,000, and 85,000. Every year after that, the company assumes that sales will
decrease by some percentage, where this percentage is triangularly distributed with
parameters 5%, 8%, and 10%. GF also assumes that the percentage decreases in
successive years are independent of one another.

■ Depreciation and taxes. The company will depreciate its development cost on a
straight-line basis over the lifetime of the car. The corporate tax rate is 40%.

■ Discount rate. GF figures its cost of capital at 10%.

Given these assumptions, GF wants to develop a simulation model that will evaluate its
NPV of after-tax cash flows for this new car over the five-year time horizon.

Objective To simulate the cash flows from the new car model, from the development
time to the end of its life cycle, so that GF can estimate the NPV of after-tax cash flows
from this car.

WHERE DO THE NUMBERS COME FROM?

There are many inputs to this problem. As we indicated, they are probably obtained from
experts within the company and from focus groups of potential customers.

Solution

This model is like most financial multiyear spreadsheet models. The completed model
extends several years to the right, but most of the work is for the first year or two. From
that point, you can copy to the other years to complete the model.

1The margin decreases because the company assumes variable costs tend to increase through time, whereas sell-
ing prices tend to remain fairly constant through time.
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DEVELOPING THE SIMULATION MODEL

The simulation model for GF appears in Figure 16.12. (See the file New Car
Development.xlsx.) It can be formed as follows.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

GFEDCBA
New car simula�on

Inputs Parameters of triangular distribu�ons
Fixed development tsoMniM000,000,007$tsoc likely Max
Year 1 raeY000,4$noitubirtnoc 1 sales 50000 75000 85000
Annual decrease in 4% Annual decay rate 5% 8% 10%
Tax %04etar
Discount %01etar

Simula�on
End of 54321raey
Unit 1536566316318668532747487selas
Unit 793,3$935,3$686,3$048,3$000,4$noitubirtnoc
Revenue minus variable cost $313,896,351 $277,855,417 $246,300,063 $217,169,920 $191,445,402

000,000,041$000,000,041$000,000,041$000,000,041$000,000,041$noitaicerpeD
Before tax 204,544,15$029,961,77$360,003,601$714,558,731$153,698,371$tiforp
A�er tax 142,768,03$259,103,64$830,087,36$052,317,28$018,733,401$tiforp
Cash 142,768,071$259,103,681$830,087,302$052,317,222$018,733,442$wolf

NPV of cash 236,036,29$swolf

contribu�on

Figure 16.12 GF Auto Simulation Model

1 Inputs. Enter the various inputs in the blue cells.

2 Unit sales. Generate first-year sales in cell B12 with the formula

�RISKTRIANG(E5,F5,G5)

Then generate the reduced sales in later years by entering the formula

�B12*(1–RISKTRIANG($E$6,$F$6,$G$6))

in cell C12 and copying it across row 12. Note that each sales figure is a random fraction
of the previous sales figure.

3 Contributions. Calculate the unit contributions in row 13 by entering the formulas

�B5

and

�B13*(1–$B$6)

in cells B13 and C13, and copying the latter across. Then calculate the contributions in row
14 as the product of the corresponding values in rows 12 and 13.

4 Depreciation. Calculate the depreciation each year in row 15 as the development
cost in cell B4 divided by 5. This is exactly what “straight-line depreciation” means.

5 Before-tax and after-tax profits. To calculate the before-tax profit in any year, sub-
tract the depreciation from total contribution, so each value in row 16 is the difference
between the corresponding values in rows 14 and 15. The reason is that depreciation isn’t
taxed. To calculate the after-tax profits in row 17, multiply each before-tax profit by one

Depreciation is
subtracted to get
before-tax profit, but 
it is then added back
after taxes have been
deducted.
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minus the tax rate in cell B7. Finally, each cash flow in row 18 is the sum of the corre-
sponding values in rows 15 and 17. Here depreciation is added back to get the cash flow.

6 NPV. Calculate the NPV of cash flows in cell B20 with the formula

�
B4	NPV(B8,B18:F18)

and designate it as an @RISK output cell (the only output cell). Here, we are assuming that
the development cost is incurred right now, so that it isn’t discounted, and that all other
cash flows occur at the ends of the respective years. This allows the NPV function to be
used directly.

Running the Simulation

Set the number of iterations to 1000 and the number of simulations to 1, and then run the
simulation as usual.

Discussion of the Simulation Results

After running @RISK, you obtain the histogram in Figure 16.13. These results are some-
what comforting, but also a cause of concern for GF. On the bright side, the mean NPV is
about $31.5 million, and there is some chance that the NPV could go well above that
figure, even up to almost $150 million. However, there is also a dark side, as shown by
the two sliders in the histogram. One slider has been placed over an NPV of 0. As the
histogram indicates, there is about a 71% chance of a positive NPV, but there is about a
29% chance of it being negative. The second slider has been positioned at its default 5th
percentile setting. Financial analysts often call this percentile the value at risk at the
5% level, or VAR 5%, because it indicates nearly the worst possible outcome. From this
simulation, you can see that GF’s VAR 5% is approximately a $67.6 million loss.

Figure 16.13

Histogram of NPV

The value at risk at the 5% level, or VAR 5%, is the 5th percentile of a distribution,
and it is often used in financial models. It indicates nearly the worst possible outcome.
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What is most responsible for this huge variability in NPV, the variability in first-year
sales or the variability in annual sales decreases? This can be answered with @RISK’s
tornado chart. (See Figure 16.14.) To get this chart, click on the tornado button below the
histogram in Figure 16.13 and select the Correlation option. This chart answers the ques-
tion emphatically. Variability in first-year sales is by far the largest influence on NPV. It
correlates almost perfectly with NPV. The annual decreases in sales are not unimportant,
but they have much less effect on NPV. If GF wants to get a more favorable NPV
distribution, it should do all it can to boost first-year sales—and make the first-year sales
distribution less variable.

1008 Chapter 16 Simulation Models

Financial analysts
typically look at VAR
5% to see how bad—
or more precisely,
almost how bad—
things could get.

Figure 16.14

Tornado Chart

for NPV

Before finishing this example, we revisit the flaw of averages. What if GF used a
deterministic model to estimate NPV? Would the results match those from the simulation?
We tried this two ways, once by entering the most likely values of the inputs instead of the
random numbers, and once by entering the means instead of the random numbers. The
results appear in Figure 16.15. (The mean of a triangular distribution is the average of its
three parameters. These means appear in cells H5 and H6.) Now there are no random num-
bers in rows 12 and 24, only most likely values or means. The difference between the two
NPVs is huge. In this case, the NPV by using means is very close to the mean NPV from
the simulation, about $31 million. But if the company used most likely values for the
inputs in its deterministic model, which certainly seems sensible, the NPV would be off by
a factor of more than two, another variation of the flaw of averages. Besides this problem,
neither deterministic model provides even a hint that the company has about a 29% chance
of a negative NPV.2

A tornado chart lets
you see which random
inputs have the most
effect on a specified
output.

If you create a
deterministic model
using the most likely
values of the uncer-
tain inputs, you can
possibly get an output
value that is nowhere
near the mean of 
that output.

2It turns out that the NPV in this model is linear in the two random inputs. When an output is linear in the inputs,
the deterministic model using means of inputs always gives the correct mean output, so that the flaw of averages
in the form from the previous chapter does not occur. Even so, a deterministic model still provides no indication
of how bad or how good things could get.
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16.3.2 Cash Balance Models

All companies track their cash balance over time. As specific payments come due,
companies sometimes need to take out short-term loans to keep a minimal cash balance.
The following example illustrates one such application.

FUNDAMENTAL INSIGHT

The Mean Isn’t Everything

Many discussions of simulation focus on the mean of

some output variable. This makes sense, given the

importance of EMV for decision making, as discussed

in Chapter 6. After all, EMV is just the mean of a mon-

etary output. However, analysts in many areas, includ-

ing finance, are often at least as interested in the

extreme values of an output distribution. For exam-

ple, the VAR 5% discussed in this example indicates

nearly how bad things could get if unlucky outcomes

occur. If large amounts of money are at stake, particu-

larly potential losses, companies might not want to

play the averages by focusing only on the mean.They

should be aware of potential disasters as well.

Of course, simulation also shows the bright side, the

extremes on the right that could occur if lucky out-

comes occur. Managers shouldn’t be so conservative

that they focus only on the negative outcomes and

ignore the upside potential.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

HGFEDCBA
New car

Inputs Parameters of triangular distribu�ons 
Fixed development tsoMniM000,000,007$tsoc  likely Max Mean
Year 1 raeY000,4$noitubirtnoc  1 sales 50000 75000 85000 70000
Annual decrease in contribu�on 4% Annual decay rate 5% 8% 10% 7.67%
Tax %04etar
Discount %01etar

Using most likely values for uncertain inputs
End of 54321raey
Unit 9273520485084360009600057selas
Unit 793,3$935,3$686,3$048,3$000,4$noitubirtnoc
Revenue minus variable cost $300,000,000 $264,960,000 $234,012,672 $206,679,992 $182,539,769

000,000,041$000,000,041$000,000,041$000,000,041$000,000,041$noitaicerpeD
Before tax 967,935,24$299,976,66$276,210,49$000,069,421$000,000,061$tiforp

 tax 168,325,52$599,700,04$306,704,65$000,679,47$000,000,69$tA�er

A�er

iforp
Cash 168,325,561$599,700,081$306,704,691$000,679,412$000,000,632$wolf

NPV of cash 786,005,56$swolf

Using means for uncertain inputs
End of 54321raey
Unit 8780530155876953364600007selas
Unit 793,3$935,3$686,3$048,3$000,4$noitubirtnoc
Revenue minus variable cost $280,000,000 $248,192,000 $219,997,389 $195,005,685 $172,853,040

000,000,041$000,000,041$000,000,041$000,000,041$000,000,041$noitaicerpeD
Before tax 040,358,23$586,500,55$983,799,97$000,291,801$000,000,041$tiforp

 tax 428,117,91$114,300,33$334,899,74$002,519,46$000,000,48$tiforp
Cash 428,117,951$114,300,371$334,899,781$002,519,402$000,000,422$wolf

NPV of cash 909,565,13$swolf

 determinis�c models

Figure 16.15 Deterministic Models
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E X A M P L E 16.5 MAINTAINING A MINIMAL CASH BALANCE AT ENTSON

The Entson Company believes that its monthly sales during the period from November
of the current year to July of next year are normally distributed with the means and

standard deviations given in Table 16.2. Each month Entson incurs fixed costs of
$250,000. In March taxes of $150,000 and in June taxes of $50,000 must be paid.
Dividends of $50,000 must also be paid in June. Entson estimates that its receipts in a
given month are a weighted sum of sales from the current month, the previous month, and
two months ago, with weights 0.2, 0.6, and 0.2. In symbols, if Rt and St represent receipts
and sales in month t, then

Rt � 0.2St–2 	 0.6St–1 	 0.2St (16.1)

The materials and labor needed to produce a month’s sales must be purchased one month
in advance, and the cost of these averages to 80% of the product’s sales. For example, if
sales in February are $1,500,000, then the February materials and labor costs are
$1,200,000, but these must be paid in January.

Table 16.2 Monthly Sales (in Thousands of Dollars) for Entson

Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul.

Mean 1500 1600 1800 1500 1900 2600 2400 1900 1300

Standard Deviation 70 75 80 80 100 125 120 90 70

At the beginning of January, Entson has $250,000 in cash. The company wants to
ensure that each month’s ending cash balance never falls below $250,000. This means that
Entson might have to take out short-term (one-month) loans. For example, if the ending
cash balance at the end of March is $200,000, Entson will take out a loan for $50,000,
which it will then pay back (with interest) one month later. The interest rate on a short-term
loan is 1% per month. At the beginning of each month, Entson earns interest of 0.5% on its
cash balance. The company wants to use simulation to estimate the maximum loan it will
need to take out to meet its desired minimum cash balance. Entson also wants to analyze
how its loans will vary over time, and it wants to estimate the total interest paid on these
loans.

Objective To simulate Entson’s cash flows and the loans the company must take out to
meet a minimum cash balance.

WHERE DO THE NUMBERS COME FROM?

Although there are many monetary inputs in the problem statement, they should all be
easily accessible. Of course, Entson chooses the minimum cash balance of $250,000 as a
matter of company policy.

Solution

There is a considerable amount of bookkeeping in this simulation, so it is a good idea to
list the events in chronological order that occur each month. We assume the following:

■ Entson observes its beginning cash balance.
■ Entson receives interest on its beginning cash balance.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



■ Receipts arrive and expenses are paid (including payback of the previous month’s
loan, if any, with interest).

■ If necessary, Entson takes out a short-term loan.
■ The final cash balance is observed, which becomes next month’s beginning cash balance.

DEVELOPING THE SIMULATION MODEL

The completed simulation model appears in Figure 16.16. (See the file Cash Balance.xlsx.)
It requires the following steps.

1 Inputs. Enter the inputs in the blue cells. Note that loans are simulated (in row 42)
only for the period from January to June of next year. However, sales figures are required
(in row 28) in November and December of the current year to generate receipts for January
and February. Also, July sales are required for next year to generate the material and labor
costs paid in June.

2 Actual sales. Generate the sales in row 28 by entering the formula

�RISKNORMAL(B6,B7)

in cell B28 and copying across.

3 Beginning cash balance. For January of next year, enter the cash balance with the
formula

�B19

in cell D31. Then for the other months enter the formula

�D43

in cell E31 and copy it across row 31. This reflects that the beginning cash balance for one
month is the final cash balance from the previous month.

4 Incomes. Entson’s incomes (interest on cash balance and receipts) are entered in
rows 32 and 33. To calculate these, enter the formulas

�$B$24*D31

and

�SUMPRODUCT($B$14:$D$14,B28:D28)

in cells D32 and D33 and copy them across rows 32 and 33. This latter formula, which is
based on Equation (16.1), multiplies the fixed weights in row 14 by the relevant sales and
adds these products to calculate receipts.

5 Expenses. Entson’s expenses (fixed costs, taxes and dividends, material and labor
costs, and payback of the previous month’s loan) are entered in rows 35 through 39.
Calculate these by entering the formulas

�D9

�D10

�$B$17*E28

�D42

and

�D42*$B$23

16.3 Financial Models 1011

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



in cells D35, D36, D37, E38, and E39, respectively, and copying these across rows 35
through 39. (For the loan payback, we are assuming that no loan payback is due in
January.)

6 Cash balance before loan. Calculate the cash balance before the loan (if any) by
entering the formula

�SUM(D31:D33)–SUM(D35:D39)

in cell D41 and copying it across row 41.

7 Amount of loan. If the value in row 41 is below the minimum cash balance
($250,000), Entson must borrow enough to bring the cash balance up to this minimum.
Otherwise, no loan is necessary. Therefore, enter the formula

�MAX($B$20–D41,0)

in cell D42 and copy it across row 42. (You could use an IF function, rather the MAX
function, to accomplish the same result.)

8 Final cash balance. Calculate the final cash balance by entering the formula

�D41	D42

in cell D43 and copying it across row 43.

9 Maximum loan, total interest. Calculate the maximum loan from January to June in
cell B45 with the formula

1012 Chapter 16 Simulation Models

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
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19
20
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

A B C D E F G H I J
Entson cash balance simula on

Inputs
Distribu on of monthly sales (normal)

Nov Dec Jan Feb Mar Apr May Jun Jul
003100910042006200910051008100610051naeM

St 070902152100108085707veD

Monthly fixed 052052052052052052tsoc
Tax, dividend 0010005100sesnepxe

Receipts in any month are of form: A*(sales from 2 months ago)+B*(previous month's sales)+C*(current month's sales), where:
A B C

0.2 0.6 0.2

Cost of materials and labor for next month, spent this month, is a percentage of product's sales from next month, where the percentage is:
80%

Ini al cash in
Minimum cash

January 250
balance 250

Monthly interest rates
Interest rate on loan 1.0%
Interest rate on cash 0.5%

Simula on
Nov Dec Jan Feb Mar Apr May Jun Jul

Actual sales 1572.558 1449.428 1862.074 1604.554 1777.390 2796.194 2290.963 1890.610 1274.369

Cash, receipts
Beginning cash 000.052000.052000.052096.133091.472000.052ecnalab
Interest on cash 052.1052.1052.1856.1173.1052.1ecnalab

686839.1132662783.1942967385.6491121526.0961749040.8271363385.6551stpieceR
Costs

Fixed 052052052052052052stsoc
Tax, dividend 0010005100sesnepxe
Material, labor 594.9101884.2151077.2381559.6322219.1241346.3821sesnepxe
Loan payback 000.0564.682845.6001289.268000.0000.0)lapicnirp(
Loan payback 000.0568.2560.01036.8000.0000.0)tseretni(

Cash balance before 096.133091.472naol -612.982 -756.548 -36.465 904.365
Loan amount (if 000.0564.682845.6001289.268000.0000.0)yna
Final cash 563.409000.052000.052000.052096.133091.472ecnalab

Maximum loan 1006.548
Total intest on loans 21.560

All monetary values are in $1000s.

Figure 16.16

Cash Balance

Simulation Model

The loan amounts are
determined by the
random cash inflows
and outflows and the
fact that Entson’s
policy is to maintain a
minimum cash
balance.
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�MAX(D42:I42)

Then calculate the total interest paid on all loans in cell B46 with the formula

�SUM(E39:J39)

10 Output range. In the usual way, designate cells B45 and B46 as output cells. Also,
designate the entire range of loans, D42:I42, as an output range. To do this, highlight this
range and click on the @RISK Add Output button. It will ask you for a name of the output.
We suggest “Loans.” Then a typical formula in this range, such as the formula for cell E42,
will be

�RISKOUTPUT("Loans",2) 	 MAX($B$20–E41,0)

This indicates that cell E42 is the second cell in the Loans output range.

Running the Simulation

Set the number of iterations to 1000 and the number of simulations to 1. Then run the
simulation in the usual way.

Discussion of the Simulation Results

After running the simulation, you will obtain the summary results in Figure 16.17. They
indicate that the maximum loan varies considerably, from a low of about $461,000 to a
high of about $1,534,000. The average is about $952,500. You can also see that Entson is
spending close to $20,000 on average in interest on the loans, although the actual amounts
vary considerably from one iteration to another.

An @RISK output 
range, as opposed to 
a single output cell,
allows you to obtain a
summary chart that 
shows the whole 
simulated range at 
once.This range is 
typically a time series.

Figure 16.17

Summary Measures

for Cash Balance

Simulation

You can also gain insights from the summary trend chart of the series of loans, shown
in Figure 16.18. To obtain this chart, click on the third button at the bottom of the Results
Summary window in Figure 16.17. (This button is also available in any histogram win-
dow.) This chart clearly shows how the loans vary through time. The middle line is the
expected loan amount. The inner bands extend to one standard deviation on either side of
the mean, and the outer bands extend to the 5th and 95th percentiles. (@RISK lets you cus-
tomize these bands in a number of ways by right-clicking on the chart.) You can see that
the largest loans are required in March and April.

Is it intuitively clear why the required loans peak in March and April? After all, why
should Entson need money in months when its sales tend to be relatively high? There are
two factors working here. First, Entson has to pay its costs early. For example, it has to pay
80% of its April sales for labor and material expenses in March. Second, most of its
receipts arrive late. For example, 80% of its receipts from sales in March are not received
until after March. Therefore, the answer to the question is that the timing and amounts of
loans are fairly complex. Of course, this is why Entson goes to the trouble of building a
simulation model.

16.3 Financial Models 1013
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16.3.3 Investment Models

Individual investors typically want to choose investment strategies that meet some pre-
specified goal. The following example is typical. Here, a person wants to meet a retirement
goal, starting at an early age.
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Summary Chart of

Loans Through

Time

E X A M P L E 16.6 INVESTING FOR RETIREMENT

Attorney Sally Evans has just begun her career. At age 25, she has 40 years until retirement,
but she realizes that now is the time to start investing. She plans to invest $1000 at the

beginning of each of the next 40 years. Each year, she plans to put fixed percentages—the same
each year—of this $1000 into stocks, Treasury bonds (T-bonds), and Treasury bills (T-bills).
However, she is not sure which percentages to use. (We call these percentages investment
weights.) She does have historical annual returns from stocks, T-bonds, and T-bills from 1946
to 2007. These are listed in the file Retirement Planning.xlsx. This file also includes inflation
rates for these years. For example, for 1993 the annual returns for stocks, T-bonds, and T-bills
were 9.99%, 18.24%, and 2.90%, respectively, and the inflation rate was 2.75%. Sally would
like to use simulation to help decide what investment weights to use, with the objective of
achieving a large investment value, in today’s dollars, at the end of 40 years.

Objective To use simulation to estimate the value of Sally’s future investments, in
today’s dollars, from several investment strategies in T-bills, T-bonds, and stocks.

WHERE DO THE NUMBERS COME FROM?

Historical returns and inflation rates, such as those quoted here, are widely available on
the Web.

Solution

The most difficult modeling aspect is settling on a way to use historical returns and infla-
tion factors to generate future values of these quantities. We suggest using a scenario
approach. You can think of each historical year as a possible scenario, where the scenario

You can simulate 
future scenarios by
randomly choosing 
past scenarios, giving
higher probabilities to
more recent scenarios.

■
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specifies the returns and inflation factor for that year. Then for any future year, you ran-
domly choose one of these scenarios. It seems intuitive that more recent scenarios ought to
have a greater chance of being chosen. To implement this idea, you can give a weight (not
to be confused with the investment weights) to each scenario, starting with weight 1 for
2007. Then the weight for any year is a damping factor multiplied by the weight from the
next year. For example, the weight for 1996 is the damping factor multiplied by the weight
for 1997. To change these weights to probabilities, you can divide each weight by the sum
of all the weights. The damping factor illustrated here is 0.98. Others could be used
instead, and it is not clear which produces the most realistic results. (This is an important
question for financial research.)

The other difficult part of the solution is choosing “good” investment weights. This
is really an optimization problem: find three weights that add to 1 and produce the
largest mean final cash. Palisade has another software package, RiskOptimizer, that
solves this type of optimization–simulation problem. However, the example illustrates
several sets of weights, where some percentage is put into stocks and the remainder is
split evenly between T-bonds and T-bills, and see which does best. You can try other sets
if you like.

DEVELOPING THE SIMULATION MODEL

The historical data and the simulation model (each with some rows hidden) appear in
Figures 16.19 and 16.20. (Again, see the Retirement Planning.xlsx file.) It can be devel-
oped as follows.

1 Inputs. Enter the data in the blue regions of Figures 16.19 and 16.20.

2 Weights. The investment weights used for the model are in rows 10 through 12. (For
example, the first set puts 80% in stocks and 10% in each of T-bonds and T-bills.) You can
simulate all three sets of weights simultaneously with a RISKSIMTABLE and VLOOKUP
combination as follows. First, enter the formula

�RISKSIMTABLE({1,2,3})

in cell I16. Then enter the formula

�VLOOKUP($I$16,LTable1,2)

Without a package 
like RiskOptimizer,
you cannot find the 
“best” set of inves-
tment weights, but 
the simulation model
lets you experiment
with various sets of 
weights.

3
4
5
6
7
8
9

58
59
60
61
62
63
64
65
66
67

A B C D E F G
Historical data and probabili�es

Year T-Bills T-Bonds Stocks ProbWts Probability
1946 0.0035 -0.0010 -0.0807 0.1817 0.2916 0.0082
1947 0.0050 -0.0263 0.0571 0.0901 0.2976 0.0083
1948 0.0081 0.0340 0.0550 0.0271 0.3036 0.0085
1949 0.0110 0.0645 0.1879 -0.0180 0.3098 0.0087
1950 0.0120 0.0006 0.3171 0.0579 0.3161 0.0089
1999 0.0439 -0.0825 0.2089 0.0270 0.8508 0.0238
2000 0.0537 0.1666 -0.0903 0.0340 0.8681 0.0243
2001 0.0573 0.0557 -0.1185 0.0160 0.8858 0.0248
2002 0.0180 0.1512 -0.2198 0.0159 0.9039 0.0253
2003 0.0180 0.0038 0.2841 0.0227 0.9224 0.0258
2004 0.0218 0.0449 0.1070 0.0268 0.9412 0.0264
2005 0.0431 0.0287 0.0485 0.0339 0.9604 0.0269
2006 0.0488 0.0196 0.1563 0.0324 0.9800 0.0274
2007 0.0548 0.0488 0.1021 0.0285 1.0000 0.0280

Sums --> 35.7115 1.0000

Infla�on
Figure 16.19

Historical Data,

Inputs, and

Probabilities
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in cell J16 and copy it to cells K16 and L16. Then modify the formulas in these latter two
cells, changing the last argument of the VLOOKUP to 3 and 4, respectively. For example,
the formula in cell L16 should end up as

�VLOOKUP($I$16,LTable1,4)

The effect is that you can run three simulations, one for each set of weights in rows 10
through 12.

3 Probabilities. Enter value 1 in cell F66. Then enter the formula

�$J$4*F66

in cell F65 and copy it up to cell F5. Sum these values with the SUM function in cell F67.
Then to convert them to probabilities (numbers that add to 1), enter the formula

�F5/$F$67
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3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
56
57
58
59
60
61
62
63

I J K L M N O P Q
Inputs
Damping factor 0.98 Range names used
Yearly 21$L$:01$I$!ledoM=1elbaTL000,1$tnemtsevni
Planning 66$E$:5$A$!ledoM=2elbaTLsraey04noziroh

Weights =Model!$J$16:$L$16
Alterna�ve sets of weights to test

Index T-Bills T-Bonds Stocks
1 0.10 0.10 0.80
2 0.20 0.20 0.60
3 0.30 0.30 0.40

Weights used
Index T-Bills T-Bonds Stocks

1 0.10 0.10 0.80

Output from simula�on below
Final cash (today's dollars) $46,215

Simula�on model 2 3 4 5
Future year Beginning cash Scenario T-Bills T-Bonds Stocks Ending cash Deflator

1 $1,000 1958 1.0154 0.9390 1.4336 1.0176 1342 0.983
2 2342 1991 1.0560 1.1930 1.3055 1.0306 2973 0.954
3 3973 1988 1.0635 1.0967 1.1681 1.0442 4571 0.913
4 5571 2003 1.0180 1.0038 1.2841 1.0227 6849 0.893
5 7849 1981 1.1471 1.0185 0.9509 1.0894 7671 0.820
6 8671 1976 1.0508 1.1675 1.2384 1.0481 10514 0.782

33 113803 1984 1.0985 1.1543 1.0627 1.0395 122389 0.246
34 123389 1995 1.0560 1.2348 1.3720 1.0250 163697 0.240
35 164697 1973 1.0693 0.9889 0.8534 1.0880 146340 0.220
36 147340 1990 1.0781 1.0618 0.9683 1.0611 145665 0.207
37 146665 1998 1.0516 1.1492 1.2834 1.0160 182862 0.204
38 183862 1988 1.0635 1.0967 1.1681 1.0442 211533 0.196
39 212533 1992 1.0351 1.0805 1.0767 1.0290 228031 0.190
40 229031 2007 1.0548 1.0488 1.1021 1.0285 250111 0.185

Column offset for lookup2

Infla�on

Figure 16.20 Retirement Simulation Model
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in cell G5 and copy it down to cell G66. Note how the probabilities for more recent years
are considerably larger. When scenarios are selected randomly, recent years will have a
greater chance of being chosen. (The SUM formula in cell G67 confirms that the probabil-
ities sum to 1.)

4 Scenarios. Moving to the model in Figure 16.20, the goal is to simulate 40 scenarios in
columns K through O, one for each year of Sally’s investing. To do this, enter the formulas

�RISKDISCRETE($A$5:$A$66,$G$5:$G$66)

and

�1	VLOOKUP($K24,LTable2,L$22)

in cells K24 and L24, and copy this latter formula to the range M24:O24. Then copy all of
these formulas down to row 63. Make sure you understand how the RISKDISCRETE and
VLOOKUP functions combine to achieve the goal. (Also, check the list of range names
used at the top of Figure 16.20.) The RISKDISCRETE randomly generates a year from col-
umn A, using the probabilities in column G. Then the VLOOKUP captures the data from
this year. (You add 1 to the VLOOKUP to get a value such as 1.08, rather than 0.08.) This is
the key to the simulation. (By the way, do you see why Excel’s RANDBETWEEN function
isn’t used to generate the years in column K? The reason is that this function makes all pos-
sible years equally likely, and the goal is to make more recent years more likely.)

5 Beginning, ending cash. The bookkeeping part is straightforward. Begin by entering
the formula

�J5

in cell J24 for the initial investment. Then enter the formulas

�J24*SUMPRODUCT(Weights,L24:N24)

and

�$J$5	P24

in cells P24 and J25 for ending cash in the first year and beginning cash in the second year.
The former shows how the beginning cash grows in a given year. You should think it
through carefully. The latter implies that Sally reinvests her previous money, plus she
invests an additional $1000. Copy these formulas down columns J and P.

6 Deflators. You eventually need to deflate future dollars to today’s dollars. The proper
way to do this is to calculate deflators (also called deflation factors). Do this by entering
the formula

�1/O24

in cell Q24. Then enter the formula

�Q24/O25

in cell Q25 and copy it down. The effect is that the deflator for future year 20, say, in cell
Q43, is 1 divided by the product of all 20 inflation factors up through that year. (This is
similar to discounting for the time value of money, but the relevant discount rate, now the
inflation rate, varies from year to year.)

7 Final cash. Calculate the final value in today’s dollars in cell K19 with the formula

�P63*Q63

Then designate this cell as an @RISK output cell.

16.3 Financial Models 1017

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Running the Simulation

Set the number of iterations to 1000 and the number of simulations to 3 (one for each set of
investment weights to be tested). Then run the simulation as usual.

Discussion of the Simulation Results

Summary results appear in Figure 16.21. The first simulation, which invests the most heav-
ily in stocks, is easily the winner. Its mean final cash, slightly more than $153,000 in
today’s dollars, is much greater than the means for the other two sets of weights. The first
simulation also has a much larger upside potential (its 95th percentile is close to $360,000),
and even its downside is slightly better than the others: Its 5th percentile is the best, and its
minimum is only slightly worse than the minimum for the other sets of weights.
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Figure 16.21

Summary Results

for Retirement

Simulation

Nevertheless, the histogram for simulation 1 (put 80% in stocks), shown in Figure 16.22,
indicates a lot of variability—and skewness—in the distribution of final cash. As in Example
16.4, the concept of value at risk (VAR) is useful. Recall that VAR 5% is defined as the 5th
percentile of a distribution and is often the value investors worry about. Perhaps Sally should
rerun the simulation with different investment weights, with an eye on the weights that
increase her VAR 5%. Right now it is slightly more than $40,000—not too good considering
that she invests $40,000 total. She might not like the prospect of a 5% chance of ending up
with no more than this. We also encourage you to try running this simulation with other

Figure 16.22

Histogram of Final

Cash with 80% in

Stocks
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investment weights, both for the 40-year horizon and (after modifying the spreadsheet model
slightly) for shorter time horizons such as 10 or 15 years. Even though the stock strategy
appears to be best for a long horizon, it is not necessarily guaranteed to dominate for a shorter
time horizon. ■

P R O B L E M S

16.3 Financial Models 1019

Level A

8. Rerun the new car simulation from Example 16.4, but
now introduce uncertainty into the fixed development
cost. Let it be triangularly distributed with parameters
$600 million, $650 million, and $850 million. (You
can check that the mean of this distribution is $700
million, the same as the cost given in the example.)
Comment on the differences between your output and
those in the example. Would you say these differences
are important for the company?

9. Rerun the new car simulation from Example 16.4, but
now use the RISKSIMTABLE function appropriately
to simulate discount rates of 5%, 7.5%, 10%, 12.5%,
and 15%. Comment on how the outputs change as the
discount rate decreases from the value used in the
example, 10%.

10. In the cash balance model from Example 16.5, the
timing is such that some receipts are delayed by one
or two months, and the payments for materials and
labor must be made a month in advance. Change the
model so that all receipts are received immediately,
and payments made this month for materials and
labor are 80% of sales this month (not next month).
The period of interest is again January through June.
Rerun the simulation, and comment on any
differences between your outputs and those from the
example.

11. In the cash balance model from Example 16.5, is the
$250,000 minimum cash balance requirement really
“costing” the company very much? Answer this by
rerunning the simulation with minimum required cash
balances of $50,000, $100,000, $150,000, and
$200,000. Use the RISKSIMTABLE function to run
all simulations at once. Comment on the outputs from
these simulations. In particular, comment on whether
the company appears to be better off with a lower
minimum cash balance.

12. Run the retirement model from Example 16.6 with a
damping factor of 1.0 (instead of 0.98), again using
the same three sets of investment weights. Explain in
words what it means, in terms of the simulation, to
have a damping factor of 1. Then comment on the
differences, if any, between your simulation results
and those in the example.

13. The simulation output from Example 16.6 indicates
that an investment heavy in stocks produces the best
results. Would it be better to invest entirely in stocks?
Answer this by rerunning the simulation. Is there any
apparent downside to this strategy?

14. Modify the model from Example 16.6 so that you use
only the years 1975 to 2007 of historical data. Run the
simulation for the same three sets of investment
weights. Comment on whether your results differ in
any important way from those in the example.

15. Referring to the retirement example in Example 16.6,
rerun the model for a planning horizon of 10 years;
15 years; 25 years. For each, which set of investment
weights maximizes the VAR 5% (the 5th percentile) of
final cash in today’s dollars? Does it appear that a
portfolio heavy in stocks is better for long horizons but
not for shorter horizons?

Level B

16. Change the new car simulation from Example 16.4 as
follows. It is the same as before for years 1 through 5,
including depreciation through year 5. However, the
car might sell through year 10. Each year after year 5,
the company examines sales. If fewer than 45,000 cars
were sold that year, there is a 50% chance the car
won’t be sold after that year. Modify the model and
run the simulation. Keep track of two outputs: NPV
(through year 10) and the number of years of sales.

17. Based on Kelly (1956). You currently have $100. Each
week you can invest any amount of money you
currently have in a risky investment. With probability
0.4, the amount you invest is tripled (e.g., if you invest
$100, you increase your asset position by $300), and,
with probability 0.6, the amount you invest is lost.
Consider the following investment strategies:
■ Each week, invest 10% of your money.
■ Each week, invest 30% of your money.
■ Each week, invest 50% of your money.

Use @RISK to simulate 100 weeks of each strategy
1000 times. Which strategy appears to be best in terms
of the maximum growth rate? (In general, if you can
multiply your investment by M with probability p and
lose your investment with probability q � 1 
 p, you
should invest a fraction [p(M – 1) – q]/(M – 1) of your
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16.4 MARKETING MODELS

There are plenty of opportunities for marketing departments to use simulation. They face
uncertainty in the brand-switching behavior of customers, the entry of new brands into the mar-
ket, customer preferences for different attributes of products, the effects of advertising on sales,
and so on. We examine some interesting marketing applications of simulation in this section.

16.4.1 Models of Customer Loyalty

What is a loyal customer worth to a company? This is an extremely important question for
companies. (It is an important part of customer relationship management, or CRM, cur-
rently one of the hottest topics in marketing.) Companies know that if customers become
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money each week. This strategy maximizes the expected
growth rate of your fortune and is known as the Kelly
criterion.) (Hint: If an initial wealth of I dollars grows to
F dollars in 100 weeks, the weekly growth rate, labeled
r, satisfies F � (1 	 r)100*I, so that r � (F/I)1/100 – 1.)

18. Amanda has 30 years to save for her retirement. At the
beginning of each year, she puts $5000 into her
retirement account. At any point in time, all of
Amanda’s retirement funds are tied up in the stock
market. Suppose the annual return on stocks follows a
normal distribution with mean 12% and standard
deviation 25%. What is the probability that at the end
of 30 years, Amanda will have reached her goal of
having $1,000,000 for retirement? Assume that if
Amanda reaches her goal before 30 years, she will
stop investing. (Hint: Each year you should keep track
of Amanda’s beginning cash position—for year 1, this
is $5000—and Amanda’s ending cash position. Of
course, Amanda’s ending cash position for a given
year is a function of her beginning cash position and
the return on stocks for that year. To estimate the
probability that Amanda meets her goal, use an IF
statement that returns 1 if she meets her goal and
0 otherwise.)

19. In the financial world, there are many types of
complex instruments called derivatives that derive
their value from the value of an underlying asset.
Consider the following simple derivative. A stock’s
current price is $80 per share. You purchase a
derivative whose value to you becomes known a
month from now. Specifically, let P be the price of the
stock in a month. If P is between $75 and $85, the
derivative is worth nothing to you. If P is less than
$75, the derivative results in a loss of 100*(75-P)
dollars to you. (The factor of 100 is because many
derivatives involve 100 shares.) If P is greater than
$85, the derivative results in a gain of 100*(P-85)
dollars to you. Assume that the distribution of the
change in the stock price from now to a month from

now is normally distributed with mean $1 and
standard deviation $8. Let EMV be the expected
gain/loss from this derivative. It is a weighted average
of all the possible losses and gains, weighted by their
likelihoods. (Of course, any loss should be expressed
as a negative number. For example, a loss of $1500
should be expressed as -$1500.) Unfortunately, this is
a difficult probability calculation, but EMV can be
estimated by an @RISK simulation. Perform this
simulation with at least 1000 iterations. What is your
best estimate of EMV?

20. Suppose you currently have a portfolio of three stocks,
A, B, and C. You own 500 shares of A, 300 of B, and
1000 of C. The current share prices are $42.76,
$81.33, and $58.22, respectively. You plan to hold this
portfolio for at least a year. During the coming year,
economists have predicted that the national economy
will be awful, stable, or great with probabilities 0.2,
0.5, and 0.3. Given the state of the economy, the
returns (one-year percentage changes) of the three
stocks are independent and normally distributed.
However, the means and standard deviations of these
returns depend on the state of the economy, as
indicated in the file P16_20.xlsx.
a. Use @RISK to simulate the value of the portfolio

and the portfolio return in the next year. How likely
is it that you will have a negative return? How likely
is it that you will have a return of at least 25%?

b. Suppose you had a crystal ball where you could
predict the state of the economy with certainty. The
stock returns would still be uncertain, but you
would know whether your means and standard
deviations come from row 6, 7, or 8 of the
P16_20.xlsx file. If you learn, with certainty, that
the economy is going to be great in the next year,
run the appropriate simulation to answer the same
questions as in part a. Repeat this if you learn that
the economy is going to be awful. How do these
results compare with those in part a?
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dissatisfied with the company’s product, they are likely to switch and never return.
Marketers refer to this customer loss as churn. The loss in profit from churn can be large,
particularly because long-standing customers tend to be more profitable in any given year
than new customers. The following example uses a reasonable model of customer loyalty
and simulation to estimate the worth of a customer to a company. It is based on the excel-
lent discussion of customer loyalty in Reichheld (1996).

E X A M P L E 16.7 THE LONG-TERM VALUE OF A CUSTOMER AT CCAMERICA

CCAmerica is a credit card company that does its best to gain customers and keep their
business in a highly competitive industry. The first year a customer signs up for service

typically results in a loss to the company because of various administrative expenses.
However, after the first year, the profit from a customer is typically positive, and this profit
tends to increase through the years. The company has estimated the mean profit from a typical
customer to be as shown in column B of Figure 16.23. For example, the company expects to
lose $40 in the customer’s first year but to gain $87 in the fifth year—provided that the cus-
tomer stays loyal that long. For modeling purposes, we assume that the actual profit from a

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 24

BA
Year Mean Profit(if s�ll here)

1 ($40.00)
2 $66.00
3 $72.00

35
36
37
38
39
40

4 $79.00
5 $87.00
6 $92.00
7 $96.00
8 $99.00
9 $103.00

10 $106.00
11 $111.00
12 $116.00
13 $120.00
14 $124.00
15 $130.00
16 $137.00
17 $142.00
18 $148.00
19 $155.00
20 $161.00
21 $161.00
22 $161.00
23 $161.00

25 $161.00
26 $161.00
27 $161.00
28 $161.00
29 $161.00
30 $161.00

$161.00

Figure 16.23

Mean Profit as a

Function of Years as

Customer
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customer in the customer’s nth year of service is normally distributed with mean shown in
Figure 16.23 and standard deviation equal to 10% of the mean. At the end of each year, the
customer leaves the company, never to return, with probability 0.15, the churn rate.
Alternatively, the customer stays with probability 0.85, the retention rate. The company wants
to estimate the NPV of the net profit from any such customer who has just signed up for ser-
vice at the beginning of year 1, at a discount rate of 15%, assuming that the cash flow occurs
in the middle of the year.3 It also wants to see how sensitive this NPV is to the retention rate.

Objective To use simulation to find the NPV of a customer and to see how this varies
with the retention rate.

WHERE DO THE NUMBERS COME FROM?

The numbers in Figure 16.23 are undoubtedly averages, based on the historical records of
many customers. To build in randomness for any particular customer, we need a probabil-
ity distribution around the numbers in this figure. We arbitrarily chose a normal distribu-
tion centered on the historical average and a standard deviation of 10% of the average.
These are educated guesses. Finally, the churn rate is a number very familiar to marketing
people, and it can also be estimated from historical customer data.

Solution

The idea is to keep simulating profits (or a loss in the first year) for the customer until the
customer churns. We simulate 30 years of potential profits, but this could be varied.

DEVELOPING THE SIMULATION MODEL

The simulation model appears in Figure 16.24. (See the file Customer Loyalty.xlsx.) It
can be developed with the following steps.

1 Inputs. Enter the inputs in the blue cells.

2 Retention rate. Although an 85% retention rate was given in the statement of the
problem, it is useful to investigate retention rates from 75% to 95%, as shown in column D.
To run a separate simulation for each of these, enter the formula

�RISKSIMTABLE(D4:D8)

in cell B4.

3 Timing of churn. In column C, use simulation to discover when the customer
churns. This column will contain a sequence of No values, followed by a Yes, and then a
sequence of blanks (or all No values if the customer never churns). To generate these, enter
the formulas

�IF(RAND()�1–B4,"Yes","No")

and

�IF(OR(C11�"",C11�"Yes"),"",IF(RAND()�1–$B$4,"Yes","No"))

in cells C11 and C12, and copy the latter formula down column C. Study these formulas
carefully to see how the logic works. Note that they do not rely on @RISK functions.
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As usual, Excel’s 
RAND function can 
be used inside an 
IF statement to 
determine whether 
a given event occurs.

3This assumption makes the NPV calculation slightly more complex, but it is probably more realistic than the
usual assumption that cash flows occur at the ends of the years.
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Excel’s RAND function can be used any time you want to simulate whether or not an event
occurs.

4 Actual and discounted profits. Profits (or a loss in the first year) occur as long as
there is not a blank in column C. Therefore, simulate the actual profits by entering the
formula

�IF(C11��"",RISKNORMAL(B11,$B$6*ABS(B11)),0)

in cell D11 and copying it down. (The absolute value function, ABS, is required in
case any of the cash flows are negative. A normal distribution cannot have a negative
standard deviation.) Then discount these appropriately in column E by entering the
formula

�D11/(1	$B$5)^(A11–0.5)

in cell E11 and copying it down. Note how the exponent of the denominator accounts for
the cash flow in the middle of the year.

5 Outputs. Keep track of two outputs, the total NPV and the number of years the cus-
tomer stays with the company. Calculate the NPV in cell H10 by summing the discounted
values in column E. (They have already been discounted, so the NPV function is not
needed.) To find the number of years the customer is loyal, count the number of No values
plus the number of Yes values, that is, all non-blanks. Calculate this in cell H11 with the
formula

�COUNTIF(C11:C40,"No")	COUNTIF(C11:C40,"Yes")

Finally, designate both of cells H10 and H11 as @RISK output cells.

Running the Simulation

Set the number of iterations to 1000 and the number of simulations to 5 (one for each
potential retention rate). Then run the simulation as usual. (Actually, we ran 5000 itera-
tions for each simulation, just to get more stable results.)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
38
39
40

JIHGFEDCBA
Customer loyalty model in the credit card industry

noitneteRstupnI rates to try
Reten�on 57.057.0etar
Discount 08.051.0etar
Stdev as % of 58.0%01naem

0.90
0.95

Simula�on Outputs
Year Mean Profit(if s�ll here) Quits at end of year? Actual profit Discounted profit NPV $348.86

1 ($40.00) No ($45.70) ($42.61) Years loyal 10
2 $66.00 No $64.32 $52.15
3 $72.00 No $71.70 $50.55 Means
4 $79.00 No $86.56 $53.07 NPV Years loyal
5 $87.00 No $86.34 $46.04 1 0.75 $101.47 4.08
6 $92.00 No $100.87 $46.77 2 0.80 $129.03 4.86
7 $96.00 No $101.92 $41.09 3 0.85 $185.57 6.80
8 $99.00 No $99.72 $34.96 4 0.90 $251.28 9.59
9 $103.00 No $123.92 $37.77 5 0.95 $365.89 15.77

10 $106.00 Yes $109.67 $29.07
00.0$00.0$00.111$11
00.0$00.0$00.161$82
00.0$00.0$00.161$92
00.0$00.0$00.161$03

Simula�on Reten�on rate

Figure 16.24 Customer Loyalty Model

Careful discounting is
required if cash flows
occur in the middle 
of a year.
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Discussion of the Simulation Results

Summary results for all five retention rates and the histogram for an 85% retention rate
appear in Figures 16.25 and 16.26. The histogram indicates that there is a 14.4% chance
that the NPV will be negative, whereas the chance that it will be above $300 is 27.3%. You
can also see from the summary measures that the mean NPV and the mean number of years
loyal are quite sensitive to the retention rate.
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Varying the retention 
rate can have a large
impact on the value 
of a customer.

Figure 16.25 Summary Results for Customer Loyalty Model

Figure 16.26

Histogram of NPV

for an 85%

Retention Rate

To follow up on this observation, you can use the RISKMEAN function to capture the
means in columns I and J of the model sheet and then create a line chart of them as a func-
tion of the retention rate. (See Figure 16.27.) This line chart shows the rather dramatic
effect the retention rate can have on the value of a customer. For example, if it increases
from the current 85% to 90%, the mean NPV increases by about 35%. If it increases from
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85% to 95%, the mean NPV increases by about 97%. In the other direction, if the retention
rate decreases from 85% to 80%, the mean NPV decreases by about 30%. This is why
credit card companies are so anxious to keep their customers. ■

The following example is a variation of the previous example. We now investigate the
effect of offering a customer an incentive to remain loyal.

50

100

150

200

250

300

350

400
Sensi�vity to Reten�on Rate 

NPV

Years loyal

0
0.70 0.75 0.80 0.85 0.90 0.95 1.00

Reten�on rate

Figure 16.27

Sensitivity of

Outputs to the

Retention Rate

E X A M P L E 16.8 THE VALUE OF A FREE MAINTENANCE AGREEMENT

Companies value loyal customers, and they sometimes go to great lengths to keep
their customers loyal. This example investigates whether one such plan is worth its

cost. We consider a nationwide company called Jamesons, which sells electronic appli-
ances. Specifically, we will focus on sales of DVD players. To attract customers, the
company is considering giving customers a free maintenance agreement with each
purchase of a DVD player. The unit profit without free maintenance is currently $20.
The company believes this will decrease to $16 with free maintenance. Their thinking is
that about 4% of customers will actually use the free maintenance, and for each such
customer, the company will lose about $100. Hence the average decrease in profit per
purchaser is about $4.

Prior to this year, 50,000 customers were loyal to Jamesons and 100,000 customers
were loyal to their competitors. (Loyalty is defined in terms of where the customer
bought his or her last DVD player.) There are a number of uncertain quantities, and we
assume they are all triangularly distributed. Their parameters (minimum, most likely,
and maximum) are as follows. (1) The percentage of the 150,000 customers who pur-
chase a DVD player in any given year has parameters 20%, 25%, and 40%. (2) The
annual percentage change in unit profit has parameters 3%, 5%, and 6%. (3) In any year,
the percentage of Jamesons’ loyal customers who remain loyal has parameters 56%,
60%, and 66% if there is no free maintenance, and they increase to 60%, 64%, and 70%
with free maintenance. (4) Similarly, the percentage of the competitors’ loyal customers
who switch to Jamesons has parameters 27%, 30%, and 34% if there is no free mainte-
nance, and they increase to 32%, 35%, and 39% with free maintenance. These inputs are
listed in the file Free Maintenance.xlsx and are shown in Figure 16.28.

Jamesons is hoping that the decrease in unit profit from the free maintenance agree-
ment will be more than offset by the higher loyalty percentages. Using a 15-year plan-
ning horizon, does the NPV of profits with a 10% discount rate confirm the company’s
hopes?

Objective To use simulation to see whether it makes sense for Jamesons to give a free
maintenance agreement to DVD player purchasers.
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WHERE DO THE NUMBERS COME FROM?

In the previous example we discussed the switching rates, which would be estimated from
extensive customer data. The other data in the problem statement are straightforward to
obtain.

Solution

The solution strategy is to compare two simulations, one without free maintenance and
one with it. Because they are so similar, you can use RISKSIMTABLE to run both sim-
ulations. We make one assumption that is common in marketing but might not be intu-
itive. We assume that only purchasers in a given year have any chance of switching
loyalty in the next year. For example, if a customer is loyal to Jamesons and doesn’t pur-
chase a DVD player in a given year, this customer is automatically loyal to Jamesons in
the next year.

DEVELOPING THE SIMULATION MODEL

The completed simulation model appears in Figure 16.29. (Again, see the first finished
version of the file Free Maintenance.xlsx.) It can be developed with the following steps.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

FEDCBA
Free maintenance agreement - is it worth it?

Common inputs
Loyal customers in previous year
To our 00005dnarb
To their 000001dnarb

Percentage of poten�al customers who purchase in any year (triangular distribu�on)
%02muminiM

Most %52ylekil
%04mumixaM

Annual percentage growth in profit contribu�on (triangular distribu�on)
%3muminiM

Most %5ylekil
%6mumixaM

Discount %01etar

Inputs that depend on policy Not free Free
Unit 61$02$tiforp

Percentage of our loyal customers who remain loyal (triangular distribu�on)
%06%65muminiM

Most likely 60% 64%25
26
27
28
29
30
31

Most likely 60% 64%
%07%66mumixaM

Percentage of their loyal customers who switch to us (triangular distribu�on)
%23%72muminiM

Most %53%03ylekil
%93%43mumixaM

Figure 16.28

Inputs for Free

Maintenance

Example
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1 Inputs. Enter the given data in the blue cells.

2 Maintenance decision. The current “no free maintenance” policy is labeled simu-
lation #1 and the proposed “free maintenance” policy is labeled simulation #2, so enter
the formula

�RISKSIMTABLE({1,2})

in cell B34.

3 Percentages who purchase. We assume that each year a random percentage of
Jamesons’ loyal customers and a random percentage of the competitors’ loyal customers
purchase a DVD player. Each of these is generated from the triangular distribution in rows
9–11 (see Figure 16.28), so enter the formula

�RISKTRIANG($B$9,$B$10,$B$11)

in the range B37:Q38.

4 Percentage who stay or become loyal. Each year a random percentage of the cus-
tomers previously loyal to Jamesons remain loyal, and a random percentage of the com-
petitors’ previously loyal customers switch loyalty to Jamesons. Also, the distributions of
these random percentages depend on the company’s maintenance policy. Therefore, enter
the formula

�IF($B$34�1,RISKTRIANG($B$24,$B$25,$B$26),RISKTRIANG($C$24,$C$25,$C$26))

in cell C39, enter the formula

�IF($B$34�1,RISKTRIANG($B$29,$B$30,$B$31),RISKTRIANG($C$29,$C$30,$C$31))

in cell C40, and copy these across their rows.

5 Numbers of loyal customers. Create links to cells B5 and B6 in cells B41 and B42.
Then, remembering that only purchasers in a given year can switch loyalty, calculate the
number of customers loyal to Jamesons in year 1 with the formula

�B41*((1-B37)	B37*C39)	B42*B38*C40

in cell C41 and copy it across row 41. Similarly, calculate the number of customers loyal to
the competitors in year 1 with the formula

�B42*((1-B38)	B38*(1-C40))	B41*B37*(1-C39)

in cell C42 and copy it across row 42. These are basic bookkeeping formulas. Jamesons’
loyal customers are those who (1) were loyal and didn’t purchase, (2) were loyal, purchased,

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

QPONMLKJIHGFEDCBA
Simula�on
Index of 1noitalumis

Year
Percentage loyal to us who purchase
Percentage loyal to them who purchase
Percentage who stay loyal to us
Percentage who switch loyalty to us
Customers loyal to 65652533500005su 4 4
Customers loyal to 00001meht 0 4 4 84261 81196
Purchases of our product 4 15461 20970 17532 15184
Percentage change in unit profit

24.0% 25.7% 31.2% 25.8% 31.1% 29.7% 26.3% 25.0% 21.7% 30.0% 27.0% 23.4% 23.0% 31.5% 26.7% 22.1%
25.6% 30.7% 22.9% 22.6% 25.9% 33.4% 25.0% 34.5% 30.3% 34.3% 32.0% 23.3% 25.0% 28.6% 35.9% 21.0%

63.8% 58.3% 59.3% 61.1% 59.7% 64.8% 56.8% 59.5% 59.3% 64.2% 58.2% 57.5% 58.4% 59.4% 61.8%
30.1% 30.1% 28.8% 29.6% 31.5% 27.6% 29.6% 29.5% 30.1% 30.9% 33.1% 30.4% 27.2% 32.4% 32.3%

4.93% 4.90% 4.43% 4.69% 5.27% 3.72% 3.61% 4.99% 4.76% 4.72% 4.64% 4.78% 4.74% 4.92%
Unit profit 
Profit 83,472$noitubirtnoc 1 $370,853 $315,912 $402,460 $406,921 $396,411 $390,929 $370,609 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

55537 56292 56890 59521 59446 62649 65090 67113 68341 67329 66526 65739 6880
96648 93436 94463 93708 93110 90479 9055 87351 84910 82887 81659 82671 8347
13719 17672 14350 17506 16907 15645 14875 13611 19515 18092 1597

$20.00 $20.99 $22.01 $22.99 $24.07 $25.34 $26.28 $27.23 $28.59 $29.95 $31.36 $32.82 $34.39 $36.02 $37.79
$557,925 $541,845 $500,993 $507,42 $721,155 $631,471 $573,808

34,312,3$VPN 0

Figure 16.29 Free Maintenance Simulation Model
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and stayed loyal, and (3) weren’t loyal, purchased, and switched loyalty. Similar logic holds
for the competitors’ loyal customers.

6 Purchasers at Jamesons. Calculate the number of purchasers at Jamesons in year 1
with the formula

�C37*C41

in cell C43 and copy it across row 41.

7 Monetary outcomes. These are straightforward. Start by entering the formula

�IF($B$34�1,B21,C21)

for unit profit in year 1 in cell C45. Then enter the formulas

�RISKTRIANG($B$14,$B$15,$B$16)

�C45*(1	D44)

and

�C45*C43

in cells D44, D45, and C46, respectively, and copy them across their rows. Finally, calcu-
late the NPV with the formula

�NPV(B18,C46:Q46)

in cell B48.

Running the Simulation

Set up @RISK to run 1000 iterations and 2 simulations, one for each maintenance decision
to be tested. Then run the simulation as usual.

Discussion of the Simulation Results

The summary measures for the two simulations appear in Figure 16.30. Using the current
inputs, the free maintenance initiative does not look good. Every measure, except possibly
the standard deviation, is worse with the free maintenance agreement than without it.
Evidently, the increase in loyal customers does not compensate for the decrease in unit
profit. If Jamesons is reasonably confident about the inputs for this model, it should scrap
the free maintenance idea. However, it might want to perform some sensitivity analysis on
the decrease in unit profit or the increase in loyalty percentages (or both) to see when the
free maintenance agreement starts looking attractive. We tried two possibilities. First, if the
decrease in unit profit is only $2, not $4, and everything else remains the same, the two
mean NPVs are very close, so the free maintenance agreement might be worth trying.
Second, if the decrease in unit profit remains at $4, but all of the input percentages in the
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Figure 16.30

Summary Measures

for Comparing Two

Decisions
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ranges C24:C26 and C29:C31 increase by five percentage points, the mean NPV with the
free maintenance agreement is still considerably lower than the mean NPV without it.
Evidently, the company can’t take this big a hit in its profit margin unless it can convince a
lot more customers to stay or become loyal.

There is an interesting modeling issue in this example. For each of the random quanti-
ties, we have generated a new random value each year. Would it be better to generate one
random number from each triangular distribution and use it for each year? Would it make
a difference in the results? The modified simulation appears in Figure 16.31. (You can see
the details in the second finished version of the Free Maintenance.xlsx file.) The only ran-
dom quantities are in the range B35:B39. As is evident in the rows below, these random
numbers are used for each of the years. The summary measures from this simulation
appear in Figure 16.32. If we are interested in comparing the mean NPV with no free main-
tenance versus free maintenance, we get about the same comparison in either model. The
main difference between Figures 16.30 and 16.32 is the variability. Are you surprised that
the models with more random numbers in Figure 16.30 have much smaller standard devia-
tions than those in Figure 16.32? Evidently, there is an averaging effect. When different
random numbers are used for each year, the highs and lows tend to cancel out, resulting in
lower variability in NPV.

Regardless of which version is more realistic (and an argument can be made for either),
an advantage of the model with only a few random numbers is that you can use @RISK’s
tornado chart to see which source of randomness is most highly correlated with NPV. This
tornado chart appears in Figure 16.33. (It is for simulation #2 with free maintenance agree-
ment, but the chart for simulation #1 is virtually the same.) Perhaps surprisingly, it is not the

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

QPONMLKJIHGFEDCBA

Index of 1noitalumis
Percentage loyal to us who purchase each year 23.3%
Percentage not loyal to us who purchase each year 26.4%
Percentage growth each %7.5raey
Percentage who stay loyal each %6.36%6.85raey
Percentage who switch to us each year 30.1% 36.4%

Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Percentage loyal to us who %3.32%3.32%3.32%3.32%3.32%3.32%3.32%3.32%3.32%3.32%3.32%3.32%3.32%3.32%3.32%3.32esahcrup
Percentage loyal to them who purchase 26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 26.4% 26.4%
Percentage who stay loyal to %6.85%6.85%6.85%6.85%6.85%6.85%6.85%6.85%6.85%6.85%6.85%6.85%6.85%6.85%6.85su
Percentage who switch loyalty to %1.03%1.03%1.03%1.03%1.03%1.03%1.03%1.03%1.03%1.03%1.03%1.03%1.03%1.03%1.03su
Customers loyal to us 50000 53119 55690 57808 59554 60992 62178 63155 63960 64623 65170 65620 65991 66297 66549 66757
Customers loyal to 00001meht 0 96881 94310 92192 90446 89008 87822 86845 86040 85377 84830 84380 84009 83703 83451 83243
Purchases of our product 12376 12975 13469 13875 14210 14487 14714 14902 15056 15184 15289 15375 15446 15505 15554
Percentage change in unit %17.5%17.5%17.5%17.5%17.5%17.5%17.5%17.5%17.5%17.5%17.5%17.5%17.5%17.5tiforp
Unit profit $20.00 $21.14 $22.35 $23.63 $24.98 $26.40 $27.91 $29.51 $31.19 $32.97 $34.86 $36.85 $38.95 $41.18 $43.53
Profit 84,283$129,453$528,723$220,103$223,472$225,742$noitubirtnoc 6 $410,686 $439,678 $469,613 $500,637 $532,891 $566,517 $601,653 $638,437 $677,011

78,710,3$VPN 7

Simula�on

Figure 16.31 Modified Simulation Model

Figure 16.32

Summary Results

for Modified Model
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switching behavior that drives NPV; it is driven more by the percentage of customers who
purchase. As this example illustrates, it is sometimes an advantage to keep the models sim-
ple. Key insights are then more apparent than when there is more complexity. ■

16.4.2 Marketing and Sales Models

We conclude this marketing section with a model of marketing and selling condos. The
main issue is the timing of sales, and we demonstrate how a deterministic model of this
timing can provide very misleading results.
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Figure 16.33

Tornado Chart

for NPV

E X A M P L E 16.9 MARKETING AND SELLING CONDOS

The Blackstone Development Company has just finished building 120 high-end condos,
each priced at $300,000. Blackstone has hired another company, Pletcher Marketing,

to market and sell these condos. Pletcher will incur all of the marketing and maintenance
costs, assumed to be $800 per unsold condo per month, and it will receive a 10% commis-
sion ($30,000) from Blackstone at the time of each condo sale. Because Blackstone wants
these condos to be sold in a timely manner, it has offered Pletcher a $200,000 bonus at the
end of the first year if at least half of the condos have been sold, and an extra $500,000
bonus at the end of the second year if all of the condos have been sold. Pletcher estimates
that it can sell five condos per month on average, so that it should be able to collect the
bonuses. However, Pletcher also realizes that there is some uncertainty about the number
of sales per month. How should this uncertainty be modeled, and will the resulting simula-
tion model give different qualitative results than a deterministic model where exactly five
condos are sold per month?

Objective To develop a simulation model that allows us to see how the uncertain timing
affects the monetary outcomes for Pletcher, and to compare this simulation model to a
deterministic model with no uncertainty about the timing of sales.
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WHERE DO THE NUMBERS COME FROM?

The inputs are straightforward from Blackstone’s agreement with Pletcher. The only diffi-
culty is determining an appropriate probability model for the timing of sales, which we dis-
cuss next.

Solution

To make a fair comparison between a deterministic model with five sales per month and a
simulation model with uncertainty in the timing of sales, we need a discrete distribution for
monthly sales that has mean 5. One attractive possibility is to use the Poisson distribution
discussed briefly in Chapter 5. It is discrete, and it has only one parameter, the mean. The
Poisson distribution has one theoretical drawback in that it allows all nonnegative integers
to occur, but this has no practical effect. As shown in Figure 16.34, the Poisson distribution
with mean 5 has virtually no probability of values larger than, say, 15.

DEVELOPING THE SIMULATION MODEL

The deterministic model is very straightforward and is not shown here. By selling a sure
five condos per month, Pletcher sells all condos by the end of year 2, receives both
bonuses, and realizes an NPV (including bonuses) of $2,824,333. However, this is not
very realistic. The steps for creating a more realistic simulation model follow. (See
Figure 16.35, with several hidden columns, and the file Selling Condos.xlsx.) Note that
because of the uncertain timing of sales, we cannot say when all 120 condos will be sold.
It could be before 24 months or well after 24 months. Therefore, we model it through 40
months. By experimenting, we found that all 120 condos will almost surely be sold in 40
months.

1 Inputs. Enter the inputs in the blue ranges.

2 Random demands. Generate the random demands for condos (the number of people
who would like to buy) by entering the formula

Figure 16.34

Poisson Distribution

with Mean 5
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�IF(B16�0,RISKPOISSON($B$12),"")

in cell B15 and copying across to month 40. The IF function checks whether there are still
any condos available in that month. If there aren’t, a blank is recorded. Similar logic
appears in many of the other formulas.

3 Number remaining and sold. In cell B16, enter a link to cell B3. In cell B17, find
the number sold as the minimum of supply and demand with the formula

�IF(B16�0,MIN(B16,B15),"")

In cell C16, find the number remaining to be sold with the formula

�IF(B16�0,B16-B17,0)

Then copy the formulas in cells C16 and B17 across. Note that a 0, not a blank, is recorded in
row 16 after all condos have been sold. This makes all the other IF functions work correctly.

4 Monetary values. Enter the formulas

�IF(B16�0,$B$4*(B16-B17),"")

�IF(B16�0,$B$5*B17,"")

and

�IF(B16�0,SUM(B19:B21)-B18,"")

in cells B18, B19, and B22, and copy these across. For the bonuses, enter the formulas

�IF(SUM(B17:M17)��B3/2,B6,0)

and

�IF(SUM(B17:Y17)�B3,B7,0)

in cells M20 and Y21. These capture the all-or-nothing nature of the bonuses.

5 Outputs. Three interesting outputs are the number of months required to sell out, the
total bonus earned, and the NPV of the cash flows, including bonuses. Calculate these in
cells B24–B26 with the formulas
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5
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10
11
12
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14
15
16
17
18
19
20
21
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23
24
25

OABAAAZYXONMLCBA
 and selling condos

Number to 021lles
Monthly  maintenance cost $800
Commission per condo sale $30,000
Bonus if at least half sold in year 1 $200,000
Extra bonus if all sold in 2 years $500,000
Discount rate %8.0)ylhtnom(

 model
 of demand for condos each month (Poisson distributed)

Mean demand per 5htnom

0472625242324131211121htnoM
Demand this month 5 3 8 4 2 6 1 12 5 4
Number remaining to be sold 120 115 69 61 57 55 21 20 8 3 0 0
Number sold this month 5 3 8 4 2 6 1 12 5 3
Maintenance 0$004,2$004,6$000,61$002,93$000,44$006,54$008,84$006,98$000,29$tsoc
Revenue from 000,09$000,051$000,063$000,03$000,081$000,06$000,021$000,042$000,09$000,051$selas
Bonus at end of year 000,002$1
Bonus at end of year 2 $0
Net 000,09$006,741$006,353$000,41$008,041$000,61$004,472$002,191$004$000,85$eunever

Months to sell 62tuo
Total  000,002$sunob

Marke�ng

marke�ng

Simula�on
Distribu�on

Figure 16.35 Condo Selling Simulation Model
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�COUNTIF(B16:AO16,"�0")

�M20	Y21

and

�NPV($B$8,B22:AO22)

Then designate them as @RISK output cells.

Running the Simulation

Set @RISK to run 1000 iterations for a single simulation. Then run the simulation in the
usual way.

Discussion of the Simulation Results

Recall that the deterministic model sells out in 24 months, receives both bonuses, and
achieves an NPV of about $2.82 million. As you might guess, the simulation model
doesn’t do this well. The main problem is that there is a fairly good chance that one or
both bonuses will not be received. Histograms of the three outputs appear in Figures
16.36 through 16.38. The first shows that although 24 months is the most likely num-
ber of months to sell out, there was at least one scenario where it took only 17 months
and another where it took 32 months. The second histogram shows the four possibili-
ties for bonuses: receive neither, receive one or the other, or receive both.
Unfortunately for Pletcher, the first three possibilities are fairly likely; the probability
of receiving both bonuses is only about 0.38. Finally, the shape of the NPV histogram,
with three separate peaks, is influenced heavily by the bonuses or lack of them.
On average, the NPV is only about $2.39 million, much less than estimated by the
deterministic model. This is still one more example—a dramatic one—of the flaw of
averages.

Figure 16.36

Histogram of

Months to Sell Out
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Figure 16.37

Histogram of Total

Bonus Received

Figure 16.38

Histogram of NPV

■

P R O B L E M S

Level A

21. Suppose that Coke and Pepsi are fighting for the cola
market. Each week each person in the market buys
one case of Coke or Pepsi. If the person’s last
purchase was Coke, there is a 0.90 probability that

this person’s next purchase will be Coke; otherwise,
it will be Pepsi. (You can assume that there are only
two brands in the market.) Similarly, if the person’s
last purchase was Pepsi, there is a 0.80 probability
that this person’s next purchase will be Pepsi;
otherwise, it will be Coke. Currently half of all
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people purchase Coke, and the other half purchase
Pepsi. Simulate one year (52 weeks) of sales in the
cola market and estimate each company’s average
weekly market share and each company’s ending
market share in week 52. Do this by assuming that
the total market size is fixed at 100,000 customers.
(Hint: Use the RISKBINOMIAL function. However,
if your model requires more RISKBINOMIAL
functions than the number allowed in the academic
version of @RISK, remember that you can instead
use the CRITBINOM function to generate binomially
distributed random numbers. This takes the form
�CRITBINOM(ntrials,psuccess,RAND()).)

22. Seas Beginning sells clothing by mail order. An
important question is when to strike a customer from
the company’s mailing list. At present, the company
strikes a customer from its mailing list if a customer
fails to order from six consecutive catalogs. The
company wants to know whether striking a customer
from its list after a customer fails to order from four
consecutive catalogs results in a higher profit per
customer. The following data are available:
■ If a customer placed an order the last time she

received a catalog, then there is a 20% chance she
will order from the next catalog.

■ If a customer last placed an order one catalog ago,
there is a 16% chance she will order from the next
catalog she receives.

■ If a customer last placed an order two catalogs ago,
there is a 12% chance she will order from the next
catalog she receives.

■ If a customer last placed an order three catalogs
ago, there is an 8% chance she will order from the
next catalog she receives.

■ If a customer last placed an order four catalogs
ago, there is a 4% chance she will order from the
next catalog she receives.

■ If a customer last placed an order five catalogs ago,
there is a 2% chance she will order from the next
catalog she receives.

It costs $2 to send a catalog, and the average profit per
order is $30. Assume a customer has just placed an
order. To maximize expected profit per customer,
would Seas Beginning make more money canceling
such a customer after six nonorders or four nonorders?

23. Based on Babich (1992). Suppose that each week each
of 300 families buys a gallon of orange juice from
company A, B, or C. Let pA denote the probability that
a gallon produced by company A is of unsatisfactory
quality, and define pB and pC similarly for companies
B and C. If the last gallon of juice purchased by a
family is satisfactory, the next week they will purchase
a gallon of juice from the same company. If the last
gallon of juice purchased by a family is not
satisfactory, the family will purchase a gallon from a
competitor. Consider a week in which A families have

purchased juice A, B families have purchased juice B,
and C families have purchased juice C. Assume that
families that switch brands during a period are
allocated to the remaining brands in a manner that is
proportional to the current market shares of the other
brands. For example, if a customer switches from
brand A, there is probability B/(B 	 C) that he will
switch to brand B and probability C/(B 	 C) that he
will switch to brand C. Suppose that the market is
currently divided equally: 10,000 families for each of
the three brands.
a. After a year, what will the market share for each firm

be? Assume pA � 0.10, pB � 0.15, and pC � 0.20.
(Hint: You will need to use the RISKBINOMIAL
function to see how many people switch from A 
and then use the RISKBINOMIAL function again
to see how many switch from A to B and from A
to C. However, if your model requires more
RISKBINOMIAL functions than the number
allowed in the academic version of @RISK,
remember that you can instead use the 
CRITBINOM function to generate binomially
distributed random numbers. This takes the form
�CRITBINOM(ntrials,psuccess,RAND()).)

b. Suppose a 1% increase in market share is worth
$10,000 per week to company A. Company A
believes that for a cost of $1 million per year it can
cut the percentage of unsatisfactory juice cartons in
half. Is this worthwhile? (Use the same values of
pA, pB, and pC as in part a.)

Level B

24. The customer loyalty model in Example 16.7 assumes
that once a customer leaves (becomes disloyal), that
customer never becomes loyal again. Assume instead
that there are two probabilities that drive the model,
the retention rate and the rejoin rate, with values 0.75
and 0.15, respectively. The simulation should follow a
customer who starts as a loyal customer in year 1.
From then on, at the end of any year when the
customer was loyal, this customer remains loyal for
the next year with probability equal to the retention
rate. But at the end of any year the customer is
disloyal, this customer becomes loyal the next year
with probability equal to the rejoin rate. During the
customer’s nth loyal year with the company, the
company’s mean profit from this customer is the nth
value in the mean profit list in column B. Keep track
of the same two outputs as in the example, and also
keep track of the number of times the customer
rejoins.

25. We are all aware of the fierce competition by mobile
phone service companies to get our business. For
example, AT&T is always trying to attract Verizon’s
customers, and vice versa. Some even give away prizes
to entice us to sign up for a guaranteed length of time.
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16.5 SIMULATING GAMES OF CHANCE

We realize that this is a book about business applications. However, it is instructive (and
fun) to see how simulation can be used to analyze games of chance, including sports
contests. Indeed, many analysts refer to Monte Carlo simulation, and you can guess where
that name comes from—the gambling casinos of Monte Carlo.

16.5.1 Simulating the Game of Craps

Most games of chance are great candidates for simulation because they are, by their very
nature, driven by randomness. In this section we examine one such game that is extremely
popular in the gambling casinos: the game of craps. In its most basic form, the game of
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This example is based on one such offer. We assume
that a mobile provider named Syncit is willing to give a
customer a free laptop computer, at a cost of $300 to
Syncit, if the customer signs up for a guaranteed two
years of service. During that time, the cost of service to
the customer is a constant $60 per month, or $720
annually. After two years, we assume the cost of
service increases by 2% annually. We assume that in
any year after the guaranteed two years, the probability
is 0.7 that the customer will stay with Syncit. This
probability is the retention rate. We also assume that if
a customer has switched to another mobile service,
there is always a probability of 0.1 that the customer
will (without any free laptop offer) willingly rejoin
Syncit. The company wants to see whether this offer
makes financial sense in terms of NPV, using a 10%
discount rate. It also wants to see how the NPV varies
with the retention rate. Simulate a 15-year time
horizon, both with and without the free offer, to
estimate the difference. (For the situation without the
free offer, assume the customer has probability 0.5 of
signing up with Syncit during year 1.)

26. Suppose that GLC earns a $2000 profit each time a
person buys a car. We want to determine how the
expected profit earned from a customer depends on the
quality of GLC’s cars. We assume a typical customer
will purchase 10 cars during her lifetime. She will
purchase a car now (year 1) and then purchase a car
every five years—during year 6, year 11, and so on.
For simplicity, we assume that Hundo is GLC’s only
competitor. We also assume that if the consumer is
satisfied with the car she purchases, she will buy her
next car from the same company, but if she is not
satisfied, she will buy her next car from the other
company. Hundo produces cars that satisfy 80% of its
customers. Currently, GLC produces cars that also
satisfy 80% of its customers. Consider a customer
whose first car is a GLC car. If profits are discounted
at 10% annually, use simulation to estimate the value
of this customer to GLC. Also estimate the value of a

customer to GLC if it can raise its customer
satisfaction rating to 85%, to 90%, or to 95%. You can
interpret the satisfaction value as the probability that a
customer will not switch companies.

27. The Mutron Company is thinking of marketing a new
drug used to make pigs healthier. At the beginning of
the current year, there are 1,000,000 pigs that could
use the product. Each pig will use Mutron’s drug or a
competitor’s drug once a year. The number of pigs is
forecast to grow by an average of 5% per year.
However, this growth rate is not a sure thing. Mutron
assumes that each year’s growth rate is an independent
draw from a normal distribution, with probability 0.95
that the growth rate will be between 3% and 7%.
Assuming it enters the market, Mutron is not sure
what its share of the market will be during year 1, so it
models this with a triangular distribution. Its worst-
case share is 20%, its most likely share is 40%, and its
best-case share is 70%. In the absence of any new
competitors entering this market (in addition to itself),
Mutron believes its market share will remain the same
in succeeding years. However, there are three potential
entrants (in addition to Mutron). At the beginning of
each year, each entrant that has not already entered the
market has a 40% chance of entering the market. The
year after a competitor enters, Mutron’s market share
will drop by 20% for each new competitor who
entered. For example, if two competitors enter the
market in year 1, Mutron’s market share in year 2 will
be reduced by 40% from what it would have been with
no entrants. Note that if all three entrants have entered,
there will be no more entrants. Each unit of the drug
sells for $2.20 and incurs a variable cost of $0.40.
Profits are discounted by 10% annually.
a. Assuming that Mutron enters the market, use

simulation to find its NPV for the next 10 years
from the drug.

b. Again assuming that Mutron enters the market, it
can be 95% certain that its actual NPV from the
drug is between what two values?
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craps is played as follows. A player rolls two dice and observes the sum of the two sides
turned up. If this sum is 7 or 11, the player wins immediately. If the sum is 2, 3, or 12, the
player loses immediately. Otherwise, if this sum is any other number (4, 5, 6, 8, 9, or 10),
that number becomes the player’s point. Then the dice are thrown repeatedly until the sum
is the player’s point or 7. In case the player’s point occurs before a 7, the player wins. But
if a 7 occurs before the point, the player loses. The following example uses simulation to
determine the properties of this game.

E X A M P L E 16.10 ESTIMATING THE PROBABILITY OF WINNING AT CRAPS

Joe Gamble loves to play craps at the casinos. He suspects that his chances of winning are
less than fifty-fifty, but he wants to find the probability that he wins a single game of craps.

Objective To use simulation to find the probability of winning a single game of craps.

WHERE DO THE NUMBERS COME FROM?

There are no input numbers here, only the rules of the game.

Solution

The simulation is of a single game. By running this simulation for many iterations, you can
find the probability that Joe wins a single game of craps. If his intuition is correct (and
surely it must be, or the casino could not stay in business), this probability is less than 0.5.

DEVELOPING THE SIMULATION MODEL

The simulation model is for a single game. (See Figure 16.39 and the file Craps.xlsx.)
There is a subtle problem here: The number of tosses of the dice necessary to determine the
outcome of a single game is unknown. Theoretically, the game could continue forever, with
the player waiting for his point or a 7. However, it is extremely unlikely that more than, say,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
42
43
44

A B C D E F G H I J
Craps Simula�on

Simulated tosses
Toss Die 1 Die 2 Sum Win on this toss? Lose on this toss Con�nue?? Summary results from simula�on

1 6 2 8 0 0 Yes Win? (1 if yes, 0 if no) 1
2 5 6 11 0 0 Yes Number of tosses 8
3 4 2 6 0 0 Yes
4 4 1 5 0 0 Yes Pr(winning) 0.491
5 2 1 3 0 0 Yes Expected number of tosses 3.364
6 5 4 9 0 0 Yes
7 3 6 9 0 0 Yes
8 6 2 8 1 0 No
9 3 4 7

10 6 3 9
38 4 3 7
39 2 6 8
40 1 1 2

Figure 16.39 Simulation of Craps Game
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40 tosses are necessary in a single game. (This can be shown by a probability argument not
presented here.) Therefore, you can simulate 40 tosses and use only those that are necessary
to determine the outcome of a single game. The steps required are as follows.

1 Simulate tosses. Simulate the results of 40 tosses in the range B5:D44 by entering
the formula

�RANDBETWEEN(1,6)

in cells B5 and C5 and the formula

�SUM(B5:C5)

in cell D5. Then copy these to the range B6:D44. (Recall that the RANDBETWEEN
function was new in Excel 2007. It generates a random integer between the two speci-
fied values such that all values are equally likely, so it is perfect for tossing a die. You
could also use @RISK’s RISKINTUNIFORM function, which works exactly like
RANDBETWEEN.)

Excel Function: RANDBETWEEN
The function RANDBETWEEN, in the form �RANDBETWEEN(N1,N2), generates a ran-
dom integer from N1 to N2, with each possibility being equally likely.

@RISK Function: RISKINTUNIFORM
The @RISK function RISKINTUNIFORM in the form �RISKINTUNIFORM(N1,N2) works
exactly like Excel’s RANDBETWEEN function.

2 First toss outcome. Determine the outcome of the first toss with the formulas

�IF(OR(D5�7,D5�11),1,0)

�IF(OR(D5�2,D5�3,D5�12),1,0)

and

�IF(AND(E5�0,F5�0),"Yes","No")

in cells E5, F5, and G5. Note that the OR condition checks whether Joe wins right away (in
which case a 1 is recorded in cell E5). Similarly, the OR condition in cell F5 checks
whether he loses right away. In cell G5, the AND condition checks whether both cells E5
and F5 are 0, in which case the game continues. Otherwise, the game is over.

3 Outcomes of other tosses. Assuming the game continues beyond the first toss, Joe’s
point is the value in cell D5. Then he is waiting for a toss to have the value in cell D5 or 7,
whichever occurs first. To implement this logic, enter the formulas

�IF(OR(G5�"No",G5�""),"",IF(D6�$D$5,1,0))

�IF(OR(G5�"No",G5�""),"",IF(D6�7,1,0))

and

�IF(OR(G5�"No",G5�""),"",IF(AND(E6�0,F6�0), "Yes","No"))

in cells E6, F6, and G6, and copy these to the range E7:G44. The OR condition in each for-
mula checks whether the game just ended on the previous toss or has been over for some
time, in which case blanks are entered. Otherwise, the first two formulas check whether
Joe wins or loses on this toss. If both of these return 0, the third formula returns Yes (and
the game continues). Otherwise, it returns No (and the game has just ended).

1038 Chapter 16 Simulation Models

As in many 
spreadsheet simulation
models, the concepts 
in this model are 
simple.The key is 
careful bookkeeping.
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4 Game outcomes. Keep track of two aspects of the game in @RISK output cells:
whether Joe wins or loses and how many tosses are required. To find these, enter the formulas

�SUM(E5:E44)

and

�COUNT(E5:E44)

in cells J5 and J6, and designate each of these as an @RISK output cell. Note that both
functions, SUM and COUNT, ignore blank cells.

5 Simulation summary. Although you can get summary measures in the various
@RISK results windows after you run the simulation, it is useful to see some key summary
measures right on the model sheet. To obtain these, enter the formula

�RISKMEAN(J5)

in cell J8 and copy it to cell J9. As the labels indicate, the RISKMEAN in cell J8, being an
average of 0s and 1s, is just the fraction of iterations where Joe wins. The average in cell J9
is the average number of tosses until the game’s outcome is determined.

Running the Simulation

Set the number of iterations to 10,000 (partly for variety and partly to obtain a very accu-
rate answer) and the number of simulations to 1. Then run the simulation as usual.

Discussion of the Simulation Results

After running @RISK, the summary results in cells J8 and J9 of Figure 16.39 (among
others) are available. Our main interest is in the average in cell J8. It represents the best
estimate of the probability of winning, 0.493. (It can be shown with a probability argument
that the exact probability of winning in craps is indeed 0.493.) You can also see that
the average number of tosses needed to determine the outcome of a game was about 3.4.
(The maximum number of tosses ever needed on these 10,000 iterations was 39.) ■

16.5.2 Simulating the NCAA Basketball Tournament

Each year the suspense reaches new levels as “March Madness” approaches, the time of
the NCAA Basketball Tournament. Which of the 64 teams in the tournament will reach the
“Sweet Sixteen,” which will go on to the prestigious “Final Four,” and which team will be
crowned champion? The excitement at Indiana University is particularly high, given the
strong basketball tradition here, so it has become a yearly tradition at IU (at least for the
authors) to simulate the NCAA Tournament right after the 64-team field has been
announced. We share that simulation in the following example. (We make two quick notes.
First, everyone who watches basketball knows about IU’s recent basketball problems. We
hope the Hoosiers are now on the upswing. Second, we will have to change our simulation
slightly in future years. It looks like the number of teams in the tournament will be signif-
icantly larger than 64.)

Recall that the mean 
(or average) of a 
sequence of 0s and 
1s is the fraction of 
1s in the sequence.
This can typically be
interpreted as a
probability.

Perhaps surprisingly,
the probability of 
winning in craps is 
0.493, only slightly 
less than 0.5.

E X A M P L E 16.11 MARCH MADNESS

At the time this example was written, the most recent NCAA Basketball Tournament
was the 2009 tournament, won by the University of North Carolina. Of course, on the

Sunday evening when the 64-team field was announced, we did not know which team
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would win.4 All we knew were the pairings (which teams would play which other teams)
and the team ratings, based on Jeff Sagarin’s nationally syndicated rating system. We show
how to simulate the tournament and keep a tally of the winners.

Objective To simulate the 64-team NCAA basketball tournament and keep a tally on the
number of times each team wins the tournament.

WHERE DO THE NUMBERS COME FROM?

As soon as you learn the pairings for the next NCAA tournament, you can visit Sagarin’s
site at www.usatoday.com/sports/sagarin.htm#hoop for the latest ratings.

Solution

We need to make one probabilistic assumption. From that point, it is a matter of “playing
out” the games and doing the required bookkeeping. To understand this probabilistic
assumption, suppose team A plays team B and Sagarin’s ratings for these teams are, say,
85 and 78. Then Sagarin predicts that the actual point differential in the game (team A’s
score minus team B’s score) will be the difference between the ratings, or 7.5 We take this
one step further. We assume that the actual point differential is normally distributed with
mean equal to Sagarin’s prediction, 7, and standard deviation 10. (Why 10? This is an esti-
mate based on an extensive analysis of historical data.) Then if the actual point differential
is positive, team A wins. If it is negative, team B wins.

DEVELOPING THE SIMULATION MODEL

We provide only an outline of the simulation model. You can see the full details in the file
March Madness Men 2009.xlsm (or the 2010 version). Remember that an .xlsm file that
contains macros. When you open it, you need to enable the macros. (This file includes the data
for the 2009 tournament, but you can easily modify it for future tournaments by following the
directions on the sheet. We have also included the March Madness Women 2009.xlsm file
(and the 2010 version). The women’s tournament was won by the University of Connecticut
both years.) The entire simulation is on a single Model sheet. Columns A through C list team
indexes, team names, and Sagarin ratings. If two teams are paired in the first round, they are
placed next to one another in the list. Also, all teams in a given region are listed together. (The
regions are color-coded.) Columns K through Q contain the simulation. The first-round results
are at the top, the second-round results are below these, and so on. Winners from one round are
automatically carried over to the next round with appropriate formulas. Selected portions of
the Model sheet appear in Figures 16.40 and 16.41. We now describe the essential features of
the model.

1 Teams and ratings. We first enter the teams and their ratings, as shown in 
Figure 16.40. Most of the teams shown here were in the East region in the 2009 tournament.
Pittsburgh played East Tennessee State in the first round, Oklahoma State played
Tennessee, and so on.

1040 Chapter 16 Simulation Models

We model the point
spread as normally
distributed, with mean
equal to the difference
between the Sagarin
ratings and standard
deviation 10.

4Actually, 65 teams are announced, and an early playoff game occurs to see which of two lowly rated teams gets
to play a #1 seed. This has no effect on the simulation because neither lowly ranked team has much chance of
winning against the #1 seed. Also, congratulations to Duke in the 2010 tournament.
5In general, there is also a home-court advantage, but we assume all games in the tournament are on “neutral”
courts, so that there is no advantage to either team.
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2 Simulate rounds. Jumping ahead to the fourth-round simulation in Figure 16.41, we
capture the winners from the previous round 3 and then simulate the games in round 4. The
key formulas are in columns N and O. For example, the formulas in cells N126 and O126 are

�VLOOKUP(L126,LTable,3)–VLOOKUP(L127,LTable,3)

and

�RISKNORMAL(N126,10)

The first of these looks up the ratings of the two teams involved (in this case, Pittsburgh
and Duke) and subtracts them to get the predicted point spread. The second formula simu-
lates a point spread with the predicted point spread as its mean. The rest of the formulas do
the appropriate bookkeeping. You can view the details in the file.

3 Outputs. As shown by the boxed-in cells in Figure 16.41, seven cells have been des-
ignated as @RISK output cells: the index of the winner, the indexes of the two finalists,
and the indexes of the four semifinalists (the Final Four teams). However, the results we

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

A B C D E F G H I
Simula�on of NCAA men's 2009 basketball tournament, using Sagarin ra�ngs

Final Sagarin ra�ngs of teams
Index Team Ra�ng

2 East Tenn.
3 Oklahoma

5 Florida

8 Portland
38.78ALCU9
79.97UCV01

51.58saxeT31

02.29ekuD51

17 North

95.38USL91
74.48reltuB02

22 Western

East regional

Assump�on: The actual point spread for
each game is normally distributed with
mean equal to difference between Sagarin
ra�ngs, standard devia�on 10.

27
28
29

52.08norkA42
25 Arizona

1 Pi�sburgh 92.78
St. 73.94
St. 85.04

4 Tennessee 83.73
St. 85.35

6 Wisconsin 84.78
7 Xavier 86.19

St. 76.37

11 Villanova 88.23
12 American 75.64

14 Minnesota 84.52

16 Binghamton 72.73
Carolina 93.48

18 Radford 72.19

21 Illinois 87.20
Ky. 77.90

23 Gonzaga 89.31

St. 87.26
South regional

Figure 16.40 Teams and Sagarin Ratings
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124
125
126
127
128
129
130
131
132
133
134
135
136

137
138
139
140

141
142
143

144
145

146

147

K L M N O P Q
Results of Round 4

Game Indexes Teams Predicted Simulated Index of winner Winner
1 1 0.58 11.76 1

 15 Duke
1 19 LSU 1.36 23.13 19 LSU

 
-5.36 8.56 38 Arizona

 
-2.01 59 Missouri

 

Semifinals
of winner Winner

1 1 9.19 4.51 1

26 Temple
1 38 Arizona

43 Kansas
1 49 3.43

59 Missouri

Game Indexes Teams Predicted Simulated Index

19 LSU
2 38 Arizona -6.28 -20.66 59 Missouri

59 Missouri

Finals
Game Indexes Teams Predicted Simulated Index of winner Winner

1 1 3.49 8.85 1
59 Missouri

Winner 1

Pi�sburgh Pi�sburgh

Pi�sburgh

Pi�sburghPi�sburgh

Pi�sburgh

Connec�cut

Figure 16.41 NCAA Basketball Simulation Model (Last Three Rounds Only)

really want are tallies, such as the number of iterations where Pittsburgh (or any other
team) wins the tournament. This takes some planning. In the @RISK Excel Reports dialog
box, if you check the Simulation Data option, you get a sheet called Data that lists the val-
ues of all @RISK output cells for each of the iterations. (We used 1000 iterations.) Then
COUNTIF functions can be used to tally the number of wins (or finalist or semifinalist
appearances) for each team, right in the original Model sheet.

Some of these tallies appear in Figure 16.42. For example, the formula in cell U5 is

�COUNTIF('Data'!$I$8:$I$1007,S5)

In this case, the range I8:I1007 of the Data sheet contains the indexes of the 1000 win-
ners, so this formula simply counts the number of these that are index 1.6 As you can
see, the top-rated team in the South region, North Carolina, won the tournament in 138
of the 1000 iterations and reached the Final Four 423 times. In contrast, the lowly rated
East Tennessee State (and a few others) did not make the Final Four in any of the 1000
iterations.

The Simulation Data
report in @RISK lists 
the outputs from each
iteration of the 
simulation, which 
allows us to tally the
winners.

6Unfortunately, each time you rerun the simulation, the Data sheet is deleted and then recreated, which invalidates
the references in the tally formulas. Therefore, we created a macro to update these formulas. You can run the
macro by clicking on the button at the top of the worksheet.
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3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

S T U V W
Tally of winners, finalists, and semifinalists
Index Team Winner Finalist Semifinalist
1 124 207 373
2 East Tenn. St. 0 0 0
3 Oklahoma St. 1 6 18
4 Tennessee 1 4 13
5 Florida 6284.tS
6 Wisconsin 2 9 26

455211reivaX7
8 Portland St. 0 0 0

885361ALCU9
200UCV01

11 Villanova 16 43 97
000naciremA21
7172saxeT31

14 Minnesota 2 3 10
67284198ekuD51

16 Binghamton 0 0 0
17 North Carolina 138 253 423

000drofdaR81

Pi�sburgh

Figure 16.42 Tally of Tournament Winners

P R O B L E M S

Level A

28. The game of Chuck-a-Luck is played as follows: You
pick a number between 1 and 6 and toss three dice. If
your number does not appear, you lose $1. If your
number appears x times, you win $x. On the average,
use simulation to find the average amount of money
you will win or lose on each play of the game.

29. A martingale betting strategy works as follows. You
begin with a certain amount of money and repeatedly
play a game in which you have a 40% chance of
winning any bet. In the first game, you bet $1. From
then on, every time you win a bet, you bet $1 the next
time. Each time you lose, you double your previous
bet. Currently you have $63. Assuming you have
unlimited credit, so that you can bet more money than
you have, use simulation to estimate the profit or loss
you will have after playing the game 50 times.

30. You have $5 and your opponent has $10. You flip a
fair coin and if heads comes up, your opponent pays
you $1. If tails comes up, you pay your opponent $1.
The game is finished when one player has all the
money or after 100 tosses, whichever comes first. Use
simulation to estimate the probability that you end up
with all the money and the probability that neither of
you goes broke in 100 tosses.

Level B

31. Assume a very good NBA team has a 70% chance of
winning in each game it plays. During an 82-game
season what is the average length of the team’s longest
winning streak? What is the probability that the team
has a winning streak of at least 16 games? Use
simulation to answer these questions, where each
iteration of the simulation generates the outcomes of
all 82 games.

32. You are going to play the Wheel of Misfortune Game
against the house. The wheel has 10 equally likely
numbers: 5, 10, 15, 20, 25, 30, 35, 40, 45 ,and 50. The
goal is to get a total as close as possible to 50 points
without exceeding 50. You go first and spin the wheel.
Based on your first spin, you can decide whether you
want to spin again. (You can spin no more than twice.)
After you are done, it is the house’s turn. If your total
is more than 50, the house doesn’t need a turn; it wins
automatically. Otherwise, the house spins the wheel.
After its first spin, it can spin the wheel again if it
wants. (The house can also spin no more than twice.)
Then the winner is determined, where a tie goes to
you. Use simulation to estimate your probability of
winning the game if you and the house both use best
strategies. What are the best strategies?
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33. Consider the following card game. The player and
dealer each receive a card from a 52-card deck. At the
end of the game the player with the highest card wins;
a tie goes to the dealer. (You can assume that Aces
count 1, Jacks 11, Queens 12, and Kings 13.) After the
player receives his card, he keeps the card if it is 7 or
higher. If the player does not keep the card, the player
and dealer swap cards. Then the dealer keeps his
current card (which might be the player’s original
card) if it is 9 or higher. If the dealer does not keep his
card, he draws another card. Use simulation with at
least 1000 iterations to estimate the probability that the
player wins. (Hint: See the file Sampling Without
Replacement.xlsx to see a clever way of simulating
cards from a deck so that the same card is never dealt
more than once.)

34. Based on Morrison and Wheat (1984). When his team
is behind late in the game, a hockey coach usually
waits until there is one minute left before pulling the
goalie out of the game. Using simulation, it is
possible to show that coaches should pull their goalies
much sooner. Suppose that if both teams are at full
strength, each team scores an average of 0.05 goal per
minute. Also, suppose that if you pull your goalie you
score an average of 0.08 goal per minute and your
opponent scores an average of 0.12 goal per minute.
Suppose you are one goal behind with five minutes
left in the game. Consider the following two
strategies:

■ Pull your goalie if you are behind at any point in
the last five minutes of the game; put him back in if
you tie the score.

■ Pull your goalie if you are behind at any point in
the last minute of the game; put him back in if you
tie the score.

Which strategy maximizes your probability of winning
or tying the game? Simulate the game using 10-second
increments of time. Use the RISKBINOMIAL
function to determine whether a team scores a goal in
a given 10-second segment. This is reasonable because
the probability of scoring two or more goals in a 
10-second period is near zero.

35. You are playing Andy Roddick in tennis, and you have
a 42% chance of winning each point. (You are good!)
a. Use simulation to estimate the probability you will

win a particular game. Note that the first player to
score at least four points and have at least two
more points than his or her opponent wins the
game.

b. Use simulation to determine your probability of
winning a set. Assume that the first player to win
six games wins the set if he or she is at least two
games ahead; otherwise, the first player to win
seven games wins the set. (We substitute a single
game for the usual tiebreaker.)

c. Use simulation to determine your probability of
winning a match. Assume that the first player to
win three sets wins the match.

16.6 AN AUTOMATED TEMPLATE FOR @RISK MODELS

As explained in the third edition of Albright’s VBA for Modelers book, the macro language
for Excel, VBA, can also be used to automate @RISK. We took advantage of this to create
an automated template that you can use for any of your simulations. The template appears
in Figure 16.43. (See the file Simulation Template.xlsm.) The text boxes provide the
motivation and instructions. There are two basic ideas. First, you often have particular
inputs you would like to vary in a sensitivity analysis. Once you specify these in the Inputs
section, the program will run a separate simulation for each combination of the input val-
ues. In the example shown, it would run 1 � 2 � 3 � 6 simulations. Second, you typically
have outputs that you want to summarize in certain ways. The Outputs section lets you
specify the summary measures you want for each of your outputs. The program then lists
the results on separate worksheets.

This template is not a magic bullet. It is still up to you to develop the logic of the sim-
ulation. However, you no longer have to worry about RISKSIMTABLE functions or statis-
tical functions such as RISKMEAN. The program takes care of these automatically, using
your entries in the Inputs and Outputs sections. To see how the template can be used, we
have included two simulations based on it. They are included in the files World Series
Simulation.xlsm and Newsvendor Simulation.xlsm. (Again, remember that you must
enable the macros when you open any of these .xlsm files.)
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16.7 CONCLUSION

We claimed in the previous chapter that spreadsheet simulation, especially together with an
add-in like @RISK, is a very powerful tool. After seeing the examples in this chapter, you
should now appreciate how powerful and flexible simulation is. Unlike Solver optimization
models, where you often make simplifying assumptions to achieve linearity, say, you can
allow virtually anything in simulation models. All you need to do is relate output cells to
input cells with appropriate formulas, where any of the input cells can contain probability
distributions to reflect uncertainty. The results of the simulation then show the distribution
of any particular output. It is no wonder that companies such as GM, Eli Lilly, and many
others are increasingly relying on simulation models to analyze their corporate operations.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

A B C D E F G H I J K

Number of itera�ons

seulaVstupnI  to test
51tupnI

BA2tupnI
00.157.005.03tupnI

etc.

Tables requested
Outputs Mean Stdev Min Max Percen�les Targets

6,559.,05.,50.seYseYseYseY1tuptuO
oNoNoNoNoNseY2tuptuO

450.0oNoNseYseY3tuptuO
etc.

Overview:
This file contains macros that run @RISK and generate requested tables 
of results for (1) any allowed number of itera�ons, (2) any number of 
(nonrandom) inputs in the blue cells, (3) any  values of these inputs you 
want to test, and (4) any number of outputs in the gray cells. The Model 
sheet should be set up exactly as this. In par�cular,  you shouldn't 
rename any of the bright yellow cells, and you should keep the headings 
in the light yellow cells right below the Tables requested label. To see 
completed versions of this template, open and run World Series 
Simula� ula�on.xlsm or Newsvendor Sim on.xlsm.

Inputs:
Enter as many inputs (with appropriate labels)  as 
you'd like in column A, any values for them in 
column B, and values you'd like to test star�ng in 
column D. (Insert rows for more inputs if 
necessary.) The program will run a simula�on for 
each combina�on of these input values.

Outputs:
Enter as many outputs (with appropriate labels) as 
you'd like in column A, and corresponding formulas 
(based on the simula�on) in column B. (Insert rows
for more outputs if necessary.) Then request the 
stats you'd like for the various outputs star�ng in 
column D.Simula�on model:

Develop the simula�on here. It should be 
dependent on the inputs above in column 
B, and the outputs above in column B 
should be dependent on it.

Simula�on Template

Simula�on

Figure 16.43 Simulation Template

Summary of Key Terms

Term Explanation Excel Page
Gamma distribution Right-skewed distribution of nonnegative values 994

useful for many quantities such as the lifetime of 
an appliance

RISKGAMMA function Implements the gamma distribution in @RISK �RISKGAMMA 996
(alpha,beta)

(continued)
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1046 Chapter 16 Simulation Models

P R O B L E M S

Conceptual Questions

C.1. We have separated the examples in this chapter into
operations, finance, marketing, and sports categories.
List at least one other problem in each of these
categories that could be attacked with simulation. For
each, identify the random inputs, possible probability
distributions for them, and any outputs of interest.

C.2. Suppose you are an HR (human resources) manager at
a big university, and you sense that the university is
becoming too top-heavy with full professors. That is,
there do not seem to be as many younger professors at
the assistant and associate levels as there ought to be.
How could you study this problem with a simulation
model, using current and/or proposed promotions,
hiring, firing, and retirement policies?

C.3. You are an avid basketball fan, and you would like to
build a simulation model of an entire game so that you
could compare two different strategies, such as man-
to-man versus zone defense. Is this possible? What
might make this simulation model difficult to build?

C.4. Suppose you are a financial analyst and your company
runs many simulation models to estimate the
profitability of its projects. If you had to choose just
two measures of the distribution of any important
output such as net profit to report, which two would
you choose? Why? What information would be
missing if you reported only these two measures? How
could they be misleading?

C.5. Software development is an inherently risky and
uncertain process. For example, there are many
examples of software that couldn’t be “finished” by 
the scheduled release date—bugs still remained and
features weren’t ready. (Many people believe this was
the case with Office 2007.) How might you simulate the
development of a software product? What random
inputs would be required? Which outputs would be of
interest? Which measures of the probability distrib-
utions of these outputs would be most important?

C.6. Health care is continually in the news. Can (or should)
simulation be used to help solve, or at least study,
some of the difficult problems associated with health
care? Provide at least two examples where simulation
might be useful.

Level A

36. You now have $3000. You will toss a fair coin four
times. Before each toss you can bet any amount of
your money (including none) on the outcome of the
toss. If heads comes up, you win the amount you bet.
If tails comes up, you lose the amount you bet. Your
goal is to reach $6000. It turns out that you can
maximize your chance of reaching $6000 by betting
either the money you have on hand or $6000 minus
the money you have on hand, whichever is smaller.
Use simulation to estimate the probability that you
will reach your goal with this betting strategy.

37. You now have $10,000, all of which is invested in a
sports team. Each year there is a 60% chance that the
value of the team will increase by 60% and a 40%
chance that the value of the team will decrease by
60%. Estimate the mean and median value of your
investment after 50 years. Explain the large difference
between the estimated mean and median.

38. Suppose you have invested 25% of your portfolio in
four different stocks. The mean and standard deviation
of the annual return on each stock are shown in the file
P16_38.xlsx. The correlations between the annual
returns on the four stocks are also shown in this file.
a. What is the probability that your portfolio’s annual

return will exceed 20%?
b. What is the probability that your portfolio will lose

money during the year?

39. A ticket from Indianapolis to Orlando on Deleast
Airlines sells for $150. The plane can hold 100 people.
It costs Deleast $8000 to fly an empty plane. Each
person on the plane incurs variable costs of $30 (for

Summary of Key Terms (Continued)

Term Explanation Excel Page
Value at risk at the 5% Fifth percentile of distribution of some output, 1007
level (VAR 5%) usually a monetary output; indicates nearly

the worst possible outcome

Churn When customers stop buying a product or 1021
service and switch to a competitor’s offering

RANDBETWEEN Generates a random integer between two limits, �RANDBETWEEN 1038
function where each is equally likely (1,6), for example
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food and fuel). If the flight is overbooked, anyone who
cannot get a seat receives $300 in compensation. On
average, 95% of all people who have a reservation
show up for the flight. To maximize expected profit,
how many reservations for the flight should Deleast
book? (Hint: The function RISKBINOMIAL can be
used to simulate the number who show up. It takes two
arguments: the number of reservations booked and the
probability that any ticketed person shows up.)

40. Based on Marcus (1990). The Balboa mutual fund has
beaten the Standard and Poor’s 500 during 11 of the
last 13 years. People use this as an argument that you
can beat the market. Here is another way to look at it
that shows that Balboa’s beating the market 11 out of
13 times is not unusual. Consider 50 mutual funds,
each of which has a 50% chance of beating the market
during a given year. Use simulation to estimate the
probability that over a 13-year period the best of the
50 mutual funds will beat the market for at least 11 out
of 13 years. This probability turns out to exceed 40%,
which means that the best mutual fund beating the
market 11 out of 13 years is not an unusual occurrence
after all.

41. You have been asked to simulate the cash inflows to a
toy company for the next year. Monthly sales are
independent random variables. Mean sales for the
months January through March and October through
December are $80,000, and mean sales for the months
April through September are $120,000. The standard
deviation of each month’s sales is 20% of the month’s
mean sales. Model the method used to collect monthly
sales as follows:
■ During each month a certain fraction of new sales

will be collected. All new sales not collected
become one month overdue.

■ During each month a certain fraction of one-month
overdue sales is collected. The remainder becomes
two months overdue.

■ During each month a certain fraction of two-month
overdue sales is collected. The remainder is written
off as bad debt.

You are given the information in the file P16_41.xlsx
from past months. Using this information, build a
simulation model that generates the total cash inflow
for each month. Develop a simple forecasting model
and build the error of your forecasting model into the
simulation. Assuming that there are $120,000 of one-
month-old sales outstanding and $140,000 of two-
month-old sales outstanding during January, you are
95% sure that total cash inflow for the year will be
between what two values?

42. Consider a device that requires two batteries to
function. If either of these batteries dies, the device
will not work. Currently there are two new batteries
in the device, and there are three extra new batteries.
Each battery, once it is placed in the device, lasts a

random amount of time that is triangularly
distributed with parameters 15, 18, and 25 (all
expressed in hours). When any of the batteries in the
device dies, it is immediately replaced by an extra if
an extra is still available. Use @RISK to simulate the
time the device can last with the batteries currently
available.

43. Consider a drill press containing three drill bits. The
current policy (called individual replacement) is to
replace a drill bit when it fails. The firm is considering
changing to a block replacement policy in which all
three drill bits are replaced whenever a single drill bit
fails. Each time the drill press is shut down, the cost is
$100. A drill bit costs $50, and the variable cost of
replacing a drill bit is $10. Assume that the time to
replace a drill bit is negligible. Also, assume that the
time until failure for a drill bit follows an exponential
distribution with a mean of 100 hours. This can be
modeled in @RISK with the formula �RISKEXPON
(100). Determine which replacement policy (block or
individual replacement) should be implemented.

44. Appliances Unlimited (AU) sells refrigerators. Any
refrigerator that fails before it is three years old is
replaced for free. Of all refrigerators, 3% fail during
their first year of operation; 5% of all one-year-old
refrigerators fail during their second year of operation;
and 7% of all two-year-old refrigerators fail during
their third year of operation.
a. Use simulation to estimate the fraction of all

refrigerators that will have to be replaced.
b. It costs $500 to replace a refrigerator, and AU sells

10,000 refrigerators per year. If the warranty period
were reduced to two years, how much per year in
replacement costs would be saved?

45. The annual demand for Prizdol, a prescription drug
manufactured and marketed by the NuFeel Company,
is normally distributed with mean 50,000 and standard
deviation 12,000. Assume that demand during each of
the next 10 years is an independent random number
from this distribution. NuFeel needs to determine how
large a Prizdol plant to build to maximize its expected
profit over the next 10 years. If the company builds a
plant that can produce x units of Prizdol per year, it
will cost $16 for each of these x units. NuFeel will
produce only the amount demanded each year, and
each unit of Prizdol produced will sell for $3.70. Each
unit of Prizdol produced incurs a variable production
cost of $0.20. It costs $0.40 per year to operate a unit
of capacity.
a. Among the capacity levels of 30,000, 35,000,

40,000, 45,000, 50,000, 55,000, and 60,000 units
per year, which level maximizes expected profit?
Use simulation to answer this question.

b. Using the capacity from your answer to part a,
NuFeel can be 95% certain that actual profit for the
10-year period will be between what two values?
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46. A company is trying to determine the proper capacity
level for its new electric car. A unit of capacity provides
the potential to produce one car per year. It costs
$10,000 to build a unit of capacity and the cost is
charged equally over the next five years. It also costs
$400 per year to maintain a unit of capacity (whether or
not it is used). Each car sells for $14,000 and incurs a
variable production cost of $10,000. The annual demand
for the electric car during each of the next five years is
believed to be normally distributed with mean 50,000
and standard deviation 10,000. The demands during
different years are assumed to be independent. Profits
are discounted at a 10% annual interest rate. The
company is working with a five-year planning horizon.
Capacity levels of 30,000, 40,000, 50,000, 60,000, and
70,000 are under consideration. You can assume that the
company never produces more than demand, so there is
never any inventory to carry over from year to year.
a. Assuming that the company is risk neutral, use

simulation to find the optimal capacity level.
b. Using the answer to part a, there is a 5% chance

that the actual discounted profit will exceed what
value, and there is a 5% chance that the actual
discounted profit will be less than what value?

c. If the company is risk averse, how might the
optimal capacity level change?

47. The DC Cisco office is trying to predict the revenue it
will generate next week. Ten deals may close next
week. The probability of each deal closing and data on
the possible size of each deal (in millions of dollars)
are listed in the file P16_47.xlsx. Use simulation to
estimate total revenue. Based on the simulation, the
company can be 95% certain that its total revenue will
be between what two numbers?

Level B

48. A common decision is whether a company should buy
equipment and produce a product in house or
outsource production to another company. If sales
volume is high enough, then by producing in house,
the savings on unit costs will cover the fixed cost of
the equipment. Suppose a company must make such a
decision for a four-year time horizon, given the
following data. Use simulation to estimate the
probability that producing in house is better than
outsourcing.
■ If the company outsources production, it will have

to purchase the product from the manufacturer for
$18 per unit. This unit cost will remain constant for
the next four years.

■ The company will sell the product for $40 per unit.
This price will remain constant for the next four
years.

■ If the company produces the product in house, it
must buy a $400,000 machine that is depreciated

on a straight-line basis over four years, and its cost
of production will be $7 per unit. This unit cost
will remain constant for the next four years.

■ The demand in year 1 has a worst case of 10,000
units, a most likely case of 14,000 units, and a best
case of 16,000 units.

■ The average annual growth in demand for years
2–4 has a worst case of 10%, a most likely case of
20%, and a best case of 26%. Whatever this annual
growth is, it will be the same in each of the years.

■ The tax rate is 40%.
■ Cash flows are discounted at 12% per year.

49. Consider an oil company that bids for the rights to
drill in offshore areas. The value of the right to drill in
a given offshore area is highly uncertain, as are the
bids of the competitors. This problem demonstrates
the “winner’s curse.” The winner’s curse states that the
optimal bidding strategy entails bidding a substantial
amount below the company’s assumed value of the
product for which it is bidding. The idea is that if the
company does not bid under its assumed value, its
uncertainty about the actual value of the product will
often lead it to win bids for products on which it loses
money (after paying its high bid). Suppose Royal
Conch Oil (RCO) is trying to determine a profit-
maximizing bid for the right to drill on an offshore oil
site. The actual value of the right to drill is unknown,
but it is equally likely to be any value between $10
million and $110 million. Seven competitors will bid
against RCO. Each bidder’s (including RCO’s)
estimate of the value of the drilling rights is equally
likely to be any number between 50% and 150% of the
actual value. Based on past history, RCO believes that
each competitor is equally likely to bid between 40%
and 60% of its value estimate. Given this information,
what fraction (within 0.05) of RCO’s estimated value
should it bid to maximize its expected profit? (Hint:
You can use the RISKUNIFORM function to model
the actual value of the field and the competitors’ bids.)

50. Suppose you begin year 1 with $5000. At the
beginning of each year, you put half of your money
under a mattress and invest the other half in
Whitewater stock. During each year, there is a 50%
chance that the Whitewater stock will double, and
there is a 50% chance that you will lose half of your
investment. To illustrate, if the stock doubles during
the first year, you will have $3750 under the mattress
and $3750 invested in Whitewater during year 2. You
want to estimate your annual return over a 30-year
period. If you end with F dollars, your annual return is
(F/5000)1/30 – 1. For example, if you end with
$100,000, your annual return is 201/30 – 1 � 0.105, or
10.5%. Run 1000 replications of an appropriate
simulation. Based on the results, you can be 95%
certain that your annual return will be between which
two values?
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51. Mary Higgins is a freelance writer with enough spare
time on her hands to play the stock market fairly
seriously. Each morning she observes the change in
stock price of a particular stock and decides whether
to buy or sell, and if so, how many shares to buy or
sell. Assume that on day 1, she has $100,000 cash to
invest and that she spends part of this to buy her first
500 shares of the stock at the current price of $50 per
share. From that point on, she follows a fairly simple
“buy low, sell high” strategy. Specifically, if the price
has increased three days in a row, she sells 25% of her
shares of the stock. If the price has increased two days
in a row (but not three), she sells 10% of her shares. In
the other direction, if the price has decreased three
days in a row, she buys up to 25% more shares,
whereas if the price has decreased only two days in a
row, she buys up to10% more shares. The reason for
the “up to” proviso is that she cannot buy more than
she has cash to pay for. Assume a fairly simple model
of stock price changes, as described in the file
P16_51.xlsx. Each day the price can change by as
much as $2 in either direction, and the probabilities
depend on the previous price change: decrease,
increase, or no change. Build a simulation model of
this strategy for a period of 75 trading days. (You can
assume that the stock price on each of the previous
two days was $49.) Choose interesting @RISK output
cells, and then run @RISK for at least 1000 iterations
and report your findings.

52. You are considering a 10-year investment project. At
present, the expected cash flow each year is $10,000.
Suppose, however, that each year’s cash flow is
normally distributed with mean equal to last year’s
actual cash flow and standard deviation $1000. For
example, suppose that the actual cash flow in year 1 is
$12,000. Then year 2 cash flow is normal with mean
$12,000 and standard deviation $1000. Also, at the
end of year 1, your best guess is that each later year’s
expected cash flow will be $12,000.
a. Estimate the mean and standard deviation of the

NPV of this project. Assume that cash flows are
discounted at a rate of 10% per year.

b. Now assume that the project has an abandonment
option. At the end of each year you can abandon
the project for the value given in the file
P16_52.xlsx. For example, suppose that year
1 cash flow is $4000. Then at the end of year 1,
you expect cash flow for each remaining year to be
$4000. This has an NPV of less than $62,000, so
you should abandon the project and collect $62,000
at the end of year 1. Estimate the mean and
standard deviation of the project with the
abandonment option. How much would you pay
for the abandonment option? (Hint: You can
abandon a project at most once. So in year 5, for
example, you abandon only if the sum of future

expected NPVs is less than the year 5 abandonment
value and the project has not yet been abandoned.
Also, once you abandon the project, the actual cash
flows for future years are zero. So in this case the
future cash flows after abandonment should be zero
in your model.)

53. Play Things is developing a new Hannah Montana
doll. The company has made the following
assumptions:
■ The doll will sell for a random number of years

from 1 to 10. Each of these 10 possibilities is
equally likely.

■ At the beginning of year 1, the potential market for
the doll is one million. The potential market grows
by an average of 5% per year. The company is 95%
sure that the growth in the potential market during
any year will be between 3% and 7%. It uses a
normal distribution to model this.

■ The company believes its share of the potential
market during year 1 will be at worst 20%, most
likely 40%, and at best 50%. It uses a triangular
distribution to model this.

■ The variable cost of producing a doll during year
1 has a triangular distribution with parameters $8,
$10, and $12.

■ The current selling price is $20.
■ Each year, the variable cost of producing the doll

will increase by an amount that is triangularly
distributed with parameters 4.5%, 5%, and 6.5%.
You can assume that once this change is generated,
it will be the same for each year. You can also
assume that the company will change its selling
price by the same percentage each year.

■ The fixed cost of developing the doll (which is
incurred right away, at time 0) has a triangular
distribution with parameters $4, $6, and $12
million.

■ Right now there is one competitor in the market.
During each year that begins with four or fewer
competitors, there is a 20% chance that a new
competitor will enter the market.

■ Year t sales (for t � 1) are determined as follows.
Suppose that at the end of year t – 1, n competitors
are present (including Play Things). Then during
year t, a fraction 0.9 – 0.1n of the company’s loyal
customers (last year’s purchasers) will buy a doll
from Play Things this year, and a fraction 
0.2 – 0.04n of customers currently in the market
who did not purchase a doll last year will purchase
a doll from Play Things this year. Adding these two
provides the mean sales for this year. Then the
actual sales this year is normally distributed with
this mean and standard deviation equal to 7.5% of
the mean.

a. Use @RISK to estimate the expected NPV of this
project.
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b. Use the percentiles in @RISK’s output to find an
interval such that you are 95% certain that the
company’s actual NPV will be within this interval.

54. An automobile manufacturer is considering whether to
introduce a new model called the Racer. The
profitability of the Racer depends on the following
factors:
■ The fixed cost of developing the Racer is

triangularly distributed with parameters $3, $4, and
$5, all in billions.

■ Year 1 sales are normally distributed with mean
200,000 and standard deviation 50,000. Year 2
sales are normally distributed with mean equal to
actual year 1 sales and standard deviation 50,000.
Year 3 sales are normally distributed with mean
equal to actual year 2 sales and standard deviation
50,000.

■ The selling price in year 1 is $25,000. The year
2 selling price will be 1.05[year 1 price 	 $50
(% diff1)] where % diff1 is the number of
percentage points by which actual year 1 sales
differ from expected year 1 sales. The 1.05 factor
accounts for inflation. For example, if the year
1 sales figure is 180,000, which is 10 percentage
points below the expected year 1 sales, then the
year 2 price will be 1.05[25,000 	 50(–10)] 
� $25,725. Similarly, the year 3 price will be
1.05[year 2 price 	 $50(% diff2)] where % diff2 is
the percentage by which actual year 2 sales differ
from expected year 2 sales.

■ The variable cost in year 1 is triangularly
distributed with parameters $10,000, $12,000, and
$15,000, and it is assumed to increase by 5% each
year.

Your goal is to estimate the NPV of the new car during
its first three years. Assume that the company is able
to produce exactly as many cars as it can sell. Also,
assume that cash flows are discounted at 10%.
Simulate 1000 trials to estimate the mean and standard
deviation of the NPV for the first three years of sales.
Also, determine an interval such that you are 95%
certain that the NPV of the Racer during its first three
years of operation will be within this interval.

55. It costs a pharmaceutical company $40,000 to produce
a 1000-pound batch of a drug. The average yield from
a batch is unknown but the best case is 90% yield (that
is, 900 pounds of good drug will be produced), the
most likely case is 85% yield, and the worst case is
70% yield. The annual demand for the drug is
unknown, with the best case being 22,000 pounds, the
most likely case 18,000 pounds, and the worst case
12,000 pounds. The drug sells for $60 per pound and
leftover amounts of the drug can be sold for $8 per
pound. To maximize annual expected profit, how
many batches of the drug should the company

produce? You can assume that it will produce the
batches only once, before demand for the drug is
known.

56. A truck manufacturer produces the Off Road truck.
The company wants to gain information about the
discounted profits earned during the next three years.
During a given year, the total number of trucks sold in
the United States is 500,000 	 50,000G – 40,000I,
where G is the number of percentage points increase
in gross domestic product during the year and I is the
number of percentage points increase in the consumer
price index during the year. During the next three
years, Value Line has made the predictions listed in
the file P16_56.xlsx. In the past, 95% of Value Line’s
G predictions have been accurate within 6%, and 95%
of Value Line’s I predictions have been accurate
within 5%. You can assume that the actual G and I
values are normally distributed each year.

At the beginning of each year, a number of competitors
might enter the trucking business. The probability
distribution of the number of competitors that will
enter the trucking business is also given in the same
file. Before competitors join the industry at the
beginning of year 1, there are two competitors. During
a year that begins with n competitors (after competitors
have entered the business, but before any have left, and
not counting Off Road), Off Road will have a market
share given by 0.5(0.9)n. At the end of each year, there
is a 20% chance that any competitor will leave the
industry. The selling price of the truck and the
production cost per truck are also given in the file.
Simulate 1000 replications of the company’s profit for
the next three years. Estimate the mean and standard
deviation of the discounted three-year profits, using a
discount rate of 10% and Excel’s NPV function. Do the
same if the probability that any competitor leaves the
industry during any year increases to 50%.

57. Suppose you buy an electronic device that you operate
continuously. The device costs you $300 and carries a
one-year warranty. The warranty states that if the
device fails during its first year of use, you get a new
device for no cost, and this new device carries exactly
the same warranty. However, if it fails after the first
year of use, the warranty is of no value. You plan to
use this device for the next six years. Therefore, any
time the device fails outside its warranty period, you
will pay $300 for another device of the same kind.
(We assume the price does not increase during the six-
year period.) The time until failure for a device is
gamma distributed with parameters � � 2 and � �
0.5. (This implies a mean of one year.) Use @RISK to
simulate the six-year period. Include as outputs (1)
your total cost, (2) the number of failures during the
warranty period, and (3) the number of devices you
own during the six-year period.
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58. Rework the previous problem for a case in which the
one-year warranty requires you to pay for the new
device even if failure occurs during the warranty
period. Specifically, if the device fails at time t,
measured relative to the time it went into use, you
must pay $300t for a new device. For example, if the
device goes into use at the beginning of April and fails
nine months later, at the beginning of January, you
must pay $225. The reasoning is that you got 9/12 of
the warranty period for use, so you should pay that
fraction of the total cost for the next device. As before,
however, if the device fails outside the warranty
period, you must pay the full $300 cost for a new
device.

59. Based on Hoppensteadt and Peskin (1992). The
following model (the Reed–Frost model) is often used
to model the spread of an infectious disease. Suppose
that at the beginning of period 1, the population
consists of five diseased people (called infectives) and
95 healthy people (called susceptibles). During any
period there is a 0.05 probability that a given infective
person will encounter a particular susceptible. If an
infective encounters a susceptible, there is a 0.5
probability that the susceptible will contract the
disease. An infective lives for an average of 10 periods
with the disease. To model this, assume that there is a
0.10 probability that an infective dies during any given
period. Use @RISK to model the evolution of the
population over 100 periods. Use your results to
answer the following questions. [Hint: During any
period there is probability 0.05(0.50) � 0.025 that an
infective will infect a particular susceptible. Therefore,
the probability that a particular susceptible is not
infected during a period is (1 – 0.025)n, where n is the
number of infectives present at the end of the previous
period.]

a. What is the probability that the population will die
out?

b. What is the probability that the disease will die
out?

c. On the average, what percentage of the population
is infected by the end of period 100?

d. Suppose that people use infection “protection”
during encounters. The use of protection reduces
the probability that a susceptible will contract the
disease during a single encounter with an infective
from 0.50 to 0.10. Now answer parts a through c
under the assumption that everyone uses
protection.

60. Chemcon has taken over the production of Nasacure
from a rival drug company. Chemcon must build a plant
to produce Nasacure by the beginning of 2010. Once the
plant is built, the plant’s capacity cannot be changed.
Each unit sold brings in $10 in revenue. The fixed cost
(in dollars) of producing a plant that can produce x units

per year of the drug is 5,000,000 	 10x. This cost is
assumed to be incurred at the end of 2010. In fact, you
can assume that all cost and sales cash flows are incurred
at the ends of the respective years. If a plant of capacity
x is built, the variable cost of producing a unit of
Nasacure is 6 – 0.1(x – 1,000,000)/100,000. For
example, a plant capacity of 1,100,000 units has a
variable cost of $5.90. Each year a plant operating cost
of $1 per unit of capacity is also incurred. Based on a
forecasting sales model from the previous 10 years,
Chemcon forecasts that demand in year t, Dt, is related
to the demand in the previous year, Dt–1, by the equation
Dt � 67,430 	 0.985Dt–1 	 et where et is normally
distributed with mean 0 and standard deviation 29,320.
The demand in 2009 was 1,011,000 units. If demand for
a year exceeds production capacity, all demand in excess
of plant capacity is lost. If demand is less than capacity,
the extra capacity is simply not used. Chemcon wants to
determine a capacity level that maximizes expected
discounted profits (using a discount rate of 10%) for the
time period 2010 through 2019. Use simulation to help it
do so.

61. The Tinkan Company produces one-pound cans for
the Canadian salmon industry. Each year the salmon
spawn during a 24-hour period and must be canned
immediately. Tinkan has the following agreement with
the salmon industry. The company can deliver as many
cans as it chooses. Then the salmon are caught. For
each can by which Tinkan falls short of the salmon
industry’s needs, the company pays the industry a $2
penalty. Cans cost Tinkan $1 to produce and are sold
by Tinkan for $2 per can. If any cans are left over, they
are returned to Tinkan and the company reimburses
the industry $2 for each extra can. These extra cans are
put in storage for next year. Each year a can is held in
storage, a carrying cost equal to 20% of the can’s
production cost is incurred. It is well known that the
number of salmon harvested during a year is strongly
related to the number of salmon harvested the previous
year. In fact, using past data, Tinkan estimates that the
harvest size in year t, Ht (measured in the number of
cans required), is related to the harvest size in the
previous year, Ht–1, by the equation Ht � Ht–1et where
et is normally distributed with mean 1.02 and standard
deviation 0.10.

Tinkan plans to use the following production strategy.
For some value of x, it produces enough cans at the
beginning of year t to bring its inventory up to ,
where is the predicted harvest size in year
t. Then it delivers these cans to the salmon industry.
For example, if it uses x � 100,000, the predicted
harvest size is 500,000 cans, and 80,000 cans are
already in inventory, then Tinkan produces and delivers
520,000 cans. Given that the harvest size for the
previous year was 550,000 cans, use simulation to help

HN t

x + HN t
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Tinkan develop a production strategy that maximizes
its expected profit over the next 20 years. Assume that
the company begins year 1 with an initial inventory of
300,000 cans.

62. You are unemployed, 21 years old, and searching for a
job. Until you accept a job offer, the following
situation occurs. At the beginning of each year, you
receive a job offer. The annual salary associated with
the job offer is equally likely to be any number
between $20,000 and $100,000. You must
immediately choose whether to accept the job offer. If
you accept an offer with salary $x, you receive $x per
year while you work (assume you retire at age 70),
including the current year. Assume that cash flows are
discounted so that a cash flow received one year from
now has a present value of 0.9. You decide to accept
the first job offer that exceeds w dollars.
a. Use simulation to determine the value of w (within

$10,000) that maximizes the expected NPV of
earnings you will receive the rest of your working
life.

b. Repeat part a, but now assume that you get a 3%
raise in salary every year after the first year you
accept the job.

63. A popular restaurant in Indianapolis does a brisk
business, filling virtually all of its seats from 6 P.M.
until 9 P.M. Tuesday through Sunday. Its current annual
revenue is $2.34 million. However, it does not
currently accept credit cards, and it is thinking of
doing so. If it does, the bank will charge 4% on all
receipts during the first year. (To keep it simple, you
can ignore taxes and tips and focus only on the
receipts from food and liquor.) Depending on receipts
in year 1, the bank might then reduce its fee in
succeeding years, as indicated in the file P16_63.xlsx.
(This would be a one-time reduction, at the end of
year 1 only.) This file also contains parameters of the
two uncertain quantities, credit card usage (percentage
of customers who will pay with credit cards) and
increased spending (percentage increase in spending
by credit card users, presumably on liquor but maybe
also on more expensive food). The restaurant wants to
simulate a five-year horizon. Its base case is not to
accept credit cards at all, in which case it expects to
earn $2.34 million in revenue each year. It wants to
use simulation to explore other options, where it will
accept credit cards in year 1 and then discontinue them
in years 2–5 if the bank fee is less than or equal to

some cutoff value. For example, one possibility is to
accept credit cards in year 1 and then discontinue them
only if the bank fee is less than or equal to 3%. You
should explore the cutoffs 2% to 4% in increments of
0.5%. Which policy provides with the largest mean
increase in revenue over the five-year horizon, relative
to never using credit cards?

64. The Ryder Cup is a three-day golf tournament
played every other year with 12 of the best
U.S. golfers against 12 of the best European golfers.
They play 16 team matches (each match has two
U.S. golfers against two European golfers) on
Friday and Saturday, and they play 12 singles
matches (each match has a single U.S. golfer
against a European golfer) on Sunday. Each match
is either won or tied. A win yields 1 point for the
winning team and 0 points for the losing team. A tie
yields 0.5 point for each team. A team needs 14.5
points to win the Cup. If each team gets 14 points,
the tournament is a tie, but the preceding winner
gets to keep the Cup. In 1999, the U.S. was behind
10 points to 6 after the team matches. To win the
Cup, the U.S. needed at least 8.5 points on Sunday,
a very unlikely outcome, but they pulled off the
miracle and won. Use simulation to estimate the
probability of the U.S. scoring at least 8.5 points in
the 12 singles matches, assuming all golfers in the
tournament are essentially equal. Proceed as
follows.
a. Use simulation to estimate the probability, call it h

(for half), that a given match ends in a tie. To do
this, you can assume that any of the 18 holes is
tied with probability 0.475 and won with
probability 0.525. (These are the historical
fractions of holes that have been tied and won in
singles matches in the past few Ryder Cups.) Note
that each match is “match play,” so the only thing
that counts on each hole is whether a golfer has
fewer strokes than the other golfer—winning a
hole by one stroke is equivalent to winning the
hole by two or more strokes in match play. The
player winning the most holes wins the match,
unless they tie.

b. Run another simulation, using the estimated
probability h as an input, to estimate the
probability that the U.S. will score at least
8.5 points in the 12 singles matches.
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C A S E

Your next-door neighbor, Scott Jansen, has a 12-

year-old daughter, and he intends to pay the

tuition for her first year of college six years from

now.The tuition for the first year will be $17,500.

Scott has gone through his budget and finds that he

can invest $200 per month for the next six years.

Scott has opened accounts at two mutual funds.The

first fund follows an investment strategy designed to

match the return of the S&P 500.The second fund

invests in short-term Treasury bills. Both funds have

very low fees.

Scott has decided to follow a strategy in which

he contributes a fixed fraction of the $200 to each

fund. An adviser from the first fund suggested that in

each month he should invest 80% of the $200 in the

S&P 500 fund and the other 20% in the T-bill fund.

The adviser explained that the S&P 500 has averaged

much larger returns than the T-bill fund. Even though

stock returns are risky investments in the short run,

the risk should be fairly minimal over the longer 

six-year period. An adviser from the second fund

recommended just the opposite: invest 20% in the

S&P 500 fund and 80% in T-bills, because treasury bills

are backed by the United States government. If you

follow this allocation, he said, your average return

will be lower, but at least you will have enough to

reach your $17,500 target in six years.

Not knowing which adviser to believe, Scott has

come to you for help.

Questions
1. The file Investing for College.xlsx contains

261 monthly returns of the S&P 500 and

Treasury bills from January 1970 through

September 1991. (If you can find more recent

data on the Web, feel free to use it.) Suppose

that in each of the next 72 months (six years), it

is equally likely that any of the historical returns

will occur. Develop a spreadsheet model to

simulate the two suggested investment strategies

over the six-year period. Plot the value of each

strategy over time for a single iteration of the

simulation.What is the total value of each

strategy after six years? Do either of the

strategies reach the target?

2. Simulate 1000 iterations of the two strategies

over the six-year period. Create a histogram of

the final fund values. Based on your simulation

results, which of the two strategies would you

recommend? Why?

3. Suppose that Scott needs to have $19,500 to pay

for the first year’s tuition. Based on the same

simulation results, which of the two strategies

would you recommend now? Why?

4. What other real-world factors might be

important to consider in designing the

simulation and making a recommendation? ■

16.1 COLLEGE FUND INVESTMENT
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C A S E

An investor is considering the purchase of zero-

coupon U.S.Treasury bonds. A 30-year zero-

coupon bond yielding 8% can be purchased today for

$9.94.At the end of 30 years, the owner of the bond

will receive $100.The yield of the bond is related to

its price by the following equation:

Here, P is the price of the bond, y is the yield of the

bond, and t is the maturity of the bond measured in

years. Evaluating this equation for t � 30 and y �
0.08 gives P � 9.94.

The investor is planning to purchase a bond

today and sell it one year from now. The investor is

interested in evaluating the return on the investment

in the bond. Suppose, for example, that the yield of

the bond one year from now is 8.5%.Then the price

of the bond one year later will be $9.39 [�100/(1 	
0.085)29].The time remaining to maturity is t � 29

because one year has passed.The return for the year

is –5.54% [� (9.39 – 9.94)/9.94].

In addition to the 30-year-maturity zero-coupon

bond, the investor is considering the purchase of

zero-coupon bonds with maturities of 2, 5, 10, or

20 years. All of the bonds are currently yielding 8.0%.

(Bond investors describe this as a flat yield curve.)

The investor cannot predict the future yields of the

bonds with certainty. However, the investor believes

that the yield of each bond one year from now can

be modeled by a normal distribution with mean 8%

and standard deviation 1%.

Questions
1. Suppose that the yields of the five zero-coupon

bonds are all 8.5% one year from today.What

are the returns of each bond over the period?

2. Using a simulation with 1000 iterations,

estimate the expected return of each bond

over the year. Estimate the standard deviations

of the returns.

3. Comment on the following statement: “The

expected yield of the 30-year bond one year

from today is 8%. At that yield, its price would

be $10.73.The return for the year would be 8% 

[� (10.73 – 9.94)/9.94].Therefore, the average

return for the bond should be 8% as well. A

simulation isn’t really necessary. Any difference

between 8% and the answer in Question 2 must

be due to simulation error.” ■

P =

100

(1 + y)t

16.2 BOND INVESTMENT STRATEGY
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